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ABSTRACT 

 

Kinetics and Dynamics Study on the Allosteric Pathway of Phosphofructokinase from 

Escherichia coli. 

(May 2008) 

Cuijuan Tie, B.S., Nanjing University, China; 

M.S., China Academy of Science 

Chair of Advisory Committee: Dr. Gregory D. Reinhart 

 

Phosphofructokinase from Escherichia coli (EcPFK) is allosterically regulated 

by MgADP and phosphoenolpyruvate (PEP), which act to activate or inhibit, 

respectively, by changing the substrate (Fru-6-P) affinity of the enzyme. Both ligands 

bind to the same allosteric site in EcPFK. Therefore, the questions we want to address 

are how these two molecules regulate EcPFK and how the allosteric signal is propagated 

throughout the enzyme. 

EcPFK has 28 potential site-site interactions. These interactions in turn derive 

from multiple copies of 6 potentially unique homotropic interactions and 4 potentially 

unique heterotropic interactions. Making hybrid tetramer of EcPFK is used to isolate a 

single heterotropic interaction. To improve the yield of the 1:3 hybrid, the in vivo hybrid 

formation method was developed. Four heterotropic interactions were isolated by this 

manner and re-evaluated. The same kinetics characteristics were obtained for each 1:3 

hybrid from both the in vivo and in vitro method.  
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To address the question of how the allosteric signal is transmitted throughout 

EcPFK, we identified residues (G184, Asp59 and S157) that are important for the 

allosteric regulation for both PEP inhibition and MgADP activation. The impact of each 

mutation on individual interaction is unique and also suggests that the structural basis for 

PEP inhibition is different from that for MgADP activation. Most importantly, since the 

sum of each heterotropic interaction with a modification in only one subunit is equal to 

the total heterotropic interaction with a modification in all four subunits, this result 

indicates that the heterotropic allosteric signal transmission is realized in a single subunit. 

The 23Å heterotropic interaction, which contributes the most to the PEP inhibition, was 

chosen to study the dynamic properties. Fluorescence was used to study the dynamic 

perturbations of the 23Å interaction upon ligand binding. Taking advantage of the hybrid 

formation strategy and the tryptophan-shift mutagenesis method, a tryptophan residue 

can be placed at different individual locations throughout the native subunit containing 

the 23Å heterotropic interaction. The steady-state anisotropy and lifetime measurement 

at each tryptophan position indicate that the 23Å allosteric interaction involves the 

perturbation of side-chain dynamics both near and quite far away from the respective 

ligand binding sites. 
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NOMENCLATURE 

Abbreviations 

 ° Degrees or denotes standard state 

 A Generally denotes substrate or single letter code for Alanine 

 Å Angstroms 

 ADP Adenosine 5’-diphosphate  

 Ala Alanine 

 AMP Adenosine 5’-monophosphate 

 Arg Argnine 

 Asp Aspartate 

 ATP Adenosine 5’-triphosphate 

 BCA Bicinchoninic Acid  

 BsPFK Phosphofructokinase from Bacillus stearothermophilus 

 C Single letter code for the nucleotide cytosine 

 D Single letter code for Aspartate 

 DTT Dithiothreitol 

 E Generally denotes enzyme or single letter code for glutamate 

 EcCPS Carbamoyl-phosphate synthetase from Escherichia coli 

 EcPFK Phosphofructokinase from Escherichia coli  

 EDTA Ethylenediamine tetraacetic acid 

 EPPS N- [2-Hydroxyethyl] piperazine-N’-3-propanesulfonic acid 

 F Single letter for phenylalanine 

  



 viii

 FBP Fructose-1, 6-bisphosphate 

 FBPase Fructose-1, 6-bisphosphatase 

 Fru-6-P Fructose-6-phosphate 

 G Single letter code for the nucleotide guanine 

 GDP Guanosine 5’-diphosphate 

 Glu Glutamate 

 Gly Glycine 

 H Single letter code for histidine 

 Hb Hemoglobin 

 I Generally denotes inhibitor 

 IMP Inosine monophosphate 

 K Single letter code for lysine 

 KSCN Potassium thiocyanate 

 L Single letter code for leucine 

 LB Luria Bertani broth 

 LbPFK Phosphofructokinase from Lactobacillus delbrueckii 

 Lys Lysine 

 M Methionine 

 Mg Magnesium 

 MES 2-[N-Morpholino] ethanesulfonic acid 

 MOPS 3-[N-Morpholino]propanesulfonic acid 

 mPFK Phosphofructokinase from mouse 

  



 ix

 MW Molecular Weight 

 N Single letter code for asparagine 

 NADH Nicotinamide adenine dinucleotide, reduced form 

 NAD+ Nicotinamide adenine dinucleotide, oxidized form 

 NATA N-acetyl-tryptophanamide 

 P Generally denotes product 

 PAGE Polyacrylamide gel electrophoresis 

 PEP Phosphoenolpyruvate 

 PFK Phosphofructokinase 

 PGA Phospoglycolate 

 Q Single letter code for glutamine 

 R Single letter code for arginine 

 RmPFK Phosphofructokinase from rabbit muscle 

 S Generally denotes substrate or the single letter code for serine 

 SDS Sodium dodecyl sulfate 

 Tris Tris [hyroxymethyl] aminomethane 

 V Single letter code foe valine 

 W Single letter code for tryptophan 

 X Generally denotes an allosteric ligand or an activator ADP 

 Y Denotes an inhibitor specifically PEP or the single letter 

                          code for tyrosine 
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Mathematical Terms 

 AC The signal amplitude at frequency ω  

 DC  The average signal at frequency ω 

  Thermodynamic dissociation constant for A in the absence of effector °
iaK

  Thermodynamic dissociation constant for A in the saturating presence ∞
iaK

                          of effector 

  Thermodynamic dissociation constant for X in the absence of substrate °
ixK

  Thermodynamic dissociation constant for X in the saturating presence ∞
ixK

                           of substrate 

 ε Extinction coefficient 

 [A] Concentration of ligand/substrate 

 [E] Concentration of enzyme 

 [ES] Concentration of enzyme substrate complex 

 ∆G Coupling free energy 

 ∆Ga Coupling free energy for A 

 ∆Gaa Coupling free energy for the interaction between A and A 

 ∆Ga/y Coupling free energy for A in the saturating presence of Y 

 ∆Gay  Coupling free energy for the interaction between A and Y 

 ∆Gy Coupling free energy for Y 

 ∆Gyy Coupling free energy for the interaction between Y and Y 

 ∆Gy/a Coupling free energy for Y in the saturating presence of A 

　 µM Micromolar 

  



 xi

　 µg Microgram 

 I Intensity 

 K Dissociation constant 

 Ka The association constant or the Michaelis constant for A 

 K1/2 The concentration of ligand that produces half-maximal change 

 kca The catalytic rate constant at saturating substrate concentrations 

 Kd Dissociation constant 

 KDa Kilodalton 

 Km Michaelis constant 

 M Molar or demodulation 

 Max Maximal change in activity or Hill number 

 mg Milligram 

 mL Milliliter 

 mM Millimolar 

 n Binding stoichiometry 

 nH Hill number 

 nm Nanometer 

 ns Nanosecond 

 p Polarization 

 Q Coupling constant for an allosteric interaction which alters binding  
  affinity 
 
 Qaa Coupling constant for the interaction between A and A 

 Qay Coupling constant for the interaction between A and Y 
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 R Gas constant 

 r Anisotropy 

 r0 The anisotropy without rotational diffusion (limiting anisotropy) 

 r∞ The anisotropy approached as a result of the depolarization effect of the 
                            hindered rotation 

 [S] Concentration of substrate 

 T Temperature 

 τ Fluorescence life time 

 U Units 

 v Initial velocity 

 Vmax Maximal velocity 

 Vo Initial rate of turnover 

 Wax Coupling constant for an allosteric interaction which alters the maximal 
                          velocity 

 [X] Concentration of effector 

 θ Rotational correlation time 

 η viscosity of the solution 

 κ Boltzman constant 

 m° Modulation 

 δ Phase angle 

 σ The phase shift 

 Ф1 The rotational correctional time for the fast local motion 

 Ф2 The rotational correctional time for the slow global motion
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CHAPTER I 

INTRODUCTION 

Regulation is very important in all kinds of activities. At the macroscopic level in 

general, a regulation is a legal restriction promulgated by government administrative 

agencies through rulemaking. At a microscopic level in life science, regulation occurs at 

different levels, including DNA replication, RNA transcription, protein synthesis and 

post-translational modification. Different levels of regulation in life science gives the 

cell control over its structure and function and is the basis for cellular differentiation, 

morphogenesis and the versatility and adaptability of any organism. 

Here, we are going to focus on allosteric enzyme regulation, which is a level of 

protein regulation. In living cells, there are hundreds of different enzymes working 

together. Living cells neither synthesize nor breakdown more material than is required 

for normal metabolism and growth. All of this necessitates precise control mechanisms 

for turning metabolic reactions on and off. Enzymes play major roles in the regulation 

process. Enzymes catalyze specific biochemical reactions without being consumed in the 

process and accelerate the reaction tremendously. They are frequently regulated, in 

contrast to inorganic catalysts, which generally cannot be regulated. Enzymes that are 

regulated usually stand at cross points of metabolic pathways. There are two basic means  

 

 

This dissertation follows the style and format of Biophysical Journal. 
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to regulate an enzyme: 1) regulate the synthesis of the enzyme or 2) regulate the activity 

of the enzyme. Enzyme synthesis regulation refers to controlling both transcription of 

the mRNA needed for enzyme synthesis and translation of the mRNA to protein. In 

prokaryotic cells, the transcriptional level of enzyme synthesis involves the activation or 

inhibition of transcription by regulatory proteins that can bind to DNA and either block 

or enhance the function of RNA polymerase. At the translational level of enzyme 

synthesis, the bacteria may produce antisense RNA that is complementary to the mRNA 

coding for the enzyme. When the antisense RNA binds to the mRNA by complementary 

base pairing, the mRNA cannot be translated into protein and the enzyme is not 

synthesized. A right balance exists between the enzyme synthesized and consumed in the 

cell. Enzyme activity regulation is controlled mainly by covalent modification, such as 

phosphorylation and ubiquitination, and allosteric effects. In addition, some enzymes are 

stimulated or inhibited when they are bound by regulatory proteins. Others are activated 

by proteolytic cleavage, which is an irreversible process. The advantage of allosteric 

regulation is that it may allow fine-tuning of a metabolic pathway since enzyme activity 

is modulated at a different level. In addition, the allosteric regulation process is 

reversible. Therefore, enzyme allosteric regulation is particularly important in major 

metabolic pathways (glycolysis, Krebs cycle, urea cycle, gluconeogenesis, etc.), which 

impact other important and energetically expensive pathways. 
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Allosteric Regulation 

The term allostery comes from the Greek allos, "other," and stereos, "space," 

referring to the regulatory site of an allosteric protein being separate from its active site. 

Feedback control is a natural example of allosteric regulation, which means the end 

product of a pathway can modulate the upstream enzyme activity. The allosteric 

regulation of an enzyme or protein refers to the situation when an effector molecule 

binds at the protein's allosteric site (that is, a site different from the protein's active site) 

and either enhances the protein's function (allosteric activators), or diminishes the 

protein's function (allosteric inhibitors). This regulation can occur in two ways: (1) by 

altering substrate affinity (K-type system) or (2) by altering the catalytic rate (V-type 

system). Since a greater percentage of allosteric enzymes are regulated via changes in 

substrate affinity (K-type system), including glycogen phosphorylase, 

phosphofructokinase, pyruvate kinase, we are going to focus on K-type regulation and 

the models used to account for these types of allosteric effects.  

Allosteric communication occurs between ligand binding sites. When the ligands 

are different from each other, it is a heterotropic effect. When the ligands are the same as 

each other, a homotropic effect is observed. The allosteric effect between different 

ligand binding sites may have cooperativity. Cooperativity is a characteristic of most 

oligomeric allosteric proteins and is defined as a nonhyperbolic substrate or ligand 

saturation profile (Reinhart, 1988). The changes in ligand binding affinity are observed 

with changing of the ligand concentrations. With increasing ligand concentration, 

positive cooperativity is observed as an increase in ligand binding affinity, while 
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negative cooperativity is shown as a decrease in ligand binding affinity. Non-cooperative 

binding is observed when the ligand binding affinity does not change.  

For the heterotropic effect, the binding of an allosteric ligand can increase or 

decrease the binding affinity of substrate, and vice versa. Heterotropic cooperativity may 

be observed due to the ligand binding and can be found in two classes: (1) 

heterotropically induced homotropic cooperativity and (2) subsaturating heterotropic 

cooperativity. The first class describes that the binding of the effector changes the 

coupling between substrate binding sites. The homotropic cooperativity between the 

substrate binding sites can be negative or positive. The second class arises when the 

effector is at intermediate concentrations and is positive regardless of the nature of the 

heterotropic interaction (Reinhart, 1988).  

For the homotropic effect, positive cooperativity is shown by sigmoidal binding 

profiles and occurs when the binding of the first ligand enhances the binding affinity of 

the second one. When there is no cooperativity, the binding of the first ligand does not 

affect the binding of the subsequent ligand, which is a hyperbolic binding profile. 

Negative cooperativity is observed when the subsequent binding affinity decreases and 

can be seen by a shallow slope in the binding profiles (Reinhart, 2004). 

Allostery is a direct, rapid and efficient regulatory mechanism to respond to the 

changes in the concentration of small molecules in the cell. Thus, the allosteric effect 

and how it is transmitted through the enzyme has been extensively studied in the past 

decades. Different methods were applied to address this question. For example, site-

directed mutagenesis is a method used to establish the importance of a specific amino 
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acid residue (Lau et al., 1987; Lau and Fersht, 1987 and 1989; Wang and Kemp, 1999; 

Kimmel and Reinhart, 2000; Pham et al., 2001). Another way to investigate allosteric 

regulation has been the use of hybrid enzymes to isolate and characterize specific 

allosteric interactions and study their function (Ackers et al. 1992; Kimmel and Reinhart, 

2001; Fenton et al., 2004). In addition, by taking advantage of the known crystal 

structures of homologous enzymes in different ligation states, the structural stability 

constants were determined for each residue in an enzyme by Freire and colleagues 

(based upon the comparison to other crystal structures and using the COREX algorithm). 

The stability constants for each residue were mapped onto the structure of the protein to 

understand what role protein stability plays in ligand binding and the transmission of the 

allosteric information (Hilser et al., 1998; Freire, 1999; Luque and Freire, 2000). 

Recently, researchers have focused on finding an allosteric site in a protein since it 

provides promising alternatives for drug discovery (Hardy et al., 2004; Lindsley and 

Rutter, 2006). Hardy and colleagues apply a tethering method for trapping inhibitory 

small molecules at the sites away from the active site by reversible disulfide bond 

formation in Caspase. The tethering method is based on the reversible formation of a 

disulfide bond between a native or engineered cysteine residue in the protein and a 

member of a library of thiol-containing fragments. Eventually, a previously unreported 

and conserved allosteric site in a deep cavity at the dimer interface 14 Å from the active 

site was found. This site contains a natural cysteine that, when disulfide-bonded with a 

specific compounds, prevents peptide binding at the active site. In short, many methods 
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have been developed and used to identify specific residues and important regions of 

proteins involved in the transmission of an allosteric signal.  

To improve on understanding how allosteric enzymes function, 

phosphofructokinase from E. coli (EcPFK) is used as a model system in this thesis.  

 

Classic Models for Allosteric Regulation 

Traditionally, researchers used two-state theories, such as the concerted model 

Monod-Wyman-Changeux (MWC) and the sequential model (KNF), to explain 

allosteric regulation in oligomeric proteins, including positive cooperativity, allosteric 

activation and allosteric inhibition. The two states are the T-state or “tense state” and the 

R-state or “relaxed state”. The T-state is the state when the inhibitor can bind to the 

protein. The R-state is the state of the protein when the substrate and the activator can 

bind.  

The MWC model predicts that the total allosteric effect would be realized in a 

single interaction in an oligomeric protein (Monod et al., 1965). When substrate binds to 

the free enzyme, it shifts the equilibrium to the “R” state in a concerted transition 

(Figure 1-1A). Positive cooperativity is observed when the first substrate binding event 

facilitates the binding of the following substrates. Activators also bind to the “R-state”, 

and shift the equilibrium towards the “R-state”. In the presence of an activator, the 

enzyme is already in the “R-state”, so the substrate saturation profile lacks cooperativity. 

On the other hand, when an inhibitor binds to the enzyme, the equilibrium is shifted 

towards the “T-state” in a concerted transition reducing the number of “R” sites 
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available to bind substrate. Thus, when performing a substrate saturation profile at any 

given inhibitor concentration, positive cooperativity will be observed since the number 

of the competent substrate binding sites are increased. The equilibrium is shifted back 

towards the “R-state” with increasing the number of accessible “R” sites. A major 

shortcoming to the concerted model is its inability to explain negative cooperativity, part 

of which was the motivation for the development of the sequential model. 

The KNF model predicts that there are equal contributions from each binding 

event (Koshland et al., 1966). It assumes an induced-fit situation in which a 

conformational change occurs when a ligand binds to one subunit of the enzyme (Figure 

1-1 B). This conformational change can affect the conformational change of the other 

neighboring subunits, either positively or negatively depending on the character of the 

ligand. The subsequent subunits change conformation sequentially with the binding of 

each ligand equivalent. As a result, the complete conversion from one state to another is 

observed only when all sites are bound with ligand. 

The MWC and KNF models are not accurate for all allosteric enzymes. They 

only recognize the existence of binary complexes for either enzyme and substrate or 

enzyme and effector, but not the ternary complex with both substrate and effector bound, 

particularly when the effector is an inhibitor. Moreover, the R state and T state are only 

two potential conformations observed during the ligand binding process. A more 

complete analysis of allosterism was developed, in which changes in ligand binding are 

described by free energy, rather than structural changes. This linkage analysis will be the  
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focus of the following paragraphs (Wyman, 1964; Weber, 1972 and 1975; Reinhart, 

1983, 1985,1988 and 2004). 

 

Linkage Analysis 

Thermodynamic linkage is used as a framework to investigate the allosteric 

interactions (Figure 1-2). The idea of linkage was first proposed by Wyman (1964 and 

1967). Later Weber (1972 and 1975) applied this analysis to describe an allosteric effect 

between two ligands binding to two separate sites on a protein. Moreover, the 

thermodynamic basis was established when the binding effect was considered in free 

energy terms (Weber, 1972 and 1975; Reinhart, 1983, 1985,1988 and 2004). 

The linkage analysis approach describes ligand binding in free energy terms 

without assuming the nature of structural changes caused by ligand binding. The basic 

principle of thermodynamic linkage is reciprocity. That is to say that the effect that 

substrate (A) has on the binding of effector (X) to the enzyme (E) must equal that of (X) 

on the binding of (A) to (E). E, A, X and P represent enzyme, substrate, effector and 

product, respectively. The dissociation constants for each equilibrium in the 

thermodynamic box are described as follows: 

 
]EA[
]A][E[

iaK =°  (1-1)

 
]XEA[
]A][EX[

iaK =∞  (1-2) 

 
]EX[
]X][E[

ixK =°
 (1-3)

  



 10

 

 
Figure 1-2 Thermodynamic box for a single substrate (A) and a single allosteric effector 
(X). There are four different ligation states that the enzyme can adopt: E, EA or XE or 
XEA. Each ligation state is unique and can have different functional properties. This is 
in contrast to the two-state models, which only allow for the existence of the T-state or 
the R-state, without the ternary complex because the enzyme can bind only one type of 
ligand, either A or X, but not both. 
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]XEA[
]X][EA[

ixK =∞
 (1-4) 

where and  °
iaK ∞

iaK represent the dissociation constants of A in the absence of X and in 

the saturation concentration of X, respectively. and °
ixK ∞

ixK represent the dissociation 

constants of X in the absence of A and in the saturation concentration of A, respectively. 

The influence between A and X can be described by the coupling constant Q , which 

gives the nature and magnitude of the coupling between A and X.  

ax

 

 
∞

°
=

∞

°
=

ixK
ixK

iaK
iaK

axQ  (1-5) 

Qax also represents the thermodynamic disproportionate equilibrium constant for the 

following reaction: 

 XE + EA  XEA + E 
 

 
]EA][XE[
]E][XEA[

axQ =  (1-6) 

The value of Qax describes the nature of the effect caused by X. When Qax > 1, X is an 

activator and when Qax < 1, X is an inhibitor. When Qax = 1, X has no effect on the 

binding of A to E. Since Qax is a thermodynamic parameter, the equilibrium constant is 

related to the coupling free energy by the following equation: 

 axQlnRTaxG −=∆  (1-7)  

Correspondingly, inhibition has a positive coupling free energy; activation has a 

negative coupling free energy; zero coupling free energy means there is no allosteric
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Figure 1-3 Three coupling free energy diagrams representing either (A) activation, (B) 
inhibition or (C) no allosteric effect at all for the binding of two individual ligands (A or 
X) to an enzyme E in which ∆Gax is the coupling free energy associated with binding A 
and X. (A) When ∆Gax < 0, activation occurs. (B) When ∆Gax >0, inhibition occurs. (C) 
When ∆Gax = 0, no allosteric effect is measured. Diagrams adapted from Weber (1972 
and 1975). 
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effect (Figure 1-3). 

The rate equation for the mechanism shown in Figure 1-2 can be written if the substrate 

is assumed to achieve rapid equilibrium during steady-state (Reinhart, 1983; Symcox 

and Reinhart, 1992): 

 
]X][A[axQ]X[ixK]A[ixK]X[iaK

]X][A[axQW]A[ixKV

t]E[
v

+°+°+°
+°°

=  (1-8) 

where v is the initial velocity, V° is the maximal activity in the absence of X.  is the 

dissociation constant for substrate A in the absence of effector X and  is the 

dissociation constant for effector X in the absence of substrate A, respectively and W

°
iaK

°
ixK

ax is 

the ratio of V∞
 /V°. V∞ is the maximal activity in the saturation concentration of effector 

X. When the maximal activity is affected by the allosteric ligand, Wax will not be equal 

to 1.  

Experimentally the coupling constant, Qax, can be obtained by determining the 

apparent dissociation constants for the substrate A as a function of effector concentration 

and can be graphically depicted for X being an inhibitor or an activator (Figure 1-4). The 

dependence of the apparent dissociation constant of substrate, K0.5, on the effector 

concentration can be determined by the following equation: 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+°

°
°=

]X[axQixK

]X[ixK
iaK5.0K  (1-9) 

Although no cooperativity is predicted by Equation 1-8 and Figure 1-2, Equation 1-9 can 

still be applied to an oligomeric protein, like EcPFK (Reinhart, 1983). The apparent 
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Figure 1-4 Graphical representation of the coupling constant Qax, which is the difference 
between the two plateaus. The apparent dissociation constant for substrate K0.5 increases 
as a function of inhibitor concentration and decreases as a function of activator 
concentration. 
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dissociation constant for substrate, K0.5 is the concentration at which the velocity is at 

half maximum and is described by the Hill equation (Hill, 1910): 

 
HH

H

n]A[n
5.0K

n]A[catk

t]E[
v

+
=  (1-10) 

where v is the rate of the reaction, ET is total enzyme active sites, kcat is the turnover 

number and nH is the Hill number that depicts cooperativity in substrate binding. When 

nH > 1, positive cooperativity is observed; when nH < 1, negative cooperativity is 

obtained; and when nH = 1, there is no cooperativity. 

 

Phosphofructokinase 

Phosphofructokinase (PFK, EC 2.7.1.11) may be classified in three groups 

differing in molecular mass: from mammals, yeast and bacteria. This enzyme from 

mammalian cells has been most studied (Li et al., 1999; Kemp and Gunasekera, 2002), 

has a subunit molecular weight from 75000 to 95000 Da, and forms a tetramer that 

aggregates to oligomers (Reinhart and Lardy, 1980). PFK from yeast is a α4β4 octamer 

with subunit molecular masses of 112000 to 118000 Da. All the PFKs from eukaryotes 

have complex allosteric regulation (Clifton and Fraenkel, 1982; Poorman et al., 1984). 

Bacterial PFKs form a tetramer with a molecular weight of 34000 Da for each subunit. 

In general, PFKs from all different sources are inhibited by ATP and citrate, and 

activated by ADP, AMP, fructose-2, 6-bisphosphate and cyclic AMP.  

Phosphofructokinase from E. coli (EcPFK) catalyzes the first committed step in 

glycolysis, which is the transfer of a phosphoryl group from MgATP to fructose-6-
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phosphate (Fru-6-P) to produce MgADP and fructose-1, 6-bisphosphate (FBP) (Figure 

1-5). EcPFK has a molecular weight 34000 Da for each subunit. MgADP activates 

EcPFK by increasing the affinity for Fru-6-P, which is a response to the low energy in 

the cell. Phosphoenolpyruvate (PEP) is a downstream product of glycolysis, and it 

inhibits EcPFK by decreasing the affinity of EcPFK for Fru-6-P. Thus, EcPFK is subject 

to “K-type” regulation (Uyeda, 1979; Evans et al., 1981). Other molecules that have 

been shown to regulate EcPFK activity include MgGDP (activator), MgATP (inhibitor) 

and 2-phosphoglycolate (inhibitor) (Blangy et al., 1968; Kolartz and Buc, 1982; Johnson 

and Reinhart, 1992, 1994 and 1997; Tlapak-Simmons and Reinhart, 1994 and 1998). 

The other substrate for EcPFK is MgATP. Although the allosteric interaction between 

MgATP and the effectors is relatively small (Johnson and Reinhart, 1992), it still 

contributes to the allosteric regulation of EcPFK and makes the allosterism complex. 

Both MgADP and PEP bind to the same allosteric site in EcPFK. Therefore, we are 

interested in investigating how these two molecules regulate EcPFK from the same site 

with different effects. Most importantly, how allosteric information is transmitted 

between active sites and allosteric sites is the key question to be addressed. 

So far, PFKs from different bacterial sources have been studied. In our lab, the 

other extensively studied PFK is from Bacillus stearothermophilus (BsPFK). EcPFK and 

BsPFK have many similar characteristics. They show 73% similarity and 54% identity in 

amino acid sequence (Figure 1-6). The crystal structures of both enzymes have been 

solved and the α-carbon traces are nearly superimposable (Evans and Hudson, 1979;
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Figure 1-5 The reaction catalyzed by Phosphofructokinase (PFK) within the glycolytic 
pathway. MgADP activates and PEP inhibits PFK.  
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Figure 1-6 Sequence alignments of PFKs from different bacterial sources. EcPFK is PFK 
from E. coli. BsPFK is PFK from Bacillus stearothermophilus. LbPFK is PFK 
Lactobacillus delbrueckii. 
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Evans et al., 1981; Shirakihara and Evans, 1988). The crystal structures of EcPFK and 

BsPFK show the binding site residues to be almost identical (Shirakihara and Evans, 

1988; Schirmer and Evans, 1990; Evans et al., 1986). Both enzymes are homotetramers 

(with subunit molecular weight ~34 KDa) arranged as a dimer of dimers. Each subunit is 

composed of a large domain and a small domain, and each domain contains a central β-

sheet sandwiched between several α-helices. Both the Fru-6-P and the allosteric effector 

binding sites are located at the two different dimer-dimer interfaces of the protein. Thus, 

residues from both sides of the interface are involved in binding. Each subunit 

contributes two half Fru-6-P (active) sites and two half allosteric sites, resulting in an 

average of each subunit containing one full active site and one full allosteric site (Figure 

1-7). In detail, the Fru-6-P site is at the cleft between the large domain and the small 

domain. The MgATP binding site, located close to the Fru-6-P binding site, is located 

entirely in the large domain.  

The two PFKs have a lot of similarity in general characteristics. However, the 

kinetic and allosteric characteristics are quantitively different. Without any effectors and 

in the presence of saturating concentration MgATP, EcPFK displays positive 

cooperativity for Fru-6-P binding with a Hill number of 3.8 (Blangy et al., 1968; 

Johnson and Reinhart, 1992), but there is no such cooperativity observed for BsPFK 

(Valdez et al., 1989). However, subsaturating heterotropically induced homotropic 

cooperativity is observed for BsPFK in which positive cooperativity between Fru-6-P 

binding sites is observed only at intermediate PEP concentrations (Reinhart et al., 1989; 

Kimmel, 2001; Kimmel and Reinhart, 2001). The other effector, MgADP, has strong 
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allosteric activation with respect to EcPFK, but has a minimal effect on BsPFK. Below 

16°C, no activation is observed in BsPFK. Very little activation is observed at 25°C. 

With increasing temperature, the activation is increased. This temperature-induced 

crossover of allosteric response by MgADP is not observed in EcPFK (Braxton et al., 

1994). In summary, the extent of PEP inhibition is greater and MgADP activation is 

smaller for BsPFK than EcPFK. The allosteric properties of BsPFK are also dependent 

on pH (Deville-Bonne et al., 1991), unlike those of EcPFK. 

Phosphofructokinase from Lactobacillus delbrueckii subspecies bulgaricus 

(LbPFK) is another enzyme studied in our laboratory. LbPFK was reported to be non-

responsive to MgGDP or MgADP. Inhibition of activity by PEP was observed at pH 6 

but not at pH 8.2 (Le Bras et al., 1991). The amino acid sequence of this relatively non-

allosteric PFK is 47% identical and 66% similar to that of EcPFK, and 56% identical and 

74% similar to BsPFK (Figure 1-6). The structure of LbPFK is similar to EcPFK and 

BsPFK (Paricharttanakul et al., 2005). On one hand, this enzyme can be used as a blank 

template to study allosteric regulation since it displays weak allosteric responses. On the 

other hand, sequence alignment between EcPFK and LbPFK may suggest some 

important residues for EcPFK allosteric communication. 

Focusing on phosphofructokinase from E. coli, it is a homotetramer with each 

subunit having a molecular mass of 34 KDa. The crystal structure is shown in Figure 1-7. 

A single EcPFK subunit has on average one active site and one allosteric site. Therefore, 

a tetramer has four identical active sites and four identical allosteric sites. All these sites 
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Figure 1-7 Crystal structure of EcPFK with the products, fructose-1, 6-bisphosphate 
(FBP) and MgADP bound, in the active site; and MgADP, in the allosteric site. Subunits 
are colored in purple, green, pink and orange. FBP and MgADP are shown in red and 
cyan, respectively. 
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can potentially interact with each other, giving a total of 28 possible pair-wise allosteric 

interactions between the eight binding sites. Of the 28 pair-wise allosteric interactions, 

16 are heterotropic interactions and 12 are homotropic interactions (Figure 1-8). There 

are potentially 10 unique interactions total, four heterotropic interaction between the 

active site and the allosteric site, three homotropic interactions between the active sites, 

three homotropic interactions between the allosteric sites (Figure 1-9). The investigation 

of these different kinds of interactions can provide us with an energetic blueprint that 

ultimately must result from the molecular basis for allosteric behavior in EcPFK. 

However, the complicated communications in the tetramer make the investigation 

difficult. 

In an attempt to simplify the complicated allosteric communications, a functional 

hybrid tetramer of EcPFK has been constructed in which only a single active site and a 

single allosteric site are capable of binding their respective ligands with high affinity. 

Also, surface charge mutations have been added to the mutant PFK that allow the 

separation of the different hybrid species. Both the hybrid BsPFK and EcPFK tetramers 

have been made successfully in vitro (Ortigosa et al., 2004; Fenton et al., 2004). The 

four unique heterotropic interactions have been named as the 23Å, 30Å, 33Å, and 45Å 

interactions based on the distances in the EcPFK crystal structure (Figure 1-10). These 

distances were measured within the crystal structure from the phosphorus atom of one of 

the bound Fru-6-P molecules to the β-phosphorus atom on the bound ADP molecules in 

each of the four allosteric sites. 
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Figure 1-10 Representation of the four heterotropic interactions in EcPFK. (A) is the 
crystal structure of EcPFK showing the four heterotropic interaction in one subunit. (B) 
is the two dimensional representation of the active site residues and the allosteric site 
residues used to represent the four heterotropic interactions. (C) shows the four 
heterotropic interactions individually. There is only one native subunit in each EcPFK 
tetramer.
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In this study, the coupling free energy between active site and allosteric site for 

the four unique heterotropic interactions were quantified, and residues that are important 

for the allosteric signal transmission in each heterotropic interaction have been 

pinpointed. In addition, EcPFK has one native tryptophan at position 311, which is a 

fluorescence probe that can be used to measure the dynamic properties of EcPFK. 

Moreover, by substituting conserved phenylalanine or tyrosine residue with tryptophan 

and mutating the native tryptophan to phenylalanine, tryptophan was placed in various 

positions in the 1:3 hybrid EcPFK containing the 23Å heterotropic interaction. By 

measuring steady-state anisotropy and fluorescence lifetime, each tryptophan was used 

to monitor the local motion within the native subunit that containing the 23Å 

heterotropic interaction in different ligation states. Eventually, tryptophan will be placed 

at all possible positions to map the dynamic region in EcPFK. 

 

Related Studies on Allosteric Regulation 
 

Allosteric regulation has been recognized for half a century, but questions have 

lingered concerning the mechanics of allosteric regulation, and the structural coupling 

between allosteric and active sites. 

Hemoglobin has been extensively studied as a prototype for understanding 

mechanisms of allosteric regulation. Hemoglobin is a tetramer consisting of two αβ 

dimers and functions as oxygen transporter in blood. Positive cooperativity is observed 

when oxygen binds. By making hybrid forms of hemoglobin that contain different 

numbers of oxygen bound subunits (resulting in the 10 possible hybrids), Ackers and 
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coworkers identified how cooperativity is transmitted through the protein (Holt and 

Ackers, 1995). The model is called the Symmetry Rule and is based on the cooperative 

free energies measured for each of the 10 species, where the cooperative free energy is 

the difference in the binding free energy measured for the hybrid tetramer and the two 

dimers that comprise that hybrid tetramer (Ackers et al., 1992 and 2002). Recent studies 

demonstrate that the symmetric tetramer responds in a synchronous fashion to 

asymmetric ligation and mutation (Figure 1-11). Thus, communication among the four 

heme binding sites is not uniform, and tetrameric symmetry is not maintained over the 

process of O2 binding (Ackers and Holt, 2006).  

The lactose repressor (LacI), another well-studied allosteric system, is a DNA-

binding protein which inhibits the expression of genes coding for proteins involved in 

the metabolism of lactose in bacteria. When lactose is absent, the lac repressor is active 

and binds with high affinity to its operator. When lactose is present, lac repressor 

binding to its operator is inhibited. Kathleen Matthew’s group studies the allosteric 

regulation of the LacI system. Although the crystal structures for the repressed and 

induced states of LacI are available, the structures do not provide direct information 

regarding the dynamic allosteric mechanism during the transition between these states. 

However, recent advances provide the opportunity to decipher contributions to allosteric 

communication between DNA and the inducer binding sites in the protein. The relevant 

motions can be interpolated in silico using targeted molecular dynamics simulation 

(TMD) to predict the most probable atomic-level allosteric routes in LacI. The advantage 

of TMD is that it uses two experimentally determined structures to constrain the  
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Figure 1-11 Hemoglobin binding cascade, experimental and predicted (adapted from 
Ackers and Holt, 2006). The stepwise changes in binding constants for each ligation step 
are shown. Each stepwise K is referenced to the first binding constant, to either the α-
subunit heme or to the β-subunit heme. (A) The microstate constants were measured 
using thermodynamic linkage analysis. Placing one ligand on each dimer is essentially 
noncooperative under the experimental conditions, whereas placing two ligands on a 
single dimer occurs with positive cooperativity. (B) The microstate constants predicted 
by a simple two-state model in which both dimers within the tetramer respond 
equivalently to ligation. 
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simulation, dramatically reducing the number of requisite calculations but still retaining 

the spatial and temporal resolution necessary to reveal relevant motions. The key results 

predicted by the simulation indicate that movements originate asymmetrically in the 

inducer-binding site near D149 of one monomer and propagate to the adjacent monomer 

via a network of noncovalent interactions of three interconnected routes (Zhan, et al., 

2006; Wilson et al. 2007).  

The Ranganathan group applies a sequence–based statistical method for 

quantitatively mapping the global network of amino acid interactions in proteins 

(Lockless and Ranganathan, 1999). The idea of this method is to try to estimate the 

thermodynamic coupling between residues in a protein. In a protein, the coupling of two 

sites, whether for structural or functional reasons, should cause the two positions to co-

evolve. Three structurally and functionally different protein families were analyzed by 

doing multiple sequence alignment. They found a small subset of residues forming a 

network that links distant functional sites in the tertiary structure. In addition, 

mutagenesis results were consistent with their analysis data. 

 

General Principles of Fluorescence 
 

The phenomenon of luminescence occurs when photons are emitted from an 

excited state, and includes fluorescence and phosphorescence. The Jablonski diagram 

shown in Figure 1-12 describes potential energy levels for an excited electron and shows 

the difference between these two phenomena. S0, S1 and S2 are the ground, first and 

second state, respectively. Vibration energy levels, described as 0, 1, 2, exist within each  
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Figure 1-12 Jablonski diagram. An electron is excited to the S1 or S2 state by absorption 
of light. The electron loses energy as it relaxes to the lowest vibrational level of the s1 
singlet state. Most of the time the electrons return to the ground state and in the process 
emits light, fluorescence. Less often the electron goes through intersystem crossing to 
the triplet state before relaxing to the ground state, phosphorescence (Lakowicz, 1999 as 
described originally by Jablonski).  
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of these electronic energy states. At room temperature, the majority of electrons exist in 

the lowest energy level, S0. When light is absorbed, electrons obtain energy and jump to 

high energy levels of either S1 or S2. Through internal conversion, electrons relax to the 

lowest vibrational energy level of the S1 state. This process takes on the order of 10-12 

seconds and is complete before light emission.  Fluorescence occurs when the electrons 

fall from S1 to the ground state S0 and release energy in the form of light. The time for 

this process is on the order of 10-8 seconds, or 10 nanoseconds (Lakowicz, 1999). During 

this time scale many biological events can occur, including local conformational change, 

rotational motion of large molecules, and protonation and deprotonation (Munro et al., 

1979). Phosphorescence occurs when the system undergoes intersystem crossing. That is 

to say the electrons relax to the T1 or triplet state before returning to the ground state. In 

the triplet state T1, the electrons are unpaired, which means their spins are of the same 

orientation. However, S1and S2 states are named as singlet energy states and electrons 

are paired with spinning different orientation. Return of electrons from S1 or S2 to the 

ground state S0 do not require the electrons to change their spin orientation, while such a 

change is needed for the electrons return from T1 to S0. The emission from T1 is called 

phosphorescence. Since electrons generally decay to ground state, which is the lowest 

energy level, relatively, the energy of light emitted is less than the energy of light 

absorbed. The net result is a “Stoke’s shift”, a shift to higher wavelength for 

fluorescence light relative to the absorption wavelength. Since emission occurs in the 

lower energy level, the emission spectrum, a plot of fluorescence intensity vs. 

wavelength, is not influenced by the excitation wavelength. 
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Fluorescence lifetime 

Fluorescence is emitted in an exponential manner as an electron transitions to the 

ground state. This decay is described as equation 1-11: 

 I = Iº e-k
f
 t (1-11) 

where I is the intensity at any time t, Iº is the initial fluorescence intensity at time zero, 

kf is the rate constant for the radiative decay process (Figure 1-13). However, other non-

radiative decay processes occur during the same time frame. Non-radiative decay 

processes include intersystem crossing (kis), internal conversion (kic), and collision 

quenching (kq[Q]). Thus, the rate of experimental decay is usually much faster than kf 

and can be described as equation 1-12: 

 I = Iº e-k
 total

t (1-12) 

where k total = kf + kis+ kic+ kq [Q] (Cantor and Schimmel, 1980) 

The fluorescence lifetime (τ) is given by the reciprocal of all the rate constants in the 

decay, as shown in equation 1-13: 

 
])Q[qkickiskfk(

1
+++

=τ  (1-13) 

The lifetime of the radiative process is defined as (τ0), shown in equation 1-14: 

 
fk

1
0 =τ  (1-14) 

It should be noted that lifetime does not mean all the excited electrons decay in time τ. τ 

describes the relaxation time for the excited state.  
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Figure 1-13 Exponential decay of fluorescence intensity. The graph shows the 
percentage intensity as a function of time for a hypothetical fluorophore, which has a 
single lifetime at 10 nanoseconds. The fluorescence lifetime is equal to the time where 
1/e (63%) molecules have relaxed to the ground state. 
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Steady-state anisotropy 

Anisotropy or polarization is a measurement that describes the rotation of 

macromolecules in solution. Either intrinsic fluorescence, tryptophan, or extrinsic 

fluorescence, an attached fluorescence probe, can be used to monitor anisotropy. In the 

measurement, a sample is excited by vertically polarized light and the subsequent 

emission is measured through a polarizer either oriented vertically, parallel to the 

direction of the excitation direction, or horizontally, perpendicular to the excitation 

direction (Figure 1-14). The anisotropy (r) or polarization (p) is defined in the following 

equations. 

 r = (I ║- I ┴)/ (I ║+ 2I ┴) (1-15) 

 p = (I ║- I ┴)/ (I ║+ I ┴) (1-16) 

Anisotropy is generally used instead of polarization because of its additive nature when a 

mixture of fluorophores is present. The relationship between anisotropy and polarization 

is expressed in equation 1-17 and 1-18: 

 
r2

r3p
+

=  (1-17) 

 
p3

p2r
−

=  (1-18) 

Steady-state anisotropy is measured by exciting the sample with vertically 

polarized light and detecting the amount of depolarization of the sample by measuring  

emission light vertically and horizontally. However, the emission detector may not have 

the same sensitivity to the vertically and horizontally polarized light. This is corrected by 

measuring a G-factor, which is a ratio of I ║ and I ┴ when the exciting light is 
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Figure 1-14 Schematic representation of measurement of fluorescence anisotropy. A 
fluorescent molecule that is oriented near the Z-axis is photoselected for excitation. The 
total intensity of emitted light is equal to I ║+ I ┴. 
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horizontally polarized. In a homogeneous solution, the ground state is randomly oriented. 

When excited by a polarized light, the fluorophore that has absorption transition dipole 

oriented along the z-axis is excited. This phenomenon is called photoselection. Generally, 

the absorption along the z-axis is related to cos2θ, where θ is the angle between the 

absorption dipole and z-axis. Under this condition of photoselection, the maximal 

anisotropy is 0.4 or for polarization is 0.5. Additionally, the excitation wavelength will 

determine the position of the absorption dipole, and also with the internal conversion 

leading to the excited ground state, therefore the θ angle can change. For this reason, r0, 

which is the anisotropy in the absence of rotational diffusion and energy transfer, is 

wavelength dependent. Thus, when exciting at longer wavelengths, or at lower energy 

levels, r0 has larger values; when exciting at lower wavelengths, or at higher energy 

levels, r0 has a smaller values.

Finally, rotation of the fluorophore, either from the local movement of the point 

of attachment or from the macromolecule’s global rotation, may also induce 

depolarization after absorption. The simplest case for spherical rotors is explained by the 

Perrin equation (1-19) (Perrin, 1926). The rearranged form is given by equation (1-20), 

which was used to analyze the data. 

 )1(
0r
1

r
1

θ
τ

+=  (1-19) 

 
)r0r(

r
−
τ

=θ  (1-20) 

where r0 is the anisotropy without rotational diffusion, θ is the rotational correlation time 

for the diffusion process, which is the average of global and local rotation in the steady 
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state, and  τ is lifetime of the fluorophore. The anisotropy decays in an exponential 

manner are similar to intensity decay. θ represents the reciprocal of decay rate constant:

 r = r0
 e-t / θ (1-21) 

rotational diffusion is able to be measured using fluorescence only if the rotation rate is 

similar to the lifetime of fluorescence decay. Rotation correlation time of the 

macromolecule is related to its physical properties by the following equation: 

 
t
v
κ
η

=θ  (1-22) 

where η is the viscosity of the solution, v is the volume of the macromolecule, κ is 

Boltzman constant, and t is the absolute temperature. Using Perrin equation, the 

expected anisotropy for a fluorophore in solvents or for a labeled macromolecule can be 

calculated. In addition, the rotational correlation time, which represents the motion of the 

fluorophore, can be calculated with steady-state anisotropy and lifetime values. 

Frequency-domain measurement 

In order to determine the fluorescence decay rate explicitly, time-resolve 

techniques must be used. Generally, two methods are applied in time-resolve area: the 

time-domain method (pulse or impulse response approach) and the frequency-domain 

method (phase/modulation approach). The time-domain technique excites a sample with 

a quick, short burst of light and measures the following fluorescence decay (Demas, 

1983). The frequency-domain method was used in the experiments and will be discussed 

in detail. 

The frequency-domain method involves exciting a sample with light that is 

sinusoidally modulated at an angular (ω) frequency. The angular frequency represents 
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the product of 2π and the frequency of the modulated light of excitation, and is given in 

units of Hertz (1/sec). The modulation inherent to the excitation beam, m°, which is 

defined as in equation 1-23: 

 
DC
ACm =°  (1-23) 

where AC is the signal amplitude at frequency ω and DC is the average signal (Figure 1-

15). The intensity of the excitation is: 

 I = DC+AC sinδ (1-24) 

where I is the intensity, δ is phase angle between 0 to 90 degree.  

The sample will differ from the excitation light, which means it will emit light 

modulated at the same frequency but delayed in a phase by an angle (σ) and also 

demodulated with respect to excitation light. Although the direct measurement would be 

relative to the excitation beam, in reality a reference sample with known lifetime is used 

whose absorption and emission correspond to that of the sample. The other way is to use 

a scattering solution such as glycogen to divert the excitation light along the same path 

as that of the sample, but this may introduce error due to the non-uniform response of the 

phototube to different wavelengths, termed as the “color effect” (Lakowicz and 

Gryczynski, 1991). At multiple frequencies, the extent of demodulation and the phase 

shift angle by the sample are measured. The demodulation is shown in equation 1-25: 

 

rDC
rAC
sDC
sAC

M =  (1-25) 

where s is sample, r is reference. The phase shift is represented by equation 1-26:

  



 39

 

 

Figure 1-15 Demodulation and phase shift of the fluorescence sinusoid form relative to 
excitation. When the sample is excited with sinusoidally modulated light (E (t)), the 
relative emission (F (t)) is demodulated and delayed by phase angle σ. 
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 I = DC + AC sin (δ+σ) (1-26) 

where σ is the phase shift. The relationship at each frequency between the modulation 

ratio and phase shift and lifetime are described as: 

 tan (σ) = ω τ p (1-27)

 M = [1+ (ω τ m) 2] -1/2 (1-28) 

τ p is the lifetime from phase shift and τ m is the lifetime from modulation ratio. If the 

sample is homogeneous with a component having a single discrete lifetime, τ p and τ m 

are equal to each other and are the same at all the frequencies (Spencer and Weber, 1969; 

Weber, 1981). If more than one component exists in solution, τ p is smaller than τ m for 

each frequency. Moreover, if the sample is heterogeneous, τ p and τ m will both decrease 

at each frequency. Low frequencies are more sensitive to the effects of species with 

longer lifetime, and high frequencies reflect the effects of shorter lifetime components 

(Figure 1-16). Frequency domain technique is also used to determine dynamic 

anisotropy, which is termed as differential polarized phase/modulation fluorometry. The 

advantage of dynamic anisotropy over steady-state anisotropy is the ability to separate 

and quantify different types of rotations. Because tryptophan in a protein has both slow 

global motions as well as fast local motions with the side chain, the rate of fluorescence 

decay in this kind of model is give by equation:  

 r(t) = (r0- r∞) e –t/ Ф1+ r∞e –t/Ф2 (1-29) 

where r0 is the limiting anisotropy, r∞ is the anisotropy approached as a result of the 

depolarization effect of the hindered rotation, Ф2 is the rotational correctional time for 

the slow global motion, Ф1 is the rotational correctional time for the fast local motion.
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Figure 1-16 Lifetime simulations. The phase angle shift and relative modulation values 
decrease and increase, respectively. The relationship between phase shift or modulation 
and frequency depend on the lifetime of the fluorophore. In the graph, fluorophores with 
different lifetime are shown, 10ns (-----), 1ns (—), a 50/50 ratio mixture of 10 ns and 1 
ns ( ·−·−·−· ). 
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Dynamic anisotropy under multiple frequencies measures not only the rotational 

correlation time of local and global motion, but also differentiates the amplitude and 

rotation rate of local motion. The change of the amplitude is reflected by r∞, and the 

change of the rotation rate is indicated by Ф1. 

 

Chapter Overview 

 The aim of this dissertation is to try to understand the basis of allosteric signal 

transmission in EcPFK. In addition, we want to investigate dynamic regions of this 

protein and their response to different ligand binding events. This work highlights the 

important residues and regions for the allosteric regulation in EcPFK. 

Chapter II discusses the materials, experimental procedures and data analysis 

used in this dissertation for the kinetic characterization of EcPFK to address how 

allosteric communication is transmitted within EcPFK. It also explains how the steady-

state and dynamic fluorescence data were interpreted. 

The focus of Chapter III is the formation of hybrid tetramers in vivo. The aim 

was to improve hybrid yield, especially for the 1:3 hybrids that contain a specific 

heterotropic interaction. Basically, two plasmids with different origins of replication and 

selection markers were used for expression of wild-type and mutant EcPFKs. After co-

transformation into strain RL257 (∆pfkB::FRT ∆pfkA::FRT), the mixtures of hybrid 

protein were formed in the cell. In addition, an alternative charge-tag mutation and 

allosteric site mutation were used to improve hybrid yields. 
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Based on sequence alignment between EcPFK and LbPFK and predictions that 

residues that lie between the active site and the allosteric site that may be important for 

the transmission of the allosteric signal. Chapter VI characterizes several mutant 

EcPFKs that have diminished allosteric response for both MgADP activation and PEP 

inhibition. Furthermore, the mutated residues were introduced into each of the 1:3 hybrid 

tetramers containing the four heterotropic interactions. The influence of each mutation 

on each heterotropic interaction in EcPFK was quantified with respect to PEP inhibition 

and MgADP activation. 

Chapter V addresses the dynamic properties of the native subunit in the 1:3 

hybrid containing the 23Å heterotropic interaction in EcPFK by probing different 

regions and evaluating the response to the binding of different ligands. Site-directed 

mutagenesis was used to replace phenylalanine or tyrosine residue at different locations 

within the protein with tryptophan. In addition, by taking advantage of the hybrid 

tetramer formation method, each tryptophan was placed at different position in the 1:3 

hybrid tetramer containing the 23Å heterotropic interaction. From steady-state 

fluorescence experiments and frequency-domain measurements, anisotropy and 

fluorescence lifetime values were measured for each tryptophan in different ligation 

states. Using the Perrin equation, we interpreted the changes in dynamics at various sites 

in the 1:3 hybrid containing the 23Å heterotropic interaction in EcPFK. 

Finally, Chapter VI summarizes the major ideas of this dissertation. 
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CHAPTER II 

GENERAL METHODS 

Materials and Methods 

Materials 

All chemical reagents used in buffers, protein purifications and enzymatic assays 

were of analytical grade, purchased from either Fisher-Scientific (Hampton, NH) or 

Sigma-Aldrich (St. Louis, MO). Mimetic Blue 1 agarose resin from Prometic 

Biosciences (Montreal, Canada) was used in protein purification. A Mono Q 10/10, 

anion exchange column was purchased from GE Lifescience (Charlottesville, VA) for 

use on their Fast Performance Liquid Chromatography (FPLC) system. DE-52 anion 

exchange resin was obtained from Whatman (Kent, UK). Creatine kinase and the 

coupling enzymes (aldolase, triosephosphate isomerase and glycerol-3-phosphate 

dehydrogenase in ammonium sulfate suspensions) were purchased from Roche Applied 

Science (Indianapolis, IN) or Sigma-Aldrich. The coupling enzymes were dialyzed 

against buffer containing 50 mM MOPS-KOH, 100 mM KCl, 5 mM MgCl2 and 0.1 mM 

EDTA at pH 7.0 before use. Creatine phosphate, and the sodium salts of Fru-6-P and 

PEP were purchased from Sigma-Aldrich. NADH is from RPI (Natick, MA). The 

sodium salt of ATP and ADP were obtained from Roche Applied Sciences or Sigma-

Aldrich. Site-directed mutagenesis was performed using the Altered Sites II In Vitro 

Mutagenesis System or QuickChange Site-Directed Mutagenesis System. Altered Sites 

II In Vitro Mutagenesis System was purchased from Promega (Madison, WI) and 
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included pALTER vector, pALTER control vector, and ampicillin repair and control 

oligonucleotides. QuickChange site-directed Mutagenesis System was obtained from 

Stratagene (La Jolla, CA). All other oligonucleotides were synthesized by Integrated 

DNA Technologies Inc (Coralville, IA). DNA modifying enzymes (T4 polynucleotide 

kinase, T4 DNA polymerase and T4 ligase) were purchased from Promega. Qiagen 

(Hilden, Germany) products were used for plasmid purifications. Glycerol stocks of 

BMH 71-18 muts (a mismatch repair minus strain) and XL1Blue cells were obtained 

from Promega and Stratagene. Deionized distilled water was used throughout. 

Site-directed mutagenesis 

pGDR16 and pGDR148 containing the EcPFK gene in pAlter-1 and pALter-EX2, 

were use to introduce mutations by following the protocol of  the Altered sites II in vitro 

Mutagenesis System. Single-stranded pGDR16 and pGDR148 were made using R408 

helper phage and purified (Hutchinson et al., 1978). 

Firstly, each oligonucleotide was phosphorylated at 5’ end using T4 

polynucleotide kinase to increase the number of mutants obtained. Then, the mutated 

oligonucleotide(s) and the ampicillin resistance repair oligonucleotide were annealed to 

the single stranded DNA.  A three to one ratio of mutant oligonucleotide to ampicillin 

repair oligonucleotide was used to increase the possibility of obtaining a plasmid that 

contains both the ampicillin repair oligonucleotide and the mutant oligonucleotide(s). In 

addition, a five to one ratio of ampicillin oligonucleotide to ssDNA was used to increase 

the probability of the oligonucleotide(s) annealing to the DNA. 
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The oligonucleotides were extended using T4 DNA polymerase and ligated with 

T4 DNA ligase. The mutagenesis reaction product was transformed into a mismatch 

repair minus E. coli strain (Zell and Fritz, 1987), BMH 71-18 mutS cells (thi, supE, 

∆(lac-proAB), [mutS::Tn10], [F´, proAB, lacIqZ∆M15]) (Kramer et al., 1984), using the 

calcium chloride method (Cohen et al., 1972), and grown on Luria-Bertani (LB) plates 

(10 g/L tryptone, 5 g/L yeast extract and 10 g/L sodium chloride, 15 g/L agar) with 

ampicillin 100 µg/mL and incubated overnight at 37°C. Meanwhile, the transformation 

products were inoculated into LB+Amp media and grew overnight. The plasmids from 

the overnight culture or from the colonies were purified using Qiagen plasmid 

miniprepare kit. Then the purified plasmids were transformed into competent JM109 

(e14–(McrA–), recA1, endAl, gyrA96, thi-l, hsdR17, (rK– mK+), supE44, relA1, ∆(lac-

proAB) [F´, traD3, proAB, lacIqZ∆M15]) because of the instability of BMH cells. 

Plasmids were purified from JM109 cells and sequenced using Sanger-Didoxy method to 

confirm the mutated DNA sequence (Sanger et al., 1977). 

QuickChange Site-directed Mutagenesis System was also used to introduce 

additional mutations. Two complementary oligonucleotides with the mutation of interest 

were annealed to the denatured parent plasmid and extended during themo-cycling by 

PfuTurbo DNA polymerase. After the PCR reaction, the products were digested by DpnI 

endonuclease that digests the nonmethylated parental DNA template. The newly 

synthesized DNA was methylated and transformed into XL1Blue cells, and the plasmid 

was purified and sequenced to verify the sequence of the mutant DNA. 
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Wild-type EcPFK and all of the mutant proteins were expressed from the 

pALTER mutagenesis vector that was transformed into competent RL257 cells (MQ 

∆pfkB :: FRT ∆pfkB:: ∆pfkA, MQ is a lac+ laqiq  derivation of MC4100), a PFK-1 and 

PFK-2 deficient strain (Lovingshimer et al., 2006). 

Protein purification 

The purification of wild-type and mutant EcPFK proteins followed the protocol 

of Johnson et al. (1992) with modifications. RL257 cells containing the plasmid of 

interest were grown to OD600 = 0.6 and then induced by 2 mM IPTG in LB broth 

containing either 20 µg/mL chloramphenicol, 100 µg/mL ampicillin or both at 37 °C. 

Cells were harvested by centrifugation at 4,000 RPM using a Beckman Model J-6B 

centrifuge. Pelleted cells were stored at -20°C for later use. The frozen cells were 

resuspended in 30-40 mL Buffer A (50 mM Tris-HCl pH 7.5, 5 mM MgCl2 and 1 mM 

EDTA) and set on ice. Cells were lysed by sonication using a Sonic Dismembrator 

Model 550 (Fisher Scientific). Fifteen-second pulses were used followed by a one-

minute rest period to allow the cells to cool. A total sonication time of 8 minutes was 

used. The crude lysate was clarified by centrifugation at 12,000 RPM for 1 hour in a 

Beckman J2-21 centrifuge equipped with a JA-20 rotor. The supernatant was incubated 

in the presence of DNase at 37 °C for 15 minutes and then centrifuged for another hour 

to get rid of the remaining cell debris. The supernatant containing EcPFK was diluted to 

100 ml and loaded onto Mimetic Blue A column that has been equilibrated with Buffer 

A. The column was then washed with 100 mL of Buffer A to remove any unbound 

protein. Buffer A with 1.5 M NaCl present was used to elute EcPFK and fractions were 
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collected. Each fraction was measured for its absorbance at 280 nm and also its activity 

(Figure 2-1). The fractions having enzymatic activity were pooled, dialyzed against 

Buffer A and concentrated using Amicon Ultra-15 (100K). SDS-PAGE (Laemmli, 1970) 

was performed to check the protein purity (Figure 2-2). If there were multiple bands on 

the SDS-PAGE gel, the protein was passed through an anion-exchange column, either a 

DE-52 column or a Mono Q 10/10 column on Pharmacia FPLC, and eluted with 0 to 1 

M NaCl gradient. Fractions were collected and assayed. The fractions have PFK activity 

were pooled, dialyzed against Buffer A and stored at 4 °C. A representative purification 

table is shown Table 2-1. 

Protein concentration 

Determination of protein concentration was performed using the Bicinchoninic 

Acid (BCA) Protein Assay from Pierce (Smith et al., 1985) or calculated using the 

extinction coefficient of PFK 0.6 mg-1 mL-1 at 280 nm (Kolartz and Buc, 1977, Pace et 

al., 1995). 

Enzymatic activity assay 

Activity measurements of EcPFK were conducted by coupling the reaction 

catalyzed by EcPFK to the oxidation of NADH and monitoring the corresponding 

decrease in the absorbance at 340 nm (Babul, 1978; Kolartz and Buc, 1982). The entire 

coupled assay system (including substrates, enzymes and products), as well as the 

MgATP regeneration system, is shown in Figure 2-3. Assays were carried out in 600 µL 

of an EPPS buffer containing 50 mM EPPS-KOH (pH 8.0 at 25℃), 10 mM NH4Cl, 10 

mM MgCl2, 0.1 mM EDTA, 2 mM DTT, 0.2 mM NADH, 250 µg of aldolase, 50 µg of 
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Figure 2-1 Elution profile of EcPFK from Blue A affinity column. EcPFK was eluted 
with 1.5M NaCl. Activity and absorbance at 280 nm are indicated by and , 
respectively. Fractions 5-14 were pooled and dialyzed against with buffer. 
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Figure 2-2 SDS-PAGE of fractions after Blue A purification. 1.Crude, 2. Flow through 
of load, 3. Wash, 4 Standard, 5 Fraction #4, 6 Fraction #6, 7 Fraction #8, 8 Fraction #10, 
9 Fraction #12. 
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Table 2-1 A representative purification table for EcPFK. 

Steps 
Activity 

(unit/ml) 

Protein 

(mg/ml) 

Volume 

(ml) 

Total 

Activity 

(Units) 

Total 

Protein 

(mg) 

Specific 

Activity 

(Units/mg) 

Fold 

Purification 

% 

Yield 

Crude 420 10 51 21420 510 42 - 100 

Dnase 420 10 49 20580 490 42 1 96 

Blue A 1250 5 8 10000 40 250 6 47 

DE-52 2000 7 4 8000 28 280 7 37 
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Figure 2-3 The coupling enzyme system used to assay EcPFK activity. 
Phosphofructokinase catalyses the phosphoryl transfer from MgATP to fructose-6-
phosphate. This reaction is coupled by three enzymes (aldolase, triosephosphate 
isomerase and glycerol-3-phosphatedehydrogenase) to the oxidation of NADH to NAD+, 
which is monitored spectroscopically at 340 nm. The enzymes involved in this process 
are in italics. 
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glycerol-3-phosphate dehydrogenase, 5 µg of triosephosphate isomerase. For maximal 

activity, 3 mM ATP and 5 mM Fru-6-P were added. For measuring the coupling 

between either Fru-6-P and PEP or Fru-6-P and MgADP, the concentration of Fru-6-P, 

PEP and MgADP are varied correspondingly. Assays are initiated by adding the 

appropriately diluted EcPFK so that the absorbance change is not greater than 0.05 

absorbance units/minute. For the coupling reaction between Fru-6-P and PEP, 40 mg/mL 

creatine kinase and 4 mM phosphocreatine were added to regenerate MgATP from 

MgADP, which is one of the reaction products and is also an allosteric activator of 

EcPFK. When MgADP was varied, it was added as a solution of equal concentrations of 

MgADP and MgATP to prevent competition between MgATP and MgADP in the active 

site (Johnson and Reinhart, 1994). The MgADP contamination in the MgATP stock 

solution was measured enzymatically (Jaworek et al., 1974). All activity measurements 

were performed on Beckman Series 600 spectrophotometers using a linear regression 

calculation to convert the change in absorbance at 340 nm to enzyme activity. One unit 

(U) of activity is defined as the amount of enzyme needed to produce 1µmol of fructose 

1,6-bisphosphate per minute.  

In vitro hybrid tetramer formation 

Kimmel and Reinhart (2001) devised an in vitro method for making hybrids of 

BsPFK by dissociating the enzyme tetramers into their individual subunits by modifying 

a method described previously (Deville-Bonne et al., 1989; Laine et al., 1992; Le Bras et 

al., 1995). The in vitro method for making hybrids has also been applied in EcPFK 

(Fenton and Reinhart, 2002; Fenton et al., 2004). Two parent proteins, wild type EcPFK 
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and mutant EcPFK, were used to form the 1:3 hybrid that presents a specific heterotropic 

interaction. The two parent proteins needed to for the 1:3 hybrid formation for each 

heterotropic interaction are shown in Table 2-2. They were purified individually as 

described earlier in this chapter. Seven milligram mutant protein was incubated with 

three milligram wild-type EcPFK for 1.5 hours at 25°C with 0.4 M KSCN. The 

denaturant was removed by dialysis away in Buffer A at 4°C in the presence of 2 mM 

Fru-6-P for three hours for re-association of the hybrid tetramers (Figure 2-4). Using 

sonication to obtain the crude protein mixture from the cell, the five hybrid tetramers 

were visualized on a 7.5% native polyacylamide gel (Figure 2-5). 

Hybrid isolation and identification 

The co-expressed proteins were purified from RL257 cells (Lovingshimer et al., 

2006). Anionic exchange chromatography using a FPLC equipped with Mono Q column 

was used to separate the five hybrid tetramers based on the charge differences. Fru-6-P 

(2 mM) was added in the buffers during separation and additional Fru-6-P (18 mM) was 

added to the 1:3 hybrid after separation to stabilize the hybrid protein and prevent re-

hybridization. The purity of 1:3 hybrid was confirmed on a 7.5% native polyacylamide 

gel (Figure 2-6). 

Data analysis 

Data were fit to the appropriate equation using the nonlinear least squares fitting 

analysis of Kaleidagraph 3.5 (Synergy) software. Initial rates obtained from kinetic 

assays in which the Fru-6-P concentration dependence was varied were fit to the Hill 

equation (Hill, 1910): 
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Table 2-2 Description of the two parental proteins used to form the 1:3 hybrids 
that contain each heterotropic interaction. 

 Parent A Parent B 

  Active site 
mutation 

Allosteric site 
mutation 

Charge-tag 
mutation 

23Å Wild-type R243E H215E K90,91E 
30Å Wild-type R243E R21A K90,91E 
33Å Wild-type H249E H215E K90,91E 
45Å Wild-type H249E R21A K90,91E 
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where v = initial rate, [E]T = total enzyme active site concentration, kcat = turnover 

number, K0.5 = the concentration of Fru-6-P when the rate equals to one-half of the 

maximal activity, and nH = the Hill coefficient. For the hybrid with a single native active 

site, the linear region of the Fru-6-P saturation curves at low concentration of Fru-6-P 

were fit to the following equation: 

 ]P6Fru)[
mK

catk
(

E
v

−−=  (2-2) 

The effect of either PEP or MgADP on the activity of mutant or wild-type EcPFK was 

evaluated by fitting to equation 2-3 (Figure 2-7): 
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where Kapp = K0.5 when data were fit to Hill equation, or Kapp = the reciprocal of kcat/Km 

when data were fit to the linear equation, at different ligand concentration.  is the 

apparent dissociation constant when [ligand] = 0,  = the dissociation constant for 

ligand when [Fru-6-P] = 0 and the co-substrate MgATP is saturating, and Q

°
appK

°
b/ixK

ax/b = the 

coupling constant between the ligand and Fru-6-P when MgATP is saturating. Qax/b is 

related to the coupling free energy, ∆Gax/b in equation 2-4, between Fru-6-P and the 

ligand in the saturating concentration of MgATP. The coupling constant Qax/b is also 

defined as equation 2-5: 
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Figure 2-7 Allosteric effect of wild-type EcPFK. (A) ADP activation. (B) PEP inhibition. 
The K0.5 for Fru-6-P is plotted as a function of MgADP or PEP, respectively. The line 
represents the best fit to equation 2-3 and was weighted to the error for each K0.5 value. 
Errors are plotted, but are smaller than the data points. The concentration of MgATP was 
3 mM. The enzyme reaction was performed at pH 8.0 and 8.5 °C. 
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 axQlnRTaxG −=∆  (2-4) 

 
∞
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∞
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iaK
iaKi

b/Qax  (2-5) 

where R = the gas constant and T = absolute temperature in Kelvin.  

Steady-state fluorescence measurements 

Steady-state fluorescence intensity and anisotropy of a single tryptophan at 

different positions in the 23Å interaction were measured on an SLM-4800 updated with 

Phoenix hardware and software from ISS Inc. (Champaign, IL). Samples were excited 

using a xenon lamp (300W) and a monochromator to select light at 300 nm light. In 

order to measure fluorescence intensity and anisotropy, the excitation and emission 

polarizers were placed at appropriate positions and emission was detected through a 2 

mm thick Schott WG-335 cut-on filter. All measurements were performed in 1cm × 1cm 

cuvettes. All fluorescence studies were performed in 50 mM Tris (pH 7.5), 5 mM MgCl2, 

0.2 mM EDTA. All measurements were corrected for blank contribution by measuring 

intensity and anisotropy of buffer with the same concentration of ligand. All the intensity 

changes were taken from the measurement of anisotropy. Intensity measurements were 

also corrected for protein dilution. 

Frequency-domain fluorescence measurements 

Frequency domain fluorometry was performed on the ISS K2 multi-frequency 

phase fluorometer. The sample was excited by the 300 nm line of a Spectra-Physics 

Model 2045 argon ion laser. A Pockell cell served as the light modulator. Modulation 

frequencies were generated by a Marconi 2022A frequency synthesizer (London). A 
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solution of NATA (N-acetyl-tryptophanamide, Kodak, lifetime is 2.85 ns) in phosphate 

buffer (pH 7/KOH) was used to avoid “color effect”. It provides a phase and modulation 

reference that could be measured at the same wavelength as the sample observation 

(Lakowicz and Gryczynski, 1991). The EcPFK subunit concentration was 10 µM for 

each preparation. 

Emission, excitation filters and buffer conditions were identical to those used in 

steady-state fluorescence measurements. Fluorescence lifetime measurements were 

performed with excitation and emission polarizer oriented at angled 0° and 54.8° (the 

magic angle), respectively, to the vertical laboratory axis to avoid polarization artifacts 

(Spencer and Weber, 1970; Weber, 1971, 1977 and 1978). The frequency dependence of 

the phase and modulation of the tryptophan fluorescence for each unbound and bound 

enzyme form was determined at 12 modulation frequencies, which varied 

logarithmically from 2 to 250 MHz. Data were collected at each frequency until the 

standard deviations for each measurement of phase and modulation were below 0.1 and 

0.002, respectively. Data acquisition was made with ISS software. Data were fit to 

various models, providing for a combination of discrete exponential sums or continuous 

distribution to describe the total lifetime component(s). Data analysis was performed 

with GLOBALS analysis software, obtained from the Laboratory for Fluorescence 

Dynamics at the University of Illinois at Urbana-Champaign. 
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CHAPTER III 

IN VIVO FORMATION OF HYBRID TETRAMERS OF E. COLI 

PHOSPHOFRUCTOKINASE 

Introduction 

Phosphofructokinase (EC 2.7.1.11) from E. coli (EcPFK) catalyzes the first 

committed step in glycolysis, which is the transfer of a phosphoryl group from MgATP 

to fructose-6-phosphate (Fru-6-P) to produce MgADP and fructose-1, 6-bisphosphate 

(FBP). EcPFK is allosterically regulated by MgADP and phosphoenolpyruvate (PEP), 

which act to activate or inhibit, respectively, by changing the affinity of the enzyme 

displaying for the substrate, Fru-6-P. Both ligands bind to the same allosteric site in 

EcPFK. Therefore, it is very interesting to investigate how these two molecules regulate 

EcPFK from the same site, but in opposite directions. 

EcPFK is a homotetramer with each subunit having a molecular mass of 34 KDa. 

The subunits are arranged as a dimer of dimers. A single EcPFK subunit has on average 

one active site and one allosteric site that are located at different subunit interfaces of the 

tetramer. Thus, each functional active site or allosteric site is composed of two half sites 

from each subunit. A tetramer has four identical active sites and four identical allosteric 

sites. All these sites can potentially interact with each other. The interactions between 

the binding sites are quite complex, but can essentially be reduced to ten unique 

interactions. There are three homotropic interactions between the active sites, three 

homotropic interactions between the allosteric sites, and four unique heterotropic 

interactions between the active sites and the allosteric sites. The investigation of these 
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different kinds of interactions can provide us with an energetic blueprint that ultimately 

must result from the molecular basis for allosteric behavior in EcPFK. However, the 

complicated communications within the tetramer make the investigation difficult. 

To simplify the complicated communications, hybrid tetramers have been used to 

isolate each single heterotropic interaction. A functional tetramer of EcPFK has been 

constructed in which only a single active site and a single allosteric site are capable of 

binding their respective ligands with high affinity (Kimmel and Reinhart, 2001; Fenton 

and Reinhart, 2002 and 2003). Meanwhile, surface charge mutations have been added to 

the mutant EcPFK subunits to allow the separation of the different hybrid species. The 

four unique heterotropic interactions have been named as the 23Å, 30Å, 33Å, and 45Å 

interactions based on the distance between the different binding sites in the EcPFK 

crystal structure (Evans et al., 1981). 

In previous studies, hybrid tetramers were generated in vitro, which required 

dissociation of a mixture of the purified parent proteins with KSCN followed by re-

association of the tetramers by removing KSCN through dialysis (Chapter II). However, 

these experiments are time consuming and have been plagued with low hybrid yield. The 

current study describes a new method for producing hybrids more quickly and with a 

potentially higher yield by co-expressing wild-type EcPFK and the mutant EcPFK in 

vivo. 
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Materials and Methods 

Materials 

All chemical reagents used for protein purification and enzyme kinetic assay 

were the same as chapter II. pGDR147 and pGDR16, containing the wild-type EcPFK 

gene in pALTER-EX1 or pALTER-1, respectively, was used with the Altered Sites II in 

vitro Mutagenesis System (Promega) according to manufacturer's instructions to 

construct mutations. Mutagenesis primers are as follows: 

R21A, 5'-CAG CGC AGA ACG AAC AAC CCC AGC AAT TGC GGC GTT CAT 

               GCC TGG-3' 

H215E, 5'-GGT AAT CGC CAC GAT CGC TTC TTT TTT ACC TTT CGC-3' 

K211E, 5’-GAT CGC GTG TTT TTT ACC TTC CGC GAT ACC CGC-3’ 

K213E, 5’-GGT AAT CGC CAC GAT CGC GTG TTT TTC ACC TTT CGC GAT 

                  ACC CGC-3’ 

K214E, 5’-CGC CAC GAT CGC GTG TTC TTT TAC CTT TCG CGA TAC C-3’ 

R243E, 5'-GAT GTG GCC CAG CAC AGT TGC TTC GGT TTC ACG ACC GGT-3' 

H249E, 5'-CCA CCG CGC TGG ATT TCG CCC AGC ACA GTT GCG C-3' 

K2, 3E, 5'-GCT TGT CAA CAC ACC GAT TTC CTC AAT CAT GAC TAC CTC 

                 TGA AGC-3' 

K90, 91E, 5'-CAG CGC ATC GAT CCC ACG TTC TTC CAG GTT TTC GAT AGC 

                     CAC-3' 
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The mutated DNA was sequenced across the modified site to confirm the desired 

mutation. Plasmids containing wild-type and mutant EcPFK genes were co-transformed 

into RL257 cells for protein expression. 

Results and Discussions 

Co-expression of wild-type and charge-tag PFK 

The wild-type EcPFK gene was cloned into pALTER-Ex2 and pALTER-1 to 

give pGDR148 and pGDR16, respectively. The EcPFK gene in pALTER-Ex2 was kept 

as wild-type form. Using site-directed mutagenesis, the second and the third codons of 

EcPFK in pGDR16 were mutated from lysine to glutamate to change the surface charge 

of the protein. pALTER-Ex2 and pALTER-Ex1 have different origins of replication, 

p15A and ColE1, respectively. In addition, the antibiotic selection markers are different 

and are chloramphenicol and ampicillin, respectively. They are able to be co-

transformed into competent RL257 cells (Figure 3-1).  

Following an affinity purification column, anion-exchange chromatography was 

used to separate the five hybrid species (4:0, 3:1, 2:2, 1:3, 0:4) based on the charge 

differences among the hybrid tetramers. While all five hybrid species were obtained, 

they were not well separated. In addition, the amounts of the 1:3 and 0:4 hybrids were 

relatively low based on the elution profile and native gel electrophoresis (Figure 3-2). 

Optimizing the yield of 1:3 hybrid 

The low yield of the 1:3 hybrid was due to the low level of expression of the 

K2E/K3E charge-tag mutations. There are two likely reasons. First, pALTER-1 is not an 
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expression vector strictly speaking. Although other proteins express well in pALTER-1, 

the expression level of two proteins at the same time cannot be controlled in vivo. 

Consequently, the pALTER-1 vector was changed to pALTER-Ex1, which has the 

strong tac promoter. Second, the K2E/K3E charge-tag mutations are at the beginning of 

EcPFK gene and thus may influence the expression of EcPFK protein (Gold and Stormo, 

1987). To address this possibility, alternative charge-tag mutations, K90E/K91E, were 

substituted for K2E/K3E. These charge-tag mutations have been used successfully in 

Bacillus stearothermophilus. (BsPFK). New constructs were created using the pALTER-

Ex1 and the K90E/K91E charge-tag mutations. After the purification and separation, the 

yield of the 1:3 hybrid was about three times higher than that of the in vitro method 

(Table 3-1). In addition, the separation resolution of the five hybrid species is 

significantly improved compared with the K2E/K3E charge-tag (Figure 3-3). The 

comparison between the in vivo and in vitro method is shown in Figure 3-4. The in vivo 

method improves yield and saves time. In addition, the in vivo method avoids exposing 

the enzyme to denaturing conditions, which might produce subtle changes to the protein 

structure. 

Alternative allosteric site mutations 

In the previous study, R21A and K213E were used as the allosteric site mutations 

to make the hybrid tetramers. However, with K213E as the allosteric site mutation in the 

23Å interaction, the expression of the 23Å mutant protein was so poor that it was very 

difficult to obtain the 1:3 hybrid. Other active site mutations were chosen to pair with 

K213E. The different combinations with K213E did not improve the expression of the 
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Table 3-1 Yield comparison between in vitro and in vivo making hybrids methods. 
 In vitro In vivo 

Load on Mono Q (mg) 10 10 

Yield of all the hybrids (mg) 4.0 6.8 

Yield of 1:3 hybrid (mg) 0.5 1.6 

Yield of 1:3 hybrid (%) 5.0 16.0 
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mutant protein. To improve the yield of mutant EcPFK, other allosteric site mutations 

were characterized, including K211E, K214E and H215E (Figures 3-5, 3-6). The kinetic 

data comparison is shown in Table 3-2. Among them, H215E had kinetics and properties 

similar to K213E and thus was used instead of K213E as the allosteric site mutation for 

both the 23Å and the 33Å interactions. Plotting K1/2 for Fru-6-P affinity versus PEP or 

MgADP concentration over the assayable PEP or MgADP concentration range shows no 

PEP inhibition or MgADP activation of Fru-6-P in H215E mutation. This result is 

consistent with the effect of R21A and K213E mutations. However, the expression of 

H215E mutant EcPFK is much better than K213E mutant EcPFK. The yield of 1:3 

hybrid in the 23Å heterotropic interaction with H215E as the allosteric site mutation was 

dramatically increased. In addition, the 23Å heterotropic interaction and the 33Å 

heterotropic interaction were re-characterized with H215E as allosteric site mutation. 

Both of them showed similar coupling free energy changes that are comparable to those 

with K213E as the allosteric site mutation (Table 3-3). 

Co-expression of wild-type and mutant EcPFK  

Based on the results we obtained from the above experiments, the in vivo method 

was applied to make the 1:3 hybrid tetramers that each contains one of the four unique 

heterotropic interactions. Using K90E/K91E as the charge-tag mutations, site-directed 

mutagenesis was performed on EcPFK gene in pALTER-Ex1 (pGDR147). The four 

mutant EcPFKs that will be used to make the 1:3 hybrid tetramer containing each of the 

four heterotropic interactions were obtained. 
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A B 

Figure 3-5 Residues around the allosteric site. (A) The active site bound with FBP in red, 
allosteric site bound with ADP in cyan, K213 is in green, K214 is in yellow, K211 is in 
blue and H215 is in pink. (B) The close view of the allosteric site interface. 
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Table 3-2 Characterization of the alternative allosteric site mutations. 
 °

iyK  (mM) °
ixK  (mM) 

WT 0.2 0.34 

K213E 5.2 ± 0.3 3.4 ± 0.5 

K211E 3.7 ± 0.5 0.5 ± 0.03 

K214E 10.6 ± 0.6 4.4 ± 0.4 

H215E 4.9 ± 0.6 14.6 ± 0.5 

°
iyK : the dissociation constant for PEP in the absence of Fru-6-P 
°
ixK : the dissociation constant for MgADP in the absence of Fru-6-P 
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Table 3-3 Coupling free energy comparisons between different allosteric site mutations 
in the 1:3 hybrid protein containing either the 23Å interaction or the 33Å interaction. 

 ∆Gax(kcal/mol) ∆Gay (kcal/mol) 

23Å (K213E) -0.73 ±0.04 0.99 ±0.08 

23Å (H215E) -0.78 ±0.05 0.96 ±0.03 

33Å (K213E) -0.99 ±0.03 -0.19 ±0.04 

33Å (H215E) -0.95 ±0.03 0.05 ±0.01 
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Each mutated plasmid and pGDR148, which has the wild-type EcPFK gene, were co-

transformed in RL257 cells. All of four the mutated proteins are able to form the five 

hybrid tetramers in vivo (Figure 3-7). The amount of each hybrid species was different. 

The yield of 1:3 hybrid was relatively higher than the other hybrids except 0:4 (Figure 3-

3). 

 

Conclusions 

The hybrid tetramers stratagem has been used to isolate a single heterotropic 

interaction. To obtain a high enough yield of the four 1:3 hybrid tetramers, each of 

which contains one of the four heterotropic interactions, we developed the in vivo hybrid 

formation method described in this chapter in an effort to address this issue. 

The method used to generate hybrid tetramers in vitro has a low yield and is time 

consuming. Eventually, the five hybrid species were successfully made by the in vivo 

method described above. In addition, the yield of the 1:3 hybrid is increased 3-fold by 

changing the vector to pALTER-Ex1 and charge-tag mutations to K90E/K91E. 

Moreover, changing the allosteric mutation from K213E to H215E, the yield of the 1:3 

hybrid in the 23Å interaction was enhanced greatly. This observation suggests that 

although different allosteric site mutations diminish ligand binding to the same extent, 

they may have different effects on the expression of EcPFK. The in vivo method is 

natural without using any denaturing reagents and it saves time relative to the in vitro 

method. Further, using the in vivo method, all of the different hybrid tetramers that 
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individually contain each of the four heterotropic interactions have been successfully 

made and the yield of 1:3 hybrid was increased in each case. The characteristics of the 

1:3 hybrids containing each heterotropic interaction produced in vivo were similar to 

those produced in vitro. It can now be used for future studies of allosteric regulation in 

EcPFK by introducing different mutations in the specific heterotropic interactions of 

EcPFK. 

 

  



 81

CHAPTER IV 

SELECTIVE PERTURBATION OF INDIVIDUAL ALLOSTERIC 

INTERACTIONS IN E. COLI PHOSPHOFRUCTOKINASE 

Introduction 

Allosteric regulation has been studied for more than 50 years in an effort to try to 

understand how allosteric signals are transmitted within proteins. In this chapter, EcPFK, 

which is an allosterically regulated enzyme, is used as a model system to study how 

allosteric information is transmitted within the protein. There are four unique 

heterotropic interactions possible in EcPFK. The allosteric contribution from each 

heterotropic interaction has been quantified for both activation and inhibition (Fenton et 

al., 2003 and 2004; Fenton unpublished data). In this study, we want to address whether 

a mutation that diminished the overall allosteric response in EcPFK differentially 

disrupts each of the four heterotropic interactions. 

Two methods were used to select the residues that can diminish the allosteric 

response in EcPFK. The first one is based on the sequence alignment between EcPFK 

and phosphofructokinase from Lactobacillus delbrueckii subspecies bulgaricus (LbPFK), 

which shows weak allosteric regulation. LbPFK shows no MgADP activation and 

minimal PEP inhibition. The amino acid sequence of this relatively non-allosteric PFK is 

47% identical and 66% similar to that of EcPFK. The amino acids in EcPFK were 

substituted with the corresponding residues in LbPFK. Twenty-two mutants were 

characterized previously (Paricharttanakul et al., 2005). Three of them affected the 
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allosteric response for both PEP inhibition and MgADP activation. Thus, by substituting 

the residues in EcPFK with their counterpart from LbPFK, we were able to study the 

role of a specific residue in the allosteric communication in EcPFK. The second method 

is that we propose that the residues that lie in between the active site and the allosteric 

site are important for the allosteric regulation. All the selected residues were substituted 

by alanine.  

Seven residues were selected and mutated based on the above methods. The 

mutant EcPFKs described in this chapter were characterized by steady-state kinetics. 

The G184C, D59A and S157A mutant proteins have been observed to exhibit 

diminished allosteric response for both activation and inhibition. At 8.5°C, the G184C 

mutant protein showed a three-fold decrease in MgADP activation and a twelve-fold 

decrease in PEP inhibition. The D59A mutant protein has even stronger effect on PEP 

inhibition and a similar effect for MgADP activation compared to the G184C mutant 

protein. The S157A mutant EcPFK diminished PEP inhibition six-fold and MgADP 

activation seven-fold. G184 is 9Å away from the allosteric site and is in the interior of 

EcPFK. D59 is close to the allosteric site. The relative position of S157 is between the 

active site and the allosteric site in the 23Å interaction. 

To study whether each of the three mutations can differentially disrupt each of 

the four heterotropic interactions in EcPFK, G184C, D59A and S157A were introduced 

into the native subunit of the 1:3 hybrid tetramers containing each heterotropic 

interaction using the in vivo hybrid formation method. The contributions of G184C, 

D59A and S157A on each heterotropic interaction were compared to that of each native 
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heterotropic interaction. Moreover, the total effect from each heterotropic interaction 

was compared to the total heterotropic effect in the mutant EcPFK without homotropic 

interactions. 

 

Materials and Methods  

Materials 

All chemical reagents used for protein purification and the enzyme kinetic assay 

were the same as chapter II. pGDR148, containing wild-type EcPFK gene in pALTER-

Ex2, was used with the Altered Sites II in vitro Mutagenesis System (Promega) to 

introduce mutations. Mutagenesis primers were synthesized by Integrated DNA 

Technology (IDT) as following: 

G184C, 5'-CGA ATT CAC AGC CAG CGG CAA TGG CCG C-3' 

G184V, 5'-CAC AAC GAA TTC ACA GCC CAC GGC AAT GGC CGC AGC-3' 

G184T, 5'-CAC AAC GAA TTC ACA GCC AGT GGC AAT GGC CGC AGC-3' 

D59A, 5’-ACC GCC ACG GTT GAT CAT GGC AGA AAC GCT GTA ACG-3’ 

D59H, 5’GCC ACG GTT GAT CAT GTG AGA AAC GCT GTA ACG G-3’ 

S157A, 5'- AAT ACG CTG GTG AGA AGA GGC GGT GTC ACG CAG -3' 

T148A, 5'- CAG ACG GTC GAT CGC TGC TAC AAC GGT GCT CAG-3' 

T145A, 5'- GTC GAT CGC TTC TAC AAC GGC GCT CAG CGC AGT GAA-3' 

S164A, 5'- GCC CAT CAC TTC CAC CAC GGC AAT ACG CTG GTG -3' 
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Plasmid DNA was isolated using Qiagen mini preps. The DNA was sequenced 

across the modified site to confirm the desired mutation. Plasmids containing wild-type 

and mutant EcPFK genes were co-transformed into RL257 cells for protein expression. 

Hybrids tetramers of EcPFK were created using the in vivo hybrid formation method as 

mentioned in Chapter III. 

 

Results and Discussions  

Characterization of mutant EcPFKs 

Seven EcPFKs with a single mutation were characterized. The positions of each 

modified residue are shown in the crystal structure of EcPFK (Figure 4-1). Positions 184 

and 59 were selected based on the sequence alignment between EcPFK and LbPFK. 

G184 in EcPFK was mutated to cysteine that is the counterpart residue in LbPFK, D59 

was mutated to histidine. The G184V and G184T mutant proteins were also made to 

assess the influence on coupling free energy from different amino acid substitutions at 

the same position. In addition, D59 was also substituted with alanine since the D59H 

mutation almost completely abolished the effect of PEP inhibition. The G184C mutant 

protein showed a three-fold decrease in MgADP activation and a twelve-fold decrease in 

PEP inhibition at 8.5 °C as compared with wild-type EcPFK. The G184V and G184T 

mutant proteins showed effects similar to the G184C mutant protein. The D59A mutant 

protein exhibited only a thirty-eight-fold decrease in PEP inhibition and a three-fold 

decrease in MgADP activation as compared to wild-type EcPFK at 8.5 °C (Table 4-1).
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We also wished to assess whether the residues that lie between the active sites 

and the allosteric sites play important roles in allosteric regulation. All the proposed 

residues were mutated to alanine. T145 and E148 are located between the binding sites 

defining the 45Å heterotropic interaction. S157 and S164 are located in the 23Å 

heterotropic interaction. T145 and E148 are very close to the active site interface so that 

the mutated proteins were not very stable (Figure 4-1). Both the T145A and E148A 

mutant proteins have diminished allosteric response for PEP inhibition, but they do not 

change the coupling free energy for MgADP activation. The S164A mutant protein 

almost completely abolished the allosteric response for MgADP activation, but it did not 

influence the PEP inhibition. Only the S157A mutant EcPFK diminished both PEP 

inhibition six-fold and MgADP activation seven-fold. The kinetic data for each mutant 

EcPFK are shown in Table 4-1. In addition, the D59A mutant protein has weak binding 

affinity for both PEP and MgADP. This observation might be explained by the fact that 

D59 is located close to the allosteric site. Interestingly, the G184C mutant protein also 

has tight binding affinity to MgADP, but it is 9Å away from allosteric site. Both the 

G184C and S157A mutant proteins display tighter binding affinity towards Fru-6-P.  

The G184C, D59A and S157A mutant proteins showed diminished coupling for 

both PEP inhibition and MgADP activation (Figure 4-2, Figure 4-3). The comparison 

graphs in coupling free energy term between the three mutant proteins and wild-type 

EcPFK are shown in Figure 4-4. The next question we wished to address is whether 

these reductions in allosteric response are differentially manifested in each heterotropic 

interaction in EcPFK. 
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Table 4-1 Kinetic parameters for EcPFK mutants at 8.5 °C. 

 Qax Qay
°
iaK  (mM) °

ixK  (mM) °
iyK  (mM) 

WT 14.4±0.3 0.0084±0.0001 0.3±0.003 0.03±0.002 0.08±0.002 

T145A 18.2±0.7 0.05±0.001 1.3±0.02 0.08±0.006 0.69±0.02 

E148A 15.0±0.8 0.08±0.004 0.57±0.03 0.12±0.01 0.05±0.005 

S157A 1.8±0.1 0.05±0.002 0.05±0.0006 0.03±0.01 0.89±0.04 

S164A ~1 0.064±0.0003 0.06±0.001 ND 0.083±0.003

D59H 1.7±0.05 0.15±0.002 1.5±0.07 3.1±0.6 1.9±0.03 

D59A 3.3±0.07 0.33±0.02 0.44±0.005 1.67±0.12 16.2±1.5 

G184C 3.4±0.1 0.022±0.001 0.042±0.001 0.007±0.003 3.81±0.12 

G184T 5.9±0.35 0.02±0.004 0.12±0.007 0.02±0.0003 16.0±0.6 

G184V 3.2±0.14 0.03±0.003 0.073±0.003 0.0093±0.002 4.05±0.13 
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Figure 4-2 The effect of MgADP on the binding of Fru-6-P to wild-type ( ), G184C 
( ), D59A ( ) and S157A ( ) EcPFK.  
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Figure 4-3 The effect of PEP on the binding of Fru-6-P to wild-type ( ), G184C ( ), 
D59A ( ) and S157A ( ) EcPFK. 
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Figure 4-4 Coupling free energy comparisons between wild-type, G184C, D59A and 
S157A EcPFK for MgADP activation and PEP inhibition. The bar on the left for each 
heterotropic interaction corresponds to wild-type EcPFK (black). The second bar 
corresponds to G184C mutant (left striped), the third bar corresponds to D59A mutant 
(right striped), the bar on the right corresponds to S157A mutant (cross striped). 
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Introducing G184C, D59A and S157A into each heterotropic interaction 

The purpose of current study is to quantify the allosteric effect of each of the 

three mutations in every heterotropic interaction. Co-expressing each mutant EcPFK 

with the parent B protein (Chapter II, Table 2-2) for each heterotropic interaction 

individually, all the hybrid species were formed in vivo. The 1:3 hybrid (1|1), contains a 

specific heterotropic interaction with G184C mutation in the native subunit (Figure 4-

5A), was isolated and characterized. The effect of G184C on the allosteric response for 

each native heterotropic interaction is measured by steady-state kinetics. In the 23Å 

heterotropic interaction, a three-fold decrease in PEP inhibition and a minimal effect on 

MgADP activation were observed. In the 33Å heterotropic interaction, PEP inhibition 

was not changed, but a six-fold decrease in MgADP activation was observed. In the 30Å 

heterotropic interaction, there is no effect on PEP inhibition and two-fold increase in 

MgADP activation. In the 45Å heterotropic interaction, neither PEP inhibition nor 

MgADP activation was influenced as compared to wild-type EcPFK. In addition, the 

sum of each heterotropic interaction with G184C in it was comparable with the overall 

heterotropic interaction in EcPFK mutant tetramer (Figure 4-5B, Figure 4-6, Figure 4-7). 

However, D59A mutation showed a different pattern of the allosteric response in 

each interaction. In the 23Å heterotropic interaction, five-fold decrease in PEP inhibition 

and two-fold decrease in MgADP activation were obtained. In the 33Å heterotropic 

interaction, PEP inhibition was enhanced and MgADP activation was almost the same as 

wild-type EcPFK. In the 30Å heterotropic interaction, PEP inhibition decreased to one-

third and MgADP activation was completely abolished. In the 45Å heterotropic
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Figure 4-5 Two-dimensional representations for 1|1 and 1|4 hybrids (the first number 
represents the number of the active site; the second number represents the number of the 
allosteric site). (A) The 1:3 hybrid (1|1) contains each of the four heterotropic interaction 
with a specific mutation  in the native subunit. (B) The control hybrid (1|4) contains all 
the four heterotropic interactions with a specific mutation in all the four subunits. Red  
represents a specific mutation. 
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Figure 4-6 The effect of MgADP on the binding of Fru-6-P in the four heterotropic 
interactions with G184C mutation, 23Å ( ), 30Å ( ), 33Å ( ), 45Å ( ). 
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Figure 4-7 The effect of PEP on the binding of Fru-6-P in the four heterotropic 
interactions with G184C mutation, 23Å ( ), 30Å ( ), 33Å ( ), 45Å ( ). 
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interaction, there is no effect on PEP inhibition and two-fold increase in MgADP 

activation (Figure 4-8, Figure 4-9). 

With the S157A mutation, in the 23Å heterotropic interaction, there is only a 

minor decrease in PEP inhibition and a two-fold decrease in MgADP activation. In the 

33Å heterotropic interaction, PEP inhibition was increased and MgADP activation 

decreased three-fold. In the 30Å heterotropic interaction, both PEP inhibition and 

MgADP activation were not changed. In the 45Å heterotropic interaction, both PEP 

inhibition and MgADP activation were comparable to wild-type EcPFK (Figure 4-10, 

Figure 4-11). The coupling free energy comparisons between each mutant in each 

heterotropic interaction are shown in Figures 4-12 and 4-13. 

 From the above results, G184C or D59A mutations affect PEP inhibition through 

the 23Å interaction. D59A also has some effects on the 30Å interaction. S157A does not 

show any influence for PEP inhibition in each of the four heterotropic interactions. 

However, the influence of G184C on MgADP activation is through the 33Å interaction, 

D59A mainly affects the 30Å interaction greatly for MgADP activation. S157A affects 

both the 23Å and 33Å interactions for MgADP activation. Thus, PEP inhibition and 

MgADP activation are influenced differently from the same mutation. Also, the crystal 

structure of EcPFK (Figure 4-14) may reveal a possible explanation for why G184, D59 

and S157 positions are important for MgADP activation through different heterotropic 

interactions. The relative positions of G184, D59 and S157 in the crystal structure are 

directly between the active site and the allosteric site in the 33Å interaction, the 30Å 

interaction and the 23Å interaction, respectively. This may indicate why G184C, D59A 
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Figure 4-8 The effect of MgADP on the binding of Fru-6-P in the four heterotropic 
interactions with D59A mutation, 23Å ( ), 30Å ( ), 33Å ( ), 45Å ( ). 
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Figure 4-9 The effect of PEP on the binding of Fru-6-P in the four heterotropic 
interactions with D59A mutation, 23Å ( ), 30Å ( ), 33Å ( ), 45Å ( ). 
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Figure 4-10 The effect of MgADP on the binding of Fru-6-P in the four heterotropic 
interactions with S157A mutation, 23Å ( ), 30Å ( ), 33Å ( ), 45Å ( ). 
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Figure 4-11 The effect of PEP on the binding of Fru-6-P in the four heterotropic 
interactions with S157A mutation, 23Å ( ), 30Å ( ), 33Å ( ), 45Å ( ). 
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Figure 4-12 Coupling free energy comparisons between wild-type, G184C, D59A and 
S157A in each isolated heterotropic interaction for MgADP activation. The bar on the 
left for each heterotropic interaction corresponds to the native interaction (black). The 
second bar corresponds to the native interaction with G184C mutation (green), the third 
bar corresponds to the native interaction with D59A mutation (purple), the bar on the 
right corresponds to the native interaction with S157A mutation (cyan). 
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Figure 4-13 Coupling free energy comparisons between wild-type, G184C, D59A and 
S157A in each isolated heterotropic interaction for PEP inhibition. The bar on the left for 
each heterotropic interaction corresponds to the native interaction (black). The second 
bar corresponds to the native interaction with G184C mutation (green), the third bar 
corresponds to the native interaction with D59A mutation (purple), the bar on the right 
corresponds to the native interaction with S157A mutation (cyan).  
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Figure 4-14 The relative position of G184, D59A and S157A in the four unique 
heterotropic interactions in EcPFK crystal structure. Yellow lines represent the four 
heterotropic interactions. G184 is shown in white, D59 is in green and S157 is in blue.
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and S157A mutation disrupted the 33Å interaction, the 30Å interaction and the 23Å 

interaction for MgADP activation, respectively. However, the positions of G184 and 

D59 are far away from the 23Å interaction, which contributes mostly for PEP inhibition. 

Once again, it indicates PEP inhibition and MgADP activation are using different 

pathways (Fenton et al., 2003). The relative positions of G184, D59 and S157 in the 

crystal structure of EcPFK may suggest MgADP activation may use a direct pathway, 

but PEP inhibition may use an indirect pathway. In addition, D59A mutant protein 

affects each interaction for MgADP activation but to different extents. The possible 

reason is that this residue is very close to the allosteric site thus the influence of D59A 

on the allosteric response may be observed in each heterotropic interaction. 

Alternative substitution at position 184 

The G184C mutant protein diminished the allosteric response for both MgADP 

activation and PEP inhibition. To validate the importance of position 184, the G184T 

mutant protein was characterized and also introduced into the four isolated heterotropic 

interactions. The G184T mutant EcPFK showed effects similar to the G184C mutant. It 

has more than a two-fold decrease in MgADP activation and almost a five-fold decrease 

in PEP inhibition (Figure 4-15). The influence of the G184T mutation on each of the 

four heterotropic interactions was characterized and compared with the effect of the 

G184C mutation. Basically, the pattern from the two mutant EcPFKs are very similar 

(Figure 4-16, Figure 4-17). The sum of each heterotropic interaction equals to the total 
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Figure 4-16 Comparisons in coupling free energy for MgADP activation in each of the 
four heterotropic interactions with either G184C or G184T mutation .The bar on the left 
at each heterotropic interaction represents the coupling free energy for the native 
interaction (white), the bar in middle represents the coupling free energy for the native 
interaction with G184C mutation (light gray) and the bar on the right represents the 
coupling free energy for the native interaction with G184T mutation (dark gray). 
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Figure 4-17 Comparisons in coupling free energy for PEP inhibition in each of the four 
heterotropic interactions with either G184C or G184T mutation. The bar on the left at 
each heterotropic interaction represents the coupling free energy for the native 
interaction (white), the bar in middle represents the coupling free energy for the native 
interaction with G184C mutation (light gray) and the bar on the right represents the 
coupling free energy for the native interaction with G184T mutation (dark gray). 
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heterotropic interactions in the mutant EcPFK tetramer without homotropic interactions. 

G184 was also substituted with valine as well. The G184V mutant protein also has 

effects similar to the G184C mutant protein. It indicates that the position of 184 is very 

important for the allosteric signal transmission. However, the side chain of different 

amino acids may produce different effects on allosteric regulation. 

Control hybrids  

Each 1:3 hybrid tetramer (1|1) that contains an individual heterotropic interaction, 

has only one native active site and one native allosteric site. However, homotropic 

cooperativities between the four native active sites are shown in EcPFK tetramer. 

Therefore, the sum of each isolated heterotropic interaction cannot be compared with the 

overall heterotropic interaction in wild-type EcPFK. To eliminate the homotropic 

cooperativity in the wild-type EcPFK, the 1|4 control hybrid tetramer was constructed, 

which has only one native active site and four native allosteric sites and has either 

G184C, D59A or S157A mutation in all the four subunits. For the G184C, D59A and 

S157A mutant protein, the sum of coupling free energy from each heterotropic 

interaction equals to the coupling free energy from the 1|4 control hybrid for both PEP 

inhibition and MgADP activation (Figure 4-18). Importantly, each mutation is in all the 

four subunits in 1|4 control hybrid protein, but this mutation is in the one native subunit 

in 1|1 hybrid protein. This result suggests that the presence or absence of a specific 

mutation in the other three subunits is inconsequential. Therefore, the allosteric signal is 

transmitted in one subunit. Moreover, the different coupling free energy between each 

mutant EcPFK, which has both homotropic and heterotropic interactions, and 1|4 control 
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hybrid EcPFK, which has only heterotropic interactions, indicates that homotropic 

interactions influence the heterotropic interactions. 

 

Conclusions 

In summary, three residues, G184, D59, and S157 that are likely to be involved 

in allosteric information transmission have been identified. Taking advantage of the in 

vivo procedure for making hybrids, the G184C, D59A and S157A mutations were 

introduced into the 1:3 hybrids that present each heterotropic interaction of EcPFK 

individually. All mutated residues differently disrupted each heterotropic interaction and 

showed different patterns for both PEP inhibition and MgADP activation. This result 

indicates that the allosteric pathway is different for PEP inhibition and MgADP 

activation in EcPFK. Moreover, different substitutions at G184 position showed similar 

effects on both PEP inhibition and MgADP activation suggesting that although different 

side chains may influence coupling free energy, position 184 is very important for 

allosteric signal transfer. In addition, the sum of each heterotropic interaction is equal to 

the total heterotropic interaction in each mutant EcPFK tetramer without the homotropic 

interactions. This is consistent with our previous results in wild-type EcPFK and wild-

type BsPFK (Fenton, et al., 2004; Ortigosa, et al., 2004). More importantly, the G184C 

mutation is in all the four subunits in the 1|4 control hybrid protein, but this mutation is 

only in the one otherwise native subunit in 1|1 hybrid protein. This result suggests the 

presence or absence of G184C in the other three subunits is inconsequential. Therefore, 

the allosteric signal is transmitted in a single subunit. Moreover, the different coupling 
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free energy between each mutant EcPFK and 1|4 control hybrid EcPFK indicates that 

homotropic interactions have influence on the heterotropic interactions. 
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CHAPTER V 

STUDY ON THE DYNAMIC PROPERTIES OF ALLOSTERIC 

COMMUNICATION IN E. COLI PHOSPHOFRUCTOKINASE 

Introduction 

As shown in chapter IV, the heterotropic allosteric signal in EcPFK is transmitted 

via intra-subunit interactions. The next question to be addressed is how the dynamic 

properties exhibited in one subunit are influenced by different ligand binding events. 

Since the four heterotropic interactions each made a unique contribution to the total 

allosteric effect, and the 23Å heterotropic interaction makes the largest contribution to 

PEP inhibition, we focus on the dynamic properties of this heterotropic interaction. 

Fluorescence was used to study the dynamic changes of the 23Å interaction upon ligand 

binding. Taking advantage of the hybrid formation strategy and the tryptophan-shift 

mutagenesis method, a tryptophan residue can be placed at different individual locations 

throughout the otherwise native subunit containing the 23Å heterotropic interaction. Our 

ultimate goal is to map the dynamic perturbations within an EcPFK subunit to gain 

insight and understanding of the allosteric pathway. 

The fluorescence properties of a tryptophan in a protein are usually sensitive to 

the conformational change with ligand binding and can be monitored in the absence of 

turnover. In addition, the advantage of utilizing a single fluorescence probe is that a 

significant fraction of the fluorescence signal can be affected by the environmental 

dynamics located within the vicinity of the fluorophore. Thus, to characterize the nature 
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of the perturbation in the vicinity of a specific tryptophan in the 23Å interaction, we 

need to monitor the response to the different ligand binding forms appearing in equation 

1-6. Steady-state fluorescence anisotropy measurements give us the first indication of 

changes in motion upon ligand binding in EcPFK. The changes in motion can result 

from either the global movement of EcPFK or local rotation or flexibility around the 

tryptophan. Since it is unlikely that the binding a small ligand to EcPFK will affect the 

global rotation, the changes in anisotropy potentially reflect the local motion of the 

tryptophan. However, changes in anisotropy can result from changes in the decay rate of 

the fluorophore, which is the reciprocal of the fluorescence lifetime of the probe. In 

order to resolve the source of these anisotropy changes, the lifetime for each tryptophan 

was also measured. 

An in vivo method for hybrid formation was used to dissect the 23Å heterotropic 

interaction of EcPFK (Chapter III). Two parent proteins are used to form a 1:3 hybrid 

that presents the 23Å heterotropic interaction (Table 2-2). Parent A protein is wild-type 

EcPFK; parent B protein has the active site mutation, R243E, the allosteric site mutation, 

H215E, and the charge-tag mutations K90E/K91E. The resulting 1:3 hybrid protein has 

one native subunit that gives rise to a single heterotropic interaction and three mutated 

subunits that bind ligands very weakly.  

To monitor the dynamic properties in the 23Å heterotropic interaction, the native 

tryptophan at position 311 in EcPFK was used as the first probe. As shown previously, 

W311 is sensitive to local motion upon ligand binding in the EcPFK tetramer (Johnson 

and Reinhart 1992,1994 and 1997). There are four native tryptophans in EcPFK tetramer, 
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one per subunit. The tryptophans in the three mutated subunits were substituted with 

tyrosine leaving the single tryptophan at position 311 as the fluorescence probe for the 

native subunit containing the 23Å interaction. To make this 1:3 hybrid, the parent A 

protein is still wild-type EcPFK; the parent B protein is the 23Å interaction parent B 

protein with W311Y mutation (23Å parent B-Trp minus). The 1:3 hybrid has one native 

subunit that contains a single tryptophan and three mutated subunits, which have no 

tryptophan residues. To monitor the dynamic properties at different positions with the 

native subunit containing the 23Å interaction, the tryptophan-shift mutagenesis strategy 

was employed to relocate the tryptophan to different positions in the native subunit. The 

tryptophan-shift mutagenesis strategy was first used in BsPFK (Riley-Lovingshimer and 

Reinhart, 2001, 2002 and 2005). BsPFK has a single tryptophan at position 179. 

However, the fluorescence of this tryptophan is not very responsive to ligand binding 

events. The native tryptophan was removed from position 179 and an alternative 

tryptophan substitution was placed in another position in the protein. A tangible 

fluorescence response was obtained from the tryptophan-shift mutant described. Using 

the same approach, a protein that has more than one tryptophan can be transformed to a 

protein with only one tryptophan in order to measure the fluorescence response from a 

specific tryptophan position. For example, carbamoyl phosphate synthetase (CPS) from 

E. coli has six native tryptophans. To characterize the conformational changes, a 

tryptophan-free mutant of CPS was made by substituting the six native tryptophans with 

tyrosines. Each tryptophan was then reinserted to monitor the fluorescence response to 

different ligand binding events from each specific tryptophan position (Johnson et al., 
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2007). Similarity in the side chain structures by substituting a tryptophan with a tyrosine 

or phenylalanine may have a relatively small alteration to protein structural integrity. 

Thus, the substitution may not significantly affect the functional properties of proteins. 

Using this method for EcPFK, the native tryptophan residue at position 311 was 

substituted with tyrosine. A phenylalanine or tyrosine, located in different regions of the 

protein, was substituted with a tryptophan. The tryptophan-shift mutant protein is co-

expressed with the 23Å parent B-Trp minus protein. As a result, the tryptophan 

fluorophore was effectively relocated to a different site within the 23Å interaction. 

Tryptophan at each position is used as fluorescence probe to monitor the dynamics in the 

23Å heterotropic interaction upon ligand binding. 

 

Materials and Methods 
 
Materials 

All chemical reagents used for protein purification, enzyme kinetic assay and 

fluorescence experiments were described in chapter II. Mono Q 10/10, an anion 

exchange column, from Phamacia was used for separation of 1:3 hybrid with different 

tryptophan-shift mutations in the 23Å heterotropic interaction as in Chapter II. 

Tryptophan-shift mutants were made using Altered Sites II Mutagenesis System. The 

following oligonucleotides were ordered from Integrated DNA Technologies (IDT) to be 

used for mutagenesis. 

F76W, 5'- GGA TGT TCT CGT CGC GCC ATT CCG GGA AAC GC -3' 

Y106W, 5'- CGC ATT GCA CCC ATC CAG GAA CCG TCA CCG CCG -3' 
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F140W, 5'- CTC AGC GCA GTC CAG AAA CCG ATA GTG TAG -3' 

F188W, 5'- CTT CCG GAA CCA CAA CCC ATT CAC AGC CAC CGG C -3' 

F196W, 5'- GGT CTT CAC GGC TCC ATT CAA CTT CCG G -3' 

F233W, 5'- CCG GTT TCT TTC TCG ATC CAA TGC GCC AGT TCG -3' 

W311Y, 5'- CGC GCA GTC CAG ATA GTC GCC TTT GAA CGG ACG -3' 

Formation of the 1:3 hybrid with one specific tryptophan involved in the 23Å 

heterotropic interaction 

The 1:3 hybrid was created using a modified protocol from Chapter III. Two 

parent proteins were used to generate the 1:3 hybrid of the 23Å heterotropic interaction 

with the native tryptophan only in the native subunit. Parent A protein is wild-type 

EcPFK; parent B protein is the 23Å parent B with W311Y mutation (23Å parent B-Trp 

minus). After co-expression, the 1:3 hybrid protein has only one native tryptophan at 

position 311 in the subunit that displays the 23Å heterotropic interaction (Figure 5-1). 

The tryptophans in the other three subunits were mutated to tyrosine. Subsequently, site-

directed mutagenesis was performed on pGDR148 to introduce site-specific tryptophan 

substitutions in EcPFK. A tryptophan was introduced at a different position in the 23Å 

interaction. To make the corresponding 1:3 hybrid protein, the parent A protein of the 

hybrid is a tryptophan-shift mutant in which W311 was changed to tyrosine and either a 

tyrosine or phenylalanine at another position in the protein was mutated to tryptophan. 

As a result, tryptophan was placed at different positions and the native tryptophan at 

  



 116

 

                     

                                                            co-transform to RL257 cells 

Parent B                          Parent A 

Figure 5-1 Strategy
tryptophan in the 1
hybrid has W311 in
.

 

0:4
 used to create hybrid tetramers of EcPFK co
:3 hybrid protein presenting the 23Å heterotr
 the native subunit and W311Y in the other t
4:0
2:2
1:3
n
o
hr
3:1
 

taining only one native 
pic interaction. The 1:3 
ee mutated subunits. 

 



 117

position 311 was removed at the same time. The parent B protein is the 23Å parent B-

Trp minus. Each mutation was confirmed by sequencing over the region of interest. 

After co-expression the two parent proteins in RL257 cells, the 1:3 hybrid was separated 

by anion-exchange column as described in Chapter II. This 1:3 hybrid that presents the 

23Å heterotropic interaction does not have the native tryptophan, but has a tryptophan at 

a specific position.  

Generation of enzyme ligand forms 

To study the dynamic properties in the 23Å interaction in EcPFK, the 

fluorescence response of a tryptophan upon ligand binding was monitored. Thus, EcPFK 

with different ligands bound at the saturating concentration was generated. Each ligation 

state of EcPFK, PFK-Fru-6-P, PFK-PEP, PFK-MgADP, was generated via the addition 

of 2 mM Fru-6-P, 10 mM PEP, 2 mM MgADP, respectively. 10 mM Fru-6-P and 25 

mM PEP were added to generate the ternary complex PEP-PFK-Fru-6-P. 2mM F6P, and 

2 mM MgADP were added to form the ternary complex MgADP-PFK-Fru-6-P. Based 

on the ligand dissociation constants determined for each hybrid, less than 5% of the PFK 

would exist in other forms under these conditions. The ligation state designated 

MgADP-PFK generated by this manner will also have MgADP bound to the active site. 

However, since MgADP in the active site has been shown not affect the intensity or 

anisotropy of the tryptophan fluorescence in EcPFK, its presence in these species has 

been ignored (Johnson and Reinhart, 1994). 
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Data analysis 

The Perrin equation (1-19, 1-20) was used to analyze the rotational correlation 

time (θ) for each ligation state. This analysis contains two assumptions: first, we assume 

EcPFK protein is a sphere; second, the global rotational correlation time is the same in 

all the measurements. Based on that, the changes in θ represent the changes in the local 

motion. The decrease of rotational correlation time suggests faster motion around a 

specific tryptophan position, while an increase in the correlation time indicates slower 

rotation. 

 

Results and Discussions 

Hybrid formation of the 23Å heterotropic interaction with tryptophan at different 

positions 

Six tryptophan-shift mutant proteins were made using Altered Sites II Site-

Directed in vitro Mutagenesis System. The native tryptophan at position 311 was 

replaced by tyrosine. Either conserved tyrosine or phenylalanine in other regions of the 

protein was mutated to tryptophan. The relative positions of the six residues and W311 

are shown in the EcPFK crystal structure (Figure 5-2). The distances to the ligand 

binding sites in the 23Å heterotropic interaction for each position are shown in Table 5-1. 

Positions 188 and 311 are relatively close to the allosteric site, within 20Å. Positions 140, 

233 and 196 are approximately 25Å from the allosteric site. Position 106 and 76 are 

further away from both active site and allosteric site with more than 35Å distance
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Figure 5-2 The positions of each tryptophan substitution in EcPFK crystal structure. FBP 
is shown in red, ADP is in cyan. The yellow line represents the 23Å heterotropic 
interaction. Tryptophan-shift mutant candidates are shown in white space fill. 
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Table 5-1 The distance between each substituted tryptophan position and the active site 
or the allosteric site in the 23Å heterotropic interaction.  

Trp Position FBP ADP 
188 24Å 16Å 
311 32Å 19Å 
106 43Å 36Å 
76 49Å 49Å 
233 21Å 23Å 
140 34Å 22Å 
196 23Å 21Å 
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relative to the active site, positions 188,196 and 233 are within 25Å, while positions 140 

and 311 are 35Å away. To use the native tryptophan at position 311 as a fluorescence 

probe in the 23Å heterotropic interaction, wild-type EcPFK and the 23Å parent B-Trp 

minus protein were co-expressed. To relocate tryptophan in the 23Å heterotropic 

interaction, the tryptophan-shift mutant protein was used instead of wild-type EcPFK for 

the co-expression. All the five hybrid species were formed in vivo with each tryptophan 

at different position involved in the 23Å interaction. The 1:3 hybrid was separated and 

identified as shown in Chapter II and used to measure steady-state anisotropy and 

fluorescence lifetime. 

Steady-state fluorescence  

Steady-state fluorescence was used to measure the response of tryptophan at each 

position individually to the binding of different ligands relevant to the 23Å interaction. 

The steady-state fluorescence intensity and anisotropy data are listed in Table 5-2. In 

addition, the changes in steady-state anisotropy data in each ligation state are plotted in 

Figure 5-3 and further summarized in the crystal structure shown in Figure 5-4. 

Compared to the free enzyme form, white indicates no change in anisotropy (we 

consider a value < 0.04 to be negligible); green and red represent either a decrease or an 

increase in anisotropy, respectively. Meanwhile, each of the 1:3 hybrid proteins with a 

different tryptophan-shift mutation in the 23Å interaction were characterized using 

steady-state kinetics and compared with the native 23Å interaction. The kinetics data are 

shown in Table 5-3. There were no big differences observed for either the binding 

constant or the coupling free energy except for the F188W/W311Y mutation.  
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Table 5-2 Steady-state intensity and anisotropy data for the 23Å interaction with each 
tryptophan-shift mutation. 

23Å (W311) 1: 3 Hybrid 
 

23Å (W188) 1: 3 Hybrid 
 

23Å 

Intensity Anisotropy Intensity Anisotropy 
No ligand  0.178±0.001  0.197±0.001 

2 mM Fru-6-P -18 % 0.171±0.0009 -7% 0.199±0.001 
10mM PEP -6% -12% 0.180±0.001 +126% 0.206±0.001 

10mM Fru-6-
P+ 25mM PEP 

-23% 0.175±0.001 
 

+86% 
 

0.207±0.001 

2mM MgADP -13%-15% 0.190±0.002 -56% 0.206±0.0005 
2mM MgADP 
+ 2mM Fru-6-P 

-13%-14% 0.192±0.0008 -64% 0.210±0.002 

23Å (W76) 1: 3 Hybrid 
 

23Å (W106) 1: 3 Hybrid 
 

23Å 

Intensity Anisotropy Intensity Anisotropy 
No ligand  0.209±0.0009  0.200±0.001 

2 mM Fru-6-P -2 % 0.204±0.0005 -7% 0.198±0.002 
10mM PEP  -11% 0.209±0.0008 -7% 0.200±0.0006 

10mM Fru-6-
P+ 25mM PEP 

-12% 0.209±0.0004 -27% 
 

0.207±0.0003 

2mM MgADP -74% 0.205±0.001 -62% 0.192±0.001 
2mM MgADP 
+ 2mM Fru-6-P 

-73% 0.202±0.001 -64% 0.200±0.001 

23Å (W233) 1: 3 Hybrid 
 

23Å (W140) 1: 3 Hybrid 
 

23Å 

Intensity Anisotropy Intensity Anisotropy 
No ligand  0.148±0.0004  0.216±0.0002 

2 mM Fru-6-P +1% 0.139±0.0008 +3% 0.216±0.001 
10mM PEP -6% 0.156±0.001 -4% 0.217±0.0009 

10mM Fru-6-
P+ 25mM PEP 

-17% 0.158±0.0008 
 

-18% 
 

0.222±0.001 

2mM MgADP +2% 0.172±0.001 -9% 0.219±0.001 
2mM MgADP 
+ 2mM Fru-6-P 

-7% 0.175±0.0006 -4% 0.219±0.0008 

23Å 23Å (W196) 1: 3 Hybrid 
 

  

 Intensity Anisotropy   
No ligand  0.143±0.001   

2 mM Fru-6-P -3% 0.142±0.001   
10mM PEP -9% 0.143±0.001   

10mM Fru-6-
P+ 25mM PEP 

-16% 0.143±0.0009 
 

  

2mM MgADP -8% 0.141±0.0008   
2mM MgADP 
+ 2mM Fru-6-P 

-10% 0.141±0.001   
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Figure 5-3 The comparisons in anisotropy changes at each tryptophan position in the 
23Å interaction with different ligand bound forms of the enzyme. On the x-axis: (1).no 
ligand, (2). + 2mM Fru-6-P, (3). + 10 mM PEP, (4). + 10mM Fru-6-P+25 mM PEP, (5). 
+ 2mM MgADP, (6). + 2 mM MgADP+ 2 mMFru-6-P. 
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 Fru-6-P                                                       Fru-6-P 

   
ADP                                                             PEP 

   
Fru-6-P+ADP                                             Fru-6-P+PEP 

   
 
Figure 5-4 The anisotropy changes in the 23Å interaction at each substituted tryptophan 
position in EcPFK crystal structure. Relative to the free enzyme, white: no change; green: 
anisotropy decrease; red: anisotropy increase. Anisotropy decreases or increases above 
0.04 is considered as a change. 
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Table 5-3 Kinetics and thermodynamics data for the 1:3 hybrid containing the 23Å 
interaction with different tryptophan-shift mutations. 

 

Hybrid protein °
iaK  mM °

ixK  mM °
iyK  mM ∆Gax ∆Gay 

23Å 0.69±0.07 0.05±0.008 0.14±0.01 -0.71±0.08 0.90±0.06 
23Å(F76W/W311Y) 0.21±0.007 0.048±0.01 0.37±0.04 -0.68±0.04 1.03±0.03 
23Å(Y106W/W311Y) 0.23±0.002 0.32±0.03 0.48±0.04 -1.02±0.02 0.87±0.02 
23Å(F188W/W311Y) 9.24±0.45 0.1±0.02 0.56±0.07 -0.66±0.03 1.23±0.03 
23Å(F233W/W311Y) 0.32±0.01 0.67±0.08 0.1±0.01 -1.05±0.04 0.93±0.04 
23Å(F140W/W311Y) 0.21±0.003 0.18±0.03 0.51±0.04 -1.30±0.06 0.99±0.03 
23A(F196W/W311Y) 0.8±0.03 0.19±0.02 0.4±0.08 -1.11±0.04 1.17±0.09 
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Positions 311 and 233 in the 23Å interaction showed relatively large changes in 

anisotropy compared to the free enzyme form in most of the ligation states. Positions 

140 and 196 had almost no response in the presence of any ligand. However, positions 

140 and 196 are located in different regions in the protein. Position 188, which is close 

to the allosteric site, had increased anisotropy with every ligand bound. Interestingly, 

although 76 and 106 are far away from the ligand binding sites, anisotropy changes were 

observed at both positions. The decreases in anisotropy may indicate there is some local 

motion around the region of that specific tryptophan. The increase in anisotropy suggests 

a more rigid region around that specific tryptophan. However, the anisotropy change 

may also be due to a lifetime change for that specific tryptophan resulting from ligand 

binding. In the following experiment, the lifetime of each tryptophan was measured. 

Time-resolved fluorescence 

Time-resolved fluorescence experiments can be used to measure the tryptophan 

lifetime. Here, the lifetime of each tryptophan in the 23Å heterotropic interaction was 

measured individually using an ISS K2 multi-frequency phase fluorometer. The 

frequency dependence of the phase and the modulation of tryptophan at the native 

position 311 in the 23Å heterotropic interaction in the different ligation states is 

presented in Figure 5-5 A and B, for MgADP activation and PEP inhibition, 

respectively. In addition, the frequency dependence of the phase and the modulation of 

each tryptophan at different positions in the 23Å heterotropic interaction in the free 

enzyme form is show in Figure 5-6. The data were fit to various models and evaluated 

on the basis of their relative χ2 values. In all cases, the phase and the modulation data 
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Figure 5-5 Frequency-domain lifetime determinations of the 23Å interaction with 
tryptophan at native position 311 in each different ligation states. Variation in phase and 
modulation with frequency are shown for each of the enzyme forms appearing in the 
disproportionation equilibria describing MgADP activation of Fru-6-P binding (A) and 
PEP inhibition of Fru-6-P binding (B). The phase and modulation are represented as 
follows no ligand ( , ), Fru-6-P ( , ), PEP ( , ), Fru-6-P+PEP ( , ), MgADP 
( , ), Fru-6-P+MgADP (×, +). The lines drawn represent the best fit of the data to a 
two components model: featuring a Lorentzian continuous distribution and discrete 
exponential decay. 
.

  



 128

0

10

20

30

40

50

60

70

80

0

0.2

0.4

0.6

0.8

1

1 10 100

Ph
as

e

M
odulation

Frequency (MHz)
 

Figure 5-5 continued. 
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Figure 5-6 Frequency-domain lifetime determinations of the 23Å interaction with 
tryptophan at different positions in the absence of ligand. Variation in phase and 
modulation with frequency are shown for each tryptophan-shift mutant. The phase and 
modulation are represented as follows: W311 ( , ), W311Y/ F76W ( , ), 
W311Y/Y106W ( , ), W311Y/F140W ( , ), W311Y/F188W ( , ), 
W311Y/F233W (×, +). The lines drawn represent the best fit of the data to a two 
components model: featuring a Lorentzian continuous distribution and one discrete 
exponential decay. 
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were fit best to a model providing for a Lorentzian and discrete exponential decays. The 

first component is represented by Lorentzian distribution, described by the center of the 

distribution, τ1, the width of the distribution, w1, and the fractional contribution this 

component makes to the total fluorescence, f1. The second component is a discrete 

exponential decay with fluorescence lifetime, τ2. The corresponding lifetimes obtained 

from this analysis are shown in Table 5-4. In all the ligation states, the majority of the 

fluorescence intensity arises from the longer component and ranges from 4.0 to 6.5 ns. In 

addition, the lifetime of the long component exhibits significant variation depending on 

the ligation states of the enzyme. The short lifetime component did not vary significantly 

in all samples. After repeating fluorescence lifetime data of all the mutant proteins, the 

averaged long component lifetime data are presented in Table 5-5 for each enzyme form. 

In addition, the lifetime variations mimic the commensurate changes in intrinsic 

fluorescence intensity that results from the binding of these ligands. As an example, 

F188W/W311Y, an increase in lifetime from 4.4 to 5.7 ns was observed with PEP 

bound; correspondingly, there is a 126% increase in fluorescence intensity. To get 

information of the rotational property of each tryptophan, the Perrin equation was used 

to relate the lifetime change and steady-state anisotropy change together. The rotational 

correlation time is obtained from the Perrin equation, which reflects the dynamic 

properties of protein in the vicinity of the tryptophan. Previous research indicates the 

global rotation does not change (Johnson and Reinhart, 1994 and 1997). A decrease in 

the rotational correlation time indicates a relative faster motion; increase in rotational 
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Table 5-4 Fluorescence lifetime responses to saturating concentration of ligands. 
  No 

ligand Fru-6-P PEP Fru-6-P 
+PEP 

ADP Fru-6-P 
+ADP 

W311 τ1 5.35 5.09 5.28 5.68 5.87 4.99 
 w1 0.989 1.088 0.978 1.015 5.716 6.295 
 f1 0.987 0.981 0.949 0.988 0.98 0.977 
 τ2 0 0.09 0.45 0 0.04 0 
 Χ2 1.9 4.7 1.6 6.2 3.8 4.0 

W76 τ1 4.76 4.78 4.79 4.62 4.73 4.36 
 w1 0.579 0.501 0.377 0.677 2.56 2.65 
 f1 0.995 0.987 0.993 0.976 0.825 0.852 
 τ2 0.12 0.31 0.08 0.28 0.31 0.28 
 Χ2 0.5 0.47 0.72 0.61 1.8 2.2 

W106 τ1 4.48 4.17 4.33 3.95 4.49 4.14 
 w1 1.468 1.743 1.702 1.754 4.097 4.44 
 f1 0.939 0.935 0.948 0.92 0.967 0.953 
 τ2 0.48 0.36 0.40 0.37 0 0.08 
 Χ2 4.8 8.0 5.9 8.5 5.4 6.7 

W140 τ1 4.57 4.56 4.51 4.36 4.50 4.51 
 w1 0.706 0.722 0.733 0.91 3.729 3.569 
 f1 0.973 0.97 0.979 0.955 0.999 1 
 τ2 0.57 0.39 0.52 0.45 0 0.98 
 Χ2 0.6 0.4 0.5 2.0 3.0 3.2 

W188 τ1 4.37 4.20 5.67 4.43 6.10 5.26 
 w1 1.849 1.962 1.558 2.074 10.558 10.8 
 f1 0.894 0.907 0.927 0.955 0.926 0.951 
 τ2 1.11 0.78 1.56 0.48 0.96 0.76 
 Χ2 2.4 2.2 1.2 3.6 11.7 13.3 

W233 τ1 6.45 6.44 6.27 6.09 6.50 5.83 
 w1 0.873 1.184 0.724 1.29 2.768 3.334 
 f1 0.979 0.956 0.981 0.948 0.968 0.962 
 τ2 0.29 0.39 0.07 0.38 0.23 0.25 
 Χ2 2.0 2.0 3.0 1.0 2.0 1.9 
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Table 5-5 Lifetime data and the rotational correlation time data calculated using Perrin 
equation. 

23A (W311) τ (ns) r θ (ns) ∆ θ (ns) 
No ligand 5.34±0.049 0.178±0.001 11.6±0.14  

Fru6-P 5.09±0.071 0.171±0.0009 9.8 ±0.22 -1.8±0.26 
PEP 5.28±0.09 0.180±0.001 11.9±0.21 0.3±0.26 

Fru-6-P+PEP 5.67±0.05 0.175±0.001 11.7±0.13 0.1±0.2 
ADP 5.87±0.09 0.190±0.002 15.9±0.31 4.3±0.34 

Fru-6-P+ADP 4.99±0.09 0.192±0.0008 14.1±0.27 2.5±0.3 
23A (W233) τ r θ ns ∆ θ 

No ligand 6.47±0.04 0.148±0.0004 8.6±0.06  
Fru-6-P 6.33±0.03 0.139±0.0008 7.3±0.07 -1.3±0.09 

PEP 6.06±0.07 0.156±0.001 9.1±0.14 0.5±0.15 
Fru-6-P+PEP 5.91±0.03 0.158±0.0008 9.2±0.07 0.6±0.09 

ADP 6.03±0.04 0.172±0.001 11.8±0.12 3.2±0.13 
Fru-6-P+ADP 5.61±0.03 0.175±0.0006 11.6±0.09 3.0±0.11 
23A (W140) τ r θ ns ∆ θ 

No ligand 4.57±0.02 0.216±0.0002 22.4±0.11  
Fru-6-P 4.56±0.02 0.216±0.001 22.4±0.17 0±0.2 

PEP 4.51±0.02 0.217±0.0009 22.7±0.17 0.3±0.2 
Fru-6-P+PEP 4.36±0.04 0.222±0.001 25.4±0.30 3.0±0.3 

ADP 4.50±0.05 0.219±0.001 24.0±0.33 1.6±0.35 
Fru-6-P+ADP 4.51±0.05 0.219±0.0008 24.1±0.36 1.7±0.38 
23A (W106) τ r θ ns ∆ θ 

No ligand 4.58±0.09 0.200±0.001 15.3±0.20  
Fru-6-P 4.27±0.07 0.198±0.002 13.6±0.21 -1.7±0.29 

PEP 4.39±0.09 0.200±0.0006 14.6±0.31 -0.7±0.37 
Fru6-P-+PEP 3.72±0.08 0.207±0.0003 14.5±0.32 -0.8±0.37 

ADP 4.58±0.04 0.192±0.001 12.9±0.15 -2.4±0.25 
Fru-6-P+ADP 3.81±0.04 0.200±0.001 12.7±0.19 -2.6±0.28 

23A (W76) τ r θ ns ∆ θ 
No ligand 4.76±0.02 0.206±0.0009 18.2±0.15  
Fru-6-P 4.78±0.02 0.204±0.0005 17.4±0.1 -0.8±0.18 

PEP 4.79±0.02 0.209±0.0008 19.6±0.16 1.4±0.22 
Fru-6-P+PEP 4.62±0.02 0.209±0.0004 18.9±0.11 0.7±0.19 

ADP 4.73±0.06 0.205±0.001 17.6±0.31 -0.6±0.34 
Fru-6-P+ADP 4.36±0.06 0.202±0.001 15.2±0.24 -3.0±0.28 
23A (W188) τ r θ ns ∆ θ 

No ligand 4.37±0.05 0.197±0.001 13.7±0.19  
Fru-6-P 4.20±0.05 0.199±0.001 13.7±0.19 0±0.27 

PEP 5.67±0.04 0.206±0.001 21.6±0.21 7.9±0.28 
Fru-6-P+PEP 4.43±0.06 0.207±0.001 17.3±0.25 3.6±0.31 

ADP 6.10±0.60 0.206±0.0005 23.3±2.28 9.6±2.29 
Fru-6-P+ADP 5.26±0.60 0.210±0.002 22.1±2.50 8.4±2.5 
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Figure 5-7 The comparisons in the rotational correlation time at each tryptophan mutants 
position in the 23Å interaction with different ligand binding. In the x-axis: (1).no ligand, 
(2). + 2mM Fru-6-P, (3). + 10 mM PEP, (4). + 10mM Fru-6-P+25 mM PEP, (5). + 2mM 
MgADP, (6). + 2 mM MgADP+ 2 mMFru-6-P. 
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Fru-6-P                                                        Fru-6-P 

    
ADP                                                             PEP  

  
Fru-6-P+ADP                                              Fru-6-P+PEP  

    
 
Figure 5-8 The changes in the rotational correlation time at each substituted tryptophan 
position in the 23Å interaction in EcPFK crystal structure. White: no change; green and 
light green: the rotational correlation time decreases above or below 1 ns, respectively; 
red and pink: the rotational correlation time increase above or below 2 ns, respectively. 
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correlation suggests a much slower motion. The plots of the changes in the rotational 

correlation time versus different ligation states are shown in Figure 5-7. In addition, the 

changes of the rotational correlation time for each tryptophan-shift mutant was shown in 

different colors in the crystal structure of EcPFK for each ligation state in Figure 5-8. 

Compared with free enzyme form, white indicates no change in lifetime; green and light 

green represent the rotational correlation time decrease either above or below 1 ns, 

respectively; red and pink indicate the rotational correlation time increase either above 

or below 2 ns, respectively. 

 Position 106 being relatively far away from the ligand binding sites in the 23Å 

interaction, the rotational correlation times are decreased in all the ligation states, which 

suggests a faster local motion around position 106 upon ligand binding. Position 76 is 

also far away from the ligand binding sites. The rotation correlation times are decreased 

in the presence of Fru-6-P, MgADP and Fru-6-P+MgADP, respectively. With either PEP 

or Fru-6-P+PEP bound, the rotational correlation times are increased. Although positions 

106 and 76 are both far away from the ligand binding sites, they are perturbed 

differently. Positions 311 and 233 are near to the allosteric and active site, respectively. 

There are local motions around these two positions with Fru-6-P bound. Position 188 is 

located in a more rigid region since rotational correlation times are increased in all 

ligation states. From the other view, in the Fru-6-P ligation state, every tryptophan-shift 

mutant position has some motion except positions 188 and 140. Positions 188 and 140 

have almost no change in any of the ligation states. This indicates the region close to 

positions 140 and 188 is probably more rigid. Interestingly, although ADP and PEP have 
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distinct effects on EcPFK, with either ADP bound or PEP bound individually, the 

structure gets more rigid for every position except position 106. 

 

Conclusions 

A tryptophan-shift mutagenesis strategy was used to place the intrinsic 

fluorescence probe in different positions in EcPFK protein. Coupled with the hybrid 

formation method, we successfully relocated each tryptophan in a different position in 

the 23Å heterotropic interaction. The fluorescence response of a specific tryptophan in 

the different places was monitored upon ligand binding in the 23Å heterotropic 

interaction.  

Steady-state fluorescence experiments gave us the first indication based on 

changes in anisotropy for each different ligation state. The changes in anisotropy from 

each tryptophan position are different upon ligand binding. The fluorescence lifetime for 

each tryptophan was measured to evaluate whether the anisotropy change is related to a 

change in the fluorescence lifetime for each tryptophan position except position 196, 

which is a silent position from the anisotropy data. Based on the lifetime data and 

steady-state anisotropy data, the Perrin equation was used to calculate the rotational 

correlation time, which can indicate the perturbation around the tryptophan. The changes 

in the rotational correlation time data are consistent with the changes in steady-state 

anisotropy data for each tryptophan position, except position 106 in one ligation state. 

The regions around position 106, 43Å away from the active site and 36Å away from the 

allosteric site in the 23Å interaction, are involved in the perturbation of tryptophan side-
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chain dynamics upon ligand binding. Position 76 is also far away from the ligand 

binding sites. The rotation correlation times are decreased or increased depending on the 

different ligation states. Thus, different positions at remote regions relative to the ligand 

binding sites are perturbed differently upon ligand binding. The regions around positions 

140 and 188 , 24Å and 34Å away from the active site, respectively, are relatively rigid in 

all ligation states compared with the unbound enzyme form. Positions 311 and 233 are 

near to the allosteric and the active site, respectively. There are changes in local motions 

around these two positions with Fru-6-P bound. From the other view, in Fru-6-P ligation 

state, every tryptophan-shift mutant position has some changes in motion except 

positions 188 and 140. Interestingly, although ADP and PEP have distinct functions for 

EcPFK, with either ADP bound or PEP bound individually, the structure gets more rigid 

for every position except position 106. The responses of the ternary complex with either 

Fru-6-P+PEP or Fru-6-P+MgADP exhibit patterns similar to the binary complexes but to 

different extents. To take the analysis on step further, differential polarized 

phase/modulation fluorometry can be used to discriminate between and quantify global 

rotation verse local rotation. 
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CHAPTER VI 

CONCLUSIONS 

Previous research has extensively investigated the allosteric regulation of E. coli 

PFK. In our lab, we were able to isolate each of the four heterotropic interactions using 

the hybrid strategy and to quantify the contribution from each heterotropic interaction to 

the total heterotropic effect. In the current study, we focus on understanding the pathway 

or residues that are important for the allosteric communication.  

In Chapter III, we improved the yield of the methodology for producing the 1:3 

hybrids that contains a specific heterotropic interaction by developing an in vivo hybrid 

formation method. Previously in our lab, hybrid tetramers of PFK were successfully 

created in vitro. Among the five different hybrid species possible, the 1:3 hybrid, which 

has one native active site and one native allosteric site, presents a specific heterotropic 

interaction. However, the in vitro method is plagued with low yield and can be time 

consuming. In addition, KSCN, a mild chaotropic reagent, is used in the process to 

dissociate PFK tetramers. Thus, the hybrid formation is not a natural process. In the 

current study, we co-expressed the two parent proteins of the hybrid in vivo so that the 

chemical treatment is unnecessary. It is a natural process and cuts the hybrid production 

time in half. The efficiency of making hybrid proteins is also improved using the in vivo 

method as can be seen by the increased yield for the 1:3 hybrid. To improve the 1:3 

hybrid yield for the 23Å heterotropic interaction even more, different charge-tag and 

allosteric site mutations were used without changing the kinetic characteristics of the 

protein K2E/3E were changed to K90E/91E and H215E was used instead of K213E. 
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 In Chapter IV, we addressed the questions of which residues in EcPFK are 

important for allosteric signal transmission and whether the disruption in the total 

allosteric response can be differentially manifested in each heterotropic interaction. Two 

basic methods were used to pursue the first question. The first was based on sequence 

alignment between EcPFK and LbPFK. LbPFK is a weakly regulated allosteric protein. 

It shows no MgADP activation and very weak PEP inhibition. The idea is to make 

specific individual substitutions in EcPFK to the non-identical residues in LbPFK and 

evaluate the changes in the allosteric response. The second method used to address this 

question is to propose that residues that lie directly between the active site and the 

allosteric site play a role in the allosteric communication. The crystal structure of EcPFK 

was used to identify possible residues important for the signal transmission. Specific 

residues that lie between the active site and the allosteric site were mutated to alanine 

and the influence on coupling between Fru-6-P and effectors was assessed.  

Of the six mutant proteins examined, G184C, D59A and S157A showed a 

reduction in coupling free energy for both PEP inhibition and MgADP activation. The 

question then becomes, how is the observed reduction in the allosteric response 

manifested in each of the four heterotropic interactions. G184C, D59A and S157A were 

introduced into the each of the four 1:3 hybrids that present each single heterotropic 

interaction, respectively. Each mutation has its own diminished pattern for both 

activation and inhibition in coupling free energy terms. We determined that G184C 

diminishes PEP inhibition by perturbing the 23Å coupling, whereas the MgADP 

activation is diminished through a disruption in the 33Å interaction. The position of 
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G184 in the crystal structure lies directly in between the active site and the allosteric site 

in the 33Å interaction. D59A influences PEP inhibition from the 23Å interaction and 

MgADP activation from the 30Å interaction. The position of D59 lies in the 30Å 

interaction. S157A only affects MgADP activation through both the 23Å and 33Å 

interactions. The influence on PEP inhibition does not result from a disruption of any of 

the four heterotropic interactions. The position of S157 is in the 23Å interaction. The 

relative positions of the three residues in EcPFK are related to their influence on 

MgADP activation. It seems that the MgADP activation traverses the protein through a 

likely direct pathway. However, more experiments are needed to verify this conclusion. 

Moreover, the results suggest that the structural basis for PEP inhibition differs from 

MgADP activation. Most significantly, because the sum of each heterotropic interaction 

with a specific mutation in one subunit equals the total heterotropic interaction with a 

specific mutation in all the four subunits, the heterotropic allosteric signal is likely 

transmitted within a single subunit.  

 In Chapter V, based on the conclusion that the heterotropic allosteric information 

is transmitted within a single subunit, the dynamic response of the 23Å heterotropic 

interaction in EcPFK with respect to each ligand binding event was investigated. Taking 

advantage of the hybrid strategy and tryptophan-shift mutagenesis, we measured the 

anisotropy change in the 23Å interaction in each ligation state with tryptophan at 

different positions individually. 

The fluorescence responses from each tryptophan position are different upon 

ligand binding from steady-state anisotropy measurement that gives us the first 
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impression of motion around each tryptophan. To further study the dynamic properties 

of EcPFK, the fluorescence lifetime was measured in each case in order to evaluate 

whether the anisotropy change is related to a change in the fluorescence lifetime. Based 

on the lifetime data and steady-state anisotropy data, the Perrin equation is used to 

calculate the rotational correlation time, which can indicate the perturbation around the 

tryptophan side chain.  

The changes in rotational correlation time data were consistent with the changes 

in steady-state anisotropy data for each tryptophan position, except position 106 in one 

ligation state. Despite position 106 being relatively far away from the active and the 

allosteric sites in the 23Å interaction, the rotational correlation time decreased in all the 

ligation states, which suggests that a relatively faster local motion occurs upon ligand 

binding. Position 76 is also far away from the ligand binding sites. The rotation 

correlation time decreased in the presence of Fru-6-P, MgADP and Fru-6-P+MgADP, 

respectively. However, with either PEP or Fru-6-P+PEP bound, the rotational correlation 

time increased. Although position 106 and 76 are all far away from the ligand binding 

sites, they are perturbed differently. Position 311 and 233 are near to the allosteric site 

and the active site, respectively. There are local motion changes around these two 

positions with Fru-6-P bound. Position 188 is located at a more rigid region since the 

rotational correlation time is increased in all ligation states. From the other view, in Fru-

6-P ligation state, every tryptophan-shift mutant position has some changes in motion 

except position 188 and 140. Interestingly, although ADP and PEP have distinct 

functions in regulating EcPFK, with either ADP bound or PEP bound individually, the 
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structure gets more rigid for every position except position 106. To take the analysis on 

step further, differential polarized phase/modulation fluorometry can be used to 

discriminate between and quantify global rotation verse local rotation. 

In summary, we have successfully improved the yield of the 1:3 hybrid that is 

required for studying the allosteric regulation in EcPFK. In addition, we have identified 

three residues in EcPFK that are important in transmitting allosteric information both for 

PEP inhibition and MgADP activation. Each residue affects each heterotropic interaction 

differently. More importantly, the heterotropic allosteric signal transmission is realized 

in one subunit. Although the allosteric pathway of EcPFK is difficult to define, we may 

follow the route to go further. Meanwhile, the same idea can be applied to BsPFK to 

study its allosteric communication. Moreover, the 23Å allosteric interaction involves the 

perturbation of tryptophan side-chain dynamics both near and quite far away from the 

respective ligand binding sites. Thus, using fluorescence spectroscopy to study protein 

dynamics coupled with placing the tryptophan fluorescence probe at different positions 

in the protein may be used as an alternative tool to map the dynamic properties of other 

proteins as well. 
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APPENDIX 

Introduction 

In Chapter V, the dynamic perturbations in the 23Å heterotropic interaction upon 

ligand binding were monitored by measuring the tryptophan fluorescence changes at 

different positions. Using the idea, the other three heterotropic interactions, 30Å, 33Å, 

and 45Å were studied as well. Here, only the perturbations at the native tryptophan 

position 311 were shown by measuring steady-state anisotropy. The results suggest that 

the response of different ligands binding for the four heterotropic interactions are distinct.  

 

Methods and Materials 

 Materials   All chemical reagents used for protein purification, enzyme kinetic 

assay and fluorescence experiments were the same as chapter II. The following 

oligonucleotides were ordered from Integrated DNA Technologies (IDT) and used for 

mutagenesis. 

W311N, 5'- CGC GCA GTC CAG ATT GTC GCC TTT GAA CGG ACG -3' 

W311T, 5'- CGC GCA GTC CAG CGT GTC GCC TTT GAA CGG ACG -3' 

W311M, 5'- CGC GCA GTC CAG CAT GTC GCC TTT GAA CGG ACG -3' 

W311I, 5'- CGC GCA GTC CAG GAT GTC GCC TTT GAA CGG ACG -3' 

W311L, 5'- CGC GCA GTC CAG CAA GTC GCC TTT GAA CGG ACG -3' 
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Results 

Hybrids formation for each heterotropic interaction with tryptophan at position 311 

The 1:3 hybrid with tryptophan at position 311 in the other three heterotropic 

interaction were formed individually. The 1:3 hybrid represents the 33Å interactions 

were formed successfully with W311Y mutation. However, the 1:3 hybrid of the 30Å 

interaction could not be formed and the 1:3 hybrid of 45Å interaction was not stable with 

the W311Y mutation. Several other mutations were made at 311 position, W311L, 

W311N, W311T and W311M. Eventually, with the W311M mutation, the 30Å 

interaction and the 45Å interaction were able to form all the hybrid species with a stable 

1:3 hybrid. As a result, the 23Å and the 33Å interactions had W311Y mutation; the 30Å 

and the 45Å interactions had W311M mutation.  

Steady-state anisotropy 

For each heterotropic interaction, the anisotropy varied differently at W311 

position responding to different ligation states. This implies that the environment around 

W311 for each heterotropic interaction is affected distinctly with different ligand binding. 

Taking advantage of the hybrid strategy, we measured the anisotropy changes in 

each of the four heterotropic interactions in different ligation states corresponding the 

native tryptophan 311 position. The data showed that anisotropy changes at W311 are 

distinct in each heterotropic interaction. Compared with free enzyme, when Fru-6-P 

bound, the anisotropy decreased in all the four heterotropic interaction. With PEP bound,  
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the 30Å and the 33Å heterotropic interactions showed decreased anisotropy, however 

the 23Å and the 45Å heterotropic interaction had no change. The anisotropy of the 

ternary complex Fru-6-P--PFK--PEP was decreased in all the four heterotropic 

interactions. With MgADP bound, three of the four heterotropic interaction increased the 

anisotropy except the 45 Å interaction. With both MgADP and Fru-6-P bound, the 

anisotropy increased in the 23 Å and the 33 Å interaction, but decreased in the 30 Å and 

the 45 Å interaction. The anisotropy decreases may indicate more dynamic around the 

tryptophan at position 311. All of the above data indicated that the changes of steady-

state anisotropy in the 23 Å and the 33 Å interactions have similar pattern in the Fru-6-P, 

PEP and Fru-6-P-PEP ligation state. The 23 Å and the 45 Å interactions have a similar 

pattern in the Fru-6-P, MgADP and Fru-6-P MgADP ligation state. 

The data showed that anisotropy changes at W311 were distinct in each 

heterotropic interaction. The data indicated that the changes in steady-state anisotropy in 

the 23Å and the 33Å interactions had a similar pattern with Fru-6-P, PEP and both Fru-

6-P and PEP bound. The 23Å and the 45Å interactions had a similar pattern with Fru-6-

P, MgADP and both Fru-6-P and MgADP bound. Most importantly, the anisotropy 

decreases may be indication of the motion around W311. However, we need more 

evidence from lifetime measurements to support this conclusion. 
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Table A-1 Steady-state intensity and anisotropy for the each of the four heterotropic 
interaction at W311 position. 

23Å (W311Y) 1: 3 Hybrid 33Å (W311Y) 1: 3 Hybrid  
Intensity Anisotropy Intensity Anisotropy 

No ligand  0.181±0.001  0.190±0.001 
2 mM F6P -18 % 0.171±0.0009 -17-21% 0.177±0.0007
10mM PEP -6% -12% 0.180±0.001 +3+9% 0.180±0.0002
10mM F6P+ 
25mM PEP 

-23% 0.175±0.001 
 

-15% 0.180±0.001 

2mM 
MgADP 

-13%-15% 0.190±0.002 -3% 0.202±0.001 

2mM 
MgADP 

+ 2mM F6P 

-13%-14% 0.192±0.001 -22% 0.198±0.002 

30Å (W311M) 1: 3 Hybrid 45Å (W311M) 1: 3 Hybrid  
Intensity Anisotropy Intensity Anisotropy 

No ligand  0.168±0.0007  0.159±0.0001
2 mM F6P -14% 0.153±0.001 -11% 0.149±0.0002
10mM PEP -2% 0.164±0.001 -1% 0.159±0.001 
10mM F6P+ 
25mM PEP 

-26%-28% 0.154±0.001 -22-24% 0.149±0.0004

2mM 
MgADP 

+2% 0.173±0.0006 NC 0.155±0.001 

2mM 
MgADP 

+ 2mM F6P 

-23% 0.161±0.0009 -35% 0.153±0.0006
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