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ABSTRACT 

 

Coarse Scale Simulation of Tight Gas Reservoirs. (December 2003) 

Mohamed Hamed El-Ahmady, B.S., Cairo University; 

 M.S., Texas A&M University 

Co-Chairs of Advisory Committee: Dr. Robert A. Wattenbarger 
                                      Dr. David S. Schechter 

 

It is common for field models of tight gas reservoirs to include several wells with 

hydraulic fractures. These hydraulic fractures can be very long, extending for more than 

a thousand feet. A hydraulic fracture width is usually no more than about 0.02 ft. The 

combination of the above factors leads to the conclusion that there is a need to model 

hydraulic fractures in coarse grid blocks for these field models since it may be 

impractical to simulate these models using fine grids.  

In this dissertation, a method was developed to simulate a reservoir model with a 

single hydraulic fracture that passes through several coarse gridblocks. This method was 

tested and a numerical error was quantified that occurs at early time due to the use of 

coarse grid blocks.  

In addition, in this work, rules were developed and tested on using uniform fine 

grids to simulate a reservoir model with a single hydraulic fracture. Results were 

compared with the results from simulations using non-uniform fine grids. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Problem Description 

 The modeling of hydraulic fractures in coarse grid field models is a topic that 

has not been covered in a comprehensive way in the literature. There is definitely a need 

to document a method to model the behavior of a reservoir with coarse gridblocks that is 

hydraulically fractured. The simulation of coarse gridblocks may cause to have an early 

numerical error that is known as artifact wellbore storage. This artifact wellbore storage 

is important especially in the case of tight gas reservoirs that usually have a long 

transient period.  

It is possible to construct a reservoir model with a grid system that is sufficiently 

detailed to model near-wellbore behavior. However, gridblocks containing wells are 

usually too coarse to model near-wellbore behavior directly. Therefore, the calculated 

pressures in gridblocks containing wells pwb must be corrected to formation face pressure 

pwf.  This correction is done using what is known as a well model that is discussed for 

the case of reservoir models with hydraulic-fractures. The well model is very important 

in case of coarse gridblocks. 

 

 

___________ 

This dissertation follows the style of the SPE Reservoir Evaluation & Engineering.
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The results from the use of uniform fine grids to simulate a reservoir model with 

a single hydraulic fracture are compared with the results from simulations using non-

uniform fine grids.   

This dissertation was confined to the simulation of single-phase oil flow cases 

that are producing at a constant rate. It was concerned mainly with reservoir models 

hydraulically fractured of infinite fracture conductivity but case of finite fracture 

conductivity was also investigated. 

1.2 Literature Review on Well Modeling 

Several studies have been carried out in the area of interpretation of well block 

pressure in numerical reservoir simulation. In 1978, Peaceman1 published his first paper 

on this subject. Using a repeated five-spot pattern and square grid blocks he showed that 

for an isotropic square reservoir containing a producer and injector the relation between 

the well block pressure pwb to the wellbore pressure pwf. 

In 1983, Peaceman2 published a second paper that provided equations for 

calculating ro values when the well block is a rectangle and/or the formation is an 

isotropic. He extended the determination of ro to the case of non-square grid blocks with 

a single isolated well.  

In 1987, Peaceman3 investigated a number of useful well geometries 

numerically. He included arbitrary placement of a well within the well block, two or 

more wells within a single well block, a well exactly on the edge or corner of a grid 

block, and a well arbitrarily placed within an edge or corner block. In each case, the 
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effects of the grid dimensions were investigated and analytical solutions were proposed 

for the well index.  

 In 1991, Peaceman4, 5 determined the analytical solution for the equivalent well 

block radius for a horizontal well in an anisotropic reservoir with a uniform grid. 

Peaceman6 also presented a new equation for calculating the equivalent well 

block radius for all the wells in a reservoir that fully accounts for arbitrary well rates and 

the interaction between the wells.  

Babu and Odeh7 presented a relationship between well block and wellbore 

pressure for use in the numerical simulation of horizontal wells and for arbitrary well 

locations in cells. In this work, they derived an analytical equation for calculating ro for 

any well location and for isotropic and anisotropic formations. They presented two 

methods for calculating the equivalent well block radius. The first one was analytical 

and the second one was graphical. Both methods start with the general solution relating 

pressure and flow rate for any well of an arbitrary location in a box-shaped drainage 

volume. Throughout their work, they neglected the effect of gravity and they 

manipulated the magnitudes of the aspect ratios of grids and of drainage areas. 

Mochizuki8 extended Peaceman’s equation to wells aerially and vertically 

inclined at arbitrary angles with respect to grid lines in anisotropic reservoirs. 

Mochizuki’s method is based on the transformation of the anisotropic flow equation to 

an equivalent homogenous equation and then it interpolates the effective well block 

radius wellbore radius and equivalent well length as a function of the angles. 

Permeability thickness and well index were expressed as a function of arbitrary angles. 



4 

Mochizuki’s proposed method was implemented in a commercial simulator and 

compared with analytical solutions. 

Chen et al.9,10 developed a method by which a conventional finite difference 

simulator can be used together with an analytical model to calculate accurate well 

pressure and productivity for different types of wells. They introduced a method for 

accurately calculating the productivity of wells of any deviation (0-90o) for a 

homogenous reservoir. The analytical solution presented in Chen et al.’s work can 

handle multiple wells in a parallelepiped-shaped finite-sized uniform permeability 

reservoir. 

Sharpe and Ramesh11 modified the Peaceman well model, which restored its 

validity for non-uniform aerial grids and for problems that model vertical flow process 

like gas and water coning. They investigated the effect of using the standard Peaceman 

well model in problems formulated on non-uniform cartesian grids and for problems in 

which the vertical flow transmissibility is significant compared with the horizontal 

transmissibility. Sharpe and Ramesh11 also demonstrated that the radial well model is not 

adequate for properly including vertical flow effects. 

Ding et al.12 demonstrated a new approach based on the finite volume method to 

compute the wellbore pressure. This work does not involve the equivalent well-block 

radius concept but requires the pressure distribution in the neighborhood of the well. The 

analytical solution for pressure near the well was analyzed by modifying the 

transmissibility between the grid blocks so that fluid flow around a well was described 

correctly. The proposed method could be applied to non-uniform grids and could be 
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evaluated as a generalization of Peaceman’s analytical method for equivalent well-block 

radius. 

Wan et al.13 compared horizontal well performance simulated by using a uniform 

coarse grid a uniform fine grid and a non-uniform fine grid using Peaceman’s well index 

model. Wan et al. found that when a coarse grid was used to simulate a partially 

penetrating horizontal well the flow rate of the well was under-predicted. This is because 

of the fact that non-uniform grids can introduce large numerical errors into the 

computation of well block pressure. Wan et al. obtained satisfactory results using non-

uniform grids considering uniform local grid refinement in calculations with reasonable 

computational costs. 

1.3 Literature Review on Vertical Hydraulic Fractures 

Prats et al.14,15 studied the effect of vertical fractures on reservoir performance for 

single phase and two phase flow cases. They studied both the constant rate and constant 

pressure production. The model included the effect of the boundary. They introduced the 

concept of using radial flow model with an effective wellbore radius to account for the 

hydraulic fracture. They found that the effective wellbore radius was equal to one-fourth 

the total fracture length. 

Russell and Truitt16 studied the pressure-transient behavior in vertically fractured 

reservoirs. They presented numerical solutions using conventional finite-difference 

method for an infinite conductivity fractured well in a square reservoir. They published 

transient drawdown solutions for vertically fractured liquid wells with constant 
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production rate. They developed methods of drawdown and build up testing utilizing 

these solutions. 

Wattenbarger and Ramey17 extended Russell and Truitt15 solutions to the gas 

case. They used numerical simulation to study pressure transient testing of fractured gas 

wells. They showed that the methods developed for testing fractured wells flowing liquid 

could be extended to gas cases if the real gas pseudo pressure is used if drawdown is 

small. They also showed that turbulence (non-darcy flow) could be treated as a skin. 

Rules to identify the end of linear flow and the start of pseudo radial flow were also 

developed. 

Morse and Von Gonten18 studied the effect of hydraulic fracturing on well 

productivity prior to stabilized flow. They used a general numerical simulator to obtain 

relationship between production rate and time for constant pressure case. Fine grids at 

the fracture tip and parallel to the fracture were used in the model. They showed that for 

low permeability reservoirs well productivity varied greatly with time and in the case of 

well with hydraulic fractures the initial well productivity might be more than ten times 

the final stabilized productivity depending on the fracture length. 

Gringarten et al.19,20 developed new analytical solutions for vertical fractures of 

infinite conductivity and uniform flux in an infinite reservoir and in a square drainage 

area. The case of horizontally fractured well was also discussed. They considered the 

case of constant rate production. Applicability of the solutions for analyzing pressure-

transient test data was illustrated. 
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Cinco-Ley et al.21,22 developed analytical solutions for transient behavior of a 

well with a finite conductivity vertical fracture in an infinite slab reservoir. They 

consider the case of constant rate production. They developed a set of type curves in 

terms of dimensionless pressure and time for different values of dimensionless fracture 

conductivity. For a highly conductive fracture FCD values greater than 100π their 

solutions are in good agreement with those of Gringarten et al.18 solutions. The solutions 

for stabilized flow are in good agreement with those of Prats13 steady-state solutions. A 

type curve matching procedure to analyze early-time pressure-transient data to obtain the 

formation and fracture characteristics were illustrated. Later they modified their 

solutions to include the effects of wellbore storage and fracture damage. An infinitesimal 

skin was considered around the fracture. They found that the well behavior was 

importantly affected by the fracture damage and important information about the fracture 

characteristics might be masked when wellbore storage effects were present. 

Agarwal et al.23 studied the performance of low-permeability gas wells 

stimulated by massive hydraulic fracturing (MHF) using a computer program called 

MHF simulator. The program is a two-dimensional single-phase finite-difference model 

that simulates real gas flow. They discussed the limitations of the conventional analysis 

methods for determining fracture length and fracture conductivity in MHF wells. They 

presented sets of type curves for constant-rate and constant-pressure production cases as 

alternative solutions for analyzing MHF wells. Wellbore storage effects were not 

considered. They showed that a curve for FCD values of 500 or greater should represent 

infinite fracture conductivity (Gringarten et al.19) approximately. 
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Cinco-Ley et al.24 discussed thoroughly the limitations and advantages of several 

methods for analyzing pressure-transient data in fractured wells. Their discussion 

covered all the flow regimes that might occur in vertically fractured wells. They showed 

how different methods might be combined to accomplish a more reliable analysis. In 

addition, a new analytical solution was presented for the analysis of short-time pressure-

transient data for wells with a vertical fracture with low or intermediate fracture 

conductivity. 

Narasimhan and Palen25 studied the behavior of vertically fractured wells 

numerically using integral finite-difference method. The elements were accurate near the 

well and around the fracture tip to efficiently simulate the radial flow. Finite 

conductivity fracture solutions of Cinco-Ley et al.21,22 were used to validate their 

solutions. New problems such as unequal wing-length, choked fracture, deformable 

fracture, and effect of fracture storativity were studied. 

Bostic et al.26 presented method to analyze the performance of wells stimulated 

with massive hydraulic fracturing by combining post fracture performance data with post 

fracturing buildup data for analysis on the same constant rate type curves. This method is 

useful when the early-time production data were lost during the cleanup period and 

significant shut in periods. The combination of buildup and production data is 

accomplished using superposition principal. 

Cinco-Ley and Samaniego27 presented the basic pressure behavior differences 

between a finite conductivity fracture and an infinite conductivity fracture with fracture 

damage. Two types of fracture damage conditions were studied: damage zone around the 
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fracture which is also called fracture-face skin and a damage zone within the fracture in 

the vicinity of the wellbore which is also called choked fracture. They presented new 

type curves to analyze early time and long-time pressure data for both choked fracture 

and fracture face skin cases. 

Bennett et al.28studied the influence of the settling of propping agents and the 

effect of fracture height on the well response in finite-conductivity vertically fractured 

wells. They used a block-centered finite-difference 3D numerical model to compute the 

response at the well. They suggested methods to analyze well performance when the 

fracture-conductivity was a function of fracture height and fracture length. They also 

presented a systematic procedure to obtain a grid so that accurate results were obtained 

from a finite-difference model. This procedure can be used for both 2D and 3D 

problems. They suggested to use finer grid near the well and near the fracture tip and to 

use uniform grid parallel to the fracture. 

Ding29 studied the simulation of fractured wells with high conductivity and 

considered the fractures as part of the well. Their method was based on the well model 

rather than on the gridding technique. This new well model took into account well 

configurations by using equivalent transmissibility to improve the flow calculation in the 

well vicinity. To establish a well model it is required to know a steady state or pseudo-

steady state pressure distribution around the well. 

1.4 Literature Review on Modeling Hydraulic Fractures in Coarse Blocks 

In 1983, Ngheim30 presented a way to model infinite-conductivity fractures in 

reservoir simulation by the use of source and sink terms. The drawbacks of his work 
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were that he used pressure in neighboring cells to compute the production, which is not 

consistent with standard simulator programming. He also mentioned that hydraulic 

fractures of finite conductivity fractures such as those that occur in massive hydraulic 

fracturing cannot be simulated by his method but should rather be simulated by a row of 

gridblocks with narrow width and high permeability and porosity representative of the 

fracturing proppant. 

 In 1985, Schulte31 worked on the production behavior of hydraulically fractured 

wells in which gas or oil in the fracture enters the wellbore over a limited vertical 

interval smaller than the fracture height such as in the case of deviated or partially 

penetrated wells. He emphasized importance of fine gridding at tip of fracture and at 

well. 

 In 1991, Roberts et al.32 studied the effect of fracture and reservoir properties of 

gas well productivity of multiply fractured horizontal wells in tight gas reservoirs. They 

reported that numerical problems in the simulation of hydraulic fractures of horizontal 

wells were solved by increasing the fracture width while decreasing the fracture 

permeability such that the fracture conductivity was maintained. 

 In 1993, Lefevre et al.33 provided rules of thumb to simulate infinite conductivity 

fractures in coarse grid models. Their results depend on a very large series of simulations 

in single-phase steady state conditions. The simulations were done with a fracture either 

along the cell axes or along the cell boundaries. They failed to show the theoretical basis 

from which they provided their rules. The rules that they showed used the Peaceman4 

formula coupled with equivalent radius (rwe) in case of hydraulic fracture included 
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within one cell. In case of a hydraulic fracture extending over several cells, they used 

what they called a block factor. They provided tables with correlations showing rules to 

apply for values of transmissibilities to account for hydraulic-fractures passing through 

several gridblocks.  

 In 1996 Hegre34 studied the simulation of hydraulically fractured horizontal wells 

and used (a) fine gridding, (b) a computed value of the equivalent radius of the hydraulic 

fracture coupled with the formula for the Peaceman4 radius for horizontal wells, (c) 

adjustment of transmissibility values for coarse grids with fractures (the new 

transmissibility values are based on automatically comparing with simulation runs at 

early time using local grid refinement) and (d) Adjustment of Well Index of centered 

fractured cells or cells at the tip based on automatically comparing with simulation runs 

at early time using local grid refinement.  
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CHAPTER II 

WELL MODELS AND ARTIFACT WELLBORE STORAGE 

 

2.1 Introduction 

It is possible to construct a reservoir model with a grid system that is sufficiently 

detailed to model near-wellbore behavior. However gridblocks containing wells are 

usually too coarse to model wells directly (Fig. 2-1). Therefore the calculated pressures 

in gridblocks containing wells pwb must be corrected to formation face pressure pwf.  This 

correction is done using what is known as Peaceman’s1 equation:  

model
wbwf J

Bqpp µ
−= .........................................................................................(2-1)  

Where 
w

model rx
khJ

/)208.0ln(
00708.0

∆
= .................................................................................(2-2) 

This above equation is for the radial flow case. It has been developed based on 

the assumption that steady state pressure profiles occur within the well gridblock. The 

main idea behind it came from Peaceman1 who derived Eq. 2-3. This equation states that 

the radius ro at which the flowing pressure equaled the average block pressure could be 

defined for a well gridblock with sides of length ∆x as  

xro ∆208.0= ...................................................................................................(2-3) 

We re-derived Eq. 2-3 in Appendix A. Peaceman1 obtained also numerically from 

detailed simulation modeling of a square grid around a wellbore that  

xro ∆198.0= ...............................................................................................................(2-4). 
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Peaceman1,2 has also demonstrated that the method can be applied for unsteady-

state flow conditions and for the use of rectangular gridblocks of an aspect ratio ∆y / ∆x 

in which case Eq. (2-3) is replaced by Eq. (2-5) 

5.0)]()[(14.0 yxro ∆∆ ×= ..................................................................................(2-5) 

Peaceman’s1,2 equations are programmed into any conventional reservoir simulator for 

the case of radial flow. In this chapter we repeated the same numerical experiments 

reported by Peaceman1 and tried to draw parallels for the case of linear flow. A result 

was reached that wbwf pp =  for the case of linear flow. A more detailed derivation about 

this conclusion is shown in Appendix B. 

 

 

 

 

Fig. 2-1 – Schematic of the cross-section of a wellbore gridblock in a reservoir model. 
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In addition to the problem of modeling wells in reservoir simulation we are faced 

with the problem of artifact wellbore storage35. This is a time resolution problem where 

a combination of a tight reservoir of a coarse well gridblock and a high value of 

diffusivity η  causes a numerical error at early time. 

2.2 Well Models 

2.2.1 Well Modeling in Radial Flow  

We attempted using numerical simulation to get the relation between pwb and pwf 

for the case of radial flow. In doing so we tried to reproduce the results of Peaceman1. 

We consider a single layer homogeneous square-shaped reservoir with uniform thickness 

h as illustrated in Fig. (2-2). The well was set to produce at a constant rate .We 

maintained steady state by putting 4 injectors at the corners of the model. The gridding 

was 99 x 99 cells as illustrated in Fig. (2-3). Table 2-1 summarizes the data used in the 

simulation run. 

 

 

h 

2xe

2y e 

 
Fig. 2-2 – Radial flow in a homogeneous square reservoir modeled by a two-
dimensional areal grid system.



15 

 

Fig. 2-3 – Top view of a model of a square reservoir. This view shows part of the 99 x 
99 cells gridding.  
 

 

 

Table 2-1 – Reservoir and fluid data for the simulated pressure 
drawdown test for the radial flow case 
Drainage area, Acres 

Reservoir length (2xe), ft 

Reservoir length (2ye), ft 

Thickness, (h) ft 

Absolute permeability, (k) md 

Porosity, (φ) fraction 

Initial pressure, (pi) psi 

Oil formation volume factor, (Bo) RB/STB 

Oil viscosity, (µo) cp 

Total compressibility, (ct) psi-1 

Wellbore radius, (rw) ft 

≅ 80 

1,860 

1,860 

150 

1 

0.23 

3000 

1 

0.72 

1.5E-05 

0.25 
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In Fig. (2-4) it is clear that we reached steady state after t = 200 days. The lower 

curve is the pressure in well gridblock (50, 50) and the upper curves are the pressures for 

the adjacent gridblocks in the x-direction. We chose any arbitrary time after t = 200 days 

and we plotted p vs. ln r / ∆x. We normalized the value of r to be r / ∆x and we plotted p 

vs. ln r / ∆x rather than p vs. ln r to be easier in illustration and deducing results as 

shown in Fig. (2-5). 

 

 
Fig. 2-4 – Simulation results of p vs. t for well gridblock and five adjacent gridblocks. 
[i = 50 is the well gridblock i = 51 is adjacent …etc.]. Notice that lines are parallel after t 
= 200 days indicating that we reached steady state.
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For the radial flow case the plot of p vs. ln r gives a straight line at steady state 

conditions. Fig. (2-5) shows that all points for the adjacent gridblocks lie on a straight 

line except for the pressure at the well gridblock. This indicates that wbwf pp ≠  for the 

case of radial flow. If we extend the horizontal line of pwb value to the straight line of p 

vs. ln r we will find that the average gridblock pressure pwb equals the flowing pressure 

at xro ∆21.0= . This same result can be concluded from Fig. (2-6) where we plot pi,j – 

pwb vs. ln r / ∆x where pi,j  is the pressure in the adjacent gridblocks to the well gridblock.  
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p
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p wb  = 2928.87 psi is 
average pressure of well 
gridblock (i  = 50)

i = 51 
)

i = 52

i = 53 
50)

i = 54 
i = 55 

r o  =  0.21

Fig. 2-5 –Simulation results of p vs. ln r /∆x for well gridblock and five adjacent 
gridblocks appear on the plot. [i = 50 is the well gridblock i = 51 is adjacent …etc.]. 
Notice that all results lie on the same straight line except the value of the average 
pressure of the well gridblock which is equivalent to the analytical solution at ro = 0.21.  
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Fig. 2-6 – The plot shows simulation results of pi,j – pwb vs. ln r / ∆x for five gridblocks 
adjacent to well gridblock. [i = 50 is the well gridblock i = 51 is adjacent …etc. ]. Notice 
that when      pi,j – pwb = 0 the value of ln r / ∆x = 0.21 and not zero. 
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2.2.2 Well Modeling in Linear Flow  

In this section numerical simulation was used to get the relation between pwb and 

pwf for the case of linear flow. We considered a half linear flow model with uniform 

thickness h as illustrated in Fig. (2-7). Data used in the simulation run is same as in 

Table 2-1 but note that w is equivalent to 2xe and L is equivalent to ye. The well is set to 

produce at a constant rate and we maintained steady state by putting 2 injectors at the 2 

outer cells of the model. We performed simulation with a 2D full model of 1 x 51 cells 

where the well gridblock is (1, 25). 

 

q 
h

w

y =  yey =   0 

L

 

Fig. 2-7 – Sketch of a linear reservoir model (linear slab). 

 

Fig. (2-8) demonstrates that steady state is reached after approximately t = 200 

days. The lower curve is the pressure in well gridblock (1, 25) and the upper curves are 

the pressures for the adjacent gridblocks in the x-direction. We chose any arbitrary time 

after t = 200 days and we plot p vs. y / ∆y. We used the normalized value of y / ∆y and 

we plotted p vs. y / ∆y to be easier in illustration and deducing results. 
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From fundamentals of reservoir engineering we know that a plot of p vs. y gives 

a straight line for linear flow at steady-state conditions. Fig. (2-9) shows that all points 

for adjacent gridblocks lie on a straight line including the pressure of the well gridblock 

which is at y / ∆y = 0. This indicates that wbwf pp =  for the case of linear flow. We 

therefore deduce that there is no concept similar to the Peaceman1 radius for linear flow. 

This same result can be concluded from Fig. (2-10) where we plot pi,j – pwb vs. ln y/ ∆y 

where pi,j  is the pressure of the adjacent gridblocks to the well gridblock. 

 

 

 

 
Fig. 2-8 – Plot that shows simulation results of p vs. t for well gridblock and five 
adjacent gridblocks [i = 25 is the well gridblock i = 26 is adjacent …etc. ]. Notice that 
lines are parallel after t = 200 days indicating that we reached steady state.
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Fig. 2-9 – Plot that shows simulation results of p vs. y /∆y for well gridblock and five 
adjacent gridblocks. [i = 26 is the well gridblock, i = 27 is adjacent …etc]. Notice that all 
results lie on the same straight line including the value for the well gridblock. 
 

Fig. 2-10 – Plot that shows simulation results of pi,j – pwb vs. y / ∆y for five gridblocks 
adjacent to well gridblock. [i = 26 is the well gridblock, i = 27 is adjacent …etc. ]. 
Notice that when pi,j – pwb = 0 the extrapolated value of y / ∆y = 0. 
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2.3 Artifact Wellbore Storage 

 A simulation numerical error is discussed in this section.  It occurs at early time 

and it is common in tight reservoirs that are modeled with wellbore gridblocks that are 

coarse and which have a high value for diffusivity η . This combination of a coarse well 

gridblock and a tight reservoir causes to have what may be described as a long transient 

period within the well gridblock while the adjacent gridblocks remain at initial pressure. 

This error is known as artifact wellbore storage35. It is named this way because the well 

gridblock transient effect causes an error of unit slope of the log-log plot of ∆p vs. t. 

Thus drawing a similarity to the famous wellbore storage of pressure transient analysis.  

Archer and Yildiz35 pointed out that an early time numerical artifact occurred 

when uniform coarse areal grids are used to simulate pressure transient tests in a 

conventional reservoir simulator. They believed that there are  limitations in 

Peaceman’s1 well model equation used in all conventional reservoir simulators. They 

proposed a new well model formulation to remove the numerical artifact but it still 

occurred in the level of the pressure derivative. They provided a formula Eq. 2-5 to 

estimate the earliest minimum time tmin at which the pressure solutions are accurate for a 

particular grid size. This formula was developed using the concept of radius of 

investigation. Their work was limited for the case of radial flow.  

k
c

xt tφµ
∆ 2

min )(67.66= ...............................................................................................(2-6) 

It is important to note that the original formula of Eq. 2-5 developed by Archer and 

Yildiz35 had a constant of 1,600 in their work because their unit of tmin was in hours.
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2.3.1 Artifact Wellbore Storage in Linear Flow  

We considered the Artifact Wellbore Storage for the case of linear flow. A linear 

flow model of a grid of 1 x 15 is shown in Fig. 2-11. We modeled a square reservoir of 

drainage area of 80 Acres with different grids 1 x 15, 1 x 25, 1 x 51, and 1 x 193. Fig. 2-

12 compares the analytical and numerical pressure solutions for different grid size for 

linear flow case. At very early time pressure solutions obtained from the numerical 

model do not match the analytical solutions. The numerical simulation approaches the 

analytical solution after some time, which that depends on the grid size. A model with a 

smaller grid matches the analytical solutions earlier than one with a bigger grid.  

 

 

Fig. 2-11 – Square reservoir of a linear model of grid 1 x 15.
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Fig. 2-12 – Plot that shows simulation results of log ∆p vs. log t for gridding of 1 x 25, 1 
x 51, and 1 x 193. Notice that the finer grids match the analytical solution at an earlier 
time.  
 
 
 
 

Fig. 2-13 – Simulation results of ∆p vs. t. This is for the case of 1 x 25 grid. The slope is 
found to be equal to 38.47 psi/ft. This slope agrees with the close value of 39.2 psi/ft 
obtained when applying Eq. 2-9.
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Based on the simulation results we developed a relation to estimate tmin for the linear 

case. We determined from Fig. 2-12 that the earliest time at which the pressure solutions 

are accurate with an error of 5 % and an error of 10 %  

For the case of 5 % error in ∆p 

k
c

xt tφµ
∆ 2

min )(217= ......................................................................................(2-7) 

For the case of 10 % error in ∆p 

k
c

xt tφµ
∆ 2

min )(3.118= ....................................................................................(2-8) 

The % error in ∆p was calculated using the formula  

% Error =
( ) ( )

( )analytical

simulationanalytical

p
pp

∆
∆∆ −

............................................................................(2-9) 

And so we apply the above equation at every time step and from the result of the formula 

at 5% we can get the constant in Eq. (2-6). We crosschecked the constant obtained in Eq. 

(2-6) and Eq. (2-7) for the different grids 1 x 25, 1 x 51, and 1 x 193, to verify that the 

formula is correct. 

 It is interesting to note that on plotting pi - pwf vs. t on a Cartesian scale we should 

expect due to artifact wellbore storage to get the slope to be of  

tpcV
qB

dt
dp 615.5−= ..................................................................................................... (2-10)  

Where Vp is the pore volume of the well gridblock. Fig. 2-13 shows a case of the grid 1 x 

25 with a slope of 38.47 psi/ft, which is quite close to the value we got when applying 

Eq. 2-9, which was 39.2 psi/ft. 
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Fig. 2-14 shows a plot of  p vs. x at different times for the grid 1 x 25. We realize 

that )(xp′ is independent of time for values bigger than t = 29 days which agrees with 

what we know about this case that tmin = 29.83 days if we use the formula for a 5 % error 

and so this is further evidence that there is no effect from artifact wellbore storage after 

this time.  

 

Fig. 2-14 – Plot that shows simulation results of p vs. x at different times. This is for the 
case of 1 x 25 grid. Notice that )(xp′ is independent of time for values greater than t = 
29 days which means there is no effect of artifact wellbore storage after this time. 
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CHAPTER III 

 
MODELING HYDRAULIC FRACTURES WITH UNIFORM FINE GRIDS 

 

3.1 Introduction 

Non-uniform fine gridding is conventionally used for research purposes28. The 

objective of this chapter is to test the use of the uniform grid versus the use of the non-

uniform grid (Fig. 3-1). In this chapter, ways to simulate hydraulically fractured wells 

using uniform fine grids were investigated. Several grid sets were used and grid 

sensitivity analysis was performed in order to determine the best way to simulate both 

infinite and finite conductivity hydraulic fracture cases. 

 

 

xe

ye

xe

ye

xfxf  

Fig. 3-1 – Schematic of a non-uniform fine grid compared to a uniform fine grid for the 
case of a quarter model.
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Analytical solutions developed by Gringarten et al.19 and Cinco-Ley et al.21 were 

used in this chapter as the benchmark to know the best way to simulate every specific 

case. The error was shown as a deviation from the performance of the analytical solution 

on the plot of pD vs. tDxf. This error was found to happen during the transient period and 

at early time. The error extended to later time when a grid was used that is not fine 

enough. The error ended at very early times as finer grids were used.  

It was found in this chapter that in general when simulating cases for infinite 

conductivity fracture or cases of finite conductivity fracture of high fracture conductivity 

that it is sufficient to have more gridblocks (finer grids) only for the gridblocks in the 

direction perpendicular to the fracture and not for the gridblocks in the direction along 

the fracture. On the contrary when simulating cases for finite conductivity fracture of 

low fracture conductivity it was found that there is a need to have more gridblocks (finer 

grids) for the gridblocks in both the direction perpendicular and the direction parallel to 

the hydraulic fracture. 

Since for cases with the hydraulic fracture conductivity of small value, we need 

to use very fine grids to obtain accurate results. Therefore, in those specific cases it was 

concluded that it is preferable to use the non-uniform grid since it has the advantage of 

having fewer gridblocks for our model. 

Grid sensitivity was conducted to make sure the uniform gridding gives results 

with acceptable numerical error using a reasonable number of grid blocks. 
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The performance of a reservoir is affected by the value of the dimensionless 

fracture conductivity FCD. In this dissertation FCD is defined as 

f

ff
CD xk

wk
F = ……………………..…………………………..………………(3-1) 

There is another definition also common in the literature, which adds a π in the 

denominator of equation (3-1). A hydraulic fracture with a value of FCD greater than 500 

is considered to be of infinite conductivity according to Agarwal23. Cinco-Ley21 

considered a hydraulic Fracture to be of infinite conductivity if the value of FCD greater 

than 100π.  

In this chapter, a uniform grid had a constant value of ∆x and another constant 

value of ∆y throughout the model. There were two exceptions for this rule of constant 

∆x and constant ∆y. The first exception is “the cells that represent the hydraulic fracture 

and the cells that are adjacent to those fracture cells in the x-direction”. These cells must 

always have a constant (∆y)’ as shown in Fig. 3-2.  The value of (∆y)’ is the value of the 

width of the hydraulic fracture which is usually about 0.02 ft. The second exception is 

“the cells adjacent to the well gridblock in the y-direction” as shown also in Fig. 3-2. 

These cells had a negligible small value (∆x)’ and its sole purpose was to have a 

symmetric model in the x-direction around the wellbore. This symmetry was especially 

important when we had a fracture not extended until end of reservoir (xf / xe < 1).  Fig. 3-

2 is an illustration of a model with a uniform gridding of 9 x 11 where we have 8 

constant values of ∆x and 10 constant values of ∆y. 
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Fig. 3-2 – Uniform fine gridding of 9 x 11 cells of a hydraulic fracture model.  

 
 
 

 
 
Fig. 3-3 – Schematic of a typical hydraulic fracture model of a square reservoir (xe = ye).
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An arbitrary reservoir data set (Table 3-1) of an 80-Acre hydraulically fractured 

square oil reservoir (Fig. 3-3) was used for all the simulation runs that were undergone 

in this chapter.   

 

Table 3-1 – Reservoir and fluid data for the simulated case  

Drainage area, acres 

Reservoir half length (xe), ft 

Reservoir half length (ye), ft 

Thickness (h), ft 

Absolute permeability (k), md 

Porosity (φ), fraction 

Initial pressure (pi), psi 

Oil production rate (qo), STB 

Oil formation volume factor (Bo), RB/STB 

Oil viscosity (µo), cp 

Total compressibility (ct), psi-1 

≈ 80 

930 

930 

150 

0.1 

0.23 

3000 

5 

1 

0.72 

1.5E-05 

 

  

The results of the simulation runs are reported in real pressure and time. We plot 

the pressure change versus time on a log-log scale. Following are the dimensionless 

variables used to compare the numerical solutions with the analytical solutions. 

µqB
ppkh

p wfi
D 2.141

)( −
= .....................................................................................................(3-2) 

2

00633.0

ft
Dx xc

ktt
f µφ

= .........................................................................................................(3-3)
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Table 3-2–Summary of 20 cases simulated using gridding of 41 x 193 cells 
Case # FCD xf/xe xf kf Comment 

1 500 1 930 2,325,000 Accurate 
2 500 0.8 744 1,860,000 Accurate 
3 500 0.5 465 1,162,500 Accurate 
4 500 0.3 279 697,500 Accurate 
5 500 0.1 93 232,500 Accurate except at early Dimensionless time 
6 10 1 930 46,500 Accurate 
7 10 0.8 744 37,200 Accurate 
8 10 0.5 465 23,250 Accurate 
9 10 0.3 279 13,950 Accurate 
10 10 0.1 93 4,650 Accurate except at early Dimensionless time 
11 1 1 930 4,650 Accurate 
12 1 0.8 744 3,720 Accurate 
13 1 0.5 465 2,325 Accurate 
14 1 0.3 279 1,395 Accuracy Lower than Cases # 11, 12 and 13 
15 1 0.1 93 465 Accurate except at early Dimensionless time 
16 0.1 1 930 465 Not Accurate 
17 0.1 0.8 744 372 Not Accurate 
18 0.1 0.5 465 232.5 Not Accurate 
19 0.1 0.3 279 139.5 Not Accurate 
20 0.1 0.1 93 46.5 Not Accurate 
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3.2 Simulation of Twenty Cases of Hydraulic Fractures of Different FCD’s and xf’s 

The log-log plot of pD vs. tDxf shown in Fig. 3-4 shows a family of simulated 

constant rate type-curves for a square shaped reservoir model that is hydraulically 

fractured. All simulations were done using a set of uniform fine grids. It demonstrates 

the performance of hydraulically fractured cells with different values of dimensionless 

fracture conductivity (FCD). For each FCD case there are different ratios of xf / xe. The 

results in Fig. 3-4 matched in most cases the plot reported by Meng36 who basically 

simulated all the twenty cases of different xf  / xe shown in Table 3-2.  Those cases that 

showed a poor match were not plotted but they were reported in Table 3-2. 

Fig. 3-4 shows the fact that the change in the hydraulic fracture conductivity has 

an effect only in the transient period while the change in the length of fracture with 

respect to the reservoir has an effect only in the pseudo-steady state flow period. The 

gridding used here for all these cases was of 41 x 139 cells with a uniform grid size of 

∆x = 46.5 and ∆y = 9.6875 with the two exceptions of (∆y)’ = w and the negligible small 

value of (∆x)’ that were explained earlier in this chapter (Fig. 3-2).
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Fig. 3-4 – Plot showing a family of constant rate type curves simulated with a set of 
uniform fine grids in the x and y directions of 41 x 193 cells. Accuracy is good for the 
range shown on the plot. All simulated cases had an error at tD < 10-3. Simulated cases of 
FCD < 1 gave a significant error during transient for all ratios of xf /xe. Cases of xf /xe = 
0.1 gave a large error during transient for all FCD values. 
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The results on Fig. 3-4 show that at early time from tDxf =10-3 to tDxf =10-1 we see 

the transient period and then we move to a transition period until we hit the reservoir 

boundaries (pseudo-steady state flow period). The pressure behavior in the pseudo-

steady state flow period depends on how much the hydraulic fracture was extended in 

the reservoir. It should be noted that pressure behavior at this late time of pseudo-steady 

state flow period is independent of the hydraulic fracture characteristics (infinite 

conductivity or finite-conductivity) as can be seen on Fig. 3-4. It is worth also to note 

that at early time the case of FCD = 1 shows a quarter slope on this log-log plot indicating 

existence of bilinear flow while the case of FCD = 500 shows a half slope at early time 

indicating the existence of linear flow. 

The results on Fig. 3-4 are accurate for the range of parameters shown on the 

plot. Erroneous results appeared to happen for cases of xf / xe < 0.3 or for cases of FCD < 

1 at early tD. We see on Fig. 3-4 that all cases of different xf / xe but all have FCD = 1 

converge to the same line of quarter slope. There is one line that is slightly higher which 

is for the case of xf / xe = 0.3. When we tried to plot the cases of FCD = 0.1 there was 

significant error that is not shown on Fig. 3-4 but is reported in Table 3-2. 

This error occurs at the same time t for the same FCD value but this error appears 

exaggerated or appears for the smaller values of tDxf. This happens because the definition 

of tDxf depends on half-length of hydraulic fracture (xf) that exists in the denominator so 

as we have a smaller (xf) the error that occurs at early time is shifted on the axis to occur 

at later dimensionless time tDxf. This last point will be highlighted and explained later in 

this chapter.
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3.3 Grid Sensitivity for Case of FCD > 500 Where xf  =  xe 

In this section a case of FCD = 1075 where xf / xe = 1 was simulated by a 1D 

model since the case studied is of a hydraulic fracture of infinite conductivity (FCD > 

500) and the fracture extends until the boundaries of the reservoir (xf /xe = 1). This case is 

that of linear flow which has a known analytical solution of closed form37,38.  




















−
















−
















+








= ∑

∞

=
Dxe

e

e

ne

e
Dxe

e

e

e

e
D t

y
x

n
nx

y
t

y
x

x
y

p
2

22

1
2 exp11

3
1

2
π

π
π ……………(3-4) 

The definition of tDxf in (3-2) has been replaced by the definition of tDxe  

2

00633.0

et
eDx xc

ktt
µφ

= .........................................................................................................(3-5) 

Fig. 3-5 shows a comparison between three simulation runs and the analytical 

solution. The first simulation run is for a uniform gridding of 1 x 25 cells. The second 

simulation run is for a uniform gridding of 1 x 193 cells. The third simulation run is for 

a non-uniform gridding of 79 x 33 cells. It appears clear from the plot that the uniform 

gridding of 1 x 193 cells gives a perfect match with the analytical solution while the 

non-uniform gridding of 79 x 33 cells showed a slight error. The uniform gridding of 1 

x 25 cells showed no match with the analytical solution at early time. 

Any non-uniform gridding mentioned in this dissertation will follow the usual 

complex grid system that is frequently used for research purposes. This complex grid 

system suggested to have geometrically spaced grids for regions near the well and the 

fracture tip for the grids in the direction of the fracture. It also suggested to have 

geometrically spaced grids for the grids in the direction perpendicular to the fracture18.
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Fig. 3-5 – A comparison between results of three simulations for the case of FCD > 500 
where xf  = xe. We notice that finer grids in the direction perpendicular to the fracture 
result in a match with the analytical solution.
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3.4 Grid Sensitivity for Case of FCD = 500 Where xf  <  xe 

Recalling what was already mentioned in section 3.2 (when discussing the 

accuracy of the 20 cases simulated with the gridding of 41 x 193 cells) there was an error 

at early tD for the cases of xf  /  xe < 0.3 that was reported in Table 3.2 but not shown in 

Fig. 3-4. It was mentioned that this error at early tD is due to a shift in the axis when 

using tDxf since tDxf definition has the xf term in its denominator. To clarify this point we 

took a closer look at the three simulated cases of xf  /  xe = 0.5 0.2 and 0.1 using the 

gridding of 41 x 193 cells and compared it to Gringarten19 Analytical solution as shown 

in Fig. 3-6 and Fig. 3-7. In addition to the log-log plot pD vs. tDxf shown on Fig. 3-5. The 

log-log plot of pi - pwf vs. t is shown on Fig. 3-7.    

In Fig. 3-6 the cases of xf  /  xe = 0.5 and xf  /  xe = 0.2 showed a match with the 

analytical solution while the case of xf  /  xe = 0.1 showed an error at early time as 

reported before in Table 3.2 for the log-log plot pD vs. tDxf. 

In Fig. 3-7 the log-log plot of pi - pwf vs. t showed that the error for all the cases 

(deviation from the half slope straight line of linear flow) was seen to end at the same 

time. This proves the shifting effect that was mentioned earlier. The case of xf  /  xe = 0.1 

has a smaller xf  and therefore the dimensionless time tDxf where error ends is of a big 

value that can appear on the plot for the range of tDxf  values chosen. The cases of xf  /  xe 

= 0.5 and 0.2 have a bigger xf  and therefore the dimensionless time tDxf where error ends 

is of a small value that couldn’t appear on the plot for the range of tDxf values chosen.
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Fig. 3-6 – Three simulations of a uniform fine grid of different xf / xe ratios compared on 
a tDsf basis showing a match with the analytical solution except for the case of xf / xe=0.1. 
 
 
 
 

Fig. 3-7 –Three simulations of different ratios of xf / xe compared on a t basis indicating 
that the error starts at the same time regardless of the xf / xe ratio.
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3.5 Grid Sensitivity for Case of Infinite Conductivity Fracture Where xf  / xe = 0.2 

 Fig. 3-8 shows three simulated cases of FCD = 500 and xf  / xe = 0.2 of different 

gridding. These three cases were compared to the Gringarten et al.19 exact analytical 

solution. The upper curve on Fig. 3-8 represents the results of the simulation of the 

gridding of 21 x 193 cells and the simulation of the gridding of 41 x 193 cells, which had 

their lines coinciding on top of each other. These cases showed more deviation from the 

exact solution than the simulation of the gridding of 21 x 385 cells, which is the lower 

curve that has a small deviation from the analytical solution slope equal to half.  

Fig. 3-8 shows that the error at early time can be eliminated in the case of FCD = 

500 by having finer grids in the direction perpendicular to the fracture and is not 

necessarily affected by the coarsening or refining of the grids in the direction along the 

fracture. There just must be enough gridblocks in the direction along the fracture to 

specify how far the fracture is extended in the reservoir (xf  / xe ratio). 

It is noticed in Fig. 3-8 that the simulation case of the gridding of 21 x 385 cells 

matches the analytical solution at t > 0.2 days. The reason for this error can be explored 

from Fig. 3-9 where we plotted the gridblock pressures of a group of cells adjacent to the 

well gridblock in the direction perpendicular to the hydraulic-fracture.  It shows the 

pressure vs. distance away from the fracture at different time’s. We notice clearly that 

the lines show a typical parallel performance after t > 0.2 days indicating that )(xp′ is 

independent of time for values of t > 0.2 days. This indicates that for t < 0.2 there is an 

effect of cell storage that caused an error, which is very similar to the concept of the 
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wellbore storage discussed in chapter II except that the latter is just for the well 

gridblock. 

In Fig. 3-10 the sensitivity of the gridding an Infinite fracture conductivity was 

tested for the same ratio of fracture extension xf  / xe = 0.2 but of a lower fracture 

conductivity of 100π. Five simulation runs were performed using different gridding in 

the direction perpendicular to the fracture and the Cinco-Ley21 analytical solution was 

used as the reference to check accuracy. Fig. 3-10 shows that the case of the finest grids 

of 25 x 97 cells had the slightest deviation from the analytical solution while the coarsest 

case with least number of gridblocks of 25 x 25 cells had the largest deviation from the 

analytical solution. 

 

Fig. 3-8 – Three simulations of FCD = 500 and xf  / xe = 0.2 compared to the 
analytical solution showing that the finer grids are important only in the direction 
perpendicular to the hydraulic fracture for the case simulated. 
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Fig. 3-9 – p vs. y for the gridblocks of the case of 21 x 385 gridding showing that 
at late time the pressure profiles are parallel indicating that the artifact wellbore 
storage ended.
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Fig. 3-10 – Six simulations for FCD = 100π and xf / xe = 0.2 compared to 
analytical solution indicating that finer grids in the direction perpindicular to the 
fracture gives the best match to the analytical solution. 
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3.6 Grid Sensitivity for Case of FCD = π Where xf  / xe = 0.2 

 Recalling Fig. 3-4 earlier in this chapter we deduced that a low fracture-

conductivity and a small ratio of xf  / xe is likely to have an error at early tD. In this 

section three simulation gridding cases will be tested for a finite-fracture conductivity of 

FCD = π, where xf  / xe = 0.2 and a comparison to the Cinco-Ley et al.21 analytical 

solution will be performed. It is obvious from Fig. 3-11 that the least error at early time 

is for the uniform fine gridding of 45 x 193 cells followed by the case 25 x 193 cells 

which had a bigger deviation from the analytical solution. The simulation of the case of 

the gridding of 25 x 25 cells showed the biggest error. These results proof that for the 

case of a finite-conductivity fracture the gridding is important in both the direction 

perpendicular to the fracture and along the fracture. 

Fig. 3-11 – Grid sensitivity for the case of FCD = π where xf  / xe = 0.2 indicating that 
finer grids are needed in both the direction perpindicular and parallel to the fracture to 
give the best match to the analytical solution.
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3.7 Grid Sensitivity for Cases of FCD = 100π 10π and π Where xf  / xe = 0.1 

A match was tried for any of the case of FCD = 100π 10π and π where xf  / xe = 

0.1 with Cinco-Ley et al.21 analytical solution using a uniform grid but wasn’t successful 

because probably very fine grids were needed. However, the using of a non–uniform 

grid of 79 x 33 cells gave a good match at early time shown in Fig. 3-12. The failure of 

match using a uniform fine grid further proves the point that we mentioned earlier that 

for the cases of xf /xe < 0.3 there was an error at early tDxf. The cases of xf /xe < 0.3 were 

also reported in Table 3.2 but not shown in Fig. 3-4. 

 

 

Fig. 3-12 – Grid sensitivity for cases of FCD = 100π 10π and π where xf  / xe = 0.1 using 
a non-uniform grid of 79 x 33 cells. 
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CHAPTER IV 

MODELING HYDRAULIC FRACTURES IN COARSE GRIDBLOCKS 

 

4.1 Introduction 

A single hydraulic fracture is conventionally modeled for research purposes 

using fine grids (Fig. 4-1).  In actual field models of tight gas reservoirs, there can be 

several wells with hydraulic fractures. These hydraulic fractures are usually very long. 

They can extend in length to be more than a thousand feet. These long hydraulic 

fractures extend for several gridblocks in a simulation model (Fig. 4-2). Therefore, it is 

very difficult to use fine grids to simulate these actual field models. Many authors31,33 

suggested the replacement of the hydraulic fracture by an effective wellbore radius but 

this technique is only valid when the hydraulic fracture does not extend beyond the 

boundaries of one gridblock. There were also some attempts by some authors30,32,34 to 

modify transmissiblities of the gridblocks, which contain hydraulic fractures however 

these attempts were done for hydraulically fractured horizontal wells. In addition, these 

attempts had several rules of thumb that had no basic theory behind them.  

In this chapter, ways are showed to model hydraulic fractures in coarse 

gridblocks. Pseudo-permeability values were used to account for the hydraulic fracture 

passing through the coarse gridblock. An alternative way that was also shown in this 

chapter was to modify the transmissibilities of the gridblocks that contain the hydraulic 

fracture.  
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Fig. 4-1 –Quarter model of a single hydraulic fracture using the conventional fine grid.
xf

xe

ye
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Fig. 4-2 – An example of a field model with several wells with hydraulic fractures. 
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In this chapter, the use of the coarse gridblock caused the issue of artifact 

wellbore storage discussed in Chapter II to emerge. As in Chapter II, there was an error 

at early time that was experienced on the log-log plot of pD vs. tDxf for the cases of 

modeling hydraulic fractures in coarse gridblocks. It was also shown that the formula’s 

accounting for minimum time, which were showed in Chapter II also applied for coarse 

scale simulation. Further, there was a sensitivity analysis of the amount of error that was 

seen when coarse scale simulation was used for both the infinite conductivity and finite 

conductivity hydraulic fractures. It was also shown that the concept of minimum time 

and the formula’s developed in Chapter II only applied for coarse scale simulation of 

infinite conductivity hydraulic fractures with very high fracture conductivity (FCD). 

 

 

Fig. 4-3 – An example of a hydraulic fracture passing through coarse gridblocks.
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4.2 Modeling Hydraulic Fractures in Coarse Blocks Using Pseudo-Permeabilities 

Our objective in this section was to show how to model a single hydraulic 

fracture that passes through coarse gridblocks as shown in Fig. 4-3.  The formula’s 

shown below in Eq. 4-1 and Eq. 4-3 were derived for the pseudo-permeability in the x-

direction (direction along the fracture) and in the y-direction (direction perpendicular to 

the fracture)  respectively for the coarse gridblocks that have hydraulic fractures passing 

through them. Derivations were shown in Appendix C. 
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These pseudo-permeability values were entered into the simulator to account for 

the hydraulic fracture passing through the coarse gridblocks in the physical model. These 

formulas were derived by comparing the physical model to the finite difference model 

using the basic rules of averaging of linear beds in series and linear beds in parallel.  
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4.3 Modeling Hydraulic Fractures in Coarse Blocks Using Transmissibility 

Multipliers 

 In this section, another method to model a single hydraulic fracture that passes 

through coarse gridblocks was used. This method was simply to adjust the 

transmissibilities of the gridblocks that have the fracture passing through them in the 

physical model using a transmissibility multiplier. CMG39 simulator that was used to 

conduct this study used the word “TRANSI” as an abbreviation for the transmissibility 

multiplier in the x-direction. The formula for TRANSI for the gridblocks shown in Fig. 

4.3 (where the fracture extends through the gridblock) was found to be  

k
kTRANSI
~

≅ ...............................................................................................................(4-5) 

For a gridblock where a hydraulic fracture was not extended until the end of that block 

(Fig. 4.4) the formula for TRANSI for that specific gridblock was found to be 
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∆ ...........................................................................(4-6) 

Symbol “a” is the distance that the hydraulic fracture extends in either direction from 

the edge of the gridblock. The side view of the blocks shown in Fig. 4.5 show that a can 

be positive or negative. Derivation for Eq. 4-6 is shown in Appendix D. TRANSI adjusts 

the transmissibility between the specified gridblock and the adjacent gridblock on the 

right hand side. Therefore, Eq. 4-6 could be used between the gridblocks A and B in Fig. 

4.5 but can not be used between C and D. This right hand side rule may be specified to 

be left hand side in a different simulator and so Eq. 4-6 would not be valid in that case. 
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Fig. 4-4 – An example of a hydraulic fracture not extended till the end of the gridblock. 

 

Fig. 4-5 – Top view of a hydraulic fracture not extended till the end of the gridblock.
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4.4 Simulation Results and Matching Analytical Solutions 

 The techniques showed earlier were used to simulate hydraulic fractures in coarse 

grid blocks. All cases simulated had grid sets such that ∆x = ∆y. The nomenclature for the 

grid sets was such that a 2D- Model which has gridding of 5 x 5 was named as a grid set 

of 2xe /∆x = 5 as shown in Fig. 4-6. For a case that has gridding of 15 x 15 it was named 

as a grid set of 2xe /∆x = 15 and so on. All cases simulated were for a square reservoir of 

80 acres with the properties specified in Table 4-1. The only property that varied from 

case to case was either the fracture length or the dimensionless fracture conductivity as 

shown in Table 4-2.  

 

 

 

Fig. 4-6 – An 80 acre square reservoir with gridding of 2xe / ∆x = 5.
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Table 4-1 – Main data for the simulated cases 
Drainage Area Acres 

2xe ft 

2ye ft 

Thickness (h) ft 

Absolute Permeability (k) mD 

Porosity (φ) fraction 

Initial Pressure (pi) psi 

Oil Formation Volume Factor (Bo) RB/STB 

Oil Viscosity (µo) cp 

Total compressibility (ct) psi-1 

≅80 

         1,860 

         1,860 

          150 

0.1 

0.23 

3,000 

1 

0.72 

1.5E-05 

 

 

Table 4-2 – Data for the different cases 
Case # 1 

FCD = 50,000 

xe /xf  = 1 

Case # 2 

FCD = 100π 

xe /xf = 1 

Case # 3 

FCD = 50,000 

xe /xf = 5 

 

 

Table 4-3 – Data for the different grid sets for case # 1 

2xe / ∆x 

97 

49 

25 

5 

1 

∆x ft 

19.17 

37.96 

74.4 

372 

1,860 

k~  md 

482,510 

122,510 

62,510 

12,510 

2,510 

TRANSI 

4,825,100 

1,225,100 

625,100 

125,100 

25,100 
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4.4.1 Simulation of Case # 1, FCD = 50,000, and xe /xf =1 

The first case to be simulated was for an infinite conductivity fracture of xe /xf =1 

as noted in Table 4.2 There were five different grid sets used for this case which are  

shown in Table 4-3.  The five different grid sets will have values of 2xe /∆x = 97, 49, 25, 

5, and 1 but all with the same properties shown in Table 4-1. A plot of the results for five 

different simulations on the Log-Log plot of pD vs. tDxf is shown in Fig. 4-7. These 

simulations are compared to the exact analytical solution. The exact analytical solution 

which for this case is the basic linear flow solution described in Chapter II and is the 

Gringarten et al.19 solution for infinite conductivity hydraulic fracture for the case of xe /xf 

=1. 

 

Fig. 4-7 – The log-log p1ot of pD vs. tDxf for different grid sets of case # 1.
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It is obvious from Fig. 4-7 that there is significant error for the coarser grid sets. 

The grid set of 2xe /∆x = 97 matches the analytical solution at much earlier time than the 

grid set of 2xe /∆x = 5. The one grid block set of 2xe /∆x = 1 gave a unit slope at all times 

and matched the analytical solution only in the pseudo-steady state region very late in 

time. 

It is also noticeable from Fig. 4-7 that for all simulation cases that the early period 

that has error forms a unit slope at early time. This unit slope is due to artifact wellbore 

storage discussed in Chapter II and it was found to end at the minimum time from the 

formula that was developed in Chapter II. 

 

Table 4-4 – Data for the different grid sets for case # 2 

2xe / ∆x 

97 

49 

25 

5 

1 

∆x ft 

19.17 

37.96 

74.4 

372 

1,860 

k~  md 

1,523.77 

769.79 

392.8 

78.64 

15.81 

TRANSI 

15,237.7 

7,697.9 

3,928 

786.4 

158.1 
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4.4.2 Simulation of Case # 2, FCD = 100π, and xe /xf =1 

The second case to be simulated was for a finite conductivity fracture of FCD = 

100π and where xe /xf =1 as noted in Table 4.2. There were five different grid sets used 

for this case, which are shown in Table 4-4.  The five different grid sets will have values 

of 2xe /∆x = 97, 49, 25, 5, and 1 but all with the same properties shown in Table 4-1. A 

plot of the results for 5 different simulations on the log-log plot of pD vs. tDxf is shown in 

Fig. 4-8. It also shows a comparison to the exact analytical solution. The exact analytical 

solution which for this case is the Cinco-Ley et al.21 solution for finite conductivity 

hydraulic fracture of FCD = 100π. 

It is obvious from Fig. 4-8, which is very similar to Fig. 4-7 that there is 

significant error for the coarser grid sets. The grid set of 2xe /∆x = 97 matches the 

analytical solution at much earlier time than the grid set of 2xe /∆x = 5. The one grid 

block set 2xe /∆x = 1 gave a unit slope at all times and matched the analytical solution 

only in the pseudo-steady state region very late in time. 

However, in Fig. 4-8 the early period that has the error doesn’t form a unit slope 

at the early time as shown in Fig. 4-7. This comparison may be clearer in Fig. 4-9 where 

we compare Case # 1 and Case # 2 for the grid set of 2xe /∆x = 25. We obviously see from 

Fig. 4-9 that the unit slope appears only for high values of fracture-conductivity. Several 

other cases rather than case # 2 where tested which were all of infinite fracture –

conductivity FCD > 500 but not so large and none of these cases gave the unit slope due to 

the formation of a gradient in the hydraulic-fracture.
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Fig. 4-8 – The log-log p1ot of pD vs. tDxf for different grid sets of case # 2. 

 

Fig. 4-9 – The log-log p1ot of pD vs. tDxf for comparison of cases # 1 and  # 2.
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4.4.3 Simulation of Case # 3, FCD = 50,000, and xe /xf = 5 

The third case to be simulated was for an infinite conductivity hydraulic fracture 

of FCD = 50,000 and where xe /xf =5 as noted in Table 4.2. There were three different grid 

sets used for this case, which are shown in Table 4-5.  The three different grid sets will 

have values of 2xe /∆x = 97 49 25 5 and 1 but all with the same properties shown in Table 

4-1. A plot of the results for 3 different simulations on the Log-Log plot of pD vs. tDxf  is 

shown in Fig. 4-10. It also shows a comparison to the exact analytical solution. The exact 

analytical solution which for this case is the Gringarten et al.19 solution for infinite 

conductivity fracture of xe /xf = 5. 

As in the previous two cases, there is significant error for the coarser grid sets. 

The grid set of 2xe /∆x = 97 matches the analytical solution at much earlier time than the 

grid set of 2xe /∆x = 5. The unit slope behavior is also obvious in Fig. 4-10. 

 

 

 

Table 4-5 – Data for the different grid sets for case # 3 

2xe / ∆x 

95 

35 

25 

∆x ft 

19.58 

53.14 

74.4 

k~  md 

47,510 

17,510 

12,510 

TRANSI 

475,100 

175,100 

125,100 
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Fig. 4-10 – The log-log p1ot of pD vs. tDxf for different grid sets of Case # 3. 
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4.5 Analysis of Early Time Error 

 In this section, the early time error causing the unit slope will be shown in a 

quantified manner for the different grid sets of case # 1. Three arbitrary dimensionless 

times in the transient period are chosen to show the error in dimensionless pressure as 

shown in Table 4-6. One arbitrary dimensionless time was chosen in the pseudo-steady 

state period and the error was shown as a deviation from the dimensionless productivity 

index (JD) as shown in Table 4-7. 

 
 
 
Table 4-6– Percentage of error in dimensionless pressure during transient period 

tDxf 2xe /∆x = 1 2xe /∆x = 5 2xe /∆x = 25 2xe /∆x = 49 2xe /∆x = 97 
0.0012 97.12% 85.10% 38.00% 15.89% 6.76% 

0.08 74.81% 16.82% 1.46% 1.11% 0.99% 
1.2 21.64% 0.79% -0.05% -0.08% -0.09% 

 
 
 
 
 
Table 4-7– Percentage of error in dimensionless productivity index (JD) 

tDxf 2xe /∆x = 5 2xe /∆x = 25 2xe /∆x = 49 2xe /∆x = 97 
10 4.19% 0.19% 0.02% 0.02% 

 
 
 
 
 
 
The % error in pD is calculated using the following formula : 

analyticalD
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The % error in JD is calculated using the following formula: 

analyticalD

simulationDanalyticalD

J
JJ

error
)(

)()(
%

−
=  



62 

 

The definition of the dimensionless productivity index JD is  
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which is originally deduced from the productivity index from the linear flow case37,38 as 

follows 
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 We conclude from Table 4-6 regarding Case # 1 that had a match with the 

analytical solution before reaching the pseudo-steady state period that using a coarse grid 

block can cause a significant error in the transient period while Table 4-7 shows that 

there is not so much error in the pseudo-steady state period. 
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CHAPTER V 

SUMMARY AND DISCUSSION 

 

In this chapter, we will present a summary of how to simulate and interpret 

results of hydraulically fractured reservoirs using coarse grids. We will also show how 

all the work in this dissertation applies to gas reservoirs. The last part of this chapter will 

discuss ideas of future research work that can be built on the results of this study.  

5.1 Summary of Steps to Create a Model of Coarse Scale Simulation 

For a 2D single well model of ∆x = ∆y of an anisotropic homogeneous reservoir of 

permeability k that has a hydraulic fracture the x-direction: 

1) Input the reservoir permeability k in your simulator into all the gridblocks of the 

model including the gridblocks that have hydraulic fractures passing through 

them. 

2) Change the transmissibility multiplier in the x-direction for all the gridblocks that 

have a hydraulic fracture passing through them. The value for the transmissibility 

multiplier that should be entered for the gridblocks that have hydraulic fractures 

passing through them completely till an adjacent gridblock is 
k
kTRANSI
~

≅  

where 
y

wkwyk
k f

∆
∆ +−

=
)(~ . 

3) Change the transmissibility multiplier in x-direction for all the gridblocks that 

have a hydraulic fracture passing through them not completely till the adjacent 
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gridblock to a value of 
])

2
([~]

2
[

~

axkaxk

xkTRANSI
−++

=
∆∆

∆  where 

y
wkwyk

k f

∆
∆ +−

=
)(~ and “a” is the distance that the hydraulic fracture extends 

in either direction from the surface of the gridblock. 

4) Keep the transmissibility multiplier in the y-direction for all the gridblocks the 

same default value of one and do not change it. 

5.2 Example Calculation  

For a model of an 80 acre square reservoir of ∆x = ∆y of an anisotropic homogeneous 

reservoir. The properties used in this example were: 

1. Reservoir permeability k = 0.1 md. 

2. Reservoir dimensions are xe = ye = 930 ft.  

3. A hydraulic fracture of xe / xf  = 5 and FCD = 5,000. 

4. The arbitrary grid set of 25 x 25 was used which can be also called 2xe/∆x = 

25. 

We deduce that xf = xe / 5 = 186 ft and therefore that kf  = FCD k xf /w = 4,650,000 md. 

Also, 2xe / ∆x = 25 and therefore 2xe /∆x = 1,860 / 25 = 74.4 ft. Since xe / xf  = 5 then 2xf / 

∆x = 25 and therefore a = 0 so step 3 in part 5.1 is not applicable.  

Following the steps in part 5.1 as follows: 

1) Input the reservoir permeability k = 0.1 in your simulator into all the gridblocks 

of the model including the gridblocks that have hydraulic fractures passing 

through them. 
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2) Change the transmissibility multiplier in the x-direction for all the gridblocks that 

have a hydraulic fracture passing through them.  

4.74
)02.0(00,500,46)02.04.74(1.0)(~ +−

=
+−

=
y

wkwyk
k f

∆
∆

 = 1,250.99 md 

k
kTRANSI
~

≅  = 12,509.9. 

3) Keep the transmissibility multiplier in the y-direction for all the gridblocks the 

same default value of one and do not change it. 

5.3 Summary of Steps to Interpret Results of Coarse Scale Simulation  

1) The use of coarse grid models will cause the results of the simulation of the 

constant production case to have a numerical error of unit slope on the log-log 

plot of ∆p = pi - pwf vs. t  

2) The error on the log-log plot of ∆p s. t ends at a minimum time  

k
c

xt tφµ
∆ 2

min )(217= ............................................................................................(2-7) 

Where we will have only a 5% error in the correct value of ∆p. 

3) The conclusion from that we deduce from the above step is that we can not match 

any data before the minimum time specified in the above step on performing 

history matching using coarse scale simulation. 

5.4 Application of the Work in the Dissertation for Gas Reservoirs 

When dealing with gas reservoirs all steps of coarse scale modeling and interpreting that 

were shown in previous two sections are valid. The only difference is that results of the 

simulation of the constant production case to have a numerical error of unit slope on the 
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log-log plot of ∆m(p) = m(pi) –m(pwf )vs. t where ∆m(p) is real gas pseudopressure that 

was defined by Al-Hussainy et al.40 as follows: 

dp
z
ppm

p

op
∫=
µ

2)( .........................................................................................................(5-1) 

All the analytical solutions that were used for matching are numerical results can be 

easily modified for gas flow. Simply to obtain gas solutions pwD is replaced by mwD in 

the liquid solutions. The mwD parameter can be defined as follows: 

 

( )[ ]
qgT

pmpmkh
m wfi

wD 1424
)( −

= ..........................................................................................(5-2) 

The dimensionless time can be defined in function of the initial fluid properties as 

follows: 

( ) 2

00633.0

fit
fDx xc

ktt
µφ

= .......................................................................................................(5-3) 

5.5 Recommendations for Future Work 

1. Investigating the effect of artifact wellbore storage on the history match and on 

the simulation forecast. 

2. Extending the work for modeling coarse grids for layers (3D model). 

3. Investigating the case of producing with constant pwf with coarse grids. 
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CHAPTER VI 

CONCLUSIONS 

 

1. A new method to simulate a single hydraulic fracture passing through several 

coarse gridblocks was developed and documented. This method specifies 

transmissibility multipliers to be entered into the simulator to account for the 

presence of the fracture in the coarse gridblock. The method developed applies 

anywhere whether the fracture ends at the center of the gridblock or any 

arbitrary distance within the grid block. The new method was successfully tested 

by matching it to the analytical solution for the constant rate case. However, 

there was a numerical error at early time. 

 

2. The numerical error that exists at early time was found to have a unit slope on 

the log-log plot of ∆p vs. t but this unit slope is only present for high values of 

FCD. For lower values of FCD (including of course the finite conductivity 

hydraulic fractures) an error exists but not of unit slope. Two formulas were 

developed to estimate the time at which the numerical error is reduced to only 

10% and to 5% error compared to the analytical solution. 

 

3. Uniform fine gridding can yield as good results as non-uniform fine gridding 

when simulating models of reservoirs with hydraulic fractures especially for 

cases that have infinite conductivity fractures since gridding seems to be 
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important only in the direction perpendicular to the fracture and not in the 

direction along the fracture. This is not the case for finite conductivity fractures 

where gridding seemed to be important in both directions along and 

perpendicular to the fracture. 
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NOMENCLATURE 

 

Variables 

A = cross-sectional area to flow, [ft2] 

B = gas formation volume factor, [rb/stb] 

C = wellbore storage coefficient, [bbl/psi] 

CD = dimensionless wellbore storage coefficient 

ct = total system compressibility, [ psia-1], [= fwiwoogg cScScSc +++ ] 

cwb = wellbore fluid compressibility, [psia-1] 

FCD = dimensionless fracture conductivity [= kfw/kxf ] 

h = net reservoir thickness, [ft] 

h  = average net reservoir thickness, [ft] 

k = permeability of the reservoir, [md] 

k  = average permeability of the reservoir, [md] 
~
k  = required permeability to model skin effect, [md] 

kf = fracture permeability (fracture referred to bulk volume), [md] 

kh = horizontal permeability, [md] 

kv = vertical permeability, [md] 

kx = permeability in x-direction, [md] 

ky = permeability in y-direction, [md] 

x = x direction 

L = Length of linear reservoir, [ft] 

p = absolute pressure, [psia] 

pi = initial reservoir pressure, [psia] 

pwD = dimensionless pressure at the wellbore 

pwb = well gridblock pressure, [psia] 

pwf = flowing bottomhole pressure, [psia] 

q = production rate, [stb/D] 
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r = radius, [ft] 

re = reservoir drainage radius, [ft] 

rw = wellbore radius, [ft] 

s = skin factor, [dimensionless] 

t = time, [days] 

tD = dimensionless time [= 0.00633kt/φµctr2
w ] 

tDA = dimensionless time [= 0.00633kt/φµctA ] 

tDxf = dimensionless time  [= 0.00633kt/φµctxf 
2 ] 

tmin = Minimum time after which there is no simulation error due to artifact wellbore 

storage, [days] 

Vwb = wellbore volume, [ft3] 

w = width of rectangular reservoir , [ft] 

wf = width of the fracture, [ft] 

x = distance to the x-direction, [ft] 

xe = distance from well to outer boundary, [ft] 

xf = fracture half-length, [ft] 

ye = distance from well to outer boundary, [ft] 

 

Subscripts 

D = dimensionless 

f = fracturel 

Greek Symbols 

φ = porosity, [fraction] 

µ = viscosity, [cp] 

∆p = pressure change, [psia] 

∆ps = pressure change caused by skin effect, [psia] 

∆x = grid size in x-direction, [ft] 

∆y = grid size in y-direction, [ft] 

π  = constant 
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APPENDIX A 

DERIVATION TO SHOW RELATION BETWEEN pwf and pwb IN RADIAL 

FLOW 

 
 

Re-deriving the Peaceman1 radius equation (ro) 
 
The steps of the derivation of the Peaceman1 radius equation is not quite clear in his 
paper, so we attempted to re-derive it in more detail. 
 
Finite Difference Equation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

qpp
t
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We will assume that we have equal pressures from all directions = p1 from east, west , 
north and south. 
 
For steady-state case, we cancel the first term on R.H.S of the equation 
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where area  = h∆x, and ∆y is the distance  between 2 grid blocks in the north-south 
direction. 
 
Re-arranging equation 

[ ] qpppp
y
x

B
kh

ii =−−−
∆
∆








 Π
Π
− )()(

615.5
00633.0

1
2

2
14 01µ

...............................................(A-3) 

[ ] qpppp
y
x

B
kh

ii =−−−
∆
∆









Π
− )()(

2.141
1

2
14 01µ

..........................................................(A-4) 

 
From the definition of PD = f ( tD ), we know that 
 

0101 )()(
2.141 DDii pppppp

qB
kh

−=−−−
µ

...............................................................(A-5) 

Therefore, re-arranging equation, and assuming that ∆y = ∆x 
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Analytical Equation (Exact) 
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From the definition of PD = f ( tD ), we know that 
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We can repeat the same steps for the equations from (7) to (10), but for the desired 
location r0 of the proposed po, that replaces p1, where po is the location of the supposed 
pressure of the material balance average of the cell.  
 
We will obtain an analogous equation to that of equation (11), but for that “desired” 
location. 
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w

o
wfDD r

r
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Subtracting equation (12) from equation (11), 
 
 

x
r

pp DD ∆
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Substituting equation (6) into equation (12), 
 

2
ln π
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x

ro  which can be rewritten as 2
π

∆

−

= e
x

ro  
 

Conclusion: 
The average pressure of the cell is exactly at a distance 0.208 ∆x of the grid block, and 
there is called Peaceman1 radius ro. 
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APPENDIX B 

DERIVATION TO SHOW THAT pwf = pwb IN LINEAR FLOW 

 
 
Deriving the equation for average pressure location (∆yo) in linear flow 
 
Finite Difference Equation 
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For steady-state case, we cancel the first term on R.H.S of the equation 
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where area  = h∆x, and ∆y is the distance  between 2 grid blocks in the north-south 
direction. 
 
Re-arranging equation 
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From the definition of pD = f ( tD ), we know that 
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Therefore, re-arranging equation 
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Analytical Equation (Exact) 
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From the definition of PD = f ( tD ), we know that 
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We can repeat the same steps for the equations from (7) to (11), but for the desired 
location ∆y0 of the proposed po, that replaces p1, where po is the location of the supposed 
pressure of the material balance average of the cell.  
 
We obtain an analogous equation to that of equation (11), but for that “desired” location. 
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Subtracting equation (12) from equation (11), 
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Substituting equation (6) into equation (13), 
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Which will be reduced to ∆y0 = 0 
 
Conclusion: 
 
The average pressure of the cell is exactly at the center of the grid block, and there is no 
concept that is similar to the Peaceman1 radius as in case of radial flow. 
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APPENDIX C 

DERIVATION OF PSEUDO VALUES OF K FOR MODELING COARSE GRIDS 

 
 
 
General diagram of the gridblocks A1, A2, B1 and B2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A1

A2

B1 B2
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Calculating pseudo permeability in y-direction: 
 
For grid blocks A1 and A2 in the general diagram: 
 

 
We know that flow is in series, and thus we use harmonic average where: 
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From the drawing of physical blocks, we see that  
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If   ∆y1 = ∆y2 = ∆y, 
 

Then equation (1) becomes 
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Which is the physical equation. 
 
We will now equate the same ky avg. but from the actual simulator grid blocks . 
 
We will use the same harmonic equation as above, 
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If we re-organize equation (3), we will obtain the following form, 
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Simplifying the equation by introducing the term Z 
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Expanding on Z, to account for equation of ky avg. from physical blocks in equation 1 
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Re-organizing the previous equation, we get 
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Therefore, substituting equation (0) into equation (1), we obtain the final equation, which 
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Calculating pseudo permeability in x-direction: 

 
For grid blocks B1 and B2 in the general diagram: 
 
We first are going to calculate the average permeability for parallel beds of fracture and 
matrix in grid block B1 and we can do similarly for grid block B2 . 
The equation of the arithmetic is used to account for the average in parallel beds: 
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Now we are going to calculate the flow is in series from Block B1 to B2, and thus we use 
harmonic average where: 
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From the drawing of physical blocks, we see that  
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Re-arranging the previous equation, we will get 
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If we now try to get the value of xk1

~  assuming that xx kk 21
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Therefore, we deduce that 
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APPENDIX D 

DERIVATION OF A TRANSMISSIBILITY RELATION FOR MODELING 

COARSE GRIDS 

 

From the definition of Transmissibility, and applying it, to our work in this dissertation 

for the coarse grid in Chapter IV, it is seen that 
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The desired transmissibility to have is 
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For the general case of variable thickness (Isopach Map), the transmissibility multiplier 

will be 
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Assuming a case of a constant (uniform) thickness 
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Assuming a case of a constant (uniform) ∆x 
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