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ABSTRACT 
 

The Effects of Habitat Complexity on the Cognitive Performance of Two Fish Species 

and Their Hybrids (April 2008) 

 
Heather Anne Chance 
Department of Biology 
Texas A&M University 

 
Research Advisor: Dr. Gil G. Rosenthal 

Department of Biology 

The complexity of an animal’s habitat plays a significant role in behavior, morphology 

as well as other life history traits.  Habitat complexity may also play a significant role in 

an animal’s cognitive capabilities such as learning and memory attributes.  In the field, I 

quantified habitat complexity in populations of two species of swordtail fishes – 

Xiphophorus birchmanni and X. malinche – as well as two populations of naturally 

occurring X. birchmanni/X. malinche hybrids found in the Rio Calnali, Hidalgo, Mexico.  

Habitat complexity differed between populations with X. malinche residing in the most 

complex and X. birchmanni in the least complex. In the laboratory, I tested spatial 

learning and memory capabilities of X. birchmanni, X. malinche, and their hybrids; I 

then investigated the relationship between habitat complexity and cognitive performance 

as well as the performance of hybrids compared to the parental species.  Cognitive 

performance does not seem effected by habitat complexity.  The hybrid populations do 

not seem to deviate in cognitive performance from that of the parental species. 
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CHAPTER I 
 

INTRODUCTION 
 

Learning is defined as the adaptive modification of behavior based on experience 

(Alcock 2005).  Many animals must learn in order to find food and mates and to avoid 

hazards such as predators within their respective habitats and ecosystems.  Spatial 

learning is employed by those animals allowing for the capability of acquiring both 

immediate and long-term information about their location as well as their orientation 

within that environment.  A variety of strategies are used in order to find a location in 

space such as landmarks, global reference systems, path integration, and cognitive 

mapping (Boysen 2004).   

 

Many species of fish have been shown to be not only capable of spatial learning and 

memory, but of using multiple methods to form cognitive maps of their environment 

depending on the type and complexity of the environment (Odling-Smee & Braithwaite 

2003; Hughes & Blight 2000; de Perera 2004, 2003; Braithwaite & de Perera 2006).  

The complexity of the habitat in which an animal lives can exert selection on behavior 

and underlying neural substrates.  Closely related African cichlid species residing in 

Lake Tanganyika live in diverse habitats that range from sand to large, spindle-shaped 

rocks.  There is great diversity of behavior as well as a range of overall brain size.  Fish 

that live in the more pelagic areas had the smallest brains while those that lived among 

the large rocks have larger brains (Shumway et al. 2007), which may support the theory 

This thesis follows the style and format of Animal Behaviour .     
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that a larger overall brain size allows for a larger capacity for information processing.  

Interspecific differences in spatial learning and underlying neuroanatomical substrates 

suggest that there is a genetic basis to complex behavioral traits, as well as others.  

Natural hybrid zones between species differing in habitat complexity therefore may 

provide insight into the evolutionary genetics of spatial learning.  

Hybrid zones are defined as narrow regions in which two genetically distinct species 

meet, mate and are capable of producing offspring hybrids (Barton & Hewitt 1989).  It 

has been assumed that the hybrid offspring of two different species would almost always 

be unfit in comparison to their parents.  In actuality, studies have shown a general 

pattern of hybrid fitness in plants and animals that is greater than or even equivalent to 

that of one or both of the parental species (Arnold & Hodges 1995).   

 

A hybrid zone exists between two swordtail species, the highland Xiphophorus malinche 

and the lowland Xiphophorus birchmanni, in the Rio Calnali, Hidalgo, Mexico.  The 

secondary sex characteristics of males of the two species are drastically different.  X. 

malinche are strictly highland with a pronounced elongation of the lower rays of the 

caudal fin that are bordered with pigmentation (“sword”), a moderately sized dorsal fin, 

and an irregular array of oval-shaped flanking vertical bars.  Xiphophorus birchmanni, 

on the other hand, lack swords or bear short swords, have a more elongated dorsal fin, 

and have vertical bars that are expressed in a regular series (Rosenthal et al. 2003).   
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My thesis quantifies the spatial complexity of X. birchmanni, X. malinche, and hybrid 

habitat in the wild.  In the laboratory, I then tested spatial learning abilities of the two 

species and their hybrids.  This allowed me to evaluate (a) whether spatial learning has 

adapted to habitat complexity and (b) whether spatial learning abilities of hybrids 

deviate from those of parentals. 
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CHAPTER II 

METHODS 

In field 

I modeled a rugosity rig from a description by the Shumway Lab of Boston University 

(Shumway et al. 2007).  A string measuring 10 feet was held taught using wooden 

dowels over the substrate while a light-weight, small link chain of 2.2 cm per link was 

laid along the contours of the riverbed.  At each field site, I took a sampling of 

topological complexity measurements at intervals conducive to the conditions of the 

environment.  Rugosity is determined by taking the ratio of the length of chain to the 

length of taught rope.  I also recorded maximum depth along the chain.  

 

In lab 

Subjects 

We captured three populations of swordtail fish using baited minnow traps.  Fish were 

collected from three sites in Calnali, Mexico.  X. malinche were collected from 

Chicayotla, Arroyo Xontla (20°55’30” N 98°34’36” W) and hybrids were collected from 

Calnali-low (20°53’54” N 98°34’37” W) on the Rio Calnali; we collected samples of X. 

birchmanni from the Río Garces (20°56’24” N 98°16’54” W).   
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Plus-maze 

I randomly selected four X. birchmanni males and housed them in their own filtered and 

aerated aquaria (73.5 X 30 cm and 41 cm high).  Another four randomly selected males 

were housed individually in filtered and aerated aquaria (25.5 X 50 cm and 28 cm high) 

with two randomly selected X. malinche females.   

 

Preference-run 

I randomly selected six males from the three populations and housed them in filtered and 

aerated aquaria (73.5 X 30 cm and 41 cm high) with plastic plants as well as six females 

from each of the same three populations.  Water was maintained at 22.3°C and the 

overhead fluorescent lighting supplied a 12:12h light:dark cycle.  Fish were regularly fed 

a commercial flake food (Tetramin) as well as live brine shrimp nauplii and vinegar eels.   

 

Apparatus 

Plus-maze 

The plus-maze design (Figure 1) was modified from Brown and Braithwaite (2004) and 

is comprised of a central compartment (30 X 30 cm and 20 cm high) as well as four 

adjoining compartments of equal area on each side.  The maze was filled with water to a 

height of 15 cm.  Access to each of the four compartments was accomplished by passing 

through a doorway (3.5 cm wide).  Adjacent to each doorway was a tile (3.06 X 2.16 

cm) marked by a black shape (rectangle, square, diamond, or circle) each with an area of 

22.5 cm.  Positioned opposite the doorway of each adjoining compartment, frozen brine 
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shrimp, Daphnia, were hung in screen sachets.  Three of the four sachets contained 

Daphnia still in its original packaging while the fourth sachet allowed fish access to the 

food source by means of the absence of the original packaging.  A clear container (8.7 X 

8.7 cm and 19.5 cm high) was used to limit the fish to a specific starting area.  A brick 

was initially used to provide cover for the fish inside the starting container that was later 

replaced by a table (7 X 7 cm) with a height of 2.2 cm.  Since fish failed to respond to 

criterion using this apparatus (see results), we built a new apparatus to evaluate subjects’ 

ability to learn cues associated with shelter. 

 

 

Figure 1. (left) Plus-maze - subjects started in the center – with shelter provided – and given free access to 

the maze.  Each arm was marked with a different shape of equal area. A food reward was located in only 

one of the arms of the maze. (right) Preference-run: subjects started in the center of the run parallel to the 

barriers. Barriers were marked with a different shape of equal area. Only one of the two barriers allowed 

subjects access to the shelter provided by a brick. 
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Preference-run 

The preference-run (19 X 75 cm and 19.5 cm high) contained a brick on each end of 

similar size and shape (Figure 1).  Water was filled to a height of 14cm.  In front of each 

brick, a clear plastic barrier was placed 15 cm into the interior of the run.  One of the two 

barriers had a pair of 2 cm gaps that allowed fish to access the shelter of the bricks and 

was unseen by the fish facing perpendicular to the barriers.  Access to shelter was 

indicated by a black square (7 X 7 cm), while the other barrier was marked by a black 

circle of equal surface area.   

 

Procedures  

Plus-maze 

Shape assignments and food sachets were assigned compartments haphazardly.  The 

rectangle always indicated the compartment with the sachet that allowed for foraging.  

Each fish was gently transferred from their tanks into the starting chamber and given 2 

min to acclimate.  Afterwards, the starting chamber was vertically lifted by a simple 

pulley system and fastened in place.  The task of the fish was to find the compartment 

containing the sachet of Daphnia that would allow for foraging.  Fish were allowed 10 

min to find the correct compartment.  Fish were initially not offered food at any other 

time, but common failure to complete the task required some supplemental feeding of 

Tetramin in order to sustain health.  The position of each fish was monitored and 

recorded by an overhead camera which input into the Biobserve Viewer system for 

automated motion tracking. 
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Preference-run 

Each fish was gently transferred to the center of the preference run and released parallel 

to the barriers.  The fish’s task was to pass through the barrier marked by the square in 

order to receive shelter.  Fish were given 10 min to complete the task.  If unsuccessful, 

fish were coerced through the proper barrier and left alone for approximately 5 min. 

Bricks were moved and rotated randomly on a daily basis and barriers were assigned to 

the ends by flipping a coin.  Fish movements were recorded with a Sony Digital 

Handicam mounted atop a tripod above the run.  Videos were scored based on the initial 

direction traveled, latency to first movement toward a barrier, latency to correct direction 

if initial direction traveled was away from the reward zone, latency to reach the correct 

barrier, and latency to pass through the barrier indicated by the square. 
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CHAPTER III 

RESULTS 

In field 

ANOVA revealed significant among population differences in rugosity (F1,3 =3.55, 

p=0.03; Figure 2).  Rugosity – i.e. habitat complexity – was significantly higher at the 

locale with X. malinche compared to the locales with hybrids (p=0.045; p=0.006) and 

locale with X. birchmanni (p=0.009) (Table 1). 

 

 

Figure  2. Above is a box plot showing the differences in habitat complexity among the four Xiphophorus 

populations.  
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Table 1. Fisher’s least significant difference test. 

 

SITE$(i) SITE$(j) Difference p-value 95.0% Confidence Interval 
        Lower Upper 
Cal-low Cal-mid -0.035 0.270 -0.100 0.029 
Cal-low Chicayotla -0.110 0.006 -0.185 -0.035 
Cal-low Garces -0.014 0.637 -0.075 0.047 
Cal-mid Chicayotla -0.075 0.045 -0.148 -0.002 
Cal-mid Garces 0.021 0.462 -0.037 0.080 
Chicayotla Garces 0.096 0.009 0.026 0.166 

 

 

 

 

 

In Lab 

Plus-maze 

In plus-maze trials I found no evidence that the fish learned to associate the stimulus 

shape with the food reward (Figure 3). Also, I found no differences between the latency 

to find the food reward – an assay of associative learning – between X. malinche from 

Chicayotla and X. birchmanni from Garces (t67=0.09, p=0.92; Figure 4). 
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Figure 3. Bar graph showing the mean (±SE) latency to finding the food reward across the trial.  

The graph indicates that there is no evidence of the subjects learning to associate a particular shape 

(rectangle) with a food reward. 

 

 

Figure 4. Bar graph showing the mean (±SE) latencies to finding the food reward for X. malinche from 

Chicayotla (“Chica”) and X. birchmanni from Garces. 
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Preference-run 

In preference-run trials, for all measures of latency – such as latency to moving in 

correct direction, latency to finding the door to shelter – I found a bimodal effect, with 

longer latencies early and late in the testing period (Figure 5). 

 

 

Figure 5. Latency to correct movement for X. malinche (left panel), hybrids (middle panel), and  X. 

birchmanni (right panel).  
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CHAPTER IV 

CONCLUSIONS 

Various ecological factors affect cognitive performance, including habitat complexity 

and predation pressure.  By measuring rugosity among the parental and hybrid 

populations I found that there are differences between in habitat complexity among 

Xiphophorus populations. In this study, X. malinche has a more complex habitat than the 

other populations.  As the locations of the populations are further downstream, the 

rugosity value – habitat complexity – decreases, with the Calnali-Low hybrid population 

being of equal complexity to X. birchmanni.   

 

There was no evidence of the fish learning to associate the stimulus shape to the food 

reward in the plus-maze trials.  During the trials, the fish were not inclined to search the 

maze for a food reward.  Most of the fish remained hidden under the table provided to 

them in the starting chamber.  The preference-run was then designed to simplify the 

original plus-maze design and to allow for the acquisition of shelter as a reward. 

 

The fish in the preference-run trials may have learned to associate the stimulus shape 

with the location of shelter, but displayed a perplexing pattern over the course of the 

experiment.  It is a possibility that only offering shelter as a reward is not enough 

motivation.  Further experiment assays should consider using food as well as shelter or 

another form of motivation.  Using a visual cue to determine visual association may also 

need to be changed to using another cue such as olfaction. 
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My tests do not indicate that there are differences in learning abilities between the 

parental species and their hybrids. The sample size used was not large enough to allow 

for confident results.  Running more assays would allow for a larger sample size and 

more confidence in results. 

 

The research in the Rosenthal lab continues to explore these questions.  We feel that we 

have identified a good learning assay that can be used to investigate the ecological and 

evolutionary mechanisms affecting cognitive performance in swordtails, but further 

refining is necessary. 
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