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ABSTRACT 

 

Ecotoxicological Simulation Modeling:  Effects of Agricultural Chemical Exposure on 

Wintering Burrowing Owls. (May 2008) 

Catherine Allegra Engelman, B.A./B.S., The Evergreen State College 

Co-Chairs of Advisory Committee:  Dr. Miguel A. Mora 
      Dr William E. Grant 

 

The western burrowing owl, Athene cunicularia hypugaea, is a Federal Species 

of Concern, whose numbers and range have been drastically reduced from historic levels 

in Texas. Burrowing owls roost and forage in agricultural areas, and it has been 

hypothesized that exposure to insecticides may be a factor in the decline of their 

population. Burrowing owls wintering in southern Texas use agricultural culverts in 

cotton fields as roost sites, which may increase their risk of exposure to agricultural 

chemicals, either through ingestion of contaminated prey or through dermal exposure to 

agricultural runoff.  

Simulation modeling was used to characterize the risks to individual burrowing 

owls wintering in agricultural landscapes in southern Texas due to effects of exposure to 

insecticides or other agricultural chemicals. The simulation model was created using 

Stella® VII software (High Performance Systems, Inc., New Hampshire, USA). The 

model is broken into four submodels simulating (1) foraging behavior of burrowing 
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owls, (2) chemical applications to crops, (3) chemical transfer and fate in the crop soil 

and prey items, and (4) chemical exposure in the burrowing owl. 

This model was used to evaluate (1) which components of the model most affect 

the endpoints, (2) the relationship between increased concentrations of agricultural 

chemicals in culverts and subsequent lethal and sublethal effects from dermal exposure 

to agricultural runoff, and (3) which agricultural chemicals have the greatest potential to 

cause adverse effects in burrowing owls.  Model results suggested (1) the half-lives of 

agricultural chemicals in birds caused the most variation in the results, and data gaps 

exist for several important model components (2), exposure to increased concentrations 

of agricultural chemicals in culverts is unlikely to result in lethal effects, but is likely to 

lead to sublethal effects in burrowing owls, and (3) the chemicals with the greatest 

potential to negatively affect burrowing owls wintering in southern Texas are the OP 

insecticides chlorpyrifos, dicrotophos, and disulfoton, the oxadiazine insecticide 

indoxacarb, the herbicide trifluralin, and the defoliants tribufos and paraquat. The results 

of this model demonstrate the usefulness of simulation modeling to guide future research 

related to the conservation of burrowing owls.  

 

 

 

 



 v 

ACKNOWLEDGEMENTS 

 

I would like to acknowledge the members of my graduate committee, Dr. Miguel 

Mora, Dr. William Grant, Dr. Marc Woodin, and Dr. Rusty Feagin, whose collaborative 

knowledge has guided the development of this research. I am grateful to the members of 

my lab, Dr. Deborah Cowman, Megan Sitzler, and Michael Parks’ for their inspiration 

and engaging dialogue. I appreciate the camaraderie and encouragement of the graduate 

students, faculty, and staff of the Department of Wildlife and Fisheries that I experienced 

during my time in College Station.  I would like to acknowledge the USGS and Texas 

A&M Department of Wildlife and Fisheries for the provision of an assistantship which 

made this research feasible. I am thankful to the USGS Texas Gulf Coast Field Research 

Station for sharing their research and my first introduction to south Texas burrowing 

owls. Finally, I am deeply obligated to the members of my family, Clay Small, Gail 

Price, and Don, Patrick, Ashley, and Alison Engelman, for their continual love and 

support. 

 

 

 

 

 



 vi 

NOMENCLATURE 

 

ACA  Alberta Conservation Association 

AChE  Acetylcholinesterase 

APHIS  USDA Animal and Plant Health Inspection Service 

CB  Carbamate Insecticide 

ChE  Cholinesterase 

DTI  Dermal to Oral Toxicity Index 

FOOTPRINT Footprint Pesticides Database- University of Hertfordshire 

FS-1  Cotton/Sorghum crop scenario 

FS-2  Cotton/Sorghum/Cabbage crop scenario 

FS-3  Cotton/Sorghum/Onions crop scenario 

HD5  Hazardous Dose resulting in mortality of 5% of the population 

LD50  Lethal Dose resulting in mortality of 50% of the population 

LEL  Lowest Effects Level 



 vii  

LOEL  Lowest Observed Effects Level 

NASS  USDA National Agricultural Statistics Service 

NCFAP National Center for Food and Agricultural Policy 

NOEC  No Observed Effects Concentration 

NOEL  No Observed Effects Level 

NRA National Registration Authority for Agricultural and Veterinary 

Chemicals 

OC  Organochlorine Insecticide 

OP  Organophosphate Insecticide 

PAN  Pesticide Action Network database 

PIF  Partners in Flight 

PIP  Pesticide Information Profiles database 

SANCO European Commission. Health & Consumer Protection Directorate-

General 

SRD  Alberta Sustainable Resource Development 

TPWD  Texas Parks and Wildlife Department 



 viii  

USDA  U.S. Department of Agriculture 

U.S. EPA U.S. Environmental Protection Agency 

USFWS U.S. Fish and Wildlife Service 

 

 

 

 

 

 

 

 

 

 

 



 ix 

TABLE OF CONTENTS 

Page 
 

ABSTRACT................................................................................................................  iii 
 
ACKNOWLEDGEMENTS.........................................................................................  v 
 
NOMENCLATURE....................................................................................................  vi 
 
TABLE OF CONTENTS ............................................................................................  ix 
 
LIST OF FIGURES.....................................................................................................  xi 
 
LIST OF TABLES ......................................................................................................  xiii 
 
CHAPTER 
 

I INTRODUCTION................................................................................  1  
 

II  SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL  
EXPOSURE ON BURROWING OWLS WINTERING IN SOUTH 
TEXAS COTTON FIELDS..................................................................  8 

 
1. Introduction ..........................................................................  8 
2. Study Area............................................................................  11 
3. Conceptual Model.................................................................  14 
4. Quantitative Model Description ............................................  17 
5. Sensitivity Analyses..............................................................  24 
6. Model Application ...............................................................  33 
7. Discussion ............................................................................  41 
 

III  BURROWING OWLS AND CULVERTS IN COTTON FIELDS:  AN 
ECOLOGICAL TRAP?........................................................................  43 

  
1. Introduction ..........................................................................  43 
2. Study Area............................................................................  49 
3. Model Overview ...................................................................  49 
4. Methods................................................................................  50 
5. Results ..................................................................................  52 
6. Summary/Discussion ............................................................  67 

 
 



 x 

CHAPTER                                                                                                                    Page 
 

IV  SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL 
EXPOSURE ON BURROWING OWLS WINTERING IN SOUTH 
TEXAS COTTON: A LOOK AT INDIVIDUAL CHEMICALS ..........  74 

 
1. Introduction ..........................................................................  74 
2. Study Area............................................................................  76 
3. Model Overview ...................................................................  76 
4. Methods................................................................................  78 
5. Results ..................................................................................  79 
6. Discussion ............................................................................  94 

 
V CONCLUSIONS..................................................................................104 

 
REFERENCES............................................................................................................107 
 
APPENDIX A.............................................................................................................125 
 
APPENDIX B .............................................................................................................140 
 
APPENDIX C .............................................................................................................181 
 
VITA...........................................................................................................................203 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 xi 

LIST OF FIGURES 

FIGURE                                                                                                                        Page 

1 Example using ChE inhibition to illustrate lethal and sublethal effects 
through direct and indirect pathways ..........................................................  5 

 
2 Study areas showing locations of roost sites and examples of agricultural 

fields used as roost sites .............................................................................  12 
 
3 Conceptual model ......................................................................................  16 
 
4a Differences in maximum and mean ChE inhibition between crop  
 scenarios ....................................................................................................  35 
 
4b Differences in duration of ChE inhibition > 20% or > 50% between crop 

scenarios ...................................................................................................  35 
 
5a The maximum number of agricultural chemicals to which the owl is   

exposed to an amount > the LOEL over the winter by crop scenario ..........  38 
 
5b The duration of exposure to agricultural chemicals > the LOEL over the 

winter by crop scenario .............................................................................  38 
 
6a The maximum number of agricultural chemicals to which the owl is   

exposed to an amount > the HD5 over the winter by crop scenario ............  39 
 
6b The duration of exposure to agricultural chemicals > the HD5 over the 
 winter by crop scenario .............................................................................  39 
 
7 Increase in the maximum % ChE inhibition occurring during the winter     

due to increased insecticide concentrations in culverts by crop scenario .....  55 
 
8 Increase in the mean % ChE inhibition occurring during the winter due to 

increased insecticide concentrations in culverts by crop scenario................  57 
 
9 Increase in the maximum number of insecticides the owl is exposed to >  

their HD5 during the winter due to increased insecticide concentrations        
in culverts by crop scenario ........................................................................  59 

 
10 Increase in the mean number of insecticides the owl is exposed to >  their 

HD5 during the winter due to increased insecticide concentrations in   
culverts by crop scenario ............................................................................  60 



 xii  

 

FIGURE                                                                                                                        Page 

11 Increase in the maximum number of herbicides the owl is exposed to >    
their HD5 during the winter due to increased herbicide concentrations          
in culverts by crop scenario ........................................................................  62 

 
12 Increase in the mean number of herbicides the owl is exposed to > their   

HD5 during the winter due to increased herbicide concentrations in     
culverts by crop scenario ............................................................................  63 

 
13 Increase in the maximum number of growth regulators and defoliants the  

owl is exposed to > their HD5 during the winter due to increased growth 
regulators and defoliant concentrations in culverts by crop scenario ...........  65 

 
14 Increase in the mean number of growth regulators and defoliants the owl      

is exposed to > their HD5 during the winter due to increased growth 
regulators and defoliant concentrations in culverts by crop scenario ...........  66 

 
15 Maximum amount of ChE inhibition caused by each insecticide type.........  81 
 
16 Mean amount of ChE inhibition caused by each insecticide type ...............  81 
 
17 Duration of ChE inhibition > 20% caused by each insecticide type ............  82 
 
18 Duration of ChE inhibition caused by each insecticide type .......................  82 
 
19 Ratio of average maximum exposure to LOEL by chemical type ...............  85 
 
20 Ratio of average mean exposure to LOEL by chemical type ......................  86 
 
21 Duration of exposure > LOEL by chemical type.........................................  87 
 
22 Ratio of average maximum exposure to HD5 by chemical type ..................  88  
 
23 Ratio of average mean exposure to HD5 by chemical type ........................  89 
 
24 Duration of exposure > HD5 by chemical type ..........................................  90 
 

 



 xiii  

LIST OF TABLES 

TABLE                                                                                                                          Page 

1a Number and range of OP and CB pesticide residues detected from   
burrowing owl prey and pellets in south Texas ...........................................  21 

 
1b Determination of the estimated increase in soil half-lives during the      

second phase and the start of the second phase ...........................................  21  
 

2 Parameter changes resulting in a significant change (p < 0.05) from the 
baseline predicted values for each endpoint in each chemical class.............  28 

 
3 Increases in maximum % ChE inhibition occuring over the winter due to 

increased insecticide concentrations in culvert soil .....................................  54  
 
4 Increases in mean % ChE inhibition occuring over the winter due to 

increased insecticide concentrations in culvert soil ....................................  56 
 
 
 
 

 

 

 

 



 

____________ 
This thesis follows the style of Ecological Modelling. 
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CHAPTER I 

INTRODUCTION 

The western burrowing owl, Athene cunicularia hypugaea, was listed as a 

Federal Species of Conservation Concern in 2002 due to declining populations (USFWS, 

2002). While the primary reason cited for this decline is habitat loss, insecticide use has 

been strongly implicated as another possible cause of declines in burrowing owl 

populations (Klute et al., 2003). Due to awareness of environmental persistence, high 

toxicity to non-target organisms, and bio-magnification, the use of most organochlorine 

(OC) insecticides, such as DDT, were discontinued in the United States during the 

1970s, and insecticide use has shifted to organophosphate (OP) and carbamate (CB) 

insecticides (Mineau, 1991). However, even though OP and CB insecticides are less 

persistent in the environment than OC insecticides, they are still dangerous to non-target 

organisms and have been responsible for numerous cases of mortality in owls and other 

raptors (Blus, 1996; Sheffield, 1997; Mineau et al., 1999).  Despite the shift in 

insecticide use, studies of the effects of contaminants on burrowing owls in the United 

States remain focused on OC insecticides and their residues, and there are few published 

studies on how current insect control practices affect burrowing owl populations (Klute 

et al., 2003). In addition to insecticides, other agricultural chemicals such as herbicides 

have the potential to negatively impact bird populations (Newton, 2004). However, the 

impacts of agricultural chemicals other than insecticides have not been examined in 

terms of potential impacts on burrowing owl populations.
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Both the Gulf Coast and Rio Grande Valley areas of South Texas have a history 

of avian mortality events and contamination due to insecticide use. A study of aquatic 

bird eggs along the Texas Gulf Coast conducted in 1970, showed significant decreases in 

eggshell thickness. In this study, the OC insecticide DDT or its metabolites were 

detected in all eggs analyzed, and along with the OC insecticide dieldrin, was found at 

higher concentrations near agricultural areas (King et al., 1978). In addition, OC 

insecticide use led to annual avian mortality events in the 1970’s along the Gulf Coast 

(Flickinger and King, 1972; Flickinger, 1979).  More recent investigations have 

indicated OC insecticides, particularly DDT and its metabolites and toxaphene, continue 

to persist in at elevated concentrations in the Rio Grande Valley, in some cases at levels 

associated with reproductive impairment in birds (Wainwright et al., 2001, Clark et al., 

1995, White et al., 1983). In addition arsenic, and possibly mercury, was found at 

elevated levels in willets feeding in agricultural drainages in the lower Rio Grande 

Valley (Custer and Mitchell, 1991). In the 1970s-1980s several large mortality events 

attributed to OP or CB insecticide use were documented in South Texas (White et al., 

1979; Flickinger et al., 1980; Flickinger et al., 1984; Flickinger et al., 1986) OP and CB 

insecticide use on irrigated cotton fields has been implicated in the decline of white-

winged doves in the Rio Grande Valley (Tacha et al., 1994; Burkepile et al., 2002).   In 

addition, Custer and Mitchell (1987) documented significant decreases in brain AChE 

activity in great-tailed grackles and mourning doves, two species which were regularly 

found in cotton or sugarcane fields, after treatment with OP insecticides in the Rio 

Grande Valley. A recent analysis of pesticide runoff from agricultural watersheds along 
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the Texas Gulf Coast detected the CB insecticides carbofuran and aldicarb in < 3%, and 

<1% of samples, and detected the triazine herbicide atrazine in 95.6 % of the samples 

(Pennington et al., 2001).  

Cotton and sorghum are the primary crops grown in the lower Rio Grande Valley 

and the lower Texas Gulf Coast (NASS, 2007).Cotton is well known for intensive 

historical and current agricultural chemical use. An analysis of cotton soils in Georgia 

and South Carolina found that the OC insecticides DDT and toxaphene, as well as the 

dinitroaniline herbicide trifluralin were the most common organic contaminants 

detected. Several soil samples from these cotton fields exhibited estrogenic and 

androgenic or glucocorticoid activity (Kannan et al, 2003). In addition, the historic use 

of arsenic based herbicides or defoliants in cotton fields in the southern United States 

has led to increased concentrations of organoarsenicals in soil, surface water and 

groundwater in cotton producing areas (Bednar et al., 2002). An analysis of recent 

insecticide use identified cotton as one of two crops responsible for the most potential 

bird mortality in the United States (Mineau and Whiteside, 2006). In 2005 a reported 

8,677,000 lbs of herbicides, 3,075,000 lbs of growth regulators and defoliants, and 

5,946,000 lbs of insecticides were applied to cotton crops in Texas (NASS, 2006).  

In South Texas wintering burrowing owls use agricultural culverts in cotton 

fields as roost sites (Woodin et al., 2006).  The use of agricultural culverts as roost sites 

by burrowing owls may increase their risk of exposure to insecticides and other 

agricultural chemicals, either through ingestion of contaminated prey, or through dermal 

exposure to agricultural runoff (Texas Gulf Coast Field Research Station, 2003; Woodin, 
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pers. comm., 2004). The occurrence of chronic insecticide exposure was confirmed by 

an analysis of burrowing owl pellets in south Texas that detected low levels of OP and 

CB insecticides (Woodin et al., 2006). 

The ability of researchers to study populations of burrowing owls wintering in 

southern Texas is limited by the difficulty in accessing the large amount of potential 

habitat occurring on private land, particularly on large ranches. In addition, the majority 

of burrowing owl research has focused on breeding biology, resulting in very few 

published studies on the winter ecology of burrowing owls (Woodin, pers. comm. 2004; 

Holroyd et al., 2001; Wellicome and Holroyd, 2001). Due to the size of the study area, 

the proportion of the potential habitat occurring on private land, and the complexity 

involved in assessing the impacts of insecticide use on populations of burrowing owls, 

simulation modeling is an ideal means to evaluate the effects that current insecticide use 

practices may have on burrowing owl populations in south Texas.  

  Kendall (1994) defines wildlife toxicology as “the study of the effects of 

environmental contaminants on the reproduction, health, and well-being of wildlife.”  

Kendall (1994) elaborates on the definition by stating that “A state of well-being 

implies, for instance, that there is no significant increase in the probability of being 

preyed upon nor in aberrations in migratory behavior. A state of good general health 

means that the organism can maintain homeostasis and, therefore, survive in a variety of 

environmental situations.” Lacher (1994) discussed how the effects of agricultural 

chemicals on a wildlife population are either lethal or sublethal, and that both lethal and 

sublethal effects can occur through direct or indirect pathways. An example of this is OP 
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and CB insecticides. Sublethal doses of OP and CB insecticides can affect avian 

mortality or population parameters by affecting their behavior and normal physiological 

functions, including alterations in thermoregulation, food consumption, and reproductive 

behavior including migration (Grue et al., 1997). In addition, insecticide application can 

reduce the prey base, and decrease the amount of food available for consumption (Hill, 

2003).  Both behavioral effects and reduction in prey base may indirectly result in 

mortality. Behavioral effects represent sublethal effects resulting from a direct exposure 
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pathway, while the reduction in prey base represents sublethal effects resulting from an 

indirect pathway (Figure 1).  Because most insecticides currently in use have low acute 

Figure 1. Examples of lethal and sublethal effects through direct and indirect pathways. 
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toxicity, the long term disturbance to a population caused by sublethal exposures may be 

greater than the disturbance caused by direct lethal effects (Lacher, 1994). Simulation 

modeling was used to determine the risk that occurs from current insecticide use 

practices through direct and indirect pathways to the “health and well-being” of 

burrowing owls wintering in south Texas. This risk was quantified by examining 

exposure variations in different roosting and foraging scenarios, in order to predict the 

insecticide use scenarios under which burrowing owl populations may be facing the 

greatest risk. The results can be used to guide future field studies, management 

decisions, and conservation efforts.  

Six different objectives were addressed by this simulation model.  

1) Simulate direct pathways leading to lethal & sublethal effects of chronic 

insecticide exposure on individual birds through the integration of dermal and 

oral exposure pathways.  

2) Simulate direct pathways leading to lethal or sublethal effects of chronic 

exposure to agricultural chemicals including herbicides, defoliants, growth 

regulators, and fungicides. 

3) Quantify uncertainty in the model in order to prioritize parameters for future 

research. 

4) Evaluate the changes in the behavior of the model between chronic and acute 

exposure scenarios. 
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5) Examine the potential relationship between increased concentrations of 

agricultural chemicals in culverts and subsequent risks from dermal exposure 

to agricultural runoff, within the constraints of the model. 

6) Evaluate the relative potential adverse effects of different agricultural 

chemicals on burrowing owls wintering in cotton fields in south Texas. 

Objectives 1, 2, & 3 are addressed in Chapter II, where the model is described, applied, 

and a sensitivity analyses is conducted. Objective 4 is addressed in Chapter II, III, and 

IV. Objective 5 is addressed in Chapter III, where the model is used to investigate the 

possibility of culverts in cotton fields acting as ecological traps, and Objective 6 is 

addressed in Chapter IV where the model is used to compare different agricultural 

chemicals using all three endpoints. 
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CHAPTER II 

SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL 

EXPOSURE ON BURROWING OWLS WINTERING IN SOUTH 

TEXAS COTTON FIELDS 

1. Introduction 

In 1998, The US Environmental Protection Agency (U.S. EPA) set specific 

guidelines for use in ecological risk assessments, which were elaborated on for use in 

risk assessments of endangered species. These guidelines suggest that risk assessment 

occurs in three sequential stages; 1) problem formulation, in which the chemical 

stressors, related endpoints, and possible effects are identified, 2) analysis, in which 

chemical fate and transport, exposure to organisms, and effects of exposures are 

modeled, and 3) risk characterization, in which exposures and effects are integrated to 

derive risk quotients, and are sometimes supported with laboratory or field studies. Risk 

assessments often follow a tiered approach in which the lowest level, or tier 1, evaluates 

exposure to the maximum possible residues in order to determine potential effects, and if 

further, more site-specific assessment is required (Jones et al., 2004). There are several 

examples of tier 1 risk assessments used to evaluate risk to multiple species from 

multiple contaminants in agricultural ecosystems. In the first example, “EcoRR” uses 

site-specific information, separates each chemical into several different compartments, 

then uses the accumulation in species in each compartment to assess toxicity, and finally 

develops risk scores which can be used to compare different agricultural chemicals 

(Sanchez-Bayo et al., 2002). In another example, toxicity, exposures, and subsequent 
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chronic avian and mammalian dietary risks were used to develop risk quotients which 

could then be used in a quantitative comparison of risk between different herbicides used 

on spring wheat (Peterson and Hulting, 2004).  Mineau (2002) and Mineau and 

Whiteside, (2006) used a different method of risk assessment modeling to assess lethal 

effects of insecticide use based on their relative toxicity and application rates to 

determine which insecticides or crops cause the greatest increase in probability of bird 

mortality. 

Simulation models have been used to evaluate ecological risks to birds, but have 

generally focused on user-specified chemical applications, rather than the comparison of 

relative risk between a suite of contaminants that is typically seen in Tier 1 risk 

assessments. These models use the effects on an individual bird to evaluate pesticide 

impacts, and are typically very complex models that include food web dynamics or 

hydrological modeling to predict lethal effects of acute oral exposure to insecticides 

(Corson et al., 1998; Pisani, 2006; Fite et al., 2004). Despite the complexity in these 

models, they do not always accurately predict the risks to birds from insecticide 

applications (Vyas et al., 2006). All of these risk assessment models only evaluate the 

effects of insecticides, despite the wide use of other agricultural chemicals such as 

herbicides (NASS, 2006). Corson et al. (1998), and Pisani (2006) used predictions of 

ChE inhibition greater than 20% as an indicator of sublethal exposure to OP or CB 

insecticides, while Fite et al. (2004) used risk quotients based on HD5s to evaluate lethal 

effects of insecticide exposure.  
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These simulation models focus on effects due to acute exposure, and have not 

examined low level chronic pesticide stress on bird populations (Corson et al., 1998; 

Pisani, 2006; Fite et al., 2004). Recently methods that can be used in the assessment of 

long-term effects of agricultural chemicals on birds have been developed (Hart and 

Thompson, 2005; Crocker, 2005; Shore et al., 2005; Mineau, 2005; Jones et al., 2004). 

These methods outline the development of a deterministic long-term toxicity/exposure 

ratio (TERlt). The TER can be adjusted for species sensitivity based on avian 

reproductive NOELs or NOECs (No Observed Effects Levels or Concentrations). The 

TER is calculated for different phases of reproduction, which can then be incorporated 

into a population level model (Shore et al., 2005, Bennett et al., 2005). A probabilistic 

model was developed using TERs to evaluate long-term population level effects due to 

insecticide exposure (Roelofs et al., 2005). Topping et al. (2005) used spatial and non-

spatial models in the risk assessment of long-term insecticide exposure on skylark 

populations. While these long-term risk assessment procedures are extremely relevant to 

avian species during their breeding season, they exclude the assessment of chronic, long-

term exposure to birds during the non-breeding period of their life cycle. 

Of these simulation models only the U.S. EPA terrestrial risk assessment model 

includes exposure routes other than the oral exposure route (Corson et al., 1998; Pisani, 

2006; Fite et al., 2004). Similarly field and laboratory studies of insecticide impact on 

avian species have focused on ingestion as the primary route of exposure, and exposure 

occurring through inhalation, or dermal absorption, has not been adequately studied 

(Hill, 2003). However, Driver et al. (1991) found that up to 1 hr post-spraying inhalation 
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was the primary route of exposure, and that from 8-48 hours post-spraying dermal 

exposure greatly exceeded exposure occurring through inhalation and ingestion. In 

addition they determined that ingestion exposure only accounted for 10-20% of the total 

ChE inhibition (Driver et al., 1991). Mineau (2002) also determined that insecticides 

with a higher dermal toxicity index increased the chance of mortality, and concluded that 

dermal exposure and possibly inhalation exposure need to be included in pesticide avian 

risk assessments. It is imperative that predictions of the insecticide effects on wildlife 

populations take into account the total accumulation of ChE inhibition occurring through 

all possible routes of exposure (Hill, 2003).    

The objective of this study was to create a simplified simulation model that 

integrates dermal and oral exposure to evaluate the lethal and sublethal effects in birds of 

chronic low-level exposure to a wide range of chemical types. This model can then be 

used to evaluate which crops or chemicals are most likely to increase risk of lethal or 

sublethal effects in birds. Burrowing owls wintering in culverts in cotton fields in south 

Texas, which are chronically exposed to low levels of agricultural chemicals, either 

through ingestion of contaminated prey, or through dermal exposure to agricultural 

runoff, were chosen to exemplify the use of this model.  

2. Study Area 

Burrowing owls have resident and migratory populations in the northern part of 

Texas, and have a migratory population that winters in the southern part of the state. The 

study area is comprised of south Texas cotton and sorghum fields, where a population of 

burrowing owls is known to use agricultural culverts as winter roost sites. Data were 
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used from documented burrowing owl roost sites in south Texas in two areas, 1) the Gulf 

Coast area including Kleberg, Nueces, San Patricio, Refugio, and Jim Wells counties, 

and 2) the Rio Grande Valley including Cameron and Hidalgo counties (Figure 2). 

 

Examples of 
Agricultural Fields
In Study Areas

Examples of 
Agricultural Fields
In Study Areas

 

 

 

In both study areas the crops are typically rotated annually so that if cotton crop 

is grown one year, the next year sorghum is grown. Burrowing owls in the Gulf Coast 

study area were studied intensively from 2000 -2005 by the USGS- Texas Gulf Coast 

Field Research Station (Woodin et al., 2006). In the Gulf Coast study area 87% of 46 

Figure 2. Study areas showing locations of roost sites and examples of 
agricultural fields used as roost sites. 
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roost sites were located in agricultural areas (Williford et al., 2007).  Of these an 

estimated 67.4% of burrowing owl roosts were typically located in fields that were used 

for cotton, sorghum, or corn during the previous summer (Woodin et al., 2006). Of the 

roost sites used by burrowing owls in the Gulf Coast area, 80% were along roads. Most 

(74%) roost sites utilized were steel, cast-iron, or concrete culverts that lie under caliche 

roads. The predominant ground cover around roost sites was bare ground (Williford et 

al., 2007; Woodin et al., 2006; Woodin, pers. comm., 2004).   

A second study area was chosen in the Rio Grande Valley and a short-term 

survey was conducted during the winter of 2006.  This survey located 46 culverts used 

as roost sites by burrowing owls. Eighteen of these were defined by the presence of a 

burrowing owl, and the rest were defined by the presence of burrowing owl pellets, or in 

one instance by cached prey. Burrowing owl detections were clustered in agricultural 

fields in the Rio Grande floodplain north of Santa Ana National Wildlife Refuge. These 

culverts were most likely used as roost sites by at least 25 separate burrowing owls. 

Sixty-four percent of the burrowing owl roost sites were located in fields that were used 

for cotton or sorghum the previous summer. We were unable to determine the type of 

crop which was grown the previous summer in 32% of roost sites, but it is most likely 

that the crops were cotton or sorghum. Only one roost site (4%) was located in a field 

used to grow corn the previous summer.  Although the majority of roost sites were 

completely surrounded by bare fields in which cotton or sorghum had been grown the 

previous summer, there were 2 roost sites located in cotton or sorghum fields adjacent to 

a cabbage crop and 4 roost sites located in cotton or sorghum fields adjacent to an onion 
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crop. Both the cabbage and onion crops were being cultivated during the winter.  The 

majority of burrowing owl roost sites in the Rio Grande Valley were cement (n =37) or 

plastic (n = 5) culverts, which were used to drain water off the field into irrigation 

canals. In addition, two owls were located roosting in natural burrows, and two owls 

located roosting in tires, all of which were located close to agricultural culverts. 

 3. Conceptual Model 

The model simulates foraging and roosting behavior of an individual burrowing 

owl in crops that have received treatments with agricultural chemicals, resulting in 

estimates of dermal and oral exposure that can be used to predict risk of lethal or 

sublethal effects. The model consists of four submodels representing (1) behavior of 

burrowing owls, (2) chemical applications to crops, (3) chemical transfer and fate in the 

crop soil and prey items, and (4) chemical exposure in the burrowing owl. 

Details of the cultivation of four different crops; cotton, sorghum, cabbage, and 

onions, are used to simulate three different foraging crop scenarios (FS 1-3). In all three 

scenarios a cotton\sorghum field is designated as a roost site. In this model the  
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burrowing owl forages during the night in the fields surrounding its roost site, and is 

located at the culvert used as its roost site during the day. The primary crop scenario 

(FS-1), has two cotton/sorghum fields as foraging sites adjacent to the roost site. Each 

cotton/sorghum field alternates annually between cotton or sorghum crops grown during 

the summer, and the two foraging fields are offset so that there is always one cotton field 

and one sorghum field. The two additional crop scenarios include either a cabbage field 

(FS-2) or an onion field (FS-3) as a foraging site in addition to the cotton/sorghum 

fields. 

The burrowing owl is only present in the model during the winter period, (Oct 1- 

Mar 1), when the post-harvest cotton/sorghum fields are wide expanses of bare soil, yet 

onions and cabbage are actively cultivated (Appendix A2). The primary crop scenario 

(FS-1) simulates chronic exposure to agricultural chemicals, while FS-2 and FS-3 add 

potential acute exposure scenarios. 

Within these fields pesticides are applied to the crops. Once a pesticide is applied 

it is transferred to the soil, the owl, and its prey. The owl accumulates pesticides through 

dermal and ingestion pathways. ChE inhibition is calculated from the amount of 

insecticide accumulated with a dose-response equation. ChE inhibition, exposure > 

LOEL, and exposure > HD5 are used as endpoints (Figure 3).  
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4. Quantitative Model Description 

 The simulation model was created using Stella® VII software (High Performance 

Systems, Inc., NH), which uses difference equations in a bimodal compartment model 

with a one half day time step (∆t = ½ day). A one half day time step was chosen to 

represent the bimodal foraging behavior of burrowing owls during the winter. An 

overview of the parameters in the Stella model is shown in Appendix A1. 

4.1 Foraging Scenarios 

In FS-1 there is a 40% chance that the owl will forage in its roost site’s field, and 

there is a 30% chance the owl will forage in one of the adjacent cotton/sorghum fields, 

because it was assumed that the owl would forage preferentially near its roost site.  In 

FS-2 and FS-3, it was assumed that the owl would forage preferentially first in the 

cabbage or onion field, second near its roost site, and last in the cotton/sorghum fields 

further from its roost site. In these crop scenarios there is a 50% chance the owl will 

forage in the cabbage or onion field, a 30% chance it will forage in its roost site’s field 

and a 10% chance each it will forage in one of the adjacent cotton/sorghum fields.  

4.2 Chemical Applications 

The growth period of the crops and the number of agricultural chemical 

treatments within a year are designated for each crop (Appendix A3). The growing 

seasons are based on earliest possible planting and latest possible harvest. Treatments 

often consist of multiple applications of the chemical selected, and multiple treatments 

can occur during the growing season. A date is randomly selected within the treatment 

date period when the treatment will be applied. For example, cotton receives 1.82 
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treatments, and the first treatment always occurs at a randomly selected date during the 

first treatment period, and there is an 82% chance that a second treatment will occur at a 

randomly selected date during the second treatment period. The number of treatments 

were calculated from NASS (2004) or NASS (2006) in this manner (total percent area 

applied of all pesticides within each chemical class)/(percent area each pesticide type 

was applied to). This assumes that the pesticides were applied at least once. 

Agricultural chemicals are randomly selected to be used as treatments based on 

frequency distributions of crop specific use in Texas. The number of applications within 

each treatment and the application rate are designated for each chemical (Appendix A4).  

4.3 Pesticide in Roost and Foraging Sites 

In the cotton/sorghum fields used by the burrowing owl for foraging or roosting a 

crop is planted in the spring and grows until it is harvested. Agricultural treatments occur 

during the crop’s growth. However by the time the owl is present, the soil in the field is 

bare with no vegetation. The worst case scenario in this situation is that all of the 

chemicals applied to the crop were either washed off of the vegetation into the soil 

during rain or irrigation events, or were incorporated into the soil along with the plants at 

harvest. In order to model this worst case scenario, at application each chemicals’ 

residues are present in the soil and decay at the rate listed for that compound. 

CSt+1 = CSt  + At − (CSt * (1/2)^(1/ds))     (1) 

CSt represents the chemical residue concentrations in the soil (µg/cm2) present at time t, 

At represents the concentration of chemical (g/cm2) applied at time t, and ds represents 

the half-life of the chemical in the soil (Appendix A5).  
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Chemical residues are transferred to insect and mammal prey items during 

application, and accumulate during each time step based on the amount present in the 

soil. Values estimating residues in prey items from Forsyth and Wescott (1994), Martin 

et al. (1996), Cobb et al.  (2000), and Block et al. (1999) were used to derive equations 

to model the transfer of chemical residues to prey items. In these studies, residues on 

invertebrate prey items ranged from 1.57 to 7.44 times the application rate (g/cm2).  A 

value of 2.5 times the application rate (g/cm2), which was the average value estimated 

from Forsyth and Wescott (1994), was chosen to represent the amount transferred to 

invertebrate prey at application. A value of the residue concentration in soil, (ug/cm2), 

divided by 100 was used to estimate accumulation during each time step. An average of 

0.21 times the application rate (g/cm2) was extrapolated from Block et al. (1999) to 

represent the amount of residue transferred to mammalian prey at application. A value of 

the residue concentration in soil, (ug/cm2), divided by 100 was used to estimate 

accumulation during each time step. 

CIt+1 = CIt  + (At*2.5) + (CSt/100) − (CIt * (1/2)^(1/di))   (2) 

CMt+1 = CMt  + (At*0.21) + (CSt/100) − (CMt * (1/2)^(1/dm))  (3) 

CIt and CMt represent the chemical residue concentrations (µg/g) present at time t in 

invertebrates and mammals, respectively; and di and dm represent the half-lives of the 

chemical in invertebrates and mammals respectively (Appendix A6). The half-lives of 

the chemicals are estimated based on half-lives in soil for insects, and based on half-lives 

in vertebrates for mammals. Invertebrate half-lives were estimated as 1/10 the soil half-

life, unless the vertebrate half-life was greater, in which case the vertebrate half-life 
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value was used.  Vertebrate half-lives were estimated from values on mammalian half-

lives obtained from Pesticide Information Profiles (PIP, accessed 2007). In order to 

estimate half-lives for chemicals that had no information available, vertebrate half-lives 

and soil half-lives were fitted to a regression line (y = 1.624x0.5865 )which allowed 

estimates of vertebrate half-lives to be made based on soil half-lives. 

 Organophosphate insecticides are known to persist in the soil much longer than 

would be expected based on their half-lives (Ragnarsdottir, 2000). In order to build up 

an accumulation of low levels of several different insecticides similar to the amounts 

shown in the prey and pellets by Woodin et al. (2006), it was necessary to extend the 

half-lives of insecticides in the soil and in insects once they reached a low concentration. 

Several different scenarios were investigated, and a ten year initialization period, with 

half-lives extended by 100 times their original value when concentrations reached below 

0.1(µg/g) was chosen for use in the model (Table 1a-b). 

if CSt  < 0.1 then CSt+1 = CSt  + At − (CSt * (1/2)^(1/(ds*100)))  (4) 

if CI t  < 0.1 then CIt+1 = CIt  + (At*2.5) + (CSt/100) 

                                       − (CIt * (1/2)^(1/(di*100)))     (5) 

At the burrowing owl’s roost site the increased chemical concentrations in the 

culvert can be increased relative to the chemical concentrations in the crop soil.  

CVt =  CSt*x         (6) 

CV represents the chemical concentration (µg/cm2) present in the culvert soil at time t, 

and x is user specified multiplier. 
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4.4 Exposure in Burrowing Owl 

The burrowing owl is exposed to agricultural chemicals via ingestion and dermal 

pathways. Ingestion exposure occurs when an agricultural chemical enters the bird 

through their prey items, or through soil ingestion.  

IRi, t+1 = ∑i  IRi,t + [((Ci,j,,t*B j) + (CSit*S))/W] − (IRit * (1/2)^(1/dm))  (7) 

IRi represents the concentration (µg/g) of each individual chemical in the owl at 

time t accrued through the ingestion exposure route. Ci,j represents the concentration 

(µg/g) of each individual chemical in each type of prey  at time t. Bj represents the 

biomass (g) of each prey type in the owl’s diet. CSit represents the concentration 

(µg/cm2) of each individual chemical in the soil at time t, S represents the soil ingestion 

rate (g), and W the average burrowing owl weight. The mammalian half-lives (dm) are 

used because avian half-lives were unavailable. 

Dermal exposure can occur when the chemical is absorbed through the owl’s legs 

or feet from contaminants present in the soil. This occurs as the burrowing owl roosts in 

their culvert during the day, and occasionally during the night while foraging.  

DFi, t+1 = ∑i  DRi,t + [(CSit*SAf*G) /W]     (8) 

DFi represents the concentration (µg/g) of each individual chemical in the owl at time t 

to which the owl is exposed to through its legs and feet in a dermal exposure route. DRi, 

represents the combined concentration (µg/g) of each individual chemical in the owl 

through both dermal exposure routes at time t. SAf represents the surface area (cm2) of 

the owl’s legs and feet. G represents the percentage of the time step that the owl’s legs or 

feet were in contact with the soil.  
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Dermal exposure can also occur as a dermal intercept dose if the burrowing owl 

is present during or immediately after agricultural chemical treatment. The dermal 

intercept dose is estimated based on the amount of chemical present in the air lands on 

the dorsal half of the owl’s body surface, and is absorbed through their skin.  

DIi, t+1 = ∑i  DRi,t + [(Ait*SAb) /W]      (9) 

DRi, t+1 = ∑i  [DFi,t + DIi,t − (DRit * (1/2)^(1/dm))]*DOi   (10) 

DIi represents the concentration (µg/g) of each individual chemical in the owl at time t to 

which the owl is exposed to through a dermal intercept dose. SAb represents the dorsal 

surface area (cm2) of the owl. Mammalian half-lives (dm) are used because avian half-

lives were unavailable. DOi represents a dermal to oral toxicity index (DTI) which 

converts a dermal dose to an amount equivalent to an oral dose for each individual 

chemical (Appendix A7). The additive concentrations of the converted dermal and oral 

doses are used to estimate the endpoints. The endpoints are estimated based on the 

amount of chemicals in the owl during each time step. Exposures to OP and CB 

insecticides are fitted to dose-response curves, resulting in ChE inhibition caused by 

each individual insecticide (Appendix A8). ChE inhibition from each individual 

chemical is summed to estimate total cumulative ChE inhibition.  

4.5 Endpoints 

 The three estimated endpoints are ChE inhibition, exposure > LOEL, and 

exposure > HD5. ChE inhibition > 20% indicates an exposure level likely to result in 

sublethal effects, while ChE inhibition > 50% indicates an exposure level likely to result 

in lethal effects (Ludke et al., 1975).  
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Exposure to a chemical > its HD5 indicates an exposure level likely to result in 

lethal effects. HD5 levels were primarily obtained from Mineau et al. (2001). In the 

cases where a chemical’s HD5 was not estimated by Mineau et al. (2001), HD5 values 

were plotted against avian LD50 values resulting in a regression line (y = 0.1662x0.9133) 

that could be used to estimate HD5 values based on the LD50 values. 

The use of reproductive NOECs, (no observed effects concentrations), are 

typically used in risk assessments as an endpoint to evaluate sublethal effects in birds 

(Mineau, 2005). However, the use of a reproductive endpoint is less relevant during the 

winter period than during the breeding season. For this reason exposure to a chemical > 

its LOEL was chosen to indicate an exposure level likely to result in sublethal effects. 

Due to the unavailability of information from studies using birds, values used for the 

LOELs were obtained from studies using mammals. Subsequently these values may be a 

less accurate indicator than the HD5 or ChE inhibition values. The lowest reported value 

of a LOEL or LEL for each chemical was chosen as the representative effect level in the 

model (Appendix A9). For the chemicals where no studies were conducted this endpoint 

was not evaluated.  

5. Sensitivity Analyses 

5.1 Parameterization 

In order to determine which model parameters most affected the results, a series 

of parameters were changed to represent worst case scenario values (Appendix A1). The 

differences in means between crop scenarios for each endpoint were analyzed separately 

using a one-way ANOVA with a Bonferroni post-hoc test in SPSS statistical package 
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(SPSS inc., Chicago, IL). The primary crop scenario (FS-1), was used to evaluate low 

level chronic exposure to agricultural chemicals, while FS-2 and FS-3 were used to 

examine changes in the model’s behavior when used to evaluate acute exposure 

scenarios. 

5.1.1 Soil in Diet 

 Exposure to contaminated soil may be a source of exposure to contaminants. 

Estimated soil ingestion rates in birds range from < 2.0% to 30%, and vary with a 

species foraging habits or intentional soil ingestion for grit (Beyer et al., 1994). However 

to my knowledge there are no documented cases of intentional ingestion of soil in owls, 

and any soil ingested by burrowing owls would occur incidentally while foraging. For 

this reason the soil in the diet was set at the lower end of the spectrum at 3%. For this 

sensitivity analysis the value was increased to 10%. 

5.1.2 Dermal Exposure during Foraging 

 During the winter burrowing owls typically forage during the night and spend the 

day at their roost site (Woodin, pers. comm., 2004).  It was assumed that the owl spent 

the majority of this time flying, and spent one hour on the ground during which time it 

was exposed to chemicals through its legs and feet. In this sensitivity analysis the 

duration of time on the ground while foraging was increased to 9 hours.  

5.1.3 Half Life in Bird 

 Once the owl was exposed to an agricultural chemical either through dermal or 

oral exposure, the chemical was then either excreted or metabolized by the bird which 

was represented by a vertebrate half-life value. These half-life values were primarily 
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estimated or derived from studies on half-life values in mammals. Because the half-lives 

in mammals may differ from half-lives in birds, in this sensitivity analysis the vertebrate 

half-life values were increased by 5 times their original amount. 

5.1.4 Drift 

 Drift decreases the concentration (ug/cm2) in the field due to the pesticide 

landing in a larger area than the crop. In the model drift was set at 0.05%. For this 

sensitivity analysis was decreased to 0%.  

5.1.5 Invertebrate Half-lives 

 In this model invertebrate half lives were primarily estimated as 1/10 the value of 

the soil half-lives. In this sensitivity analysis the half-lives in invertebrates was increased 

to the value of half-lives in soil.  

5.1.6 Transfer and Accumulation of Chemicals in Insects 

Estimated transfer of residues at application to prey items ranged from 1.57 to 

7.44, for invertebrates, and 0.21 for mammals, times the application rate (Forsyth and 

Wescott, 1994; Martin et al., 1996; Cobb et al., 2000; Block et al., 1999); and a value of 

the concentration in soil divided by 100 was used to estimate accumulation during each 

time step for both invertebrates and vertebrates. In this sensitivity analysis both 

invertebrate and vertebrate transfer rates at application were increased to 7.44 times the 

application rate, and the amount of accumulation in each time step was increased to the 

concentration in soil divided by 10. 
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5.1.7 Soil Half-lives 

 Soil half-lives were primarily obtained from PAN (Pesticide Action Network 

database) and PIP (Pesticide Information Profiles database), in most cases the aerobic 

half-live value from PAN was used in the model. However if the PAN and PIP values 

differed widely, an intermediate value was chosen. In this sensitivity analysis, the 

highest possible soil half-life values were used. 

5.1.8 Dermal Toxicity Indexes 

 Dermal toxicity indexes based on avian oral and dermal LD50s were only 

available for a handful of the chemicals evaluated in this model, and the rest were 

estimated by the equation (Fred = LD50 (avian oral)/[10(0.84 + 0.62(logLD50(oral)]) obtained from the 

U.S. EPA’s terrestrial risk assessment model (Fite et al.,2004), creating a high level of 

uncertainty in these values. This sensitivity analysis doubles the DTI values.  

5.1.9 Early Spring Spraying 

 In the model the dates when the first insecticide treatment on cotton or sorghum 

can occur and the dates that the owl is present do not overlap. This sensitivity analysis 

allows an eleven day overlap in these periods.  
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Table 2.  Parameter changes resulting in a significant change (p < 0.05) from the 
baseline predicted values for each endpoint in each chemical class. ( Significant 
changes are designated with an “x”.)  (Sensitivity Analyses:  0- Baseline with no 
changes, 1- Increased soil in diet, 2- Increased dermal exposure during foraging, 3- 
Increased half-life in bird, 4- Decreased loss due to drift, 5- Increased half-life in 
insects, 6- Increased accumulation in prey, 7- Used highest soil half-life values, 8- 
Increased the dermal to oral toxicity indexes, 9- Allowed possible early spring 
spraying prior to owl departure) 
 

1 2 3 4 5 6 7 8 9 TOTAL

39
Maximum X X X 3

Mean X X 2
Duration > 20% X 1
Duration > 50% X 1

Maximum X X X X 4
Duration 0

Maximum X X X X 4
Duration X X X X 4

Maximum X X X X 4
Duration X X X X X 5

Maximum X X 2
Duration X X X 3

Maximum 0
Duration 0

Maximum X X X 3
Duration X X X 3

44
Maximum X 1

Mean X X 2
Duration > 20% X 1
Duration > 50% X 1

Maximum X X X X X X 6
Duration 0

Maximum X X X X X 5
Duration X X X X X X 6

Maximum X X X X X 5
Duration X X X X X 5

Maximum X X X X 4
Duration X X X X X 5

Maximum 0
Duration 0

Maximum X X 2
Duration X 1

47
Maximum X 1

Mean X X X X X 5
Duration > 20% X X X X X 5
Duration > 50% X X X 3

Maximum X X X X X 5
Duration 0

Maximum X X X X X 5
Duration X X X 3

Maximum X X X X 4
Duration X X X X 4

Maximum X X X 3
Duration X X X X X 5

Maximum 0
Duration 0

Maximum X X X 3
Duration X 1

0 14 36 1 24 22 20 12 1

Growth Regulators 
& Defoliants

Cotton/Sorghum Total

Sensitivity Analyses

ChE 

Insecticides

Herbicides

Cotton/Sorghum/C
abbage

LOEL

Sensitivity Analyses Totals

Cotton/Sorghum

ChE 

LOEL

HD5

Growth Regulators 
& Defoliants

Insecticides

Herbicides

HD5

Insecticides

Herbicides

Growth Regulators 
& Defoliants

Cotton/Sorghum/O
nions

ChE 

LOEL

Insecticides

Herbicides

Growth Regulators 
& Defoliants

HD5

Insecticides

Herbicides

Growth Regulators 
& Defoliants

OP/CB Insecticides

OP/CB Insecticides

OP/CB Insecticides

Cotton/Sorghum/Cabbage Total

Cotton/Sorghum/Onions Total

Insecticides

Herbicides

Growth Regulators 
& Defoliants

Crop Scenario Endpoint Chemical Class Data Type
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5.2 Model Sensitivities 

The model proved sensitive to most of the parameters altered, and showed an 

increase in sensitive parameters in the crop scenarios that added potential acute chemical 

exposure (FS-2, FS-3). The foraging related sensitivity analyses (#5 & #6), accounted 

for more significant differences in these scenarios, than in FS-1 (Table 2). This is likely 

due to higher concentrations of chemicals in the foraging areas after insecticide 

treatments while the owl is present. The model was sensitive to the half-lives in 

invertebrates, as well as to the accumulation and transfer rates in prey, especially in the 

crop scenarios that received chemical treatments during the period the owl was present 

(Table 2). This suggests that the pesticide residues in prey items are likely to be most 

important in the period immediately after chemical treatments. Driver et al. (1991) 

showed that oral exposure was most important during the 4-24 hour period shortly after 

spraying and decreased in importance afterward. The studies by Forsyth and Wescott 

(1994), Martin et al. (1996), and Cobb et al. (2000) provides a good baseline to estimate 

residues in invertebrate. More information is needed on the accumulation of insecticide 

residues in small mammals, because the study by Block et al. (1999) was based on a 

granular insecticide, and accumulation and transfer rates may differ substantially in 

liquid formulations.   

The parameter that caused the most significant increases in the endpoint values 

was the half-lives of chemicals in the burrowing owl. Significant increases were seen in 

the majority of the combinations of different crop scenarios and chemical classes (Table 

2). Unfortunately, this is also a parameter with large data gaps. The mammalian half-life 
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values used in the model may not be accurate when applied to birds. In addition, the 

half-lives of agricultural chemicals in the bird were assumed to be the same regardless of 

whether the exposure occurred dermally or orally. However, the duration of exposure 

may vary between dermal exposure and oral exposure. Henderson et al. (1994) showed 

that pigeons did not recover from dermal exposure to OP insecticides for up to 6 weeks 

after dosing, while recovery from an oral dose took approximately 5 days. The high 

sensitivity of the model to this parameter illustrates the importance of obtaining accurate 

values of the half-lives of agricultural chemicals in birds.  

The model was also sensitive to the parameters which were related to dermal 

exposure, (sensitivity analyses #2, #7, & #8), the duration of chemical exposure while 

foraging, the half-lives of agricultural chemicals in soil, and the dermal to oral toxicity 

ratios (Table 2).  Information of the duration of time spent on the ground while foraging 

in the winter would increase the accuracy of the model. There are well documented half-

lives in soil for most of the agricultural chemicals evaluated, however using the upper 

limits of the reported values resulted in a large number of significant increases in the 

endpoints evaluated (Table 2, Appendix A5). There is very little data available which 

can be used to evaluate dermal toxicity in birds, particularly for classes of agricultural 

chemicals other than insecticides, and the majority of values were estimated from an 

equation rather than based on actual bioassay data (Appendix A6).  The results of this 

sensitivity analysis confirm of the importance of dermal exposure in birds demonstrated 

by Driver et al. (1991) and Mineau (2002), and exemplify the necessity for more 
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information that can be used to estimate risk to birds from dermal exposure to 

insecticides and other agricultural chemicals. 

The amount of soil in the diet, the amount of drift, and the possibility of early 

spring spraying did not result in significant changes in the model (Table 2). Although the 

amount of soil in the diet did not seem to be an important factor for burrowing owls, it 

may be an important factor for species such as sandpipers that have a higher percentage 

of soil in their diet (Beyer et al., 1994). The amount of drift was set at an amount close to 

0% in the baseline simulations, and may be more important with greater variation in the 

drift rates. Early spring spraying did not occur frequently enough to cause significant 

changes in the endpoints (Table 2), but may be more important than suggested by the 

model. Organophosphate insecticides have been shown to alter migration in adult birds, 

most likely by affecting memory of the migration route (Vyas et al., 1995). Early spring 

spraying prior to the departure of burrowing owls could occur at a critical period when 

memory of the migration route becomes vital. This would be most likely to occur if the 

use of pre-planting treatments overlaps with the period when burrowing owls are 

present. Pre-planting treatments are most commonly used for control of white grubs, 

corn rootworm, or wireworms in sorghum fields (Cronholm et al., 1998).  

 Corson et al. (1998) examined foraging location, diet selection, and food 

intake/body weight ratio in the sensitivity analysis for his avian pesticide exposure 

simulation model. The model was sensitive to all of these factors, but was highly 

sensitive to foraging location. Likewise, an analysis of variability in risk assessments 

found that bird movements between treated and untreated areas was one of the most 
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important factors and led to substantial differences in observed effects (Hart, 1990). 

However, model sensitivity foraging location was not investigated in this scenario. Due 

to the agricultural homogeneity of the landscape, in which the owl roosts and forages in 

agricultural fields, and there was virtually no untreated habitat available in which the 

owl could forage. Although burrowing owls in South Texas have been shown to 

primarily forage in the ditches separating fields (Woodin, pers. comm., 2004), the 

differences between agricultural chemical residues in the fields and the ditches 

surrounding the fields were unknown and were assumed to be equal. If the residue 

concentrations differ between the fields and the surrounding ditches varies, it may cause 

variations from the results observed in these simulations. 

An analysis of wildlife risk assessments found eight dietary related exposure 

factors likely to cause variations in the assessment of risk; food ingestion rate, diet 

composition, ingestion of soil, trophic transfer levels, bioavailability, chemical 

concentration in soil or prey, and the amount of available habitat (Fairbrother, 2003). 

An analysis of long-term avian or mammal wildlife risk assessments identified several 

spatial or temporal factors which may cause the greatest variations between long-term 

and acute risk assessment. These included food intake rate, changes in body weight, 

pesticide concentrations on food, differences in spray regimes, wildlife avoidance of 

pesticides, diet composition, and the proportion of diet from the treated area (Crocker, 

2005).  Of these variables, diet composition, trophic transfer levels, and chemical 

concentrations in food or soil were also identified in the sensitivity analyses as causing 

significant variations in potential risk. The results of Fairbrother’s (2003) and Crocker’s 
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(2005) analyses concur with the dietary exposure related sensitivities observed in the 

simulations with potential acute exposure.  Detailed graphs and tables of the results of 

the sensitivity analyses can be found in Appendix B. 

6. Model Application 

6.1 Introduction 

This model can be used to quantify risk by examining variations in the effects of 

exposure to agricultural chemicals in different roosting and foraging scenarios, in order 

to predict the crops or chemicals pose the greatest risk to bird populations. This model 

was used to evaluate which crops or chemical classes are most likely to increase risk of 

lethal or sublethal exposure to agricultural chemicals in burrowing owls wintering in 

South Texas.  

6.2 Experimental Design for Simulations 

In order to evaluate lethal and sublethal exposures to OP and CB insecticides, the 

maximum value and mean value of ChE inhibition that occurred over the winter, as well 

as the duration of ChE inhibition greater than 20% and 50%, was recorded for each 

simulation.  

In order to evaluate lethal and sublethal exposures to agricultural chemicals 

including insecticides, herbicides, growth regulators, and defoliants, the number of 

chemicals with exposure levels greater than their HD5 (NHc) or LOEL (NLc) was 

recorded at each time step. NH and NL represents the number of chemicals to which the 

owl is exposed to a level greater than the HD5, or LOEL, respectively, while c 

represents the different chemical classes, which can be further defined as i = insecticides, 
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h = herbicides, and g = growth regulators or defoliants. The maximum values of NHc or 

NLc that occured throughout the winter; as well as duration of exposure greater than an 

HD5 or LOEL throughout the winter; were recorded for each simulation.  

The primary crop scenario, FS-1, was used to represent chronic exposure to 

agricultural chemicals, while FS-2 and FS-3 represent the addition of acute exposure. 

Two hundred simulations were run for each foraging crop scenario, and an equal number 

of simulations were run with either cotton or sorghum grown in the roost or foraging 

fields in the summer prior to the arrival of the wintering burrowing owl. The simulated 

data were then analyzed in SPSS statistical package (SPSS inc., Chicago, IL). with a 

one-way ANOVA using a Bonferroni post-hoc test to compare means between crop 

scenarios for each endpoint. Significance was defined as (p < 0.05). 

6.3 Model Application Results 

6.3.1 ChE Inhibition 

 The average maximum and average mean ChE inhibition varied between all three 

crop scenarios, although it was slightly, but insignificantly, higher between FS-1 (3.9%-

maximum, 2.3%-mean) and FS-2 (10.0%-maximum, 3.9%-mean). With the addition of 

an adjacent onion field (FS-3), ChE inhibition (58.2%-maximum, 16.5%-mean), was 

significantly increased compared to FS-1 and FS-2 (p< 0.000) (Figure 4a). Likewise, 

average duration of ChE inhibition greater than 20% and 50% was also slightly, but not 

significantly, longer in FS-2 (1.8 days- > 20%, 0.7 days- > 50%)  than in FS-1 (0.0 days- 

> 20%, 0.0 days- > 50%). Average duration of ChE inhibition greater than 20% and 50%  
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was significantly longer in FS-3 from FS-1 and FS-2 (16.5 days- > 20%, 14.0 days- > 

50%; p < 0.000) (Figure 4b).  

6.3.2 LOELs 

 In all three crop scenarios the burrowing owl was exposed to a greater number of 

insecticides over their LOEL than any other chemical class. Average insecticide 

exposure greater than an LOEL occurred throughout the entire winter, (144-147 days) in 

all three crop scenarios. In FS-1 the burrowing owl was exposed to a greater number of 

growth regulators or defoliants over their LOEL than herbicides (NLh = 1.025, NLg = 

1.290). However, when cabbage or onions were added as a foraging site, the burrowing 

owl was exposed to a greater number of herbicides over their LOEL than growth 

regulators or defoliants (NLh = 1.365, & NLg = 1.050; NLh = 1.470, & NLg = 1.025; in 

FS-2 and FS-3 respectively) (Figure 5a). In all three scenarios the burrowing owl was 

exposed to growth regulators or defoliants over their LOEL for a longer period, (96-119 

days), than herbicides, (71-85 days), (Figure 5b).  

 FS-2 had the highest average maximum value of NLi (1.670), and was 

significantly greater, (p = 0.010), than the average maximum value of NLi in FS-1 

(1.485). FS-3 had an intermediate value (1.605), but was not significantly different from 

the other two scenarios (Figure 5a). The duration of exposure greater than an LOEL was 

not different between the three scenarios (Figure 5b). 

 The average maximum value of NLh was significantly greater, (p < 0.000), in FS-

2, (1.365), and FS-3, (1.470), than in FS-1 (1.025). FS-3 had the highest average 

maximum value of NLh of all three crop scenarios (Figure 5a). The duration of exposure 
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to herbicides greater than their LOELs was lowest in FS-1, (70.5 days), and highest FS-

3, (85.6 days), however these differences were not significant (Figure 5b). 

 The average maximum value of NLg was significantly higher (p < 0.000) in FS-1, 

(1.290), than the other two crop scenarios, (FS-2 = 1.050, F-3 = 1.025) (Figure 5a). In 

addition the duration of exposure to levels of growth regulators or defoliants greater than 

their LOEL was greatest in FS-1 (118.7 days) (Figure 5b). 

6.3.3 HD5  

 Insecticides were the only chemical class to which the owl was exposed to levels 

greater than the HD5, and the duration of exposure only encompassed a small portion, 

(5-9 days), of the winter period (Figure 6a-b).  The average maximum value of NHi, (FS-

1 = 0.125, FS-2 = 0.380, FS-3 = 0.335), was significantly greater in the FS-2, and FS-3 

than in FS-1 (p < 0.000), and was highest in FS-2 (Figure 6a). The duration of exposure 

to an insecticide greater than its HD5 was also significantly longer in FS-2 (FS-1 = 4.9 

days, FS-2 = 8.8 days, FS-3 = 5.2 days) (Figure 6b). 
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6.3.4 Summary of Model Application Results 

 The risk of chemical classes to burrowing owls wintering in south Texas 

cotton/sorghum fields can be described as insecticides>growth regulators and 

defoliants>herbicides. The presence of cabbage or onion fields as a foraging site 

adjacent to the roost site increases the risk posed by insecticides and herbicides, most 

likely due to more frequent spraying of these chemicals on onion or cabbage crops 

during the period that the owls are present. It is also clear that, with the exception of 

growth regulators and defoliants which are only applied to cotton fields, risk of lethal or 

sublethal effects of agricultural chemical exposure increase in the presence of a crop 

which is receiving treatments during the period the owl is present, which is represented 

in this case by cabbage or onions.  

ChE inhibition due to exposure to OP and CB insecticides was greatest when an 

onion field was used as a foraging site, followed by the presence of cabbage fields as a 

foraging site. Similiarly, Mineau and Whiteside (2006) found that onion crops had a 

higher potential lethal risk to birds than cabbage in an analysis of NASS 2000-2003 data 

for the entire United States.  However, lethal and sublethal effects of all insecticides 

based on LOELs and HD5s were greatest in the presence of a cabbage field, followed by 

the presence of onion fields. The large increase in ChE inhibition in onion fields most 

likely occurred because over 80% of insecticide treatments in onion fields are based on 

OP or CB insecticides compared to 24% of insecticide treatments in cabbage fields. In 

addition, the two insecticides which comprise all of the reported OP and CB insecticide 

use on onion fields, diazinon and methomyl, are extremely toxic to birds (characterized 
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by an LD50s below 40 mg/kg) (Smith, 1993; Appendix A4). Diazinon and methomyl are 

also used on cabbage, along with dimethoate, which also is extremely toxic to birds. 

However over 75% of the insecticide use is from other types of insecticides, including 

the highly toxic organochlorine insecticide endosulfan, which probably created the 

discrepancy between the ChE endpoint data and the LOEL and HD5 data (Smith, 1993; 

Appendix A4).  

7. Discussion 

 This model provides a framework for a simple stochastic simulation model which 

can be used to compare different classes of chemicals or individual chemicals, as well as 

different crops, based on current agricultural practices, in terms of potential lethal or 

sublethal effects in burrowing owls. ChE inhibition has been used by Corson et al. 

(1998) and Pisani (2006) to predict ChE inhibition due to OP and CB insecticide 

exposure on birds. Mineau (2002), and Mineau and Whiteside (2006), used HD5 values 

to predict risk of lethal exposure to insecticides in birds. Although reproductive NOELs 

or NOECs are used in long-term exposure assessments used to model population level 

effects (Shore et al., 2005; Mineau, 2005; Bennett et al., 2005), to my knowledge this is 

the first model to use LOEL values to assess the effects of agricultural chemicals 

currently in use on birds during the non-breeding period of their life cycle. The 

combined use of these three different endpoints in this model allows for the risk of both 

lethal and sublethal effects in birds due to exposure to chemical classes in addition to 

insecticides to be investigated. In addition concurring results from all three endpoints 

can provide a stronger assessment of a chemical or crop than from one endpoint alone. 
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 Fairbrother (2003) suggested that a “bottom up” approach used in Tier 1 risk 

assessments can rule out exposure pathways, species, or contaminants with negligible 

ecological risk. This can then guide the “top down” approaches in higher tiered risk 

assessments as to which contaminants, pathways, or species further site specific studies 

should be focused. Likewise, simulation modeling used for single species ecological risk 

assessment can guide the direction in which higher assessments should be focused. In 

the case of burrowing owls, following the approach of Fairbrother (2003), future studies 

should focus on gathering more site specific data on contaminant residues in prey items 

and in the soil, and laboratory bioassays on contaminants that were indicated as potential 

risk factors. If these studies still indicate potential risk of effects of contaminant 

exposure to burrowing owls in South Texas, then field studies should be conducted to 

evaluate the possibility of the occurrence of lethal or sublethal effects that may reduce 

individual fitness and subsequently lead to population level effects.  

 

 

 

 

 

 

 

 



 43 

CHAPTER III 

BURROWING OWLS AND CULVERTS IN COTTON FIELDS:  AN 

ECOLOGICAL TRAP? 

1. Introduction 

The Committee on the Status of Endangered Wildlife in Canada classified 

burrowing owls as endangered due to significantly declining populations and range 

restriction. Despite intensive conservation efforts, burrowing owls have been extirpated 

from Manitoba and British Columbia, and burrowing owl populations have declined 58-

94% in Alberta and 95% in Saskatchewan over the past 10 years (SRD & ACA, 2005). 

Chronically low return rates suggest that this burrowing owl population may face its 

greatest threats on its wintering grounds, which include south Texas (Clayton and 

Schmutz, 1999).  

Known threats to burrowing owl populations include habitat loss and 

fragmentation, loss of burrows, weather, predation, road kills, and rodenticide or 

insecticide use. Habitat loss of grasslands and desert areas through conversion to 

agriculture or urbanization resulting in the loss of burrows and foraging habitat is most 

frequently cited as the cause of declines in burrowing owl populations (Klute et al., 

2003; Woodin, pers. comm., 2004). Burrowing owls are dependent on the burrows of 

black-tailed prairie dogs, or other burrowing mammals, for nesting and wintering 

habitat, but may use other types of shelter in the absence of their preferred burrow types. 

Burrowing owl populations in areas where black-tailed prairie dogs have been eradicated 

have been extirpated, or have severely declined (Butts and Lewis, 1982; Desmond et. al., 



 44 

2000). In Texas, the historic range of black-tailed prairie dogs covered the western half 

of the state. Black-tailed prairie dogs are now extirpated from most of their historic 

range, due to active control through rodenticides, and conversion of their native habitat 

to agriculture. One former colony in Texas was 64,000 km2 and supported a population 

of 400 million prairie dogs (TPWD, 1997). 

Outside of the Migratory Bird Treaty Act of 1918, the burrowing owl has no 

protected legal status in Texas. The USFWS Natural Heritage Program listed the 

burrowing owl population as vulnerable in Texas, before the program in Texas was 

discontinued (Klute et al., 2003). Burrowing owls historically bred across most of Texas, 

including south Texas until the 1920’s. Today the breeding range of burrowing owls 

only includes the northwestern region of Texas, and the population that may have once 

bred in south Texas is now a migratory population that winters along the lower Gulf 

Coast and the Rio Grande Valley (Wellicome and Holroyd, 2001; Woodin, pers. comm., 

2004). Widespread landscape conversion to agriculture in the Eastern and Central U.S. 

has been correlated with the decline of grassland associated bird species (Murphy, 

2003). Concern over loss of grasslands in Texas began as far back as 1878, when writers 

noted the intrusion of woody vegetation into grassland areas, primarily due to fire 

suppression (Johnston, 1963). Today conversion to agricultural fields has occurred on up 

to 99% of the native prairies and grasslands in the coastal prairies of Texas. The 

remaining grassland areas have been further degraded through cattle grazing and 

invasive species (PIF, 2005).  
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Although burrowing owls are historically associated with grassland habitat 

characterized by the presence of the burrows of prairie dogs or other fossorial mammals, 

burrowing owls have recently become strongly associated with agriculture (Moulton et 

al., 2006; Conway et al., 2006). Burrowing owls wintering in south Texas agro-

ecosystems primarily use culverts as roost sites (Texas Gulf Coast Field Research 

Station, 2003). In addition, it has been implied that the creation or restoration of culverts 

in agricultural areas can be used as a management tool in burrowing owl conservation 

(Williford et al., 2007). However, if the culverts used by burrowing owls are actually a 

source of agricultural chemical exposure they may have the potential to act as 

“ecological traps”.  

Ecological traps were defined by Schlaepfer et al. (2002) as “in an environment 

that has been altered suddenly by human activities, an organism makes a maladaptive 

habitat choice based on formerly reliable environmental cues, despite the availability of 

higher quality habitat”. Robertson and Hutto (2006) further elaborate on this description 

by describing ecological traps as resulting from “decoupling the attractiveness of and the 

suitability in the altered habitat”. Habitat alterations can lead to ecological traps in three 

ways, 1) by altering the settlement cue set, resulting in an increased attractiveness in the 

altered habitat, 2) by decreasing the suitability of a habitat, or 3) by simultaneous 

increasing attractiveness and decreasing suitability in the altered habitat (Robertson and 

Hutto, 2006).  The response of mayflies to asphalt is one of the most thoroughly 

described ecological traps. In this example, asphalt sometimes reflects horizontally 

polarized light in a manner similar to ponds. Mayflies use the horizontally polarized 
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light from ponds as a cue for suitable habitat for oviposition, and the horizontally 

polarized light reflected from asphalt leads to oviposition on the dry asphalt rather than 

in nearby ponds (Kriska et al.,1998).   

The mechanism driving the apparent preferential use of agricultural areas by 

burrowing owls is unclear. However, Moulton et al. (2006) found that increased prey 

resources may be a driving mechanism of burrowing owl associations with agriculture. 

Burrowing owls wintering in south Texas agro-ecosystems seem to show a preference 

for culverts in dormant agricultural fields as roost sites (Texas Gulf Coast Field Research 

Station, 2003). Culverts in fields which are left bare over the winter in South Texas may 

be attractive to burrowing owls because of their superficial resemblance to clustered 

mammal burrows in a shortgrass prairie, or because of increased food resources in 

agricultural areas. 

Despite the apparent increased prey availability in agricultural areas, a recent 

demographic study indicated that burrowing owls in agricultural areas represent 

population sinks, and hypothesized that persistence of these populations is dependent on 

immigration (Conway et al., 2006). Burrowing owls living in agricultural areas are likely 

to be exposed to contaminants, and the presence of contaminants combined with natural 

stressors can negatively affect population level processes (Gervais et al., 2006). It was 

determined that burrowing owls forage in cropland areas after treatment with pesticides, 

and it is possible that they may be attracted to the availability of dead and dying prey 

that occurs after pesticide use (Gervais et al., 2003). In addition, the use of agricultural 

culverts within agricultural fields as roost sites may increase their risk of exposure to 
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insecticides and other agricultural chemicals through dermal exposure to agricultural 

runoff. This increased risk of insecticide exposure was confirmed by an analysis of 

burrowing owl pellets in south Texas that detected OP insecticides (Woodin et al., 

2006).   

Based on the limited research that has been conducted, it appears that one of the 

most common habitats currently utilized by burrowing owls in south Texas argro-

ecosystems are cotton and sorghum fields. Of all the crops grown in the United States 

cotton is one of the most notorious for intensive historical and current agricultural 

chemical that has resulted in increased concentrations of contaminants (Kannan et al, 

2003). In addition cotton is one of two crops with the highest risk of lethal effects to 

birds in the United States, and has been responsible for several large mortality events 

(Mineau and Whiteside, 2006). Herbicides, insecticides, and growth regulators and 

defoliants are typically applied to cotton crops in Texas (NASS, 2005).  

Of the agricultural chemicals most commonly used today, OP and CB 

insecticides are the most dangerous to non-target organisms and have been responsible 

for numerous cases of mortality in owls and other raptors (Blus, 1996; Sheffield, 1997; 

Mineau et al., 1999).  OP and CB compounds prevent normal physiological functions of 

organisms, and disrupt nerve function by acting as cholinesterase (ChE) inhibitors 

(Walker and Thompson, 1991). OP and CB insecticides primarily function by either 

phosphorylation (OPs) or carbamylation (CBs) of the acetylcholinesterase (AChE) 

enzyme’s active site serine residue. In the case of OPs this binding is irreversible, while 

with CBs the binding is somewhat reversible (Hill, 2003). Following binding of AChE 
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molecules, acetylcholine accumulates in the central or peripheral nervous system 

synapses, the cholinergic receptors are overstimulated, and normal cellular function is 

altered in response to the overstimulation of the cholinergic receptors.  This eventually 

leads to autonomic dysfunction (especially excessive secretions), tremors or convulsions, 

muscle fasciculations, and eventually respiratory failure (Pope, 1999).  

Even sublethal doses of OP and CB insecticides can affect avian mortality by 

affecting their behavior and normal physiological functions. The greatest effects include 

alterations in thermoregulation, food consumption, and reproductive behavior including 

migration (Grue et al., 1997). Exposure to OP and CB insecticides can occur through 

ingestion of contaminated prey, water, vegetation, seeds, or soil, as well as through 

direct contact with the pesticide during application, or through contact with 

contaminated soil or water (Hill, 2003).  Although risk assessments have traditionally 

focused on oral exposure, the importance of dermal exposure has recently become 

apparent (Fite et al., 2004; Mineau, 2002; Henderson et al., 1994; Driver et al., 1991). 

Spatial variability in concentrations of pesticide residues has been shown in 

several field studies (Harris, 2000; Cobb et al., 2000; Kendall et al., 1992; Kendall et al., 

1993). If runoff or puddling cause pesticide residues to concentrate in the culverts, 

resulting in levels of dermal exposure to agricultural chemicals sufficient to lead to 

decreased fitness, it is possible that culverts in cotton fields may represent ecological 

traps for burrowing owls. The purpose of this study is to use simulation modeling to 

determine the relationship between increased concentrations of agricultural chemicals in 
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culverts and subsequent lethal and sublethal risks from dermal exposure to agricultural 

runoff. 

2. Study Area 

Refer to Chapter II.2 

3. Model Overview 

3.1 Conceptual Model 

The model simulates foraging and roosting behavior of an individual burrowing 

owl in crops that have received treatments with agricultural chemicals, resulting in 

estimates of dermal and oral exposure that can be used to predict risk of lethal or 

sublethal effects. The model consists of four submodels representing (1) behavior of 

burrowing owls, (2) chemical applications to crops, (3) chemical transfer and fate in the 

crop soil and prey items, and (4) chemical exposure in the burrowing owl. 

Details of the cultivation of four different crops; cotton, sorghum, cabbage, and 

onions, are used to simulate three different foraging crop scenarios (FS 1-3). In all three 

scenarios a cotton\sorghum field is designated as a roost site. In this model the 

burrowing owl forages during the night in the fields surrounding its roost site, and is 

located at the culvert used as its roost site during the day. The primary crop scenario 

(FS-1), has two cotton/sorghum fields as foraging sites adjacent to the roost site. Each 

cotton/sorghum field alternates annually between cotton or sorghum crops grown during 

the summer, and the two foraging fields are offset so that there is always one cotton field 

and one sorghum field. The two additional crop scenarios include either a cabbage field 
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(FS-2) or an onion field (FS-3) as a foraging site in addition to the cotton/sorghum 

fields. 

The burrowing owl is only present in the model during the winter period, (Oct 1- 

Mar 1), when the post-harvest cotton/sorghum fields are wide expanses of bare soil, yet 

onions and cabbage are actively cultivated (Appendix A2). The primary crop scenario 

(FS-1), simulates chronic exposure to agricultural chemicals, while FS-2 and FS-3 add 

potential acute exposure scenarios. 

Within these fields pesticides are applied to the crops. Once a pesticide is applied 

it is transferred to the soil, the owl, and its prey. The owl accumulates pesticides through 

dermal and ingestion pathways. ChE inhibition is calculated from the amount of 

insecticide accumulated with a dose-response equation. ChE inhibition and exposure > 

HD5 are used as endpoints (Figure 3).  

At the burrowing owl’s roost site the possibility of increased chemical 

concentrations transferred to the culvert though runoff will be simulated by increasing 

the chemical concentrations in culverts relative to the chemical concentrations in the 

crop soil. For a more complete model description please refer to Chapter II.4. 

4. Methods 

An equal number of simulations were run with either cotton or sorghum grown in 

the roost or foraging fields in the summer prior to the arrival of the wintering burrowing 

owl, and an equal number of simulations were run for each crop scenario. 

At the burrowing owl’s roost site the increased chemical concentrations in 

culverts were simulated by increasing the chemical concentrations in culverts relative to 
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the chemical concentrations in the crop soil.  Two hundred simulations were run in each 

crop scenario in order to obtain baseline values for the endpoints. Then the 

concentrations of chemicals in the culvert were increased by multiplying the 

concentration of chemicals in the crop soil by a range of values to create a gradient of 

increased concentrations of chemicals in the culverts.  The values chosen were 2, 3, 4, 5, 

6, 7, 8, 9, 10, 15, 20, & 50 times the concentrations in the crop soil. Sixty simulations 

were run at each value. 

The maximum and mean values of NHc, (Chapter II.5.2), were chosen as 

endpoints to evaluate lethal exposures to agricultural chemicals including insecticides, 

herbicides, growth regulators, and defoliants. In order to evaluate lethal and sublethal 

exposures to OP and CB insecticides, the maximum value and mean value of ChE 

inhibition that occurred over the winter were also recorded for each simulation. These 

endpoint values were fitted to linear regression lines with a separate regression 

performed in each crop scenario for each class of agricultural chemicals, (OP and CB 

insecticides, insecticides, herbicides, and growth regulators and defoliants, (Appendix 

A4)). These regression lines were then used to estimate the increase in chemical 

concentrations in culverts necessary to cause lethal or sublethal effects.   
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5. Results 

 5.1 OP and CB Insecticides 

The estimated maximum ChE values increased with increasing insecticide 

concentrations in the culvert soil. However, foraging in a crop where chemicals were 

actively being sprayed dramatically increased maximum ChE inhibition values. The 

average maximum ChE inhibition values were increased by 2.56 and 14.92 times the 

values predicted in the cotton/sorghum only scenarios (FS-1) with the addition of 

cabbage fields (FS-2) or onion fields (FS-3) respectively (Table 3). The linear regression 

equations fitted to the simulation data using maximum ChE values were y = 1.3291x + 

12.544 in FS-1, y = 1.2253x + 17.619 in FS-2, and y = 0.4497x + 65.095 in FS-3.  

Although there was an increase in the intercept values between FS-1 and the crop 

scenarios with active spraying (FS-2 and FS-3), the slopes became less steep in the 

scenarios with active spraying (Figure 7a-c).      

Similar to the average maximum ChE values, the average mean ChE values 

increased with increasing insecticide concentrations in the culvert soil. However the 

increase due to foraging in a crop where chemicals were actively being sprayed was less 

substantial than was observed in the maximum ChE values, and increased by 1.7 and 7.2 

times the average value in FS-1 due to foraging in FS-2 and FS-3 respectively (Table 4). 

The linear regression equations fitted to the simulation data using mean ChE values were 

y = 1.3291x + 12.544 in FS-1, y = 1.2253x + 17.619 in FS-2, and y = 0.4497x + 65.095 

in FS-3.  Although there was an increase in the intercept values between FS-1 and the 
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crop scenarios with active spraying, the slopes were similar in all crop scenarios (Figure 

8a-c).      

 An estimated maximum value of 20% ChE inhibition occurs when 

concentrations of OP or CB insecticides in the culvert soil reach 5.6 and 1.9 times the 

concentrations of insecticides in the crop soil in FS-1, and FS-2 respectively. An 

estimated maximum value of 50% ChE inhibition occurs when concentrations of 

insecticides in the culvert soil reach 28.2 and 26.4 times the concentrations of 

insecticides in the crop soil in FS-1, and FS-2 respectively. The average maximum ChE 

inhibition value was greater than 50% prior to increasing concentrations in FS-3 (Figure 

7a-c). An estimated mean value of 20% ChE inhibition occurs when concentrations of 

insecticides in the culvert soil reach 10.2 and 9.1 times the concentrations of insecticides 

in the crop soil in FS-1, and FS-2 respectively. An estimated maximum value of 50% 

ChE inhibition occurs when concentrations of insecticides in the culvert soil reach 34.4, 

34.3, and 30.1 times the concentrations of insecticides in the crop soil in FS-1, FS-2, and 

FS-3 respectively. The average mean ChE inhibition value was greater than 20% prior to 

increasing concentrations in FS-3 (Figure 8a-c).  
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Figure 7  (a-c).  Increase in the maximum % ChE inhibition occurring during the 
winter due to increased insecticide concentrations in culverts by crop scenario. 
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Figure 8  (a-c).  Increase in the mean % ChE inhibition occurring during the winter 
due to increased insecticide concentrations in culverts by crop scenario. 
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5.2 Insecticides 

The estimated maximum value of NHi increased with increasing insecticide 

concentrations in the culvert soil. However in all three crop scenarios the estimated 

maximum and mean value of NHi did not reach 1 until the concentrations in culverts 

were increased to around 30 times the concentration in the crop soil (Figure 9a-c, Figure 

10a-c). However, in all three crop scenarios several maximum values of NHi from 

individual simulations runs were greater than 1 prior to increasing concentrations in the 

culvert soil (Figure 9a-c). In addition, in all three crop scenarios several mean values of 

NHi from individual simulations runs were greater than 1 after doubling concentrations 

in the culvert soil (Figure 10a-c).  

The linear regression equations fitted to the simulation data using the maximum 

values of NHi were y = 0.0248x + 0.1529 in FS-1, y = 0.0265x + 0.4548 in FS-2, and y = 

0.0243x + 0.3875 in FS-3 (Figure 9a-c).  The linear regression equations fitted to the 

simulation data using the mean values of NHi were y = 0.0233x + 0.0843 in FS-1,  

y = 0.0256x + 0.1214 in FS-2, and y = 0.0231x + 0.1204 in FS-3 (Figure10a-c). These 

regression equations show an increase in the intercept values between the 

cotton/sorghum crop scenarios and the crop scenarios with active spraying, while the 

slopes are similar between all scenarios.      
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Figure 9  (a-c).  Increase in the maximum number of insecticides the owl is exposed 
to > their HD5 during the winter due to increased insecticide concentrations in 
culverts by crop scenario. 
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Figure 10  (a-c).  Increase in the mean number of insecticides the owl is exposed to 
> their HD5 during the winter due to increased insecticide concentrations in 
culverts by crop scenario. 
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5.3 Herbicides 

The estimated maximum value of NHh increased with increasing herbicide 

concentrations in the culvert soil. However in all three crop scenarios the estimated 

maximum value of NHh 1 until the concentrations in culverts were increased to around 

40 times the concentration in the crop soil, and the estimated mean value of NHh did not 

reach 1 until the concentrations in culverts were increased to over 100 times the 

concentration in the crop soil (Figure 11a-c, Figure 12a-c). In all three crop scenarios 

several maximum values of NHh from individual simulations runs were greater than 1 

after increasing concentrations in the culvert soil to around 7 times the concentration in 

the crop soil (Figure 11a-c). However, in all three crop scenarios individual mean values 

of NHh from individual simulations runs did not reach values greater than 1 until 

concentrations in the culvert soil were around 20 times the concentration in crop soil 

(Figure 12a-c).  

The linear regression equations fitted to the simulation data using the maximum 

values of NHh were y = 0.0234x  in FS-1, y = 0.0258x in FS-2, and y = 0.0244x in FS-3 

(Figure 11a-c).  The linear regression equations fitted to the simulation data using the 

mean values of NHh were y = 0.0078x in FS-1, y = 0.0089x in FS-2, and y = 0.0076x in 

FS-3 (Figure 12a-c). The slopes are similar between all crop scenarios, and the intercept 

values for all these regression equations were set to 0 because no individual simulation 

runs were greater than 0 prior to increasing concentrations in the culvert soil.      
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Figure 11  (a-c).  Increase in the maximum number of herbicides the owl is exposed 
to > their HD5 during the winter due to increased herbicide concentrations in 
culverts by crop scenario. 
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Figure 12  (a-c).  Increase in the mean number of herbicides the owl is exposed to > 
their HD5 during the winter due to increased herbicide concentrations in culverts 
by crop scenario. 
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5.4 Growth Regulators and Defoliants 

The estimated maximum value of NHg increased with increasing growth 

regulators and defoliant concentrations in the culvert soil. However in all three crop 

scenarios the estimated maximum and mean values of NHg did not reach 1 until the 

concentrations in culverts were increased to around 50 times the concentration in the 

crop soil (Figure 13a-c, Figure 14a-c). In all crop scenarios several maximum and mean 

values of NHg from individual simulations runs were greater than 1 after increasing 

concentrations in the culvert soil to around 3 times the concentration in the crop soil 

(Figure 13a-c, Figure 14a-c).  

The linear regression equations fitted to the simulation data using the maximum 

values of NHg were y = 0.0199x in FS-1, y = 0.0194x in FS-2, and y = 0.0198x in FS-3 

(Figure 13a-c).  The linear regression equations fitted to the simulation data using the 

mean values of NHg were y = 0.0182x in FS-1, y = 0.0157x in FS-2, and y = 0.0172x in 

FS-3 (Figure 14a-c). The slopes are similar between all crop scenarios, and the intercept 

values for all these regression equations were set to 0 because no individual simulation 

runs were greater than 0 prior to increasing concentrations in the culvert soil.      
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Figure 13  (a-c).  Increase in the maximum number of growth regulators and 
defoliants the owl is exposed to > their HD5 during the winter due to increased 
growth regulators and defoliant concentrations in culverts by crop scenario. 
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Figure 14  (a-c).  Increase in the mean number of growth regulators and defoliants 
the owl is exposed to > their HD5 during the winter due to increased growth 
regulators and defoliant concentrations in culverts by crop scenario. 
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6. Summary/Discussion 

 The analysis using exposure > HD5 as an endpoint indicates that risks due to 

increased concentrations in culvert soil vary between chemical classes. Insecticides 

showed values of exposure greater than an HD5 from individual simulation runs prior to 

increasing chemical concentrations in culvert soil. Growth regulators and defoliants 

showed values of exposure greater than an HD5 from individual simulation runs after 

increasing chemical concentrations in culvert soil to 3-4 times the concentration in the 

crop soil. Herbicides showed values of exposure greater than an HD5 from individual 

simulation runs after increasing chemical concentrations in culvert soil to 7 times the 

concentration in the crop soil. However, for all three chemical classes the increase in 

chemical concentrations in the culvert soil relative to the crop soil required for the 

predicted maximum value averaged from all simulation runs to be greater than the HD5 

was fairly large. Attaining a predicted average maximum value greater than an HD5 

required an increase of 30 times for insecticides, an increase of 40 times for herbicides, 

and an increase of 50 times for growth regulators and defoliants. These results suggest 

that among the chemical classes evaluated, insecticides are the chemical class to which a 

burrowing owl is most likely to be exposed to an amount greater than the HD5. However 

the increases in chemical concentrations in the culvert soil required to cause the 

predicted average maximum exposure to be greater than an HD5 were quite large, and 

ranged from 30-100 times the concentration in the crop soil.  

ChE inhibition used as an endpoint the model seemed very sensitive to increasing 

concentrations of OP and CB insecticides in the culvert soil. ChE inhibition increased 
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greatly when owls foraged in cabbage or onion fields, however only a very small 

percentage of burrowing owls wintering in south Texas had roost sites adjacent to fields 

where crops were grown during the winter (Chapter II.2). Although ChE inhibition 

increased most dramatically due to active spraying, an increase of only 5.61 times the 

amount in the crop soil caused the predicted average maximum ChE inhibition to reach 

20% in FS-1 (Figure 7a-c). In addition, maximum ChE inhibition in individual 

simulation runs began to reach values greater than 20% at an increase of only 2 times the 

amount in the crop soil (Figure 7a).  However, it took an increase of 28.18 times the 

concentration in the crop soil to cause the average maximum inhibition to reach 50%, 

while several individual simulation runs began to show ChE inhibition values greater 

than 50% at just 3 times the amount in the crop soil in FS-1 (Figure 7a).  

Although to my knowledge no one has tested pesticide concentration in the 

surface soil of culverts, spatial variability in concentrations of pesticide residues has 

been shown to vary by 1.6 to up to 25 times the mean value in several field studies 

(Harris, 2000; Cobb et al., 2000; Kendall et al., 1992; Kendall et al., 1993). The 

maximum concentration of residues in earthworms from an orchard treated with 

diazinon 12-15 days earlier varied from 2.1 -3.7 times the mean values for an orchard 

with individual values ranging as much as 115 times the minimum value detected (Cobb 

et al., 2000). The maximum concentration of residues in grass samples of diazinon 

applied to a golf course 7 days earlier varied by 1.6 times the mean, with individual 

values ranging up to 3.5 times the minimum value detected (Kendall et al., 1992). 

Kendall et al. (1993) found increased diazinon concentrations in puddles relative to other 
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water bodies on the treated golf course. An analysis of organophosphate residues in 

carrots showed that individual roots could vary by up to 25 times the mean or composite 

residue concentration (Harris, 2000).   

A comparison of the spatial variability in pesticide residues discussed above, 

with the increased concentrations in culverts necessary to result in exposure greater than 

an HD5, indicates that while it is unlikely for burrowing owls wintering in cotton fields 

to be consistently experiencing lethal effects due to increased concentrations of OP and 

CB insecticides or other agricultural chemicals in culverts, it is likely that owls may 

experience sublethal effects due to dermal exposure to OP and CB insecticides if these 

insecticides accumulate in culverts.  

Sublethal doses of OP and CB insecticides can decrease avian fitness by 

affecting their behavior and normal physiological functions. Birds exposed to ChE 

inhibitors may experience lethargy, gastrointestinal distress, impaired vision, impaired 

learning and memory function, and alterations in endogenous rhythms, all of which may 

decrease their ability to forage effectively (Grue et al., 1997). In addition, insecticide 

application can reduce the prey base, and decrease the amount of food available for 

consumption (Hill, 2003). OP and CB insecticides can affect reproduction through 

alteration of the levels of reproductive hormones, impairment of male gametogenic 

function, and through reduction of food consumption. This can lead to alterations in 

sexual behavior, testicular injury, reductions in egg laying, reductions in parental care, 

and reductions in nest success (Stromborg, 1977; Stromborg, 1986; Rattner et al., 1986; 

Rattner et al., 1982; Maitra and Sarkar, 1996; Grue et al., 1997). In addition, OP and CB 
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intoxication may affect the hippocampal complex, leading to impaired spatial reference 

memory, including migratory orientation and memory of the migratory route (Grue et 

al., 1997; Vyas et al., 1995; Vyas et al., 1996).   

Several potential issues were not evaluated by the model, but may increase the 

results demonstrated in the model. The first is that sublethal effects of chemicals other 

than OP and CB insecticides were not evaluated, and may still be of concern. For 

example, chronic low-level exposure to broiler chicks to the organochlorine insecticide 

endosulfan and the pyrethroid fenvalerate, in addition to the OP insecticide 

monocrotophos, all resulted in impaired metabolism and immune systems (Garg et al., 

2004). The second is that burrowing owls cache food inside culverts (Moulton et al., 

2006). Although it was not evaluated in this analysis, if chemical concentrations are 

increased in the soil in culverts, ingestion of culvert soil due to cached food may be 

another source of increased exposure in burrowing owls roosting in agricultural areas 

burrowing. The third issue is that dermal exposure may result in a longer duration of 

effects than was estimated by the model which assumed the duration of effects due to 

dermal exposure was similar to values observed in ingestion exposure. However, 

Henderson et al. (1994) showed that pigeons did not recover from dermal exposure to 

OP insecticides for up to 6 weeks after dosing, while recovery from an oral dose took 

approximately 5 days. 

Robertson and Hutto (2006) set three criteria to define an ecological trap, “1) 

individuals should have exhibited a preference for one habitat over another (in a severe 

trap), or an equal preference for both habitats (in an equal-preference trap); 2) a 
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reasonable surrogate measure of individual fitness should have differed among habitats; 

and 3) the fitness outcome for individuals settling in the preferred habitat or equally 

preferred habitat…..must have been lower than the fitness attained in other available 

habitats.”  Based on these criteria it will be necessary to determine 1) if burrowing owls 

in South Texas show an increased or equal preference for agricultural culverts over 

natural burrows, and 2) if fitness in burrowing owls using agricultural culverts is 

decreased in comparison to burrowing owls using natural burrows; in order to 

demonstrate if culverts in cotton or sorghum fields in South Texas represent ecological 

traps for burrowing owls.  

It is clear that the primary habitat used by burrowing owls in South Texas is 

agricultural culverts (Woodin et al., 2006; Chapter II.2). However, it has not been 

demonstrated whether burrowing owls actually prefer agricultural culverts over natural 

burrows, or if the use of agricultural culverts simply reflects a lack of availability of 

natural burrows in South Texas. If a lack of availability of natural burrows in South 

Texas drives the apparent preference for agricultural culverts, the scenario may actually 

reflect a blatant disturbance; which was defined by Schlaepfer et al. (2002) as “an 

anthropogenic alteration in the environment that results in decreased fitness of an 

organism independent of its behavior”; rather than an ecological trap. 

Conway et al. (2006) suggested that burrowing owls in agricultural areas of 

Washington represented a population sink compared to burrowing owls in non-

agricultural areas. Unfortunately, a similar analysis of fitness between agricultural and 

non-agricultural areas has not been conducted in South Texas. Mortality rates of 
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wintering burrowing owls in South Texas and Mexico were estimated at 17.4%-30.0% 

over 107 days (Holroyd, pers. comm., 2006). However, these winter mortality rates have 

not been examined comparatively between agricultural and non-agricultural areas. The 

return rates of juvenile owls are one of the demographic factors with the greatest impact 

on the decline of Canadian burrowing owl populations (Wellicome et al., 2006). Juvenile 

birds spending their first winter in South Texas may be more susceptible to effects of 

pesticide exposure because age-dependent increases in effects of pesticide exposure have 

been observed in birds (Wolfe and Kendall, 1998; Gard and Hooper, 1993; Bennett and 

Bennett, 1991). The results of this modeling analysis suggest that if OP or CB 

insecticides accumulate in culverts, then sublethal effects have the potential to occur. 

Sublethal effects could subsequently lead to a decrease in the fitness of burrowing owls 

roosting in agricultural culverts in South Texas.  

If the use of agricultural culverts results in decreased fitness in burrowing owls, 

the distinction between whether it represents an ecological trap or blatant disturbance 

may become more important, as the effects of ecological traps are more easily corrected 

through conservation actions than blatant disturbances (Schlaepfer et al., 2002). If fitness 

is decreased in burrowing owls using agricultural culverts possible conservation actions 

may include attempting to decrease the attractiveness of agricultural culverts, or the 

provision of culverts or other artificial burrows in non-agricultural areas. However, if 

fitness is confidently increased in burrowing owls using agricultural culverts then the 

provision or restoration of existing culverts used to attract owls to agricultural or 
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grassland areas may be an invaluable tool in the management of burrowing owl 

populations. 

The recognition and description of ecological traps is important in developing a 

better understanding of the mechanisms leading to ecological traps, and in recognizing 

factors leading to a maladaptive preference. Descriptions of ecological traps can help in 

their future identification, correction, and prevention in order to conserve wildlife 

(Robertson and Hutto, 2006). For this reason it is suggested that the possibility of 

culverts in agricultural fields in South Texas acting as ecological traps for burrowing 

owls be further investigated by 1) analyzing the soil in culverts used as roost sites for OP 

and CB residues to help determine the amount of dermal exposure occurring through this 

exposure route, 2) determining if the apparent preference for agricultural culverts 

represents an actual preference or is a response to a lack of suitable habitat, and 3) 

compare fitness between burrowing owls in agricultural and non-agricultural areas in 

South Texas.  
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CHAPTER IV 

SIMULATING THE EFFECTS OF AGRICULTURAL CHEMICAL 

EXPOSURE ON BURROWING OWLS WINTERING IN SOUTH 

TEXAS COTTON FIELDS: A LOOK AT INDIVIDUAL 

CHEMICALS 

1. Introduction 

The western burrowing owl, Athene cunicularia hypugaea, was listed as a 

Federal Species of Conservation Concern in 2002 due to declining populations (USFWS, 

2002). While the primary reason cited for this decline is habitat loss, insecticide use has 

been strongly implicated as another possible cause of declines in burrowing owl 

populations (Blus, 1996; Sheffield, 1997; Klute et al., 2003). The majority of studies of 

the effects of contaminants on burrowing owls have focused on OC insecticides and their 

residues, and there are few published studies on how current agricultural chemical use 

affects burrowing owl populations (Klute et al., 2003). Sublethal effects of contaminant 

exposure observed in burrowing owls include decreased reproductive success, weight 

reductions, and egg shell thinning (James, 1987; James et al., 1990; Gervais et al., 2000; 

Gervais and Anthony, 2003). 

James (1987) correlated decreased reproductive success in burrowing owls with 

the use of carbamate insecticides in Canada. James et al. (1990) showed that while the 

use of strychnine grain had no effect on mortality and reproductive success of burrowing 

owls in the short-term, adults had a significantly lower body weight than adults in 
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control fields suggesting sublethal effects. In the U.S. the disappearance of burrowing 

owls from historic habitats has been linked to the extirpation of burrowing mammals, 

which often occurred through the use of rodenticides (Sheffield, 1997). Gervais et al., 

(2000) and Gervais and Anthony (2003) documented egg shell thinning, and decreased 

reproductive productivity in burrowing owls due to exposure to p,p’-DDE combined 

with reduced rodent biomass in the diet.  

Several contaminant studies on burrowing owls in the United States have 

detected exposure to the contaminants chlorpyrifos, selenium, hexachlorobenzene, 

arochlor 1260, PCBs, and p,p’-DDE (a metabolite of DDT) in burrowing owls. Even 

though use of DDT was discontinued in the US in the 1970’s, these studies have 

detected p,p’-DDE in the majority of their samples (Gervais et al., 2000; Gervais and 

Anthony, 2003; Gervais and Catlin, 2004).  

In south Texas burrowing owls primarily roost in culverts in cotton or sorghum 

fields. Cotton was recently identified as one of two crops responsible for the greatest 

amount of potential bird mortality in the United States (Mineau and Whiteside, 2006). 

Although use of insecticides on agricultural fields is widespread; cotton is well known 

for intensive historical and current agricultural chemical use (Kannan et al, 2003). 

Concentrations of contaminants historically used for cotton agriculture such as DDE and 

its metabolites, toxaphene, and arsenic can be elevated in areas used for cotton 

production (Bednar et al., 2002; Kannan et al., 2003).   

In 2005 a reported 8,677,000 lbs of herbicides, 3,075,000 lbs of growth 

regulators and defoliants, and 5,946,000 lbs of insecticides were applied to cotton crops 
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in Texas (NASS, 2006).  Over 60% of the herbicides and defoliants typically used in 

agriculture are potential endocrine or reproductive system disruptors (Colborn and Short, 

1999). However, the most toxic class of these agricultural chemicals is the 

organophosphate (OP) and carbamate (CB) insecticides. OP and CB insecticides prevent 

normal physiological functions of organisms by acting as cholinesterase (ChE) 

inhibitors, and have been directly responsible for numerous cases of mortality in raptors 

(Mineau et al., 1999). Exposure to OP and CB insecticides, as well as other agricultural 

chemicals, can occur through ingestion of contaminated prey, water, vegetation, seeds, 

or soil, as well as through direct contact with the pesticide during application, or through 

contact with contaminated soil or water (Hill, 2003).    

The use of agricultural fields as foraging areas along with the use of agricultural 

culverts as roost sites by burrowing owls may increase their risk of exposure to 

insecticides and other agricultural chemicals, either through ingestion of contaminated 

prey, or through dermal exposure to agricultural runoff. This analysis examines the 

comparative risks of different agricultural chemicals currently used on cotton or 

sorghum fields to burrowing owls in South Texas.  

2. Study Area 

 Refer to Chapter II.2. 

3. Model Overview 

3.1 Conceptual Model 

The model simulates foraging and roosting behavior of an individual burrowing 

owl in crops that have received treatments with agricultural chemicals, resulting in 
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estimates of dermal and oral exposure that can be used to predict risk of lethal or 

sublethal effects. The model consists of four submodels representing (1) behavior of 

burrowing owls, (2) chemical applications to crops, (3) chemical transfer and fate in the 

crop soil and prey items, and (4) chemical exposure in the burrowing owl. 

Details of the cultivation of four different crops; cotton, sorghum, cabbage, and 

onions, are used to simulate three different foraging crop scenarios (FS 1-3). In all three 

scenarios a cotton\sorghum field is designated as a roost site. In this model the 

burrowing owl forages during the night in the fields surrounding its roost site, and is 

located at the culvert used as its roost site during the day. The primary crop scenario 

(FS-1), has two cotton/sorghum fields as foraging sites adjacent to the roost site. Each 

cotton/sorghum field alternates annually between cotton or sorghum crops grown during 

the summer, and the two foraging fields are offset so that there is always one cotton field 

and one sorghum field. The two additional crop scenarios include either a cabbage field 

(FS-2) or an onion field (FS-3) as a foraging site in addition to the cotton/sorghum 

fields. 

The burrowing owl is only present in the model during the winter period, (Oct 1- 

Mar 1), when the post-harvest cotton/sorghum fields are wide expanses of bare soil, yet 

onions and cabbage are actively cultivated (Appendix A2). The primary crop scenario 

(FS-1), simulates chronic exposure to agricultural chemicals, while FS-2 and FS-3 add 

potential acute exposure scenarios. 

Within these fields pesticides are applied to the crops. Once a pesticide is applied 

it is transferred to the soil, the owl, and its prey. The owl accumulates pesticides through 



 

 

78 

dermal and ingestion pathways. ChE inhibition is calculated from the amount of 

insecticide accumulated with a dose-response equation. ChE inhibition, exposure > 

LOEL, and exposure > HD5 are used as endpoints (Figure 3).  

For a more complete model description please refer to Chapter II.4. 

4. Methods 

An equal number of simulations were run with either cotton or sorghum grown in 

the roost sites field in the summer prior to the arrival of the wintering burrowing owl, 

and an equal number of simulations were run for each crop scenario. 

Two hundred simulations were run in each crop scenario and results for each 

individual chemical for each endpoint were saved. Because herbicides and growth 

regulators did not cause exposure greater than a HD5 prior to increasing their 

concentrations in culvert soil by 3-7 times (Chapter III), the concentrations of 

agricultural chemicals in the culvert soil was set to 10 times the concentrations of 

agricultural chemicals in the crop soil, and a separate set of 200 simulations in each crop 

scenario were run in order to show which chemicals were increased to levels above their 

HD5 when concentrations in the culvert soil were increased.   

In order to evaluate lethal or sublethal exposures to agricultural chemicals 

including insecticides, herbicides, growth regulators, and defoliants, the model records 

the occurrence of exposures to a chemical greater than the HD5 or LOEL (Hc or Lc) for 

that chemical. Hc and Lc represent the concentration of a chemical in the owl (CO)/HD5, 

or CO/LOEL respectively, while c represents the individual chemicals and can be 

replaced by i, h, g, or f, to represent individual insecticides, herbicides, growth regulators 
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and defoliants, or fungicides. Hc and Lc are recorded at each time step. The maximum 

value of Hc and Lc that occurred throughout the winter, as well as the duration of 

exposure greater than the HD5 or LOEL throughout the winter were recorded for each 

chemical in each simulation run.  

In order to evaluate lethal and sublethal exposures to OP and CB insecticides, the 

maximum value and mean value of ChE inhibition that occurred over the winter were 

also recorded for each simulation, as well as the duration of any ChE inhibition, and the 

duration of ChE inhibition greater than 20%.  

A comparison of these endpoints was then used to determine which agricultural 

chemicals currently in use are most likely to cause lethal or sublethal effects in 

burrowing owls wintering in South Texas cotton fields. 

5. Results 

5.1 OP and CB Insecticides 

 The greatest amount of both average maximum and average mean ChE inhibition 

was caused by the carbamate insecticide methomyl in FS-3 (maximum = 57.23%, mean 

= 14.41%), followed by methomyl in FS-2 (maximum = 7.19%, mean = 2.05%). In FS-1  

 

 

 

 

 

 



 

 

80 

which does not have active spraying during the winter, the highest amount of average 

maximum and average mean ChE inhibition were due to chlorpyrifos (maximum = 

1.83%, mean = 1.08%), followed by dicrotophos (maximum = 1.80%, mean = 0.98%), 

and oxamyl (maximum = 0.34%, mean = 0.18%) (Figure 15, Figure 16). The only 

insecticide exposure which caused ChE inhibition levels greater than 20% was 

methomyl in FS-3 and FS-2 (Figure 17).  There were low levels of ChE inhibition 

attributed to nearly all of the chemicals evaluated. Average duration of exposure to the 

insecticides chlorpyrifos and malathion occurred throughout the entire wintering period 

(~ 150 days) in all crop scenarios, and exposure to methomyl occurred throughout the 

entire wintering period in FS-3. The next longest average durations of exposure were to 

acephate (75-98 days), dicrotophos (71-96 days), and oxamyl (61-75 days) (Figure 18).  

The average maximum and mean ChE inhibition values as well as duration of exposure 

values are listed in Appendix C1a-c. 
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5.2 Insecticides 

 5.2.1 LOELs 

 The insecticides with an average maximum value of Li > 0 were chlorpyrifos (Li 

= 10.98-13.66), endosulfan (Li = 0.00-4.81), lambda-cyhaltothrin (Li = 1.01-1.35), 

disulfoton (Li = 0.22-0.35), cypermethrin (Li = 0.04-0.10), dimethoate (Li = 0.00-0.15), 

indoxacarb (Li = 0.01-0.02), and esfenvalerate (Li = 0.00-0.01). While exposure to 

chlorpyrifos, lambda-cyhalothrin, disulfoton, cypermethrin, and indoxacarb greater than 

their respective LOELs occurred in all three crop scenarios, exposure to endosulfan, 

dimethoate, and esfenvalerate greater than their LOELs only occurred in FS-2 (Figure 

19, Figure 20).  Of these insecticides chlorpyrifos (141-146 days) had the longest 

average duration of exposure to a concentration greater than its LOEL, followed by 

lambda-cyhalothrin (56-65 days), disulfoton (7-10 days), endosulfan (7 days), 

cypermethrin (2-4 days), indoxacarb (0-1 days), esfenvalerate (0.1 days), and dimethoate 

(0.04 days)  (Figure 21). The average maximum exposure values are shown in Appendix 

C2a-c.  

5.2.2 HD5s 

 When the ratio of concentrations of insecticides in culvert soil to concentrations 

of insecticides in the crop soil was set to 1 (equal concentrations), the insecticide 

chlorpyrifos (average maximum Hi = 0.14) was the only insecticide to which the owl 

was exposed to a concentration greater than its HD5 in FS-1. In FS-2, the owl was 

exposed to the insecticides chlorpyrifos (average maximum Hi = 0.14), diazinon 

(average maximum Hi = 1.81), and endosulfan (average maximum Hi = 0.09) at 
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concentrations greater than their HD5s. In FS-3, the owl was exposed to the insecticides 

chlorpyrifos (average maximum Hi = 0.12), and diazinon (average maximum Hi = 1.50) 

at concentrations greater than their HD5s (Figure 22, Figure 23). Of these insecticides 

diazinon (2.1-4.4 days) had the longest duration of exposure greater than its HD5, 

followed by chlorpyrifos (3.2-3.5 days), and disulfoton (1.3 days) (Figure 24). 

When the ratio of concentrations of insecticides in culvert soil to concentrations 

of insecticides in the crop soil was set to 10, the owl was also exposed to the insecticides 

disulfoton (average maximum Hi = 0.11-0.18), dicrotophos (average maximum Hi = 

0.05-0.08), and indoxacarb (average maximum Hi = 0.03); in addition to chlorpyrifos 

(average maximum Hi = 2.26-2.69), at a concentration greater than their HD5s, in all 

three crop scenarios.  In FS-2 the owl was also exposed to endosulfan (average 

maximum Hi = 0.25), and diazinon (average maximum Hi = 1.98) at a concentration 

greater than their HD5s, and in FS-3 the owl was also exposed to diazinon (average 

maximum Hi = 1.90) at a concentration greater than its HD5 (Figure 22, Figure 23). Of 

these insecticides chlorpyrifos (35.4-45.2 days) had the longest average duration of 

exposure to a concentration greater than its HD5, followed by disulfoton (4.5-5.9 days), 

diazinon (3.1-5.4 days), dicrotophos (2.9-4.3 days), endosulfan (3.5 days), and 

indoxacarb (1.2-2.3 days)  (Figure 24). The average maximum exposure values are 

shown in Appendix C3a-c.   
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5.3 Herbicides 

 5.3.1 LOELs 

 The herbicides with an average maximum value of Lh > 0 were trifluralin, diuron, 

bensulide, alachlor, glufinosinate, DCPA, 2,4-D, glyphosate, s-metolachlor, oxyfluorfen, 

and dimethenamid. Exposure to concentrations of trifluralin (average maximum Lh = 

2.37-3.38), diuron (average maximum Lh = 0.63-0.70), alachlor (average maximum Lh = 

0.19-0.38), glufinosinate (average maximum Lh = 0.10-0.26), 2,4-D (average maximum 

Lh = 0.08), glyphosate (average maximum Lh = 0.08-0.12), s-metolachlor (average 

maximum Lh = 0.07-0.09), and dimethenamid (average maximum Lh = 0.01-0.02) 

greater than their LOELs occurred in all three crop scenarios. Exposure to concentrations 

of bensulide (average maximum Lh = 0.36-0.73), and DCPA (average maximum Lh = 

0.13-0.37) greater than their LOELs occurred in FS-2 and FS-3, while exposure to a 

concentration of oxyflourfen (average maximum Lh = 0.04) greater than its LOEL only 

occurred in FS-3 (Figure 19, Figure 20).  Of these herbicides trifluralin (46-56 days), 

diuron (27-30 days), and bensulide (3-5 days), had the longest average duration of 

exposure to concentrations greater than their LOEL (Figure 21). The average maximum 

exposure values are shown in Appendix C4a-c.   

5.3.2 HD5s 

 When the ratio of concentrations of insecticides in culvert soil to concentrations 

of insecticides in the crop soil was set to 1 (equal concentrations), there were no 

herbicides to which the owl was exposed to a level greater than the HD5 in the all three 

crop scenarios (Figure 22, Figure 23).  
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When the ratio of concentrations of herbicides in culvert soil to concentrations of 

herbicides in the crop soil was set to 10, the owl was exposed to concentrations of the 

herbicides trifluralin (average maximum Hh = 0.14) and glyphosate (average maximum 

Hh = 0.05-0.09) greater than their HD5s, in all three crop scenarios, and to the herbicide 

dimethenamid (average maximum Hh = 0.01) in FS-2 (Figure 22, Figure 23). Of these 

herbicides trifluralin (0.5-1.8 days) had the longest duration of exposure to a 

concentration greater than its HD5, however the time periods of average exposure to 

concentrations of these chemicals greater than their HD5s was extremely short (0.03-

1.76 days) (Figure 24). The average maximum exposure values are shown in Appendix 

C5a-c.   

5.4 Growth Regulators and Defoliants 

5.4.1 LOELs 

 The only growth regulators or defoliants to which the owl was exposed to a 

concentration greater than their LOELs were the defoliants paraquat (average maximum 

Lg = 2.40-2.98) and tribufos (average maximum Lg = 0.56-0.89) (Figure 19, Figure 20).  

The average duration of exposure to concentrations greater than their LOELs was longer 

to paraquat (80-101 days), than to tribufos (30-39 days) (Figure 21). The average 

maximum exposure values are shown in Appendix C6a-c.   

5.4.2 HD5s 

 When the ratio of concentrations of growth regulators or defoliants in culvert soil 

to concentrations of growth regulators or defoliants in the crop soil was set to 1 (equal 

concentrations), there were no growth regulators or defoliants to which the owl was 
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exposed to concentrations greater than their HD5s in all three crop scenarios (Figure 22, 

Figure 23).  

When the ratio of concentrations of growth regulators or defoliants in culvert soil 

to concentrations of growth regulators or defoliants in the crop soil was set to 10, the owl 

was exposed to concentrations of tribufos (average maximum Hg = 0.45-0.57) and 

paraquat (average maximum Hg = 0.00-0.01) greater than their HD5s (Figure 22, Figure 

23). Of these two chemicals tribufos (24-36 days) had the longest average duration of 

exposure greater than its HD5 (Figure 24). The average maximum exposure values are 

shown in Appendix C7a-c.   

5.5 Fungicides 

5.5.1 LOELs 

 The fungicides with an average maximum value of Lf > 0 were copper hydroxide, 

maneb, chlorothalonil, and mancozeb. Fungicide exposure was only evaluated FS-2 and 

FS-3 crop scenarios because fungicides were not applied to cotton or sorghum fields. 

Exposure to concentrations of maneb (average maximum Lf = 2.55-4.67) and 

chlorothalonil (average maximum Lf = 0.76-1.30) greater than their LOELs occurred in 

both crop scenarios; while exposure to concentrations of copper hydroxide (average 

maximum Lf = 33.51) and mancozeb (average maximum Lf = 0.03) greater than their 

LOELs only occurred in FS-3 (Figure 19, Figure 20, Appendix C8a-b).  Of these 

fungicides copper hydroxide (149 days) had the longest average duration of exposure to 

a concentration greater than its LOEL, followed by maneb (13-21 days), chlorothalonil 
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(5-8 days), and mancozeb (0.07 days) (Figure 21, Appendix C8a-b). The average 

maximum exposure values are shown in Appendix C8a-b.   

5.5.2 HD5s 

 Because fungicides are not typically used in cotton or sorghum crops, there was 

no difference in exposure due to increasing the ratio of concentrations of fungicides in 

culvert soil to concentrations of fungicides in the crop soil.  The only fungicide to which 

the owl was exposed to a concentration greater than its HD5 was copper hydroxide 

(average maximum Hf = 42.73) in FS-3 (Appendix C9a-b). The owl was exposed to a 

concentration of copper hydroxide > its HD5 was throughout the entire winter 

(Appendix C9a-b). The average maximum exposure values are shown in Appendix C9a-

b.   

6. Discussion 

6.1 OP and CB Insecticides 

In all three crop scenarios the OP and CB insecticides predicted to have the 

greatest potential to negatively affect burrowing owls wintering in south Texas were 

chlorpyrifos, dicrotophos, disulfoton, and oxamyl (Figures 15-23). The insecticides 

methomyl and diazinon also showed potential to negatively affect burrowing owls 

foraging in cabbage or onion fields (FS-2 & FS-3) (Figures 15-23). Exposure to 

sublethal concentrations of methomyl and diazinon resulted in reduced and abnormal 

growth in mallard embryos (Hoffman and Albers, 1984). Diazinon has been responsible 

for a greatest number of avian mortality events of all the insecticides used in the model, 
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and in one case was responsible for a mortality of 14 Canada geese on a golf course in 

Missouri three months after its application (Zinkl et al., 1978).  

Avian mortality events have occurred due to the usage of several of the 

insecticides used in this model. At least three confirmed large avian mortality events 

have been attributed to chlorpyrifos with a total minimum mortality of 43 birds, two to 

dicrotophos with a total minimum mortality of 244 birds, three to disulfoton with a total 

minimum mortality of 43 birds, one to oxamyl with a total minimum mortality of 146 

birds, and 34 to diazinon with a total minimum mortality of 833 birds. Diazinon is also 

suspected in four large mortality events with a total minimum mortality of 126 birds 

(Fleischli et al., 2004). Methomyl is suspected in one mortality event with a total 

minimum mortality of 107 birds, and was responsible for the mortality of an endangered 

griffon vulture, Gyps fulvus, in Croatia (Fleischli et al., 2004, Sabocanec et al., 2005). 

Several of these mortality events have occurred in Texas, such as the mortality of a large 

number of birds on the Texas Gulf Coast in 1982 due to intentional poisoning with 

dicrotophos (Flickinger et al., 1984).  

Of the insecticides evaluated, the OP insecticides chlorpyrifos, diazinon, and 

disulfoton, as well as the CB insecticides carbaryl, and methomyl, were detected in 

burrowing owl pellets from south Texas (Woodin et al., 2006). In addition, diazinon and 

malathion were detected, along with several other insecticides, in burrowing owl eggs in 

the Colorado River delta, Mexico (Garcia-Hernandez et al., 2006). 

Based on all three endpoints the insecticide chlorpyrifos had the greatest 

potential to negatively affect burrowing owls wintering in South Texas. Burrowing owls 
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were likely to be exposed to concentrations of chlorpyrifos that may result in lethal or 

sublethal effects. In addition, the average duration of exposure to chlorpyrifos typically 

encompassed the entire wintering period (Figures 18, 21). Chlorpyrifos was detected in 

burrowing owl footwash samples from a study site in California (Gervais et al., 2000). In 

addition to acute toxic effects, chlorpyrifos also has been associated with decreased 

reproductive productivity in robins (Decarie et al., 1993). Due to human health risks 

chlorpyrifos was ordered by the U.S. EPA to be phased out for some uses in 2000 (U.S. 

EPA, 2000a).  

There were several limitations in the accurate evaluation of OP and CB 

insecticides. The first limitation is that NASS does not currently report agricultural 

chemical use for sorghum, so the data used in the model was NCFAP data from 1997. 

Therefore the usage of chlorpyrifos, disulfoton, and carbaryl, which were only used on 

sorghum crops in the model, may not accurately reflect the current usage scenario on 

sorghum crops in Texas.  

The second limitation is the lack of dose response curves for some of the 

insecticides. The carbamate insecticides methomyl and oxamyl caused some of the 

highest levels of ChE inhibition, however exposure to oxamyl or methomyl did not reach 

levels greater than their LOELs or HD5s (Figures 15, 19, 22). These discrepancies may 

be due to a lack of insecticide specific data, which resulted in the estimation of the dose-

response curves for oxamyl and methomyl from the dose-response curves for the OP 

insecticides ethyl parathion and dicrotophos, respectively (Appendix A8). More research 
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leading towards the development of an accurate dose-response curve is necessary in 

order to accurately evaluate the effects of oxamyl and methomyl on ChE inhibition.  

 The third limitation is that ChE inhibition was assumed to be additive. However, 

exposure to multiple cholinesterase inhibiting pesticides can sometimes result in 

synergistic ChE inhibition. For example, exposure to malathion occurred at extremely 

low levels throughout the entire wintering period, most likely due to its repeated use in 

the treatment of boll weevil. Although malathion was one of the lowest inhibitors of ChE 

in the model, it has been demonstrated to cause potentiation of carbaryl toxicity 

(Johnston et al., 1994). This may have resulted in higher levels of ChE inhibition than 

was simulated. 

The fourth limitation is that granular insecticides were excluded from the model. 

A highly toxic OP insecticide used in granular formation on sorghum for the control of 

white grubs is the OP insecticide terbufos (Cronholm et al., 1998). The granular 

formation of terbufos was one of several granular insecticides implicated in the mortality 

of a large number of raptors in British Columbia because of their persistence for a long 

duration after application (Wilson et al., 2002). If terbufos is still used on sorghum, it 

may negatively affect burrowing owls wintering in south Texas.   

6.2 Other Insecticides  

 The insecticides, other than OP and CB insecticides, with the greatest potential to 

negatively affect burrowing owls wintering in South Texas were the OC endosulfan, 

followed by the pyrethroids lambda-cyhalothrin and cypermethrin, and the oxadiazine 

indoxacarb. Although exposure to all of these insecticides reached concentrations greater 



 

 

98 

than their LOELs, only exposure to endosulfan reached concentrations greater than their 

HD5s prior to increasing concentrations in the culvert soil. After increasing 

concentrations in the culvert soil, exposure to indoxacarb also reached concentrations 

greater than its HD5 (Figures 19, 22).  

Like other OC insecticides, endosulfan is highly toxic to aquatic fauna, 

mammals, and birds, can bioaccumulate in aquatic food chains, and can cause eggshell 

thinning in predatory birds (Cem Oktay et al., 2003). Endocrine disruptive effects due to 

endosulfan exposure have been observed in fish, birds, mammals, and amphibians 

(Cerrillo et al., 2005). Chronic low-level exposure to endosulfan, as well as to a 

pyrethroid insecticide and an OP insecticide, in broiler chicks resulted in impairments in 

their metabolism and immune systems (Garg et al., 2004). In addition, endosulfan has 

been implicated as a factor in amphibian declines (Sparling et al., 2001, Park and 

Propper, 2002). However, in the model endosulfan was only applied in FS-2.  

6.3 Herbicides 

The herbicides with the greatest potential to negatively affect burrowing owls 

wintering in South Texas were trifluralin, glyphosate, dimethenamid, diuron, bensulide, 

and alachlor. Although exposure to these herbicides all reached concentrations greater 

than their LOELs, only exposure to trifluralin, glyphosate, and dimethenamid reached 

concentrations greater than their HD5s, and only after concentrations in the culvert soil 

had been increased (Figure 19, Figure 22). Of these herbicides the greatest potential risk 

to burrowing owls wintering in South Texas is due to trifluralin. Trifluralin, along with 

alachlor, is one of several herbicides implicated as a disruptor of endocrine or 
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reproductive systems (Colbourne and Short, 1999).  Of several herbicides tested for 

toxicity to mallard eggs trifluralin was one of the top two most toxic herbicides. 

Trifluralin also had the highest level of avian hazard of several herbicides evaluated 

based on permissible levels of application (Hoffman, 2003). Trifluralin is also one of the 

most common contaminants detected in cotton fields (Kannan et al., 2003). 

6.4 Growth Regulators and Defoliants 

The growth regulators and defoliants with the greatest potential to negatively 

affect burrowing owls wintering in South Texas were tribufos and paraquat. Exposure to 

tribufos and paraquat reached concentrations greater than their LOELs, and reached 

concentrations greater than their HD5s, but only after concentrations in the culvert soil 

had been increased (Figure 19, Figure 22). There is little information regarding avian 

effects due to exposure to tribufos. However, paraquat administered to nestling 

American kestrels resulted in high levels of mortality, reduced growth, and altered 

physiology (Hoffman et al., 1985, Hoffman et al., 1987). Of several herbicides tested for 

toxicity to mallard eggs paraquat was one of the top two most toxic herbicides, and had 

the second highest level of hazard based on permissible levels of application (Hoffman, 

2003). A sublethal concentration of paraquat resulted in reduced growth in mallard 

embryos (Hoffman and Albers, 1984). In addition, paraquat is one of several herbicides 

and defoliants implicated as a disruptor of endocrine or reproductive systems (Colbourne 

and Short, 1999).   
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6.5 Fungicides   

The fungicides with the greatest potential to negatively affect burrowing owls 

wintering in South Texas were copper hydroxide, maneb, chlorothalonil, and mancozeb. 

Exposure to these fungicides reached concentrations greater than their LOELs, but only 

exposure to copper hydroxide reached concentrations greater than its HD5 (Appendix 

C8a-b, Appendix C9a-b). However, the model was probably inadequate to evaluate 

copper hydroxide. Copper hydroxide is metal based, and behaves differently from the 

other chemicals examined in this model. Copper hydroxide was assumed to not have a 

half-life, and because the model does not account for transfers of material off the fields it 

accumulated at a rate much greater than any of the other fungicides in this model, 

leading to high exposure levels. In addition fungicides were only applied to FS-2, and 

FS-3, and subsequently may not be as important in terms of potential risks to burrowing 

owls in South Texas compared to the other chemical classes. 

6.6 Summary 

Although agricultural chemical exposure was evaluated for all three foraging 

scenarios, the Cotton/Sorghum crop scenario (FS-1) represents the majority of 

burrowing owl roost sites in South Texas. Based on the results of these simulations in 

appears that the chemicals with the greatest potential to negatively affect burrowing owls 

wintering in south Texas cotton and sorghum fields are the OP insecticides chlorpyrifos, 

dicrotophos, and disulfoton; the pyrethroid insecticide lambda-cyhalothrin, and the 

oxadiazine insecticide indoxacarb; the herbicides trifluralin, glyphosate, and 

dimethenamid; and the defoliants tribufos and paraquat.  When the burrowing owl 
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foraged in cabbage or onion fields (FS-2 & FS-3), the OP insecticides methomyl and 

diazinon, as well as the OC insecticide endosulfan also showed potential to negatively 

affect burrowing owls wintering in South Texas. 

Several of the insecticides that posed the greatest risk to burrowing owls were 

only used on sorghum crops in the model. However, NASS does not currently report 

agricultural chemical use for sorghum, so the data used for sorghum insecticide use in 

the model was from 1997. An accurate analysis of the risks of agricultural chemical use 

to burrowing owls living in cotton/sorghum fields is dependent on accurate and current 

information regarding chemical use; therefore it is crucial that data on current 

agricultural chemical use in sorghum crops be reported. Other limitations of the model 

included the lack of dose-response curves for some of the OP or CB insecticides, the 

exclusion of granular insecticides, and exclusion of possible synergistic effects between 

currently applied pesticides. 

In addition to synergistic effects between currently used agricultural chemicals, 

synergistic effects between currently used agricultural chemicals and elevated levels of 

contaminants related to historical agricultural use may also be of concern, although they 

were not evaluated in the model. DDE or its metabolites have been shown to sometimes 

occur in concentrations high enough to affect avian reproduction in the Rio Grande 

Valley (Wainwright et al., 2001).  This is significant because exposure to an OP 

insecticide after previous exposure to p,p-DDE may increase ChE inhibition (Ludke, 

1977), and may cause anemia or affect the immune system (Gill et al., 2004). In 

addition, elevated levels of mercury and arsenic have been detected in relation to 
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agriculture in South Texas (Custer and Mitchell, 1991). Exposure to mercury has also 

been shown to increase the cholinesterase inhibiting activity of OP and CB insecticides 

(Dieter and Ludke, 1975; Dieter and Ludke, 1978). Synergistic effects in birds have also 

been shown between fungicides and OP insecticides, and some chemical mixtures have 

been shown to result in as much as 100 fold toxicity (Thompson, 1996).      

Results from several other multichemical risk assessments in different situations 

concur with the results of this model. Three of the herbicides used in this model, 

(glyphosate, 2,4-D, and trifluralin), were evaluated, along with an assortment of other 

herbicides, in a risk assessment that compared the relative risks of acute avian exposure 

in spring wheat. 2,4-D was determined to have an equal relative risk to glyphosate, while 

trifluralin was determined to have an increased relative risk of 1.3 times glyphosate 

(Peterson and Hulting, 2004). In this simulation model the risk to burrowing owls from 

the three herbicides is greatest for trifluralin, followed by glyphosate, then 2,4-D (Figure 

19, Figure 22). A risk assessment of cotton pyrethroids showed that cypermethrin and 

lambda-cyhalothrin posed a greater risk to aquatic organisms than several other 

pyrethroids including cyfluthrin and esfenvalerate (Solomon et al., 2001). Similiarly, in 

this simulation model the pyrethroid lambda-cyhalothrin represented the greatest 

potential risk to burrowing owls, followed by the pyrethroid cypermethrin, then by 

esfenvalerate and cyfluthrin (Figure 19, Figure 22). A third model compared the 

ecological relative risks of 37 chemicals used on cotton. Of the chemicals used in the 

burrowing owl model, the insecticides endosulfan and chlorpyrifos were identified as 

posing a high ecological risk, the insecticide methomyl was identified as posing a 
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medium ecological risk, the insecticides dimethoate and lambda-cyhalothrin were 

identified as posing low ecological risks, and the insecticides spinosad and cypermethrin 

were classified as posing negligible risks (Sanchez-Bayo et al., 2002). Similarly 

chlorpyrifos, endosulfan, and methomyl were identified as a potential risk to burrowing 

owls, while exposure to spinosad did not represent a potential risk to burrowing owls 

(Figures 15, 19, 22).    

Simulation modeling proved an ideal means to identify from a wide number of 

agricultural chemicals, in several different chemical classes, based on toxicity levels, 

frequency of application, and application rates, which agricultural chemicals had the 

greatest predicted potential to negatively affect burrowing owl populations in south 

Texas.  
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CHAPTER V 

CONCLUSIONS 

A simulation model was constructed that integrated dermal and oral exposure to 

evaluate the lethal and sublethal effects in birds of chronic low-level exposure to a wide 

range of chemical types. Burrowing owls wintering in cotton fields in south Texas, 

which are chronically exposed to low levels of agricultural chemicals were chosen to 

exemplify the use of this model. The model was used to evaluate the potential of culverts 

to act as ecological traps, and to determine which agricultural chemicals currently in use 

in cotton/sorghum fields in south Texas had the greatest potential to negatively affect 

burrowing owl populations.  

The results of these simulations identified several important data gaps. These 

data gaps include 1) half-lives of agricultural chemicals in birds, 2) agricultural chemical 

half-lives in insects and their accumulation and transfer rates in prey, 3) accurate dermal 

to oral toxicity indexes and expanded research on the duration of effects due to dermal 

exposure, 4) avian dose-response curves for the inhibition of ChE due to exposure to the 

insecticides methomyl and oxamyl, 5) LOELs based on avian data, 6) current 

agricultural chemical use data for sorghum in Texas, 7) the frequency and timing of pre-

planting insecticide treatment in sorghum, 8) the concentrations of agricultural chemicals 

in culverts in the cotton/sorghum fields used as roost sites by burrowing owls, and 9) 

more general research on chronic low-level exposures to common agricultural chemical 

mixtures in birds.  



 

 

105 

The risk of chemical classes to burrowing owls wintering in south Texas 

cotton/sorghum fields can be described as insecticides>growth regulators and 

defoliants>herbicides, and the greatest risk of lethal or sublethal effects was due to OP 

and CB insecticides. Lethal or sublethal effects of exposure to insecticides increased in 

the presence of an adjacent crop that received agricultural chemical treatments (Chapter 

II).  

Simulations investigating the potential of agricultural culverts to act as ecological 

traps using ChE inhibition and HD5s indicated that lethal effects due to increased 

chemical concentrations in culverts are unlikely in burrowing owls wintering in south 

Texas. However the results using ChE inhibition as an endpoint indicated that sublethal 

effects may be likely if concentrations of OP and CB insecticides are increased in the 

culvert soil. Analysis of the soil in culverts used as roost sites by burrowing owls in 

south Texas cotton fields for OP and CB residues would help determine the amount of 

dermal exposure occurring through this exposure route (Chapter III).  

Simulation results predicted that the agricultural chemicals with the greatest 

potential to negatively affect burrowing owls wintering in south Texas cotton and 

sorghum fields are the OP insecticides chlorpyrifos, dicrotophos, and disulfoton; the 

oxadiazine insecticide indoxacarb; the herbicides trifluralin, glyphosate, and 

dimethenamid; and the defoliants tribufos and paraquat (Chapter IV).   

This model provided a framework for a simple stochastic simulation model 

which can be used to evaluate different classes of chemicals or individual chemicals, as 

well as different crops, based on current agricultural practices, in terms of the lethal or 
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sublethal effects on avian wildlife. The combined use of three different endpoints in this 

model allows for the risk of both lethal and sublethal effects in birds due to exposure to 

chemical classes in addition to insecticides to be investigated. Concurring results from 

all three endpoints, such as occurred with the insecticide chlorpyrifos, can provide a 

stronger assessment of a chemical or crop than from one endpoint alone. Simulation 

modeling proved an ideal means to identify from a wide number of agricultural 

chemicals, in several different chemical classes, based on toxicity levels, frequency of 

application, and application rates, which agricultural chemicals had the greatest potential 

to negatively affect burrowing owl populations in south Texas.  
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 Table A3. Crop treatment information. 

Cotton Sorghum Onion Cabbage

Growing Season 
Start Date

52 52 349 305

Growing Season 
End Date

227 210 166 166

Number of 
Treatments

1.72 1- (no data) 1.69 3.13

First Treatment 
Date

52-220 52-200 1-60 305-365

Second 
Treatment Date

52-220 N/A 61-166 1-60

Third Treatment 
Date

N/A N/A N/A 60-166

Fourth Treatment 
Date

N/A N/A N/A 1-166

Insecticide, boll 
weevil

(estimated from APHIS,2002; 
Txbollweevil.org,2006)

Application Dates
167, 174, 181, 
188, 195, 202, 

209

167, 174, 181, 
188, 195, 202, 

209
N/A N/A

Number of 
Treatments

1.82 1- (no data) 2.20 1.17

First Treatment 
Date 

(Preemergence)
45-59 45-59 349-365 298-365

Second 
Treatment Date

60-220 60-220 1-60 1-166

Third Treatment 
Date

N/A N/A 61-166 N/A

Number of 
Treatments

1 N/A N/A N/A

First Treatment 
Date

208-216 N/A N/A N/A

Number of 
Treatments

1 N/A N/A N/A

First Treatment 
Date

37-87 (crop 
growth days)

N/A N/A N/A

Number of 
Treatments

N/A N/A 2.81 2.45

First Treatment 
Date

N/A N/A 349-365 305-365

Second 
Treatment Date

N/A N/A 1-60 1-60

Third Treatment 
Date

N/A N/A 61-166 61-166

Crop Type

Growing Season
(estimated from Dept. of 

Agricultural 
Communications,1996; 

Livingston and Bade, 1996a)

Insecticides 
(estimated from NASS,2006; 
NASS,2005; NCFAP,1997; 

Knutson et al.,2000a; Knutson et 
al.,2000b; Norman and 

Sparks,2000a;Norman and 
Sparks,2000b;Cronholm et 

al.,1998)

Dates are Julian Dates

Herbicides
(estimated from NASS,2006; 

NASS,2005; NASS, 2004; 
NCFAP,1997; Baumann,1998; 

Stichler et al.,1997)

Defoliants
(estimated from NASS,2006; 

Stichler et al.,1995)

Growth Regulators
(estimated from NASS,2006; 

Livingston et al.,1996b)

Fungicides 
(estimated from NASS,2005)
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 Table A5.  Soil half-life values. 

Sensitivity 
Analysis Half-

Life Values

Soil Half-Life 
Values Used in 

Model

Soil (PIP, 
accessed 

2007)

Aerobic Soil
(PAN, accessed 

2007)

Anaerobic Soil
(PAN, accessed 

2007)

Reference
(When PIP or PAN values were unavailable)

Herbicides
2,4-D dimeth. salt 34 34 7 34.0 333.0
Alachlor 20 20 8 20.0 5.00
Atrazine 365 146 >365 146.0 159.0
Bensulide 432 180 120-180 432.0 1890
Bromoxynil 14 10 10-14
Carfentrazone-ethyl 0.58 0.58 0.58 0.55
Clethodim 3 3 3 3.00 191.0
DCPA 30.3 30.3 30.3
Dicamba 28 10 7-28 10.0 88.0
Dimethenamid 20 20 20* (general half-life) (Hartzler, 2002)
Diuron 372 372 30-365 372.0 995.0
Fluometuron 171 10.9 12-171 10.9 28.6
Glufosinate-ammonium 20 20 20.0
Glyphosate 174 47 1-174,47
Glyphosate iso. Salt 96 96 96.0 22.0
Metsulfuron-methyl 180 24 14-180 24.0 338.1
Oxyfluorfen 434.5 180 30-40,180 434.5 603.0
Pendimethalin 1320 40 40 1320 60.0

Prometryn 440 274
30-90,

360-440
274.0 316.0

Prosulfuron 10 10 10* (Vogue et al. 1994)
Pyraflufen-ethyl 496 71 1-71,7* 16-496* 191-392* (SANCO, 2002)
Pyrithiobac-sodium 60 60 60.0 60.0
S-Metolachlor 70 38.4 15-70 38.4 60.5
Trifluralin 240 168.7 45-240 168.7 37.3

Insecticides
Acephate 6 3 3-6 3.00 6.00
Acetamiprid 18 8.2 <18* 8.2* (U.S. EPA, accessed 2006b) 
Aldicarb 2 2 2.00 2.00
Bacillus thuringiensin 120 120 120
Carbaryl 28 6 7-28 6.00 87.0
Carbofuran 120 22 30-120 22.0 20.0
Chlorpyrifos 365 113.3 14-365 113.3 135.5
Cyfluthrin 63 59.5 2-63 59.5 33.6
Cypermethrin 1103 56 4-56 1103 94.2
Diazinon 40 40 14-28 40.0 16.0
Dicrotophos 5 5 5.00
Dimethoate 122 2 4-122, 20 2.00 22.0
Disulfoton 7 2 7 2.00
Endosulfan 50 31.5 50 31.5 147.5
Esfenvalerate 105 105 15-90 105.0
Ethyl Parathion 14 14 14* (USDA, accessed 2006b)
Imidacloprid 997 190 48-190 997.0 27.0
Indoxacarb 693 300 3-693* 147-233* (U.S. EPA, accessed 2006b) 
Lambda cyhalothrin 84 61.8 28-84 61.8 128.0
Malathion 25 2 1-25 2.00 30.0
Methomyl 46 46 14 46.0 1.00
Oxamyl 20 10.7 4-20 10.7 5.63
Permethrin 38 25.1 30-38 25.1 50.0

Spinosad 17.3 9.4 0.3-0.5* 9.4-17.3*
161-250* 

(anaerobic water)
(U.S. EPA, accessed 2006b) 

Terbufos 30 5 5-30
Thiamethoxam 353 294 294-353* 15-24* (NRA, 2001)
Zeta-cypermethrin** 1103 56 4-56 1103 94.2

Growth Regulators 
/Defoliants

Bacillus cereus 120 120 120** used values for Bacillus thuringiensin

Cyclanilide 114 95 35-114* 95* does not degrade* (U.S. EPA, accessed 2006b) 

Ethephon 7.5 7.5 7.50 5.30
Mepiquat Chloride 39 39 39.0 359.0
Mepiquat Pentaborate 39 39 39** 359** no data, used values for mepiquat chloride
Monocarbamide dihyd. 22.3 22.3 22.3** 201** used values for siduron for all except water 1/2 life
Paraquat 4680 620 480-4680 620.0 644.0
Thidiazuron 144 75 26-144* <30* (USDA, accessed 2006a)
Tribufos 745 745 745.0 221.6

Fungicides
Azoxystrobin 112 112 112.0 119.0
Benzoic acid 28 10 7-28** 10** 88** used values for dicamba
Chlorothalonil 90 35 30-90 35.0 8.00
Copper hydroxide does not degrade
Iprodione 64 64 7-60 64.0 32.0
Mancozeb 7.56 7.56 1-7 7.56 2.00
Maneb 36 24 12-36 (U.S. EPA, 2005b)
Mefenoxam*** 170 62 7-170,70 62.0 68.0 *** = mefenoxam and metalaxyl are two names for the same fungicide
Metalaxyl*** 170 62 7-170,70 62.0 68.0 *** = mefenoxam and metalaxyl are two names for the same fungicide
* = values obtained from a source other than PIP or PAN
** = values estimated from a similar chemical

Soil Half-Life Values Reference Soil Half-Life Values (Days)

Used values for cypermethrin
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 Table A6.  Vertebrate and invertebrate half-life values. 
Classification Invertebrate*****

Herbicides
2,4-D dimeth. salt phenoxy 0.833 * 3.4
Alachlor amide 3 ** 3
Atrazine triazine 1.2 ** 14.6
Bensulide organophosphorous 2.62 **** 18
Bromoxynil nitrile 2.8 ** 2.8
Carfentrazone-ethyl triazolone 2 *** 2
Clethodim cyclohexene oxime 1.05 **** 1.05
DCPA aromatic acid 1.5 ** 3.03
Dicamba aromatic acid 0.75 ** 1
Dimethenamid amide 20 ** 20
Diuron urea 2.83 **** 37.2
Fluometuron urea 2 ** 2
Glufosinate-ammonium organophosphorous 1.9 **** 2
Glyphosate organophosphorous 3 ** 4.7
Glyphosate iso. Salt organophosphorous 2.43 **** 9.6
Metsulfuron-methyl urea 1.2083 * 2.4
Oxyfluorfen diphenyl ether 10 *** 18
Pendimethalin dinitroaniline 1.3 ** 4
Prometryn triazine 0.6 ** 27.4
Prosulfuron urea 1.62 **** 1.62
Pyraflufen-ethyl pyrazole 2.33 **** 7.1
Pyrithiobac-sodium aromatic acid 2.27 **** 6
S-Metolachlor amide 1.25 ** 3.84
Trifluralin dinitroaniline 2.6 **** 16.87

Insecticides
Acephate organophosphate 1.05 **** 1.05
Acetamiprid nicotinoid 1.54 **** 1.54
Aldicarb carbamate 0.4 ** 0.4
Bacillus thuringiensin antibiotic 2.49 **** 12
Carbaryl carbamate 0.4 ** 0.6
Carbofuran carbamate 0.25 ** 2.2
Chlorpyrifos organophosphate 2.583 * 11.33
Cyfluthrin pyrethroid 0.6 ** 5.95
Cypermethrin pyrethroid 18 * 18
Diazinon organophosphate 0.5 * 4
Dicrotophos organophosphate 0.3 ** 0.5
Dimethoate organophosphate 0.3 ** 0.3
Disulfoton organophosphate 1.333 * 1.333
Endosulfan organochlorine 21.00 * 21
Esfenvalerate pyrethroid 14 * 14
Ethyl Parathion organophosphate 1.76 **** 1.76
Imidacloprid nicotinoid 2 * 19
Indoxacarb oxadiazine 10 **** 30
Lambda cyhalothrin pyrethroid 10 *** 10
Malathion organophosphate 2 * 2
Methomyl carbamate 2.19 **** 4.6
Oxamyl carbamate 1.65 **** 1.65
Permethrin pyrethroid 5 * 5
Spinosad antibiotic 1.6 **** 1.6
Terbufos organophosphate 2.8 ** 2.8
Thiamethoxam nicotinoid 2.76 **** 29.4
Zeta-cypermethrin pyrethroid 18 * 18

Growth Regulators/Defoliants
Bacillus cereus soil bacterium/ growth regulator 2.49 **** 12
Cyclanilide unclassified plant growth regulator 2.42 **** 9.5
Ethephon defoliant, ethylene releaser 1.5 **** 1.5
Mepiquat Chloride growth inhibitor 2.13 **** 3.9
Mepiquat Pentaborate growth inhibitor 2.13 **** 3.9
Monocarbamide dihyd. herbicide/dessicant 1.94 **** 2.23
Paraquat quaternary ammonium herbicide 1 ** 62
Thidiazuron urea herbicide, defoliant 2.34 **** 7.5
Tribufos defoliant 3.01 **** 74.5

Fungicides
Azoxystrobin antibiotic 2.47 **** 11.2
Benzoic acid triforine 1.62 **** 1.62
Chlorothalonil aromatic 1 * 3.5
Copper hydroxide inorganic, copper 10 *** 10
Iprodione dicarboximide,imidozole 2.3 **** 6.4
Mancozeb dithiocarbamate 4 * 4
Maneb dithiocarbamate 5 * 5
Mefenoxam triforine 2.29 **** 6.2
Metalaxyl triforine 2.29 **** 6.2
* = actual half life value from PIP, accessed 2007
** = estimated half life value from PIP, accessed 2007
*** = used value from a chemical with a similar chlassification

Vertebrate

**** =  fit values (* & **) to a trend line based on mammal metabolism rates vs soil half-life (y = 1.624x^0.5865) and used to 
estimate unknown values
***** = invertebrate 1/2 life values were estimated as (1/10 soil 1/2 life, unless vertebrate 1/2 life wass greater, then the 
vertebrate 1/2 life value was used

Half-Life Values Used in Model (Days)
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 Table A7.  Dermal toxicity index.  
DTI values used in model Actual DTI Values ** Fred-EPA(Fite et al., 2004)***

Herbicides
2,4-D dimeth. salt 1.533 1.533
Alachlor 2.349 2.349
Atrazine 3.454 3.454
Bensulide 2.259 2.259
Bromoxynil 1.116 1.116
Carfentrazone-ethyl 2.715 2.715
Clethodim 2.597 2.597
DCPA 2.715 2.715
Dicamba 2.597 2.597
Dimethenamid 2.550 2.550
Diuron 2.457 2.457
Fluometuron 3.019 3.019
Glufosinate-ammonium 2.597 2.597
Glyphosate 2.597 2.597
Metsulfuron-methyl 2.831 2.831
Oxyfluorfen 2.692 2.692
Pendimethalin 2.280 2.280
Prometryn 2.669 2.669
Prosulfuron 1.995 1.995
Pyraflufen-ethyl 2.597 2.597
Pyrithiobac-sodium 2.385 2.385
S-Metolachlor 2.597 2.597
Trifluralin 2.597 2.597

Insecticides
Acephate 1.339 1.339
Acetamiprid 0.825 0.825
Aldicarb 0.057 0.057 0.230
Bacillus thuringiensin 3.678 3.678
Carbaryl 2.706 2.706
Carbofuran 0.013 0.013, 0.0042 0.099
Chlorpyrifos 1.522 1.522
Cyfluthrin 2.597 2.597
Cypermethrin 4.786 4.786
Diazinon 0.245 0.245
Dicrotophos 2.330 0.299, 2.33, 1 0.342
Dimethoate 0.597 0.597
Disulfoton 10.000 0.034, 10, 3.2 0.582
Endosulfan 0.865 0.865
Esfenvalerate 2.212 2.212
Ethyl Parathion 1.000 0.083, 0.722, 1 0.192
Imidacloprid 0.975 0.975
Indoxacarb 0.825 0.825
Lambda cyhalothrin 3.363 3.363
Malathion 2.319 2.319
Methomyl 0.414 0.414
Oxamyl 0.224 0.224
Permethrin 4.750 4.750
Spinosad 1.082 1.082
Terbufos 1.051 1.051
Thiamethoxam 1.618 1.618
Zeta-cypermethrin 4.831 4.831
Methyl parathion 1.129 1.129 0.319

Growth Regulators/Defoliants
Bacillus cereus* 3.678
Cyclanilide 1.115 1.115
Ethephon 2.049 2.049
Mepiquat Chloride 2.221 2.221
Mepiquat Pentaborate 2.221 2.221
Monocarbamide dihyd.* 2.000
Paraquat 0.332 0.332 1.981
Thidiazuron 5.722 5.722
Tribufos 0.950 0.950

Fungicides
Azoxystrobin 1.995 1.995
Benzoic acid* 2.000
Chlorothalonil 3.575 3.575
Copper hydroxide 3.177 3.177
Iprodione 2.597 2.597
Mancozeb 4.040 4.040
Maneb 4.786 4.786
Metalaxyl 1.935 1.935
* = not enough data to complete equation, values are based on similar chemicals
** = Dermal to Oral Toxicity Indexes based on LD50 values from Hudson et al. (1979), or Schafer et al. (1973)
*** = EPA equation used to estimate a dermal route equivalency factor based on the avian oral LD50  
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 Table A9.  LOEL values. 

Lowest LELor LOEL (mg/kg) References
Herbicides

2,4-D dimeth. salt 5 Keith (1997)

Alachlor 3 Keith (1997)

Atrazine 70 Keith (1997)

Bensulide 15 (U.S. EPA, 1999c)

Bromoxynil 30 (U.S. EPA, accessed 2007)

Carfentrazone-ethyl 110 (U.S. EPA, 1998b)

Clethodim 75 (U.S. EPA, 1995)

DCPA 10 (U.S. EPA, accessed 2007)

Dicamba 10 (U.S. EPA, accessed 2007)

Dimethenamid 33 (U.S. EPA, 2004a)

Diuron 3.125 (U.S. EPA, accessed 2007)

Fluometuron 50 (U.S. EPA, accessed 2007)

Glufosinate-ammonium 1.6 (U.S. EPA, accessed 2007)

Glyphosate 30 (U.S. EPA, accessed 2007)

Metsulfuron-methyl 100 (U.S. EPA, accessed 2007)

Oxyfluorfen 3 (U.S. EPA, accessed 2007)

Pendimethalin 50 (U.S. EPA, accessed 2007)

Prometryn 37.5 (U.S. EPA, accessed 2007)

Prosulfuron 250 (U.S. EPA, 2002c)

Pyraflufen-ethyl 60 (U.S. EPA, 2003)

Pyrithiobac-sodium 31.8 (U.S. EPA, 2002d)

S-Metolachlor 15 Keith (1997)

Trifluralin 3.75 Keith (1997)

Insecticides
Acephate 0.25 (U.S. EPA, accessed 2007)

Acetamiprid 17.5 (U.S. EPA, accessed 2006a)

Aldicarb 0.01 Keith (1997)

Bacillus thuringiensin ???
Carbaryl 5 Keith (1997)

Carbofuran 5 (U.S. EPA, accessed 2007)

Chlorpyrifos 0.1 Keith (1997)

Cyfluthrin 6.2 (U.S. EPA, 1999b)

Cypermethrin 5 Keith (1997)

Diazinon 5 (U.S. EPA, 2004b)

Dicrotophos* 1.5 (U.S. EPA, 2002a)

Dimethoate 0.25 (U.S. EPA, accessed 2007)

Disulfoton 0.05 (U.S. EPA, accessed 2007)

Endosulfan 0.27 Keith (1997)

Esfenvalerate 2.5 (U.S. EPA, 1998a)

Ethyl Parathion 0.01 (U.S. EPA, 2000c)

Imidacloprid 16.9 (U.S. 2001)

Indoxacarb 3.6 (U.S. EPA, accessed 2006a)

Lambda cyhalothrin 0.5 (U.S. EPA, 1997a)

Malathion 0.34 Keith (1997)

Methomyl 10 Keith (1997)

Oxamyl 3.75 (U.S. EPA, accessed 2007)

Permethrin 25 (U.S. EPA, accessed 2007)

Spinosad 8.22 (U.S. EPA, accessed 2006a)

Terbufos 0.25 (U.S. EPA, accessed 2006d)

Thiamethoxam 1.8 (U.S. EPA, 2005c)

Zeta-cypermethrin 5 (U.S. EPA, 1997c)

Growth Regulators/Defoliants
Bacillus cereus ???
Cyclanilide 2 (U.S. EPA, 1997b)

Ethephon 0.5 (U.S. EPA, accessed 2007)

Mepiquat Chloride 75 (U.S. EPA, accessed 2007)

Mepiquat Pentaborate 75 used mepiquat chloride values (U.S. EPA, 2002b)

Monocarbamide dihyd. ??? ?????- EPA does not require tolerance tests

Paraquat 0.93 (U.S. EPA, accessed 2007)

Thidiazuron ??? ?????- EPA does not require tolerance tests

Tribufos 7 (U.S. EPA, 2000b)

Fungicides
Azoxystrobin 34 (U.S. EPA, 1999a)

Benzoic acid 40 (U.S. EPA, accessed 2007)

Chlorothalonil 3 (U.S. EPA, accessed 2007)

Copper hydroxide 289 (U.S. EPA, 2006c)

Iprodione 15 (U.S. EPA, accessed 2007)

Mancozeb 17.2 (U.S. EPA,  2005a)

Maneb 2 (U.S. EPA, accessed 2007)

Metalaxyl 25 (U.S. EPA, accessed 2007)
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 Table A10. Avian HD5 values. 
Avian Oral 

LD50* 
(mg/kg)

Avian HD5 Values 
Used in Model**** 

(mg/kg)

Avian HD5** 
(mg/kg)

Predicted 
Avian HD5*** 

(mg/kg)
Herbicides

2,4-D dimeth. salt 500 132.90 132.9 48.48
Alachlor 1536 330.42 330.42 135.13
Atrazine 4237 408.98 408.98 341.37
Bensulide 1386 160.98 160.98 123.03
Bromoxynil 217 21.68 21.68 22.62
Carfentrazone-ethyl 2250 191.50 191.50
Clethodim 2000 232.29 232.29 171.97
DCPA 2250 191.50 191.50
Dicamba 2000 62.26 62.26 171.97
Dimethenamid 1908 221.60 221.6 164.73
Diuron 1730 193.04 193.04 150.64
Fluometuron 2974 192.68 192.68 247.08
Glufosinate-ammonium 2000 232.29 232.29 171.97
Glyphosate 2000 232.29 232.29 171.97
Metsulfuron-methyl 2510 261.19 261.19 211.62
Oxyfluorfen 2200 614.58 614.58 187.61
Pendimethalin 1421 125.86 125.86
Prometryn 2150 183.72 183.72
Prosulfuron 1000 159.59 159.59 91.31
Pyraflufen-ethyl 2000 171.97 171.97
Pyrithiobac-sodium 1599 185.71 185.71 140.19
S-Metolachlor 2000 241.81 241.81 171.97
Trifluralin 2000 245.55 245.55 171.97

Insecticides
Acephate 350 18.52 18.52 35.00
Acetamiprid 98 20.91 20.91 10.95
Aldicarb 3.4 0.43 0.43 0.51
Bacillus thuringiensin 5000 397.10 397.10
Carbaryl 2230 30.05 30.05 189.95
Carbofuran 0.37 0.21 0.21 0.07
Chlorpyrifos 490 3.76 3.76 47.60
Cyfluthrin 2000 485.44 485.44 171.97
Cypermethrin 10000 579.15 579.15 747.88
Diazinon 4 0.59 0.59 0.59
Dicrotophos 9.63 0.42 0.42 1.32
Dimethoate 41.7 5.78 5.78 5.02
Disulfoton 39 0.81 0.81 4.72
Endosulfan 111 9.53 9.53 12.26
Esfenvalerate 1312 131.24 131.24 117.01
Ethyl Parathion 2.1 0.40 0.4 0.33
Imidacloprid 152 8.43 8.43 16.34
Indoxacarb 98 10.95 10.95
Lambda cyhalothrin 3950 428.14 428.14 320.19
Malathion 1485 139.10 139.1 131.03
Methomyl 15.9 8.46 8.46 2.08
Oxamyl 3.16 0.78 0.78 0.48
Permethrin 9800 3127.53 3127.53 734.21
Spinosad 200 21.00 21.00
Terbufos 185 0.16 0.16 19.55
Thiamethoxam 576 55.17 55.17
Zeta-cypermethrin 10248 764.80 764.80

Growth Regulators/Defoliants
Bacillus cereus****** 5000 397.10 397.10
Cyclanilide 216 22.42 22.42 22.53
Ethephon 1072 372.20 372.2 97.30
Mepiquat Chloride 1326 232.29 232.29 118.15
Mepiquat Pentaborate 1326 232.29 118.15
Monocarbamide dihyd.***** 775 72.35 72.35
Paraquat 981 88.50 88.5 89.73
Thidiazuron 16000 367.02 367.02 1148.82
Tribufos 142 51.13 51.13 15.36

Fungicides
Azoxystrobin 1000 232.29 232.29 91.31
Benzoic acid***** 1700 148.25 148.25
Chlorothalonil 4640 193.05 193.05 370.90
Copper hydroxide 3400 219.11 219.11 279.21
Iprodione 2000 158.40 158.4 171.97
Mancozeb 6400 710.95 710.95 497.53
Maneb 10000 345.34 345.34 747.88
Metalaxyl 923 89.09 89.09 84.87
* = (Footprint, 2007; PIP, accessed 2007; DuPont, 2003)
** = Mineau et al. (2001)

*** = estimated HD5 from a trend line, (y = 0.1662x^0.9133), using HD5 values and LD50 values
**** = Used values from Mineau et al. (2001), unless no data was available then used HD5 estimated from trend line

***** = Mammalian LD50
****** = Used Bacillus thuringiensin



 140 

 
APPENDIX B 

SENSITIVITY ANALYSES FIGURES AND TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 141 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure B1a.  Sensitivity Analyses:  Changes in the average maximum ChE 
inhibition over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B1b.  Sensitivity Analyses:  Changes in the average mean ChE inhibition 
over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage, 
3- Cotton/Sorghum/Onions) 
 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B1c.  Sensitivity Analyses: Changes in duration of ChE Inhibition > 20% 
over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage, 
3- Cotton/Sorghum/Onions) 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B1d.  Sensitivity Analyses: Changes in duration of ChE Inhibition > 50% 
over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage, 
3- Cotton/Sorghum/Onions) 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B2a.  Sensitivity Analyses:  Changes in maximum # of insecticides the owl is 
exposed to > LOEL over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions)  
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B2b.  Sensitivity Analyses: Changes in the duration of insecticide exposure > 
LOEL over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B3a.  Sensitivity Analyses:  Changes in maximum # of herbicides the owl is 
exposed to > LOEL over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B3b.  Sensitivity Analyses: Changes in the duration of herbicide exposure > 
LOEL over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B4a.  Sensitivity Analyses:  Changes in maximum # of growth regulators or 
defoliants the owl is exposed to > LOEL over the winter. (Crop Scenario: 1- 
Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B4b.  Sensitivity Analyses: Changes in the duration of growth regulator or 
defoliant exposure > LOEL over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B5a.  Sensitivity Analyses:  Changes in maximum # of insecticides the owl is 
exposed to > HD5 over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B5b.  Sensitivity Analyses: Changes in the duration of insecticide exposure > 
HD5 over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B6a.  Sensitivity Analyses: Changes in maximum # of herbicides the owl is 
exposed to > HD5 over the winter (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B6b. Sensitivity Analyses: Changes in the duration of herbicide exposure > 
HD5 over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B7a. Sensitivity Analyses:  Changes in maximum # of growth regulators or 
defoliants the owl is exposed to > HD5 over the winter. (Crop Scenario: 1- 
Cotton/Sorghum, 2- Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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Figure B7b.  Sensitivity Analyses:  Changes in the duration of growth regulator or 
defoliant exposure > HD5 over the winter. (Crop Scenario: 1- Cotton/Sorghum, 2- 
Cotton/Sorghum/Cabbage, 3- Cotton/Sorghum/Onions) 
 
 
 
 

Sensitivity Analyses 
 
0= Baseline- no changes 
1= Increased soil in diet 
2= Increased dermal exposure during foraging 
3= Increased half-life in bird 
4= Decreased loss due to drift 
5= Increased half-life in insects 
6= Increased accumulation in prey 
7= Used highest soil half-life values 
8= Increased the dermal to oral toxicity indexes 
9= Allowed possible early spring spraying prior to owl departure 
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APPENDIX C 

VALUES OF EXPOSURE GREATER THAN LOEL OR HD5 BY 

CHEMICAL TYPE 
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 Table C2a.  Maximum & mean exposure that occurred over the winter to each 
insecticide divided by each insecticide’s LOEL, as well as duration of exposure > 

LOEL in the cotton/sorghum crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Insecticide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
acephate 0.00 0.00   0.00 0.00   0.00 0.00 200 
acetamiprid 0.00 0.00   0.00 0.00   0.00 0.00 200 
bacillus thuringensis 0.00 0.00   0.00 0.00   0.00 0.00 200 
carbaryl 0.00 0.00   0.00 0.00   0.00 0.00 200 
chlorpyrifos 13.47 16.46   8.72 10.77   146.27 19.51 200 
cyfluthrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
cypermethrin 0.04 0.24   0.02 0.13   1.96 13.03 200 
diazinon 0.00 0.00   0.00 0.00   0.00 0.00 200 
dicrotophos 0.00 0.00   0.00 0.00   0.00 0.00 200 
dimethoate 0.00 0.00   0.00 0.00   0.00 0.00 200 
disulfoton 0.35 1.47   0.23 1.02   9.64 36.20 200 
endosulfan 0.00 0.00   0.00 0.00   0.00 0.00 200 
esfenvalerate 0.00 0.00   0.00 0.00   0.00 0.00 200 
imidacloprid 0.00 0.00   0.00 0.00   0.00 0.00 200 
indoxacarb 0.02 0.18   0.01 0.14   1.38 13.77 200 
lambda-cyhalothrin 1.01 1.37   0.85 1.12   55.64 69.77 200 
malathion 0.00 0.00   0.00 0.00   0.00 0.00 200 
methomyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
oxamyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
permethrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
spinosad 0.00 0.00   0.00 0.00   0.00 0.00 200 
thiamethoxam 0.00 0.00   0.00 0.00   0.00 0.00 200 
zeta-cypermethrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
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 Table C2b.  Maximum & mean exposure that occurred over the winter to each 
insecticide divided by each insecticide’s LOEL, as well as duration of exposure > 

LOEL in the cotton/sorghum/cabbage crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Insecticide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
acephate 0.00 0.00   0.00 0.00   0.00 0.00 200 
acetamiprid 0.00 0.00   0.00 0.00   0.00 0.00 200 
bacillus thuringensis 0.00 0.00   0.00 0.00   0.00 0.00 200 
carbaryl 0.00 0.00   0.00 0.00   0.00 0.00 200 
chlorpyrifos 10.98 14.73   6.98 9.56   142.33  29.58 200 
cyfluthrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
cypermethrin 0.04 0.24   0.02 0.11   1.98 12.18 200 
diazinon 0.00 0.00   0.00 0.00   0.00 0.00 200 
dicrotophos 0.00 0.00   0.00 0.00   0.00 0.00 200 
dimethoate 0.15 0.54   0.00 0.00   0.04 0.13 200 
disulfoton 0.28 1.31   0.19 0.91   7.45 32.55 200 
endosulfan 4.81 28.29   1.72 10.54   6.90 26.96 200 
esfenvalerate 0.01 0.07   0.00 0.01   0.10 1.41 200 
imidacloprid 0.00 0.00   0.00 0.00   0.00 0.00 200 
indoxacarb 0.02 0.14   0.00 0.01   0.21 2.04 200 
lambda-cyhalothrin 1.18 1.48   0.98 1.15   65.47 71.12 200 
malathion 0.00 0.00   0.00 0.00   0.00 0.00 200 
methomyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
oxamyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
permethrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
spinosad 0.00 0.00   0.00 0.00   0.00 0.00 200 
thiamethoxam 0.00 0.00   0.00 0.00   0.00 0.00 200 
zeta-cypermethrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
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 Table C2c.  Maximum & mean exposure that occurred over the winter to each 
insecticide divided by each insecticide’s LOEL, as well as duration of exposure > 

LOEL in the cotton/sorghum/onions crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Insecticide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
acephate 0.00 0.00   0.00 0.00   0.00 0.00 200 
acetamiprid 0.00 0.00   0.00 0.00   0.00 0.00 200 
bacillus thuringensis 0.00 0.00   0.00 0.00   0.00 0.00 200 
carbaryl 0.00 0.00   0.00 0.00   0.00 0.00 200 
chlorpyrifos 13.66 16.11   8.65 10.51   141.27 31.49 200 
cyfluthrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
cypermethrin 0.10 0.36   0.03 0.16   3.67 16.82 200 
diazinon 0.00 0.00   0.00 0.00   0.00 0.00 200 
dicrotophos 0.00 0.00   0.00 0.00   0.00 0.00 200 
dimethoate 0.00 0.00   0.00 0.00   0.00 0.00 200 
disulfoton 0.22 1.06   0.15 0.73   7.97 33.18 200 
endosulfan 0.00 0.00   0.00 0.00   0.00 0.00 200 
esfenvalerate 0.00 0.00   0.00 0.00   0.00 0.00 200 
imidacloprid 0.00 0.00   0.00 0.00   0.00 0.00 200 
indoxacarb 0.01 0.12   0.01 0.10   0.70 9.83 200 
lambda-cyhalothrin 1.35 1.60   1.06 1.26   63.75 71.02 200 
malathion 0.00 0.00   0.00 0.00   0.00 0.00 200 
methomyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
oxamyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
permethrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
spinosad 0.00 0.00   0.00 0.00   0.00 0.00 200 
thiamethoxam 0.00 0.00   0.00 0.00   0.00 0.00 200 
zeta-cypermethrin 0.00 0.00   0.00 0.00   0.00 0.00 200 
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 Table C4a. Maximum & mean exposure that occurred over the winter to each 
herbicide divided by each herbicide’s LOEL, as well as duration of exposure > 

LOEL in the cotton/sorghum crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Herbicide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
2,4-D 0.08 0.33   0.00 0.01   0.10 0.73 200 
alachlor 0.38 1.99   0.01 0.06   0.28 1.19 200 
atrazine 0.00 0.00   0.00 0.00   0.00 0.00 200 
bensulide 0.00 0.00   0.00 0.00   0.00 0.00 200 
bromoxynil 0.00 0.00   0.00 0.00   0.00 0.00 200 
carfentrazone-ethyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
clethodim 0.00 0.00   0.00 0.00   0.00 0.00 200 
dcpa 0.00 0.00   0.00 0.00   0.00 0.00 200 
dicamba 0.00 0.00   0.00 0.00   0.00 0.00 200 
dimethenamid 0.01 0.09   0.00 0.00   0.01 0.18 200 
diuron 0.70 1.35   0.37 0.82   27.35 56.50 200 
fluometuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
glufinosinate 0.26 1.49   0.01 0.06   0.21 1.34 200 
glyphosate 0.08 0.35   0.00 0.01   0.21 0.96 200 
metsulfuron-methyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
oxyfluorfen 0.00 0.00   0.00 0.00   0.00 0.00 200 
pendimethalin 0.00 0.00   0.00 0.00   0.00 0.00 200 
prometryn 0.00 0.00   0.00 0.00   0.00 0.00 200 
prosulfuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
pyraflufen-ethyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
pyrithiobac-sodium 0.00 0.00   0.00 0.00   0.00 0.00 200 
s-metolachlor 0.08 0.34   0.00 0.00   0.12 0.51 200 
trifluralin 2.37 2.96   0.86 1.41   46.12 65.58 200 
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 Table C4b.  Maximum & mean exposure that occurred over the winter to each 
herbicide divided by each herbicide’s LOEL, as well as duration of exposure > 

LOEL in the cotton/sorghum/cabbage crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Herbicide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
2,4-D 0.08 0.36   0.00 0.01   0.09 0.58 200 
alachlor 0.19 1.48   0.01 0.11   0.20 1.55 200 
atrazine 0.00 0.00   0.00 0.00   0.00 0.00 200 
bensulide 0.36 0.73   0.02 0.05   2.64 5.86 200 
bromoxynil 0.00 0.00   0.00 0.00   0.00 0.00 200 
carfentrazone-ethyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
clethodim 0.00 0.00   0.00 0.00   0.00 0.00 200 
dcpa 0.13 0.38   0.00 0.00   0.14 0.54 200 
dicamba 0.00 0.00   0.00 0.00   0.00 0.00 200 
dimethenamid 0.02 0.17   0.00 0.01   0.09 0.77 200 
diuron 0.70 1.30   0.40 0.84   29.79 58.04 200 
fluometuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
glufinosinate 0.14 0.93   0.00 0.02   0.09 0.62 200 
glyphosate 0.09 0.36   0.00 0.01   0.26 1.09 200 
metsulfuron-methyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
oxyfluorfen 0.00 0.00   0.00 0.00   0.00 0.00 200 
pendimethalin 0.00 0.00   0.00 0.00   0.00 0.00 200 
prometryn 0.00 0.00   0.00 0.00   0.00 0.00 200 
prosulfuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
pyraflufen-ethyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
pyrithiobac-sodium 0.00 0.00   0.00 0.00   0.00 0.00 200 
s-metolachlor 0.09 0.38   0.00 0.01   0.17 0.73 200 
trifluralin 3.38 2.92   1.01 1.50   53.92 62.43 200 
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 Table C4c- Maximum & mean exposure that occurred over the winter to each 
herbicide divided by each herbicide’s LOEL, as well as duration of exposure > 

LOEL in the cotton/sorghum/onions crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Herbicide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
2,4-D 0.08 0.33   0.00 0.00   0.07 0.51 200 
alachlor 0.20 1.55   0.01 0.07   0.11 0.88 200 
atrazine 0.00 0.00   0.00 0.00   0.00 0.00 200 
bensulide 0.73 0.99   0.05 0.10   5.06 9.68 200 
bromoxynil 0.00 0.00   0.00 0.00   0.00 0.00 200 
carfentrazone-ethyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
clethodim 0.00 0.00   0.00 0.00   0.00 0.00 200 
dcpa 0.37 0.65   0.01 0.01   0.63 1.40 200 
dicamba 0.00 0.00   0.00 0.00   0.00 0.00 200 
dimethenamid 0.01 0.09   0.00 0.00   0.02 0.32 200 
diuron 0.63 1.28   0.36 0.74   30.14 57.76 200 
fluometuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
glufinosinate 0.10 0.98   0.00 0.04   0.11 1.10 200 
glyphosate 0.12 0.41   0.00 0.01   0.39 1.41 200 
metsulfuron-methyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
oxyfluorfen 0.04 0.22   0.00 0.03   0.44 3.45 200 
pendimethalin 0.00 0.00   0.00 0.00   0.00 0.00 200 
prometryn 0.00 0.00   0.00 0.00   0.00 0.00 200 
prosulfuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
pyraflufen-ethyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
pyrithiobac-sodium 0.00 0.00   0.00 0.00   0.00 0.00 200 
s-metolachlor 0.07 0.31   0.00 0.01   0.15 0.74 200 
trifluralin 3.00 3.02   1.09 1.48   55.91 66.79 200 
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 Table C6a.  Maximum & mean exposure that occurred over the winter to each 
growth regulator or defoliant divided by each chemical’s LOEL, as well as 

duration of exposure > LOEL, in the cotton/sorghum crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Growth Regulator 
or Defoliant Type Mean 

Std. 
Deviation   Mean 

Std. 
Deviation   Mean 

Std. 
Deviation N 

bacillus cereus 0.00 0.00   0.00 0.00   0.00 0.00 200 
cyclanilide 0.00 0.00   0.00 0.00   0.00 0.00 200 
ethephon 0.00 0.00   0.00 0.00   0.00 0.00 200 
mepiquat chloride 0.00 0.00   0.00 0.00   0.00 0.00 200 
mepiquat 
pentaborate 0.00 0.00   0.00 0.00   0.00 0.00 200 
monocarbamide 0.00 0.00   0.00 0.00   0.00 0.00 200 
paraquat 2.98 2.29   2.08 1.91   101.42 64.27 200 
thidiazuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
tribufos 0.89 1.17   0.50 0.90   39.08 59.70 200 

 
Table C6b.   Maximum & mean exposure that occurred over the winter to each 
growth regulator or defoliant divided by each chemical’s LOEL, as well as duration 
of exposure > LOEL, in the cotton/sorghum/cabbage crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Growth Regulator 
or Defoliant Type Mean 

Std. 
Deviation   Mean 

Std. 
Deviation   Mean 

Std. 
Deviation N 

bacillus cereus 0.00 0.00   0.00 0.00   0.00 0.00 200 
Cyclanilide 0.00 0.00   0.00 0.00   0.00 0.00 200 
Ethephon 0.00 0.00   0.00 0.00   0.00 0.00 200 
mepiquat chloride 0.00 0.00   0.00 0.00   0.00 0.00 200 
mepiquat 
pentaborate 0.00 0.00   0.00 0.00   0.00 0.00 200 
monocarbamide 0.00 0.00   0.00 0.00   0.00 0.00 200 
Paraquat 2.40 2.18   1.51 1.73   79.78 70.38 200 
thidiazuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
Tribufos 0.67 1.09   0.40 0.82   31.52 58.67 200 

 
 
 
 
 
 
 
 
 
 



 197 

 Table C6c.   Maximum & mean exposure that occurred over the winter to each 
growth regulator or defoliant divided by each chemical’s LOEL, as well as 

duration of exposure > LOEL, in the cotton/sorghum/onions crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Growth Regulator 
or Defoliant Type Mean 

Std. 
Deviation   Mean 

Std. 
Deviation   Mean 

Std. 
Deviation N 

bacillus cereus 0.00 0.00   0.00 0.00   0.00 0.00 200 
Cyclanilide 0.00 0.00   0.00 0.00   0.00 0.00 200 
Ethephon 0.00 0.00   0.00 0.00   0.00 0.00 200 
mepiquat chloride 0.00 0.00   0.00 0.00   0.00 0.00 200 
Mepiquat 
pentaborate 0.00 0.00   0.00 0.00   0.00 0.00 200 
monocarbamide 0.00 0.00   0.00 0.00   0.00 0.00 200 
Paraquat 2.42 2.13   1.53 1.69   83.66 70.53 200 
thidiazuron 0.00 0.00   0.00 0.00   0.00 0.00 200 
Tribufos 0.56 1.03   0.37 0.80   29.62 57.56 200 
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 Table C8a.  Maximum & mean exposure that occurred over the winter to each 
fungicide divided by each fungicide’s LOEL, as well as duration of exposure > 

LOEL in the cotton/sorghum/cabbage crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Fungicide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
azoxystrobin 0.00 0.00   0.00 0.00   0.00 0.00 200 
benzoic acid 0.00 0.00   0.00 0.00   0.00 0.00 200 
chlorothalonil 1.30 1.22   0.08 0.10   7.60 9.38 200 
copper hydroxide 0.00 0.00   0.00 0.00   0.00 0.00 200 
iprodione 0.00 0.00   0.00 0.00   0.00 0.00 200 
mancozeb 0.00 0.00   0.00 0.00   0.00 0.00 200 
maneb 2.55 3.90   0.58 0.96   21.30 34.13 200 
metalaxyl 0.00 0.00   0.00 0.00   0.00 0.00 200 

 
Table C8b - Maximum & mean exposure that occurred over the winter to each 
fungicide divided by each fungicide’s LOEL, as well as duration of exposure > 
LOEL in the cotton/sorghum/onions crop scenario. 

  
Max. Exposure/ 

LOEL  
Mean Exposure/ 

LOEL  
Duration             

(Exposure > LOEL)   

Fungicide Type Mean 
Std. 

Deviation   Mean 
Std. 

Deviation   Mean 
Std. 

Deviation N 
azoxystrobin 0.00 0.00   0.00 0.00   0.00 0.00 200 
benzoic acid 0.00 0.00   0.00 0.00   0.00 0.00 200 
chlorothalonil 0.76 1.28   0.05 0.10   4.51 8.77 200 
copper hydroxide 33.51 15.53   22.84 10.73   149.07 2.18 200 
iprodione 0.00 0.00   0.00 0.00   0.00 0.00 200 
mancozeb 0.03 0.19   0.00 0.00   0.07 0.60 200 
maneb 4.67 8.82   0.98 1.98   12.76 24.76 200 
metalaxyl 0.00 0.00   0.00 0.00   0.00 0.00 200 
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Table C9a.  Maximum & mean exposure that occurred over the winter to each 
fungicide divided by each fungicide’s HD5, as well as duration of exposure > HD5 
in the cotton/sorghum/cabbage crop scenario, with normal concentrations in 
culvert soil and concentrations increased to 10 times the amount in the crop soil 
combined because there was no difference between ratios. 

Fungicide Type Mean
Std. 

Deviation Mean
Std. 

Deviation Mean
Std. 

Deviation N

azoxystrobin 0.00 0.00 0.00 0.00 0.00 0.00 400
benzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 400
chlorothalonil 0.00 0.00 0.00 0.00 0.00 0.00 400
copper hydroxide 0.00 0.00 0.00 0.00 0.00 0.00 400
iprodione 0.00 0.00 0.00 0.00 0.00 0.00 400
mancozeb 0.00 0.00 0.00 0.00 0.00 0.00 400
maneb 0.00 0.00 0.00 0.00 0.00 0.00 400
metalaxyl 0.00 0.00 0.00 0.00 0.00 0.00 400

Max. Exposure/ Mean Exposure/ Duration (Exposure 

 
 
Table C9b.   Maximum & mean exposure that occurred over the winter to each 
fungicide divided by each fungicide’s HD5, as well as duration of exposure > HD5 
in the cotton/sorghum/onions crop scenario, with normal concentrations in culvert 
soil and concentrations increased to 10 times the amount in the crop soil combined 
because there was no difference between ratios. 

Fungicide Type Mean
Std. 

Deviation Mean
Std. 

Deviation Mean
Std. 

Deviation N

azoxystrobin 0.00 0.00 0.00 0.00 0.00 0.00 400
benzoic acid 0.00 0.00 0.00 0.00 0.00 0.00 400
chlorothalonil 0.00 0.00 0.00 0.00 0.00 0.00 400
copper hydroxide 42.73 21.26 29.16 14.65 148.25 10.88 400
iprodione 0.00 0.00 0.00 0.00 0.00 0.00 400
mancozeb 0.00 0.00 0.00 0.00 0.00 0.00 400
maneb 0.00 0.00 0.00 0.00 0.00 0.00 400
metalaxyl 0.00 0.00 0.00 0.00 0.00 0.00 400

Max. Exposure/ Mean Exposure/ Duration (Exposure 

 
 
 
 
 
 
 
 
 
 



 203 

  
VITA 

 
 
 

Name:   Catherine Allegra Engelman 
 
Address:  Dept. of Wildlife and Fisheries  

210 Nagle Hall 
   2258 TAMU 
   Texas A&M University 
   College Station, TX 77843-2258 
 
Email Address: chamcat@yahoo.com, chamcat@tamu.edu 
 
Education:  B.A./B.S., Emphasis in Fine Arts & Environmental Science, The 

Evergreen State College, 2000 
 
  M.S., Wildlife and Fisheries Sciences, Texas A & M University, 

2008 


