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ABSTRACT 

 

Nutrient Regulation of an Exotic, Unidentified Paratrechina sp. (Hymenoptera: 

Formicidae) Found in Texas. (May 2008) 

Rachel Anne Wynalda, B.S., Texas A&M University 

Co-Chairs of Advisory Committee:  Dr. Roger Gold 
                       Dr. Spencer Behmer 
 
 
 
Colony fitness, size, and reproductive potential are determined by their ability to locate 

and consume the optimal amounts of various macronutrients.  Understanding the 

nutritional regulation of an ant colony furthers our understanding of their life history and 

can be used to produce a better baiting system.  The “Geometric Framework” was used to 

conduct experiments determining how Paratrechina sp.nr. pubens regulated their protein 

and carbohydrate intake when given two sub-optimal, but complementary food sources, 

as well as when confined to a single food source.  By analyzing how much food they 

consumed, we can determine how P. sp.nr. pubens regulates their food intake.  

Examination of the consumption results when given two choices, showed a preference for 

carbohydrate rich foods as well as a trend in regulation along a set nutritional trajectory.  

Further examination of the amount eaten when confined to a single food source, showed 

a higher consumption rate of the carbohydrate rich foods (p7:c35 and p14:c28).  Analysis 

also showed a narrower range of protein intake when compared to carbohydrate.  

Accordingly, behavioral data indicate a pattern of consumption following seasonal shifts. 
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CHAPTER I 

INTRODUCTION 

 

There are over 8,000 ant (Hymenoptera: Formicidae) species have been described 

worldwide (Klein and Wenner 2001).  Like some of the other species in the Order 

Hymenoptera, ants are eusocial insects, with characteristics of overlapping generations, 

communal care for their young, a division of labor in which one or more non-

reproductive castes are present (Borrer et al. 1992).  Ants live in colonies that comprise 

one (monogyne) or more queens (polygene), males (winged or wingless), and workers 

(major and minor) (Gullan and Cranston 2005).  Ant nests can be found in many 

different locations, including open soil as mounds, or under objects, such as stones, 

timber, debris, sidewalks, or slab construction (Hedges 1998, Hedges 2004). Depending 

on species, colony size can range from a few hundred to over 300,000,000 workers 

(Kaspari and Vargo 1995). These unique colony characteristics allow ants to occupy 

many parts of the world excluding cold areas (McGavin 2001).  These characteristics 

also allow them to expand and become established in new regions as invasive species. 

 Increased globalization and trade has resulted in many ant species being 

distributed throughout the world (Helms and Vinson 2002).  Invasive ant species can out 

compete or prey on native organisms (Jenkins 1996), and may be ecologically 

devastating (Clark et al. 1982, Majer 1985, Porter and Savignano 1990, McGlynn 1999).   

     The ability of invasive ant species to become established depends on many 

factors.  These can include size and fitness of the colonies, the regional environment and 

This thesis follows the style of Journal of Economic Entomology. 
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temperature, food supply, and the presence of parasites and predators.  Other insect 

species might provide resources and promote establishment of an invasive ant species. 

For example, the association between the red imported fire ant (RIFA) Solenopsis invicta 

Buren (Hymenoptera: Formicidae), and the invasive mealybug Antonia graminis 

Maskell (Order: Hemiptera) (Helms and Vinson 2002).  The mealybug provides 

honeydew as food for RIFA’s which in turn provide protection and shelter for the 

mealybugs (Helms and Vinson 2002).   

 Invasive ants are those which establish long-term populations and expand their 

range into new areas (McGlynn 1999).  Established invasive ants can negatively affect 

native invertebrate and vertebrate species.  Some general impacts of invasive ants 

include their interference with mutualisitic relationships, competition with native ants, or 

adversely affect the ecosystem through loss of diversity (Holway et al. 2002, McGlynn 

et al. 1999, and Ness and Bronstein 2004). 

 The introduction of the crazy ant, Paratrechina fulva Mayr, (Hymenoptera: 

Formicidae) into Columbia almost 30 years ago resulted in the displacement of the 

native ant fauna, which pertubated throughout the local agro ecosystems (Arcila et al. 

2002).  Its association with homopteran insects allowed those homopteran populations to 

increase unregulated which resulted in crop damage (Arcila et al. 2002).  This case 

provided evidence that displacement of native fauna can destabilize the local ecology 

(Holway et al. 2002).  The RIFA can have a mutualistic, as well as negative, relationship 

with trophobionts, which are insects that produce bodily exudates and include species of 

mealybugs (Order: Hemiptera), aphids (Order: Hemiptera), treehoppers (Order: 
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Hemiptera) and scale insects (Order: Homoptera).  RIFA’s prefer a protein-rich diet and 

because of this, they will more than likely consume trophobionts due to this need not 

being met (Ness and Bronstein 2004).   

 Along with affecting trophobionts, invasive ants can adversely affect certain 

plants.  There are approximately 300 mymecochores, which plants that rely on insects to 

disperse their seed (Ness and Bronstein 2004).  These plants produce lipid rich 

appendages known as elaiosomes.   Mutualistic ants will ingest the elaiosome and 

disperse the untouched seed.  Invasive ants can displace the native seed-spreading ants, 

and may eat the elaiosome without dispersing or burying the seed (Ness and Bronstein 

2004).   

 Invasive ant species compete with native ants for resources.  This characteristic 

of invasive ant species is the most widely reported direct environmental impact 

(McGlynn 1999).  They displace native ants because of their competitive advantages.  

They excel at exploiting new resources and recruiting workers, which is achieved by 

having large numbers of workers or by having workers active both day and night 

(McGlynn 1999). 

 Some invasive ant species, like the RIFA, cause numerous problems for humans 

that interact with them.  The RIFA is aggressive and has a painful sting that it can inflict 

multiple times to an adversary or prey. A sting from the RIFA often results in the 

formation of pruistic pustules, which if not cared for can result in secondary infections 

(Deslippe and Guo 2000).  In extreme cases where an individual is highly sensitive to 

the sting they may experience localized swelling, anaphylactic shock, and in rare cases, 
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death (Rhoades et al. 1989).  Preventing the established of these invasive ants prevent 

the ecological side-effects associated with them. 

 Suppressing a newly introduced ant species can be accomplished through an 

understanding of its natural history.  Much of this information is not attainable if the 

species is undescribed.  For example, such an ant species, which is thought to be related 

to Paratrechina pubens Forel (Hymenoptera: Formicidae), has been collected in 

Pasadena, TX U.S.A.   It is currently being referred to as Paratrechina sp.nr. pubens.

 Paratrechina sp. nr. pubens has caused problems for homeowners and businesses 

in the Pasadena and Pearland areas of Texas.  Although it is displacing the RIFA, which 

is a pest, homeowners have voiced their desire to have the RIFA instead of this newly 

introduced species.  Preference for the RIFA reflects the nuisances this ant has become.  

They display an affinity for electrical wiring resulting in shorts and clogging of circuits.  

There has been a report of P. sp.nr. pubens invading the electrical wiring of a vehicle 

which caused the car to ignite when the owner attempted to start it. 

  Current prevention measures undertaken by local home and business owners 

have resulted in little success.  Although, this ant is not as aggressive as the RIFA, the 

shear size of the colonies exceeds that of RIFA.  One individual reported filling a 189-L 

trash can with P. sp.nr. pubens cadavers that accumulated on the floor in his business.  

There are reports from the Houston, and surrounding areas, that due to ant pressure real 

estate values have fallen.  Rapid colonization of new areas by this ant makes it 

imperative that effective control methods are developed and implemented.  Anecdotal 

evidence from local pest control operators (PCO) personnel shows that some pesticides 
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such as, Top Choice® (Fipronil 0.0143%, Bayer Environmental Science, Research 

Triangle Park, NC) and Termidor® (Fipronil 9.1%, BASF, Research Triangle Park, NC), 

produce some positive results.  Meyers et al. (unpublished data 2007) has shown that 

populations have the capability to recover quickly from treatment.  

 The most widely used form of control of ants is a granular bait. The active 

ingredient is the key to its effectiveness. However, its effectiveness relies on being 

impregnated in a matrix that attracts the ants (Stanley 2004).  Along with being attracted, 

the ants have to consume sufficient amounts of the formulation and share it with other 

colony members through trophylaxis to have an impact (Davis and Van Schagen 1993, 

Klotz and Williams 1996, Collins and Callcott 1998, Lee 2000).  Food preferences for 

protein, carbohydrates, and lipids demonstrated by ant colonies varies depending on the 

species, size of the particles, and seasonal variations.  All of these variables determine 

the effectiveness of baits against the ant colony (Stanley 2004).   

 Currently most baits are tailored for the RIFA, which might be the reason for 

their ineffectiveness in suppressing P. sp.nr. pubens.  Since this ant is considered a new 

species there have been no studies to determine its dietary preferences.  To effectively 

develop a better baiting system, research needs to examine its biology, life cycle, diet 

preferences and nutritional regulation mechanisms. 

 One effective way to investigate the regulation of macro nutrients is the use of a 

conceptual tool referred to as the “Geometric Framework” (Raubenheimer and Simpson 

1993a, 1993b).  This experimental design is a state-space model that explores how an 

animal balances multiple and changing nutrient needs in a multidimensional and variable 
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nutritional environment (Simpson and Raubenheimer 1993).  Most research that has 

used this approach examines different combinations of the two macro-nutrients most 

important to insects, which are protein and digestible carbohydrates.  By feeding ants on 

a range of diets with different relative concentrations of protein and carbohydrates, and 

by examining the amount consumed, the one that promotes optimal growth and 

development can be determined.  This optimal point, inside nutrient space, is referred to 

as the “intake target” (Simpson and Raubenheimer 1993).  These nutrients can then be 

depicted as ‘rails’, which are a combination of non-nutrient and nutrients that radiate out 

from a central point (Figure 1.1) (Simpson and Raubenheimer 1993).  The angles 

associated with the rails show the ratio of their constituents.  

There are three general methods in which foods can be represented in nutrient 

space.  The first is a balanced food, which means if an insect eats along this rail they 

reach their intake target without using an alternate food sources (Figure 1.1 A).  The 

second is a suboptimal diet, which prevents the insect from reaching its intake target 

(Figure 1.1 B). Since there is no regulation mechanism they can employ to reach their 

intake target they have to determine which nutrient they prefer to have in excess or 

deficit.  If they eat and reach their physiological demand for carbohydrates (point a) they 

will have a deficit in protein and vise versa for point b (Figure 1.2). If they eat to point c 

they will not meet their protein or carbohydrate requirements, but they eliminate the 

possibility of eating nutrient in excess (Figure 1.2). The regulation of nutrient intake is 

referred to as the rule of compromise (Simpson and Raubenheimer 1993).  As stated, this 

rule indicates the relative cost/benefit of overeating one of the nutrients to under-eating  
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Figure 1.1 Three representations of how the “Geometric Framework” evaluates nutritional 

regulation. Combinations of nutrients can be represented in nutrient space (e.g., the smiley face 

in A), while a nutritional rail represents the balance of nutrients (angle represents nutrient ratio).  

If the ratio is balanced then the intake target can be reached (A).  This target cannot be reached 

when feeding on an imbalanced food (B).  If the animal was allowed to feed on two 

complementary, but suboptimal foods the intake target can be reached by switching between the 

two foods (C).   
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Figure 1.2  Diagrammatic representation of nutritional compromise on an imbalanced 

food.  Feeding to a certain point will satisfy one nutritional need, but suffers a deficit or 

excess of the other nutrient (point a and b).  By feeding to the point c the animal will not 

meet the requirements of either nutrient, but will avoid eating any extremes of one of the 

nutrients.   

 

 

 
 
 
 
 
 
 
 

Intake Target 
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the other. The last method is when the insect encounters two food sources that are 

considered complementary.  This method means that their target intake lies between the 

two rails.  The target intake can then be reached by eating a little from each rail until 

they have ingested the correct ratio of nutrients (Figure 1.1 C) (Simpson and 

Raubenheimer 1993).   

 Analysis of these various nutritional regulation mechanisms gives insight into 

colony requirements for survival.  Currently most of the work being done in the field of 

diet regulations has focused on the nutritional needs of locust (Orthoptera: Acrididae) 

species (Behmer et al. 2001).  The experiments conducted here represent the first 

application of the previous research results to P. sp.nr. pubens.  Results generated from 

these studies will provide a better understanding of its biological functions and be used 

to produce a better baiting system for its suppression.   
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CHAPTER II 

PROTEIN AND CARBOHYDRATE DIET PREFERENCE BY Paratrechina sp.nr. 

pubens 

 

OVERVIEW  

 Nutritional needs are an important parameter determining the fitness of Paratrechina 

sp.nr. pubens colonies.  Most experiments have examined the attractiveness and 

effectiveness of bait matrixes and not explained exact nutritional needs of various ant 

species.  The “Geometric Framework” was used to determine nutrient regulation of 

Paratrechina sp. nr. pubens when given two sub-optimal, but complementary, food 

sources.  Regulation of food intake was determined by examining its consumption rate 

from both sub-optimal diets e.  Its foraging behavior was determined through three 4 h 

observation periods conducted during the 15 d experiments (replicated 6 times).  

Paratrechina sp. nr. pubens demonstrated a preference for carbohydrate rich foods as 

well as a trend in regulation along a set nutritional trajectory (nutritional rail). 

Accordingly, behavioral data indicate a pattern of consumption following seasonal shifts.    

 
INTRODUCTION 
 
Ants consume a variety of diets that provide the nutrients needed for energy, 

maintenance, growth and reproduction. Together these nutritional factors play a role in 

determining colony fitness (Hughes 1993).  Central to their fitness is the colonies 

allocation of protein and carbohydrates.  Acquisition of proteins is essential to ants 

because of there use in reproduction and development of eggs and larvae (Scherer 2007).  
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In contrast, carbohydrates serve as sources of energy for activities, such as foraging and 

defense of the colony (Scherer 2007).  However, foods rarely contain these 

macronutrients in the required proportions.  Colonies presented with various forging and 

food opportunities have to make a nutritional choice that ultimately determines their 

survival.  By studying how foragers of different ant species regulate their nutrient intake, 

insights can be gained into why they neglect or prefer particular food items.  This 

information can then be used to understand how the colony regulates its specific 

nutritional needs (Howard 1987, Voelkl et al. 1999, Kay 2004).   

 Currently research examining dietary preferences of ants has focused on the 

attractiveness of baits (Stanley and Robinson 2007).  Although these studies have 

provided an idea of what matrix and nutrient combination is preferred by different ant 

species, they did not reveal anything about their exact dietary needs.  Matrixes usually 

just have a primary classification (ex. protein or carbohydrate) but do not give a specific 

amount of protein or carbohydrates.  One limitation of these studies, as well as other ant 

nutritional evaluations, is they only examine the attractiveness of foods when the ants 

are presented with single food choice (Stephens and Krebs 1986) even though in nature 

ants have access to a multitude of various substrates.   

 One approach for analyzing the optimal amounts of protein and carbohydrates 

needed by ant species is to examine their foraging behavior within the context of the 

‘Geometric Framework’ (Raubenheimer and Simpson 1993a).  Briefly, this approach 

allows the organism of interest to demonstrate the nutrient proportions that are most 

preferred (Behmer et al. 2001).  This balance, called an ‘intake target’ (Raubenheimer 
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and Simpson 1993a), reveals the amounts of nutrients (e.g. protein and carbohydrate) 

ingested by an animal over time, which is useful because it can be used to conceptualize 

the relative significance an organism gives to various nutrients. Implementing the intake 

target concept also can be conducted with animals constrained to imbalanced foods 

(Raubenheimer and Simpson 1999, Simpson and Raubenheimer 2000).  This approach 

also differs from most because it makes no a priori assumptions about the animal’s 

nutritional needs.  Although most research using this approach has been conducted on 

plant-feeding insects (Simpson and Raubenheimer 2000, Behmer et al. 2001, Behmer et 

al. 2003), it can easily be applied to a range of insects, including ants, which are 

regulating nutrient intake at both the individual and colony level. 

 In this study, I examine the preferences and associated foraging behaviors of 

Paratrechina sp.nr. pubens ant colonies for foods that differ in protein and carbohydrate 

ratios.  By observing the foraging behavior and consumption rates of different artificial 

foods with known nutrient profiles, I was able to assess whether, and to what extent, this 

ant species actively defend a protein-carbohydrate intake target.   

 
MATERIALS AND METHODS 

 
Insects:  Paratrechina sp.nr. pubens were collected in Pearland, TX (GPS coordinates: 

N 29°33.518, W 095° 20.531).  Finding colony locations was accomplished by 

examining known nesting habitats.  These sites included under fallen tree limbs, in leaf 

litter, or by digging approximately 50.8- 305 mm into the soil.  Once colonies were 

located, they were sight identified to be the appropriate species and then shoveled along 

with the dirt or debris present into a bucket (22 L) that had its sides treated with baby 
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powder (approx. 1 oz) to prevent the ants from escaping.  Colonies were then transported 

to the Center for Urban and Structural Entomology, Texas A&M University, College 

Station, TX.  The colonies were removed from the dirt/debris in the bucket by a water 

dripping method which is frequently used to separate ant colonies. This method was 

done by placing the dirt/ debris under a faucet, which slowly dripped (approx. 2 drips per 

second; 1 drip = 0.125 ml) water into the bucket.  At the top of the dirt pile a Petri dish 

(8.5 cm, h= 1.5 cm), half way filled with plaster of paris, was placed and acted as an 

artificial nest.  Occasionally one artificial nest would not be large enough to hold the 

entire colony.  When this happened multiple petri dishes were placed in the bucket.  

When the water rose the colony would move up the mound of dirt and into the artificial 

nests.  Once the colony was inside the nests they were removed and placed together into 

a plastic box (30.5 x 16.5 x 8.9 cm).  The inside walls of the boxes was treated with 

Fluon® (Polytetrafluoro-ethylene, ICI Fluoropolymers INC, Exton, PN, U.S.A.) to 

prevent the ants from escaping.  Inside these plastic boxes two water sources were 

presented to the ants.  One source was a 75 ml glass jar with a plastic top and cotton 

wick (Braided Rolls made by Richmond Dental, Charlotte, NC) filled with water.  This 

source provided moisture.  The other source was a plastic container (5.5 x 4.5 x 2 cm) 

filled with cotton balls soaked with a 20% honey water solution.  This source provided 

carbohydrates (Chapman 1998).  A prey source was also included in each colony box 

and consisted of approximately five to six dead crickets placed in a plastic weight boat 

(5.5 x 4.5 x 2 cm) (Orthoptera: Gryllidae).  The water, sucrose, and crickets were 

checked daily and replenished when needed.  The colonies were maintained in a growth 
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chamber (Elliott-Williams model: Conviron 8601) at 30±2°C, 12:12 light: dark, and 60% 

RH. 

 Over the course of the experiment, six separate colonies were collected and 

processed using the methods previously described.  Each colony represented a replicate.  

Colonies were collected from December 2006 until May 2007 (Table 2.1).  For purposes 

of this experiment December through February were considered winter months and 

March through May were spring/summer months.  This definition of seasons was done 

in order to make possible correlations between shifts in behavior and seasonal cycles. 

Experimental Foods:  The experimental foods used were a dry, granular, chemically 

defined matrix and were prepared as described in Behmer et al. (2001).  Variations of 

protein and digestible carbohydrate gave rise to the following three combinations of 

protein (p) and carbohydrate (c) expressed as a percent (%): p7:c35, p28:c14, and p35:c7. 

No known previous work had been done to determine the combination that is 

nutritionally optimal for this ant species. These three diets represented extreme protein-

carbohydrate ratios that alone might be suboptimal for ants. Together, however, these 

foods were complementary, and ants were able to eat from both foods, thus providing 

the opportunity to optimally regulate their protein-carbohydrate intake.  All three 

matrixes had equal total amounts of protein plus carbohydrate, and also contained 

identical proportions of the other ingredients, including indigestible cellulose powder 

(Table A-1). 
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Table 2.1.  Dates when Paratrechina sp.nr. pubens were collected from the field 

(Pearland, TX). 

 
 

Replicate Dates of Collection 
1 12/2/2006 
2 1/3/2007 
3 2/2/2007 
4 3/2/2007 
5 4/1/2007 
6 4/28/2007 
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Experimental Ant Colonies and Test Arenas: Collected colonies remained in their 

original containers for 3-6 d before sub-colonies were removed to make the experimental 

treatments.  A sample of specimens from a colony was used in an experiment. These 

experimental ant colonies consisted of one functional queen, 250 workers, and 

approximately 10 mg of brood.  Each colony was housed in a glass test tube (1.6 x 15 

cm) that served as both a water source and nest.  The tube was filled half way with 

distilled water with a cotton plug inserted to keep the water from spilling out.  

Experimental arenas (Figure 2.1a) consisted of two separate plastic boxes (9 cm high x 

16.5 x 30.5 cm) set adjacent to each other.  Both boxes had their sides treated with Fluon 

® in order to prevent the ants from escaping.  One box contained the ant colony, and the 

other contained the experimental foods (described below). Within the food box, dishes 

of food were equally spaced 3.8 cm from the base of the bridge and 7 cm and 9 cm from 

the box walls (Figure 2.1b).  
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Figure 2.1.a .  Diagrammatic representation of experimental set-up for the choice test.  

Rectangles depict the plastic boxes used to house the experimental colony, and the experimental 

diets.  Rectangle with lines through it shows where the water source/ nest were located.  

Pentagons with numbers one and two represent the location of each dietary dish (1 = p7:c25, 2 = 

p35:c7 for mix one; or 1 = p7:c35, 2 = p28:c14 for mix two).  The triangles with the line 

connecting them represents where the paper bridge was located.  Figure 2.1 b shows the box to 

scale. 

 
Figure 2.1. b. Diagrammatic representation of the exact location of each diet within the diet box 

relative to the walls and bridge.  The triangle represents the plastic tube stopper that was used as 

the base of the bridge.  The two circles represent the two diets used in each choice-test treatment. 

Diet 

Water/Nest 

Paper 
Bridge 
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The colony box and diet box were connected to each other via a paper bridge 

(Figure 2.2), which was 45.7 cm by 2.5 and made of printing paper (Sparco Brand, 

Atlanta, GA).  This bridge was used because in house studies demonstrated that this type 

of bridge was sturdy and allowed for easy observations of foraging behaviors.  

Measuring from either end, approximately 11cm up, the bridge was bent to form two 90° 

angles (Figure 2.2).  At the base of each end of the bridge, a Plastic tube stopper 

weighing approximately 11 g was placed to anchor the bridge upright throughout the 

entire experiment.  When the bridge was added to the arenas, one base was placed in the 

center of the colony box and the other base was placed in the center of the diet box, and 

centered between the two food dishes.  

Experimental Protocol: These experiments consisted of two treatments.  The first 

treatment paired p7:c35 with p35:c7 (Mix 1), while the second paired p7:c35 food with 

p28:c14 food (Mix 2).  Two treatments were needed to insure that nutrient protein-

carbohydrate intake was not the outcome of random feeding, in which ants ate equally 

from the two food dishes in the arena, regardless of protein-carbohydrate ratio of the 

available foods.   

 Each experimental colony was deprived of food 15 h prior to initiating the 

experiment.  Prior to the initiation of the experiments, one gram of food was allocated to 

the respective plastic weighing dishes (pentagon shaped dish: 1 cm high x 2.5 x 2.5 cm) 

and placed under a heating lamb for 15 h to allow the diet to equilibrate to a room 

temperature and humidity level.  Diets were again weighed to the nearest ten   
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Figure 2.2. Visual representation of experimental set up.   
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thousandths of a gram after the drying period, and placed in the diet box. The bridge 

then was added to connect the two boxes and initiate the experiment.   

 The colonies were allowed to feed for seven days, after which each food dish was 

removed and replaced with a fresh, pre-weighed dish of the same food type. Removed 

food dishes at day 7 and 15 were placed under the heating lamps for 15 hr and then 

reweighed. 

 In total, the p7:c35 + p35:c7 treatment was replicated with each colony, while the 

p7:c35 + p28:c14 treatment was replicated with four of the colonies representing each 

month except December and January due to unavailability of appropriate diets. 

Throughout the course of the 15 d experiment, daily counts over the number of 

dead ants were taken (dead ants classified as no longer having any life signs).  These 

counts were made to determine if there was any correlation between mortality and 

consumption.  

Ant Behavior:  Four foraging ants were removed prior to the initiation of each trial and 

marked in order to record their foraging behavior. Selected ants were removed and 

placed on a chill table and a mark placed on the dorsum of their abdomen.  A toothpick 

was used to mark the ants with one of four colors of paint (red, white, orange, and green).  

Paints used were Nissen® Metal Marker in a Bottle: Permanent Paint Marker (Nissen, 

Glenside, PA). They were selected due to being oil-based and being less toxic to ants 

(Wojoik et al. 2000).  Once marked, they were observed in a plastic box (9 cm high x 

16.5 x 30.5 cm) for approximately 10 min to ensure the paint was dry and did not hinder 

their movements.  If the paint was shown to hinder their movements, the ant was not 
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used in the experiment and another forager was marked.  Marked foragers were returned 

to their original colony. 

 Observations were made on 1, 7, and 14 d of the experiment. Each observation 

consisted of recording ant foraging behavior every 10 min for 4 h between 0900 and 

1300 hr.  Information recorded included the location and activity of the marked foragers, 

the number of foragers on the diets, bridge, and in the diet box. Along with the intensive 

observations daily moribund ants were counted and removed to prevent cannibalism.  

Statistical Analysis:  A multivariate analysis of variance (MANOVA) was used with 

the statistical package SPSS 15.0.  For MANOVA analyses, the Pillai’s trace, the 

MONOVA test statistic that has the greatest robustness was used to analyze the 

consumption of the diets.  Comparison between amounts eaten within a treatment was 

analyzed using the non-parametric Wilcoxon Signed Ranks Test, again with the 

statistical package SPSS 15.0.  Mortality data was analyzed using analysis of variance 

(ANOVA) with the statistical package SPSS 15.0. 

 

RESULTS 
 
Mortality:  Figure 2.3 shows the mean ant mortality (± SEM) and ant mortality from 0-7 

d (Figure 2.3a), 8-15 d (Figure 2.3b), and for these two periods combined (Figure 2.3c).   
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Figure 2.3:  Number of dead ants counted out of the 250 live ants used to start the 

experiment. Numbers are for Mix 1 and Mix 2 for each replicate (i.e. each month), with 

the mean amounts moribund (±SEM) represented by open triangle symbol (   ). (A) 

Represents the mortality amounts for days 0-7 (B) days 8-15 (C) days 0-15.   
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Analysis over the mean number of dead ants counted shows no statistical difference for 

any time period (Table 2.2). 

Food Selection:  The mean weight (mg) of the diet consumed from each food dish over 

days 0-7 (Figure 2.4a), days 8-15 (Figure 2.4b), and for these two periods combined 

(Figure 2.4c).  When the patterns of consumption (Figure 2.4) from the two food dishes 

were compared for each time period, no statistical differences were observed (Table 2.3). 

For all time periods, and for each treatment, more carbohydrate rich matrix (p7:c35) was 

eaten relative to the protein-rich matrix (p35:c7 or p28:c14) (Table 2.4). Figure 2.3 and 

table 2.4 shows that the majority (85%) of the food was consumed during the first 7 days.   

 Statistical analysis of the amount of matrix consumed in Mix 1 and Mix 2 (i.e. 

p7:c35 vs. p35:c7 and p7:c35 vs. p28:c14, respectfully) was conducted using the 

Wilcoxon Signed Ranks Test.  Results (Table 2.5) showed that the comparison of Mix 1 

(p7:c35, p35:c7) were not significant, but there was a trend approaching significance (P 

<0.1) for the p7:c35 food during the two time periods (days 0-7 and 8-15; p = 0.093, p = 

0.068, respectfully). When consumption was summed over these two periods, ants 

showed a significant preference (P≤ 0.05) for the p7:c35 food over the p35:c7 food. 

With respect to Mix 2 (p7:c35 + p28:c14), there was no statistically difference in amount 

eaten between the two food dishes for either time period (days 0-7 or 8-15; Table 2.5). 

However, when these two time periods were combined, a trend towards significance was 

observed (P = 0.068) with the p7:c35 food being preferred over the p28:c14 food (Table 

2.5).   
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Figure 2.4.  Mean weight of food eaten (mg ± SEM ) when P. sp.nr. pubens was provided 

two nutritionally distinct foods. Panel (A) represents the mean amounts eaten over days 

0-7, (B) days 8-15 and (C) over the entire experiment (0-15d).  The white bars represent 

the p7:c35 food, the grey bars the p35:c7 food and the black bars the p28:c14 food. * 

Represents the combinations that had statistically different amounts eaten (P< 0.05).  § 

Represents the combinations that were not significant at the P < 0.05 level but show a 

trend at the P < 0.1 level;. ns= Not Significant.   
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Table 2.2.  ANOVA analysis over the number of dead ants counted for each time period.  

Compares the number of dead ants in treatment 1 (Mix 1= p7:c35 and p35:c) to the 

amount dead in treatment 2 (Mix 2= p7:c35 and p28:c14). 

  

ANOVA 
Treatment df Mean Square F-Value P-Value 

 Day   0-7 5 30.1 0.007 0.936 
 Day 8-15 5 6.8 0.013 0.911 
 Day 0-15 5 56.3 0.021 0.888 
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Table 2.3.  MANOVA analysis when comparing the total amount of diet consumed (mg) 

in each treatment (i.e. p7:c35 + p35:c7 compared to p7:c35 + p28:c14).  Results show 

the amount consumed by Paratrechina sp.nr. pubens during the time periods of 0-7, 8-

15 and 0-15 days. 

 

MANOVA 
Effect  df F-value P-value 
Treatment 
 Days   0-7  2,7 0.194  0.828 
 Days 8-15 2,7 1.054 0.398 
 Days 0-15 2,7 0.451  0.654 
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Table 2.4 Mean amount eaten by P. sp.nr. pubens.  Table represents the mean amount 

eaten (mg) for Mix 1 and Mix2 for days 0-7, 8-15 and 0-15.  Numerical representation of 

Figure 2.3 (bar graph).   

Mean Amount Eaten (mg) 
Mix 1 Mix 2 Day 

p7:c35 p35:c7 p7:c35 p28:c14 
Day   0-7 6.047 3.297 6.550 3.975 
Day 8-15 1.017 0.233 1.775 0.900 
Day 0-15 7.063 3.533 8.325 4.875 
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Table 2.5 Wilcoxon Sign Rank Test compares the mean amounts consumed (mg) by 

Paratrechina sp.nr. pubens within each mix, and during each time period (i.e. 0-7, 8-15 

and 0-15 d).  Mix 1 compares the mean amount of the proteitn: carbohydrate ratio for the 

p7:c35 diet consumed to the mean amount of p35:c7 diet consumed.  Mix 2 compares 

the mean amount of p7:c35 diet consumed to the mean amount of p28:c14 diet 

consumed.   

 

P. sp.nr. pubens non-parametric results for all mixes 
Wilcoxon Sign Rank Test 

Days 0-7  Days 8-15  Days 0-15  Test 
Statistics Mix 1 Mix 2 Mix 1 Mix 2 Mix 1 Mix 2
Z value -1.682 (a) -1.461 (a) -1.826 (a) -1.342 (a) -1.992 (a) -1.826(a) 
P value 0.093 0.144 0.068 0.180 0.046* 0.068 

a Based on positve ranks 
* Statistically different (P < 0.05). Indicates a significate differences in the amount of 
each diet consumed for Mix 1 (with more of the p7:c35 diet consumed. 
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Nutrient Intake:  Figure 2.5 shows a bi-coordinate plot of the amounts of protein and 

carbohydrate consumed over days 0-7 (Figure 2.5a), days 8-15 (Figure 2.5b) and for 

these two time periods combined (Figure 2.5c).  Comparison of the mean amounts 

consumed (mg ± SEM) of protein and carbohydrate for each experimental time unit was 

conducted using multivariate analysis of variance, and results indicated there was no 

significant difference between treatments in terms of the amounts of protein and 

carbohydrate consumed for either time period, or when the time periods were combined 

(Table 2.6).    

Behavior:  Data were collected for the feeding and foraging behaviors of the ant during 

the first 4 h of the light phase (0900-1300 h) on 1, 7 and 14 d, and these data are shown 

in Figure 2.6. Inspection of these figures showed that foraging to the diet box had the 

highest numbers, although the amount of time spent on the either of the food dishes was 

relatively low.  Time spent on the two food dishes is shown more clearly in Figure 2.7. 

Inspection of this figure reveals that ants spent more time on the p7:c35 food dishes (D1) 

in each treatment, relative to the alternative food dish (D2).     

 Along with intensive observations made of the forging behavior of the colony, 

observations were made of the four painted forgers located in each experiment (Table 

2.7).  This table represents the number and location of each observation recorded for 

each painted forager during the six replicates and for each mixture.  Observations with 

respect to the number of foragers on Diets 1 and 2 were removed because this behavior 

was only observed twice throughout all six replicates.  Since observations were made 

every ten minutes over a 4 h period that allowed for each treatment to have a total of 24  
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Figure 2.5: Bi-coordinate plots of the mean amount of protein and carbohydrate eaten (mg ± SEM) 

for each experimental treatment (Mix 1 and 2).  (A) Represents the mean amounts for days 0-7 

(B) days 8-15 (C) days 0-15.  Closed square or diamond symbols represent the mean amount 

eaten for mix 1 (p7:c35 and p35:c7) and mix 2 (p7:c35 and p28:c14) respectfully. - - - - : 

represents a 1:1 nutritional rail.   Note that the scale axis is smaller on graph B than the A and C 

graphs.  The values were to low to have on the same scale length as A and C.   
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Figure 2.6. Bar graph represents the percent of the colony that spent time at different locations 

or performing different activities.  Each bar/ pattern corresponded to a different replicate (see 

key).  Box indicates the ant was observed in the box containing the two diets.  Bridge = on the 

bridge connecting the two boxes.  D1 = located on diet 1 (p7:c35).  D2 = located on diet 2 

(p35:c7).  A) Data collected for replications of Mix 1.  B)  Data collected for replications of Mix 
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Figure 2.7. Bar graphs, representing the percent of the colony observed on Diet 1 (D1, 

p7:c35), or Diet 2 (D2, p35:c7 or p28:c14 for mix 2).  A) Observations for Mix 1.  B) 

Observations for Mix 2.  
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Table 2.6. MANOVA analysis of protien-carbohydrate intake for Paratrechian sp.nr. 

pubnes during the choice experiments.  Test compares the amount of protein and 

carbohydrate consumed for treatment 1 (Mix 1= protein: carbohydrate ratios of:  p7:c35 

and p35:c) to the amount consumed for treatment 2 (Mix 2= p7:c35 and p28:c14). 

 

Effect df F-value P-value 
Treatment 

Days   0-7 2,7 0.470  0.643 
Days 8-15 2,7 0.504  0.624 
Days 0-15 2,7 0.608  0.571 

  Note that none of the treatments showed a significant difference. 
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 Table 2.7.  Sum of the observations made for marked foragers during three intensive 

observation periods for each replicate (Painted foragers: A= white, B=red, C=orange, 

D=green).  Note: Observations were made if the forager was on the different diets, but 

over all the replicates this behavior was only recoded twice so these numbers were 

removed from the table.   

December Replicate  
Mix 1 (p7:c35, p35:c7) Mix 2 (p7:c35, p28:c14) Location A B C D Mean† A B C D Mean† 

Nest 64 71 71 72 69.5 ** ** ** ** ** 
Colony 8 1 1 0 4.25 ** ** ** ** ** 
Bridge 0 0 0 0 0 ** ** ** ** ** 

Diet Box 0 0 0 0 0 ** ** ** ** ** 
January Replicate  

Nest 72 72 48* 43* 58.8 ** ** ** ** ** 
Colony 0 0 0 0 0 ** ** ** ** ** 
Bridge 0 0 0 1 0.25 ** ** ** ** ** 

Diet Box 0 0 0 2 0.50 ** ** ** ** ** 
February Replicate 

Nest 72 45 72 72 65.25 72 72 43* 72 64.75 
Colony 0 3 0 0 0.75 0 0 5 0 1.25 
Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 24 0 0 6 0 0 0 0 0 
March Replicate 

Nest 72 0* 48* 48* 42 72 72 72 69 71.25 
Colony 0 0 0 0 0 0 0 0 3 0.75 
Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 
April Replicate 

Nest 48* 72 72 72 66 72 72 72 48* 66 
Colony 0 0 0 0 0 0 0 0 0 0 
Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 
May Replicate 

Nest 72 69 67 48* 64 48* 72 72 72 66 
Colony 0 3 5 0 2 0 0 0 0 0 
Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 
 
 
 

 

*Foragers that did not survive to the end of the experiments. **No replicates for Mix 2.  † Mean 
number of observations for the four painted foragers being observed.    
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observations.  When the three intensive observation periods were summed, there were 72 

total observations made for each treatment.  If the total number of observations was less 

than 72 it denotes the painted ant died before the end of the experiment.  Location of the 

painted ants included the nest (the glass tube with the cotton plug), box (box containing 

the diet), and the bridge. No trends in foraging behavior can be determined from these 

observations. 

 

DISCUSSION 
   
Survival and performance of an ant colony is dependent on their acquisition of required 

nutrients; however, colony needs are dynamic and may change depending on whether it 

is growing or maintaining current population levels.   

In this experiment, I presented ants with two nutritionally imbalanced but 

complementary food sources (one with a low protein-carbohydrate ratio and one with a 

high protein-carbohydrate ratio), and measured their food consumption and protein-

carbohydrate intake.  A previous study showed that when insects have relative easy 

access to carbohydrates they prefer protein, whereas species with greater access to 

protein prefer carbohydrates (Kay 2004).  In the current study ants were provided a 

choice between high protein and high carbohydrate diets, so it was likely that their 

consumption patterns and protein-carbohydrate intake would have reflected actual needs 

rather than a simple preference based on a single class of nutrient.  

Throughout the experiment counts of ant mortality were made (Figure 2.3).  

There was mortality but since they were no statistical difference in the mean number of 
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dead ants (Table 2.2) for all replicates our focus was on the amount of each matrix 

consumed. Diet removed from the diet dish, resulting in a decrease in weight, is 

considered consumed.  Results from the consumption data indicated that ants having 

access to two complementary, suboptimal foods, would distribute their feeding in such a 

manner that more of the high carbohydrate food was eaten, which is not unexpected 

since carbohydrate rich foods are used as a principle metabolic fuel (Grover et al. 2007), 

while proteins are used preferentially for growth (Grover et al. 2007).   

Two possibilities may explain the observed preference for carbohydrates. The 

first is that carbohydrates are essential for invasive ants.  Studies have shown that the use 

of carbohydrate rich foods contribute to competitive performance (Grover et al. 2007), 

and P. sp.nr. pubens is an invasive and aggressive ant species.  Perhaps preference for 

carbohydrates is a characteristic of this species and is a contributing factor to its ability 

to invade and become established in new areas.   

Carbohydrate preference could also be related to its cannibalistic behavior.  This 

idea of cannibalism, as a means for supplementing carbohydrates, was first put forth by 

Dlussky and Kupinaskaya (1972). They suggest that ant colonies will eat the brood in 

lue of an absent nutrient.   Since little is known about P. sp.nr. pubens colony behavior, 

and based on observations made during this experiment; this hypothesis did not appear 

to be the reason for their nutrient selection.  It is believed that the best explanations for 

increased carbohydrate consumption was due to other factors, and reflect the colonies 

needs rather than the result of cannibalism.   
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Food consumed by the colony revealed the majority of their food was consumed 

during the first 7 d.  The lowered consumption during days 8-15 could be the result of 

accumulated mortality in the experimental colonies (Figure 2.3).  During each replicate, 

mortality tended to increase as the experiment progressed and increased mortality data 

would have reduced the amounts of diet consumed. Alternatively, colonies may have 

collected enough food and were storing the excess.  However, nothing is known about 

this ant species’ foraging and storage behaviors.  Since foraging is a relatively 

inexpensive activity (in terms of energy expended) (Fewell 1988, Baroni-Urbani and 

Nielsen 1990) the colony could have collected enough food, and stored it in the nest, to 

support their activity levels at a point in time.  Research has also shown that some ant 

species store excess fat and pass it on to colony members through lipid-rich oral 

secretions (Hahn 2006).  It could be common practice to forage heavily until enough 

food is stored up and thus reducing later foraging activates.  Further studies into foraging 

and storage behavior would have to be conducted to determine if this was the case.  

Based on personal observations, increased mortality seems the most likely explanation 

for reduced food consumption with time. 

Ants in this study tended to ingest more carbohydrate than protein, and this 

pattern held when the data were partitioned down into different time periods (days 0-7, 

8-15 and 0-15) (Figure 2.5).  Although they preferred carbohydrates to protein they did 

show active regulation between the two diets.  This balance in consumption between 

diets was seen since the regulation points, for each treatment (i.e. Mix 1 and Mix 2), 

were running along a similar trajectory.  If they were feeding randomly in each treatment 
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it would be expected to see two separate trajectories, not a single trajectory.   Also, if it 

were the case of just wanting carbohydrates they would have fed solely on the p7:c35 

diet and not regulated between the two.  This regulation between two suboptimal diets 

showed the actual nutrient selection of the colony.  Since this trajectory stayed relatively 

similar in all time units, it further supported the evidence that this was their preferred 

protein-carbohydrate intake point.   

The determination of the protein-carbohydrate intake, or nutrient selection, for 

ant colonies was the first time this had been done.  Although there has been research 

done on ant dietary needs (Stanley and Robinson 2007, Boaretto et al. 2003), they have 

not evaluated their nutrient selection, rather have focused on diet selection.  Research 

conducted by Stanley and Robinson examined the attractiveness of food that was 

classified as high protein or high carbohydrate, not the exact protein-carbohydrate needs 

of the colonies.  Their research on Paratrechina longicornis Latreille, showed they 

preferred protein rich tuna when presented a choice between various diets and baits 

(Stanley and Robinson 2007).  These other  baits/ diets examined included Amdro® 

(BASF Corporation, Research Triangle Park, NC), Boric acid + water, Maxforce®  

(Bayer Environmental Science, Research Triangle Park, NC), sugar water, and 

Xstinguish® (Bait Technology Ltd., North Harbour, Auckland) all of which had a 

primary nutrient class (i.e. Lipid, Protein, or Carbohydrate).  In comparison, Atta 

capiguara Goncalves, was not attracted to sugar or artificial sweeteners when given a 

choice from multiple sugar substances including sucrose, fructose, lactose, or glucose 

(Boaretto et al. 2003).   
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The Argentine ant, Linepithema humile, Mayr has been shown to exhibit dietary 

shifts (Abril et. al 2007) over time.  Research over seasons showed that during times of 

reproduction the colonies consumption of protein rich prey (i.e. other insects) increased 

(Abril et al. 2007), while during other periods their consumption of energy rich sugars, 

obtained from tending aphids, increased (Abril et al. 2007).  Increases in energy rich 

sugar collection corresponded to increased colony activity since they had to tend to new 

brood and collect enough food to support the growing colony.   

Behavioral data support the hypothesis of seasonal dependent foraging. Trends 

shown in Figure 2.6 showed the majority of the foraging activities were to the diet box, 

for in both treatments.  When seasonality (i.e. December, January, and February = 

Winter; March, April, and May = Spring/ Summer) was considered (Figure 2.5), there 

was a trend of increasing foraging behavior as time changes.  This trend can be seen in 

the incremental increase of foraging behavior as the colonies move towards the warmer 

seasonal months.  Since these replicates were not repeated over the same seasons no 

clear conclusion can be drawn; however, this increased foraging, because of seasonal 

changes, could be the result of warmer months being the typical time for larval and 

pupal production (Thomas 2003).  Future research over multiple seasons could show the 

seasonality effects in more detail.   

 Using a bridge to connect the treatment boxes served as a means to observe 

foraging behavior and allow the assumption that individuals on the bridge were 

collecting food.  Numerous studies have centered on the use of a bridge (Dussutour et al. 

2004a, Dussutour et al. 2004b, Dussutour et al.2005) to demonstrate foraging for food, 
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and allowed the ants the shortest path to the food (Beckers et al. 1992).  This design 

ensures that both diets were equal distances from the nest and equal opportunity to feed 

on either diet.  One limitation of these methods is the observations were made every 10 

minutes and not continuously which could result in a forager being counted twice.  A 

suggestion for future research would be to make continuous observations. Another area 

of focus was the number of ants foraging on the diet dishes.  Observations made over 

this behavior shows a preference for diet 1 (p7:c35), which supports the preference for 

carbohydrate rich foods.   

 Behavioral observations on a selective number of individuals (painted foragers) 

(Table 2.7), were made, but unfortunately the data do not show any trends other than the 

majority of their time was spent inside the nest.  The majority of the observations 

recorded shows the painted foragers in the nest and could be due to the painted foragers 

not being true foragers.  To avoid these situations in the future, it would be useful to 

select confirmed foragers.  The data collected on individuals in the current study are not 

ideal for any statistical analysis, but it does provide insight for future research.  

 This experiment showed the experimental approach of the Geometric Framework 

can be applied to the study of ants and can be conducted at the colony level.  The 

experiments also gave us a better understanding of the nutritional regulation of P. sp.nr. 

pubens and may lead to the production of a better baiting system.  This system can in 

turn help control the ever evolving problem of this invasive ant species.   
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CHAPTER III 
 

NUTRITIONAL REGULATION OF Paratrechina sp.nr. pubens WHEN 

PROVIDED A SINGLE NUTRIENT SOURCE 

 

OVERVIEW  

Colony fitness, size, and reproductive potential are determined by their ability to locate 

and consume the optimal amounts of various macronutrients.  Understanding the 

nutritional regulation of an ant colony furthers our understanding of its life history and 

can be used to produce a better baiting system for its suppression.  We used the 

“Geometric Framework” to conduct experiments determining how Paratrechina sp.nr. 

pubens regulated their protein and carbohydrate intake when confined to a single food 

source with a known protein-carbohydrate ratio.  By analyzing how much they 

consumed it can be determined which diet they preferred to consume, as well as which 

nutrients they prefer to have an excess or deficit of.  In addition to examining their 

compensatory mechanisms, their foraging behavior was examined through three 4 hr 

observation periods for each 15 d experiment.  Examination of the amount eaten showed 

a higher consumption rate of the carbohydrate rich foods (p7:c35 and p14:c28), with the 

p14:c28 having the most consumption as well as the lowest ant mortality data.  It was 

also observed that the colonies more tightly regulated their protein intake when 

compared to carbohydrates. 
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INTRODUCTION 
 
Acquisition of required nutrients is essential to the survivability of an ant colony.  

Central to this is the consumption of protein, which is utilized for growth and 

reproduction, as well as carbohydrates that are needed for energy (Scherer 2007).  

Colony fitness, size, caste and reproductive capacity all depend on locating and ingesting 

the required amounts of these macronutrients (Hughes 1993, Cassill and Tschinkel 1995). 

 Little data on the amount of macronutrients collected by ant species is available 

(Tschinkel 2006). And no reported studies have examined food consumption when 

macronutrient content is known.  Furthermore, little information on seasonal shifts as it 

relates to nutrient needs of ant colonies and the effects of these shifts on ant colonies is 

known (Abril et. al 2007).   

Most work done in the area of ant nutrition focused on the attractiveness and 

effectiveness of bait matrixes for their suppression (Stanley and Robinson 2007).  

Development of matrixes as baits for fire ants (Solenopsis invicta Hymenoptera: 

Formicidae), have been studied the most.   Different ant species have varying nutritional 

needs. Therefore, baits that are attractive to fire ants would not translate into 

attractiveness to another species.  Insight can be gained into why ant species neglect or 

prefer particular food items by studying their foragers as it relates to regulation of their 

nutrient intake.  This information can then be used to understand how the colony is 

regulating its specific nutritional needs (Howard 1987, Voelkl et al. 1999, Kay 2004).   

 One approach for analyzing the optimal proteins and carbohydrates needed by 

ant species is to examine their foraging behavior within the context of the ‘Geometric 
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Framework’ (Raubenheimer and Simpson 1993a).  Briefly, this approach allows the 

organism of interest to demonstrate the proportions of nutrients that are most preferred 

(Behmer et al. 2001).  This balance, called an ‘intake target’ (Raubenheimer and 

Simpson 1993a), reveals the amounts of nutrients (e.g. protein and carbohydrate) 

ingested by an animal over a given period of time.  Determination of the intake target is 

achieved when an organism is given a choice between two sub-optimal, but 

complementary food choices.  Colonies are able to achieve their intake target by eating 

between the two complementary foods.   

 P. sp.nr. pubens will be forced to consume foods that are imbalanced and thus the 

intake target cannot be reached because complementary foods or nutritionally balanced 

foods are unavailable.  Lack of optimal food will force the colony to make a nutritional 

decision to under-eat some nutrients, while over-eating others.  By examining these 

consumption patterns it makes it possible to determine the nature of a colonies 

nutritional compromise (Raubenheimer and Simpson 1998).  Although most research 

using this approach has been conducted on plant-feeding insects (Simpson and 

Raubenheimer 2000, Behmer et al. 2001, Behmer et al. 2003), it can easily be applied to 

a range of insects, including ants, which are regulating nutrient intake at both the 

individual and colony level. 

 In this study, I examine how Paratrechina sp.nr. pubens ant colonies 

compromise their protein and carbohydrate intake when given access to only one food 

source.  By observing the foraging behavior and consumption rates of different artificial 
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foods with known nutrient profiles I was able to assess whether, and to what extent, this 

ant actively defends a protein-carbohydrate intake target.   

 
 

MATERIALS AND METHODS 
 

Insects:  Paratrechina sp.nr. pubens were collected in Pearland, TX (GPS coordinates: 

N 29°33.518, W 095° 20.531).  Finding colony locations was accomplished by 

examining known nesting habitats.  These sites included, but were not limited to, under 

fallen tree limbs, in leaf litter, or by digging approximately 50.8- 305 mm into the soil.  

Once colonies were located, they were sight identified to be the appropriate species and 

then shoveled along with the dirt or debris present into a bucket (22 L) that had its sides 

treated with baby powder (approx. 1 oz) to prevent the ants from escaping.  Colonies 

were then transported to the Center for Urban and Structural Entomology, Texas A&M 

University, College Station, TX.  The colonies were removed from the dirt/debris in the 

bucket by a water dripping method which is frequently used to separate ant colonies. 

This method was done by placing the dirt/ debris under a faucet, which slowly dripped 

(approx. 2 drips per second) water into the bucket.  At the top of the dirt pile a Petri dish 

(d=8.5 cm, H= 1.5 cm), half way filled with plaster of paris, was placed and acted as an 

artificial nest.  Occasionally one artificial nest would not be large enough to hold the 

entire colony.  When this happened multiple petri dishes were placed in the bucket.  

When the water rose the colony would move up the mound of dirt and into the artificial 

nests.  Once the colony was inside the nests they were removed and placed together into 

a plastic box (30.5 x 16.5 x 8.9 cm).  The inside walls of the boxes was treated with 
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Fluon® (Polytetrafluoro-ethylene, ICI Fluoropolymers INC, Exton, PN, U.S.A.) to 

prevent the ants from escaping.  Inside these plastic boxes two water sources were 

presented to the ants.  One source was a 75 ml glass jar with a plastic top and cotton 

wick (Braided Rolls made by Richmond Dental, Charlotte, NC) filled with water.  This 

source provided moisture.  The other source was a plastic container (5.5 x 4.5 x 2 cm) 

filled with cotton balls soaked with a 20% honey water solution.  This source provided 

carbohydrates (Chapman 1998).  A prey source was also included in each colony box 

and consisted of approximately five to six dead crickets placed in a plastic container (5.5 

x 4.5 x 2 cm) (Orthoptera: Gryllidae).  The amount of water, sucrose, and crickets were 

checked daily and replenished when needed.  The colonies were maintained in a growth 

chamber (made by Elliott-Williams model: Conviron 8601) at 30±2°C, 12:12 light: dark, 

and 60% RH. 

 Over the course of the experiment, six separate colonies were collected and 

processed using the methods previously described.  Each colony represented a replicate.  

Colonies were collected from December 2006 until May 2007 (Table 3.1).  For purposes 

of this experiment December through February are considered winter months and March 

through May are spring/summer months.  This definition of seasons was done in order to 

make possible correlations between shifts in behavior and seasonal cycles. 

Experimental Foods:  The experimental foods used were a dry, granular, chemically 

defined matrix and were prepared as described in Behmer et al. (2001).  Variations of 

protein and digestible carbohydrate gave rise to the following six combinations of 

protein (p) and carbohydrate (c): p7:c7, p7:c35, p14:c28, p21:c21, p28:c14, and p35:c7 
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(all values are expressed on a percentage dry weight basis).  Results from Chapter II 

showed evidence that P. sp.nr. pubens prefers a carbohydrate rich diet.  Also, the 

analysis of protein and carbohydrate consumption when given two food choices (Chapter 

II) shows the ants eating along a nutritional rail very similar to a p14:c28 diet.  These six 

diets represent an array of varying protein- carbohydrate ratios, and all but the p14:c28 

diets are currently being considered suboptimal. With no choice of the diet provided to 

them, they should start to show a regulation which prefers a deficit or excess of 

carbohydrates or proteins.  All six foods had equal total amounts of protein plus 

carbohydrate and, therefore, also contained identical proportions of the other ingredients, 

including indigestible cellulose powder (Table A-2). 

Experimental Ant Colonies and Test Arenas:  Collected colonies remained in their 

original colonies between 3-6 d before members were removed make the experimental 

treatments.  A sample of specimens from a colony was used in an experiment. These 

experimental ant colonies consisted of one functional queen, 250 workers, and 

approximately 10 mg of brood.  Each colony was housed in a glass test tube (1.6 x 15 

cm) that served as both a water source and nest.  The tube was filled half way with 

distilled water with a cotton plug used to keep the water from spilling out.  

Experimental arenas (Figure 3.1a) consisted of two separate plastic boxes (9 cm 

high x 16.5 x 30.5 cm) set adjacent to each other.  Both boxes had there sides treated 

with Fluon ® in order to prevent the ants from escaping.  One box contained the ant 

colony, and the other contained the experimental foods (described below). Within the 
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food box, dishes of food were equally spaced 3.8 cm from the base of the bridge and 7 

cm and 9 cm from the box walls (see Figure 3.1b). 

The colony box and diet box were connected to each other via a paper bridge 

(Figure 3.2), which was 45.7 cm by 2.5 and made of printing paper (Sparco Brand, 

Atlanta, GA).  This bridge was used because in house studies demonstrated that this type 

of bridge was sturdy and allowed for easy observations of foraging behaviors.  

Measuring from either end, approximately 11cm up, the bridge was bent to form two 90° 

angles (Figure 3.2).  At the base of each end of the bridge, a Plastic tube stopper 

weighing approximately 11 g was placed to anchor the bridge upright throughout the 

entire experiment.  When the bridge was added to the arenas, one base was placed in the 

center of the colony box and the other base was placed in the center of the diet box and 

3.8 cm away from the diet.  

Experimental Protocol:  This experiment consisted of six treatments.  These included 

the p7:c7, p7:c35, p14:c28, p21:c21, p28:c14, and p35:c7 diet.  Along with these 

combinations a control was used, and consisted of crickets that were ground up by using 

a hand held coffee grinder. These were used to determine if the amount the ants were 

eating was because of the diets or if it was normal for any food presented to them.  These 

treatments were needed to demonstrate that nutrient protein-carbohydrate is regulated to 

the point of defending their intake target and to determine which macro nutrient they 

prefer to have in deficit or excess.  
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Figure 3.1 a. Diagrammatic representation of experimental set-up for the no-choice test.  

Rectangles depict the plastic boxes used to house the experimental colony, and the experimental 

diets.  Rectangle with the lines through it shows where the water source/ nest were located.  

Pentagon represents the location of the dietary dish.  The triangles with the line connecting them 

represents where the paper bridge were located.  Figure 3.1b shows the boxes to scale. 

 
Figure 3.1 b. Diagrammatic representation of the exact location of the diet within the 

diet box relative to the walls and bridge.     

Diet 

Water/Nest 

Paper 
Bridge 

Diet 
   Bridge 
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Figure 3.2. Visual representation of experimental set up.   
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 To ensure a uniform level of hunger at the start of each replicate, each 

experimental colony was deprived of food for 15 h.  Prior to the start of this starvation 

period, 1.0 g of food was weighed out and allocated to their respective plastic dishes 

(pentagon shaped dish: L 2.5 x W 2.5 x H 1 cm).  After which they were placed under a 

heating lamb for 15 h, which allowed the diet to equilibrate to a constant humidity level.  

At the end of the 15 h the diets were weighed again (at the 0.0001 g level), and then 

placed in the diet box. Next the bridge was added, thus connecting the two boxes.  This 

marked the start of the experiments. 

 The colonies were allowed to feed for 7 days, after which each food dish was 

removed and replaced with a fresh, pre-weighed dish of the same food type (using the 

same protocol as described above). The food dishes that had been removed were placed 

under the heating lamps for 15 hours and then reweighed.  At the end of the experiment 

(day 15), the two food dishes were removed, placed under the heating lamps for 15 h, 

and then re-weighed. 

In total, each treatment (p7:c7, p7:c35, p14:c28, p21:c21, p28:c14, and p35:c7) 

had six replications and each replication used a colony collected that month (Table 3.1).  

Throughout the course of the 15 d experiment, mortality counts were taken every day.  

These counts were made to determine if there was any correlation between mortality and 

consumption.  

Ant Behavior:  Four foraging ants were removed prior to the initiation of each trial and 

marked in order to record their foraging behavior. Selected ants were removed and  
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Table 3.1.  Collection dates for Paratrechina sp.nr. pubens from the field      

(Pearland, TX). 

 
Replicate Dates of Collection 

1 12/2/2006 
2 1/3/2007 
3 2/2/2007 
4 3/2/2007 
5 4/1/2007 
6 4/28/2007 
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placed on a chill table and a mark placed on the dorsum of their abdomen.  A toothpick 

was used to mark the ants with one of four colors of paint (red, white, orange, and green).  

Paints used were Nissen® Metal Marker in a Bottle: Permanent Paint Marker (Nissen, 

Glenside, PA). They were selected due to being oil-based and being less toxic to ants 

than other markers (Wojoik et al. 2000).  Once marked, they were observed in a plastic 

box (9 cm high x 16.5 x 30.5 cm) for approximately 10 min to ensure the paint was dry 

and did not hinder their movements.  If the paint was shown to hinder their movements, 

the ant was not used in the experiment and another forager was marked.  Marked 

foragers were returned to their original colony. 

 Observations were made on 1, 7, and 14 d of the experiment. Each observation 

consisted of recording ant foraging behavior every 10 min for 4 h between 0900 and 

1300 hr.  Information recorded included the location and activity of the marked foragers, 

the number of foragers on the diets, bridge, and in the diet box. Along with the intensive 

observations daily moribund ants were counted and removed to prevent cannibalism.  

Statistical Analysis:  To analyze the consumption of the diets, counts over number of 

dead ants, as well as consumption adjusted for mortality I used analysis of variance 

(ANOVA) with the statistical package SPSS 15.0.   

 
 
RESULTS 
 
 Mortality:  The number of dead ants as well as the mean amount of morbid ants (± SEM) 

for each treatment and for each replicate (i.e. collection months) over the 15 d 

experiments is provided in Figure 3.3.  When the mean number of dead ants from each 
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treatment was compared (number of dead out of 250 alive ants), no statistical differences 

were observed (Table 3.2).  However, there were more dead ants counted in the April 

ants than any other month.  Ants that fed on the p14:c28 diet had the fewest number of 

dead ants when compared to the other experimental diets (p14:c28 mean number of dead 

ants = 91; p7:c7=132; p7:c35=168; p21:c21=115; p28:c14=99; p35:c7=120).   On 

average, the number of dead ant units counted in April and May was the highest number 

at the conclusion of the 15 d experiment (Figures 3.3 and 3.4).  Figure 3.4 also shows a 

trend with increasing mortality as the month changes.  

Consumption:  Figure 3.5 shows the mean amount consumed from each treatment over 

days 0-7 (Figure 3.5a), days 8-15 (Figure 3.5b), and for these two periods combined 

(Figure 3.5c).  When the pattern of consumption from these treatments was compared for 

each time period, no statistical differences were observed for the parametric test (Table 

3.3). The carbohydrate rich diets (i.e. p7:c35 and p14:c28) was consumed in the greatest 

amount relative to the protein rich foods (p28:c14, p35:c7).  The 1:1 ratio diets (p7:c7, 

and p21:c21) had the lowest consumption amounts.  The amounts of the control matrix 

consumed were comparable to the other diets.    

 Comparison of the amount consumed and the mortality data shows when 

mortality increases the amount consumed decreases (Figure 3.6).  These graphs show the  
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Figure 3.3.  Bi-coordinate plot representing the mean number (± SEM) of dead ants 

counted at the end of each 15 d experimental treatment for six replicates. [Note: ‘p’ 

stands for protein; ‘c’ stands for carbohydrate.] 
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Figure 3.4.  Bar graph representing the number of dead ants counted for each monthly 

replicate.  White bars represent the number of dead ants counted during days 0-7, while 

the black bars represent the counts for the entire experiment (0-15 d).  
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Figure 3.5. Mean amount of food consumed (mg ± SEM) when P. sp.nr. pubens was 

provided a single food choice.  Panel (A) represents the mean amount eaten over days 0-

7, (B)  the amounts eaten over day 8-15 and (C) the amounts eaten over the entire 

experiment (days 0-15).  p = protein; c = carbohydrate. 

A) 

B) 

C) 

p7:c7 p14:c28 p28:c14 Control  p7:c35 p35:c7 p21:c21 
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Table 3.2.  Analysis of mortality (±SEM) using ANOVA.   

 
ANOVA 

Treatment  df Mean Square F-Value P-Value 
 Day 0-15 6 5205.919 1.383 0.250 
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Table 3.3.  Analysis of amount consumed (±SEM) using ANOVA.   
 

ANOVA 
Treatment  df Mean 

Square F-Value P-Value 

 Day 0-7 5 9.584 0.167 0.688 
 Day 8-15 5 2.557 1.029 0.419 
 Day 0-15 5 22.080 1.627 0.187 
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p21:c21, p28:c14, and p35:c7 diets had similar consumption and mortality data.  Each 

graph shows the mortality vs. consumption for each month replicated.  Analysis of these 

months shows that April had the highest mortality numbers, and some of the lowest 

consumption numbers (Figure 3.6).  While the carbohydrate rich diets (p7: c35, and p14: 

c28) were consumed at consistently higher rates (Figure 3.6).   

 Figure 3.7 shows a bi-coordinate plot of the amounts of protein and carbohydrate 

consumed by the ants for each day of each treatment.  Consumption results from Chapter 

II are also shown on each graph (light grey points) and were used as a comparison 

between Chapter II choice test and Chapter III no-choice test.   

 Consumption of protein and carbohydrate was adjusted for mortality for each 

treatment during each day of the experiment (Figure 3.8).  Points depict the amount of 

protein and carbohydrate potentially eaten per ant.  Morality was adjusted by taking the 

amount consumed for each treatment and dividing that number by the number of ants 

alive at the end of the experiment.  When the consumption patterns for each treatment 

were compared no statistical difference was observed (Table 3.4).   

Behavior:  Data were collected for the feeding and foraging behaviors during the first 4 

h of light phase (0900-1300 h) on days 1, 7 and 14 (Figure 3.9).  Inspection of these 

figures showed that the majority of the colony was foraging in the diet box, although the 

amount of time spent on the experimental diets was relatively low when compared to 

other foraging behavior.  Along with intensive observations made of the forging 

behavior of the colony, observations were made of the four painted foragers located in 

each experiment.  Table 3.5 summarizes the number and location of each observation 
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Dec. 

Jan. 

Feb. 

       X March 

       X April 

May 

 
Figure 3.6.  Scatter plot of number of dead ants counted versus the amount eaten (mg) 

for each treatment.  Symbols (see key) represent the different replicates (months).  Lines 

represent a negative linear trend as the number of dead ants increases the amount 

consumed decreases.     
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Figure 3.7.  Bi-coordinate plots of the amount of protein and carbohydrate eaten (mg ± SEM) for 

the six nutritional diets examined in the no-choice experiments.  All plots depict amount eaten 

for the entire experiment (days 0-15).  Closed symbols represent the mean amount eaten for all 

replicates, while open symbols represent amounts eaten for separate replicates.  Solid lines 

depict the nutritional rail each diet lies on.  Light grey triangles and squares = Chapter II data. 

 

Days 0-15 
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 Figure 3.8.  Bi-coordinate plots of the amount of protein and carbohydrate eaten (mg ± 

SEM) when adjusted for mortality.  Axes depict amount consumed per ant.  (A) 

Represents days 0-7 (B) days 0-15.  Each line represents the nutritional rail each diet 

lies on.  Closed symbols depict mean amount consumed, while open symbols represent 

amount consumed for each replicate.   

Adjusted for Mortality Day 0-15 

c) d) 

e) 

a) b) 

f) 
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Figure 3.9.  Bar graph represents the percent of the colony that spent time at different locations 

or preforming different activities.  Each pattern correspondes to a different replicate (see key).  

Diet box indicates the ant was obsereved in the box containing the two diets.  Bridge indicates 

ants that were observed on the paper bridge connecting the two boxes.  Diet represents the 

number of ants located on the no-choice experimental diet.   
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Table 3.4.  Analysis of consumption once adjusted for mortality (±SEM) using ANOVA.   
 

ANOVA 
Treatment  df Mean 

Square F-Value P-Value 

 Amt 
Consumed 
(per ant) 

5 0.007 2.370 0.065 
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recorded for each painted forger during the six replicated and for each treatment.  

[Observations with respect to the number of foragers on the treatment diets were 

removed because this behavior was never recorded for all six replicates.]  No trends in 

forging behavior can be determined from these observations.  

 

DISCUSSION 

Colony fitness, size, and reproductive capacity all depend on foragers acquiring needed 

nutrients.  Central to this is the consumption of the macronutrients, protein and 

carbohydrate.  Changes in the amount of macronutrients needed depended on whether 

the colony was actively growing or just in a maintain mode. 

 This experiment, I presented ants with one of six foods and measured 

consumption.  Previous studies demonstrated that when insects have relative easy access 

to carbohydrates they prefer protein, whereas species with greater access to protein 

prefer carbohydrates (Kay 2004).  In the current study, however, ants were only given 

access to one food choice with no opportunity to regulate their diet between two food 

sources, so it was likely that consumption reflects how they regulate protein and 

carbohydrate when they are in excess or deficit (Simpson and Raubenheimer 1993).  

 Throughout the experiment counts were made over the number of dead ants 

(Figure 3.3).  Examination of this figure shows the p14:c28 diet had, on average, the 

lowest number of dead ants when compared to the other experimental diets.  Reduced  
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Table 3.5.  Sum of the observations made for each painted forager during three intensive observation 

periods for each replicate (Painted forgers: A= white, B= red, C= orange, D= green).  

December Replicate  

p7:c7 p7:c35 Location 

A B C D Mean† A B C D Mean† 

Nest 70 72 70 23* 58.75 71 67 71 23* 58 

Colony Box 2 0 1 1 1 1 5 1 1 2 

Bridge 0 0 1 0 0.25 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

January Replicate 

Nest 31* 70 36* 24* 40.25 23* 48* 72 7* 37.5 

Colony Box 5 0 3 0 2 1 0 0 17 4.5 

Bridge 2 0 2 0 1 0 0 0 0 0 

Diet Box 10 2 7 0 4.75 0 0 0 0 0 

February Replicate 

Nest 48* 46* 23* 24* 35.25 72 72 72 72 72 

Colony Box 0 2 1 0 0.75 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

March Replicate 

Nest 24* 72 72 72 60 72 72 48* 2* 48.5 

Colony Box 0 0 0 0 0 0 0 0 22 5.5 
Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

April Replicate 
Nest 0* 72 72 72 54 72 72 48 72 66 

Colony Box 0 0 0 0 0 0 0 24 0 6 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 24 0 0 0 6 0 0 0 0 0 

May Replicate 

Nest 72 72 72 72 72 72 48* 48* 48* 54 
Colony Box 0 0 0 0 0 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0

Diet Box 0 0 0 0 0 0 0 0 0 0 
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December Replicate  

p14:c28 p21:21 Location 

A B C D Mean† A B C D Mean† 

Nest 14* 72 20* 23* 32.25 32* 40* 0* 64 34 

Colony Box 7 0 3 1 2.5 4 6 0 7 4.25 

Bridge 2 0 0 0 0.5 2 0 0 0 0.5 

Diet Box 1 0 1 0 0.5 10 2 0 1 3.25 

January Replicate  

Nest 70 72 72 44* 64.5 24* 72 48* 38* 45.5 

Colony Box 2 0 0 2 1 0 0 0 2 0.5 

Bridge 0 0 0 1 0.25 0 0 0 1 0.25 

Diet Box 0 0 0 1 0.25 0 0 0 7 1.75 

February Replicate 

Nest 24* 71 48* 72 53.75 24* 24* 7* 72 31.75 

Colony Box 0 1 0 0 0.25 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 17 0 4.25 

March Replicate 

Nest 72 47* 71 72 65.5 48* 72 72 72 66 

Colony Box 0 1 0 0 0.25 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

April Replicate 

Nest 72 72 72 48* 66 72 72 72 48* 66 

Colony Box 0 0 0 0 0 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

May Replicate 

Nest 72 72 72 72 72 72 72 72 72 72 

Colony Box 0 0 0 0 0 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

           

           

Table 3.5 Continued 
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December Replicate  

p28:c14 p35:c7 Location 

A B C D Mean† A B C D Mean† 

Nest 56 0* 72 0* 32 19* 24* 24* 72 34.75 

Colony Box 8 0 0 0 2 5 0 3 0 2 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 8 0 0 0 2 0 0 0 0 0 

January Replicate  

Nest 70 24* 14* 17* 31.25 24* 69 71 24* 47 

Colony Box 2 0 10 7 4.75 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 24 3 0 0 6.75 

February Replicate 

Nest 48* 23* 72 72 53.75 48* 72 20* 72 53 

Colony Box 0 1 0 0 0.25 0 0 4 0 1 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

March Replicate 

Nest 48* 72 72 48* 60 48* 72 72 48* 60 

Colony Box 0 0 0 0 0 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0 0 

April Replicate 

Nest 72 72 72 24* 60 48* 9* 24* 72 38.25 

Colony Box 0 0 0 0 0 0 14 0 0 3.5 

Bridge 0 0 0 0 0 0 1 0 0 0.25 

Diet Box 0 0 0 0 0 0 0 0 0 0 

May Replicate 

Nest 69 72 48* 48* 59.25 72 72 72 72 72 

Colony Box 3 3 0 0 1.5 0 0 0 0 0 

Bridge 0 0 0 0 0 0 0 0 0 0 

Diet Box 0 0 0 0 0 0 0 0 0  
* Indicate foragers that did not survive to the end of the experiment.  † Mean number of observations for the four painted foragers 
being observed. 

Table 3.5 Continued 
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mortality supports Chapter II data, which depicted their regulated intake target, which 

centered around the p14:c28 nutritional rail. For all the treatments the months of April 

and May had the highest mortality.   

Increased mortality during this time could reflect the natural life cycle of 

Paratrechina sp.nr. pubens. Research has been conducted over the mean lifespan of 

various ant species in the field (Höbbdobler and Wilson 1990, Keller 1998), but not over 

this species.  One experiment examining the life history of the ponerine ant, 

Harpegnathos saltator Jerdon, showed that field colonies had a short life span with an 

average survival of less than half a year (Liebig and Poethke 2004).  Further research 

conducted over the life cycle of Paratrechina flavipes Smith (Hymenoptera: Formicidae) 

showed the maximum life span of workers was estimated around two years (Ichinose 

1987).   

With limited knowledge of the life history of P. sp.nr. pubens, it is difficult to 

draw definitive conclusion as to why they had higher mortality during these two months. 

Preliminary data showed a trend for increased mortality as the testing period increased 

(Figure 3.4).  Tabulating the number of dead ants over time shows mortality increases 

with time.  January was the sole month that did not follow this trend.  Examination of the 

average temperatures in Houston, TX shows that January had a lower average 

temperature when compared to any other month (Table 3.6).  Cold weather has shown to 

decrease colony fitness and can affect mortality data (James et al. 2002).  Decreased 

colony fitness can explain why for the month of January mortality counts were high and 

consumption rates were low (Figure 3.6).   
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 Table 3.6.  Average low and high temperatures for Houston, TX (and surrounding areas) 

for December 2006-May 2007. 

 

Average Temperatures for Houston, TX (2006-2007) 
Month Low High 

December 42.8 °F 64.6 °F 
January 41.2 °F 62.3 °F 
February 44.3 °F 66.5 °F 
March 51.3 °F 73.3 °F 
April 57.9 °F 79.1 °F 
May 66.1 °F 85.5 °F 
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Along with mortality counts taken, the amount of each experimental diet 

consumed was recorded.  Diet removed from the diet dish, resulting in a decrease in 

weight, is considered consumed. Consumption amounts are based off the removal of the 

diet from the dishes, resulting in the diet dish decreasing in weight. Results from the 

consumption data showed the ants were regulating their intake of the protein rich foods 

(p21:c21, p28:c14 and p35:c7) (Figure 3.5).  Colonies demonstrated having a set 

threshold for the amount of protein they can ingest and this can be observed in Figure 

3.6, 3.7 and 3.8. Further analysis of the results from the consumption data showed that 

when ants had access to only one food source they showed a slight preference for the 

carbohydrate rich foods (i.e. p7:c35 and p14:c28), with the ants consuming the p14:c28 

more readily (Figure 3.5).  Carbohydrate rich foods are used as a principle metabolic 

fuel for many insects (Grover et al. 2007), while proteins are used preferentially for 

growth (Grover et al. 2007).  As stated in Chapter II, there is a possible explanation for 

this observed preference for carbohydrates as this macronutrient is essential for invasive 

ants.  

 Studies have shown that the use of carbohydrate rich foods contribute to 

competitive performance (Grover et al. 2007), and P. sp.nr. pubens is an invasive and 

aggressive ant species.  Perhaps its preference for carbohydrates was a characteristic of 

this species, and is one that could be a contributing factor to their ability to invade and 

becoming established in new areas.   

Additional comparison of the mean amount of food consumed shows the p7:c7 

diet and p21:c21 to be consumed by the ants at a same rate (Figure 3.5).  The p7c:7 diet 
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was used to test for a compensatory mechanism in response to nutrient dilution.  

Although it had a 1:1 protein-carbohydrate ratio like the p21:c21 diet, its total 

macronutrient content is only one-third of the other five diets.  If ants were able to 

compensate for dilution, consumption would have been three times as much on the 

p21:c21 diet to overcome the dilution effect.  Not only was the consumption the smallest, 

this diet resulted in some of the highest mortality among the colonies.  Low consumption 

and high mortality data showed this to be the worst diet out of the six experimental 

treatments.   

Consumption rates on the control diet (ground up crickets) were comparable to 

the diets containing a total macronutrient content of 42%.  The crickets used were 

considered a prey item and were described as being a source of protein (Scherer 2007).  

Crickets provided the ants with a source of protein, but a low amount of carbohydrate, it 

explains why their consumption was similar to the protein rich diets (Figure 3.5).   

Comparison of the mean amount of food consumed also revealed that the 

colonies ate the majority of their food during the first 7 d (Figure 3.5 a).  The lowered 

consumption was measured during days 8-15 (Figure 3.5 b), and could be the result of 

increased mortality in the experimental colonies (Figure 3.4).  During each replicate, 

mortality tended to increase as the experiment progressed and increased rates of 

mortality would have seriously depressed the amounts of matrix consumed.     

Alternatively colonies may have already collected enough food and were storing 

the excess.  Nothing is known about this ant species foraging and storage behaviors.  

Since foraging is a relatively inexpensive activity in terms of energy expenditure 
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(Baroni-Urbani and Nielsen 1990, Fewell 1988,) the colony could have collected enough 

food, and stored it in the nest, to support their current activity levels.  Research has 

shown that some ant species store excess fat and pass it on to colony members through 

lipid-rich oral secretions (Hahn 2006).  It could be common practice to forage heavily 

until enough food is stored up and thus reducing later foraging activates.  Further studies 

into foraging and storage behavior would have to be conducted to determine if this was 

the case for this ant species.  Based on personal observations, increased mortality seems 

the most likely explanation for reduced food consumption with time. 

  Analysis of the amount of diets consumed versus mortality data shows when 

mortality increases, consumption decreased (Figure 3.6).  This figure further shows that 

consumption was highest on the high carbohydrate foods and that the p14:c28 had a 

lower mortality when compared to the other diets.  Although the carbohydrate rich foods 

had more consumption there was a noticeable increase in mortality when examining the 

p35:c7 treatment (Figure 3.6).  One explanation for this observation may be an increase 

in cannibalism.  Research has shown that when foods fed to ants do not have that species 

required amount of protein, cannibalism within that colony increases (Aron et al. 2001).  

Since the colonies could not regulate their diet they may have resorted to eating brood or 

other colony members.  Another explanation is the months with some of the highest 

mortality were March, April and May.   Although the colonies show a preference for 

carbohydrate rich foods, if March and April are the reproductive months they would 

need an increase in protein consumption to support the production of more brood 

(Grover et al. 2007).  This diet, having the lowest amount of protein available to the 
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colony, could have caused decreased colony fitness since they were not getting the 

required nutrients for those months.  Until further research is done over the life history 

definitive conclusions are hard to draw.   

Figure 3.6 showed that the protein rich diets (i.e. p21:c21, p28:c14, and p35:c7) 

had a very similar consumption rate.  Consumption rate was more tightly regulated when 

compared to the carbohydrate rich foods, meaning the ant tried to keep there protein 

intake below a certain threshold, whereas the carbohydrate rich treatments consumption 

patterns were observed over a much wider range.  This result further demonstrates a 

preference for carbohydrate foods and a threshold point for protein.  

In terms of protein-carbohydrate consumption, Figure 3.7 shows how much they 

ate and compared it to the regulated intake target obtained from Chapter II (light grey 

symbols).  Each diet runs along a nutritional rail and has been represented by the solid 

black line in each bi-coordinate plot.  Comparison of the Chapter II data and the amount 

eaten for the p14:c28 treatment showed a very similar consumption.  This further 

supports the hypothesis that a diet close to the p14:c28 ratio is preferred.   

Further analysis of Figure 3.7 shows the compensatory mechanism of P sp.nr. 

pubens, with the limiting factor being the amount of protein eaten.  When comparing the 

intake for these treatments to the Chapter II intake target they were more tightly 

regulating their protein intake, thus demonstrating protein to be their limiting nutrient.  

An example of this can be seen in the p28:c14 treatment where they were eating to the 

optimal protein amount but are not going over that even though they could consume 

enough of the diet to reach their optimal carbohydrate intake (Figure 3.7). In summary 
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they appear to be willing to feed to their optimal carbohydrate point as long as they did 

not exceed the protein threshold. 

Throughout the experiments the numbers of dead ants were counted and Figure 

3.8 shows the protein-carbohydrate consumption when the amounts from Figure 3.7 

were adjusted for mortality.  A striking result is how tightly they regulate their protein 

compared to carbohydrate consumption.  There was a narrow range for the protein 

consumption, staying between 0.0 - 0.02 mg, while carbohydrate consumption had a 

much wider range, staying between 0.0 - 0.09 mg.  With the only exceptions in Figure 

3.8 being panels d, e, and f where the consumption points representing May was above 

the protein range of 0.02mg.  Colonies could be ignoring this protein threshold to gain 

more carbohydrates.  Consuming more carbohydrates could correspond to a higher 

energy need, due to taking care of new brood and supporting a larger colony.   Although 

these plots represent consumption on an individual level, the comparison of this Figure 

3.8 to Figure 3.7 (non-adjusted) shows the consumption patterns are similar to each other, 

especially with regards to tightly regulating their protein intake.  Similar consumption 

patterns further support the protein-carbohydrate regulation seen in the non-adjusted 

plots (Figure 3.7).   

Dietary preference has been studied before, but has mainly focused on food that 

was classified as high protein or high carbohydrate.  Examination of nutrient regulation 

when given a food source with known macronutrient content has currently not been 

conducted in social insects.  Previous research focused mainly on the effectiveness and 

attractiveness of baits. For example, research on Paratrechina longicornis Latreille, has 
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shown they prefer the protein rich tuna when presented a choice between various diets 

and baits (Stanley and Robison 2007).   

Furthermore, research conducted with the Argentine ant (Linepithema humile 

Mayr) demonstrated a dietary shift (Abril et al. 2007) through time.  Research over 

seasons showed that during times of reproduction (May) the colonies consumption of 

protein rich prey (i.e. other insects) increased (Abril et al. 2007), while in June, their 

consumption of energy rich sugars, obtained from tending aphids, increased (Abril et al. 

2007).  Increase in energy rich sugar collection corresponded to increased colony 

activity since they had to tend to new brood and collect enough food to support the 

growing colony.   

Seasonal dietary trends can start to be observed throughout these treatments.  

These trends are best seen in the protein rich diets in Figures 3.7 and 3.8.  May appears 

to be associated with an increase in carbohydrate needs.  In the protein rich plots (i.e. 

p21:c21, p28:c14, and p35:c7), for both the non-adjusted and adjusted for mortality plots, 

the points furthest from the clusters correspond to the month of May.  The willingness of 

the colony to ignore their protein threshold to gain more carbohydrates demonstrates the 

need for this macronutrient during this time of the year.  Since these experiments were 

not run over multiple seasons no clear conclusions can be drawn, but they do show some 

evidence of seasonal regulation.   

Further analysis of the behavioral data supported the idea of seasonal dependent 

foraging. Trends shown in Figure 3.9 indicated that the majority of the foraging 

activities were to the diet box, for all treatments.  When seasonality (i.e. Dec, Jan, and 
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Feb = Winter; March, April, and May = Spring/ Summer) was considered (Figure 3.9) 

there was a trend in behavior as time changes.  This hypothesis can be seen in the 

incremental increase in foraging behavior as the colonies move towards the warmer 

months.  Again, since these replicates were not repeated over the same seasons, no clear 

conclusion can be drawn; however, this increased foraging, because of seasonal changes, 

could be the result of warmer months being the typical time for pupae and larvae 

production (Thomas 2003).  Future research over multiple seasons could show the 

seasonality effects in more detail.   

 The use of the bridge to connect the treatment boxes served as a way to observe 

foraging behavior and allowed us to assume individuals on the bridge were going to 

collect food.  Numerous studies have centered on the use of a bridge (Dussutour et al. 

2004a, Dussutour et al. 2004b, Dussutour et al. 2005) to demonstrate foraging for food, 

and allowed the ants the shortest path to food (Beckers et al. 1992).  This ensures that the 

diets across all treatments were all the same distance from the nest in order make 

experimental design uniform, thus controlling for possible foraging variables.   One 

limitation of these methods is that the observations were made every 10 minutes and not 

continuously.  The chance of counting a forager twice increases because of this 

limitation.  A future suggestion would be to make continuous observations ant to track 

the number of ants foraging to the diet dishes.   

 Behavioral observations on a selective number of individuals (Table 3.5) were 

made, but unfortunately this data does not show any trends, other than the majority of 

their time was spent inside the nest.  Low variation of foraging behavior could be due to 
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the painted foragers not being true foragers.  To avoid these situations in future 

observational studies, it would be useful to select confirmed foragers.  The data collected 

on individuals in the current study were not ideal for any statistical analysis, but it does 

give good suggestions as to what to do for future research, such as confirming foragers 

as well as making continuous observations.  

 This experiment showed the experimental approach of the Geometric Framework 

can be applied to the study of ants, and can be conducted at the colony level.  The 

experiments also gave us a better understanding of the nutritional regulation of P. sp.nr. 

pubens and may lead to the production of a better baiting system.  This system can in 

turn help control the ever evolving problem of this invasive ant species.   
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CHAPTER IV 
 

CONCLUSION 

 

This research has provided some insight into the biology and nutrient needs of  

Paratrechina sp.nr. pubens.  Here I used the experimental approach of the “Geometric 

Framework” to explore protein-carbohydrate regulation. I hypothesized that having a 

colony choose between two sub-optimal, but complementary, foods would result in its 

feeding between the two in order to defend a particular protein-carbohydrate intake 

target.  Analyses of the data show that the colonies were foraging approximately twice as 

much carbohydrate as protein. Results from no choice experiments indicated that protein 

rich foods (p28:c14, p35:c7, p21:c21) had less consumption in comparison to 

carbohydrate rich foods (p7:c35, p14:c28). Furthermore, the no-choice experiments 

indicate they perform best on foods containing twice as much carbohydrate as protein. 

 Prior to my study the “Geometric Framework” approach had primarily been used 

on insect herbivores. Working with social insects presents a unique set of challenges 

compared to studying nutrient regulation in individual insects, since social insects 

regulate nutrients to reflect the needs of the colony and not individual needs.  Ultimately 

my study demonstrated the ability of this approach to work resulting in more insight into 

specific nutrient needs of targeted ant species.  Future research can apply this approach, 

and the results gained from it, to develop a better and more attractive bait matrix that is 

ant species specific.  Currently most baits are tailored towards the preferences of the 

RIFA, and now a frame work exists that can be used to target different species more 
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specifically.  Also, by replicating this experimental design over multiple season a more 

defined seasonal dietary shift can be observed, which will also help develop a more 

targeted baiting system.   

 Future research should examine the life span of this species to determine if 

mortality data reflect poor nutritional diets or are part of their natural life cycle.  Another 

area of future research would be to refine the design of my experiments by examining 

different artificial diets as they relate to ant foraging.  Currently these diets have been 

tailored to grasshoppers since most work has been conducted with these insects.  The 

diets tested had low macronutrient content as well as high levels of cellulose.  Although 

the ants consumed these diets, comparing them to diets with a lower cellulose level 

would confirm their attractiveness. Further research needs to be done to determine if this 

species is in fact feeding on moribund individuals from the colony. Furthermore, studies 

examining different active ingredient as part of the artificial diets in order to produce an 

optimal baiting system for this ant species need to be conducted. 

 A number of outstanding questions still remain.  Results from my experiments 

demonstrated the ability to study nutrient regulation of social insects at the colony level, 

specifically their nutritional needs and the mechanisms they employ in terms of 

regulating protein and carbohydrate intake.  The results from this study provide a 

potentially big step towards developing species-specific baits, as well as expanding our 

knowledge of the biology of this insect. 
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APPENDIX A 
 
 
 

Table A-1.  Nutritional content used for each experimental diet. 
 

 p7:c35 p28:c14 p35:c7 

Cellulose (g) 108 108 108 

Casein (g) 8.4 33.6 42 

Peptone (g) 2.8 11.2 14 

Albumen (g) 2.8 11.2 14 

Sucrose (g) 35 14 7 

Dextrin (g) 35 14 7 

Linoleic Acid 
(ml) 1.1 1.1 1.1 

Cholesterol (mg) 1100 1100 1100 

Chloroform (ml 
approx.) 80 80 80 

Wesson’s Salt (g) 5 5 5 

Ascorbate (mg) 550 550 550 

Vitamin Mix 
(mg) 360 360 360 

20% ethyl 
alcohol (ml 

approx) 
250 250 250 
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Table A-2.  Nutritional content used for each experimental diet used in the no-choice 

experiments. 

 
 p7:c7 p7:c35 p14:c28 p21:c21 p28:c14 p35:c7 

Cellulose (g) 164 108 108 108 108 108 

Casein (g) 8.4 8.4 16.8 25.2 33.6 42 

Peptone (g) 2.8 2.8 5.6 8.4 11.2 14 

Albumen (g) 2.8 2.8 5.6 8.4 11.2 14 

Sucrose (g) 7 35 28 21 14 7 

Dextrin (g) 7 35 28 21 14 7 

Linoleic Acid 
(ml) 

1.1 1.1 1.1 1.1 1.1 1.1 

Cholesterol (mg) 1100 1100 1100 1100 1100 1100 

Chloroform (ml 
approx.) 

80 80 80 80 80 80 

Wesson’s Salt (g) 5 5 5 5 5 5 

Ascorbate (mg) 550 550 550 550 550 550 

Vitamin Mix 
(mg) 

360 360 360 360 360 360 

20% ethyl 
alcohol (ml 

approx) 

250 250 250 250 250 250 
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