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ABSTRACT 

 

Robustness of Compressed Sensing in Sensor Networks (April 2008) 

 
Brett Hern 

Department of Electrical Engineering 
Texas A&M University 

 
Fellows Advisor: Associate Professor Krishna Narayanan 

Department of Electrical Engineering 
 
 

Compressed sensing is a new theory that is based on the fact that many natural 

images can be sparsely represented in an orthonormal wavelet basis.  This theory holds 

valuable implications for wireless sensor networks because power and bandwidth are 

limited resources.  Applying the theory of compressed sensing to the sensor network 

data recovery problem, we describe a measurement scheme by which sensor network 

data can be compressively sampled and reconstructed.  Then we analyze the robustness 

of this scheme to channel noise and fading coefficient estimation error.  We demonstrate 

empirically that compressed sensing can produce significant gains for sensor network 

data recovery in both ideal and noisy environments.  
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I INTRODUCTION1 
 

 Compressed sensing (CS) is a new method of signal and image measurement and 

reconstruction that takes advantage of the fact that many signals are sparse under some 

basis (typically a wavelet basis)[1].  Compressive measurement is accomplished by 

taking a small number of projections of the image onto a pseudo random basis and 

reconstructing the wavelet coefficients of the image from these projections.   

Sensor network communication is one area that has not yet experienced the 

benefits that CS might produce. This is in part because of the novelty of this theory.  The 

limiting characteristics of any wireless network are power, bandwidth, and signal 

distortion.  For applications involving distributed measurements of some physical 

phenomenon (e.g. temperature, vibration) that may be wirelessly transmitted, CS holds 

promising improvements to these limits.  Compressive measurement of a sensor network 

is accomplished by prompting each sensor to communicate its value simultaneously to a 

central base station in a phase coherent fashion [8].  Each sensor value is multiplied by a 

random number that changes each measurement and is known by the sensor and the base 

station.  This compressive measurement scheme is analogous to the compressive 

measurement of an image where each sensing element in the network represents one 

pixel in the image.  There has recently been some work discussing the power distortion 

latency relationship for such a scheme termed Compressive Wireless Sensing (CWS) in 

[7,8].   

                                                 
1 This thesis follows the style and format of IEEE Transactions.  
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In this thesis we apply linear programming to the problem of reconstruction of 

wireless sensor network data.  We analyze the number of compressive measurements 

that are necessary to accurately reconstruct measured data and empirically determine the 

robustness of CS in the presence of noise and fading coefficient estimation error.  The 

performance of linear programming for image reconstruction is compared with 

reconstruction results from other common CS reconstruction algorithms including both 

the LASSO (Least Absolute Shrinkage and Selection Operator) and LARS (Least Angle 

Regression) algorithms and the Orthogonal Matching Pursuit (OMP) algorithm.  The 

novel part of our investigation of compressed signal reconstruction is that we examine 

the effects of two types of error that can occur in compressive measurement of sensor 

networks.  First is the thermal noise at the base station or receiver.  The second is 

estimation error that can arise from inaccurate estimation of the fading coefficient 

associated with the wireless channel between each sensor and the receiver.   

In Chapter II we provide a background discussion on the method of compressed 

sensing and the principles of signal reconstruction from compressed measurements.  We 

provide as a standard by which our measurements can be compared, the theoretical 

number of measurements that are required to accurately reconstruct a sparse signal. We 

also discuss the rate at which computational complexities of these algorithms increase 

with respect to data field size and the number of compressive measurements taken.  In 

Chapter III we discuss our sensor network system model and the assumptions that will 

be used to while running empirical tests on the effectiveness of compressed sensing 

algorithms in the presence of noise.  In Chapter IV we test the capabilities of a few 
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popular reconstruction algorithms and compare them to linear programming.  

Determination of the minimum number of samples required for accurate data 

reconstruction, and the effects of channel noise and fading coefficient estimation error 

are discussed.  In Chapter V we discuss the principal conclusions of this thesis and 

identify important areas for future work. 
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II COMPRESSED SENSING BACKGROUND 

 

Considering Sparsity 

Compressed sensing seeks to take advantage of the fact that many natural or 

manmade images are sparse under some wavelet basis for sampling and reconstruction.  

Consider an N element image which can be described as an N×1 vector, X.  Any discrete 

signal in Թே can be represented in terms of an N element basis of column vectors, 

ΨNൈN ൌ ሾ߰ଵ|߰ଶ| … |߰ேሿ.  For our purposes we will assume that the basis is an 

orthonormal wavelet basis.  The wavelet transform of X in this basis is given by 

            ܵ ൌ ΨNൈN
ିଵ ܺ   ֜    ܺ ൌ ΨNൈNܵ.   (2.1) 

Where the N×1 wavelet vector, S, represents the ordered wavelet coefficients of X.  A 

signal is said to be K-sparse if there exists a wavelet basis,  ΨNൈN, in which X can be 

represented by only K non-zero elements (S has only K non-zero coefficients).  Ideally K 

is much smaller than N.  A typical compression algorithm would simply compute the K 

non-zero coefficients of S and store their amplitudes and locations within the wavelet 

basis.  

 This method of sampling a signal and then compressing it suffers from a few 

inherent inefficiencies.  First, the entire N length signal must be measured which can be 

inefficient if N is very large.  This is especially significant for images where the number 

of pixels scales quadratically with the length or width of the image. Second, the 

compression algorithm must compute all of the transform coefficients even though many 

of them are small and can be discarded.  Third, the positions of each of the transform 
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coefficients must be known and will therefore require storage.  The most relevant 

inefficiency for the problem considered in this thesis is the fact that the entire N length 

signal must be measured.  We propose the use of compressed sensing primarily as a tool 

to decrease the number of measurements required to accurately determine the sensor 

readings in a wireless sensor network. 

 

Compressive Measurement 

CS presents an alternate way to think about the problem of data acquisition, 

compression and transmission and in doing so presents an alternate method of data 

measurement for many applications.  The remarkable characteristic of CS is that a K 

sparse signal can be encoded by multiplying it by a random matrix, ΘMൈN, where M is 

much smaller than N but is larger than K.  The result of this encoding method is the 

compressive measurement vector, Y, which is defined by 

          ܻ ൌ ΘMൈNܺ.     (2.2) 

Here the length N image vector X has been encoded as an M length vector, but 

this does not necessarily point to any method for image reconstruction given the 

underdetermined nature of the system.  This is where CS takes advantage of the sparsity 

of the wavelet coefficient vector S.  Substituting the wavelet representation of X into 

equation 2.2 we have 

     ܻ ൌ ΘMൈN ΨNൈNS.    (2.3) 
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Let ΦMൈN ൌ ΘMൈN ΨNൈN, then we have a single pseudo random matrix in which Y gives 

an underdetermined representation of the sparse vector S.  This is helpful for 

mathematical simplification.  

 It is important to discuss how it is possible to reconstruct S from Y and to ensure 

that the probability of exact reconstruct can be made close to unity for this measurement 

scheme. This is a difficult problem because the locations of the K non-zero wavelet 

coefficients of X are unknown.  The measurement vector Y is just a linear combination of 

the columns of ΦMൈN which correspond to the non-zero coefficient in S.  If the locations 

of the non-zero entries of S were known, finding a solution would simply be a matter of 

inverting the matrix corresponding to the ordered set of these entries.  Here, 

reconstruction is possible so long as M ൒ K.  A necessary and sufficient condition to 

show that the M ൈ K system has a numerically stable inverse is that for any V with the 

same non-zero entries as S we have 

    1 െ ߳ ൑ ԡ஀MൈNVԡమ
ԡ௏ԡమ

൑ 1 ൅ ߳    (2.4) 

for some ߳ ൐ 0 [1].  This means that the length of the vector V with non-zero 

components in these K coordinates is not affected by ΘMൈN. 

 It is quite interesting that the vector S can be reconstructed from Y with high 

probability even when the locations of the non-zero components are not known.  A few 

reconstruction algorithms capable of solving this problem are discussed below. Another 

intuitive explanation for why such reconstruction is possible with high probability is that 

the measurement matrix ΦMൈN is incoherent with the wavelet matrix ΨNൈN.  That is 
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none of the vectors in ΦMൈN can be sparsely represented in ΨNൈN and vice versa. 

Compressed sensing assures this quality by generating the matrix ΘMൈN at random. 

 

Signal Reconstruction and Constrained Optimization 

The natural reconstruction problem where S is our target solution for an 

underdetermined set of linear constraints leads to the inference that the reconstruction 

problem at hand can be solved as a constrained optimization problem. The issues that 

must now be considered are determining the exact cost function and whether efficient 

solutions exist to the resulting optimization problems.  The classic answer to this 

question is that we want to minimize the root mean square error between S and our 

reconstructed solution መܵ.  This defines መܵ as 

   መܵ ൌ min ԡܵԢԡଶ  such that ܻ ൌ ΦMൈNSԢ.    (2.4) 

The orthogonality principle tells us that the optimal solution to an underdetermined 

system of equations is the solution that is orthogonal to all of the constraints. This 

solution, however, does not take advantage of the sparsity of an image in the wavelet 

basis.   

A logical response to the goal of generating a minimal solution to this problem 

that is also sparse is to find the minimum ℓ0 norm solution that satisfies the given 

constraints.  This defines መܵ as 

   መܵ ൌ min ԡܵԢԡ଴  such that ܻ ൌ ΦMൈNSԢ.   (2.5) 

This would work in the ideal case and some CS recovery algorithms are implemented 

with this idea because it can be shown that a minimum ℓ0 norm solution can be found 
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with high probability with only ܯ ൒ ܭ ൅ 1 random measurements [2].  Unfortunately, 

this solution is forbiddingly complex and requires a combinatorial enumeration of each 

of the ቀܰ
 .ቁ sparse subspaces of Թ௡ܭ

 Compressed Sensing takes advantage of sparsity and counters the complexity and 

instability of these solutions by solving for the minimum ℓ1 norm solution to this 

problem.  This defines መܵ as 

   መܵ ൌ min ԡܵԢԡଵ  such that ܻ ൌ ΦMൈNSԢ.   (2.6) 

The result is a solution that is not necessarily orthogonal to each of the constraints but it 

is easier to ensure sparsity of the solution because an ℓ1 norm solution is in some sense 

sharper than an ℓ2 norm solution.  In many cases the minimum ℓ1 norm solution is a 

good approximation of the minimum ℓ0 norm solution.  This can be geometrically 

understood by thinking about the way a minimum ℓp norm solution is constructed.  For 

ℓ2 norm recovery, the minimum solution is obtained by increasing the root mean square 

length of the target vector until it touches the optimization constraints.  For ℓ1 norm 

recovery the absolute value of each element of the solution vector is increased until the 

solution vector touches the optimization constraints.  This is a simplification of the 

constrained optimization problem; however, it presents the basic concepts necessary to 

understand why minimum ℓ1 norm solutions are useful for sparse signal reconstruction. 

An illustration of this concept is shown in Figure 2.1 for a constrained minimization 

problem in Թଶ, i.e., when ܰ ൌ ܭ ,2 ൌ ܯ ,1 ൌ 1. Then, the optimization problem is to 

find a vector S in Թଶ with exactly one non-zero component such that we have one 
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observation Y of the form ܻ ൌ Φெൈேܵ.  In Figure 2.1, the ℓ1 norm solution is compared 

to the ℓ2 norm solution pictorially. 

 

 

Fig. 2.1 - ℓ1 vs. ℓ2 norm solutions to constrained optimization problems in  Թଶ 

 It can be seen from the figure that the minimum ℓ2 norm solution is a solution 

with both components of the vector being non-zero, i.e., the solution is not sparse. The 

minimum ℓ1 norm solution results in only one of the two components being non-zero, 

i.e., the solution is sparse.  The reason constraints are handled for the ℓ1 and ℓ2 norms as 

shown in Figure 2.1 can be understood by the algebraic definition of a line equation and 

the Pythagorean Theorem respectively.  The important result from this discussion is that 

an ℓ1 norm solution for a given constraint or set of constraints is much more likely to be 

sparse than ℓ2 norm solutions. 

 

Reconstruction Algorithms 

Because the ℓ1
 

norm has been found to accurately reconstruct sparse signal 

representations there has been much work to generate efficient algorithms for ℓ1
 
norm 

Constraint Constraint 

ℓ1 norm solution ℓ2 norm solution 
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reconstruction.  One of the simplest solutions to this problem is a linear program called basis 

pursuit [3] which relies on conventional linear programming techniques.  The computational 

complexity of this algorithm is polynomial in N while the number of measurements 

generally required for adequate reconstruction is given by ܯ ൌ ܿ for ܭܿ ൐ 1.  The constant, 

ܿ, refers to an oversampling factor whose value is inversely dependent on sparsity.   

Other minimum ℓ1
 
norm recovery algorithms such as the LARS (Least Angle 

Regression) algorithm and one of its derivatives the LASSO (Least Absolute Shrinkage and 

Selection Operator) algorithm have been investigated in [4,6].  These greedy algorithms take 

advantage of geometric correlation between the targeted minimum ℓ1
 
norm reconstruction 

and the coefficients most correlated with the measured response.  These algorithms take 

advantage of quadratic programming concepts because they produce a weighted minimum ℓ1 

and ℓ2 norm solution.  The LASSO algorithm specifically solves 

  ݉݅݊ ቄ ଵ
ଶெ

ԡܻ െ ܵԢԡ2
2 ൅ ԡܵԢԡ1ቅߣ ܻ ݐ݄ܽݐ ݄ܿݑݏ  ൌ ΦMൈNSԢ,  (2.7) 

for any parameter ߣ. The value of  ߣ typically corresponds to the maximum correlation 

between the measurements Y and the observation matrix ΦMൈN.  The LARS algorithm is 

a derivative of the LASSO which solves a similar problem but approaches a solution 

more quickly. 

The LARS algorithm specifically works by starting with all reconstruction 

coefficients equal to zero and finding the coefficient most correlated by the randomized 

measurements.  The algorithm increases its value in that direction until another coefficient 

becomes equally correlated with the random measurements.  At this point the target 

reconstruction steps in a direction equiangular between the original coefficient and the 
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newly correlated coefficient.  Changing the step size for this algorithm produces a trade-off 

between the error gained by adding new coefficients too infrequently and the number of 

iterations required to produce an accurate solution.  It has been shown in [6] that thresholds 

ݒ ௨ exist with the properties that for anyߠ ௟ andߠ ൐ 0 the number of samples required for 

accurate signal reconstruction with high probability can be given by 

ܯ     ൐ ௟ߠሺܭ2 ൅ ሻݒ logሺܰ െ ሻܭ ൅ ݇ ൅ 1.  (2.8) 

The probability of accurate signal reconstruction converges to 1 as N increases.  The limit ߠ௨ 

similarly defines the number of samples under which the probability of accurate signal 

reconstruction converges to 0 as N increases.  

A compressed sensing solver that seeks to compute the minimum ℓ0
 
norm solution is 

the Orthogonal Matching Pursuit (OMP) algorithm [5].  This algorithm attempts to 

determine which columns of the pseudo random matrix ΦMൈN are most correlated to the 

measurement matrix Y.  The column with the largest correlation is likely the largest 

coefficient of S.  During an iteration, the column of ΦMൈN with the largest correlation to 

Y is found and its contribution to Y is subtracted.  The resulting coefficient of S is 

determined and the process repeats until Y disappears or has a value smaller than some 

threshold of acceptable error.  This algorithm should only need to iterate K times to 

successfully reconstruct S.  It has been shown that with ܯ ൒ ܭܿ ln ቀே
௄

ቁ it is possible to 

reconstruct every K sparse with a probability exceeding 1 െ ݁ିேெ. There has been some 

critique that OMP cannot produce accurate results except in the simplest (noiseless) 

circumstances [5].  This leads to reason that the effectiveness of the algorithm may 
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degrade swiftly in the presence of noise.  This will be investigated in this thesis in 

Chapter IV. 

 We present an additional theoretical limit algorithm that will be used to 

determine a lower bound on the error present in signal reconstruction.  Optimal solutions 

will be constructed by assuming a genie tells us which coefficients in the sparse vector S 

are non-zero. These are used to create a new matrix ΦெൈேԢ which constructed from the 

columns corresponding to the locations of these non-zero coefficients. The values of the 

coefficients can be determined by orthogonally projecting our measurement vector Y 

onto this matrix.  This is mathematically expressed as 

ܥ     ൌ ሺΦெൈேԢ்ΦெൈேԢሻିଵΦெൈேԢ ்ܻ.   (4.1) 

Here, C is a vector of the non-zero coefficients of S which can be used to 

reconstruct the simulated sensor network data.  These coefficients are placed in there 

appropriate locations to determine S.  This provides a theoretical limit for the capabilities 

of CS reconstruction algorithms because it characterizes the information that is available 

after compressive sampling and produces a solution that is orthogonal to our constraints 

in the wavelet domain.  The results obtained from this algorithm are not necessarily 

indicative of the capabilities of an actual reconstruction algorithm because they are 

based on prior knowledge of the locations of non-zero coefficients.  One of the strengths 

of the theory of compressed sensing is that accurate solutions may be obtained without 

knowing these locations.   

It is important to note that the both the number of samples required to effectively 

reconstruct S and the computational complexity (approximated by the number of 
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iterations required by an algorithm) is dominated by the sparseness factor K.  This means 

that CS is a measurement scheme for which the complexity of measurement decreases 

with the density of information present in a signal field.  The implications of this idea 

will alter the way many problems in engineering and the sciences are approached.  
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III COMPRESSIVE MEASUREMENT OF SENSOR NETWORKS 

 

Compressive Wireless Sensing 

 Recent research has introduced an implementation of CS for sensor networks 

called Compressive Wireless Sensing (CWS) in which a central base station retrieves 

wireless sensor network data from a randomly distributed grid of transducers [7,8].  

Much of this research has focused on the power - distortion - latency relationship for a 

projection of distributed sensor network data onto an underdetermined basis.  The goal 

of this research was to discuss a theoretical model for the compressive sampling of 

wireless sensor network data.  The effects of sensor measurement error, electromagnetic 

interference present at the base station, and channel phase estimation error were 

discussed as far as they pertain to accurate determination of the values of Y in [8].   

Our research considers a similar distributed grid of sensors (transducers) that 

measure some physical data (e.g. temperature, pressure) and wirelessly transmit these 

measurements to a central base station simultaneously and phase coherently.  A typical 

sensor network is shown in Figure 3.1.  Here, each black dot represents a sensor with a 

wireless transmitter communicating sensor readings simultaneously to a base station.  

The extension to a randomly distributed grid is not difficult; however, we consider an 

ordered grid to simplify sensor addressing.   
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Figure 3.1 – Distributed Sensor Network Communication 

 

Modeling and Assumptions 

The novelty of the concept of CWS arises from the fact that projections of sensor 

network data can be naturally added at the base station because the sensors transmit their 

data phase coherently.  Disregarding the effects of noise, the pth observation of the 

sensor network data which corresponds to the pth element of Y is given by 

௣ݕ          ൌ ∑ ௜௜ݔ௜,௣݄௜ߠ .     (3.1) 

Here, ݄௜ א Թ is the phase dependent gain associated with the ith sensor in the grid which 

is multiplied by the corresponding element in X.  It is assumed that the value of hi is 

known for each sensor and does not change during the M observations (it is independent 

of p).  The value ߠ௜,௣ is an element of a Rademacher random matrix that enables random 

sampling of sensor network data.  Equation 3.1 can be represented in matrix form  as

    ܻ ൌ ΘMൈNHNൈN ΨNൈNS,    (3.2) 
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where ܪ௜,௝ ൌ ݄௜ ׊ ݆. This assumes that an entire compressive reading of network data is 

completed before fading changes. The random matrix, ΘMൈN, for CWS is constructed as 

a matrix of Rademacher random variables.  This is useful because it allows each of the 

sensors to locally determine their own vector of Rademacher random variables using 

their address as a seed value.  The base station is then able to construct ΘMൈN from the 

seed values given by the appropriate addresses [8].  

An important focus of this experiment is to examine the capabilities of current 

compressed sensing reconstruction methods for noisy measurements.  It is important to 

discuss how this noise is modeled in our simulated network.  There are two different 

types of error that are analyzed.  The first type is error due to noise present at the base 

station receiver.  This is given by 

    ܻ ൌ ΘMൈNHNൈN ΨNൈNS ൅ ܼ.    (3.3) 

Here Z represents an M ൈ 1 vector of i.i.d. zero mean Gaussian random variables.  The 

second type of error present in our analysis arises from fading coefficient estimation 

error that is introduced when the channel gain from each sensor to the base station is 

incorrectly estimated.  The assumption here is that there is a zero mean i.i.d. Gaussian 

random error, wi, associated with our knowledge of each hi.  An individual element, ݕ௣, 

of Y can then be described by 

௣ݕ             ൌ ∑ ݄௜ߠ௜,௣ݔ௜௜ ൅ ௣ݖ ൌ ∑ ݄௜ߠ௜,௣௜ ߰௜,௣ݏ௜ ൅  ௣.   (3.4)ݖ

Here, ݄௜  and ݄௜
ᇱ represent the actual phase gain and estimated phase gain associated with 

the ith channel respectively given by        

     ݄௜ ൌ ݄Ԣ௜ ൅  ௜.     (3.5)ݓ
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In vector form we have 

    ܻ ൌ ΘMൈNHNൈN ΨNൈNS ൅ ܼ.    (3.6) 
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IV RESULTS AND DISCUSSIONS  

 

Compressive Wireless Sensing Simulation 

 In this chapter we provide some simulation results for compressive measurement 

of wireless sensor network data using the sensor network model discussed in Chapter III.  

Simulated sensor network data was generated by sparsely populating a matrix with 

normal random variables and computing the two dimensional inverse discrete wavelet 

transform (IDWT) of these generated coefficients.  An example of this wireless sensor 

network data is shown in Figure 4.1. 

 

Figure 4.1 – Sample Wireless Sensor Network Data 

This data was then ordered as the N×1 vector, X, by stacking each of the columns in the 

matrix.  For our measurements we choose ܰ as 256.  The sparsifying matrix ΨNൈN was 

then generated by computing and vectorizing the two dimensional DWT of each 

standard basis element in Թଵ଺ൈଵ଺.  Reconstruction of each data set was accomplished 
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using linear programming techniques and implementations of the LASSO, LARS, and 

OMP algorithms provided by Stanford University’s Sparselab toolkit [9].   

 

Minimum Sample Size 

It is first necessary to determine how many measurements are required to 

accurately reconstruct sensor network data in a noiseless environment.  This is important 

because it allows us to approximate the theoretical advantages of this measurement 

scheme.  It also provides a benchmark for tests involving channel noise and fading 

coefficient estimation error.  Figure 4.2 represents the root mean square error measured 

by this test averaged over 200 data sets with an average sparsity of five percent.   

 
Figure 4.2 – RMS Error vs. Number of Measurements 
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 The results of this test are interesting to discuss, especially for measurement sizes 

larger than ninety.  There are significant inconsistencies in the rate of decay of RMS 

error for the LASSO and OMP algorithm reconstructions.  There also appears to be a 

limit at which further increases in sample size do not appear to improve signal 

reconstruction quality for each algorithm.  A histogram of the RMS error of 

measurements from Figure 4.2 is useful to understand how the spikes in error for certain 

sample sizes are characterized.  This histogram shown in Figure 4.3 depicts the range of 

the RMS reconstruction errors in a stacked format that were averaged to plot Figure 4.2. 

 

Figure 4.3 – RMS Error vs. Number of Measurements Histogram 
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It may be difficult to see how the RMS errors for larger measurement sizes are 

characterized from the view of the histogram in Figure 4.3.  It can be concluded, 

however that the spikes in error in Figure 4.2 are not characteristic of consistent errors at 

specific sample sizes.  The inconsistencies in the LASSO, LARS, and OMP algorithms 

appear to arise from reconstruction failures for individual data sets.  Figure 4.4 provides 

a clearer view of this assertion by displaying the top of the stacked histogram in Figure 

4.3 much more closely.  The histogram in Figure 4.4 uses the same legend as Figure 4.3.  

 

Figure 4.4 – RMS Error vs. Number of Measurements Histogram With Shifted Y-Axis 

Notice that even when the number of compressive measurements is very high 

(ex: 200) the LASSO algorithm produces a very high error for a few sensor network data 

sets. This causes the average RMS error to be very high.  A more detailed analysis of 

these failures is left for future work.  
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From Figure 4.2 and Figure 4.3, it can be seen that only seventy samples are 

required for accurate data reconstruction for each algorithm in a noiseless environment.  

This result emphasizes the gains which may be made by compressive measurement and 

the current deficiencies of measurement schemes which do not take advantage of signal 

sparsity.  Traditional sampling schemes require the value of each sensor to be measured 

individually which is especially restrictive in environments where data is available for 

short durations.   Tests determining the effects of noise on signal reconstruction will be 

investigated with a minimum of seventy samples. 

 

Effects of Channel Noise 

 It is important to characterize the effects of channel noise on sensor network data 

reconstruction.  As discussed Chapter III, the sensor network measurement vector, Y, 

with additive channel noise, Z, is given by 

    ܻ ൌ ΘMൈNHNൈN ΨNൈNS ൅ ܼ.    (4.1) 

The RMS error measured for reconstructions is plotted against signal to noise ratios from 

2.5dB to 50 dB for each reconstruction algorithm in Figure 4.5.  This test considers data 

which is five percent sparse and averaged over 100 measurements. 
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Figure 4.5 – RMS Error vs. Channel Noise for 70 Compressive Measurements 

 
Figure 4.6 – RMS Error vs. Channel Noise for 130 and 190 Compressive Measurements 
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The lower bound in Figures 4.5, 4.6, 4.8 and 4.9 represents reconstruction from 

the theoretical limit algorithm discussed in Chapter II.  The errors in signal 

reconstruction above this limit must then correspond to the fact that coefficients 

generated from sparse (minimum ℓ0 or ℓ1 norm) solutions may not correspond to 

orthogonal solutions and that ignorance of non-zero coefficient location may produce 

non-zero coefficients with incorrect positions within S. 

One interesting result from Figure 4.5 is that the reconstruction error of each of 

the reconstruction algorithms tested improves at a rate equal to the theoretical limit for 

large channel noise variance.  Each algorithm appears to have a limit after which a 

decrease in noise variance does not improve signal reconstruction consistently.  We 

show that these limits arise in part from because of the small number of compressive 

measurements as this test was repeated for larger compressive measurement sizes in 

Figure 4.6.   

Notice in Figures 4.6 that the rate of decay of RMS error with SNR is the same 

for the linear programming, the OMP algorithm, and the theoretical limit based receiver. 

This shows that the receiver optimally trades-off RMS error for SNR.  Perhaps the most 

puzzling result from this test is that the LARS and LASSO algorithms maintained a limit 

after which decreasing noise variance did not produce improvement in signal 

reconstruction quality with larger numbers of compressive measurements.  It is also 

surprising that increasing the number of compressive samples and decreasing the 

measurement noise actually serves to degrade reconstruction quality and stability for 

these algorithms.  The capabilities for these algorithms are not discussed in detail in this 
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thesis, however, this failure of the LARS and LASSO algorithms is likely the result of 

the small number of sensors in the simulated network and the particular software that 

was used to implement these algorithms.  In Chapter II, it was discussed that the 

probability for accurate signal reconstruction converges to one as N increases.  It may be 

assumed that 256 is too small a network size for consistent network data reconstructions 

for these algorithms.  The SNRs in Figure 4.6 where the RMS error is not plotted 

corresponds to datasets that contain NaN results causing a test failure.  Because this 

failure can result from the given algorithm returning a single NaN value, a histogram of 

the RMS error is included for several sample sizes over 2000 data reconstructions with 

an SNR of 30dB in Figure 4.7.  The limits of the y-axis of the histogram in Figure 4.7 

are selected for best view of high error and NaN results.  The values on the x-axis 

represent the minimum RMS error allowed for each section of the histogram. 
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Figure  4.7 – RMS Error Histogram for Channel Noise of 30dB 

 There is a large number of NaN errors measured for the LARS and less notably 

the LASSO algorithms.  It is interesting that the Linear Programming and OMP 

algorithms do not return any NaN errors.  The larger errors apparent for the OMP 

algorithm at smaller sample sizes likely occur because of the difficulty of computing 

minimum ℓ0 norm solutions with a small number of measurements especially in the 

presence of noise.  Even small noise levels can disrupt ℓ0 norm reconstruction because of 

the difficulty of choosing a threshold for non-zero coefficients. 
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Effects of Fading Estimation Error 

 Fading estimation error can have interesting effects on signal reconstruction 

error.  This is partially because it is possible for small SNRs to cause a sign error on the 

reconstructed value of an individual sensor if the channel gain for that particular sensor 

is small.  The measurement vector, Y, when this noise is present is given by 

    ܻ ൌ ΘMൈNHNൈN ΨNൈNS.    (4.2) 

Where HNൈN is the real fading coefficient matrix and each row of HNൈN is the same 

vector.  The real fading coefficient of the ith sensor is given by 

     ݄௜ ൌ ݄௜Ԣ ൅  ௜.    (4.3)ݓ

Where ݓ௜ corresponds to the error in the estimation of the ith fading coefficient. This is 

discussed in detail in chapter III.   

 The tests used to study the effects of channel noise on sensor network 

reconstruction were repeated for fading estimation error.  The RMS error measured for 

reconstructions with fading coefficient estimation error variances from -2.5dB to -50 dB 

for each reconstruction algorithm is shown in Figure 4.8.  This test considers data which 

is five percent sparse and averaged over 100 measurements.  
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Figure 4.8 – RMS Error vs. Fading Estimation Error for 70 Compressive Measurements 

 The results for this test are similar to those for the channel noise test with seventy 

measurements.  An important result from both Figure 4.5 and 4.8 is that Linear 

Programming reconstructions result in smaller error measurements than each of the other 

algorithms.  It is interesting that the small sample size of this test dominates the decrease 

in RMS error much more quickly in Figure 4.8 than in Figure 4.5.  Close inspection of 

these figures reveals that the fading estimation error simply does not degrade data 

reconstruction quality as much as channel noise.   This is reflected in the theoretical limit 

reconstruction algorithm as well.  This test was repeated with larger sample sizes in 

Figure 4.9. 
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Figure 4.9 - RMS Error vs. Fading Estimation Error for  

130 and 190 Compressive Measurements 

 The test results shown in Figure 4.9 are consistent with the results of Figure 4.6 

in that the RMS errors of the Linear Programming and OMP data reconstructions decay 

at the same rate as the theoretical limit algorithm.  OMP reconstructions improve more 

swiftly and approach the theoretical limit for small noise variances.  This is likely the 

result of the hard threshold for minimum signal reconstruction error present in the 

algorithm [9].  Non-zero coefficients in the wavelet domain with a value smaller than 

this threshold will not be present in the solution because they correspond to a change in 
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the solution that is smaller than the minimum acceptable error.  The LARS and LASSO 

algorithms continue to produce inconsistent results for large sample sizes and small error 

variances.  A histogram of the RMS error is plotted for fading estimation error equal to 

30 dB in Figure 4.10.  

 

Figure 4.10 – RMS Error Histogram for Fading Estimation Error of 30dB 

 Comparing Figure 4.10 with Figure 4.7 further demonstrates that fading 

estimation error does not degrade data reconstruction quality as much as much as 
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channel noise except for a small decrease in performance of the OMP algorithm for 

compressive measurement sizes.   
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V CONCLUSIONS AND FURTHER RESEARCH 
 

There are a few specific conclusions which may be drawn from the results of our 

study.  First is that the method of compressed sensing can significantly improve the 

quality of sensor network data measurement over the traditional scheme individually 

measuring each sensor reading.  This can be seen from Figure 4.3 where it becomes clear 

that only roughly 70 samples are required for reconstruction of sensor network data. 

Second is that noise from the channel as well as estimation errors do not adversely affect 

the performance of linear programming based reconstruction algorithms. Surprisingly, as 

seen from Figure 4.6, the rate of decay of reconstruction error with SNR is nearly 

optimal for linear programming based reconstruction algorithms. Thus compressed 

sensing can be a robust and efficient alternative to conventional methods of data 

collection and reconstruction in sensor networks. The particular implementations of the 

LASSO and LARS algorithms that were obtained from the Stanford sparselab tool kit 

failed occasionally causing a large increase in the average RMS error which produces 

somewhat abnormal results. A more detailed investigation of these failures is very 

important and should be considered in future work. 

 One of the disadvantages of the current technique is that it is not very power 

efficient because each of the sensors needs to transmit M times.  Future research will 

discuss methods by which the number of sensor transmissions may be decreased.  One 

method which will be studied is whether the sensing matrix Φெൈே can be made sparse.  

It will be interesting to try to determine a way to estimate the RMS error that will occur 

from different reconstruction methods prior to applying the algorithm to reconstruction.  
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This work may shed light onto the ways that current algorithms may be improved.  This 

research has only investigated fading estimation error for slow fading.  It will be 

interesting to determine how fast fading affects compressive receiver performance. 
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