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ABSTRACT 

 

Interferon-Stimulated Genes in the Pregnant Mouse Uterus 

 (May 2008) 

 

Sarah Tilford 
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Fellows Advisor: Thomas E. Spencer, Associate Professor  

Department of Animal Science 

 

During pregnancy in the mouse, extensive communication takes place between the 

conceptus (embryo/fetus and associated extraembryonic membranes) and uterus. Our 

focus centers on the uterine response to the conceptus. In ruminants, the conceptus 

produces interferon tau that induces interferon stimulated genes (ISGs) which likely 

regulate uterine receptivity, conceptus implantation, and conceptus growth and 

development.  Our hypothesis is that ISGs are similarly induced in uterus during 

pregnancy in the mouse.   If ISGs have a critical role in pregnancy establishment and 

maintenance in mammals, it is important to identify these ISGs in order to address 

fertility issues in human medicine. In this research, in situ hybridization analysis of uteri 

during gestation in the mouse was conducted to understand cell specific expression of 

selected ISGs during pregnancy.  Of the fifteen ISGs investigated, ten (Irf1, Irf2, Irf6, 

Irf7, Isg15, Oas2, Plscr1, Stat1, Rsad2, Tlr4) were found to be expressed in the uterus 

during pregnancy. 
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I       INTRODUCTION
1 

Understanding the mechanisms of reproduction is essential to the progress of 

modern society.  By elucidating the pathways of procreation, we can ensure the 

efficiency of our agriculture industry.  Considerable resources are required to maintain 

each bred cow, sow, or ewe, and, therefore, it is important that the young survive and 

can return a profit.  Currently, U.S. beef cattle herds average a pregnancy failure rate of 

nearly 30%, while increasing animal production by just 3% would result in 1 million 

more beef cows per year [1].  Additionally, understanding the molecular pathways of 

pregnancy will provide insight for development of new technologies in treating 

infertility, a hardship that will devastate 1 in 10 American couples in their reproductive 

years.  Conversely, this knowledge can lead to progress in contraceptive research, as the 

current birth control options are not free of side effects and contraindications and, 

therefore, prohibit our complacency in this area of research.  

 Therefore, this research aims to understand the cellular and molecular 

interactions of the conceptus, defined as the embryo/fetus and associated extraembryonic 

membranes, and the uterus during pregnancy.  The research carried out carries ethical 

limitations that prevent direct human experimentation.  The mouse was chosen as a 

model organism due to its short gestational cycle and its comparability to humans.   

 

A  Concepts of Pregnancy Establishment 

The mouse has an estrous cycle of 4-6 days in which fluctuating sexual 

receptivity physiologic behaviors can be observed.  This cycle is ultimately controlled by 

 

1This thesis follows the style and format of Reproductive Biology and Endocrinology. 
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the hypothalamic-pituitary-ovarian axis.  By convention, the first stage in the estrous 

cycle is called proestrus, and is that in which the follicles begin growing.  Proestrus is 

followed by estrus stage in which the female is sexually receptive to the male.  Pituitary 

luteinizing hormone (LH) induces ovulation in the mouse during estrus (spontaneous 

ovulation).  Following ovulation, LH acts on the remaining follicular tissue, inducing the 

development of the corpora lutea (CL).  Once developed, the CL function as endocrine 

glands secreting progesterone during diestrus.  In the event of successful mating, 

progesterone prepares the uterus for implantation and allows pregnancy establishment 

and maintenance.  If mating does not occur, the CL are quickly broken down.  This final 

stage is known as proestrus.  However, if mating does occur, the resulting cervical 

stimulation brings about twice daily secretions of prolactin from the pituitary.   Prolactin 

is trophic on the CL (“luteotrophic”) and prevents its breakdown (“luteolysis”).  The 

enduring CL continues to release progesterone for pregnancy [1-5].    

After mating, if fertilization is successful, the embryo undergoes its first cell 

division within 24 hours.  Cell division continues within the confines of the zona 

pellucida (ZP).  As a result, the cell number rapidly increases, while the total mass of the 

embryo does not significantly change.  During this cell division the embryo leaves the 

ampulla, the site of fertilization, and travels through the juxtaposed loops of oviduct, 

aided by peristaltic contractions, entering the uterus by gestational day 3 [5].  At this 

point in development, the morula are typically 16-32 cells and gross differentiation 

begins.  The first structural differentiation can be seen in which the uniformly clustered 

cells of the morula segregate forming the blastocyst which is characterized by a 
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peripheral layer of cells called the trophectoderm, and small clump of cells that 

aggregate on the deep surface of the trophectoderm.  This group of cells is termed the 

inner cell mass and becomes the embryo proper [1, 4-6].   

On day 3 the blastocyst hatches from the ZP [5, 7], which permits the 

trophectoderm to make necessary contact with the luminal epithelium (LE) during the 

stages of implantation.  In this process, the blastocyst secretes the protease strypsin, 

which digests a hole in the ZP.   Then the blastocyst completes its expulsion from the ZP 

via rhythmic contractions [8, 9].  The blastocyst will then continue to grow and make its 

way to its fated implantation site in the uterus. 

In all Eutherian mammals, implantation is dependent on a “two-way” molecular 

conversation between the conceptus.  Although this mechanism is highly complex, 

identification of certain phases in implantation can help simplify and elucidate the 

process.  The first recognized phase of implantation is attachment, which involves the 

apposition of the blastocyst to the uterine LE [10].  This activity is initiated by estrogen 

and then progesterone, which suppresses uterine epithelial cell proliferation and induces 

differentiation [7, 11].  The resultant rising levels of progesterone act on the uterus to 

promote the proliferation of stromal cells [7, 8, 11].  On day 4 of pregnancy, a small 

surge of ovarian estrogen initiates implantation of the blastocyst [7, 11, 12].  To this end, 

it has been shown that mice, ovariectomy on day four just prior to the estrogen surge 

delays implantation and induces dormancy of the blastocyst, because the ovarian 

originated estrogen surge is absent.   This state can be later reversed by injections of 

estrogen, and the blastocyst will implant [7, 11].  
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 Next, extensive stromal edema acts to progressively narrow the lumen of the 

uterus.  Progesterone furthers this process by inducing the uterine lumen to close tightly 

[8, 11], which ensures a juxtaposition of the conceptus trophectoderm and the uterine 

LE.   The trophectoderm and LE then attach together using cadherins, galectins, 

integrins, heparin sulfate, proteoglycans, and selectins, that trigger cell-to-cell signal 

transduction cascades [7, 8, 11].   

Following this resulting superficial attachment of the blastocyst to maternal 

tissue, the blastocyst trophectoderm invades the uterine tissue, completing implantation. 

This process is mediated by prostaglandins and histamines and results in an increase in 

vascular permeability in the localized endometrium.  Apoptosis of the luminal epithelial 

cells adjacent to the trophectoderm allows for the final invasion of the conceptus [7, 8].   

Concurrent with implantation, an additional process begins in which the 

endometrium undergoes significant changes in shape, organization, and metabolic 

requirements.  This process, called decidualization, produces a new uterine tissue known 

as the decidua.  Decidualization begins adjacent to the implantation site and commences 

with the appearance of trophoblast giant cells.  The goal of these cells is to modify the 

vasculature of the uterus, resulting in expansive, low resistance vessels that will allow 

the pooling of blood as part of the placenta [13, 14].  However, this mechanism must be 

restrained in preservation of the mother, because complete invasion of uterine arteries 

will result in severe hemorrhage, hypovolemic shock, and death.  Decidualization is this 

protective restraint.  The decidua possesses dense cellular matrix that impedes 

trophoblast invasion and instead enables trophoblast attachment [14].  This reaction that 
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began juxtaposed to the conceptus progressively continues throughout the endometrium 

over the next several days [13].  The effect is the replacement of endometrial stroma 

with the decidua in a progression that radiates away from the implantation site.  

 

B Interferon-Stimulated Genes 

Interferons (IFNs) are molecules primarily responsible for the defense against 

viral infection.  Two classes of interferons have been identified:  Type I IFNs and Type 

II IFNs.  The presence of viral component particles in a cell, especially double stranded 

RNA, cause the cells to produce Type I IFNs, which then induce ISGs in neighboring 

cells [15-18].  ISGs defend these neighboring cells from viral infection.  In fact, null 

mice for various components of the IFN system develop severe disease when infected 

with certain viruses that are typically symptom-less in wild time mice [16, 18]. ISGs 

have a vast range of functions that aim to prevent viral infection, including inhibition of 

further protein synthesis, inactivating energy stores, signal transduction, etc. [19].  These 

functions collectively act to fight against infection perpetuation in the host. 

In the 1980s, a new function was added to the repertoire of Type I IFNs with the 

discovery of interferon tau (IFNT).  During the establishment of pregnancy in ruminants, 

IFNT is produced by the conceptus and acts to prolong the lifespan of the CL.  In 

ruminants, the CL is normally triggered to break down by PGF2α [10, 15, 20-22]. This 

effectively inhibits luteolysis, the destruction of CL.  Thus, CL can continue to secrete 

progesterone, which is required for establishment and maintenance of pregnancy.  
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IFNT, like other Type I IFNs, has the ability to induce ISG expression.  As such, 

it has been previously shown that many ISGs are expressed in the ruminant uterus during 

early pregnancy [23].  It is believed that some of these ISGs mediate maternal-conceptus 

communication and uterine receptivity.  IFNT is present only in ruminants.  Although 

mice and humans, therefore, do not have the IFNT gene, ISGs are still expressed in the 

uterus and decidua during pregnancy.  Most notably ISG15 expression is present in the 

uterine tissues of ruminants, primates, and rodents (specifically sheep, humans, and 

mice, respectively) [10, 24, 25].   

Many ISGs are induced by Type I IFNs via the Janus tyrosine kinase and signal 

transducers and activators of transcription (JAK-STAT) pathway.   In this pathway, 

circulating Type I IFNs bind to a transmembrane receptor on the external surface of the 

membrane, which is composed of two subunits IFNAR1 and IFNAR2.  When this 

receptor is triggered, it activates two kinases, Tyk1 and JAK1 on the cytoplasmic side of 

the membrane, resulting in their phosphyorylation.  Once activated, Tyk1 acts back on 

the IFNAR1 subunit, which allows for the sequential recruitment and phosphorylation of 

STAT2 and STAT1.  STAT2 and STAT1 form a complex, which then travels to the 

nucleus where it binds with other transcription factors, including IRF9.  This new 

complex binds to a specific IFN-stimulated response element (ISRE) on the promoter 

region of ISGs to regulate their transcription [26].  
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II       ISGs 

The aim of this research is to determine if expression of various ISGs are 

expressed in the pregnant mouse uterus.  Therefore, several ISGs have been selected for 

evaluation. 

 

A  Characteristics of Selected Genes 

Interferon stimulated gene 15 (Isg15) 

Functionally, ISG15 conjugates intracellular proteins, signaling a pathway that is 

thought to be similar to ubiquitin [27].  Isg15 was one of the first ISGs discovered in the 

mouse [24].  Isg15 null mice typically show no reproductive, developmental, or viability 

effects [28].   However, UBP43 is a protease that removes ISG15 tags from ISGylated 

proteins, and Ubp43 null mice demonstrate heightened antiviral activity [27].  

Additionally, ISG15 is expressed in the endometrium during implantation in humans 

[24], pigs[29], cows[30-32], and mice[10, 24].   

 

 0BInterferon regulatory factor 1 and 2 (Irf1 & Irf2) 

Irf1 is induced by Type I and II IFNs.  IRF1 actions are functionally diverse, 

including apoptosis regulation, antiproliferative effects, natural killer cell  (NK) 

development, signal transduction mediation, and transcription regulation of Type I IFNs  

[33, 34]. 

IRF1 and IRF2 actions are antagonistic.  IRF2 suppresses the IRF1 response 

through competitive inhibition.  Murine knockouts for Irf1 show decreased immune 
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response when subjected to LCMV infection, a pathologically well-documented 

laboratory virus, while mice lacking the Irf2 gene demonstrate a hypersensitivity to 

antigens and over production of ISGs [35, 36].  Therefore, it is believed that IRF2 acts to 

safeguard the body against the harmful effects of an overly vigilant immune system [35].  

Interestingly, it has been recently shown that in somatic cells antiestrogens induce IRF1, 

while estrogens suppress it. Additionally, IRF1 increases cell sensitivity to anti-

estrogens [37].  

 

 1BInterferon regulatory factory 6 (Irf6) 

Irf6 is a transactivator and a member of the class of interferon regulatory factors.  

IRF6 is associated development of craniofacial, epidermal, and limb connective tissue 

[38].  In humans, deficiencies in Irf6 is associated with Popliteal Pterygium Syndrome, 

which is symptomatically characterized by cleft palate, webbing of limb joints, as well 

as other less conserved manifestations.  In mice, deficiencies in Irf6 are perinatal lethal 

[38, 39].   IRF6 plays a role in embryo development, though the function and regulatory 

mechanisms are not well understood.   Additionally, IRF6 is known to be absent in some 

carcinomas [40].  This finding, in conjunction with the pathology of Popliteal Ptergium 

Syndrome, lends speculation that IRF6 induces apoptotic activity essential for tissue 

remodeling. 
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Interferon regulatory factor (Irf7) 

Irf7 is one of the genes that is directly responsible for the induction of Type I 

IFNs.  During viral infection, the Irf7 gene is phosphorylated, which allows it to interact 

with transcriptional coactivators, inducing IFNA and IFNB production [41].   IRF7 is 

responsible for transitioning a virus to from primary infection to latency [42].   Also, Irf7 

null mice have marked viral infection susceptibility, and IRF7 is necessarily required for 

efficient antiviral activity [42, 43].  In fact, recent studies have turned some of the 

spotlight of Type I IFN response initiation away from IRF1 and toward IRF7 [42].  A 

few researchers have even gone so far as to name Irf7 as the „master regulator‟ of the 

antiviral response [43, 44].     

 

Phospholipid scramblase 1 (Plscr1) 

A common feature of healthy cells is asymmetry across the cell‟s plasma 

membrane.   In other words, the phospholipid layer has a directionality in which certain 

classes of phospholipids reside on each side of the membrane.  However, this asymmetry 

is obliterated as a step in signaling apoptosis [45, 46].  This response is largely mediated 

by the PLSCR class of molecules.  PLSCR1 effectively „scrambles‟ the phospholipids in 

a random, two-directional manner across the membrane.  Additionally, PLSCR1 can 

bind to genomic DNA and induce cell
 
proliferation and differentiation.  These functions 

are especially induced in the presence of IFN; in fact, although Plscr1 null mice have no 

apparent deficiencies, PLSCR1 is strongly induced by IFNs [47, 48]. 
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Signal transducer and activator of transcription 1 (Stat1) 

STAT proteins play a vital role in cell proliferation, differentiation, and signal 

transduction by controlling related transcription factors [49, 50].   IFNA has a 

considerable influence on the production and activation of STAT1 [49, 50],  and STAT1 

activates transcription of ISGs [26].  Additionally, Stat1 null mice show signaling 

defects when mounting an interferon response [51-53]. 

 

N-myc (and STAT) interactor (Nmi) 

The Stat and Myc gene classes are known to play important roles in cell 

differentiation and proliferation, and whole organism development.    Nmi has a 

significant influence on the activity of the Myc and Stat genes [54], and therefore, acts to 

regulate other transcriptional factors involved in paracrine signaling of other cytokines 

and hormones.  

 

Radical S-adenosyl methionine domain containing 2 (Rsad2)  

Rsad2 is a known antiviral protein that is induced by Type I interferons.  

Additionally, Rsad2 is expressed in the presence of conceptus-secreted IFNT during 

pregnancy in sheep and cows, and it is thought to have a vital role in the maintenance of 

pregnancy [23]. 
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2'-5' oligoadenylate synthetase 2 (Oas2) 

Oas2 has an important role in viral RNA degradation, namely OAS2 cleaves 

viral mRNA from rRNA [55].   Other cellular roles include apoptosis induction and 

growth regulation [56].  Additionally, Oas2 is a well-established pregnancy induced ISG 

in sheep [57]. 

 

Toll-like receptor4 (Tlr4) 

TLR4 activity induces Type I IFNs [58].  However, unlike the molecules discuss 

thus far, TLR4 is specialized not for the antiviral response, but as an antibacterial 

defense.  TLR4 recognizes lipopolysaccharide subunits, the differentiating component of 

gram negative bacterial walls and then initiates an immune response [59].  Interestingly, 

the conceptus shows restrained immunological activity while in the uterus, however, it 

has been recently shown that trophoblast cells not only have the ability to express Tlr4, 

but also that signaling from TLR4 could initiate the immunological interactions of 

implantation [60, 61]. 

 



12 

 

 

 

III   MATERIALS AND METHODS 

All experiments and surgical procedures were approved by the Institutional 
 

Animal Care Committee of Texas A&M University.  Mice were kept under light 

controlled conditions with free access to food and water.  Females were placed with 

fertile males, and the morning that a vaginal plug was observed was considered 

gestational day 1.  Pregnant mice were maintained
 
according to normal husbandry 

practices.  Mice were sacrificed by cervical dislocation on differing gestational days. 

The entire reproductive tract
 
(uterus and ovary) was excised, and the uterus was trimmed 

free
 
of the broad ligament, oviduct, and cervix. Sections from the

 
middle of each uterine 

horn (approx. 0.5 cm) were fixed in 4% (w/v) paraformaldehyde
 
in PBS (pH 7.2). After 

24 h, fixed tissues were changed to 70%
 
(v/v) ethanol and then embedded in Paraplast 

Plus (Oxford Labware).
 
The remainder of the uterine horn was frozen in liquid nitrogen

 

and stored at –80°C for RNA extraction.
 
 

 

A  Gene Identification Procedures  

RT-PCR Analysis  

Expression of Irf1, Irf2, Irf6, Irf7, Isg15, Mx1, Nmi, Oas2, Plscr1, Rsad2, and 

Stat1 studied
 
by RT-PCR as described previously [62-65]. Primers

 
for each component 

were derived from mouse genes using Primer 3[64]. A partial murine
 
cDNA of 300–700 

bp was cloned by RT-PCR using total RNA
 
isolated from the uterus.  Primer and 

annealing temperatures used for PCR
 
are summarized in Table 1. The amplified PCR 
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products were subcloned
 
into the pCRII cloning vector using a T/A Cloning Kit 

(Invitrogen
 
Life Technologies) and sequenced in both directions using an

 
ABI PRISM 

Dye Terminator Cycle Sequencing Kit and ABI PRISM
 
automated DNA sequencer 

(Perkin-Elmer Applied Biosystems) to
 
confirm identity.

 
 

 

In Situ Hybridization  

In situ hybridization analysis of ovine uteri were conducted
 
using methods 

described previously [66]. Briefly, deparaffinized,
 
rehydrated, and deproteinated cross- 

 

 

 

Primer GenBank Accession No. Primer sequence 5’ – 3’ 
(forward and reverse ) 

Annealing temp. 
(C) 

Product size 
(bp) 

Irf1 NM_008390 CCAGCCGAGACACTAAGAGC 

CTTCGGCTATCTTCCCTTCC 
55.0˚ 330 

Irf2 NM_008391 CTCCGCTCTTCAGAAACTGG 

TGCGTTCTCTTCATCACTGG 
55.0˚ 584 

Irf6 NM_016851 TGTGGAGACCGGAAAGTACC 

ACCGTTGATGTTCAGGAAGG 
55.0˚ 328 

Irf7 NM_016850 CTTCTTGCTTCAGGTTCTGC 

TGCCTACTTCCCAGTATACC 
55.0˚ 470 

Isg15 NM_015783 CCGTGACTAACTCCATGACG 

CTGGTCTTCGTGACTTGTTC 
54.0˚ 302 

Mx1 NM_01084 CCGTATCAGAGGGAGACAGC 

TCTCCCAATATTCCGTCTGC 
54.5˚ 608 

Nmi AF019249 GAATCATGTCGTGCAGATGG 

TTGACCACCTCCACTTCTCC 
55.0˚ 516 

Oas2 NM_145227 ATGCCACTTTTCGTCACTCC 

CCTGAGGGTGAAGTCAGACC 
54.5˚ 483 

Plscr1 NM_011636 ACTGCTGTACCCGAAACTGC 

TCACAAAACCAGACCACTGC 
54.5˚ 353 

Rsad2 BC057868 AGATGGGAACAGCACTCAGC 

AGATTCAGGCACCAAACAGG 
55.0˚ 694 

Stat1 NM_009283 GAAGAGCGACCAAAAACAGG 

GAATGAGCTGCTGGAAGAGG 
54.5˚ 377 

TABLE 1.  Sequences for primers for RT-PCR 
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sections (5 µm) of
 
the uteri were hybridized with radiolabeled

 
sense or antisense cRNA 

probes generated from linearized plasmid
 
DNA templates using in vitro transcription 

with [
35

S- ]UTP. After
 
hybridization, washing, and ribonuclease A digestion, slides

 
were 

dipped in NTB-2 liquid photographic emulsion (Kodak), stored
 
at 4°C for 4 to 40 days, 

and developed in Kodak D-19
 
developer. Slides were then counterstained with Gill's 

modified
 
hematoxylin (Stat Lab), dehydrated through a graded series of

 
alcohol to 

xylene, and protected with a coverslip.
  

 

Photomicroscopy  

Relative amounts of mRNA expression from in situ hybridization were assessed 

visually in uterine sections from each mouse by two independent
 
observers and scored as 

present or absent (no signal stronger than sense).  If histologically
 
discernable, notations 

were made declaring location (LE, GE, S, D, etc.) of strongest and/or most variable 

change over gestational days.  Images of representative fields
 
of sections hybridized with 

antisense or sense cRNAs were recorded
 
under brightfield or darkfield illumination with 

a Nikon Eclipse
 
1000 photomicroscope (Nikon Instruments Inc.) fitted with a

 
Nikon 

DXM1200 digital camera using constant image acquisition
 
parameters to ensure accurate 

comparison.  
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IV       RESULTS 

A  Cell Type Identification 

One important requirement of this research is that not only should it detect up-

regulation of the specified gene, but also that the location (cell type) of the mRNA 

activity can be identified according to gestational day (GD).  Therefore, it is important to 

recognize major cell types on the histological sample.  Such cell types have been 

identified in Figure 1.  

 

 

 

 

 

 

 

 MY   

 

 

 

  

 

B   Signal Recognition 

 Experimental tissues subjected to in situ hybridization result in localized 

radioactive decay at the location of mRNA occurrence.  Although the site of radiation 

emission cannot be seen by brightfield microscopy, this radiation signal is preserved by 

FIG. 1. Cell types labeled in tissue cross section of GD 5 and 8. MS, mesometrium; LE, luminal epithelium;  S, 

stroma; GE, glandular epithelium; MY, myometrium; D, Decidua; E, Embryo. 

 MS  

 LE  

  S 

MY  

 GE 

GD5 

MY  

      E  

      D  

GD8 
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exposure to liquid radiographic film, which deposits silver grains on the tissue.  The 

presence of mRNA then can be detected in its original location by dark field 

microscopy.  The results here are coupled with bright field microscopy for orientation 

reference.  For example, see the schematic representative diagram in Figure 2.   

  

 

 

 

 

 

 

 

 

 

 

 

In situ hybridization studies with radiolabeled sense probe was used as negative 

control and was used for comparison of antisense expression. 

 

C  Summary of Results  

 The in situ hybridization studies that yielded a positive result are summarized in 

Figures 3, 4, and 5 under both bright field and dark field microscopy according to gene 

and gestational day.  Individual findings will be reported subsequently.   

FIG. 2. – A schematic representation of post-ISH tissue slide with 

localized radioactivity, as seen  a) in its  theoretical state,  b) under 

bright field microscopy, and  c) under dark field microscopy      
 

 
     Radioactive signal 

a)         
 

  Tissue 

                          
 
 
b) 
 
 

 
 
Preserved signal  

c)  
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FIG. 6  ISH analysis of Irf6 in endometria on GD3 of 

pregnancy in dark-field and bright-field illumination 

for each respective gene. LE, luminal epithelium; GE, 

glandular epithelium.  
 

 

 

 GD3            

D    Peri-implantation Signal  

In situ hybridization (ISH) studies found Ifr6 mRNA expression in uterine LE 

cells and GE cells.  During gestational days 2-5, the Irf6 signal is the most strong, which 

can be seen in Figures 3 and 6 under brightfield microscopy (BF) and darkfield 

microscopy (DF).   This finding in addition to the role it plays in tissue development and 

remodeling has made it of particular interest to further studies.  

 

  

 

 

 

 

 

 

Additionally, ISH studies indicate that Oas2 and Plscr1 mRNA are also 

expressed in the uterine LE.  Similarly, mRNA expression peaked during the peri- 

implantation period, namely GDs 1-5 and 2-4, respectively.  These findings can be seen 

in Figures 4, 5, 7, and 8.     

 

 

 

 

  

 

  

 

LE 

 

GE 

FIG. 7.   ISH analysis of Oas2 in endometria on GD4 

and GD5 of pregnancy in dark-field and bright-field 

illumination. LE, luminal epithelium.  
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E      Post-implantation Decidual Signal 

Many of the genes investigated (Tlr4, Isg15, Nmi, Oas2, Irf1, Irf2, Irf7) showed 

mRNA expression in the decidua that was the greatest on gestational days 7-9.  As 

previously discussed, decidualization is a process in which a significant change in 

cellular composition and morphology occurs in the endometrial tissue.  This process 

begins around the time of implantation immediately adjacent to the implantation site.  

Over the several days following this event, the decidualization reaction radiates to the 

entire breadth of the endometrium.   

Because of the location of the ISH signal produced for these genes, it is 

speculated that these genes may have a role in the decidualization process.  These results 

can be seen in Figure 9 under bright field microscopy (BF) and dark field microscopy 

(DF).  

   LE 
 
  

 GE 

LE 

 
GE 

   LE 
 
  

 GE 

LE 

 
GE 

 

  GD3            

  GD4            

FIG. 8.   ISH analysis of Plscr1in endometria on GD3 

and GD4 of pregnancy in dark-field and bright-field 

illumination. LE, luminal epithelium.  
 



22 

 

 

 

Tlr4   
 
 
 

  
GD
7            

  
GD
7            

   Oas2 
   GD9            

  GD9            

 

 

  

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 GD7            

 Irf7            

 Isg15            

 GD7            

 GD9             GD9            

 GD7            

 Irf1            

 GD7            

 Irf2            

 GD9            

 Nmi            

         D  D 
 
 
 
 
 
 
 
 
 

E   E 
    

       D   D      D        D 
 
 
 
 
          E       E 
                            D  D 
         
                     D      D 
 
 
 
 
 
 
 
 
       D   D       

 
D           D 

 
 
 
 
      D   D      D       

  D 
 
 
 
 
 
 
 
 
       D   D     D        D 
 

FIG. 9.  ISH analysis of decidual ISGs in 

endometria on GD7 and GD9 of pregnancy in 

dark-field and bright-field illumination. 

E,embryo; D, Decidua. 
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FIG. 10.    Tlr4  ISH analysis in endometria on GD11 of 

pregnancy in dark-field and bright-field illumination. F, 

fetal Tissue; U, Umbilical tissue.  

 

 

  GD11            

  GD11            

 

F      Other Notable Findings  

In addition to the decidual mRNA expression, Tlr4 produced interesting results 

in late gestation.  The investigatory gene mRNA was highly expressed in the umbilical 

cord, while absent in the fetus (see Figure 10). 

 

 

  

 

 

  

  

  

 

  

Similarly, Rsad2 was expressed in placental tissue.  This signal could be seen 

most intensely after GD 9 and was absent in the fetal tissue.  (See Figure 11.) 
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G       No Result 

Finally, Mx1 and Stat1 showed no result.  In the case of Mx1, RT-PCR yielded 

no product, and in situ hybridization studies were not attempted.  This was to be 

expected as it is known that highly inbred mice, such as those routinely used in 

laboratory studies, carry deletions and/or mutations in the Mx genes [67].   Stat1, 

however, had a successful RT-PCR study, however mRNA expression was below 

detectable limits in our ISH studies. 

  

 

FIG. 11.    ISH analysis of Rsad2 in endometria on GD11 of 

pregnancy in dark-field and bright-field illumination. F, fetal 

Tissue; P, placental tissue. 
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V       DISCUSSION 

 As discussed, several genes are specifically expressed around the time of 

implantation: Irf6, Oas2, and Plscr1.  In order for implantation to be successful, the 

conceptus must approach the uterine wall with a specific orientation, uterine tissue must 

undergo conformational modifications, the conceptus must hatch from the ZP, the 

microvilli between the conceptus and uterine epithelium must interdigitate, the lumen 

mist close around the conceptus, the conceptus must invade the uterine endometrium, 

and, finally, in tandem, the uterine endometrium must permit invasion by the conceptus 

[13]. 

 Although the mechanisms for many of these processes are unknown, it is clear 

that the entire process is continuous and depends on constant combative input from both 

the maternal and fetal signals.  It is interesting that the genes found to be expressed in 

this study around the time of implantation are those that are known to induce tissue 

remodeling, growth and development, and cell communication.   Now that these genes 

have been identified, further study is needed to investigate the specific gestational 

functions of these genes.  

 Accompanying implantation, decidualization occurs in the stromal tissue 

immediately surrounding the implantation site.  Over time, this reaction initiation 

radiates through the uterine stroma [14].  Interestingly, many of the genes studied that 

have positive ISH signals after gestational day 5, display a signal that encircles the 

conceptus from a distance (refer to Figure 9).  In addition, many of these genes are 

known to function as signal transducers, transcriptional modifiers, and proliferation and 
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differentiation regulators.  It is possible that the genes identified are active participants in 

decidualization.  As previously stated, these genes will also need further study to 

investigate these claims.  

 Finally, Tlr4 and Rsad2 may have a role in placental and umbilical development 

and maintenance.  This is likewise speculated based on the extent of mRNA expression 

of these genes in their respective histological locations.  As addressed, these functional 

speculations demand further study.    
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