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ABSTRACT

Ecotoxicological Simulation Modeling: Effects of Agricultural Chemical Exposure on
Wintering Burrowing Owls. (May 2008)
Catherine Allegra Engelman, B.A./B.S., The Evergreen State College

Co-Chairs of Advisory Committee: Dr. Miguel A. Mora
Dr William E. Grant

The western burrowing owAthene cunicularia hypugaea, is a Federal Species
of Concern, whose numbers and range have been drastically reduced from historic levels
in Texas. Burrowing owls roost and forage in agricultural areas, and it has been
hypothesized that exposure to insecticides may be a factor in the decline of their
population. Burrowing owls wintering in southern Texas use agricultural culverts in
cotton fields as roost sites, which may increase their risk of exposure to agricultural
chemicals, either through ingestion of contaminated prey or through dermal exposure to
agricultural runoff.

Simulation modeling was used to characterize the risks to individual burrowing
owls wintering in agricultural landscapes in southern Texas due to effects of exposure to
insecticides or other agricultural chemicals. The simulation model was created using
Stella® VII software (High Performance Systems, Inc., New Hampshire, USA). The

model is broken into four submodels simulating (1) foraging behavior of burrowing



owls, (2) chemical applications to crops, (3) chemical transfer and fate in the crop soil
and prey items, and (4) chemical exposure in the burrowing owl.

This model was used to evaluate (1) which components of the model most affect
the endpoints, (2) the relationship between increased concentrations of agricultural
chemicals in culverts and subsequent lethal and sublethal effects from dermal exposure
to agricultural runoff, and (3) which agricultural chemicals have the greatest potential to
cause adverse effects in burrowing owls. Model results suggested (1) the half-lives of
agricultural chemicals in birds caused the most variation in the results, and data gaps
exist for several important model components (2), exposure to increased concentrations
of agricultural chemicals in culverts is unlikely to result in lethal effects, but is likely to
lead to sublethal effects in burrowing owls, and (3) the chemicals with the greatest
potential to negatively affect burrowing owls wintering in southern Texas are the OP
insecticides chlorpyrifos, dicrotophos, and disulfoton, the oxadiazine insecticide
indoxacarb, the herbicide trifluralin, and the defoliants tribufos and paraquat. The results
of this model demonstrate the usefulness of simulation modeling to guide future research

related to the conservation of burrowing owils.



ACKNOWLEDGEMENTS

I would like to acknowledge the members of my graduate committee, Dr. Miguel
Mora, Dr. William Grant, Dr. Marc Woodin, and Dr. Rusty Feagin, whose collaborative
knowledge has guided the development of this research. | am grateful to the members of
my lab, Dr. Deborah Cowman, Megan Sitzler, and Michael Parks’ for their inspiration
and engaging dialogue. | appreciate the camaraderie and encouragement of the graduate
students, faculty, and staff of the Department of Wildlife and Fisheries that | experienced
during my time in College Station. | would like to acknowledge the USGS and Texas
A&M Department of Wildlife and Fisheries for the provision of an assistantship which
made this research feasible. | am thankful to the USGS Texas Gulf Coast Field Research
Station for sharing their research and my first introduction to south Texas burrowing
owls. Finally, I am deeply obligated to the members of my family, Clay Small, Galil
Price, and Don, Patrick, Ashley, and Alison Engelman, for their continual love and

support.



ACA

AChE

APHIS

CB

ChE

DTI

NOMENCLATURE

Alberta Conservation Association

Acetylcholinesterase

USDA Animal and Plant Health Inspection Service

Carbamate Insecticide

Cholinesterase

Dermal to Oral Toxicity Index

FOOTPRINT Footprint Pesticides Database- University of Hertfordshire

FS-1

FS-2

FS-3

HD5

LD50

LEL

Cotton/Sorghum crop scenario

Cotton/Sorghum/Cabbage crop scenario

Cotton/Sorghum/Onions crop scenario

Hazardous Dose resulting in mortality of 5% of the population

Lethal Dose resulting in mortality of 50% of the population

Lowest Effects Level

Vi



LOEL

NASS

NCFAP

NOEC

NOEL

NRA

oC

OoP

PAN

PIF

PIP

SANCO

SRD

TPWD

vii

Lowest Observed Effects Level

USDA National Agricultural Statistics Service

National Center for Food and Agricultural Policy

No Observed Effects Concentration

No Observed Effects Level

National Registration Authority for Agricultural and Veterinary

Chemicals

Organochlorine Insecticide

Organophosphate Insecticide

Pesticide Action Network database

Partners in Flight

Pesticide Information Profiles database

European Commission. Health & Consumer Protection Directorate-

General

Alberta Sustainable Resource Development

Texas Parks and Wildlife Department



viii

USDA U.S. Department of Agriculture

U.S. EPA U.S. Environmental Protection Agency

USFWS U.S. Fish and Wildlife Service



TABLE OF CONTENTS

Page
Y = S I O PPN iii
ACKNOWLEDGEMENTS ...ttt e et e et e e e et e e e et e e e ean e eeees %
NOMENCLATURE ...t e e e et e e e et e e eaans Vi
TABLE OF CONTENTS ...ttt ettt e et e e e e e e et e eaan e iX
LIST OF FIGURES ...t e et e e e eaans Xi
LIST OF TABLES ... oo e ettt e e e e e et e e e et e e eannns Xiii
CHAPTER
| INTRODUCTION. ...ttt et eeaa e 1
Il SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL
EXPOSURE ON BURROWING OWLS WINTERING IN SOUTH
TEXAS COTTON FIELDS.......iieiiiee et 8
1. INFOAUCTION ...t 8
2. STUAY ATBA....uu it e e 11
3. Conceptual Model.........cooouiiii 14
4. Quantitative Model DesCription ...........cocoeuiiiiiiiiiieiiineeeeiinen. 17
5. Sensitivity ANAlYSES......coouuiiiiiiiii e 24
6. Model APPlICAtION .......coveviiiiii e 33
7. DISCUSSION ...uiiiiiee ittt e et e e e eaans 41
[l BURROWING OWLS AND CULVERTS IN COTTON FIELDS: AN
ECOLOGICAL TRAP 2. .ttt 43
1. INFOAUCHION ... 43
2. SEUAY AlBA....uu ittt 49
3. MOAEl OVEIVIEW ... 49
A, MEtNOGS...... i 50
5. RESURS .. .o 52
6. SUMMAIY/DISCUSSION ...cevuiiiiiiiieeiiieeeei e et e et eaanns 67



CHAPTER Page
AV SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL
EXPOSURE ON BURROWING OWLS WINTERING IN SOUTH
TEXAS COTTON: A LOOK AT INDIVIDUAL CHEMICALS .......... 74
I [0/ (o Yo U To: (o] IV TR 74
2. SEUAY AlBA....uu it 76
3. MOAEI OVEIVIEW ... e 76
A, MEENOAS ...t 78
B RESUIS ... 79
B. IS CUSSION ettt 94
V CON CLUSIONS .., 104.
REFERENUGES. ... e e e e e, 107.....
AP P EIN D X A e e 125..
AP P END I X B .. e 140
AP P EN DI X C e e e 181.
AV I I TR 203.....



FIGURE

1

4a

4b

5a

5b

6a

6b

10

Xi

LIST OF FIGURES

age P

Example using ChE inhibition to illustrate lethal and sublethal effects
through direct and indirect pathways ..o,

Study areas showing locations of roost sites and examples of agricultural

fieldS USEA @S FOOSE SIS .. v e

Conceptual MOAEL ......coouuniiiii e

Differences in maximum and mean ChE inhibition between crop
(1= F= L 01U

Differences in duration of ChE inhibition > 20% or > 50% between crop
ESToL =] = T 01

The maximum number of agricultural chemicals to which the owl is
exposed to an amount > the LOEL over the winter by crop scenario ..........

The duration of exposure to agricultural chemicals > the LOEL over the
WINEEr DY CrOP SCENAIIO ...eeviiiiiiii et

The maximum number of agricultural chemicals to which the owl is
exposed to an amount > the HD5 over the winter by crop scenario ............

The duration of exposure to agricultural chemicals > the HD5 over the
WINEr DY CrOP SCENAIIO ...ccevniiiii e

Increase in the maximum % ChE inhibition occurring during the winter
due to increased insecticide concentrations in culverts by crop scenario .....

Increase in the mean % ChE inhibition occurring during the winter due to
increased insecticide concentrations in culverts by crop scenario................

Increase in the maximum number of insecticides the owl is exposed to >
their HD5 during the winter due to increased insecticide concentrations
IN CUIVErtS DY CroP SCENAIIO .....uiieiii it

Increase in the mean number of insecticides the owl is exposed to > their
HD5 during the winter due to increased insecticide concentrations in
CUIVErtS DY CrOP SCENAIIO .. .ccutiieiiii et



FIGURE

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Xii

age P

Increase in the maximum number of herbicides the owl is exposed to >
their HD5 during the winter due to increased herbicide concentrations

IN CUIVErtS DY CrOP SCENANIO .....uiiiiie i
Increase in the mean number of herbicides the owl is exposed to > their
HD5 during the winter due to increased herbicide concentrations in
CUIVErtS DY CrOP SCENAIIO .. .cceuieiiiii e
Increase in the maximum number of growth regulators and defoliants the
owl is exposed to > their HD5 during the winter due to increased growth
regulators and defoliant concentrations in culverts by crop scenario............
Increase in the mean number of growth regulators and defoliants the owl
is exposed to > their HD5 during the winter due to increased growth
regulators and defoliant concentrations in culverts by crop scenario............
Maximum amount of ChE inhibition caused by each insecticide type.........
Mean amount of ChE inhibition caused by each insecticide type ...............
Duration of ChE inhibition > 20% caused by each insecticide type ............
Duration of ChE inhibition caused by each insecticide type ..........cc...........
Ratio of average maximum exposure to LOEL by chemical type ...............
Ratio of average mean exposure to LOEL by chemical type ......................
Duration of exposure > LOEL by chemical type..........cccoovvviiiiiiiiiiiiieiennnnnn.
Ratio of average maximum exposure to HD5 by chemical type...................

Ratio of average mean exposure to HD5 by chemical type ........................

Duration of exposure > HD5 by chemical type .........coooiiiiiiiiiiiiiiiiiies



TABLE

la

1b

Xiii

LIST OF TABLES

Page

Number and range of OP and CB pesticide residues detected from
burrowing owl prey and pellets in south Texas......c.c.ooceuiiiiiiiiiiiiiiiiieceinn. 21

Determination of the estimated increase in soil half-lives during the
second phase and the start of the second phase ...........ccoovvviiiiiiiiiees 21

Parameter changes resulting in a significant change (p < 0.05) from the
baseline predicted values for each endpoint in each chemical.class.. 28

Increases in maximum % ChE inhibition occuring over the winter due to
increased insecticide concentrations in culvert SOil............ccccoooviiiiiins 54

Increases in mean % ChE inhibition occuring over the winter due to
increased insecticide concentrations in culvert Soil ............ccccoooiiiiiiiin 56



CHAPTER|

INTRODUCTION

The western burrowing owAthene cunicularia hypugaea, was listed as a
Federal Species of Conservation Concern in 2002 due to declining populations (USFWS,
2002). While the primary reason cited for this decline is habitat loss, insecticide use has
been strongly implicated as another possible cause of declines in burrowing owl
populations (Klute et al., 2003). Due to awareness of environmental persistence, high
toxicity to non-target organisms, and bio-magnification, the use of most organochlorine
(OC) insecticides, such as DDT, were distinued in the United States during the
1970s, and insecticide use has shifted to organophosphate (OP) and carbamate (CB)
insecticides (Mineau, 1991). However, even though OP and CB insecticides are less
persistent in the environment than OC insecticides, they are still dangerous to non-target
organisms and have been responsible for numerous cases of mortality in owls and other
raptors (Blus, 1996; Sheffield, 1997; Mineau et al., 1999). Despite the shift in
insecticide use, studies of the effects of contaminants on burrowing owls in the United
States remain focused on OC insecticides and their residues, and there are few published
studies on how current insect control practices affect burrowing owl populations (Klute
et al., 2003). In addition to insecticides, other agricultural chemicals such as herbicides
have the potential to negatively impact bird populations (Newton, 2004). However, the
impacts of agricultural chemicals other than insecticides have not been examined in

terms of potential impacts on burrowing owl populations.

This thesis follows the style of Ecological Modelling.



Both the Gulf Coast and Rio Grande Valley areas of South Texas have a history
of avian mortality events and contamination due to insecticide use. A study of aquatic
bird eggs along the Texas Gulf Coast conducted in 1970, showed significant decreases in
eggshell thickness. In this study, the OC insecticide DDT or its metabolites were
detected in all eggs analyzed, and along with the OC insecticide dieldrin, was found at
higher concentrations near agricultural areas (King et al., 1978). In addition, OC
insecticide use led to annual avian mortality events in the 1970’s along the Gulf Coast
(Flickinger and King, 1972; Flickinger, 1979). More recent investigations have
indicated OC insecticides, particularly DDT and its metabolites and toxaphene, continue
to persist in at elevated concentrations in the Rio Grande Valley, in some cases at levels
associated with reproductive impairment in birds (Wainwright et al., 2001, Clark et al.,
1995, White et al., 1983). In addition arsenic, and possibly mercury, was found at
elevated levels in willets feeding in agricultural drainages in the lower Rio Grande
Valley (Custer and Mitchell, 1991). In the 1970s-1980s several large mortality events
attributed to OP or CB insecticide use were documented in South Texas (White et al.,
1979; Flickinger et al., 1980; Flickinger et al., 1984, Flickinger et al., 1986) OP and CB
insecticide use on irrigated cotton fields has been implicated in the decline of white-
winged doves in the Rio Grande Valley (Tacha et al., 1994; Burkepile et al., 2002). In
addition, Custer and Mitchell (1987) documented significant decreases in brain AChE
activity in great-tailed grackles and mourning doves, two species which were regularly
found in cotton or sugarcane fields, after treatment with OP insecticides in the Rio

Grande Valley. A recent analysis of pesticide runoff from agricultural watersheds along



the Texas Gulf Coast detected the CB insecticides carbofuran and aldicarb in < 3%, and
<1% of samples, and detected the triazine herbicide atrazine in 95.6 % of the samples
(Pennington et al., 2001).

Cotton and sorghum are the primary crops grown in the lower Rio Grande Valley
and the lower Texas Gulf Coast (NASS, 2007).Cotton is well known for intensive
historical and current agricultural chemical use. An analysis of cotton soils in Georgia
and South Carolina found that the OC insecticides DDT and toxaphene, as well as the
dinitroaniline herbicide trifluralin were the most common organic contaminants
detected. Several soil samples from these cotton fields exhibited estrogenic and
androgenic or glucocorticoid activity (Kannan et al, 2003). In addition, the historic use
of arsenic based herbicides or defoliants in cotton fields in the southern United States
has led to increased concentrations of organoarsenicals in soil, surface water and
groundwater in cotton producing areas (Bednar et al., 2002). An analysis of recent
insecticide use identified cotton as one of two crops responsible for the most potential
bird mortality in the United States (Mineau and Whiteside, 2006). In 2005 a reported
8,677,000 Ibs of herbicides, 3,075,000 lbs of growth regulators and defoliants, and
5,946,000 Ibs of insecticides were applied to cotton crops in Texas (NASS, 2006).

In South Texas wintering burrowing owls use agricultural culverts in cotton
fields as roost sites (Woodin et al., 2006). The use of agricultural culverts as roost sites
by burrowing owls may increase their risk of exposure to insecticides and other
agricultural chemicals, either through ingestion of contaminated prey, or through dermal

exposure to agricultural runoff (Texas Gulf Coast Field Research Station, 2003; Woodin,



pers. comm., 2004). The occurrence of chronic insecticide exposure was confirmed by
an analysis of burrowing owl pellets in south Texas that detected low levels of OP and
CB insecticides (Woodin et al., 2006).

The ability of researchers to study populations of burrowing owls wintering in
southern Texas is limited by the difficulty in accessing the large amount of potential
habitat occurring on private land, particularly on large ranches. In addition, the majority
of burrowing owl research has focused on breeding biology, resulting in very few
published studies on the winter ecology of burrowing owls (Woodin, pers. comm. 2004;
Holroyd et al., 2001; Wellicome and Holroyd, 2001). Due to the size of the study area,
the proportion of the potential habitat occurring on private land, and the complexity
involved in assessing the impacts of insecticide use on populations of burrowing owls,
simulation modeling is an ideal means to evaluate the effects that current insecticide use
practices may have on burrowing owl populations in south Texas.

Kendall (1994) defines wildlife toxicology as “the study of the effects of
environmental contaminants on the reproduction, health, and well-being of wildlife.”
Kendall (1994) elaborates on the definition by stating that “A state of well-being
implies, for instance, that there is no significant increase in the probability of being
preyed upon nor in aberrations in migratory behavior. A state of good general health
means that the organism can maintain homeostasis and, therefore, survive in a variety of
environmental situations.” Lacher (1994) discussed how the effects of agricultural
chemicals on a wildlife population are either lethal or sublethal, and that both lethal and

sublethal effects can occur through direct or indirect pathways. An example of this is OP



and CB insecticides. Sublethal doses of OP and CB insecticides can affect avian

mortality or population parameters by affecting their behavior and normal physiological

functions, including alterations in thermoregulation, food consumption, and reproductive

behavior including migration (Grue et al., 1997). In addition, insecticide application can

reduce the prey base, and decrease the amount of food available for consumption (Hill,

2003). Both behavioral effects and reduction in prey base may indirectly result in

mortality. Behavioral effects represent sublethal effects resulting from a direct exposure

Lethal and Sublethal Effects of Insecticide Expog
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Figure 1. Examples of lethal and sublethal effects through direct and indirect pathways.

pathway, while the reduction in prey base represents sublethal effects resulting from an

indirect pathway (Figure 1). Because most insecticides currently in use have low acute



toxicity, the long term disturbance to a population caused by sublethal exposures may be
greater than the disturbance caused by direct lethal effects (Lacher, 1994). Simulation
modeling was used to determine the risk that occurs from current insecticide use
practices through direct and indirect pathways to the “health and well-being” of
burrowing owls wintering in south Texas. This risk was quantified by examining
exposure variations in different roosting and foraging scenarios, in order to predict the
insecticide use scenarios under which burrowing owl populations may be facing the
greatest risk. The results can be used to guide future field studies, management
decisions, and conservation efforts.

Six different objectives were addressed by this simulation model.

1) Simulate direct pathways leading to lethal & sublethal effects of chronic
insecticide exposure on individual birds through the integration of dermal and
oral exposure pathways.

2) Simulate direct pathways leading to lethal or sublethal effects of chronic
exposure to agricultural chemicals including herbicides, defoliants, growth
regulators, and fungicides.

3) Quantify uncertainty in the model in order to prioritize parameters for future
research.

4) Evaluate the changes in the behavior of the model between chronic and acute

exposure scenarios.



5) Examine the potential relationship between increased concentrations of
agricultural chemicals in culverts and subsequent risks from dermal exposure
to agricultural runoff, within the constraints of the model.

6) Evaluate the relative potential adverse effects of different agricultural
chemicals on burrowing owls wintering in cotton fields in south Texas.

Objectives 1, 2, & 3 are addressed in Chapter Il, where the model is described, applied,
and a sensitivity analyses is conducted. Objective 4 is addressed in Chapter Il, 1ll, and
IV. Objective 5 is addressed in Chapter IIl, where the model is used to investigate the
possibility of culverts in cotton fields acting as ecological traps, and Objective 6 is
addressed in Chapter IV where the model is used to compare different agricultural

chemicals using all three endpoints.



CHAPTERIII
SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL
EXPOSURE ON BURROWING OWLSWINTERING IN SOUTH

TEXASCOTTON FIELDS

1. Introduction

In 1998, The US Environmental Protection Agency (U.S. EPA) set specific
guidelines for use in ecological risk assessments, which were elaborated on for use in
risk assessments of endangered species. These guidelines suggest that risk assessment
occurs in three sequential stages; 1) problem formulation, in which the chemical
stressors, related endpoints, and possible effects are identified, 2) analysis, in which
chemical fate and transport, exposure to organisms, and effects of exposures are
modeled, and 3) risk characterization, in which exposures and effects are integrated to
derive risk quotients, and are sometimes supported with laboratory or field studies. Risk
assessments often follow a tiered approach in which the lowest level, or tier 1, evaluates
exposure to the maximum possible residues in order to determine potential effects, and if
further, more site-specific assessment is required (Jones et al., 2004). There are several
examples of tier 1 risk assessments used to evaluate risk to multiple species from
multiple contaminants in agricultural ecosystems. In the first example, “EcCORR” uses
site-specific information, separates each chemical into several different compartments,
then uses the accumulation in species in each compartment to assess toxicity, and finally
develops risk scores which can be used to compare different agricultural chemicals

(Sanchez-Bayo et al., 2002). In another example, toxicity, exposures, and subsequent



chronic avian and mammalian dietary risks were used to develop risk quotients which
could then be used in a quantitative comparison of risk between different herbicides used
on spring wheat (Peterson and Hulting, 2004). Mineau (2002) and Mineau and
Whiteside, (2006) used a different method of risk assessment modeling to assess lethal
effects of insecticide use based on their relative toxicity and application rates to
determine which insecticides or crops cause the greatest increase in probability of bird
mortality.

Simulation models have been used to evaluate ecological risks to birds, but have
generally focused on user-specified chemical applications, rather than the comparison of
relative risk between a suite of contaminants that is typically seen in Tier 1 risk
assessments. These models use the effects on an individual bird to evaluate pesticide
impacts, and are typically very complex models that include food web dynamics or
hydrological modeling to predict lethal effects of acute oral exposure to insecticides
(Corson et al., 1998; Pisani, 2006; Fite et al., 2004). Despite the complexity in these
models, they do not always accurately predict the risks to birds from insecticide
applications (Vyas et al., 2006). All of these risk assessment models only evaluate the
effects of insecticides, despite the wide use of other agricultural chemicals such as
herbicides (NASS, 2006). Corson et al. (1998), and Pisani (2006) used predictions of
ChE inhibition greater than 20% as an indicator of sublethal exposure to OP or CB
insecticides, while Fite et al. (2004) used risk quotients based on HD5s to evaluate lethal

effects of insecticide exposure.
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These simulation models focus on effects due to acute exposure, and have not
examined low level chronic pesticide stress on bird populations (Corson et al., 1998;
Pisani, 2006; Fite et al., 2004). Recently methods that can be used in the assessment of
long-term effects of agricultural chemicals on birds have been developed (Hart and
Thompson, 2005; Crocker, 2005; Shore et al., 2005; Mineau, 2005; Jones et al., 2004).
These methods outline the development of a deterministic long-term toxicity/exposure
ratio (TER:). The TER can be adjusted for species sensitivity based on avian
reproductive NOELs or NOECs (No Observed Effects Levels or Concentrations). The
TER is calculated for different phases of reproduction, which can then be incorporated
into a population level model (Shore et al., 2005, Bennett et al., 2005). A probabilistic
model was developed using TERs to evaluate long-term population level effects due to
insecticide exposure (Roelofs et al., 2005). Topping et al. (2005) used spatial and non-
spatial models in the risk assessment of long-term insecticide exposure on skylark
populations. While these long-term risk assessment procedures are extremely relevant to
avian species during their breeding season, ¢lxelude the assessment of chronic, long-
term exposure to birds during the non-breeding period of their life cycle.

Of these simulation models only the U.S. EPA terrestrial risk assessment model
includes exposure routes other than the oral exposure route (Corson et al., 1998; Pisani,
2006; Fite et al., 2004). Similarly field and laboratory studies of insecticide impact on
avian species have focused on ingestion as the primary route of exposure, and exposure
occurring through inhalation, or dermal absorption, has not been adequately studied

(Hill, 2003). However, Driver et al. (1991) found that up to 1 hr post-spraying inhalation
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was the primary route of exposure, and that from 8-48 hours post-spraying dermal
exposure greatly exceeded exposure occurring through inhalation and ingestion. In
addition they determined that ingestion exposure only accounted for 10-20% of the total
ChE inhibition (Driver et al., 1991). Mineau (2002) also determined that insecticides

with a higher dermal toxicity index increased the chance of mortality, and concluded that
dermal exposure and possibly inhalation exposure need to be included in pesticide avian
risk assessments. It is imperative that predictions of the insecticide effects on wildlife
populations take into account the total accumulation of ChE inhibition occurring through
all possible routes of exposure (Hill, 2003).

The objective of this study was to create a simplified simulation model that
integrates dermal and oral exposure to evaluate the lethal and sublethal effects in birds of
chronic low-level exposure to a wide range of chemical types. This model can then be
used to evaluate which crops or chemicals are most likely to increase risk of lethal or
sublethal effects in birds. Burrowing owls wintering in culverts in cotton fields in south
Texas, which are chronically exposed to low levels of agricultural chemicals, either
through ingestion of contaminated prey, or through dermal exposure to agricultural
runoff, were chosen to exemplify the use of this model.

2. Study Area

Burrowing owls have resident and migratory populations in the northern part of
Texas, and have a migratory population that winters in the southern part of the state. The
study area is comprised of south Texas cotton and sorghum fields, where a population of

burrowing owls is known to use agricultural culverts as winter roost sites. Data were
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used from documented burrowing owl roost sites in south Texas in two areas, 1) the Gulf
Coast area including Kleberg, Nueces, San Patricio, Refugio, and Jim Wells counties,

and 2) the Rio Grande Valley including Cameron and Hidalgo counties (Figure 2).

Examples of
Agricultural Fields
In Study Areas

™

Figure 2. Study ar eas showing locations of roost sites and examples of
agricultural fieldsused asroost sites.

In both study areas the crops are typically rotated annually so that if cotton crop
IS grown one year, the next year sorghum is grown. Burrowing owls in the Gulf Coast
study area were studied intensively from 2000 -2005 by the USGS- Texas Gulf Coast

Field Research Station (Woodin et al., 2006). In the Gulf Coast study area 87% of 46



13

roost sites were located in agricultural areas (Williford et al., 2007). Of these an
estimated 67.4% of burrowing owl roosts were typically located in fields that were used
for cotton, sorghum, or corn during the previous summer (Woodin et al., 2006). Of the
roost sites used by burrowing owls in the Gulf Coast area, 80% were along roads. Most
(74%) roost sites utilized were steel, cast-iron, or concrete culverts that lie under caliche
roads. The predominant ground cover around roost sites was bare ground (Williford et
al., 2007; Woodin et al., 2006; Woodin, pers. comm., 2004).

A second study area was chosen in the Rio Grande Valley and a short-term
survey was conducted during the winter of 2006. This survey located 46 culverts used
as roost sites by burrowing owls. Eighteen of these were defined by the presence of a
burrowing owl, and the rest were defined by the presence of burrowing owl pellets, or in
one instance by cached prey. Burrowing owl detections were clustered in agricultural
fields in the Rio Grande floodplain north of Santa Ana National Wildlife Refuge. These
culverts were most likely used as roost sites by at least 25 separate burrowing owls.
Sixty-four percent of the burrowing owl roost sites were located in fields that were used
for cotton or sorghum the previous summer. We were unable to determine the type of
crop which was grown the previous summer in 32% of roost sites, but it is most likely
that the crops were cotton or sorghum. Only one roost site (4%) was located in a field
used to grow corn the previous summer. Although the majority of roost sites were
completely surrounded by bare fields in which cotton or sorghum had been grown the
previous summer, there were 2 roost sites located in cotton or sorghum fields adjacent to

a cabbage crop and 4 roost sites located in cotton or sorghum fields adjacent to an onion
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crop. Both the cabbage and onion crops were being cultivated during the winter. The
majority of burrowing owl roost sites in the Rio Grande Valley were cement (n =37) or
plastic (n = 5) culverts, which were used to drain water off the field into irrigation
canals. In addition, two owls were located roosting in natural burrows, and two owls
located roosting in tires, all of which were located close to agricultural culverts.
3. Conceptual Model

The model simulates foraging and roosting behavior of an individual burrowing
owl in crops that have received treatments with agricultural chemicals, resulting in
estimates of dermal and oral exposure that can be used to predict risk of lethal or
sublethal effects. The model consists of four submodels representing (1) behavior of
burrowing owls, (2) chemical applications to crops, (3) chemical transfer and fate in the
crop soil and prey items, and (4) chemical exposure in the burrowing owl.

Details of the cultivation of four different crops; cotton, sorghum, cabbage, and
onions, are used to simulate three different foraging crop scenarios (FS 1-3). In all three

scenarios a cotton\sorghum field is designated as a roost site. In this model the
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burrowing owl forages during the night in the fields surrounding its roost site, and is
located at the culvert used as its roost site during the day. The primary crop scenario
(FS-1), has two cotton/sorghum fields as foraging sites adjacent to the roost site. Each
cotton/sorghum field alternates annually between cotton or sorghum crops grown during
the summer, and the two foraging fields are offset so that there is always one cotton field
and one sorghum field. The two additional crop scenarios include either a cabbage field
(FS-2) or an onion field (FS-3) as a foraging site in addition to the cotton/sorghum

fields.

The burrowing owl is only present in the model during the winter period, (Oct 1-
Mar 1), when the post-harvest cotton/sorghum fields are wide expanses of bare soil, yet
onions and cabbage are actively cultivated (Appendix A2). The primary crop scenario
(FS-1) simulates chronic exposure to agricultural chemicals, while FS-2 and FS-3 add
potential acute exposure scenarios.

Within these fields pesticides are applied to the crops. Once a pesticide is applied
it is transferred to the soil, the owl, and its prey. The owl accumulates pesticides through
dermal and ingestion pathways. ChE inhibition is calculated from the amount of
insecticide accumulated with a dose-response equation. ChE inhibition, exposure >

LOEL, and exposure > HD5 are used as endpoints (Figure 3).
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4. Quantitative M odel Description

The simulation model was created using Stella® VIl software (High Performance
Systems, Inc., NH), which uses difference equations in a bimodal compartment model
with a one half day time stept(= %2 day). A one half day time step was chosen to
represent the bimodal foraging behavior of burrowing owls during the winter. An
overview of the parameters in the Stella model is shown in Appendix Al.
4.1 Foraging Scenarios

In FS-1 there is a 40% chance that the owl will forage in its roost site’s field, and
there is a 30% chance the owl will forage in one of the adjacent cotton/sorghum fields,
because it was assumed that the owl would forage preferentially near its roost site. In
FS-2 and FS-3, it was assumed that the owl would forage preferentially first in the
cabbage or onion field, second near its roost site, and last in the cotton/sorghum fields
further from its roost site. In these crop scenarios there is a 50% chance the owl will
forage in the cabbage or onion field, a 30% chance it will forage in its roost site’s field
and a 10% chance each it will forage in one of the adjacent cotton/sorghum fields.
4.2 Chemical Applications

The growth period of the crops and the number of agricultural chemical
treatments within a year are designated for each crop (Appendix A3). The growing
seasons are based on earliest possible planting and latest possible harvest. Treatments
often consist of multiple applications of the chemical selected, and multiple treatments
can occur during the growing season. A date is randomly selected within the treatment

date period when the treatment will be applied. For example, cetteives 1.82
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treatments, and the first treatment always occurs at a randomly selected date during the
first treatment period, and there is an 82% chance that a second treatment will occur at a
randomly selected date during the second treatment period. The number of treatments
were calculated from NASS (2004) or NASS (2006) in this manner (total percent area
applied of all pesticides within each chemical class)/(percent area each pesticide type
was applied to). This assumes that the pesticides were applied at least once.

Agricultural chemicals are randomly selected to be used as treatments based on
frequency distributions of crop specific use in Texas. The number of applications within
each treatment and the application rate are designated for each chemical (Appendix A4).
4.3 Pesticide in Roost and Foraging Stes

In the cotton/sorghum fields used by the burrowing owl for foraging or roosting a
crop is planted in the spring and grows until it is harvested. Agricultural treatments occur
during the crop’s growth. However by the time the owl is present, the soil in the field is
bare with no vegetation. The worst case scenario in this situation is that all of the
chemicals applied to the crop were either washed off of the vegetation into the soll
during rain or irrigation events, or were incorporated into the soil along with the plants at
harvest. In order to model this worst case scenario, at application each chemicals’
residues are present in the soil and decay at the rate listed for that compound.

CS+1=CS + A — (CS* (1/2)M(1/dy)) Q)
CS represents the chemical residue concentrations in theigfihf) present at time
A represents the concentration of chemical (§)applied at time, and d represents

the half-life of the chemical in the soil (Appendix A5).
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Chemical residues are transferred to insect and mammal prey items during
application, and accumulate during each time step based on the amount present in the
soil. Values estimating residues in prey items from Forsyth and Wescott (1994), Martin
et al. (1996), Cobb et al. (2000), and Block et al. (1999) were used to derive equations
to model the transfer of chemical residues to prey items. In these studies, residues on
invertebrate prey items ranged from 1.57 to 7.44 times the application raté) (gfcm
value of 2.5 times the application rate (gfnwhich was the average value estimated
from Forsyth and Wescott (1994), was chosen to represent the amount transferred to
invertebrate prey at application. A value of the residue concentration in soil, fug/cm
divided by 100 was used to estimate accumulation during each time step. An average of
0.21 times the application rate (gArwas extrapolated from Block et al. (1999) to
represent the amount of residue transferred to mammalian prey at application. A value of
the residue concentration in soil, (ugfynuivided by 100 was used to estimate
accumulation during each time step.

Clu1= Cl; + (A*2.5) + (CS/100) - (CI* (1/2)(1/d)) (2

CMu1= CM; + (A*0.21) + (CY100) - (CM* (1/2)\(1/d)) (3)

Cl; and CM represent the chemical residue concentratipg&]) present at timein
invertebrates and mammals, respectively; aathdd., represent the half-lives of the

chemical in invertebrates and mammals respectively (Appendix A6). The half-lives of

the chemicals are estimated based on half-lives in soil for insects, and based on half-lives
in vertebrates for mammals. Invertebrate half-lives were estimated as 1/10 the soil half-

life, unless the vertebrate half-life was greater, in which case the vertebrate half-life
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value was used. Vertebrate half-lives were estimated from values on mammalian half-
lives obtained from Pesticide Information Profiles (PIP, accessed 2007). In order to
estimate half-lives for chemicals that had no information available, vertebrate half-lives
and soil half-lives were fitted to a regression line (y = 1.82#%)which allowed

estimates of vertebrate half-lives to be made based on solil half-lives.

Organophosphate insecticides are known to persist in the soil much longer than
would be expected based on their half-lives (Ragnarsdottir, 2000). In order to build up
an accumulation of low levels of several different insecticides similar to the amounts
shown in the prey and pellets by Woodin et al. (2006), it wasssary to extend the
half-lives of insecticides in the soil and in insects once they reached a low concentration.
Several different scenarios were investigated, and a ten year initialization period, with
half-lives extended by 100 times their original value when concentrations reached below
0.1(ug/g) was chosen for use in the model (Table 1a-b).

if CS; < 0.1 then C§;= CS + A - (CS* (1/2)(1/(cs*100))) (4)
if Cl; < 0.1 then Gl1= Cl; + (A*2.5) + (CS/100)
- (€I(1/2)*(1/(d*100))) (5)
At the burrowing owl's roost site the increased chemical concentrations in the
culvert can be increased relative to the chemical concentrations in the crop soil.
CV= CS*x (6)
CV represents the chemical concentratjogy¢nf) present in the culvert soil at time

and x is user specified multiplier.
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4.4 Exposure in Burrowing Owl

The burrowing owl is exposed to agricultural chemicals via ingestion and dermal
pathways. Ingestion exposure occurs when an agricultural chemical enters the bird
through their prey items, or through soil ingestion.

IR, 1= Y IRie+ [((Cij,*Bj) + (CS*S))W] — (IRie* (1/2)N(L/cky) (7)

IR; represents the concentratiQuu/g) of each individual chemical in the owl at
time t accrued through the ingestion exposure routerepresents the concentration
(no/g) of each individual chemical in each type of prey at tinBgrepresents the
biomass (g) of each prey type in the owl’s diet; @presents the concentration
(ng/cnf) of each individual chemical in the soil at timé represents the soil ingestion
rate (g), and W the average burrowing owl weight. The mammalian half-livear@
used because avian half-lives were unavailable.

Dermal exposure can occur when the chemical is absorbed through the owl’s legs
or feet from contaminants present in the soil. This occurs as the burrowing owl roosts in
their culvert during the day, and occasionally during the night while foraging.

DF;, +1=2i DRt+ [(CS{*SA*G) /W] (8)

DF represents the concentratiquig) of each individual chemical in the owl at titne

to which the owl is exposed to through its legs and feet in a dermal exposure rqute. DR
represents the combined concentratjog'd) of each individual chemical in the owl

through both dermal exposure routes at tin# represents the surface areacaf

the owl's legs and feet. G represents the percentage of the time step that the owl's legs or

feet were in contact with the soil.



23

Dermal exposure can also occur as a dermal intercept dose if the burrowing owl
is present during or immediately after agricultural chemical treatment. The dermal
intercept dose is estimated based on the amount of chemical present in the air lands on
the dorsal half of the owl's body surface, and is absorbed through their skin.

Dli +1= Y DRit+ [(Ait*SAp) /W] (9)

DRi t+1= Y [DFit+Dl;:— (DRi* (1/2)"(1/dy))]*DO; (10)

Dl; represents the concentratiqug{g) of each individual chemical in the owl at titn®
which the owl is exposed to through a dermal intercept dosgreprlesents the dorsal
surface area (cfhof the owl. Mammalian half-lives ) are used because avian half-
lives were unavailable. D@epresents a dermal to oral toxicity index (DTI) which
converts a dermal dose to an amount equivalent to an oral dose for each individual
chemical (Appendix A7). The additive concentrations of the converted dermal and oral
doses are used to estimate the endpoints. The endpoints are estimated based on the
amount of chemicals in the owl during each time step. Exposures to OP and CB
insecticides are fitted to dose-response curves, resulting in ChE inhibition caused by
each individual insecticide (Appendix A8). ChE inhibition from each individual
chemical is summed to estimate total cumulative ChE inhibition.

4.5 Endpoints

The three estimated endpoints are ChE inhibition, exposure > LOEL, and
exposure > HD5. ChE inhibition > 20% indicates an exposure level likely to result in
sublethal effects, while ChE inhibition > 50% indicates an exposure level likely to result

in lethal effects (Ludke et al., 1975).
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Exposure to a chemical > its HD5 indicates an exposure level likely to result in
lethal effects. HD5 levels were primarily obtained from Mineau et al. (2001). In the
cases where a chemical’'s HD5 was not estimated by Mineau et al. (2001), HD5 values
were plotted against avian LD50 values resulting in a regression line (y = @16§2x
that could be used to estimate HD5 values based on the LD50 values.

The use of reproductive NOECSs, (no observed effects concentrations), are
typically used in risk assessments as an endpoint to evaluate sublethal effects in birds
(Mineau, 2005). However, the use of a reproductive endpoint is less relevant during the
winter period than during the breeding season. For this reason exposure to a chemical >
its LOEL was chosen to indicate an exposure level likely to result in sublethal effects.
Due to the unavailability of information from studies using birds, values used for the
LOELSs were obtained from studies using mammals. Subsequently these values may be a
less accurate indicator than the HD5 or ChE inhibition values. The lowest reported value
of a LOEL or LEL for each chemical was chosen as the representative effect level in the
model (Appendix A9). For the chemicals where no studies were conducted this endpoint
was not evaluated.

5. Sengitivity Analyses
5.1 Parameterization

In order to determine which model parameters most affected the results, a series
of parameters were changed to represent worst case scenario values (Appendix Al). The
differences in means between crop scenarios for each endpoint were analyzed separately

using a one-way ANOVA with a Bonferroni post-hoc test in SPSS statistical package



25

(SPSS inc., Chicago, IL). The primary crop scenario (FS-1), was used to evaluate low
level chronic exposure to agricultural chemicals, while FS-2 and FS-3 were used to
examine changes in the model’'s behavior when used to evaluate acute exposure
scenarios.
5.1.1 Soil in Diet

Exposure to contaminated soil may be a source of exposure to contaminants.
Estimated soil ingestion rates in birds range from < 2.0% to 30%, and vary with a
species foraging habits or intentional soil ingestion for grit (Beyer et al., 1994). However
to my knowledge there are no documented cases of intentional ingestion of soil in owls,
and any soil ingested by burrowing owls would occur incidentally while foraging. For
this reason the soil in the diet was set at the lower end of the spectrum at 3%. For this
sensitivity analysis the value was increased to 10%.
5.1.2 Dermal Exposure during Foraging

During the winter burrowing owls typically forage during the night and spend the
day at their roost site (Woodin, pers. comm., 2004). It was assumed that the owl spent
the majority of this time flying, and spent one hour on the ground during which time it
was exposed to chemicals through its legs and feet. In this sensitivity analysis the
duration of time on the ground while foraging was increased to 9 hours.
5.1.3 Half Lifein Bird

Once the owl was exposed to an agricultural chemical either through dermal or
oral exposure, the chemical was then either excreted or metabolized by the bird which

was represented by a vertebrate half-life value. These half-life values were primarily
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estimated or derived from studies on half-life values in mammals. Because the half-lives
in mammals may differ from half-lives in birds, in this sensitivity analysis the vertebrate
half-life values were increased by 5 times their original amount.
5.1.4 Drift

Drift decreases the concentration (ugfcim the field due to the pesticide
landing in a larger area than the crop. In the model drift was set at 0.05%. For this
sensitivity analysis was decreased to 0%.
5.1.5 Invertebrate Half-lives

In this model invertebrate half lives were primarily estimated as 1/10 the value of
the soil half-lives. In this sensitivity analysis the half-lives in invertebrates was increased
to the value of half-lives in soil.
5.1.6 Transfer and Accumulation of Chemicalsin Insects

Estimated transfer of residues at application to prey items ranged from 1.57 to
7.44, for invertebrates, and 0.21 for mammals, times the application rate (Forsyth and
Wescott, 1994; Matrtin et al., 1996; Cobb et al., 2000; Block et al., 1999); and a value of
the concentration in soil divided by 100 was used to estimate accumulation during each
time step for both invertebrates and vertebrates. In this sensitivity analysis both
invertebrate and vertebrate transfer rates at application were increased to 7.44 times the
application rate, and the amount of accumulation in each time step was increased to the

concentration in soil divided by 10.
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5.1.7 Soil Half-lives

Soil half-lives were primarily obtained from PAN (Pesticide Action Network
database) and PIP (Pesticide Information Profiles database), in most cases the aerobic
half-live value from PAN was used in the model. However if the PAN and PIP values
differed widely, an intermediate value was chosen. In this sensitivity analysis, the
highest possible soil half-life values were used.
5.1.8 Dermal Toxicity Indexes

Dermal toxicity indexes based on avian oral and dermal LD50s were only
available for a handful of the chemicals evaluated in this model, and the rest were
estimated by the equation.{F= LDso (avian oraf[ 1034 * 0620090300 ghtained from the
U.S. EPA's terrestrial risk assessment model (Fite et al.,2004), creating a high level of
uncertainty in these values. This sensitivity analysis doubles the DTI values.
5.1.9 Early Soring Spraying

In the model the dates when the first insecticide treatment on cotton or sorghum
can occur and the dates that the owl is present do not overlap. This sensitivity analysis

allows an eleven day overlap in these periods.
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Table 2. Parameter changesresulting in a significant change (p < 0.05) from the
baseline predicted values for each endpoint in each chemical class. ( Significant
changes are designated with an “x”.) (Sendtivity Analyses. O- Baseline with no
changes, 1- Increased soil in diet, 2- Increased dermal exposure during foraging, 3-
Increased half-lifein bird, 4- Decreased lossdueto drift, 5- Increased half-lifein
insects, 6- Increased accumulation in prey, 7- Used highest soil half-life values, 8-
Increased the dermal to oral toxicity indexes, 9- Allowed possible early spring
spraying prior to owl departure)

Crop Scenario

Endpoint

Chemical Class Data Type

Sensitivity Analyses

2 3 4 5 6 7 8 9 TOTAL
Cotton/Sorghum Total 39
Maximum X X X 3
. Mean X X 2
ChE OP/CB Insecticides Duration > 20% X 1
Duration > 50% X 1
Insecticides Maximum X X X X 4
Duration 0o
. Maximum X X X X 4
LOEL Herbicides Duration X X x X 2
Cotton/Sorghum Growth Regulators Maximum X X X X 4
& Defoliants Duration X X X X X 5
C Maximum X X 2
Insecticides .
et Duration X X X 3
HD5 Herbicides Maximum 0
Duration 0]
Growth Regulators Maximum X X X 3
& Defoliants Duration X X X 3
Cotton/Sorghum/Cabbage Total 44
Maximum X 1
. Mean X X 2
ChE OP/CB Insecticides Duration > 20% X 1
Duration > 50% X 1
Insecticides Maximum X X X X X X 6
Duration 0o
LOEL Herbicides hgﬁgignm ; ; ; ; X ; g
Cotton/Sorghum/C
abbage Growth Regulators Maximum X X X X 5
& Defoliants Duration X X X X X 5
Insecticides Maximum X X X X 4
Duration X X X X X 5
. Maximum 0o
HD5 Herbicides Duration o
Growth Regulators Maximum X X 2
& Defoliants Duration X 1
Cotton/Sorghum/Onions Total 47
Maximum X 1
. Mean X X X X X 5
ChE OP/CB Insecticides Duration > 20% X X X X X e
Duration > 50% X X X 3
Insecticides Maxm_um X X X X X 5
Duration 0]
LOEL Herbicides '\I/:I)au):;?ignm ; ; ; X X z
Cotton/Sorghum/O
nions Growth Regulators Maximum X X X 4
& Defoliants Duration X X X X 4
s Maximum X X X 3
Insecticides y
et Duration X X X X X 5
HD5 Herbicides Maximum 0
Duration 0]
Growth Regulators Maximum X X X 3
& Defoliants Duration X 1
Sensitivity Analyses Totals 14 36 1 24 22 20 12 1
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5.2 Modd Sensitivities

The model proved sensitive to most of the parameters altered, and showed an
increase in sensitive parameters in the crop scenarios that added potential acute chemical
exposure (FS-2, FS-3). The foraging related sensitivity analyses (#5 & #6), accounted
for more significant differences in these scenarios, than in FS-1 (Table 2). This is likely
due to higher concentrations of chemicals in the foraging areas after insecticide
treatments while the owl is present. The model was sensitive to the half-lives in
invertebrates, as well as to the accumulation and transfer rates in prey, especially in the
crop scenarios that received chemical treatments during the period the owl was present
(Table 2). This suggests that the pesticide residues in prey items are likely to be most
important in the period immediately after chemical treatments. Driver et al. (1991)
showed that oral exposure was most important during the 4-24 hour period shortly after
spraying and decreased in importance afterward. The studies by Forsyth and Wescott
(1994), Martin et al. (1996), and Cobb et al. (2000) provides a good baseline to estimate
residues in invertebrate. More information is needed on the accumulation of insecticide
residues in small mammals, because the study by Block et al. (1999) was based on a
granular insecticide, and accumulation and transfer rates may differ substantially in
liquid formulations.

The parameter that caused the most significant increases in the endpoint values
was the half-lives of chemicals in the burrowing owl. Significant increases were seen in
the majority of the combinations of different crop scenarios and chemical classes (Table

2). Unfortunately, this is also a parameter with large data gaps. The mammalian half-life



30

values used in the model may not be accurate when applied to birds. In addition, the
half-lives of agricultural chemicals in the bird were assumed to be the same regardless of
whether the exposure occurred dermally or orally. However, the duration of exposure
may vary between dermal exposure and oral exposure. Henderson et al. (1994) showed
that pigeons did not recover from dermal exposure to OP insecticides for up to 6 weeks
after dosing, while recovery from an oral dose took approximately 5 days. The high
sensitivity of the model to this parameter illustrates the importance of obtactngate

values of the half-lives of agricultural chemicals in birds.

The model was also sensitive to the parameters which were related to dermal
exposure, (sensitivity analyses #2, #7, & #8), the duration of chemical exposure while
foraging, the half-lives of agricultural chemicals in soil, and the dermal to oral toxicity
ratios (Table 2). Information of the duration of time spent on the ground while foraging
in the winter would increase the accuracy of the model. There are well documented half-
lives in soil for most of the agricultural chemicals evaluated, however using the upper
limits of the reported values resulted in a large number of significant increases in the
endpoints evaluated (Table 2, Appendix A5). There is very little data available which
can be used to evaluate dermal toxicity in birds, particularly for classes of agricultural
chemicals other than insecticides, and the majority of values were estimated from an
equation rather than based on actual bioassay data (Appendix A6). The results of this
sensitivity analysis confirm of the importance of dermal exposure in birds demonstrated

by Driver et al. (1991) and Mineau (2002), and exemplify the necessity for more
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information that can be used to estimate risk to birds from dermal exposure to
insecticides and other agricultural chemicals.

The amount of soll in the diet, the amount of drift, and the possibility of early
spring spraying did not result in significant changes in the model (Table 2). Although the
amount of soil in the diet did not seem to be an important factor for burrowing owls, it
may be an important factor for species such as sandpipers that have a higher percentage
of soil in their diet (Beyer et al., 1994). The amount of drift was set at an amount close to
0% in the baseline simulations, and may be more important with greater variation in the
drift rates. Early spring spraying did not occur frequently enough to cause significant
changes in the endpoints (Table 2), but may be more important than suggested by the
model. Organophosphate insecticides have been shown to alter migration in adult birds,
most likely by affecting memory of the migration route (Vyas et al., 1995). Early spring
spraying prior to the departure of burrowing owls could occur at a critical period when
memory of the migration route becomes vital. This would be most likely to occur if the
use of pre-planting treatments overlaps with the period when burrowing owls are
present. Pre-planting treatments are most commonly used for control of white grubs,
corn rootworm, or wireworms in sorghum fields (Cronholm et al., 1998).

Corson et al. (1998) examined foraging location, diet selection, and food
intake/body weight ratio in the sensitivity analysis for his avian pesticide exposure
simulation model. The model was sensitive to all of these factors, but was highly
sensitive to foraging location. Likewise, an analysis of variability in risk assessments

found that bird movements between treated and untreated areas was one of the most
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important factors and led to substantial differences in observed effects (Hart, 1990).
However, model sensitivity foraging location was not investigated in this scenario. Due
to the agricultural homogeneity of the landscape, in which the owl roosts and forages in
agricultural fields, and there was virtually no untreated habitat available in which the
owl could forage. Although burrowing owls in South Texas have been shown to
primarily forage in the ditches separating fields (Woodin, pers. comm., 2004), the
differences between agricultural chemical residues in the fields and the ditches
surrounding the fields were unknown and were assumed to be equal. If the residue
concentrations differ between the fields and the surrounding ditches varies, it may cause
variations from the results observed in these simulations.

An analysis of wildlife risk assessments found eight dietary related exposure
factors likely to cause variations in the assessment of risk; food ingestion rate, diet
composition, ingestion of soil, trophic transfer levels, bioavailability, chemical
concentration in soil or prey, and the amount of available habitat (Fairbrother, 2003).
An analysis of long-term avian or mammal wildlife risk assessments identified several
spatial or temporal factors which may cause the greatest variations between long-term
and acute risk assessment. These included food intake rate, changes in body weight,
pesticide concentrations on food, differences in spray regimes, wildlife avoidance of
pesticides, diet composition, and the proportion of diet from the treated area (Crocker,
2005). Of these variables, diet composition, trophic transfer levels, and chemical
concentrations in food or soil were also identified in the sensitivity analyses as causing

significant variations in potential risk. The results of Fairbrother’s (2003) and Crocker’s
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(2005) analyses concur with the dietary exposure related sensitivities observed in the
simulations with potential acute exposure. Detailed graphs and tables of the results of
the sensitivity analyses can be found in Appendix B.

6. Model Application

6.1 Introduction

This model can be used to quantify risk by examining variations in the effects of
exposure to agricultural chemicals in different roosting and foraging scenarios, in order
to predict the crops or chemicals pose the greatest risk to bird populations. This model
was used to evaluate which crops or chemical classes are most likely to increase risk of
lethal or sublethal exposure to agricultural chemicals in burrowing owls wintering in
South Texas.

6.2 Experimental Design for Smulations

In order to evaluate lethal and sublethal exposures to OP and CB insecticides, the
maximum value and mean value of ChE inhibition that occurred over the winter, as well
as the duration of ChE inhibition greater than 20% and 50%, was recorded for each
simulation.

In order to evaluate lethal and sublethal exposures to agricultural chemicals
including insecticides, herbicides, growth regulators, and defoliants, the number of
chemicals with exposure levels greater than their HD5NHLOEL (NL:) was
recorded at each time step. NH and NL represents the number of chemicals to which the
owl is exposed to a level greater than the HD5, or LOEL, respectively, avhile

represents the different chemical classes, which can be further defirednasecticides,
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h = herbicides, and = growth regulators or defoliants. The maximum values of dH
NL. that occured throughout the winter; as well as duration of exposure greater than an
HD5 or LOEL throughout the winter; were recorded for each simulation.

The primary crop scenario, FS-1, was used to represent chronic exposure to
agricultural chemicals, while FS-2 and FS-3 represent the addition of acute exposure.
Two hundred simulations were run for each foraging crop scenario, and an equal number
of simulations were run with either cotton or sorghum grown in the roost or foraging
fields in the summer prior to the arrival of the wintering burrowing owl. The simulated
data were then analyzed in SPSS statistical package (SPSS inc., Chicago, IL). with a
one-way ANOVA using a Bonferroni post-hoc test to compare means between crop
scenarios for each endpoint. Significance was defined as (p < 0.05).

6.3 Model Application Results
6.3.1 ChE Inhibition

The average maximum and average mean ChE inhibition varied between all three
crop scenarios, although it was slightly, but insignificantly, higher between FS-1 (3.9%-
maximum, 2.3%-mean) and FS-2 (10.0%-maximum, 3.9%-mean). With the addition of
an adjacent onion field (FS-3), ChE inhibition (58.2%-maximum, 16.5%-mean), was
significantly increased compared to FS-1 and FS-2 (p< 0.000) (Figure 4a). Likewise,
average duration of ChE inhibition greater than 20% and 50% was also slightly, but not
significantly, longer in FS-2 (1.8 days- > 20%, 0.7 days- > 50%) than in FS-1 (0.0 days-

> 20%, 0.0 days- > 50%). Average duration of ChE inhibition greater than 20% and 50%
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was significantly longer in FS-3 from FS-1 and FS-2 (16.5 days- > 20%, 14.0 days- >
50%; p < 0.000) (Figure 4b).
6.3.2 LOELs

In all three crop scenarios the burrowing owl was exposed to a greater number of
insecticides over their LOEL than any other chemical class. Average insecticide
exposure greater than an LOEL occurred throughout the entire winter, (144-147 days) in
all three crop scenarios. In FS-1 the burrowing owl was exposed to a greater number of
growth regulators or defoliants over their LOEL than herbicides, €NL.025, Nly =
1.290). However, when cabbage or onions were added as a foraging site, the burrowing
owl was exposed to a greater number of herbicides over their LOEL than growth
regulators or defoliants (NL= 1.365, & NLg = 1.050; NI, = 1.470, & NLg = 1.025; in
FS-2 and FS-3 respectively) (Figure 5a). In all three scenarios the burrowing owl was
exposed to growth regulators or defoliants over their LOEL for a longer period, (96-119
days), than herbicides, (71-85 days), (Figure 5b).

FS-2 had the highest average maximum value ¢{IN&70), and was
significantly greater, (p = 0.010), than the average maximum value;oh FIS-1
(1.485). FS-3 had an intermediate value (1.605), but was not significantly different from
the other two scenarios (Figure 5a). The duration of exposure greater than an LOEL was
not different between the three scenarios (Figure 5b).

The average maximum value of Nlvas significantly greater, (p < 0.000), in FS-
2, (1.365), and FS-3, (1.470), than in FS-1 (1.025). FS-3 had the highest average

maximum value of N}.of all three crop scenarios (Figure 5a). The duration of exposure
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to herbicides greater than their LOELs was lowest in FS-1, (70.5 days), and highest FS-
3, (85.6 days), however these differences were not significant (Figure 5b).

The average maximum value of Nivas significantly higher (p < 0.000) in FS-1,
(1.290), than the other two crop scenarios, (FS-2 = 1.050, F-3 = 1.025) (Figure 5a). In
addition the duration of exposure to levels of growth regulators or defoliants greater than
their LOEL was greatest in FS-1 (118.7 days) (Figure 5b).
6.3.3HD5

Insecticides were the only chemical class to which the owl was exposed to levels
greater than the HD5, and the duration of exposure only encompassed a small portion,
(5-9 days), of the winter period (Figure 6a-b). The average maximum value,afAS$H
1=0.125, FS-2 = 0.380, FS-3 = 0.335), was significantly greater in the FS-2, and FS-3
than in FS-1 (p < 0.000), and was highest in FS-2 (Figure 6a). The duration of exposure
to an insecticide greater than its HD5 was also significantly longer in FS-2 (FS-1 =4.9

days, FS-2 = 8.8 days, FS-3 = 5.2 days) (Figure 6b).
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6.3.4 Summary of Model Application Results

The risk of chemical classes to burrowing owls wintering in south Texas
cotton/sorghum fields can be descril@sdinsecticides>growth regulators and
defoliants>herbicides. The presence of cabbage or onion fields as a foraging site
adjacent to the roost site increases the risk posed by insecticides and herbicides, most
likely due to more frequent spraying of these chemicals on onion or cabbage crops
during the period that the owls are present. It is also clear that, with the exception of
growth regulators and defoliants which are only applied to cotton fields, risk of lethal or
sublethal effects of agricultural chemical exposure increase in the presence of a crop
which is receiving treatments during the period the owl is present, which is represented
in this case by cabbage or onions.

ChE inhibition due to exposure to OP and CB insecticides was greatest when an
onion field was used as a foraging site, followed by the presence of cabbage fields as a
foraging site. Similiarly, Mineau and Whiteside (2006) found that onion crops had a
higher potential lethal risk to birds than cabbage in an analysis of NASS 2000-2003 data
for the entire United States. However, lethal and sublethal effects of all insecticides
based on LOELs and HD5s were greatest in the presence of a cabbage field, followed by
the presence of onion fields. The large increase in ChE inhibition in onion fields most
likely occurred because over 80% of insecticide treatments in onion fields are based on
OP or CB insecticides compared to 24% of insecticide treatments in cabbage fields. In
addition, the two insecticides which comprise all of the reported OP and CB insecticide

use on onion fields, diazinon and methomyl, are extremely toxic to birds (characterized
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by an LD50s below 40 mg/kg) (Smith, 1993; Appendix A4). Diazinon and methomyl are
also used on cabbage, along with dimethoate, which also is extremely toxic to birds.
However over 75% of the insecticide use is from other types of insecticides, including
the highly toxic organochlorine insecticide endosulfan, which probably created the
discrepancy between the ChE endpoint data and the LOEL and HD5 data (Smith, 1993;
Appendix A4).
7. Discussion

This model provides a framework for a simple stochastic simulation model which
can be used to compare different classes of chemicals or individual chemicals, as well as
different crops, based on current agricultural practices, in terms of potential lethal or
sublethal effects in burrowing owls. ChE inhibition has been used by Corson et al.
(1998) and Pisani (2006) to predict ChE inhibition due to OP and CB insecticide
exposure on birds. Mineau (2002), and Mineau and Whiteside (2006), used HD5 values
to predict risk of lethal exposure to insecticides in birds. Although reproductive NOELs
or NOECs are used in long-term exposure assessments used to model population level
effects (Shore et al., 2005; Mineau, 2005; Bennett et al., 2005), to my knowledge this is
the first model to use LOEL values to assess the effects of agricultural chemicals
currently in use on birds during the non-breeding period of their life cycle. The
combined use of these three different endpoints in this model allows for the risk of both
lethal and sublethal effects in birds due to exposure to chemical classes in addition to
insecticides to be investigated. In addition concurring results from all three endpoints

can provide a stronger assessment of a chemical or crop than from one endpoint alone.
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Fairbrother (2003) suggested that a “bottom up” approach used in Tier 1 risk
assessments can rule out exposure pathways, species, or contaminants with negligible
ecological risk. This can then guide the “top down” approaches in higher tiered risk
assessments as to which contaminants, pathways, or species further site specific studies
should be focused. Likewise, simulation modeling used for single species ecological risk
assessment can guide the direction in which higher assessments should be focused. In
the case of burrowing owls, following the approach of Fairbrother (2003), future studies
should focus on gathering more site specific data on contaminant residues in prey items
and in the soil, and laboratory bioassays on contaminants that were indicated as potential
risk factors. If these studies still indicate potential risk of effects of contaminant
exposure to burrowing owls in South Texas, then field studies should be conducted to
evaluate the possibility of the occurrence of lethal or sublethal effects that may reduce

individual fitness and subsequently lead to population level effects.
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CHAPTER 111
BURROWING OWLSAND CULVERTSIN COTTON FIELDS: AN

ECOLOGICAL TRAP?

1. Introduction

The Committee on the Status of Endangered Wildlife in Canada classified
burrowing owls as endangered due to significantly declining populations and range
restriction. Despite intensive conservation efforts, burrowing owls have been extirpated
from Manitoba and British Columbia, and burrowing owl populations have declined 58-
94% in Alberta and 95% in Saskatchewan over the past 10 years (SRD & ACA, 2005).
Chronically low return rates suggest that this burrowing owl population may face its
greatest threats on its wintering grounds, which include south Texas (Clayton and
Schmutz, 1999).

Known threats to burrowing owl populations include habitat loss and
fragmentation, loss of burrows, weather, predation, road kills, and rodenticide or
insecticide use. Habitat loss of grasslands and desert areas through conversion to
agriculture or urbanization resulting in the loss of burrows and foraging habitat is most
frequently cited as the cause of declines in burrowing owl populations (Klute et al.,
2003; Woodin, pers. comm., 2004). Burrowing owls are dependent on the burrows of
black-tailed prairie dogs, or other burrowing mammails, for nesting and wintering
habitat, but may use other types of shelter in the absence of their preferred burrow types.
Burrowing owl populations in areas where blaaked prairie dogs have been eradicated

have been extirpated, or have severely declined (Butts and Lewis, 1982; Desmond et. al.,
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2000). In Texas, the historic range of black-tailed prairie dogs covered the western half
of the state. Black-tailed prairie dogs are now extirpated from most of their historic
range, due to active control through rodenticides, and conversion of their native habitat
to agriculture. One former colony in Texas was 64,000&md supported a population

of 400 million prairie dogs (TPWD, 1997).

Outside of the Migratory Bird Treaty Act of 1918, the burrowing owl has no
protected legal status in Texas. The USFWS Natural Heritage Program listed the
burrowing owl population as vulnerable in Texas, before the program in Texas was
discontinued (Klute et al., 2003). Burrowing owls historically bred across most of Texas,
including south Texas until the 1920’s. Today the breeding range of burrowing owls
only includes the northwestern region of Texas, and the population that may have once
bred in south Texas is now a migratory population that winters along the lower Gulf
Coast and the Rio Grande Valley (Wellicome and Holroyd, 2001; Woodin, pers. comm.,
2004). Widespread landscape conversion to agriculture in the Eastern and Central U.S.
has been correlated with the decline of grassland associated bird species (Murphy,
2003). Concern over loss of grasslands in Texas began as far back as 1878, when writers
noted the intrusion of woody vegetation into grassland areas, primarily due to fire
suppression (Johnston, 1963). Today conversion to agricultural fields has occurred on up
to 99% of the native prairies and grasslands in the coastal prairies of Texas. The
remaining grassland areas have been further degraded through cattle grazing and

invasive species (PIF, 2005).
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Although burrowing owls are historically associated with grassland habitat
characterized by the presence of the burrows of prairie dogs or other fossorial mammals,
burrowing owls have recently become strongly associated with agriculture (Moulton et
al., 2006; Conway et al., 2006). Burrowing owls wintering in south Texas agro-
ecosystems primarily use culverts as roost sites (Texas Gulf Coast Field Research
Station, 2003). In addition, it has been implied that the creation or restoration of culverts
in agricultural areas can be used as a management tool in burrowing owl conservation
(Williford et al., 2007). However, if the culverts used by burrowing owls are actually a
source of agricultural chemical exposure they may have the potential to act as
“ecological traps”.

Ecological traps were defined by Schlaepfer et al. (2002) as “in an environment
that has been altered suddenly by human activities, an organism makes a maladaptive
habitat choice based on formerly reliable environmental cues, despite the availability of
higher quality habitat”. Robertson and Hutto (2006) further elaborate on this description
by describing ecological traps as resulting from “decoupling the attractiveness of and the
suitability in the altered habitat”. Habitat alterations can lead to ecological traps in three
ways, 1) by altering the settlement cue set, resulting in an increased attractiveness in the
altered habitat, 2) by decreasing the suitability of a habitat, or 3) by simultaneous
increasing attractiveness and decreasing suitability in the altered habitat (Robertson and
Hutto, 2006). The response of mayflies to asphalt is one of the most thoroughly
described ecological traps. In this example, asphalt sometimes reflects horizontally

polarized light in a manner similar to ponds. Mayflies use the horizontally polarized
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light from ponds as a cue for suitable habitat for oviposition, and the horizontally
polarized light reflected from asphalt leads to oviposition on the dry asphalt rather than
in nearby ponds (Kriska et al.,1998).

The mechanism driving the apparent preferential use of agricultural areas by
burrowing owls is unclear. However, Moulton et al. (2006) found that increased prey
resources may be a driving mechanism of burrowing owl associations with agriculture.
Burrowing owls wintering in south Texas agro-ecosystems seem to show a preference
for culverts in dormant agricultural fields emst sites (Texas Gulf Coast Field Research
Station, 2003). Culverts in fields which are left bare over the winter in South Texas may
be attractive to burrowing owls because of their superficial resemblance to clustered
mammal burrows in a shortgrass prairie, or because of increased food resources in
agricultural areas.

Despite the apparent increased prey availability in agricultural areas, a recent
demographic study indicated that burrowing owls in agricultural areas represent
population sinks, and hypothesized that persistence of these populations is dependent on
immigration (Conway et al., 2006). Burrowing owls living in agricultural areas are likely
to be exposed to contaminants, and the presence of contaminants combined with natural
stressors can negatively affect population level processes (Gervais et al., 2006). It was
determined that burrowing owls forage in cropland areas after treatment with pesticides,
and it is possible that they may be attracted to the availability of dead and dying prey
that occurs after pesticide use (Gervais et al., 2003). In addition, the use of agricultural

culverts within agricultural fields as roost sites may increase their risk of exposure to
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insecticides and other agricultural chemicals through dermal exposure to agricultural
runoff. This increased risk of insecticide exposure was confirmed by an analysis of
burrowing owl pellets in south Texas that detected OP insecticides (Woodin et al.,
2006).

Based on the limited research that has been conducted, it appears that one of the
most common habitats currently utilized by burrowing owls in south Texas argro-
ecosystems are cotton and sorghum fields. Of all the crops grown in the United States
cotton is one of the most notorious for intensive historical and current agricultural
chemical that has resulted in increased concentrations of contaminants (Kannan et al,
2003). In addition cotton is one of two crops with the highest risk of lethal effects to
birds in the United States, and has been responsible for several large mortality events
(Mineau and Whiteside, 2006). Herbicides, insecticides, and growth regulators and
defoliants are typically applied to cotton crops in Texas (NASS, 2005).

Of the agricultural chemicals most commonly used today, OP and CB
insecticides are the most dangerous to non-target organisms and have been responsible
for numerous cases of mortality in owls and other raptors (Blus, 1996; Sheffield, 1997;
Mineau et al., 1999). OP and CB compounds prevent normal physiological functions of
organisms, and disrupt nerve function by acting as cholinesterase (ChE) inhibitors
(Walker and Thompson, 1991). OP and CB insecticides primarily function by either
phosphorylation (OPs) or carbamylation (CBs) of the acetylcholinesterase (AChE)
enzyme'’s active site serine residue. In the case of OPs this binding is irreversible, while

with CBs the binding is somewhat reversible (Hill, 2003). Following binding of AChE
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molecules, acetylcholine accumulates in the central or peripheral nervous system
synapses, the cholinergic receptors are overstimulated, and normal cellular function is
altered in response to the overstimulation of the cholinergic receptors. This eventually
leads to autonomic dysfunction (especially excessive secretions), tremors or convulsions,
muscle fasciculations, and eventually respiratory failure (Pope, 1999).

Even sublethal doses of OP and CB insecticides can affect avian mortality by
affecting their behavior and normal physiological functions. The greatest effects include
alterations in thermoregulation, food consumption, and reproductive behavior including
migration (Grue et al., 1997). Exposure to OP and CB insecticides can occur through
ingestion of contaminated prey, water, vegetation, seeds, or soil, as well as through
direct contact with the pesticide during application, or through contact with
contaminated soil or water (Hill, 2003). Although risk assessments have traditionally
focused on oral exposure, the importance of dermal exposure has recently become
apparent (Fite et al., 2004; Mineau, 2002; Henderson et al., 1994; Driver et al., 1991).

Spatial variability in concentrations of pesticide residues has been shown in
several field studies (Harris, 2000; Cobb et al., 2000; Kendall et al., 1992; Kendall et al.,
1993). If runoff or puddling cause pesticide residues to concentrate in the culverts,
resulting in levels of dermal exposure to agricultural chemicals sufficient to lead to
decreased fitness, it is possible that culverts in cotton fields may represent ecological
traps for burrowing owls. The purpose of this study is to use simulation modeling to

determine the relationship between increased concentrations of agricultural chemicals in
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culverts and subsequent lethal and sublethal risks from dermal exposure to agricultural
runoff.
2. Study Area

Refer to Chapter I1.2
3. Model Overview
3.1 Conceptual Model

The model simulates foraging and roosting behavior of an individual burrowing
owl in crops that have received treatments with agricultural chemicals, resulting in
estimates of dermal and oral exposure that can be used to predict risk of lethal or
sublethal effects. The model consists of four submodels representing (1) behavior of
burrowing owls, (2) chemical applications to crops, (3) chemical transfer and fate in the
crop soil and prey items, and (4) chemical exposure in the burrowing owl.

Details of the cultivation of four different crops; cotton, sorghum, cabbage, and
onions, are used to simulate three different foraging crop scenarios (FS 1-3). In all three
scenarios a cotton\sorghum field is designated as a roost site. In this model the
burrowing owl forages during the night in the fields surrounding its roost site, and is
located at the culvert used as its roost site during the day. The primary crop scenario
(FS-1), has two cotton/sorghum fields as foraging sites adjacent to the roost site. Each
cotton/sorghum field alternates annually between cotton or sorghum crops grown during
the summer, and the two foraging fields are offset so that there is always one cotton field

and one sorghum field. The two additional crop scenarios include either a cabbage field
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(FS-2) or an onion field (FS-3) as a foraging site in addition to the cotton/sorghum
fields.

The burrowing owl is only present in the model during the winter period, (Oct 1-
Mar 1), when the post-harvest cotton/sorghum fields are wide expanses of bare soil, yet
onions and cabbage are actively cultivated (Appendix A2). The primary crop scenario
(FS-1), simulates chronic exposure to agricultural chemicals, while FS-2 and FS-3 add
potential acute exposure scenarios.

Within these fields pesticides are applied to the crops. Once a pesticide is applied
it is transferred to the soil, the owl, and its prey. The owl accumulates pesticides through
dermal and ingestion pathways. ChE inhibition is calculated from the amount of
insecticide accumulated with a dose-response equation. ChE inhibition and exposure >
HD5 are used as endpoints (Figure 3).

At the burrowing owl’s roost site the possibility of increased chemical
concentrations transferred to the culvert though runoff will be simulated by increasing
the chemical concentrations in culverts relative to the chemical concentrations in the
crop soil. For a more complete model description please refer to Chapter 11.4.

4. Methods

An equal number of simulations were run with either cotton or sorghum grown in
the roost or foraging fields in the summer prior to the arrival of the wintering burrowing
owl, and an equal number of simulations were run for each crop scenario.

At the burrowing owl’s roost site the increased chemical concentrations in

culverts were simulated by increasing the chemical concentrations in culverts relative to
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the chemical concentrations in the crop soil. Two hundred simulations were run in each
crop scenario in order to obtain baseline values for the endpoints. Then the
concentrations of chemicals in the culvert were increased by multiplying the
concentration of chemicals in the crop soil by a range of values to create a gradient of
increased concentrations of chemicals in the culverts. The values chosen were 2, 3, 4, 5,
6, 7, 8, 9, 10, 15, 20, & 50 times the concentrations in the crop soil. Sixty simulations
were run at each value.

The maximum and mean values of NKChapter 11.5.2), were chosen as
endpoints to evaluate lethal exposures to agricultural chemicals including insecticides,
herbicides, growth regulators, and defoliants. In order to evaluate lethal and sublethal
exposures to OP and CB insecticides, the maximum value and mean value of ChE
inhibition that occurred over the winter were also recorded for each simulation. These
endpoint values were fitted to linear regression lines with a separate regression
performed in each crop scenario for each class of agricultural chemicals, (OP and CB
insecticides, insecticides, herbicides, and growth regulators and defoliants, (Appendix
A4)). These regression lines were then used to estimate the increase in chemical

concentrations in culverts necessary to cause lethal or sublethal effects.
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5. Results
5.1 OP and CB Insecticides

The estimated maximum ChE values increased with increasing insecticide
concentrations in the culvert soil. However, foraging in a crop where chemicals were
actively being sprayed dramatically increased maximum ChE inhibition values. The
average maximum ChE inhibition values were increased by 2.56 and 14.92 times the
values predicted in the cotton/sorghum only scenarios (FS-1) with the addition of
cabbage fields (FS-2) or onion fields (FS-3) respectively (Table 3). The linear regression
equations fitted to the simulation data using maximum ChE values were y = 1.3291x +
12.544 in FS-1, y = 1.2253x + 17.619 in FS-2, and y = 0.4497x + 65.095 in FS-3.
Although there was an increase in the intercept values between FS-1 and the crop
scenarios with active spraying (FS-2 and FS-3), the slopes became less steep in the
scenarios with active spraying (Figure 7a-c).

Similar to the average maximum ChE values, the average mean ChE values
increased with increasing insecticide concentrations in the culvert soil. However the
increase due to foraging in a crop where chemicals were actively being sprayed was less
substantial than was observed in the maximum ChE values, and increased by 1.7 and 7.2
times the average value in FS-1 due to foraging in FS-2 and FS-3 respectively (Table 4).
The linear regression equations fitted to the simulation data using mean ChE values were
y =1.3291x + 12.544 in FS-1, y = 1.2253x + 17.619 in FS-2, and y = 0.4497x + 65.095

in FS-3. Although there was an increase in the intercept values between FS-1 and the
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crop scenarios with active spraying, the slopes were similar in all crop scenarios (Figure
8a-c).

An estimated maximum value of 20% ChE inhibition occurs when
concentrations of OP or CB insecticides in the culvert soil reach 5.6 and 1.9 times the
concentrations of insecticides in the crop soil in FS-1, and FS-2 respectively. An
estimated maximum value of 50% ChE inhibition occurs when concentrations of
insecticides in the culvert soil reach 28.2 and 26.4 times the concentrations of
insecticides in the crop soil in FS-1, and FS-2 respectively. The average maximum ChE
inhibition value was greater than 50% prior to increasing concentrations in FS-3 (Figure
7a-c). An estimated mean value of 20% ChE inhibition occurs when concentrations of
insecticides in the culvert soil reach 10.2 and 9.1 times the concentrations of insecticides
in the crop soil in FS-1, and FS-2 respectively. An estimated maximum value of 50%
ChE inhibition occurs when concentrations of insecticides in the culvert soil reach 34.4,
34.3, and 30.1 times the concentrations of insecticides in the crop soil in FS-1, FS-2, and
FS-3 respectively. The average mean ChE inhibition value was greater than 20% prior to

increasing concentrations in FS-3 (Figure 8a-c).
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Figure7 (a-c). Increasein the maximum % ChE inhibition occurring duringthe
winter dueto increased insecticide concentrationsin culverts by crop scenario.
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Figure8 (a-c). Increasein themean % ChE inhibition occurring during the winter
duetoincreased insecticide concentrationsin culverts by crop scenario.
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5.2 Insecticides

The estimated maximum value of NiHcreased with increasing insecticide
concentrations in the culvert soil. However in all three crop scenarios the estimated
maximum and mean value of N#id not reach 1 until the concentrations in culverts
were increased to around 30 times the concentration in the crop soil (Figure 9a-c, Figure
10a-c). However, in all three crop scenarios several maximum values trbhH
individual simulations runs were greater than 1 prior to increasing concentrations in the
culvert soil (Figure 9a-c). In addition, in all three crop scenarios several mean values of
NH; from individual simulations runs were greater than 1 after doubling concentrations
in the culvert soil (Figure 10a-c).

The linear regression equations fitted to the simulation data using the maximum
values of NHwere y = 0.0248x + 0.1529 in FS-1, y = 0.0265x + 0.4548 in FS-2, and y =
0.0243x + 0.3875 in FS-3 (Figure 9a-c). The linear regression equations fitted to the
simulation data using the mean values of Nere y = 0.0233x + 0.0843 in FS-1,

y = 0.0256x + 0.1214 in FS-2, and y = 0.0231x + 0.1204 in FS-3 (Figurel0a-c). These
regression equations show an increase in the intercept values between the
cotton/sorghum crop scenarios and the crop scenarios with active spraying, while the

slopes are similar between all scenarios.
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Figure9 (a-c). Increasein the maximum number of insecticides the owl is exposed

to > thelr HD5 during the winter dueto increased insecticide concentrationsin

culverts by crop scenario.
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Figure 10 (a-c). Increasein the mean number of insecticidesthe owl is exposed to
> their HD5 during the winter dueto increased insecticide concentrationsin

culverts by crop scenario.
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5.3 Herbicides

The estimated maximum value of Niicreased with increasing herbicide
concentrations in the culvert soil. However in all three crop scenarios the estimated
maximum value of NK 1 until the concentrations in culverts were increased to around
40 times the concentration in the crop soil, and the estimated mean valug @itiNidt
reach 1 until the concentrations in culverts were increased to over 100 times the
concentration in the crop soil (Figure 11a-c, Figure 12a-c). In all three crop scenarios
several maximum values of NHrom individual simulations runs were greater than 1
after increasing concentrations in the culvert soil to around 7 times the concentration in
the crop solil (Figure 11a-c). However, in all three crop scenarios individual mean values
of NHy from individual simulations runs did not reach values greater than 1 until
concentrations in the culvert soil were around 20 times the concentration in crop soil
(Figure 12a-c).

The linear regression equations fitted to the simulation data using the maximum
values of NH were y = 0.0234x in FS-1, y = 0.0258x in FS-2, and y = 0.0244x in FS-3
(Figure 11a-c). The linear regression equations fitted to the simulation data using the
mean values of Njwere y = 0.0078x in FS-1, y = 0.0089x in FS-2, and y = 0.0076x in
FS-3 (Figure 12a-c). The slopes are similar between all crop scenarios, and the intercept
values for all these regression equations were set to 0 because no individual simulation

runs were greater than 0 prior to increasing concentrations in the culvert soil.
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Figure1l (a-c). Increasein the maximum number of herbicidesthe owl is exposed
to > thelr HD5 during the winter dueto increased herbicide concentrationsin

culverts by crop scenario.
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Figure 12 (a-c). Increasein the mean number of herbicidesthe owl isexposed to >
their HD5 during the winter dueto increased herbicide concentrationsin culverts
by crop scenario.
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5.4 Growth Regulators and Defoliants

The estimated maximum value of jiicreased with increasing growth
regulators and defoliant concentrations in the culvert soil. However in all three crop
scenarios the estimated maximum and mean values géiHhot reach 1 until the
concentrations in culverts were increased to around 50 times the concentration in the
crop soil (Figure 13a-c, Figure 14a-c). In all crop scenarios several maximum and mean
values of NH from individual simulations runs were greater than 1 after increasing
concentrations in the culvert soil to around 3 times the concentration in the crop soil
(Figure 13a-c, Figure 14a-c).

The linear regression equations fitted to the simulation data using the maximum
values of N were y = 0.0199x in FS-1, y = 0.0194x in FS-2, and y = 0.0198x in FS-3
(Figure 13a-c). The linear regression equations fitted to the simulation data using the
mean values of Nfiwere y = 0.0182x in FS-1, y = 0.0157x in FS-2, and y = 0.0172x in
FS-3 (Figure 14a-c). The slopes are similar between all crop scenarios, and the intercept
values for all these regression equations were set to 0 because no individual simulation

runs were greater than 0 prior to increasing concentrations in the culvert soil.
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Figure 13 (a-c). Increasein the maximum number of growth regulatorsand
defoliants the owl is exposed to > their HD5 during the winter due to increased
growth regulators and defoliant concentrationsin culverts by crop scenario.
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Figure 14 (a-c). Increasein the mean number of growth regulators and defoliants

the owl isexposed to > their HD5 during the winter dueto increased
regulators and defoliant concentrationsin culvertsby crop scenario.

growth
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6. Summary/Discussion

The analysis using exposure > HD5 as an endpoint indicates that risks due to
increased concentrations in culvert soil vary between chemical classes. Insecticides
showed values of exposure greater than an HD5 from individual simulation runs prior to
increasing chemical concentrations in culvert soil. Growth regulators and defoliants
showed values of exposure greater than an HD5 from individual simulation runs after
increasing chemical concentrations in culvert soil to 3-4 times the concentration in the
crop soil. Herbicides showed values of exposure greater than an HD5 from individual
simulation runs after increasing chemical concentrations in culvert soil to 7 times the
concentration in the crop soil. However, for all three chemical classes the increase in
chemical concentrations in the culvert solil relative to the crop soil required for the
predicted maximum value averaged from all simulation runs to be greater than the HD5
was fairly large. Attaining a predicted average maximum value greater than an HD5
required an increase of 30 times for insedts, an increase of 40 times for herbicides,
and an increase of 50 times for growth regulators and defoliants. These results suggest
that among the chemical classes evaluated, insecticides are the chemical class to which a
burrowing owl is most likely to be exposed to an amount greater than the HD5. However
the increases in chemical concentrations in the culvert soil required to cause the
predicted average maximum exposure to be greater than an HD5 were quite large, and
ranged from 30-100 times the concentration in the crop soil.

ChE inhibition used as an endpoint the model seemed very sensitive to increasing

concentrations of OP and CB insecticides in the culvert soil. ChE inhibition increased



68

greatly when owls foraged in cabbage or onion fields, however only a very small
percentage of burrowing owls wintering in south Texas had roost sites adjacent to fields
where crops were grown during the winter (Chapter I1.2). Although ChE inhibition
increased most dramatically due to active spraying, an increase of only 5.61 times the
amount in the crop soil caused the predicted average maximum ChE inhibition to reach
20% in FS-1 (Figure 7a-c). In addition, maximum ChE inhibition in individual

simulation runs began to reach values greater than 20% at an increase of only 2 times the
amount in the crop soil (Figure 7a). However, it took an increase of 28.18 times the
concentration in the crop soil to cause the average maximum inhibition to reach 50%,
while several individual simulation runs began to show ChE inhibition values greater
than 50% at just 3 times the amount in the crop soil in FS-1 (Figure 7a).

Although to my knowledge no one has tested pesticide concentration in the
surface soil of culverts, spatial variability in concentrations of pesticide residues has
been shown to vary by 1.6 to up to 25 times the mean value in several field studies
(Harris, 2000; Cobb et al., 2000; Kendall et al., 1992; Kendall et al., 1993). The
maximum concentration of residues in earthworms from an orchard treated with
diazinon 12-15 days earlier varied from 2.1 -3.7 times the mean values for an orchard
with individual values ranging as much as 115 times the minimum value detected (Cobb
et al., 2000). The maximum concentration of residues in grass samples of diazinon
applied to a golf course 7 days earlier varied by 1.6 times the mean, with individual
values ranging up to 3.5 times the minimum value detected (Kendall et al., 1992).

Kendall et al. (1993) found increased diazinon concentrations in puddles relative to other
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water bodies on the treated golf course. An analysis of organophosphate residues in
carrots showed that individual roots could vary by up to 25 times the mean or composite
residue concentration (Harris, 2000).

A comparison of the spatial variability in pesticide residues discussed above,
with the increased concentrations in culverts necessary to result in exposure greater than
an HD5, indicates that while it is unlikely for burrowing owls wintering in cotton fields
to be consistently experiencing lethal effects due to increased concentrations of OP and
CB insecticides or other agricultural chemicals in culverts, it is likely that owls may
experience sublethal effects due to dermal exposure to OP and CB insecticides if these
insecticides accumulate in culverts.

Sublethal doses of OP and CB insecticides can decrease avian fitness by
affecting their behavior and normal physiological functions. Birds exposed to ChE
inhibitors may experience lethargy, gastrointestinal distress, impaired vision, impaired
learning and memory function, and alterations in endogenous rhythms, all of which may
decrease their ability to forage effectively (Grue et al., 1997). In addition, insecticide
application can reduce the prey base, and decrease the amount of food available for
consumption (Hill, 2003). OP and CB insecticides can affect reproduction through
alteration of the levels of reproductive hormones, impairment of male gametogenic
function, and through reduction of food consumption. This can lead to alterations in
sexual behavior, testicular injury, reductions in egg laying, reductions in parental care,
and reductions in nest success (Stromborg, 1977; Stromborg, 1986; Rattner et al., 1986;

Rattner et al., 1982; Maitra and Sarkar, 1996; Grue et al., 1997). In addition, OP and CB
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intoxication may affect the hippocampal complex, leading to impaired spatial reference
memory, including migratory orientation and memory of the migratory route (Grue et
al., 1997; Vyas et al., 1995; Vyas et al., 1996).

Several potential issues were not evaluated by the model, but may increase the
results demonstrated in the model. The first is that sublethal effects of chemicals other
than OP and CB insecticides were not evaluated, and may still be of concern. For
example, chronic low-level exposure to broiler chicks to the organochlorine insecticide
endosulfan and the pyrethroid fenvalerate, in addition to the OP insecticide
monocrotophos, all resulted in impaired metabolism and immune systems (Garg et al.,
2004). The second is that burrowing owls cache food inside culverts (Moulton et al.,
2006). Although it was not evaluated in this analysis, if chemical concentrations are
increased in the solil in culverts, ingestion of culvert soil due to cached food may be
another source of increased exposure in burrowing owls roosting in agricultural areas
burrowing. The third issue is that dermal exposure may result in a longer duration of
effects than was estimated by the model which assumed the duration of effects due to
dermal exposure was similar to values observed in ingestion exposure. However,
Henderson et al. (1994) showed that pigeons did not recover from dermal exposure to
OP insecticides for up to 6 weeks after dosing, while recovery from an oral dose took
approximately 5 days.

Robertson and Hutto (2006) set three criteria to define an ecological trap, “1)
individuals should have exhibited a preference for one habitat over another (in a severe

trap), or an equal preference for both habitats (in an equal-preference trap); 2) a
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reasonable surrogate measure of individual fitness should have differed among habitats;
and 3) the fitness outcome for individuals settling in the preferred habitat or equally
preferred habitat.....must have been lower than the fitness attained in other available
habitats.” Based on these criteria it will be necessary to determine 1) if burrowing owls
in South Texas show an increased or equal preference for agricultural culverts over
natural burrows, and 2) if fitness in burrowing owls using agricultural culverts is
decreased in comparison to burrowing owls using natural burrows; in order to
demonstrate if culverts in cotton or sorghum fields in South Texas represent ecological
traps for burrowing owls.

It is clear that the primary habitat used by burrowing owls in South Texas is
agricultural culverts (Woodin et al., 2006; Chapter 11.2). However, it has not been
demonstrated whether burrowing owls actually prefer agricultural culverts over natural
burrows, or if the use of agricultural culverts simply reflects a lack of availability of
natural burrows in South Texas. If a lack of availability of natural burrows in South
Texas drives the apparent preference for agricultural culverts, the scenario may actually
reflect a blatant disturbance; which was defined by Schlaepfer et al. (2002) as “an
anthropogenic alteration in the environment that results in decreased fitness of an
organism independent of its behavior”; rather than an ecological trap.

Conway et al. (2006) suggested that burrowing owls in agricultural areas of
Washington represented a population sink compared to burrowing owls in non-
agricultural areas. Unfortunately, a similar analysis of fithness between agricultural and

non-agricultural areas has not been conducted in South Texas. Mortality rates of
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wintering burrowing owls in South Texas and Mexico were estimated at 17.4%-30.0%
over 107 days (Holroyd, pers. comm., 2006). However, these winter mortality rates have
not been examined comparatively between agricultural and non-agricultural areas. The
return rates of juvenile owls are one of the demographic factors with the greatest impact
on the decline of Canadian burrowing owl populations (Wellicome et al., 2006). Juvenile
birds spending their first winter in South Texas may be more susceptible to effects of
pesticide exposure because age-dependent increases in effects of pesticide exposure have
been observed in birds (Wolfe and Kendall, 1998; Gard and Hooper, 1993; Bennett and
Bennett, 1991). The results of this modeling analysis suggest that if OP or CB
insecticides accumulate in culverts, then sublethal effects have the potential to occur.
Sublethal effects could subsequently lead to a decrease in the fithess of burrowing owls
roosting in agricultural culverts in South Texas.

If the use of agricultural culverts results in decreased fitness in burrowing owls,
the distinction between whether it represents an ecological trap or blatant disturbance
may become more important, as the effects of ecological traps are more easily corrected
through conservation actions than blatant disturbances (Schlaepfer et al., 2002). If fithess
is decreased in burrowing owls using agricultural culverts possible conservation actions
may include attempting to decrease the attractiveness of agricultural culverts, or the
provision of culverts or other artificial burrows in non-agricultural areas. However, if
fitness is confidently increased in burrowing owls using agricultural culverts then the

provision or restoration of existing culverts used to attract owls to agricultural or
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grassland areas may be an invaluable tool in the management of burrowing owl
populations.

The recognition and description of ecological traps is important in developing a
better understanding of the mechanisms leading to ecological traps, and in recognizing
factors leading to a maladaptive preference. Descriptions of ecological traps can help in
their future identification, correction, and prevention in order to conserve wildlife
(Robertson and Hutto, 2006). For this reason it is suggested that the possibility of
culverts in agricultural fields in South Texas acting as ecological traps for burrowing
owls be further investigated by 1) analyzing the soil in culverts used as roost sites for OP
and CB residues to help determine the amount of dermal exposure occurring through this
exposure route, 2) determining if the apparent preference for agricultural culverts
represents an actual preference or is a response to a lack of suitable habitat, and 3)
compare fitness between burrowing owls in agricultural and non-agricultural areas in

South Texas.
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CHAPTER IV
SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL
EXPOSURE ON BURROWING OWLSWINTERING IN SOUTH
TEXASCOTTON FIELDS: A LOOK AT INDIVIDUAL

CHEMICALS

1. Introduction

The western burrowing owAthene cunicularia hypugaea, was listed as a
Federal Species of Conservation Concern in 2002 due to declining populations (USFWS,
2002). While the primary reason cited for this decline is habitat loss, insecticide use has
been strongly implicated as another possible cause of declines in burrowing owl
populations (Blus, 1996; Sheffield, 1997; Klute et al., 2003). The majority of studies of
the effects of contaminants on burrowing owls have focused on OC insecticides and their
residues, and there are few published studies on how current agricultural chemical use
affects burrowing owl populations (Klute et al., 2003). Sublethal effects of contaminant
exposure observed in burrowing owls include decreased reproductive success, weight
reductions, and egg shell thinning (James, 1987; James et al., 1990; Gervais et al., 2000;
Gervais and Anthony, 2003).

James (1987) correlated decreased reproductive success in burrowing owls with
the use of carbamate insecticides in Canada. James et al. (1990) showed that while the
use of strychnine grain had no effect on mortality and reproductive success of burrowing

owls in the short-term, adults had a significantly lower body weight than adults in
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control fields suggesting sublethal effects. In the U.S. the disappearance of burrowing
owls from historic habitats has been linked to the extirpation of burrowing mammals,
which often occurred through the use of rodenticides (Sheffield, 1997). Gervais et al.,
(2000) and Gervais and Anthony (2003) documented egg shell thinning, and decreased
reproductive productivity in burrowing owls due to exposure to p,p’-DDE combined

with reduced rodent biomass in the diet.

Several contaminant studies on burrowing owls in the United States have
detected exposure to the contaminants chlorpyrifos, selenium, hexachlorobenzene,
arochlor 1260, PCBs, and p,p’-DDE (a metabolite of DDT) in burrowing owls. Even
though use of DDT was discontinued in the US in the 1970’s, these studies have
detected p,p’-DDE in the majority of their samples (Gervais et al., 2000; Gervais and
Anthony, 2003; Gervais and Catlin, 2004).

In south Texas burrowing owls primarily roost in culverts in cotton or sorghum
fields. Cotton was recently identified as one of two crops responsible for the greatest
amount of potential bird mortality in the United States (Mineau and Whiteside, 2006).
Although use of insecticides on agricultural fields is widespread; cotton is well known
for intensive historical and current agricultural chemical use (Kannan et al, 2003).
Concentrations of contaminants historically used for cotton agriculture such as DDE and
its metabolites, toxaphene, and arsenic can be elevated in areas used for cotton
production (Bednar et al., 2002; Kannan et al., 2003).

In 2005 a reported 8,677,000 Ibs of herbicides, 3,075,000 Ibs of growth

regulators and defoliants, and 5,946,000 Ibs of insecticides were applied to cotton crops
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in Texas (NASS, 2006). Over 60% of the herbicides and defoliants typically used in
agriculture are potential endocrine or reproductive system disruptors (Colborn and Short,
1999). However, the most toxic class of these agricultural chemicals is the
organophosphate (OP) and carbamate (CB) insecticides. OP and CB insecticides prevent
normal physiological functions of organisms by acting as cholinesterase (ChE)

inhibitors, and have been directly responsible for numerous cases of mortality in raptors
(Mineau et al., 1999). Exposure to OP and CB insecticides, as well as other agricultural
chemicals, can occur through ingestion of contaminated prey, water, vegetation, seeds,
or soil, as well as through direct contact with the pesticide during application, or through
contact with contaminated soil or water (Hill, 2003).

The use of agricultural fields as foraging areas along with the use of agricultural
culverts as roost sites by burrowing owls may increase their risk of exposure to
insecticides and other agricultural chemicals, either through ingestion of contaminated
prey, or through dermal exposure to agricultural runoff. This analysis examines the
comparative risks of different agricultural chemicals currently used on cotton or
sorghum fields to burrowing owls in South Texas.

2. Study Area
Refer to Chapter I1.2.
3. Model Overview
3.1 Conceptual Model
The model simulates foraging and roosting behavior of an individual burrowing

owl in crops that have received treatments with agricultural chemicals, resulting in
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estimates of dermal and oral exposure that can be used to predict risk of lethal or
sublethal effects. The model consists of four submodels representing (1) behavior of
burrowing owls, (2) chemical applications to crops, (3) chemical transfer and fate in the
crop soil and prey items, and (4) chemical exposure in the burrowing owl.

Details of the cultivation of four different crops; cotton, sorghum, cabbage, and
onions, are used to simulate three different foraging crop scenarios (FS 1-3). In all three
scenarios a cotton\sorghum field is designated as a roost site. In this model the
burrowing owl forages during the night in the fields surrounding its roost site, and is
located at the culvert used as its roost site during the day. The primary crop scenario
(FS-1), has two cotton/sorghum fields as foraging sites adjacent to the roost site. Each
cotton/sorghum field alternates annually between cotton or sorghum crops grown during
the summer, and the two foraging fields are offset so that there is always one cotton field
and one sorghum field. The two additional crop scenarios include either a cabbage field
(FS-2) or an onion field (FS-3) as a foraging site in addition to the cotton/sorghum
fields.

The burrowing owl is only present in the model during the winter period, (Oct 1-
Mar 1), when the post-harvest cotton/sorghum fields are wide expanses of bare soil, yet
onions and cabbage are actively cultivated (Appendix A2). The primary crop scenario
(FS-1), simulates chronic exposure to agricultural chemicals, while FS-2 and FS-3 add
potential acute exposure scenarios.

Within these fields pesticides are applied to the crops. Once a pesticide is applied

it is transferred to the soil, the owl, and its prey. The owl accumulates pesticides through
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dermal and ingestion pathways. ChE inhibition is calculated from the amount of
insecticide accumulated with a dose-response equation. ChE inhibition, exposure >
LOEL, and exposure > HD5 are used as endpoints (Figure 3).

For a more complete model description please refer to Chapter 11.4.
4. M ethods

An equal number of simulations were run with either cotton or sorghum grown in
the roost sites field in the summer prior to the arrival of the wintering burrowing owl,
and an equal number of simulations were run for each crop scenario.

Two hundred simulations were run in each crop scenario and results for each
individual chemical for each endpoint were saved. Because herbicides and growth
regulators did not cause exposure greater than a HD5 prior to increasing their
concentrations in culvert soil by 3-7 times (Chapter 1ll), the concentrations of
agricultural chemicals in the culvert soil was set to 10 times the concentrations of
agricultural chemicals in the crop soil, and a separate set of 200 simulations in each crop
scenario were run in order to show which chemicals were increased to levels above their
HD5 when concentrations in the culvert soil were increased.

In order to evaluate lethal or sublethal exposures to agricultural chemicals
including insecticides, herbicides, growth regulators, and defoliants, the model records
the occurrence of exposures to a chemical greater than the HD5 or LQ&LL{ifor
that chemical. Hand L represent the concentration of a chemical in the owl (CO)/HD5,
or CO/LOEL respectively, while represents the individual chemicals and can be

replaced by, h, g, orf, to represent individual insecticides, herbicides, growth regulators
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and defoliants, or fungicidescldnd L. are recorded at each time step. The maximum
value of H and L that occurred throughout the winter, as well as the duration of
exposure greater than the HD5 or LOEL throughout the winter were recorded for each
chemical in each simulation run.

In order to evaluate lethal and sublethal exposures to OP and CB insecticides, the
maximum value and mean value of ChE inhibition that occurred over the winter were
also recorded for each simulation, as well as the duration of any ChE inhibition, and the
duration of ChE inhibition greater than 20%.

A comparison of these endpoints was then used to determine which agricultural
chemicals currently in use are most likely to cause lethal or sublethal effects in
burrowing owls wintering in South Texas cotton fields.

5. Results
5.1 OP and CB Insecticides

The greatest amount of both average maximum and average mean ChE inhibition

was caused by the carbamate insecticide methomyl in FS-3 (maximum = 57.23%, mean

= 14.41%), followed by methomyl in FS-2 (maximum = 7.19%, mean = 2.05%). In FS-1
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which does not have active spraying during the winter, the highest amount of average
maximum and average mean ChE inhibition were due to chlorpyrifos (maximum =
1.83%, mean = 1.08%), followed by dicrotophos (maximum = 1.80%, mean = 0.98%),
and oxamyl (maximum = 0.34%, mean = 0.18%) (Figure 15, Figure 16). The only
insecticide exposure which caused ChE inhibition levels greater than 20% was
methomyl in FS-3 and FS-2 (Figure 17). There were low levels of ChE inhibition
attributed to nearly all of the chemicals evaluated. Average duration of exposure to the
insecticides chlorpyrifos and malathion occurred throughout the entire wintering period
(~ 150 days) in all crop scenarios, and exposure to methomyl occurred throughout the
entire wintering period in FS-3. The next longest average durations of exposure were to
acephate (75-98 days), dicrotophos (71-96 days), and oxamyl (61-75 days) (Figure 18).
The average maximum and mean ChE inhibition values as well as duration of exposure

values are listed in Appendix Cla-c.
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5.2 Insecticides
5.21LOELs

The insecticides with an average maximum value; of @ were chlorpyrifos (L
= 10.98-13.66), endosulfan;(t 0.00-4.81), lambda-cyhaltothrin;(£ 1.01-1.35),
disulfoton (L = 0.22-0.35), cypermethrin {E 0.04-0.10), dimethoate j(E 0.00-0.15),
indoxacarb (L= 0.01-0.02), and esfenvalerate £.0.00-0.01). While exposure to
chlorpyrifos, lambda-cyhalothrin, disulfoton, cypermethrin, and indoxacarb greater than
their respective LOELs occurred in all three crop scenarios, exposure to endosulfan,
dimethoate, and esfenvalerate greater than their LOELs only occurred in FS-2 (Figure
19, Figure 20). Of these insecticides chlorpyrifos (141-146 days) had the longest
average duration of exposure to a concentration greater than its LOEL, followed by
lambda-cyhalothrin (56-65 days), disulfoton (7-10 days), endosulfan (7 days),
cypermethrin (2-4 days), indoxacarb (0-1 days), esfenvalerate (0.1 days), and dimethoate
(0.04 days) (Figure 21). The average maximum exposure values are shown in Appendix
C2a-c.
5.2.2HD5s

When the ratio of concentrations of insecticides in culvert soil to concentrations
of insecticides in the crop soil was set to 1 (equal concentrations), the insecticide
chlorpyrifos (average maximum; H 0.14) was the only insecticide to which the owl
was exposed to a concentration greater than its HD5 in FS-1. In FS-2, the owl was
exposed to the insecticides chlorpyrifos (average maximum(-L4), diazinon

(average maximumH: 1.81), and endosulfan (average maximuns B.09) at
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concentrations greater than their HD5s. In FS-3, the owl was exposed to the insecticides
chlorpyrifos (average maximum H 0.12), and diazinon (average maximum=H..50)

at concentrations greater than their HD5s (Figure 22, Figure 23). Of these insecticides
diazinon (2.1-4.4 days) had the longest duration of exposure greater than its HD5,
followed by chlorpyrifos (3.2-3.5 days), and disulfoton (1.3 days) (Figure 24).

When the ratio of concentrations of insecticides in culvert soil to concentrations
of insecticides in the crop soil was set to 10, the owl was also exposed to the insecticides
disulfoton (average maximum H 0.11-0.18), dicrotophos (average maximupsH
0.05-0.08), and indoxacarb (average maximum B.03); in addition to chlorpyrifos
(average maximum H: 2.26-2.69), at a concentration greater than their HD5s, in all
three crop scenarios. In FS-2 the owl was also exposed to endosulfan (average
maximum H = 0.25), and diazinon (average maximunH.98) at a concentration
greater than their HD5s, and in FS-3 the owl was also exposed to diazinon (average
maximum H = 1.90) at a concentration greater than its HD5 (Figure 22, Figure 23). Of
these insecticides chlorpyrifos (35.4-48a8Ys) had the longest average duration of
exposure to a concentration greater than its HD5, followed by disulfoton (4.5-5.9 days),
diazinon (3.1-5.4 days), dicrotophos (2.9-4.3 days), endosulfan (3.5 days), and
indoxacarb (1.2-2.3 days) (Figure 24). The average maximum exposure values are

shown in Appendix C3a-c.
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Growth Regulators & Defoliants (Appendix C6a-c), Fungicides (Appendix C8a-b)).
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Figure 20. Ratio of average mean exposureto LOEL by chemical type. (Crop Scenario: 1-Cotton/Sorghum, 2-
Growth Regulators & Defoliants (Appendix C6a-c), Fungicides (Appendix C8a-b)).
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Figure 21. Duration of exposure > LOEL by chemical type. (Crop Scenario: 1-Cotton/Sorghum, 2-
Growth Regulators & Defoliants (Appendix C6a-c), Fungicides (Appendix C8a-b)).
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Cotton/Sorghum/Cabage, 3-Cotton/Sorghum/Onions). (I nsecticides (Appendix C3a-c), Herbicides (Appendix C5a-c),

Figure 22. Ratio of average maximum exposureto HD5 by chemical type. (Crop Scenario: 1-Cotton/Sorghum, 2-
Growth Regulators & Defoliants (Appendix C7a-c), Fungicides (Appendix C9a-b)).
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Cotton/Sorghum/Cabage, 3-Cotton/Sorghum/Onions). (I nsecticides (Appendix C3a-c), Herbicides (Appendix C5a-c),

Figure 23. Ratio of average mean exposureto HD5 by chemical type. (Crop Scenario: 1-Cotton/Sorghum, 2-
Growth Regulators & Defoliants (Appendix C7a-c), Fungicides (Appendix C9a-b)).
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Figure 24. Duration of exposure > HD5 by chemical type. (Crop Scenario: 1-Cotton/Sorghum, 2-
Growth Regulators & Defoliants (Appendix C7a-c), Fungicides (Appendix C9a-b)).
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5.3 Herbicides
5.3.1LOELs

The herbicides with an average maximum value,of D were trifluralin, diuron,
bensulide, alachlor, glufinosinate, DCPA, 2,4-D, glyphosate, s-metolachlor, oxyfluorfen,
and dimethenamid. Exposure to concentrations of trifluralin (average maxigam L
2.37-3.38), diuron (average maximum=+.0.63-0.70), alachlor (average maximugpL
0.19-0.38), glufinosinate (average maximupL0.10-0.26), 2,4-D (average maximum
Ly = 0.08), glyphosate (average maximupvL0.08-0.12), s-metolachlor (average
maximum L, = 0.07-0.09), and dimethenamid (average maximym Q.01-0.02)
greater than their LOELSs occurred in all three crop scenarios. Exposure to concentrations
of bensulide (average maximum £ 0.36-0.73), and DCPA (average maximug=L
0.13-0.37) greater than their LOELs occurred in FS-2 and FS-3, while exposure to a
concentration of oxyflourfen (average maximup¥_.0.04) greater than its LOEL only
occurred in FS-3 (Figure 19, Figure 20). Of these herbicides trifluralin (46-56 days),
diuron (27-30 days), and bensulide (3-5 days), had the longest average duration of
exposure to concentrations greater than their LOEL (Figure 21). The average maximum
exposure values are shown in Appendix C4a-c.
5.3.2 HD5s

When the ratio of concentrations of insecticides in culvert soil to concentrations
of insecticides in the crop soil was set to 1 (equal concentrations), there were no
herbicides to which the owl was exposed to a level greater than the HD5S in the all three

crop scenarios (Figure 22, Figure 23).
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When the ratio of concentrations of herbicides in culvert soil to concentrations of
herbicides in the crop soil was set to 10, the owl was exposed to concentrations of the
herbicides trifluralin (average maximum, H 0.14) and glyphosate (average maximum
H, = 0.05-0.09) greater than their HD5s, in all three crop scenarios, and to the herbicide
dimethenamid (average maximum #0.01) in FS-2 (Figure 22, Figure 23). Of these
herbicides trifluralin (0.5-1.8 days) had the longest duration of exposure to a
concentration greater than its HD5, however the time periods of average exposure to
concentrations of these chemicals greater than their HD5s was extremely short (0.03-
1.76 days) (Figure 24). The average maximum exposure values are shown in Appendix
Cba-c.

5.4 Growth Regulators and Defoliants
5.4.1LOELs

The only growth regulators or defoliants to which the owl was exposed to a
concentration greater than their LOELs were the defoliants paraquat (average maximum
Ly = 2.40-2.98) and tribufos (average maximugrL0.56-0.89) (Figure 19, Figure 20).

The average duration of exposure to concentrations greater than their LOELs was longer
to paraquat (80-101 days), than to tribufos (30-39 days) (Figure 21). The average
maximum exposure values are shown in Appendix C6a-c.

5.4.2 HD5s

When the ratio of concentrations of growth regulators or defoliants in culvert soil
to concentrations of growth regulators or defoliants in the crop soil was set to 1 (equal

concentrations), there were no growth regulators or defoliants to which the owl was
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exposed to concentrations greater than their HD5s in all three crop scenarios (Figure 22,
Figure 23).

When the ratio of concentrations of growth regulators or defoliants in culvert soil
to concentrations of growth regulators or defoliants in the crop soil was set to 10, the owl
was exposed to concentrations of tribufos (average maximumo#5-0.57) and
paraquat (average maximung £ 0.00-0.01) greater than their HDSs (Figure 22, Figure
23). Of these two chemicals tribufos (24-36 days) had the longest average duration of
exposure greater than its HD5 (Figure 24). The average maximum exposure values are
shown in Appendix C7a-c.

5.5 Fungicides
5.5.1LOELs

The fungicides with an average maximum value:of Q were copper hydroxide,
maneb, chlorothalonil, and mancozeb. Fungicide exposure was only evaluated FS-2 and
FS-3 crop scenarios because fungicides were not applied to cotton or sorghum fields.
Exposure to concentrations of maneb (average maximun2155-4.67) and
chlorothalonil (average maximum £ 0.76-1.30) greater than their LOELSs occurred in
both crop scenarios; while exposure to concentrations of copper hydroxide (average
maximum L = 33.51) and mancozeb (average maximym Q.03) greater than their
LOELs only occurred in FS-3 (Figure 19, Figure 20, Appendix C8a-b). Of these
fungicides copper hydroxide (149 days) had the longest average duration of exposure to

a concentration greater than its LOEL, followed by maneb (13-21 days), chlorothalonil
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(5-8 days), and mancozeb (0.07 days) (Figure 21, Appendix C8a-b). The average
maximum exposure values are shown in Appendix C8a-b.
5.5.2 HD5s

Because fungicides are not typically used in cotton or sorghum crops, there was
no difference in exposure due to increasing the ratio of concentrations of fungicides in
culvert soil to concentrations of fungicides in the crop soil. The only fungicide to which
the owl was exposed to a concentration greater than its HD5 was copper hydroxide
(average maximum+ 42.73) in FS-3 (Appendix C9a-b). The owl was exposed to a
concentration of copper hydroxide > its HD5 was throughout the entire winter
(Appendix C9a-b). The average maximum exposure values are shown in Appendix C9a-
b.
6. Discussion
6.1 OP and CB Insecticides

In all three crop scenarios the OP and CB insecticides predicted to have the
greatest potential to negatively affect burrowing owls wintering in south Texas were
chlorpyrifos, dicrotophos, disulfoton, and oxamyl (Figures 15-23). The insecticides
methomyl and diazinon also showed potential to negatively affect burrowing owls
foraging in cabbage or onion fields (FS-2 & FS-3) (Figures 15-23). Exposure to
sublethal concentrations of methomyl and diazinon resulted in reduced and abnormal
growth in mallard embryos (Hoffman and Albers, 1984). Diazinon has been responsible

for a greatest number of avian mortality events of all the insecticides used in the model,
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and in one case was responsible for a mortality of 14 Canada geese on a golf course in
Missouri three months after its application (Zinkl et al., 1978).

Avian mortality events have occurred due to the usage of several of the
insecticides used in this model. At least three confirmed large avian mortality events
have been attributed to chlorpyrifos with a total minimum mortality of 43 birds, two to
dicrotophos with a total minimum mortality of 244 birds, three to disulfoton with a total
minimum mortality of 43 birds, one to oxamyl with a total minimum mortality of 146
birds, and 34 to diazinon with a total minimum mortality of 833 birds. Diazinon is also
suspected in four large mortality events with a total minimum mortality of 126 birds
(Fleischli et al., 2004). Methomyl is suspected in one mortality event with a total
minimum mortality of 107 birds, and was responsible for the mortality of an endangered
griffon vulture, Gyps fulvus, in Croatia (Fleischli et al., 2004, Sabocanec et al., 2005).
Several of these mortality events have occurred in Texas, such as the mortality of a large
number of birds on the Texas Gulf Coast in 1982 due to intentional poisoning with
dicrotophos (Flickinger et al., 1984).

Of the insecticides evaluated, the OP insecticides chlorpyrifos, diazinon, and
disulfoton, as well as the CB insecticides carbaryl, and methomyl, were detected in
burrowing owl pellets from south Texas (Woodin et al., 2006). In addition, diazinon and
malathion were detected, along with several other insecticides, in burrowing owl eggs in
the Colorado River delta, Mexico (Garcia-Hernandez et al., 2006).

Based on all three endpoints the insecticide chlorpyrifos had the greatest

potential to negatively affect burrowing owls wintering in South Texas. Burrowing owls
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were likely to be exposed to concentrations of chlorpyrifos that may result in lethal or
sublethal effects. In addition, the average duration of exposure to chlorpyrifos typically
encompassed the entire wintering period (Figures 18, 21). Chlorpyrifos was detected in
burrowing owl footwash samples from a study site in California (Gervais et al., 2000). In
addition to acute toxic effects, chlorpyrifatso has been associated with decreased
reproductive productivity in robins (Decarie et al., 1993). Due to human health risks
chlorpyrifos was ordered by the U.S. EPA to be phased out for some uses in 2000 (U.S.
EPA, 2000a).

There were several limitations in the accurate evaluation of OP and CB
insecticides. The first limitation is that NASS does not currently report agricultural
chemical use for sorghum, so the data used in the model was NCFAP data from 1997.
Therefore the usage of chlorpyrifos, disulfoton, and carbaryl, which were only used on
sorghum crops in the model, may not accurately reflect the current usage scenario on
sorghum crops in Texas.

The second limitation is the lack of dose response curves for some of the
insecticides. The carbamate insecticides methomyl and oxamyl caused some of the
highest levels of ChE inhibition, however exposure to oxamyl or methomyl did not reach
levels greater than their LOELs or HD5s (Figures 15, 19, 22). These discrepancies may
be due to a lack of insecticide specific data, which resulted in the estimation of the dose-
response curves for oxamyl and methomyl from the dose-response curves for the OP

insecticides ethyl parathion and dicrotophos, respectively (Appendix A8). More research
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leading towards the development of an accurate dose-response curve is necessary in
order to accurately evaluate the effects of oxamyl and methomyl on ChE inhibition.

The third limitation is that ChE inhibition was assumed to be additive. However,
exposure to multiple cholinesterase inhibiting pesticides can sometimes result in
synergistic ChE inhibition. For example, exposure to malathion occurred at extremely
low levels throughout the entire wintering period, most likely due to its repeated use in
the treatment of boll weevil. Although malathion was one of the lowest inhibitors of ChE
in the model, it has been demonstrated to cause potentiation of carbaryl toxicity
(Johnston et al., 1994). This may have resulted in higher levels of ChE inhibition than
was simulated.

The fourth limitation is that granular insecticides were excluded from the model.
A highly toxic OP insecticide used in granular formation on sorghum for the control of
white grubs is the OP insecticide terbufos (Cronholm et al., 1998). The granular
formation of terbufos was one of several granular insecticides implicated in the mortality
of a large number of raptors in British Columbia because of their persistence for a long
duration after application (Wilson et al., 2002). If terbufosiisusted on sorghum, it
may negatively affect burrowing owls wintering in south Texas.
6.2 Other Insecticides

The insecticides, other than OP and CReatgides, with the greatest potential to
negatively affect burrowing owls wintering in South Texas were the OC endosulfan,
followed by the pyrethroids lambda-cyhalothrin and cypermethrin, and the oxadiazine

indoxacarb. Although exposure to all of these insecticides reached concentrations greater
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than their LOELS, only exposure to endosulfan reached concentrations greater than their
HDS5s prior to increasing concentrations in the culvert soil. After increasing
concentrations in the culvert soil, exposure to indoxacarb also reached concentrations
greater than its HD5 (Figures 19, 22).

Like other OC insecticides, endosulfan is highly toxic to aquatic fauna,
mammals, and birds, can bioaccumulate in aquatic food chains, and can cause eggshell
thinning in predatory birds (Cem Oktay et al., 2003). Endocrine disruptive effects due to
endosulfan exposure have been observed in fish, birds, mammals, and amphibians
(Cerrillo et al., 2005). Chronic low-level exposure to endosulfan, as well as to a
pyrethroid insecticide and an OP insecticide, in broiler chicks resulted in impairments in
their metabolism and immune systems (Garg et al., 2004). In addition, endosulfan has
been implicated as a factor in amphibian declines (Sparling et al., 2001, Park and
Propper, 2002). However, in the model endosulfan was only applied in FS-2.
6.3 Herbicides

The herbicides with the greatest potential to negatively affect burrowing owls
wintering in South Texas were trifluralin, glyphosate, dimethenamid, diuron, bensulide,
and alachlor. Although exposure to these herbicides all reached concentrations greater
than their LOELS, only exposure to trifluralin, glyphosate, and dimethenamid reached
concentrations greater than their HD5s, and only after concentrations in the culvert soil
had been increased (Figure 19, Figure 22). Of these herbicides the greatest potential risk
to burrowing owls wintering in South Texas is due to trifluralin. Trifluralin, along with

alachlor, is one of several herbicides implicated as a disruptor of endocrine or
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reproductive systems (Colbourne and Short, 1999). Of several herbicides tested for
toxicity to mallard eggs trifluralin was one of the top two most toxic herbicides.
Trifluralin also had the highest level of avian hazard of several herbicides evaluated
based on permissible levels of application (Hoffman, 2003). Trifluralin is also one of the
most common contaminants detected in cotton fields (Kannan et al., 2003).
6.4 Growth Regulators and Defoliants

The growth regulators and defoliants with the greatest potential to negatively
affect burrowing owls wintering in South Texas were tribufos and paraquat. Exposure to
tribufos and paraquat reached concentrations greater than their LOELSs, and reached
concentrations greater than their HD5s, but only after concentrations in the culvert soil
had been increased (Figure 19, Figure 22). There is little information regarding avian
effects due to exposure to tribufos. However, paraquat administered to nestling
American kestrels resulted in high levels of mortality, reduced growth, and altered
physiology (Hoffman et al., 1985, Hoffman et al., 1987). Of several herbicides tested for
toxicity to mallard eggs paraquat was one of the top two most toxic herbicides, and had
the second highest level of hazard based on permissible levels of application (Hoffman,
2003). A sublethal concentration of paraquat resulted in reduced growth in mallard
embryos (Hoffman and Albers, 1984). In addition, paraquat is one of several herbicides
and defoliants implicated as a disruptor of endocrine or reproductive systems (Colbourne

and Short, 1999).
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6.5 Fungicides

The fungicides with the greatest potential to negatively affect burrowing owls
wintering in South Texas were copper hydroxide, maneb, chlorothalonil, and mancozeb.
Exposure to these fungicides reached concentrations greater than their LOELS, but only
exposure to copper hydroxide reached concentrations greater than its HD5 (Appendix
C8a-h, Appendix C9a-b). However, the model was probably inadequate to evaluate
copper hydroxide. Copper hydroxide is metal based, and behaves differently from the
other chemicals examined in this model. Copper hydroxide was assumed to not have a
half-life, and because the model does not account for transfers of material off the fields it
accumulated at a rate much greater than any of the other fungicides in this model,
leading to high exposure levels. In addition fungicides were only applied to FS-2, and
FS-3, and subsequently may not be as important in terms of potential risks to burrowing
owls in South Texas compared to the other chemical classes.
6.6 Summary

Although agricultural chemical exposure was evaluated for all three foraging
scenarios, the Cotton/Sorghum crop scenario (FS-1) represents the majority of
burrowing owl roost sites in South Texas. Based on the results of these simulations in
appears that the chemicals with the greatest potential to negatively affect burrowing owls
wintering in south Texas cotton and sorghum fields are the OP insecticides chlorpyrifos,
dicrotophos, and disulfoton; the pyrethroid insecticide lambda-cyhalothrin, and the
oxadiazine insecticide indoxacarb; the herbicides trifluralin, glyphosate, and

dimethenamid; and the defoliants tribufos and paraquat. When the burrowing owl



101

foraged in cabbage or onion fields (FS-2 & FS-3), the OP insecticides methomyl and
diazinon, as well as the OC insecticide endosulfan also showed potential to negatively
affect burrowing owls wintering in South Texas.

Several of the insecticides that posed the greatest risk to burrowing owls were
only used on sorghum crops in the model. However, NASS does not currently report
agricultural chemical use for sorghum, so the data used for sorghum insecticide use in
the model was from 1997. An accurate analysis of the risks of agricultural chemical use
to burrowing owls living in cotton/sorghum fields is dependent on accurate and current
information regarding chemical use; therefore it is crucial that data on current
agricultural chemical use in sorghum crops be reported. Other limitations of the model
included the lack of dose-response curves for some of the OP or CB insecticides, the
exclusion of granular insecticides, and exclusion of possible synergistic effects between
currently applied pesticides.

In addition to synergistic effects between currently used agricultural chemicals,
synergistic effects between currently used agricultural chemicals and elevated levels of
contaminants related to historical agricultural use may also be of concern, although they
were not evaluated in the model. DDE or its metabolites have been shown to sometimes
occur in concentrations high enough to affect avian reproduction in the Rio Grande
Valley (Wainwright et al., 2001). This is significant because exposure to an OP
insecticide after previous exposure to p,p-DDE may increase ChE inhibition (Ludke,
1977), and may cause anemia or affect the immune system (Gill et al., 2004). In

addition, elevated levels of mercury and arsenic have been detected in relation to
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agriculture in South Texas (Custer and Mitchell, 1991). Exposure to mercury has also
been shown to increase the cholinesterase inhibiting activity of OP and CB insecticides
(Dieter and Ludke, 1975; Dieter and Ludke, 1978). Synergistic effects in birds have also
been shown between fungicides and OP insecticides, and some chemical mixtures have
been shown to result in as much as 100 fold toxicity (Thompson, 1996).

Results from several other multichemical risk assessments in different situations
concur with the results of this model. Three of the herbicides used in this model,
(glyphosate, 2,4-D, and trifluralin), were evaluated, along with an assortment of other
herbicides, in a risk assessment that comptredelative risks of acute avian exposure
in spring wheat. 2,4-D was determined to have an equal relative risk to glyphosate, while
trifluralin was determined to have an increased relative risk of 1.3 times glyphosate
(Peterson and Hulting, 2004). In this simulation model the risk to burrowing owls from
the three herbicides is greatest for trifluralin, followed by glyphosate, then 2,4-D (Figure
19, Figure 22). A risk assessment of cotton pyrethroids showed that cypermethrin and
lambda-cyhalothrin posed a greater risk to aquatic organisms than several other
pyrethroids including cyfluthrin and esfenvalerate (Solomon et al., 2001). Similiarly, in
this simulation model the pyrethroid lambda-cyhalothrin represented the greatest
potential risk to burrowing owls, followed by the pyrethroid cypermethrin, then by
esfenvalerate and cyfluthrin (Figure 19, Figure 22). A third model compared the
ecological relative risks of 37 chemicals used on cotton. Of the chemicals used in the
burrowing owl model, the insecticides endosulfan and chlorpyrifos were identified as

posing a high ecological risk, the insecticide methomyl was identified as posing a
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medium ecological risk, the insecticides dimethoate and lambda-cyhalothrin were
identified as posing low ecological risks, and the insecticides spinosad and cypermethrin
were classified as posing negligible risks (Sanchez-Bayo et al., 2002). Similarly
chlorpyrifos, endosulfan, and methomyl were identified as a potential risk to burrowing
owls, while exposure to spinosad did not represent a potential risk to burrowing owls
(Figures 15, 19, 22).

Simulation modeling proved an ideal means to identify from a wide number of
agricultural chemicals, in several different chemical classes, based on toxicity levels,
frequency of application, and application rates, which agricultural chemicals had the
greatest predicted potential to negatively affect burrowing owl populations in south

Texas.
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CHAPTERYV

CONCLUSIONS

A simulation model was constructed that integrated dermal and oral exposure to
evaluate the lethal and sublethal effects in birds of chronic low-level exposure to a wide
range of chemical types. Burrowing owls wintering in cotton fields in south Texas,
which are chronically exposed to low levels of agricultural chemicals were chosen to
exemplify the use of this model. The model was used to evaluate the potential of culverts
to act as ecological traps, and to determine which agricultural chemicals currently in use
in cotton/sorghum fields in south Texas had the greatest potential to negatively affect
burrowing owl populations.

The results of these simulations identified several important data gaps. These
data gaps include 1) half-lives of agricultural chemicals in birds, 2) agricultural chemical
half-lives in insects and their accumulation and transfer rates in prey, 3) accurate dermal
to oral toxicity indexes and expanded research on the duration of effects due to dermal
exposure, 4) avian dose-response curves for the inhibition of ChE due to exposure to the
insecticides methomyl and oxamyl, 5) LOELs based on avian data, 6) current
agricultural chemical use data for sorghum in Texas, 7) the frequency and timing of pre-
planting insecticide treatment in sorghum, 8) the concentrations of agricultural chemicals
in culverts in the cotton/sorghum fields used as roost sites by burrowing owls, and 9)
more general research on chronic low-level exposures to common agricultural chemical

mixtures in birds.
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The risk of chemical classes to burrowing owls wintering in south Texas
cotton/sorghum fields can be descrilzedinsecticides>growth regulators and
defoliants>herbicides, and the greatest risk of lethal or sublethal effects was due to OP
and CB insecticides. Lethal or sublethal effects of exposure to insecticides increased in
the presence of an adjacent crop that received agricultural chemical treatments (Chapter
1m).

Simulations investigating the potential of agricultural culverts to act as ecological
traps using ChE inhibition and HD5s indicated that lethal effects due to increased
chemical concentrations in culverts are unlikely in burrowing owls wintering in south
Texas. However the results using ChE inhibition as an endpoint indicated that sublethal
effects may be likely if concentrations of OP and CB insecticides are increased in the
culvert soil. Analysis of the solil in culverts used as roost sites by burrowing owls in
south Texas cotton fields for OP and CB residues would help determine the amount of
dermal exposure occurring through this exposure route (Chapter III).

Simulation results predicted that the agricultural chemicals with the greatest
potential to negatively affect burrowing owls wintering in south Texas cotton and
sorghum fields are the OP insecticides chlorpyrifos, dicrotophos, and disulfoton; the
oxadiazine insecticide indoxacarb; the herbicides trifluralin, glyphosate, and
dimethenamid; and the defoliants tribufos and paraquat (Chapter V).

This model provided a framework for a simple stochastic simulation model
which can be used to evaluate different classes of chemicals or individual chemicals, as

well as different crops, based on current agricultural practices, in terms of the lethal or
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sublethal effects on avian wildlife. The combined use of three different endpoints in this
model allows for the risk of both lethal and sublethal effects in birds due to exposure to
chemical classes in addition to insecticides to be investigated. Concurring results from
all three endpoints, such as occurred with the insecticide chlorpyrifos, can provide a
stronger assessment of a chemical or crop than from one endpoint alone. Simulation
modeling proved an ideal means to identify from a wide number of agricultural
chemicals, in several different chemical classes, based on toxicity levels, frequency of
application, and application rates, which agricultural chemicals had the greatest potential

to negatively affect burrowing owl populations in south Texas.
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Table A3. Crop treatment information.
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Crop Type
Cotton Sorghum Onion Cabbage
Growing Season Grog‘t"”? g’etason 52 52 349 305
(estimated from Dept. of ar ate
Agricultural G X s
Communications,1996; rowing season
Livingston and Bade, 1996a) End Date 227 210 166 166
Number of
1.72 1- (no data) 1.69 3.13
Treatments
1cCi First Treatment 52-220 52-200 1-60 305-365
Insecticides Date
(estimated from NASS,2006;
NASS,2005; NCFAP,1997; Second
Knutson et al.,2000a; Knutson et Treatment Date 52-220 N/A 61-166 1-60
al.,2000b; Norman and
Sparks,2000a;Norman and hird
Sparks,2000b;Cronholm et Third Treatment
al.,1998) Date N/A N/A N/A 60-166
Fourth Treatment
N/A N/A N/A 1-166
Date
Insecticide, boll
. 167, 174, 181, 167, 174, 181,
weevil Application Dates 188, 195, 202, 188, 195, 202, N/A N/A
(estimated from APHIS,2002; 209 209
Txbollweevil.org,2006)
Number of
1.82 1- (no data) 2.20 1.17
Treatments
First Treatment
Her b | c | d es Date 45-59 45-59 349-365 298-365
(estimated from NASS,2006; (Preemergence)
N(IE\II:\ASPSELZQOQ(;&BNASS’ ZOJC_)QS;JS Second 60-220 60-220 1-60 1-166
, ; Baumann, ; - _ _ _
Stichler et al.,1997) Treatment Date
Third Treatment
N/A N/A 61-166 N/A
Date
. Number of
1 N/A N/A N/A
. DefOIIantS Treatments
(estlm:%ted from NASS,2006; Eirst Treatment
Stichler et al.,1995) 208-216 N/A N/A N/A
Date
Number of
Treatment 1 N/A N/A N/A
Growth Regulators S
(esti‘m‘ated from I\IIASS,ZSOG; Eirst Treatment 37-87 (crop A A NIA
Livingston et al.,1996b) Date growth days)
Number of
N/A N/A 2.81 2.45
Treatments
First Treatment
N/A N/A 349-365 305-365
Date
Fungicides
i Second
(estimated from NASS,2005) N/A N/A 1-60 1-60
Treatment Date
Third Treatment
N/A N/A 61-166 61-166

Date

Dates are Julian Dates
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Table AS.
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Soil half-life values.

Soil Half-Life Values Reference Soil Half-Life Values (Days)

Sensitivity Soil Half-Life  Soil (PIP, Aerobic Soil Anaerobic Soil

Analysis Half- Values Used in accessed (PAN, accessed (PAN, accessed Reference

(When PIP or PAN values were unavailable)

Life Values Model 2007) 2007) 2007)

Herbicides
2,4-D dimeth. salt 34 34 7 34.0 333.0
Alachlor 20 20 8 20.0 5.00
Atrazine 365 146 >365 146.0 159.0
Bensulide 432 180 120-180 432.0 1890
Bromoxynil 14 10 10-14
Carfentrazone-ethyl 0.58 0.58 0.58 0.55
Clethodim 3 3 3 3.00 191.0
DCPA 30.3 30.3 30.3
Dicamba 28 10 7-28 10.0 88.0
Dimethenamid 20 20 20* (general half-life) (Hartzler, 2002)
Diuron 372 372 30-365 372.0 995.0
Fluometuron 171 10.9 12-171 109 28.6
Glufosinate-ammonium 20 20 20.0
Glyphosate 174 47 1-174,47
Glyphosate iso. Salt 96 96 96.0 22.0
Metsulfuron-methyl 180 24 14-180 24.0 338.1
Oxyfluorfen 4345 180 30-40,180 434.5 603.0
Pendimethalin 1320 40 40 1320 60.0

30-90,

Prometryn 440 274 360-440 274.0 316.0
Prosulfuron 10 10 10* (Vogue et al. 1994)
Pyraflufen-ethyl 496 71 1-71,7* 16-496* 191-392* (SANCO, 2002)
Pyrithiobac-sodium 60 60 60.0 60.0
S-Metolachlor 70 38.4 15-70 38.4 60.5
Trifluralin 240 168.7 45-240 168.7 37.3

Insecticides
Acephate 6 3 3-6 3.00 6.00
Acetamiprid 18 8.2 <18* 8.2* (U.S. EPA, accessed 2006b)
Aldicarb 2 2 2.00 2.00
Bacillus thuringiensin 120 120 120
Carbaryl 28 6 7-28 6.00 87.0
Carbofuran 120 22 30-120 22.0 20.0
Chlorpyrifos 365 113.3 14-365 1133 1355
Cyfluthrin 63 59.5 2-63 59.5 33.6
Cypermethrin 1103 56 4-56 1103 94.2
Diazinon 40 40 14-28 40.0 16.0
Dicrotophos 5 5 5.00
Dimethoate 122 2 4-122, 20 2.00 22.0
Disulfoton 7 2 7 2.00
Endosulfan 50 315 50 315 1475
Esfenvalerate 105 105 15-90 105.0
Ethyl Parathion 14 14 14* (USDA, accessed 2006b)
Imidacloprid 997 190 48-190 997.0 27.0
Indoxacarb 693 300 3-693* 147-233* (U.S. EPA, accessed 2006b)
Lambda cyhalothrin 84 61.8 28-84 61.8 128.0
Malathion 25 2 1-25 2.00 30.0
Methomyl 46 46 14 46.0 1.00
Oxamyl 20 10.7 4-20 10.7 5.63
Permethrin 38 25.1 30-38 25.1 50.0
Spinosad 17.3 9.4 0.3-0.5% 9.4-17.3* 161-250" ;o Epa, accessed 2006b)

(anaerobic water)
Terbufos 30 5 5-30
Thiamethoxam 353 294 294-353* 15-24* (NRA, 2001)
Zeta-cypermethrin** 1103 56 4-56 1103 94.2 Used values for cypermethrin
Growth Regulators

/Defoliants
Bacillus cereus 120 120 120** used values for Bacillus thuringiensin
Cyclanilide 114 95 35-114* 95* does not degrade* (U.S. EPA, accessed 2006b)
Ethephon 75 75 7.50 5.30
Mepiquat Chloride 39 39 39.0 359.0
Mepiquat Pentaborate 39 39 39** 359** no data, used values for mepiquat chloride
Monocarbamide dihyd. 22.3 22.3 22.3** 201* used values for siduron for all except water 1/2 life
Paraquat 4680 620 480-4680 620.0 644.0
Thidiazuron 144 75 26-144* <30* (USDA, accessed 2006a)
Tribufos 745 745 745.0 221.6

Fungicides
Azoxystrobin 112 112 112.0 119.0
Benzoic acid 28 10 7-28* 10** 88** used values for dicamba
Chlorothalonil 90 35 30-90 35.0 8.00
Copper hydroxide does not degrade
Iprodione 64 64 7-60 64.0 32.0
Mancozeb 756 7.56 1-7 7.56 2.00
Maneb 36 24 12-36 (U.S. EPA, 2005b)
Mefenoxam*** 170 62 7-170,70 62.0 68.0 *+ = mefenoxam and metalaxyl are two names for the same fungicide
Metalaxyl+* 170 62 7-170,70 62.0 68.0 *+* = mefenoxam and metalaxyl are two names for the same fungicide

* = values obtained from a
** = values estimated from

source other than PIP or PAN
a similar chemical



Table A6. Vertebrate and invertebrate half-life values.

Half-Life Values Used in Model (Days)

Classification Vertebrate Invertebrate*+++*

Herbicides
2,4-D dimeth. salt phenoxy 0.833 * 3.4
Alachlor amide 3 il 3
Atrazine triazine 1.2 il 14.6
Bensulide organophosphorous 2.62 Ak 18
Bromoxynil nitrile 2.8 hid 2.8
Carfentrazone-ethyl triazolone 2 il 2
Clethodim cyclohexene oxime 1.05 Ak 1.05
DCPA aromatic acid 15 il 3.03
Dicamba aromatic acid 0.75 il 1
Dimethenamid amide 20 il 20
Diuron urea 2.83 ok 37.2
Fluometuron urea 2 il 2
Glufosinate-ammonium organophosphorous 1.9 Ak 2
Glyphosate organophosphorous 3 hid 4.7
Glyphosate iso. Salt organophosphorous 2.43 Ak 9.6
Metsulfuron-methyl urea 1.2083 * 2.4
Oxyfluorfen diphenyl ether 10 il 18
Pendimethalin dinitroaniline 13 il 4
Prometryn triazine 0.6 hid 27.4
Prosulfuron urea 1.62 ok 1.62
Pyraflufen-ethyl pyrazole 2.33 Ak 7.1
Pyrithiobac-sodium aromatic acid 2.27 ek 6
S-Metolachlor amide 1.25 il 3.84
Trifluralin dinitroaniline 2.6 okkk 16.87

Insecticides
Acephate organophosphate 1.05 Ak 1.05
Acetamiprid nicotinoid 1.54 Ak 1.54
Aldicarb carbamate 0.4 il 0.4
Bacillus thuringiensin antibiotic 2.49 Ak 12
Carbaryl carbamate 0.4 hid 0.6
Carbofuran carbamate 0.25 il 2.2
Chlorpyrifos organophosphate 2.583 * 11.33
Cyfluthrin pyrethroid 0.6 hid 5.95
Cypermethrin pyrethroid 18 * 18
Diazinon organophosphate 0.5 * 4
Dicrotophos organophosphate 0.3 hid 0.5
Dimethoate organophosphate 0.3 hid 0.3
Disulfoton organophosphate 1.333 * 1.333
Endosulfan organochlorine 21.00 * 21
Esfenvalerate pyrethroid 14 * 14
Ethyl Parathion organophosphate 1.76 Ak 1.76
Imidacloprid nicotinoid 2 * 19
Indoxacarb oxadiazine 10 ok 30
Lambda cyhalothrin pyrethroid 10 il 10
Malathion organophosphate 2 * 2
Methomyl carbamate 2.19 Ak 4.6
Oxamyl carbamate 1.65 Ak 1.65
Permethrin pyrethroid 5 * 5
Spinosad antibiotic 1.6 Ak 1.6
Terbufos organophosphate 2.8 hid 2.8
Thiamethoxam nicotinoid 2.76 ok 29.4
Zeta-cypermethrin pyrethroid 18 * 18
Growth Reaqulators/Defoliants
Bacillus cereus soil bacterium/ growth regulator 2.49 Ak 12
Cyclanilide unclassified plant growth regulator 2.42 Ak 9.5
Ethephon defoliant, ethylene releaser 1.5 Ak 1.5
Mepiquat Chloride growth inhibitor 2.13 Ak 3.9
Mepiquat Pentaborate growth inhibitor 2.13 Ak 3.9
Monocarbamide dihyd. herbicide/dessicant 1.94 Ak 2.23
Paraquat quaternary ammonium herbicide 1 hid 62
Thidiazuron urea herbicide, defoliant 2.34 Fkkk 7.5
Tribufos defoliant 3.01 okkk 74.5
Funaicides
Azoxystrobin antibiotic 2.47 Ak 11.2
Benzoic acid triforine 1.62 ok 1.62
Chlorothalonil aromatic 1 * 3.5
Copper hydroxide inorganic, copper 10 il 10
Iprodione dicarboximide,imidozole 23 Fkkk 6.4
Mancozeb dithiocarbamate 4 * 4
Maneb dithiocarbamate 5 * 5
Mefenoxam triforine 2.29 ok 6.2
Metalaxyl triforine 2.29 Fkkx 6.2

* = actual half life value from PIP, accessed 2007

** = estimated half life value from PIP, accessed 2007

*** = used value from a chemical with a similar chlassification

% = fit values (* & **) to a trend line based on mammal metabolism rates vs soil half-life (y = 1.624x"0.5865) and used to
estimate unknown values

% = invertebrate 1/2 life values were estimated as (1/10 soil 1/2 life, unless vertebrate 1/2 life wass greater, then the
vertebrate 1/2 life value was used
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Table A7. Dermal toxicity index.

DTl values used in model

Actual DTI Values ** Fred-EPA(Fite et al., 2004)***

Herbicides
2,4-D dimeth. salt 1.533 1.533
Alachlor 2.349 2.349
Atrazine 3.454 3.454
Bensulide 2.259 2.259
Bromoxynil 1.116 1.116
Carfentrazone-ethyl 2.715 2.715
Clethodim 2.597 2.597
DCPA 2.715 2.715
Dicamba 2.597 2.597
Dimethenamid 2.550 2.550
Diuron 2.457 2.457
Fluometuron 3.019 3.019
Glufosinate-ammonium 2.597 2.597
Glyphosate 2.597 2.597
Metsulfuron-methyl 2.831 2.831
Oxyfluorfen 2.692 2.692
Pendimethalin 2.280 2.280
Prometryn 2.669 2.669
Prosulfuron 1.995 1.995
Pyraflufen-ethyl 2.597 2.597
Pyrithiobac-sodium 2.385 2.385
S-Metolachlor 2.597 2.597
Trifluralin 2.597 2.597

Insecticides
Acephate 1.339 1.339
Acetamiprid 0.825 0.825
Aldicarb 0.057 0.057 0.230
Bacillus thuringiensin 3.678 3.678
Carbaryl 2.706 2.706
Carbofuran 0.013 0.013, 0.0042 0.099
Chlorpyrifos 1.522 1.522
Cyfluthrin 2.597 2.597
Cypermethrin 4.786 4.786
Diazinon 0.245 0.245
Dicrotophos 2.330 0.299, 2.33, 1 0.342
Dimethoate 0.597 0.597
Disulfoton 10.000 0.034, 10, 3.2 0.582
Endosulfan 0.865 0.865
Esfenvalerate 2.212 2.212
Ethyl Parathion 1.000 0.083,0.722, 1 0.192
Imidacloprid 0.975 0.975
Indoxacarb 0.825 0.825
Lambda cyhalothrin 3.363 3.363
Malathion 2.319 2.319
Methomy! 0.414 0.414
Oxamyl 0.224 0.224
Permethrin 4.750 4.750
Spinosad 1.082 1.082
Terbufos 1.051 1.051
Thiamethoxam 1.618 1.618
Zeta-cypermethrin 4.831 4.831
Methyl parathion 1.129 1.129 0.319
Growth Regulators/Defoliants
Bacillus cereus* 3.678
Cyclanilide 1.115 1.115
Ethephon 2.049 2.049
Mepiquat Chloride 2.221 2.221
Mepiquat Pentaborate 2.221 2.221
Monocarbamide dihyd.* 2.000
Paraquat 0.332 0.332 1.981
Thidiazuron 5.722 5.722
Tribufos 0.950 0.950

Fungicides
Azoxystrobin 1.995 1.995
Benzoic acid* 2.000
Chlorothalonil 3.575 3.575
Copper hydroxide 3.177 3.177
Iprodione 2.597 2.597
Mancozeb 4.040 4.040
Maneb 4.786 4.786
Metalaxyl 1.935 1.935

* = not enough data to complete equation, values are based on similar chemicals
** = Dermal to Oral Toxicity Indexes based on LD50 values from Hudson et al. (1979), or Schafer et al. (1973)

*** = EPA equation used to estimate a dermal route equivalency factor based on the avian oral LD50
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Table A9. LOEL values.
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Lowest LELor LOEL (mg/kg) References

Herbicides
2,4-D dimeth. salt 5 Keith (1997)
Alachlor 3 Keith (1997)
Atrazine 70 Keith (1997)
Bensulide 15 (U.S. EPA, 1999c)
Bromoxynil 30 (U.S. EPA, accessed 2007)
Carfentrazone-ethyl 110 (U.S. EPA, 1998b)
Clethodim 75 (U.S. EPA, 1995)
DCPA 10 (U.S. EPA, accessed 2007)
Dicamba 10 (U.S. EPA, accessed 2007)
Dimethenamid 33 (U.S. EPA, 2004a)
Diuron 3.125 (U.S. EPA, accessed 2007)
Fluometuron 50 (U.S. EPA, accessed 2007)
Glufosinate-ammonium 16 (U.S. EPA, accessed 2007)
Glyphosate 30 (U.S. EPA, accessed 2007)
Metsulfuron-methyl 100 (U.S. EPA, accessed 2007)
Oxyfluorfen 3 (U.S. EPA, accessed 2007)
Pendimethalin 50 (U.S. EPA, accessed 2007)
Prometryn 375 (U.S. EPA, accessed 2007)
Prosulfuron 250 (U.S. EPA, 2002c)
Pyraflufen-ethyl 60 (U.S. EPA, 2003)
Pyrithiobac-sodium 31.8 (U.S. EPA, 2002d)
S-Metolachlor 15 Keith (1997)
Trifluralin 3.75 Keith (1997)

Insecticides
Acephate 0.25 (U.S. EPA, accessed 2007)
Acetamiprid 17.5 (U.S. EPA, accessed 2006a)
Aldicarb 0.01 Keith (1997)
Bacillus thuringiensin 27?
Carbaryl 5 Keith (1997)
Carbofuran 5 (U.S. EPA, accessed 2007)
Chlorpyrifos 0.1 Keith (1997)
Cyfluthrin 6.2 (U.S. EPA, 1999b)
Cypermethrin 5 Keith (1997)
Diazinon 5 (U.S. EPA, 2004b)
Dicrotophos* 1.5 (U.S. EPA, 2002a)
Dimethoate 0.25 (U.S. EPA, accessed 2007)
Disulfoton 0.05 (U.S. EPA, accessed 2007)
Endosulfan 0.27 Keith (1997)
Esfenvalerate 25 (U.S. EPA, 1998a)
Ethyl Parathion 0.01 (U.S. EPA, 2000c)
Imidacloprid 16.9 (U.S. 2001)
Indoxacarb 3.6 (U.S. EPA, accessed 2006a)
Lambda cyhalothrin 0.5 (U.S. EPA, 1997a)
Malathion 0.34 Keith (1997)
Methomyl 10 Keith (1997)
Oxamyl 3.75 (U.S. EPA, accessed 2007)
Permethrin 25 (U.S. EPA, accessed 2007)
Spinosad 8.22 (U.S. EPA, accessed 2006a)
Terbufos 0.25 (U.S. EPA, accessed 2006d)
Thiamethoxam 18 (U.S. EPA, 2005c)
Zeta-cypermethrin 5 (U.S. EPA, 1997¢c)
Growth Requlators/Defoliants
Bacillus cereus ??7?
Cyclanilide 2 (U.S. EPA, 1997b)
Ethephon 0.5 (U.S. EPA, accessed 2007)
Mepiquat Chloride 75 (U.S. EPA, accessed 2007)
Mepiquat Pentaborate 75 used mepiquat chloride values (U.S. EPA, 2002b)
Monocarbamide dihyd. 222 ??7?22?- EPA does not require tolerance tests
Paraquat 0.93 (U.S. EPA, accessed 2007)
Thidiazuron 2?? ????7?- EPA does not require tolerance tests
Tribufos 7 (U.S. EPA, 2000b)

Eunaicides
Azoxystrobin 34 (U.S. EPA, 1999a)
Benzoic acid 40 (U.S. EPA, accessed 2007)
Chlorothalonil 3 (U.S. EPA, accessed 2007)
Copper hydroxide 289 (U.S. EPA, 2006c)
Iprodione 15 (U.S. EPA, accessed 2007)
Mancozeb 17.2 (U.S. EPA, 2005a)
Maneb 2 (U.S. EPA, accessed 2007)
Metalaxyl 25 (U.S. EPA, accessed 2007)




Table A10. Avian HD5 values.
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Avian Oral Avian HDS5 Values Avian HD5** Predicted
LD50* Used in Model**** (markg) Avian HD5***
(mg/kg) (mg/kg) 979 (mg/kg)

Herbicides
2,4-D dimeth. salt 500 132.90 132.9 48.48
Alachlor 1536 330.42 330.42 135.13
Atrazine 4237 408.98 408.98 341.37
Bensulide 1386 160.98 160.98 123.03
Bromoxynil 217 21.68 21.68 22.62
Carfentrazone-ethyl 2250 191.50 191.50
Clethodim 2000 232.29 232.29 171.97
DCPA 2250 191.50 191.50
Dicamba 2000 62.26 62.26 171.97
Dimethenamid 1908 221.60 221.6 164.73
Diuron 1730 193.04 193.04 150.64
Fluometuron 2974 192.68 192.68 247.08
Glufosinate-ammonium 2000 232.29 232.29 171.97
Glyphosate 2000 232.29 232.29 171.97
Metsulfuron-methyl 2510 261.19 261.19 211.62
Oxyfluorfen 2200 614.58 614.58 187.61
Pendimethalin 1421 125.86 125.86
Prometryn 2150 183.72 183.72
Prosulfuron 1000 159.59 159.59 91.31
Pyraflufen-ethyl 2000 171.97 171.97
Pyrithiobac-sodium 1599 185.71 185.71 140.19
S-Metolachlor 2000 241.81 241.81 171.97
Trifluralin 2000 245.55 245.55 171.97

Insecticides
Acephate 350 18.52 18.52 35.00
Acetamiprid 98 20.91 20.91 10.95
Aldicarb 3.4 0.43 0.43 0.51
Bacillus thuringiensin 5000 397.10 397.10
Carbaryl 2230 30.05 30.05 189.95
Carbofuran 0.37 0.21 0.21 0.07
Chlorpyrifos 490 3.76 3.76 47.60
Cyfluthrin 2000 485.44 485.44 171.97
Cypermethrin 10000 579.15 579.15 747.88
Diazinon 4 0.59 0.59 0.59
Dicrotophos 9.63 0.42 0.42 1.32
Dimethoate 41.7 5.78 5.78 5.02
Disulfoton 39 0.81 0.81 4.72
Endosulfan 111 9.53 9.53 12.26
Esfenvalerate 1312 131.24 131.24 117.01
Ethyl Parathion 2.1 0.40 0.4 0.33
Imidacloprid 152 8.43 8.43 16.34
Indoxacarb 98 10.95 10.95
Lambda cyhalothrin 3950 428.14 428.14 320.19
Malathion 1485 139.10 139.1 131.03
Methomyl 15.9 8.46 8.46 2.08
Oxamyl 3.16 0.78 0.78 0.48
Permethrin 9800 3127.53 3127.53 734.21
Spinosad 200 21.00 21.00
Terbufos 185 0.16 0.16 19.55
Thiamethoxam 576 55.17 55.17
Zeta-cypermethrin 10248 764.80 764.80
Growth Regulators/Defoliants
Bacillus cereus****** 5000 397.10 397.10
Cyclanilide 216 22.42 22.42 22.53
Ethephon 1072 372.20 372.2 97.30
Mepiquat Chloride 1326 232.29 232.29 118.15
Mepiquat Pentaborate 1326 232.29 118.15
Monocarbamide dihyd.***** 775 72.35 72.35
Paraquat 981 88.50 88.5 89.73
Thidiazuron 16000 367.02 367.02 1148.82
Tribufos 142 51.13 51.13 15.36

Fungicides
Azoxystrobin 1000 232.29 232.29 91.31
Benzoic acid***** 1700 148.25 148.25
Chlorothalonil 4640 193.05 193.05 370.90
Copper hydroxide 3400 219.11 219.11 279.21
Iprodione 2000 158.40 158.4 171.97
Mancozeb 6400 710.95 710.95 497.53
Maneb 10000 345.34 345.34 747.88
Metalaxyl 923 89.09 89.09 84.87

* = (Footprint, 2007; PIP, accessed 2007; DuPont, 2003)

** = Mineau et al. (2001)

*** = estimated HD5 from a trend line, (y = 0.1662x70.9133), using HD5 values and LD50 values
**** = Used values from Mineau et al. (2001), unless no data was available then used HD5 estimated from trend line

*rxkx = Mammalian LD50

**xxxk = Used Bacillus thuringiensin
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APPENDIX B
SENSITIVITY ANALYSESFIGURESAND TABLES
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Sensitivity Analyses

0= Basgline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure Bla. Senstivity Analyses. Changesin the average maximum ChE
inhibition over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-

Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure Blb. Sensitivity Analyses. Changesin the average mean ChE inhibition
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over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage,

3- Cotton/Sorghum/Onions)



Duration of ChE Inhibition > 20%
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure Blc. Senstivity Analyses. Changesin duration of ChE Inhibition > 20%
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over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage,

3- Cotton/Sorghum/Onions)



Duration of ChE Inhibition = 50%
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging
3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure Bld. Sensitivity Analyses: Changesin duration of ChE Inhibition > 50%
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over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage,

3- Cotton/Sorghum/Onions)
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Maximum # of Insecticides with Exposure > LOEL
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure B2a. Sensitivity Analyses. Changesin maximum # of insecticidesthe owl is
exposed to > LOEL over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Duration of Exposure to Insecticides > LOEL
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3=Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure B2b. Sensitivity Analyses: Changesin the duration of insecticide exposure >
LOEL over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-

Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)



Maximum # of Herbicides with Exposure > LOEL

Waxinmwm # of Chemicals
— — [ %=1 | =)
o w = n
1 LN 1 L

=
tn
1

Eﬁﬂgithlliql 5 "

“'“i}y }

Wy 4 | 1 croP 5S¢

Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3=Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

147

Figure B3a. Senditivity Analyses. Changesin maximum # of herbicidesthe owl is

exposed to > LOEL over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-

Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Duration of Exposure to Herbicides > LOEL
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3=Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure B3b. Sensitivity Analyses: Changesin the duration of herbicide exposure >
LOEL over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Maximum # of Growth Regulators or Defoliants with Exposure > LOEL
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure B4a. Sensitivity Analyses. Changesin maximum # of growth regulatorsor

defoliants the owl isexposed to > LOEL over thewinter. (Crop Scenario: 1-
Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Duration of Exposure to Growth Regulators or Defoliants > LOEL
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3=Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure B4b. Senditivity Analyses: Changesin the duration of growth regulator or
defoliant exposure > LOEL over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure
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Figure B5a. Sensgtivity Analyses. Changesin maximum # of insecticidesthe owl is

exposed to > HD5 over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-

Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)



Duration of Insecticide Exposure > HD5
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure
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Figure B5b. Sensitivity Analyses: Changesin the duration of insecticide exposure >

HDS5 over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-

Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure
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Figure B6a. Sensitivity Analyses. Changesin maximum # of herbicidesthe owl is

exposed to > HD5 over thewinter (Crop Scenario: 1- Cotton/Sorghum, 2-

Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure
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Figure B6b. Sensitivity Analyses: Changesin the duration of herbicide exposure >

HDS5 over thewinter. (Crop Scenario: 1- Cotton/Sorghum, 2-

Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Maximum # of Growth Regulators or Defoliants with Exposure > HDS

1.0

# of Chemicals

Wlaxirnam

Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure B7a. Sengitivity Analyses: Changesin maximum # of growth regulators or

defoliantsthe owl is exposed to > HD5 over the winter. (Crop Scenario: 1-
Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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Duration of Exposure to Growth Regulators or Defoliants > HDS
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Sensitivity Analyses

0= Baseline- no changes

1= Increased soil in diet

2= Increased dermal exposur e during foraging

3= Increased half-lifein bird

4= Decreased loss due to drift

5= Increased half-lifein insects

6= Increased accumulation in prey

7= Used highest soil half-life values

8= Increased the dermal to oral toxicity indexes

9= Allowed possible early spring spraying prior to owl departure

Figure B7b. Sensitivity Analyses: Changesin the duration of growth regulator or
defoliant exposure > HD5 over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2-
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)
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APPENDIX C

VALUES OF EXPOSURE GREATER THAN LOEL OR HD5BY

CHEMICAL TYPE
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Table C2a. Maximum & mean exposurethat occurred over the winter to each
insecticide divided by each insecticide’'s LOEL, aswell asduration of exposure >
LOEL in the cotton/sorghum crop scenario.

Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Insecticide Type Mean Deviation Mean Deviation Mean Deviation N

acephate 0.00 0.00 0.00 0.00 0.00 0.00 200
acetamiprid 0.00 0.00 0.00 0.00 0.00 0.00 200
bacillus thuringensis ¢ g 0.00 0.00 0.00 0.00 0.00 200
carbaryl 0.00 0.00 0.00 0.00 0.00 0.00 200
chlorpyrifos 13.47 16.46 8.72 10.77 146.27 19.51 200
cyfluthrin 0.00 0.00 0.00 0.00 0.00 0.00 200
cypermethrin 0.04 0.24 0.02 0.13 1.96 13.03 200
diazinon 0.00 0.00 0.00 0.00 0.00 0.00 200
dicrotophos 0.00 0.00 0.00 0.00 0.00 0.00 200
dimethoate 0.00 0.00 0.00 0.00 0.00 0.00 200
disulfoton 0.35 1.47 0.23 1.02 9.64 36.20 200
endosulfan 0.00 0.00 0.00 0.00 0.00 0.00 200
esfenvalerate 0.00 0.00 0.00 0.00 0.00 0.00 200
imidacloprid 0.00 0.00 0.00 0.00 0.00 0.00 200
indoxacarb 0.02 0.18 0.01 0.14 1.38 13.77 200
lambda-cyhalothrin 1.01 1.37 0.85 1.12 55.64 69.77 200
malathion 0.00 0.00 0.00 0.00 0.00 0.00 200
methomyl 0.00 0.00 0.00 0.00 0.00 0.00 200
oxamyl 0.00 0.00 0.00 0.00 0.00 0.00 200
permethrin 0.00 0.00 0.00 0.00 0.00 0.00 200
spinosad 0.00 0.00 0.00 0.00 0.00 0.00 200
thiamethoxam 0.00 0.00 0.00 0.00 0.00 0.00 200

zeta-cypermethrin 0.00 0.00 0.00 0.00 0.00 0.00 200
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TableC2b. Maximum & mean exposure that occurred over the winter to each
insecticide divided by each insecticide’'s LOEL, aswell asduration of exposure >
LOEL in the cotton/sorghum/cabbage crop scenario.

Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Insecticide Type Mean Deviation Mean Deviation Mean Deviation N

acephate 0.00 0.00 0.00 0.00 0.00 0.00 200
acetamiprid 0.00 0.00 0.00 0.00 0.00 0.00 200
bacillus thuringensis 0.00 0.00 0.00 0.00 0.00 0.00 200
carbaryl 0.00 0.00 0.00 0.00 0.00 0.00 200
chlorpyrifos 10.98 14.73 6.98 9.56 142.33 29.58 200
cyfluthrin 0.00 0.00 0.00 0.00 0.00 0.00 200
cypermethrin 0.04 0.24 0.02 0.11 1.98 12.18 200
diazinon 0.00 0.00 0.00 0.00 0.00 0.00 200
dicrotophos 0.00 0.00 0.00 0.00 0.00 0.00 200
dimethoate 0.15 0.54 0.00 0.00 0.04 0.13 200
disulfoton 0.28 1.31 0.19 0.91 7.45 32.55 200
endosulfan 4.81 28.29 1.72 10.54 6.90 26.96 200
esfenvalerate 0.01 0.07 0.00 0.01 0.10 1.41 200
imidacloprid 0.00 0.00 0.00 0.00 0.00 0.00 200
indoxacarb 0.02 0.14 0.00 0.01 0.21 2.04 200
lambda-cyhalothrin 1.18 1.48 0.98 1.15 65.47 71.12 200
malathion 0.00 0.00 0.00 0.00 0.00 0.00 200
methomyl 0.00 0.00 0.00 0.00 0.00 0.00 200
oxamyl 0.00 0.00 0.00 0.00 0.00 0.00 200
permethrin 0.00 0.00 0.00 0.00 0.00 0.00 200
spinosad 0.00 0.00 0.00 0.00 0.00 0.00 200
thiamethoxam 0.00 0.00 0.00 0.00 0.00 0.00 200

zeta-cypermethrin 0.00 0.00 0.00 0.00 0.00 0.00 200
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Table C2c. Maximum & mean exposure that occurred over the winter to each
insecticide divided by each insecticide’'s LOEL, aswell asduration of exposure >
LOEL in the cotton/sorghum/onions crop scenario.

Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Insecticide Type Mean Deviation Mean Deviation Mean Deviation N

acephate 0.00 0.00 0.00 0.00 0.00 0.00 200
acetamiprid 0.00 0.00 0.00 0.00 0.00 0.00 200
bacillus thuringensis ¢ g 0.00 0.00 0.00 0.00 0.00 200
carbaryl 0.00 0.00 0.00 0.00 0.00 0.00 200
chlorpyrifos 13.66 16.11 8.65 10.51 141.27 31.49 200
cyfluthrin 0.00 0.00 0.00 0.00 0.00 0.00 200
cypermethrin 0.10 0.36 0.03 0.16 3.67 16.82 200
diazinon 0.00 0.00 0.00 0.00 0.00 0.00 200
dicrotophos 0.00 0.00 0.00 0.00 0.00 0.00 200
dimethoate 0.00 0.00 0.00 0.00 0.00 0.00 200
disulfoton 0.22 1.06 0.15 0.73 7.97 33.18 200
endosulfan 0.00 0.00 0.00 0.00 0.00 0.00 200
esfenvalerate 0.00 0.00 0.00 0.00 0.00 0.00 200
imidacloprid 0.00 0.00 0.00 0.00 0.00 0.00 200
indoxacarb 0.01 0.12 0.01 0.10 0.70 9.83 200
lambda-cyhalothrin 1.35 1.60 1.06 1.26 63.75 71.02 200
malathion 0.00 0.00 0.00 0.00 0.00 0.00 200
methomyl 0.00 0.00 0.00 0.00 0.00 0.00 200
oxamyl 0.00 0.00 0.00 0.00 0.00 0.00 200
permethrin 0.00 0.00 0.00 0.00 0.00 0.00 200
spinosad 0.00 0.00 0.00 0.00 0.00 0.00 200
thiamethoxam 0.00 0.00 0.00 0.00 0.00 0.00 200

zeta-cypermethrin 0.00 0.00 0.00 0.00 0.00 0.00 200
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Table C4a. Maximum & mean exposurethat occurred over the winter to each
herbicide divided by each herbicide'sLOEL, aswell asduration of exposure >

LOEL in the cotton/sorghum crop scenario.
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Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Herbicide Type Mean Deviation Mean Deviation Mean Deviation N

2,4-D 0.08 0.33 0.00 0.01 0.10 0.73 200
alachlor 0.38 1.99 0.01 0.06 0.28 1.19 200
atrazine 0.00 0.00 0.00 0.00 0.00 0.00 200
bensulide 0.00 0.00 0.00 0.00 0.00 0.00 200
bromoxynil 0.00 0.00 0.00 0.00 0.00 0.00 200
carfentrazone-ethyl 0.00 0.00 0.00 0.00 0.00 0.00 200
clethodim 0.00 0.00 0.00 0.00 0.00 0.00 200
dcpa 0.00 0.00 0.00 0.00 0.00 0.00 200
dicamba 0.00 0.00 0.00 0.00 0.00 0.00 200
dimethenamid 0.01 0.09 0.00 0.00 0.01 0.18 200
diuron 0.70 1.35 0.37 0.82 27.35 56.50 200
fluometuron 0.00 0.00 0.00 0.00 0.00 0.00 200
glufinosinate 0.26 1.49 0.01 0.06 0.21 1.34 200
glyphosate 0.08 0.35 0.00 0.01 0.21 0.96 200
metsulfuron-methy! 0.00 0.00 0.00 0.00 0.00 0.00 200
oxyfluorfen 0.00 0.00 0.00 0.00 0.00 0.00 200
pendimethalin 0.00 0.00 0.00 0.00 0.00 0.00 200
prometryn 0.00 0.00 0.00 0.00 0.00 0.00 200
prosulfuron 0.00 0.00 0.00 0.00 0.00 0.00 200
pyraflufen-ethyl 0.00 0.00 0.00 0.00 0.00 0.00 200
pyrithiobac-sodium 0.00 0.00 0.00 0.00 0.00 0.00 200
s-metolachlor 0.08 0.34 0.00 0.00 0.12 0.51 200
trifluralin 2.37 2.96 0.86 1.41 46.12 65.58 200
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Table C4b. Maximum & mean exposure that occurred over the winter to each

herbicide divided by each herbicide'sLOEL, aswell asduration of exposure >

LOEL in the cotton/sorghum/cabbage crop scenario.

Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Herbicide Type Mean Deviation Mean Deviation Mean Deviation N

2,4-D 0.08 0.36 0.00 0.01 0.09 0.58 200
alachlor 0.19 1.48 0.01 0.11 0.20 1.55 200
atrazine 0.00 0.00 0.00 0.00 0.00 0.00 200
bensulide 0.36 0.73 0.02 0.05 2.64 5.86 200
bromoxynil 0.00 0.00 0.00 0.00 0.00 0.00 200
carfentrazone-ethyl 0.00 0.00 0.00 0.00 0.00 0.00 200
clethodim 0.00 0.00 0.00 0.00 0.00 0.00 200
dcpa 0.13 0.38 0.00 0.00 0.14 0.54 200
dicamba 0.00 0.00 0.00 0.00 0.00 0.00 200
dimethenamid 0.02 0.17 0.00 0.01 0.09 0.77 200
diuron 0.70 1.30 0.40 0.84 29.79 58.04 200
fluometuron 0.00 0.00 0.00 0.00 0.00 0.00 200
glufinosinate 0.14 0.93 0.00 0.02 0.09 0.62 200
glyphosate 0.09 0.36 0.00 0.01 0.26 1.09 200
metsulfuron-methy! 0.00 0.00 0.00 0.00 0.00 0.00 200
oxyfluorfen 0.00 0.00 0.00 0.00 0.00 0.00 200
pendimethalin 0.00 0.00 0.00 0.00 0.00 0.00 200
prometryn 0.00 0.00 0.00 0.00 0.00 0.00 200
prosulfuron 0.00 0.00 0.00 0.00 0.00 0.00 200
pyraflufen-ethyl 0.00 0.00 0.00 0.00 0.00 0.00 200
pyrithiobac-sodium 0.00 0.00 0.00 0.00 0.00 0.00 200
s-metolachlor 0.09 0.38 0.00 0.01 0.17 0.73 200
trifluralin 3.38 2.92 1.01 1.50 53.92 62.43 200




Table C4c- Maximum & mean exposure that occurred over the winter to each
herbicide divided by each herbicide'sLOEL, aswell asduration of exposure >

LOEL in the cotton/sorghum/onions crop scenario.
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Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Herbicide Type Mean Deviation Mean Deviation Mean Deviation N

2,4-D 0.08 0.33 0.00 0.00 0.07 0.51 200
alachlor 0.20 1.55 0.01 0.07 0.11 0.88 200
atrazine 0.00 0.00 0.00 0.00 0.00 0.00 200
bensulide 0.73 0.99 0.05 0.10 5.06 9.68 200
bromoxynil 0.00 0.00 0.00 0.00 0.00 0.00 200
carfentrazone-ethyl 0.00 0.00 0.00 0.00 0.00 0.00 200
clethodim 0.00 0.00 0.00 0.00 0.00 0.00 200
dcpa 0.37 0.65 0.01 0.01 0.63 1.40 200
dicamba 0.00 0.00 0.00 0.00 0.00 0.00 200
dimethenamid 0.01 0.09 0.00 0.00 0.02 0.32 200
diuron 0.63 1.28 0.36 0.74 30.14 57.76 200
fluometuron 0.00 0.00 0.00 0.00 0.00 0.00 200
glufinosinate 0.10 0.98 0.00 0.04 0.11 1.10 200
glyphosate 0.12 0.41 0.00 0.01 0.39 1.41 200
metsulfuron-methy! 0.00 0.00 0.00 0.00 0.00 0.00 200
oxyfluorfen 0.04 0.22 0.00 0.03 0.44 3.45 200
pendimethalin 0.00 0.00 0.00 0.00 0.00 0.00 200
prometryn 0.00 0.00 0.00 0.00 0.00 0.00 200
prosulfuron 0.00 0.00 0.00 0.00 0.00 0.00 200
pyraflufen-ethyl 0.00 0.00 0.00 0.00 0.00 0.00 200
pyrithiobac-sodium 0.00 0.00 0.00 0.00 0.00 0.00 200
s-metolachlor 0.07 0.31 0.00 0.01 0.15 0.74 200
trifluralin 3.00 3.02 1.09 1.48 55.91 66.79 200
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Table C6a. Maximum & mean exposurethat occurred over the winter to each

growth regulator or defoliant divided by each chemical’sLOEL, aswell as
duration of exposure > LOEL, in the cotton/sorghum crop scenario.
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Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)

Growth Regulator Std. Std. Std.
or Defoliant Type Mean Deviation Mean Deviation Mean Deviation N
bacillus cereus 0.00 0.00 0.00 0.00 0.00 0.00 200
cyclanilide 0.00 0.00 0.00 0.00 0.00 0.00 200
ethephon 0.00 0.00 0.00 0.00 0.00 0.00 200
mepiquat chloride 0.00 0.00 0.00 0.00 0.00 0.00 200
mepiquat
pentaborate 0.00 0.00 0.00 0.00 0.00 0.00 200
monocarbamide 0.00 0.00 0.00 0.00 0.00 0.00 200
paraquat 2.98 2.29 2.08 1.91 101.42 64.27 200
thidiazuron 0.00 0.00 0.00 0.00 0.00 0.00 200
tribufos 0.89 1.17 0.50 0.90 39.08 59.70 200

TableC6b. Maximum & mean exposurethat occurred over the winter to each

growth regulator or defoliant divided by each chemical’sLOEL, aswell asduration
of exposure > L OEL, in the cotton/sorghum/cabbage crop scenario.

Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)

Growth Regulator Std. Std. Std.
or Defoliant Type Mean Deviation Mean Deviation Mean Deviation N
bacillus cereus 0.00 0.00 0.00 0.00 0.00 0.00 200
Cyclanilide 0.00 0.00 0.00 0.00 0.00 0.00 200
Ethephon 0.00 0.00 0.00 0.00 0.00 0.00 200
mepiquat chloride 0.00 0.00 0.00 0.00 0.00 0.00 200
mepiquat
pentaborate 0.00 0.00 0.00 0.00 0.00 0.00 200
monocarbamide 0.00 0.00 0.00 0.00 0.00 0.00 200
Paraquat 2.40 2.18 1.51 1.73 79.78 70.38 200
thidiazuron 0.00 0.00 0.00 0.00 0.00 0.00 200
Tribufos 0.67 1.09 0.40 0.82 31.52 58.67 200



TableC6c. Maximum & mean exposurethat occurred over the winter to each

growth regulator or defoliant divided by each chemical’sLOEL, aswell as
duration of exposure > LOEL, in the cotton/sor ghum/onions crop scenario.
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Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)

Growth Regulator Std. Std. Std.
or Defoliant Type Mean Deviation Mean Deviation Mean Deviation N
bacillus cereus 0.00 0.00 0.00 0.00 0.00 0.00 200
Cyclanilide 0.00 0.00 0.00 0.00 0.00 0.00 200
Ethephon 0.00 0.00 0.00 0.00 0.00 0.00 200
mepiquat chloride 0.00 0.00 0.00 0.00 0.00 0.00 200
Mepiquat
pentaborate 0.00 0.00 0.00 0.00 0.00 0.00 200
monocarbamide 0.00 0.00 0.00 0.00 0.00 0.00 200
Paraquat 2.42 2.13 1.53 1.69 83.66 70.53 200
thidiazuron 0.00 0.00 0.00 0.00 0.00 0.00 200
Tribufos 0.56 1.03 0.37 0.80 29.62 57.56 200
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Table C8a. Maximum & mean exposurethat occurred over the winter to each
fungicide divided by each fungicide sLOEL, aswell asduration of exposure >

LOEL in the cotton/sorghum/cabbage crop scenario.
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Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Fungicide Type Mean Deviation Mean Deviation Mean Deviation N

azoxystrobin 0.00 0.00 0.00 0.00 0.00 0.00 200

benzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 200

chlorothalonil 1.30 1.22 0.08 0.10 7.60 9.38 200

copper hydroxide 0.00 0.00 0.00 0.00 0.00 0.00 200

iprodione 0.00 0.00 0.00 0.00 0.00 0.00 200

mancozeb 0.00 0.00 0.00 0.00 0.00 0.00 200

maneb 2.55 3.90 0.58 0.96 21.30 34.13 200

metalaxyl 0.00 0.00 0.00 0.00 0.00 0.00 200
Table C8b - Maximum & mean exposure that occurred over the winter to each
fungicide divided by each fungicide sLOEL, aswell asduration of exposure >
LOEL in the cotton/sorghum/onions crop scenario.

Max. Exposure/ Mean Exposure/ Duration
LOEL LOEL (Exposure > LOEL)
Std. Std. Std.

Fungicide Type Mean Deviation Mean Deviation Mean Deviation N

azoxystrobin 0.00 0.00 0.00 0.00 0.00 0.00 200

benzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 200

chlorothalonil 0.76 1.28 0.05 0.10 4.51 8.77 200

copper hydroxide 33.51 15.53 22.84 10.73 149.07 2.18 200

iprodione 0.00 0.00 0.00 0.00 0.00 0.00 200

mancozeb 0.03 0.19 0.00 0.00 0.07 0.60 200

maneb 4.67 8.82 0.98 1.98 12.76 24.76 200

metalaxyl 0.00 0.00 0.00 0.00 0.00 0.00 200




202

TableC9a. Maximum & mean exposurethat occurred over the winter to each
fungicide divided by each fungicide sHD5, aswell as duration of exposure > HD5
in the cotton/sorghum/cabbage crop scenario, with normal concentrationsin
culvert soil and concentrationsincreased to 10 times the amount in the crop soil
combined because there was no difference between ratios.

Max. Exposure/ Mean Exposure/  Duration (Exposure

Std. Std. Std.

Fungicide Type Mean Deviation Mean Deviation Mean Deviation N

azoxystrobin 0.00 0.00 0.00 0.00 0.00 0.00 400
benzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 400
chlorothalonil 0.00 0.00 0.00 0.00 0.00 0.00 400
copper hydroxide 0.00 0.00 0.00 0.00 0.00 0.00 400
iprodione 0.00 0.00 0.00 0.00 0.00 0.00 400
mancozeb 0.00 0.00 0.00 0.00 0.00 0.00 400
maneb 0.00 0.00 0.00 0.00 0.00 0.00 400
metalaxyl 0.00 0.00 0.00 0.00 0.00 0.00 400

TableC9b. Maximum & mean exposurethat occurred over the winter to each
fungicide divided by each fungicide sHD5, aswell as duration of exposure > HD5
in the cotton/sorghum/onions crop scenario, with normal concentrationsin culvert
soil and concentrationsincreased to 10 timesthe amount in the crop soil combined
because there was no difference between ratios.

Max. Exposure/ Mean Exposure/  Duration (Exposure

Std. Std. Std.

Fungicide Type Mean Deviation Mean Deviation Mean Deviation N

azoxystrobin 0.00 0.00 0.00 0.00 0.00 0.00 400
benzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 400
chlorothalonil 0.00 0.00 0.00 0.00 0.00 0.00 400
copper hydroxide 42.73 21.26 29.16 14.65 148.25 10.88 400
iprodione 0.00 0.00 0.00 0.00 0.00 0.00 400
mancozeb 0.00 0.00 0.00 0.00 0.00 0.00 400
maneb 0.00 0.00 0.00 0.00 0.00 0.00 400

metalaxyl 0.00 0.00 0.00 0.00 0.00 0.00 400




203

VITA
Name: Catherine Allegra Engelman
Address: Dept. of Wildlife and Fisheries
210 Nagle Hall
2258 TAMU

Texas A&M University
College Station, TX 77843-2258

Email Address: chamcat@yahoo.com, chamcat@tamu.edu

Education: B.A./B.S., Emphasis in Fine Arts & Environmental Science, The
Evergreen State College, 2000

M.S., Wildlife and Fisheries Sciences, Texas A & M University,
2008



