INVESTIGATION OF THE DEFORMED FERMI SURFACES MECHANISM
FOR PAIRING OF TWO SPECIES OF FERMIONS
WITH MISMATCHED FERMI SURFACES

A Thesis
by
JIANXU LU

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2007

Major Subject: Physics



INVESTIGATION OF THE DEFORMED FERMI SURFACES MECHANISM
FOR PAIRING OF TWO SPECIES OF FERMIONS
WITH MISMATCHED FERMI SURFACES

A Thesis
by
JIANXU LU

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:
Chair of Committee, Chia-Ren Hu

Committee Members, Joseph H. Ross, Jr.
Stephen A. Fulling

Head of Department, Edward S. Fry

December 2007

Major Subject: Physics



1ii

ABSTRACT

Investigation of the Deformed Fermi Surfaces
for Pairing of Two Species of Fermions
with Mismatched Fermi Surfaces. (December 2007)
Jianxu Lu, B.S., University of Science and Technology of China

Chair of Advisory Committee: Dr. Chia-ren Hu

Variational method is used to investigate, at zero temperature, the deformed-
Fermi-surfaces mechanism for solving the problem of superconducting pairing of two
species of fermions (i.e., spin-up and -down) of mismatched Fermi surfaces due to
the existence of a uniform exchange or Zeeman field. After analyzing the depairing
regions in the whole three-dimensional parameter space, we obtain a trial ground-
state wave-function as a function of the three variational parameters, one of which is
the gap function. Then within the frame work of the weak-coupling BCS theory, the
expectation value of the Hamiltonian of a conductor under an exchange or Zeeman
field is derived, from which a gap equation is derived by differentiation. The influence
of deformed Fermi surfaces on the chemical potential is then calculated. Computer
programing is finally used to solve the gap equation, and find the minimum-energy
state with respect to the remaining two variational parameters (0p and z). These
two parameters are better than the original parameters used in the trial Hamiltonian
when compared with the FF state. And we also found if we keep the total number of

electrons fixed, the system prefers an unchanged chemical potential and the ground



v

state energy of the deformed-Fermi-surfaces state, which is found to be an angle
dependent case of Sarma’s solution III, is no better than that of the unpolarized

BCS state.
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CHAPTER I

INTRODUCTION
A. The Structure of This Thesis

In chapter I, we will go over some important results of the BCS theory, Sarma’s paper
and FF(Fulde and Ferrell) state, and give our reasons why we need to investigate
the DFS(Deformed Fermi Surface) states for superconductor. In chapter II, we will
find depairing(or blocking) regions of the the DFS state. In chapter III, we use a
trial ground state wave function to investigate the chemical potential and minimize
the original Hamiltonian of S-wave superconductor. And some computer programs

used in Chapter III are attached to the appendix. Chapter IV is the conclusion.

B. BCS Theory

In 1957, John Bardeen, Leon N. Cooper, and J. Robert Schrieffer [1], published the
now famous BCS theory, and Found a electron with momentum hk and spin T and
a electron with momentum —Ak and spin | near their common Fermi surfaces to
pair up into what is now known as a Cooper pair. When their energies, relative
to the Fermi energy, are smaller than a cut-off energy hwp, a process of virtual
exchanges of phonons between them will lead to an attractive interaction. Within
weak-coupling limits, i.e., N(0)V << 1 where N(0) is the electron density of states

on the Fermi surface, and V' > 0 is an effective coupling constant representing the

The journal model is Physical Review A



phonon-mediated attractive electron-electron interaction, this interaction results in

a many-body gap. At zero temperature, we have the gap:

AO :2theXp{—W}, (].].)

and the energy relative to the normal-state energy:
1 2
Epecs = —§N(0)A0. (1.2)

(In this model, V' is assumed to be a constant within +/wp of the Fermi energy due
to the smallness of the ratio of hwp to the Fermi energy. Here wp is assumed to be
just the theoretical cut-off frequency in the Debye model of phonons in a conductor,
which is well known as the Debye frequency. Also, at low temperatures other than
zero, the BCS theory successfully explained the phenomenon of superconductivity
observed ubiquitously in many metals and alloys and has also been widely used to

explain all kinds of phenomena related to superconductivity.

C. Clogston-Chandrasekhar Limit

The influence exerted by an exchange field on a superconductor is our concern. In
1962, B. S. Chanderasekhar [2] and A. M. Clogston [3] predicted a natural upper
limit to the critical field of a superconductor, which is usually called the Clogston-
Chandrasekhar limit. Clogston argued in his paper that even if the superconducting
BCS state could be realized without the orbital magnetic screening known as the
Meissner effect, and only the Zeeman energy associated with the spins is considered,

a critical field should still exist for the system to become normal. At this Clogston-



Chandrasekhar limit field Hy, the free energy of the superconducting state, F, should
be %X,,Hg below the zero-field normal-state free-energy Fy, where x, is the Pauli
susceptibility, because electrons in the normal state in an external magnetic field
shows Pauli paramagnetism, with corresponding lowering of its free energy, whereas
X, is reduced to zero in the superconducting state, due to the opening of a gap at
the Fermi surface. On the other hand, a simple argument based on Fermi statistics

gives the Pauli susceptibility x, = 2N (0)u%, where pp is the Bohr magneton. Thus
Fy — N(O) HE = Fs. (13)

But from the BCS theory, we have:

1

Fy — 5N(O)Ag =Fy. (1.4)
Thus he obtained:
1
Hy=—Ay. 1.5
HBi1g \/5 0 ( )

In 1963, within the frame work of the BCS Theory, G. Sarma [4] discussed the
effects of a uniform exchange field acting on the conduction electrons in a super-
conductor and verified this limit. His theory begins with adding the Zeeman energy
to the reduced Hamiltonian of the BCS theory, which includes interaction matrix

elements between pairs of electrons of zero total momentum:

_ T T Tt
H = (e +h)ckeg + D (= el ge g =3 Vepeh,e g e mer
A k

k ik
21.2 . - .
where €, = % — 1/ is the energy of an electron of momentum Ak measured relative

to the chemical potential y’. This Hamiltonian reduces to the corresponding one in



the BCS theory if h = ugH is set to zero.

As in the BCS theory, which is for an s-wave superconductor, Sarma assumed:

Vit |€k| < hu)D,
Viw = (1.6)

0 otherwise.

By using mean-field approximation, the Bogliubov-Valatin transformation, and self-
consistency condition, he then finds the finite-temperature gap equation and free

energy. At zero temperature three solutions are obtained:

Solution I is the Pauli paramagnetism of the normal state with the gap equal to
0, and the energy equal to:
E1:Ze§€— Z|€;€|—Zh. (1.7)
i lex|>h ler|<h
Solution II is an unpolarized BCS ground state: the energy of this state is h
independent, and is just Fpcs.
Solution IIT is a superconducting state with a depairing region [—\/m <
e(k) < /h* — A2], Where As is just A obtained in this solution (and Fj its energy

at T'=0), and its gap equation and energy are found to be:

1 _/ﬁ“D de (1.8)
NOW ) wmaz e+ A ’

By=) e~ >  h— > 6;3+A§+A7§. (1.9)

k el |<vVRZ—AZ| e} |>VhZ—A2

We can easily derive the normal-state energy from any one of the three energy



expressions by setting the gap and h equal to zero, which gives:

En=) 6= lel (1.10)
k k

Then these gaps and energy differences E,, — 1, E, — Egcs, and E, — F3 can be
plotted versus the magnetic field h:

From fig 1, we can see that Az and Ej3 exist only when h € [%, Ag]. And from
fig 2, we can see that Ej3 is not better than Egcg or E7, the energy of the normal state
with Pauli paramagnetism. So solution III, a superconducting state with depairing
region, will never occur in nature. Thus according to the Sarma theory, when the
strength of the exchange field is below the Clogston-Chandrasekhar limit, we always
have the unpolarized BCS state; and above this limit, the normal state with Pauli

paramagnetism will prevail.

D. The FFLO State

Soon after Sarma’s paper, Fulde and Ferrell (FF) [5] in the US, and Larkin and
Ovchinnikov (LO) [6] in the USSR, proposed independently and contemporarily two
slightly different versions of a new superconducting state. These two versions of the
new superconducting state are later known collectively as the FFLO state (or LOFF)
state. In FF’s paper, they showed that the transition from the BCS state to the FF
state occurs at a field strength less than the Clogston-Chandrasekhar limit. (Cui [7]

later showed that it is at A ~ 0.704A for the s-wave case.)
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The reduced Hamiltonian is now taken to be:
_ T T T T
H = Z(E;C + h)CkTCkT + Z(E;C o h)c—klc_kl o Z Vk’k’CEH-qTC—E/-i-(jlc—/zl-i-é'cl_f'T-i-q ’
Bl k| kg
which emphasizes interaction of pairs of electrons of combined momentum 2A¢g # 0.

Under mean-field approximation and the Bogoliuobv-Valatin transformation:

Ck+q1 - U * Vi (075} (1 11)
it can be written as:
Tur = Z(Ek_,_OéLTOékT + Ek—ﬁlil/@kl) + const. , (1.12)
k
where
w = L+ Sy (1.13)
2 B ’
Lo ay i
o = [=(1 = 2k .
k 9 Ek ’
Epp = E,+€?, (1.15)
By =\/e?? + A2, (1.16)
27.2 2.2
(s) _ 1 . h ]{Z h q
€ = §(€;c+qT + € pg) = o '+ o (1.17)
o 1 h’kp
e :§(€;€+QT_€/—I€+QL> ~— qcosf, (1.18)
and
Bg=— Z Viar (€ k11 1) - (1.19)
k

Here 0 is the angle between k and q. Let QQ = % = hvpq, the depairing regions



are determined by Ej, < 0, which gives:

h—A
—1<cosb < 1.
B TQ

—\/(Qcose—h)2—A2§eZ§ \/(Qcose—h)2—Ag, (1.20)
and Ejy_ < 0, which gives:

h+ A,
Q

<cosf <1,

—\/<Qcose—h)2—Agge;g \/(Qcose—h)2—Ag. (1.21)

From equation (Eq. (1.20)) and (Eq. (1.20)), we can find that the depairing regions
are along +¢, and Takada and Izuyama [8] have given rough sketches of them. When
¢ vanishes, this solution will reduce to Sarma’s solution III. Its gap equation for a

three-dimensional system has been given by Shimahara [9]:

Ay 1 [ |Qcos€—h|+\/(Qcose—h)2—A2
ln—:—/ In

A, 2 sy A, dcosf
1 2% |Qcos® —h|+ \/(Q cosf — h)? — A2
—|—§/ In A dcos@. (1.22)
-1 q

so far we have reviewed the FF state only. the LO state is a bit more complicated
in that it allows pairs of both +2A¢ momenta, and possibly their higher harmonics,
leading to a real periodic gap-function order parameter that is not limited to being
sinusoidal, and no net supercurrent in the system. In summary, although there are
depairing regions, all different versions of the FFLO state have spatially varying gap

function in its phase and/or magnitude, electron pairs of non-zero momentum(a),



and a free energy lower than those of the paramagnetic (i.e., polarized) normal state
and the unpolarized BCS state around the Clogston-Chandrasekhar limit.

This is a new state that can exist between the BCS state and the normal state. A
number of theorists have since worked on this FFLO state and recent experiments on
quasi two dimensional superconductors such as CeColns have shown some signatures
of this state [10, 11, 12, 13, 14, 15, 16], but up to the present time, it is not yet
clear whether this state has been observed, or what has been observed between the
superconducting state and the normal state at low temperatures and high magnetic

fields might be some other yet unknown state.

E. Why Deformed Fermi Surfaces?

The success of the FFLO state is due to the electron pairs’ momentum 2¢, or, in
other words, due to the fact that the pairing is now between a (k + ¢, 1) electron
and a (—E +q, |) electron, which is like first shifting both Fermi surfaces by —¢, and
then do the usual k T and —k | pairing. However, for any fixed ¢, this scheme can
put both electrons on their respective Fermi surfaces only for some parts of their
Fermi surfaces corresponding to k away from the directions of +¢. A close look at
the depairing region and gap equation of Sarma’s solution III and Takada’s result
shows that the existence of a finite ¢’ decreases the size of the depairing region.
Recently, as an alternative approach to attack this problem, the Deformed-
Fermi-Surface (DFS) pairing scheme were proposed by H. Miither and A. Sedrakian [17,
18], who are actually working in nuclear physics. This new state seems to be able to

compete with the FFLO state. The essential idea of this scheme is to deform both
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Fermi surfaces of spin-up and spin-down electrons, as shown in fig. 3, to make parts
of these two Fermi surfaces to at least nearly match each other, so that the usual
kind of Cooper pairs can be formed in these regions to lower the total free energy
of the system. The region that can pair in this DFS case, as shown in fig. 4 seems
to be larger than that of the FFLO state. If the DFS pairing scheme can really im-
prove the free energy, then It will be another candidate state for interpreting those
new phenomena observed in the experiments. And they have claimed the DFS state
"has lower free energy than the normal, BCS, and LOFF states in a wider range of
asymmetries,
Miither and Sedrakian found that the DFS pairing state has favorable energy
in the parameter region defined by 0.03< a <0.06 and 0.12< de <.16”, where
a=Pr—"P2 (1.23)
p1+ p2

with p; and py the densities of two species of particles, and

€1 — €

e =
€ 5

(1.24)

with €; and €5 the ratios of the deformation energies to the Fermi energies respectively,
assuming that the deformations all have a cos? § dependence with # the polar angle
of a point on a three-dimensional Fermi surface. In a conductor, p; and ps can be
expressed in numbers of two spin species of electrons, and p; — ps in the difference

of numbers of two spin species of electrons. We thus should have:

N(O
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and

N(0) -
p1+ pa ~ %EFW (1.26)

where € is the volume, and Fr the mean Fermi energy of the electrons. However, the
Zeeman energy for practically applicable magnetic fields is very small when compared
with hwp, let alone the Fermi energy or the chemical potential in a conductor. Thus
0.03 as the lower limit of o appears to be a impractical requirement. Also, a ratio
of e > 0.1 will make the deformation energy lager than hwp, which also seems to
be impractically large. In this work we wish to investigate whether the DFS pairing
state is indeed a competitive state or not in a conductor with mismatched Fermi

surfaces.
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CHAPTER II

THE TRIAL HAMILTONIAN AND DEPAIRING REGIONS

A. Trial Hamiltonian

We start with the trial Hamiltonian defined by:

h2k?
Hirial = Z[— — p1(1 — €; cos® 9)]CLTCM

— " 2m
k1
h?k?
+> o p2(1 — €5 cos® 9)]CT_klc_kl - Z Vk,k/CL/TCT_k/lC—kLCkT(;Q-1)
—k| E.kr

where pp and po are trial Fermi energies for electrons of spin-up and spin-down,
respectively; €; and €, are deformation coefficients; ¢ is the angle between k and the
axis of symmetry breaking, coupling cosntant Vj i, defined by Eq. 1.6 for S-wave and

the mean chemical potential p is given by:

p=tilte (2:2)
We also define
h2k2,
= 2.3
le ’ ( )
opu = M ; Xy (2.4)

By using self-consistent mean field theory, the fluctuations of c_j cxy and c,Tc,TcT_k,l

are assume to be very small when compared with their expectation values. 77,4



can thus be written as:

h2k? ) ;
Hirial Z[le — p1(1 — € cos 9)]CkTCkT

k1

14

h2k?
+3 [5— — a1 = eacos® O)lcl , jepy =D Viwdlehyel ) eonion

— 21y
k]

= Viwehacl i, (eoricin)
K,k

+ > Viwdelpel g ) eorien)
K.k

To simplify calculation, let

Ay = Z Vi (Cok Crr) s
k

h2k?

.k

ap = —— — pi1(1 — € cos? ),

2m1
n2k?

b, =
k 2m2

c= (1l — e cosh),

d = pip(1 — €3 cos? ),

_ H1€1 T+ o€ .
2

M€ — o€

=

al) =«

Then we obtain:

A~ Z akcLTckT + Z bkCT_le—kl
v —k

=3 Ackicl =Y Acsien + > Viwlehiel ) (erier) -

k k ki

— pa(1 — €5 cos? ),

0s2 6,

(2.5)

(2.13)



B. Bogoliubov-Valatin Transformation

For an s-wave superconductor, we have:

15

ZakaTCkT + Z bkC ke C—kl — Z ACkTC k| Z Ac_ k1Ck1 + A_

—k

ag AN Ck1 A2
:Z(CLT C—kl> i +Zbk+7
E

—A = Clg _E]

The eigenvalues of the above matrices are

—-b b
Akl k2 = GOk 4 \/(%Tﬂ)z + A2,

2
and
1 arp+bg
up = - |1+ 2
2 /(ak;rbk)2 4+ A2
1 ak—i-bk
v,% = —11-— 2
2 /(ak;rbk)2 + A2
w (ak-zi-bk)2_|_A2 + ak;bk

A
Vg / ak+bk 2+A2 ak by A

as
Assuming that

Qy

( ai — A1 —-A a

—b — Ai a2

(2.15)

(2.16)

(2.17)

(2.18)

are the eigenvectors, then we must have:

(2.19)



and
ap — Ag2 -A as
=0.
—A =bp = M2 ay
Then we find
a A U
02 — (@) A et U
as o A B %
! (mthey2 4 A2 4 mche Uk ’

From the above equations, we can see the transformation matrix should be:

Up v
T=| ° |, and TIT=1,
—V U
Tt ar, —A T — it Aol A2V B A1 O

—A = —Ak1Uk AU 0 g2

16

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)
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so the Hamiltonian is reduced to:

ag —A Ck A2
A T T
# = X (dy e )1 o | e
k A b C_g| —k|
A1 O Cht A2
_ T f——
- Y (d e )T (A S S
i 0 Ao cly R
A1 0 ay, A?
= (ol a) DS
= 0 A\ ﬁT - V
k k2 k k|
A2
= Z ()\klozkozk + )\kgﬂklﬂkl) -+ Z bk —+ 7 y (225)
k —K|
where
[09% - U —Ur Ck1 (2 26)
ﬁ]i Vg Uk CT_kl
which is well know as Bogliubov-Valatin Transformation.
C. Depairing Regions
Next, we analyze the depairing regions of this trial Hamiltonian. Let
—b b
By =M = L 5 'y \/(%Tﬂ)z + A2, (2.27)
—b b
B = Ao = ——= 5 L+ \/(%TH)2 + A%, (2.28)

For the ground state, when Fj; < 0, the number operator oz,iozk will favor 1

rather than 0, which makes the Hamiltonian looking like it is unreasonable because
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no quasiparticles should be excited at the ground state. We therefore should use

(1 — axal) instead of afay. Thus we can easily find where depairing occurs. (Some

author would rather redefine the annihilation and creation operators [7].) So, we

have three cases here:

Case 1:E}; < 0 while Eis > 0

2
A = 3 (~Enowal + Busls) + ;;Zlbk + g( B — Eu) + AV ;

k
(2.29)

Case 2:E};; > 0 while Eio <0

2

H' = Z (Ema;tak - Ek2ﬁkﬁ]i> + Z bi + AV ;

Kk -k
Case3:Ejq k2 > 0

2
H' = Z (Ekla;iak + Ek2/611/6k) + Z by — Z Eio + AV :
k| k

k

Let’s first consider the case 1, Ey; < 0 while Ej, > 0:

— b b

ot b Wm)zﬂbo_
2 2

From _“kTH”“ > 0, we find:

)
cos? 0 < 7“ , (2.30)



whereas from =% > /(@402 4 A2 we find:

h2k? h?k?

19

— A?<0. 2.31
(G — (5 —d)+ A <0 (231)
This can be solved to obtain:
h2k?
—a(f) —\/(6p — zcos?0)2 — A2 < — < —a(f) + /(0 — zcos? )2 — A2
(2.32)
or
e. <ep<ey, (2.33)
where
ex = —a(f) £ /(O — zcos?6)2 — A2, (2.34)
However,e.. exists only when
(6 — zcos?0)> — A? > 0. (2.35)
That is to say;
A
0<cos’f < a o (2.36)
or
o+ A
PO o2f< 1. (2.37)
z

So case 1 exists in the following region:

e~ <€ <€,

(2.38)
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and
o — A

z

0<cos?0 <

(2.39)

let’s call this depairing region Dj, or region D;, and D;g.
The same analysis applies to case 2: FEj; > 0 while Es < 0, we find it exists

only when

e~ < e < €4, (2-4(])

and
o+ A

<cos?f<1. (2.41)
Let’s call this depairing region Dy, or region Dsy, and Dag.

Here, Some one might ask what happens if @ < cos?h < 67“ ande_ < e <€y
A second thought tells us that e+ do not exist in this region, i.e. we have Ej; 42 > 0

in this region.

Finally for case 3 Ej1 2 > 0, we have

ak—bk ak—bk \/Clk+bk
. _ < 2 2
when 5 < 0; 5 = ( 5 )2+ A
when “’“gb’“ >0 2 b \/(C”“TMWMA?, (2.42)

which show us a region complementary to D, + Ds, let’s call this region D, or region

D, and Dg.
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In conclusion, in region D, we have no depairing and the Hamiltonian is:

2

A = Z <Ek10é;20ék + Ekgﬁlﬁk) + Z(bk — Ekg) + A (243)

q v

k k
In region D;, we have some depairing and the Hamiltonian is better written as:
T i A?
/
I = Z <—Ek1akozk + Ekgﬂkﬂk> + Z ap + 7 ’ (244)
i

—

k
In region Dy, we have some depairing and the Hamiltonian is better written as:
t t A
/
jf = Z (Eklozkozk - Ekgﬂkﬂk) + Z: bk + 7 . (245)
k

-

k

Then the ground state will be described by:

A2
Eguia = Y (e — Er2) + Y _ar+ Y bp+ 7 (2.46)
Dy

D,k & Dok
which can be reduced to Sarma’s solution III in the absence of deformations of the
Fermi surfaces. And for the calculation done later, we write the sum and integral

over region D;, and Dyg as Dy and D, for simplicity.
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CHAPTER III

TRIAL WAVE FUNCTION AND VARIATIONAL METHOD
A. The Trial Wave Function and the Shift of the Chemical Potential

From the results of the depairing regions, we obtained the following ground state

wave function:

|0 = H(uk+vkcch Kl HCkT Hc ki lvac) (3.1)

Dk Dk Dok
where Dy and D5 are the two depairing regions, and D, the paired region. This wave
function will be used to evaluate the expectation value of the original Hamiltonian

for minimization:
h2k?
H = Z[% - M&]CLTCH
k2 P
+ Z o~ Mo —klc kL~ Z Vi hrCr €y C—kLCRT 5 (32)
i,k

where p) and p are Fermi energies of the electrons of spin-up and -down with Fermi

momenta Eﬂ and l% respectively. And we define:

, (3.3)
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h2k
= . 3.4
= (3.4)

The trial wave function represents a new state with two deformed Fermi surfaces.
During the process of deformation, we should have the total number of electrons to
be a constant, i.e. (N)sc = (N)Normal, Where SC stands for the new superconducting
state, and the subscript “Normal”, the normal state.

By using the number operator, we obtain:

(Nyse = (Ulch e + ey ey W) (3.5)
= Y 23+ > 1+ 1, (3.6)
D,k Dy ,k Dok

while the particle number for the related normal state is :

(N) Normat = 0Ky — k) + > 0(ky — k). (3.7)
k1

—k|
Since the particles far below the Fermi surface will not be affected when this
metal has a phase transition, we can use the weak coupling approximation when
calculating the difference between (N)gc and (N)y, in other words, the particles
which are located far below the Fermi surface will be canceled by this method. Then
we transform the sum to an integral under the weak coupling approximation as
following (for a three dimensional isotropic system):

Vkem [  B2K?
- d dcos
2 erh2 ) “om / €08

= @/dek/dcosﬁ.

—

k

(3.8)
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Using this approximation in (N)gsc — (N) Normar and integrating the energy over

the range [ — hwp, 1t + hwp|, we obtain:

<N>SC - Normal

N
- é() /dek/ dcos® 20}

N
( / dek/ dcosH—l—— dek/ dcos @
D1 D1 Do Do

é (4p" — 4p + 4hwp) .

The first term in this equation seems a little complicated, but after a few steps,

we find it will give terms which will cancel the 2nd and 3rd terms above:

Vka 2
1stterm = (27‘(‘77,)2 [4th — g(,ulﬁ + /JQEQ)]
27.2 27.2
—&Fﬂ; h—k dcosf — VkFﬂ; Ik dcosé.
(27Th) D1 2m D1 (27Th) Do 2m Do
(3.9)
Thus we obtain
Vm 2
<N>s — <N>n = (27rh)2 [SMAI{?F + 4thAkF — g(,ulﬁ + /JQEQ)]fp] s
where
Akp = kp — Ky, (3.10)
Ap=p—p. (3.11)

In order to keep the number of particles fixed, we require (N)sc—(N) Normar = 0,



25

so we have:
2
8,UA]€F + dhwpAkp — g(,ulel + ,UQGQ)]{?F =0,

which gives

Akp - i (p1€1 + po€) (3.12)

So the shift of chemical potential is proportional to pi€; + pges. If we have

p1€1 + poes = 0, both the chemical potential and total number of electrons will be

fixed.

B. The Ground State Energy and Minimization

In the following derivation, du, i, %, and #9522 will be our variables. We
will always keep o > 0, €, > 0 and €5 < 0 to assure py > po and the deformations of
the two Fermi surfaces are opposite in “direction”. From Sarma’s conclusion, we can
see that the superconducting state never prefers h > Agcg. So we’d better confine
z, which is equivalent to %, to a reasonable value in unit of Agcg. And also
noting that the Fermi surface is much larger than Aw while hAw is much larger than
Apcs. For example, for most metals like V, Zn, Nb and etc., their gap A are around
1 meV, their hwp are around 25 meV ( in terms of the Debye temperature it is around

300K) and the Fermi energy is around 1 eV. So if we use €1, €3, 11 and us instead of

z and dp, we will find €; and €5 should be a very small value around 0.001. There is
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one more reason if we take a look at the trial gap equation given by Eq. (2.6):

A 2

D1+Do

A 1 o — 20)2 — A2+ |[op — 20
In=89% _ ~ / dcos@ ln\/( j— zcos?0) A + op — 2 cos | (3.13)
Comparing to the gap equation Eq. (1.22) of the FF state, we will find z and du
playing a very similar role as () and h. Also based on the relative values of the gap,
the Debye temperature, and the Fermi energy, any energy value, in the unit of Agcyg,
around Apcs/hwp or smaller will be discarded.

Now we can use the trial wave function to calculate the expectation value of the

original Hamiltonian. After a complicated calculation, we obtain:

(V|2|0)
R, nE
= DG e+ (5 — )
D,k D1,k
h2k? 2,
+ Z(% — ,U2 )| vk Z _— = ,UQ Z Vi s Uk Uy Vg Uy -
D,E [)27 D,E,I;’

For an S-wave superconductor, the coupling constant is momentum independent.

Then we obtain:

(|2 T)s
2
22€;€|Uk|2—|- Z e, (1 — 2|v]?) Zh+2h Vv Zukvk :
i D1+D2,E D17k‘ D27
where
h2k2

In the above equation we can see that the first term is the energy due to the
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quasiparticles, the second term ,due to depairng, which always increases the energy,
the 3rd and 4th terms are the Zeeman energy, and the last one, which is negative, is
the interaction-energy contribution. We also can find some reasonable symmetries:
—h < h, Dy < D.

Then we replace summations by integrals, and plug in the expression for |vy|?
and integrate energy over the region [ — hwp, i + hwp|. The expectation value,

which will be denoted as Es¢(0), will become

Esc(0)
2h 1 A?
= N(0) <A2ln d h%)% + g(/ﬂﬁ + ,u2€2)2 T

2
+2Aphwp — gAN(Ulel + Mzﬁz))

N(0) / _Azln(l(m—zwzl + /(0 — 2% )? — 4%

7 A
D1+Do
+10u — zcos? 0|/ (O — za2)2 — A2) dz
_NO) / 2h/(Op — za2)? — A2dz
Dy
+@ / 2h/ (6 — 222)? — A2dx
Do
—VN(0)2A? (zn%ﬂ
A
1 op — za? op — za? )2 — A2 ?
2 A
D1+Do

(3.15)
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where = = cosf. Its difference with the normal-state energy Eyormai(0) is given by:

ESC O) ENormal(O)

2hwp T A?
= (A2ln D — (161 + ,u2€2)2 - _)
60 2
N(0) / CAY (|5u—2$2|+\/5#—2$2) AZ)
9 A
D1+D2
+10p — 22|\ (6p — za2)2 — A2) dz
_Né()) /Qh\/(é,u — 2?2 — Alds + @/Qh\/(éﬂ — )2 — A2dy
Dy Dy

v (N(O)Aln%XD

N(0) |op — 22| + /(O — 222 )2 — A? 2
5 / Aln( a A,u )dz)

D1+Do

(3.16)

From the above equation, we can see the energy difference prefers piye1+pses = 0,
which means if the total number of particle is fixed, the ground state energy will
prefer a unchanged chemical potential. We obtain the gap equation, which is the 1st
derivative of Fsc(0) — Enormar(0) with respect to A, and also the 2nd derivative, as

well as the first derivative of Esc(0) — Enorma With respect to du and z:
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O(Esc(0) — Enormal(0))

OA
= 2N(O)A(ln2hXD —-1)
— 22 — 2r2)2 A2
_N(O)A / 1,190 zx|+\/(iu z1?) "
D1+D2
LN (O)A / h dz — N(0)A / h d
T — x
/ V(O — 222 )2 — A? / V(O — 22?2 )2 — A?
—2VN(0)2A <ln2th
A
— 272 — 212)2 — A2
2 A
D1+D
_ 29 oL — 23)2 _ A2
x(anhXD—l—% / ln(\é,u 2 cos \+\£(,u zx?) ) da
D1+D>

2
41 / O = 2] dx) ~0,
2 V(O — 22?2 )2 — A?

D1+D>

(3.17)

which is our gap equation.
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And
a(ESC(()) — ENormal(()))
001
= N(0) /\/ I — za?) 2—A2dx—N(0)/\/(5,u—z$2)2—A2dx
Do
h|5u—zx | .
—za?) 2
. V(0 —za2 )2 — A
N(0)A? (vzv( 0)in 210
A
VN(0) 60 — 22?| + /(O — 222 )2 — A2
- / In( A ) da
D1+Do
1 1
X dr — dz | =0,
(D/ V(O — 22?2 )2 — A? ! D/ V(O — 22?2 )2 — A? x)
(3.18)
And

a(Esc(O) - ENormal(O))
0z

= —N(0) /\/5u—z$2)2—A2x2dx+N(O)/\/(5,u—zx2)2—A2x2dx

Do

Z"S“_Zf |2 _dz + N(0)A? (VN(O)ln%ZD
D1 4D, Von =z
— 2 — or2)2 _ A2
~ VIN(0) / ln(|5’u 22?4+ /(O — 222 )2 — A ) da
2 A
D1+Do

( / - d +/ - d) 0
x| — T | =U,
2 V(6 — za2 )2 — A2 2 V(6 — za2 )2 — A2
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And

82 (Egc(O) — Enormal (0))

02A
- 2hewp
= 2N(0)(In X 2)
— 2 — 21232 _ A2
~N(0) / i s \/i“ WA,
D1+D>
/ [0p/ % — 2| e
o.2p, V(0 2z —a2)2 — A2/22
1+
h
0 dx — N(0O d
)D/\/(éu—zxz)2—A2 ! ()D/\/(é,u—zxz)?—AQ !
hA? hA?
+N(O)/ 3d:)3—N(O)/ s dx
2 (v/(Op — 222 )2—A2) e (V/(Op — 222 )2 — A?)
—2VN(0)2(ln2h°"D - : 191 = jx | — o
D D, Viop =z
1 |6 — 22| + \/(Op — 222 )2 — A? 2
—3 / ln( A )dx
D1+Do
23
—2VN(0)2< 141 / e dx)
2D1+D2 (\/(5,u — za2)? — Az)
2hwp 1 |6p — 22| + /(O — 222 )2 — A?
x(ln A "3 / In( A Jdz ) >0.
D1+D>
(3.20)

A second look at E(SC)(0) — Enorma(0) and the gap equation will tell us there
are at least 4 cases:
Case 1: When A > dp and % > 1, there will be no depairing region and we

will get the unpolarized BCS ground state and the BCS gap. Especially when z <'1
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and op < 1, the BCS ground state is always one of the solutions.

Case 2: When A > p and % < 1, there is only the depairng region Ds.
In this case the Fermi energy difference z is at least twice larger than du. No such
region is found when z and du are below unity.

Case 3: When A < dp and % > 1, there is only the depairing region D;.
Sarma’s solution III is just a special case when z = 0 and ou = h.

Case 4: When A < dp and % < 1, those two depairng regions will both exist.

I have written a C program, which is attached at the end as an appendix, to
investigate the gap A over a lattice of du and z values by using the gap equation.
We select Apcg to be the unit and a typical value N(0) = 0.2 for weak coupling
approximation. From the data, we find that the minimum energy exists when z <1
and o < 1. Case 2 never exists in this region and Case 4 only exists when the
gap A become very small. For large z and du above 1 but less than 3, the energy
Esc(0) — Enormar(0) will be larger than 0, which means no superconducting state
exists within this region. Figures 5 to 15 are plotted based on the results.

These figures show for energy that the unpolarized BCS state is always the lowest
energy state when h is below the Clogston-Chandrasekhar limit, which is Apcg/v/2.
We didn’t show the picture for h below 0.5ABC'S, but we reach the same conclusion
from this region of h. For the other case when h is below the Clogston-Chandrasekhar
limit but above h = 0.5ABC'S, the system will prefer 6 = h and z = 0, which means
no deformation at all. When it is above the Clogston-Chandrasekhar limit, we still
have local minimum at du = h and z = 0, but it is no longer the global minimum.

That’s because the depairing region D, plays a more and more important role as
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Fig. 15. 2D plot of the energy of the DF'S state when the external magnetic field h

There is a very shallow local minimum is at z
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h increases. The appearance of region D, decreases the gap A and increases the
Zeeman term. At this time, the region D; is still larger than region Ds, so the
energy is lowered. But if the region D, keeps on increasing, it will lead to a smaller
region Dy, or, in other words, more and more electrons will move from the original
larger Fermi surface to the smaller one. Both from physics and Eq. (3.16), we can

see that the energy will increase.
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CHAPTER IV

CONCLUSION
We investigated, at zero temperature only, the deformed-Fermi-surfaces (DFS) mech-
anism for pairing of fermions with mismatched Fermi surfaces — an idea first pro-
posed by Mither and Sedrakian, by using a variational method where the ground-

state wave-function is obtained by diagonalizing the following “trial Hamiltonian”:

h2k?
Hirial = Z[— — p1(1 — € cos 0)] el eny

—" 2m
k1
h2k,2
+ Z[ om p2(1 — €3 cos® 9)]CT_klc_kl - Z Vk7k,cL,TcT_k,lc_klcm(4.1)
—kl kK

The depairing regions have to be carefully analyzed in the whole parameter
space, before the energy gap for elementary excitations and the total energy of the
system can be studied in the whole parameter space. Due to the relative values of
the Fermi energy, Debye energy and energy gap of most low temperature supercon-
ductors, we find that opu = (u1 — p2)/2 and z = (€1 — p2e2)/2 are better variables
to characterize the variational state. Within the regions defined by 0 < dp < 1 and
0 < z <1, we find that the energy of the DFS state is always higher than the energy
of the BCS Ground state or that of the normal state with Pauli paramagnetism.
So the DFS state is not a preferred state under the weak-coupling approximation.
However, this conclusion is obtained under the assumption that the system being
considered is a conductor subject to a uniform exchange or Zeeman field, so that

the externally controlled variables are the electron density n and the Zeeman energy
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h, which is just the electron magnetic moment times the external magnetic field.
In trapped fermionic atomic mixtures where the two species of atoms are not in-
terchangeable, or in proton-neutron pairing in nuclear physics, or in hetero-quark
pairing in particle physics, where the the externally controllable variables might be
ny and ng, the number densities of the two species of fermions doing pairing, rather
than n = n; + ny and h, the study must be redone, and the conclusion can still
be that this idea can still win, as the unpolarized BCS state will no longer be an
available option. On the other hand, we have so far considered spatially uniform so-
lutions only, and therefore have not entertained the possibility of any inhomogeneous
states including phase separation. This assumption is easily satisfied in the electron
system, but not necessarily so in the other systems.

Even for conductors, if the system favors a two dimensional d-wave supercon-
ducting state at low temperatures, for example, for which the order parameter is
proportional to cos 26, where 6 is the angular position of a point on a two dimen-
sional Fermi surface measured relative to the a-axis of a tetragonal crystal structure,
a Fermi-surface distortion which is large where the gap is large might still enhance
the energy of this state to make it a favorable state, so this proposed state might
be preferred state in some circumstances. Thus more study of this model would be

warranted.
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APPENDIX A

A. Some Mathematics Used in Chapter III

If we have
B(x)
F(z) = /() f(t,x)dt
= B(ta)|]) (A1)
then
dF(z)  dE(t, )8 dE(t,x)} dﬁ(z)_dE(t,x)‘ do(x)
de de '@ dt =P dx dt =) dy
_ /ﬁm df(t,x)
N alz) dx
+dE(t,x)} dp(z) dE(t,x)‘ do(z)
dt =P g dt  't=e) dy
_ /ﬁm df(tx)
N () dx
dp(z) do(x)

10— )] 2
(A.2)
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B. C Program

all :newmodified4 newmodified4: newmodified4.cc integrallog.cc
integralinverse .cc integralinverse2.cc integralsqrt .cc
integralsqrt2.cc intsqrtdown.cc intsqrtdown2.cc intsqrtup.cc
inttripleinverse.cc inttripleinverse2.cc
g++ —o newmodified4 newmodified4.cc integrallog.cc
integralinverse.cc integralinverse2.cc integralsqrt.cc
integralsqrt2.cc intsqrtdown.cc intsqrtdown2.cc
intsqrtup .cc inttripleinverse.cc inttripleinverse?2.cc
g++ —02 newmodified4 newmodified4.cc integrallog.cc
integralinverse.cc integralinverse2.cc integralsqrt .cc
integralsqrt2.cc intsqrtdown.cc intsqrtdown2.cc

intsqrtup .cc inttripleinverse.cc inttripleinverse2.cc
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#include <iostream >
#include <cmath>
#include <cstdlib >
using namespace std ;

double integrallog (double al , double bl double cl,
double dl){

// a=deltamu/z and b=delta/z should be given ,
//constant in the function
// c¢,d are the boundary of the range, should be given
// this is the integral of
J/In (| a—x 2| +\ sqrt{(a—z"2)"2—b"2)})—In(b) over [c,d]
//and ¢>0,d<1,

//these should be determined before this file
double step=0.00002;

double hl=step /2;

double range=dl—cl;

double number=2«floor (range/step );

// the range is the divide into 2 parts, the 1st
// part will be integrated by simpson’s rule,the
//second part will using mid

//—point rule

int i,j;

i=1;

double x,x1,y,yl,y2,y3;

if (range<=step) return y=0;

else

{
if (¢l <0||dl>1)

cout<<” boundary._exceed"<<endl;
return 1;

}

x=cl ;

X1=x%X;

yl=abs(al—x1);

y2=yl*xyl—blxbl;

y3=sqrt (y2);

y=log (yl4+y3);//initial wvalue

1=2;

while (i<=number—1) //step through the iteration

{



j=6—j; //give the 4,2,4,2..... ,
X1=x*X;

yl=abs(al—x1);

y2=ylxyl—blxbl;

y3=sqrt (y2);

y=y+jxlog (yl+y3);

14+

x=cl4+numberxhl ;

X1=x%X;

yl=abs(al—x1);

y2=ylxyl—blxbl;

y3=sqrt (y2);

y=y+log (yl+y3);

y=yxhl/3;//end of 1st part

//2nd part integral

x=0.5%dl+0.5%xcl +0.5%*numberxhl ;

X1=x%X;

yl=abs(al—x1);

y2=yl*xyl—blxbl;

y3=sqrt (y2);

y2=log (yl+y3);
y=y+y2%(dl—cl—numberxhl)—rangexlog (bl );
//finish In()—In(b) numerical integration
return y;
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#include <iostream >
#include <cmath>
#include <cstdlib >
using namespace std ;

double integralinverse (double ai,double bi,
double ci,double di) {
// ai=deltamu/z and bi=delta/z
// should be given ,constant in function
//(ci,di) is the
//integral range should be given, and ci>0,di<I,

//this should be determined before this file
double stepp=0.00002;
double hi=stepp /2;
double rangee=di—ci;
double numberr=2«floor (rangee/stepp);// the range
//is then divvided into 2 parts.
//the 1st part will be integrated by simpson ’s
//rule , the second part will
// using mid—point rule
// cout<<numberr<<’number inverse’<<endl;
int i,j;
i=1;
double x,x1,y,yl,y2,y3;
if (rangee<=stepp) return y=0;
else{
if (ci<0]|di>1)

cout<<” boundary._exceeds’<<endl;
return 0;
I3

x=ci ;
X1=x*Xx;
yl=abs (ai—x1);
y2=ylxyl—bixbi;
y3=sqrt (y2);
y=1/y3; //initial vaule
1=2;
while (i<numberr —1)
L

J=6—];

x=ci+ix*xhi;

X1=x*X;



yl=abs(ai—x1);
y2=ylxyl—bixbi;
y3=sqrt (y2);
y=y+j/v3;

14+

x=ci+numberrx*hi ;

X1=x*X;

yl=abs (ai—x1);
y2=ylxyl—bixbi;

y3=sqrt (y2);

y=y+1/y3;

y=y*hi/3;//end of 1st part
//second part
x=0.5%xdi+0.5% ci+0.5«numberrxhi;
X1=x*Xx;

yl=abs (ai—x1);
y2=ylxyl—bixbi;

y3=sqrt (y2);

y2=1/y3;
y=y+y2*(di—ci—numberrxhi );
//finish the integration
return y;

o4
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#include <iostream >
#include <cmath>
#include <cstdlib >
using namespace std ;

double integralsqrt (double a_sqrt ,double b_sqrt ,

{
double

double
double

double
// the

double c_sqrt ,double d_sqrt)

stepp=0.00002;

hi=stepp /2;

rangee=d_sqrt—c_sqrt ;
numberr=2«floor (rangee/stepp );
range 1s then divvided into 2 parts.

//the 1st part will be integrated by simpson’s rule,

// the

second part will

// using mid—point rule
int i,j;

i=1;

double x,x1,y,yl,y2,y3;
if (rangee<=stepp) return y=0;
else{//else

if (c_sqrt <0||d_sqrt >1)

{//if

cout<<” boundary._.exceeds’<<endl;
return 1;

Y/ if
X=c_sqrt;
X1=x*X;
yl=abs(a_sqrt—x1);
y2=ylxyl—b_sqrtxb_sqrt;
y3=sqrt (y2);
y=y3;//initial vaule

]=2;

while (i<numberr —1)

{

j=6—j;// give the 4,2 ,4,2.........
x=c_sqrt+ixhi;

X1=x*X;

yl=abs(a_sqrt—x1);
y2=ylxyl—b_sqrtxb_sqrt;

y3=sqrt (y2);

y=y+j*y3;



}

1++;

} .
x=c_sqrt4+numberrxhi ;
X1=x*Xx;
yl=abs(a_sqrt—x1);
y2=ylxyl—b_sqrtxb_sqrt;
y3=sqrt (y2);
y=y+y3;
y=y*hi/3;//end of 1st part
//second part
x=0.5xd_sqrt+0.5%xc_sqrt +0.5xnumberr*hi ;
X1=x*Xx;
yl=abs(a_sqrt—x1);
y2=ylxyl—b_sqrtxb_sqrt;
y3=sqrt (y2);
y2=y3;
y=y+y2*(d_sqrt—c_sqrt —numberrxhi );
return y;

Y// else
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#include <iostream >
#include <cmath>
#include <cstdlib >
#include <fstream>
using namespace std ;

double

double

double

double

double

double

double

double

double

double

int main

integrallog (double al, double bl
double cl, double dl);
integralinverse (double ai, double bi,
double ci, double di);
integralinverse2 (double a2, double b2,
double c¢2, doubled2);
integralsqrt (double a_sqrt, double b_sqrt ,
double c¢_sqrt , double d_sqrt);
integralsqrt2 (double a_sqrt2 , double b_sqrt2
double c¢_sqrt2 , double d_sqrt2);
intsqrtup (double a_up, double b_up,
doublec_up , double d_up);
intsqrtdown (double a_down, doubleb_down ,
double c_down, double d_down);
intsqrtdown2 (double a_down2, double b_down2,
double c_down2,double d_down2);
inttripleinverse (double at, double bt
double ct ,double dt);
inttripleinverse2 (double a3,double b3,
double ¢3,double d3);

O+

//begin to define wvariables for physical quantities
int n=61;

int m=61;//n¥m is the number of lattice points

int k=1;

int 1=1;//iterative number

int loop;//loop
int hnumber;

double
double

dos=0.2;//N(0)* coupling cosntant
homega=0.5xexp (1/dos);

//Debye frequency in terms of BCS Gap

double h; //magnetic field
double sh; //used to find minimum
double fh;

double

I

th;
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double gh;

//used to find minimum ezternal magnetic field
double ii=(dos+1)*(dos+1)/(2xdos);//some constant
double deltamu; //the energy difference

double deltamu?2;

double deltamu3;

double deltamu4;

double z;// the deform energy

double z2;

double z3;

double z4;

double value_logyl;

double value_logy?2;

double value_inversexl] ;

double value_inversex2;

double value_inversezl ;

double value_inversez2;// value used in derived gap
double value_sqrtx1;
double value_sqrtx2;
double value_sqrtzl ;
double value_sqrtz2;
double value_upl;
double value_up2;
double value_downxl1;
double value_downx?2;
double value_downzl ;
double value_downz2 ;
double valuetrl;
double valuetr2;
double valuel ;
double value?2;
double value3;
double value4;
double valueb
double value6 ;
double value7;
double valueS8;
double delta?2;
double deltal; // initial wvalue
double left_side;
double right_side;
double derivative?2 ;
double log_of_delta;
double power_of_e;
double energyl ;



double energy2=10;

double energy3=10;

double energy4=10;

//used to find min energy, wuseless initial value
double delta;

double fdelta;//used to find min energy
double sdelta ;

double tdelta;//used to find min energy
double qdelta;

double pass=0;// to find multi solution
double energy ;

double boundary_c;

double boundary_d;

double a;// cosntant

double b; //constants and range used in function
double al;//range

double bl;//range

double stop_condition;

double gapstep;

double comparel;

double compare2;

double compare;

double condition;//useless

double overmu;

double overmul ;

double overmu?2 ;

double overmu3;

double overmu4;

double overz;

double overzl ;

double overz2;

double overz3;

double overz4;

double realsolution ;

double test ,testl ,test2 ,test3 ,test4;
cout<<” define _over”’<<endl;

ofstream deformfermi(”newer.txt” );
ofstream energyminl (”minil.txt”);
ofstream energymin2(”mini2.txt”);
ofstream energymin3(”mini3.txt”)
ofstream energymind (”mini4.txt”)
ofstream sarma(”sarma.txt”);

if(deformfermi. fail ()||energyminl. fail ()

)

I

gap,a,b

99
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|| energymin2. fail ()||energymin3. fail ()
|| energymind. fail ())
{
cerr<<”unable_to_open.the_file _for_writing”’<<endl;
return 1;

else cout<<’open.successful”’<<endl;

//start to calculate the delta and energy at
for (hnumber=1;hnumber <=40;hnumber++)
{
h=0.000140.03%(hnumber —1);
7z2=1000;
overmu2=1000;
overz2=1000;
energy2=1000;
sh=1000;
//initial value, 1000 meaningless, can’t be reached.
sdelta=1000;
deltamu2=1000;
cout<<hnumber<<endl ;
for (k=1;k<=n;k++)
{// first for bra
deltamu=0.0001+0.02x(k—1); //deltamu s value
for (1=1;1<=m; l++)
{//second for bra
// cout<<’l="<<l<<endl;
z=0.0001+0.05%(1—1);
//z’s walue , lattice (deltamu, z);

pass=0;

loop=1;

stop_-condition=10;// initial value, useless;
gapstep=0.1;

while (loop <=2||stop_condition >=0.0001)
{//bra for while

if (loop==1)
{//ket for while’s if
if (pass==0)

deltal =0.001;

delta2=deltal; //back up



log_of_delta=log(deltal );
boundary_c=(deltamu—deltal)/z;
boundary_d=(deltamu+deltal)/z;

a=deltamu/z;

//constants and range used in function gap
b=deltal /z;

//constants and range used in function gap

if (boundary_c<0) {boundary_c=0;}
if (boundary_c>1){boundary_-c=1;}
if (boundary.d>1){boundary_d=1;}
if ( )

boundary_d <0){boundary_d=0;}

if (boundary_c>=0&&boundary_d <=1)
{//1st

al=0.999xsqrt (boundary_c);
b1=1.001*sqrt (boundary_d);
// those function have integrable

// singularities on these two boundaries.
//the 0.999 and 1.001 are

//used to avoid the singularities.
value_logyl=integrallog (a,b,0.,al);
value_logy2=integrallog(a,b,bl 1.);
value_inversexl=integralinverse (a,
value_inversex2=integralinverse (

value_inversezl=integralinverse2(a,b
value_inversez2=integralinverse2 (a,b

valuel=value_logyl+value_logy?2;

value2=(value_inversexl —value_inversex2)/z;
value3d=value_inversezl+value_inversez?2 ;

valuetrl=inttripleinverse(a,b,0.,al)
—inttripleinverse (a,b,bl 1.);

valuetr2=inttripleinverse2(a,b,0.,al)
+inttripleinverse2 (a,b,bl 1.);

left _side=2xhxvalue2
+2%(1—dos—2+dosxlog_of _delta)xvaluel
—2xdosxvaluel xvaluel —2x(1

61



—dosxlog_of_delta
— dosxvaluel )xvalue3+ii —2;
right _side=0.5%(1—-2xdosxlog_of_delta—dos)
x(1—2xdosxlog_of_delta—dos)/dos;

derivative2 =2x(1—2xdos—dosxlog_of_delta)
—dosx*2xvaluel +2«xdos*value3
+2xdoskhxvalue2+2«xdos*xhxbxbxvaluetrl

—2%(1—dosxlog_of_delta—dos—dos*valuel
+valued)
x(1—dosxlog_of_delta—dos—dosxvaluel
+dosxvalued)
—2xdos*(—1+valuetr2)
*x(1—dosxlog_of_delta—doskxvaluel );

}Y//1st
else{//1sttt

cerr<<”boundary.error”’<<endl;
return 1;

Y //1sttt

comparel=left _side —right_side
compare2=comparel ;
deltal=deltal+gapstep;

Y//ket for while’s if, for the first loop

else //the following is for the second loop and
{//for else in while

log_of_delta=log(deltal );
boundary_c=(deltamu—deltal)/z
boundary_d=(deltamu+deltal)/
a=deltamu/z;

b=deltal /z;

f (boundary_c<0) {boundary_c=0;}
f (boundary_c>1) {boundary_c=1;}
f (boundary_.d>1) {boundary_d=1;}
f (boundary_d <0) {boundary_d=0;}
b 1

1f( oundary_c>=0&&boundary_d <=1)
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{//1st

al1=0.999xsqrt (boundary_c);
b1=1.001*sqrt (boundary_d);
//the 0.999 and 1.001 are used to avoid
// the singularities.

value_logyl=integrallog (a,b
value_logy2=integrallog (a,b

value_inversexl=integralinverse (a,b,0. ,a
value_inversex2=integralinverse (a,b,bl 1.

value_inversezl=integralinverse2(a,b,0., a
value_inversez2=integralinverse2(a,b,bl 1.

valuel=value_logyl+4value_logy2;

value2=(value_inversexl —value_inversex2)/z;
value3d=value_inversezl+value_inversez?2 ;

valuetrl=inttripleinverse (a,b,0., al)
—inttripleinverse (a,b,bl 1.);

valuetr2=inttripleinverse2(a,b,0.,al)
+inttripleinverse2 (a,b,bl 1.);

left _side=2xhxvalue2
+2x(1—dos—2xdosxlog _of delta)xvaluel
—2xdosxvaluel xvaluel —2%(1—dosxlog_of_delta
— dosx*valuel )xvalue3+ii —2;

right _side=0.5%(1—2xdosxlog_of_delta—dos)

x(1—2xdosxlog_of_delta—dos)/dos;

derivative2 =2x(1—2+xdos—dosxlog_of_delta)
—dos*2xvaluel+2xdos*value3
+2xdosxhxvalue2+2+xdos*xhxbxbxvaluetrl
—2x(1—dosxlog_of_delta—dos—dos*valuel

+valued)
x(1—dosxlog_of_delta—dos—dos*valuel
+dos*xvalue3)

—2xdos*x(—1+valuetr2)
*x(1—dosxlog_of_delta—doskxvaluel );

}//1st
else{//1sttt



cerr<<”boundary.error”’<<endl;
return 1;

YV //1sttt

comparel=left_side —right_side;
if (comparelxcompare2>0)

{//00if
delta2=deltal ;

deltal=deltal+gapstep;
compare2=comparel ;

//discard the original compare?2,
//if the sign are the same

Y//00if

else if(comparelxcompare2<0)

{// 02 else

J/cout<<"cat3’'<<"\t'<<endl;
deltal=delta?2;

//sign is changed, so
// keep the original h
gapstep=(gapstep /10.0);
//step is changed

deltal=deltal+gapstep;

// sign is changed
//so don’t give compare2 a new value
Y// 02 else
else if(comparel==0)
/ 04 else
delta2=deltal ;
//this is mnot going to happen
Y// 04 else
else if(compare2==0)
/ 05 else
deltal=delta?2;
//this is mnot going to happen

Y// 05 else
Y//for_else in_while

// this part is used limit the mazr value
if (deltal >3)
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deltal=delta2=0;
deformfermi<<deltamu<<”\ t"<<z<<”\t”

<<"large._delta”<<”\n" ;
pass=4;

}
else if(deltal <=0.0001)

deltal=delta2=0.0001;
¥
stop_condition=abs(deltal —delta2);
loop++;
compare=abs (comparel );
if (stop_condition <=0.0001&&compare>1&&pass <=2)

{

deltal=deltal+4xgapstep;//the 4 is used to
//avoid the single point

gapstep=0.1;

pass—++;

loop=1;

¥

else if(stop_condition <=0.0001&&compare<=0.1
&&deltal <=0.999999&& loop >1&&pass <=2)

{

condition=1-dosxlog_of_delta—dos*xvaluel ;
value_sqrtxl=integralsqrt (a,b,0,al);
value_sqrtx2=integralsqrt (a,b,bl1,1.0);

value_sqrtzl=integralsqrt2(a,b,0,al);
value_sqrtz2=integralsqrt2(a,b,bl,1.0);

valued=value_sqrtxl—value_sqrtx2;
valueb=value_sqrtzl+4+value_sqrtz2;

value _upl=intsqrtup (a,b,0,al);
value_up2=intsqrtup (a,b,bl 1);
valueb=value_upl—value_up2;

value_downxl=intsqrtdown (a,b,0,al);
value_downx2=intsqrtdown (a,b,bl 1);
value7=(value_downx1l—value_.downx2)/z;

65



66

value_downzl=intsqrtdown2(a,b,0, al);
value_downz2=intsqrtdown2(a,b,bl 1);
value8=value_downzl+4value_downz2 ;

overz=—z+value6+hxvalue8
—deltalxdeltalx(1—

nxlog _of_delta-nxvaluel )xvalueT7;
overmu=2*value4 —2xhxvalue3

—2xdeltalxdeltal*(1—
dosxlog_of _delta—dosxvaluel )*(—value2);

energy=deltalxdeltal*(1—dosxlog_of_delta)
—0.5xdosxdeltalxdeltal
—dosxdeltalxdeltal *valuel+dos*z*xz*xvalueb
—2xdos*h*xz*xvalue4d

—(deltal —dosxdeltalxlog _of _delta
—dosxdeltalxvaluel)
x(deltal —dosxdeltalxlog_of_delta
—dosxdeltal*valuel );
deformfermi<<deltamu<<"\ t"<<z<<”\t”
<<deltal <<’ \t"<<"\t”
<<energy <<’ \t7<<”\t”
<<valuel <<”\t"<<"\t"<<value2
<<\ t7<<\ 7
<<value3d<<”\t"<<overmu<<’\t”
<<derivative2 <<"\n";
if (h==deltamu&&deltamu>deltal&d&z <0.05)

sarma<<h<<”\t"<<deltal <<”\t”<<0—energy
<<\ t"<<overz<<”\t"<<overmu<<"\t”
<<derivative2 <<”\n”;

}
if (boundary_c=0&&boundary_d==1)// four cases

energyl=energy ;

fdelta=deltal ;

fh=h;

energyminl <<fh<<”\t”’<<dos*fh*fh<<”\t”"<<deltamu
<<\ t'<<z<<" \t7<<deltal <<\ t”
<<O—energyl<<”\t"<<overz<"\t”
<<overmu<<"\n";

}

else if(energy<=energy2&&deltamu<delta
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&&boundary_d <1)

energy2=energy ;
sdelta=deltal ;
sh=h;
overmu2=overmu ;
overz2=overz;
deltamu2=deltamu
72=17;
¥
else if(energy<=energy3&&deltamu>=delta
&&boundary_d==1)
{

energy3d=energy ;
tdelta=deltal ;
th=h;
overmud=overmau ;
OVerz3=o0verz;
deltamu3d=deltamu;
723=7;

}

else if(energy<=energy4&&deltamu>delta
&&boundary_d <1)
{

energy4d=energy ;
gdelta=deltal ;
qh=h;
overmu4d=overmu ;
overz4d=overz;
deltamud4=deltamu;
z4=z;
}
deformfermi<<deltamu<<”\ t"<<z<<”\t”
<<deltal <<”\t”
<<"\t"<<0—energy
<<\ t7<<"\t"<<overz<<”\t”
<<overmu<<"\t”
