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ABSTRACT 
 

A class of Non-Binary Low Density Parity Check Codes. (May 2003) 

Deepak Gilra, B.Tech Indian Institute of Technology, Kharagpur 

Chair of Advisory Committee: Dr. K.R.Narayanan 

 

In this thesis we study Low Density Parity Check (LDPC) and LDPC like codes over 

non-binary fields. We extend the concepts used for non-binary LDPC codes to generalize 

Product Accumulate (PA) codes to non-binary fields. We present simulation results that 

show that PA codes over GF(4) performs considerably better than binary PA codes at 

smaller block lengths and slightly better at large block lengths. We also propose a trellis 

based decoding algorithm to decode PA codes and show that its complexity is 

considerably lower than the message-passing algorithm.  

 

In the second part of the thesis we study the convergence properties of non-binary PA 

codes and non-binary LDPC codes. We use EXIT-charts to study the convergence 

properties of non-binary LDPC codes with different mean column weights and show why 

certain irregularities are better. Although the convergence threshold predicted by EXIT-

charts on non-binary LDPC codes is quite optimistic we can still use EXIT-charts for 

comparison between non-binary LDPC codes with different mean column weights. 
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CHAPTER I 

INTRODUCTION 

 

Low-density parity check (LDPC) codes are a class of linear error correcting codes 

defined by a very sparse parity check matrix. Gallagher [1] presented a decoding 

algorithm and a detailed performance analysis on regular LDPC codes in his dissertation 

in 1963. Recently Mackay and Neal [2] proved that LDPC codes are �very good� which 

means that there are sequences of LDPC codes with rates up to Shannon capacity, which 

achieve arbitrarily low probability of error using the optimal ML decoder. The re-

discovery of these codes has sparked major research in the coding field because of their 

near Shannon limit performance and simple description.   

 

Conventional LDPC codes have a low decoding complexity but may have high encoding 

complexity. The encoding complexity is typically of the order O(n2).  Also high storage 

space may be required to explicitly store the generator matrix. For long block lengths the 

storage space required would be huge. The above factors make the implementation of the 

conventional LDPC codes less attractive. 

 

Product Accumulate (PA) codes proposed by Li, Narayanan and Georghiades [3] are a 

class of LDPC codes that are linear time encodable and decodable at significantly low 

complexity and offer high rates. PA codes are essentially LDPC codes with two levels of 

checks. The encoding complexity of PA codes is low and also these codes do not require 

explicit storage of the generator matrix. The performance of binary PA codes has been 

shown to be a few tenths of a dB away from the Shannon limit for rates greater than or 

equal to 1/2. The decoding complexity of PA codes is similar to that of LDPC codes. The 

above factors make implementation of Product Accumulate Codes more attractive than 

LDPC codes. 

 

 

The journal model is IEEE Transactions on Automatic Control. 
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 Davey and Mackay [4], [5] have shown that non-binary LDPC codes defined over GF 

(q), q> 2, show significant improvement over binary LDPC codes. The main reason can 

be attributed to the dependence of the decoding algorithm on the mean column weight of 

the H matrix. Mackay has shown that, given an optimal decoder, LDPC codes can 

approach Shannon limit for long block lengths and high mean column weight. The parity 

check matrix for codes defined over GF(q) contain elements from GF(q). Hence the mean 

column weight of the equivalent binary parity check matrix increases, when moving from 

GF (2) to GF (8). Another way of increasing the mean column weight of the binary parity 

check matrix is to introduce more ones in the column of H matrix. But this introduces 

more cycles in the corresponding graph and it is known that the decoding algorithm of 

LDPC codes performs worse over graphs with cycles. On the other hand, by moving to 

GF(q) we  increase the mean column weight of the parity check matrix without 

introducing cycles in the corresponding graph. Also moving onto GF(q), q> 2, increases 

the state space of each node in the decoding graph by decoding over GF(q). In other 

words increasing the field order is comparable to increasing the memory of convolutional 

code.  

 

We see that codes defined over GF (4) and GF (8) perform better than codes defined over 

GF (2) for certain irregularities and certain mean column weights. For successful 

decoding, the average entropy of the messages passed in the graph of LDPC codes should 

fall below a certain threshold after a certain number of iterations. Mackay and Davey [5] 

show that the average entropy of messages passed in the graph for non-binary LDPC 

codes falls faster than the average entropy of messages passed in graph for binary LDPC 

codes only for certain mean column weight. Although the procedure provided in [5] finds 

the mean column weight where codes over GF(q) would outperform codes over GF(2) it 

does not give any insight into the convergence properties of the decoding algorithm.  

 

The main objective of this thesis is to study LDPC and LDPC-like codes over non-binary 

fields. The main focus is on PA codes because of the advantages listed above. Also non-

binary LDPC codes perform better than binary LDPC codes, so we generalize the PA 

codes to non-binary fields. We present simulation results for PA codes over GF(4) and 
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GF(8). We also propose a trellis based decoding algorithm for PA codes. We show that 

the decoding complexity of the new algorithm is considerably lower than the message-

passing algorithm proposed in [3].  

  

In order to explain the reason for better performance of non binary PA codes and the 

influence of mean column weight on the performance of LDPC codes over GF(q), we 

look at the convergence properties of the decoding algorithm. Ten Brink [6] showed that 

using mutual information as a measure for extrinsic information transfer (EXIT) charts, 

the convergence behavior of iteratively decodable schemes can be visualized. Each 

constituent decoder is represented by mutual information transfer characteristics, which 

describes the flow of extrinsic information through the soft in soft out decoder. However, 

it is tricky to extend the concept of EXIT-charts to non-binary fields because it is difficult 

to model the apriori information. So we use the approach suggested by Benedetto and 

Montorsi and Scanavino [7]. They show that if the decoder and the interleaver operate at 

the symbol level, we get a lower convergence threshold. We use this concept to study and 

compare the convergence thresholds for binary and non-binary PA codes. We also use the 

concept of EXIT-charts to show why certain irregularities in LDPC codes are better than 

others. 

 

The organization of the thesis is as follows. In Chapter II, we give a detailed background 

of binary and non-binary LDPC codes. We also introduce Product Accumulate (PA) 

codes followed by decoding of binary and non-binary LDPC codes. A reader familiar 

with LDPC codes and LDPC-like codes can skip this chapter. In Chapter III we propose 

non-binary PA codes. We also propose trellis based decoding for non-binary PA codes 

and compare its complexity with the conventional message passing decoding. In Chapter 

IV we introduce EXIT-charts. We review Benedetto and Montorsi�s approach for 

comparing bit- and symbol-interleaved serially concatenated codes [7]. We then extend 

the  idea of EXIT-charts to non-binary fields. Next, the convergence threshold of binary 

and non-binary PA codes is compared. We also compare the convergence thresholds for 

non-binary LDPC codes with different mean column weights. In Chapter V we present 

the conclusions. 
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CHAPTER II 

LOW DENSITY PARITY CHECK CODES 

 
This chapter presents background material, which can be skipped by a reader familiar 

with LPDC codes. LDPC codes are a class of linear error correcting codes with very 

sparse parity-check matrices. These codes are usually decoded using the sum-product 

algorithm, which is a message passing algorithm working on the Tanner graph of the 

code. The sparseness of the parity check matrix is essential for attaining good 

performance with sum-product decoding. The time complexity of the sum- product 

algorithm is linear in code length. This property makes it possible to implement a 

practical decoder for long lengths. 
 

Linear codes use a generator matrix G to map a message vector X of length k to a 

transmitted codeword Y of length n. All codewords satisfy HY=0, where H is the parity 

check matrix. Gallager defined (n, p, q) LDPC codes to have a block length n and a parity 

check matrix with exactly p ones per column and q ones per row, where p >=3. The rate 

of the code is k/n = 1 � (p/q). Gallager proved that, for a fixed p, the error probability of 

the optimum decoder decreases exponentially for sufficiently low noise and sufficiently 

long block length. The parity check matrix is typically constructed randomly while 

constraining the distributions of the row and column vectors as uniform as possible. Since 

H is not in systematic form, we perform Gaussian elimination using row operations and 

reordering of columns. The resulting parity check matrix has the form H/ = [-P | Im], 

where the notation [A|B] indicates the concatenation of matrices A and B; and Im is the 

mxm identity matrix. The corresponding generator matrix G = [Ik |P], is not sparse. So 

the encoding complexity is O(nxn) per block.  

 

The H matrix can be represented as a bipartite graph, which is defined as an undirected 

graph where vertices can be divided into two sets such that no edge connects vertices in 

the same set. Each bit (column of H) is represented by a variable (left) node and each 

check (row of H) is represented by a check (right) node. For binary codes the values in 
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the H matrix are either 1 or 0. A 1 denotes an edge between the corresponding variable 

node and the check node. If the H matrix has N columns and M rows, the corresponding 

bipartite graph has N bit nodes and M check nodes. An example of a parity check matrix 

is shown in Figure 1. 

      























































10000100001000010000
00010010000100001000
01000001000010000100
00001000010001000010
00100000100000100001
10001000100010000000
01000100010000001000
00100010000001000100
00010000001000100010
00000001000100010001
11110000000000000000
00001111000000000000
00000000111100000000
00000000000011110000
00000000000000001111

 

 

Figure 1: An example of H matrix (20,3,4) 
 

In the above parity check matrix there are 4 ones per column and 3 ones per row. This 

means that a bit node participates in 3 checks and 4 bit nodes participate in a single 

check. The Tanner graph representation for the LDPC code described by the H matrix 

above is shown in Fig. 2. 
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Figure 2: The Tanner graph of LDPC code described by H matrix in Figure 1 

 

A cycle in a graph is a path that begins and ends at the same node. So, for a bipartite 

graph, the shortest possible cycle has length 4. If the Tanner graph of a code is cycle free, 

then message-passing algorithms like the min-sum algorithm and the sum-product 

algorithm, all converge to the optimal solution. Even if there are cycles in the graph, we 

see that the decoding algorithm still converges. The convergence is faster if there are no 

short cycles. In order to remove short cycles (of length 4), no two columns of the H 

matrix should overlap more than once. 

 

2.1 Product Accumulate Codes: PA Codes are a class of �good� codes that offer high 

rates and are linear-time encodable and decodable. A �good� code is defined as a code for 

which arbitrarily low error rates can be achieved above a certain noise threshold as the 

block length goes to infinity. LDPC codes and Turbo codes are examples of such codes.  

Turbo codes have a high decoding complexity since the complexity of the maximum 

aposteriori probability (MAP) decoding of the constituent codes grows exponentially 

with the constraint length. Conventional LDPC codes, on the other hand, have a low 

decoding complexity but the encoding complexity is high. Also large storage space may 

be required to explicitly store the generator matrix. For long block lengths the storage 

space required would be huge. PA codes offer an advantage over LDPC codes in that 

they do not require explicit storage of the generator matrix and yet the decoding 

complexity is comparable to that of conventional LDPC codes. These advantages make 
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PA codes more attractive to implement than the conventional LDPC codes and Turbo 

codes. 

 

2.1.1 Structure of PA Codes: PA codes are the serial concatenation of an inner rate-1 

differential [1/(1+D)] encoder and an outer Turbo Product Code/Single Parity Check 

(TPC/SPC) code.  The structure of a PA code is shown in Fig 3. 

 

Conventional two-dimensional TPC/SPC codes are obtained by arranging the data in a  

t x t  block and appending parity checks to each row and column. This is equivalent to an 

LDPC code where each row in each dimension satisfies a check, and hence message-

passing decoding can be employed. Alternatively, the TPC/SPC may also be viewed as a 

parallel concatenation of two (t+1, t) single parity check codes separated by a block 

interleaver. For the constituent code of a PA code, the block interleaver of the TPC/SPC 

is replaced by a random interleaver. The message-passing decoding can still be employed 

to decode this code. In Chapter III, we will present an alternative, trellis-based approach 

for the decoding of the TPC/SPC outer code. This approach enables us to exploit a wealth 

of research in trellis-decoding algorithms for use in the decoding of PA codes. 
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pt data bits 
 
 
 
                                              p parity bits                                     p(t+2) coded bits 
 

 

 

 

 

                                              p parity bits 

 

Figure 3: Structure of Product Accumulate code 
 

 

The input block of  p*t bits is broken down into p blocks of t bits each. Each block of p 

bits is fed into the first SPC encoder to produce a parity bit per block. So each branch 

produces p parity elements. So p*(t+2) bits are fed to the inner decoder. Since the inner 

encoder is rate-1 differential encoder the length of the output codeword is p*(t+2). Hence 

the effective rate of the code is t/(t+2).  

 

2.2 Low Density Parity Check Codes over GF(q): Davey and Mackay [4], [5] 

proposed low-density parity check codes over GF (q), q>2, called non-binary LDPC 

codes. They showed that LDPC codes over GF(q) achieve superior performance to that of 

binary LDPC codes. In case of non-binary codes the H matrix can take values from the 

finite field GF(q). Again HY=0 and the presence of elements from the GF(q) produces 

more stringent checks on the codewords. Any non-zero value at H(i,j) indicates that there 

is an edge existing between ith row and jth column.  

 

An LDPC code over GF(q) can also be represented by a Tanner graph, with a weight on 

each edge of the graph. This weight is the matrix entry in the parity check matrix and is 

t/t+1 
SPC 

t/t+1 
SPC 

  π1 

 
 

  π2 
  Pseudo 

  random 

interleaver
D
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chosen from the finite field GF(q). So now for bit nodes defined over GF(q), a check m 

would require 

 

0*
)(

=∑
∈ mNj

jm xa
j

,               (1) 

   

where N(m) is the set of variable nodes connected to the check m and  
jma  � GF(q), 

jma ≠ 

0. Mackay showed that going from binary to non-binary field may reduce the number of 

cycles in the Tanner graph. If we associate a pxp matrix for every element in GF(q), q=2p 

then we can substitute the H matrix in GF(q) domain with an equivalent H matrix which 

is pxp times longer in each domain. This can be seen from the figure 4. 

 

Let the H matrix in GF(4) be  
   1     1     0 

   3     0     2 

  

Its equivalent binary H matrix is: 

 
1 0 1 0 0 0 

0 1 0 1 0 0 

0 1 0 0 1 1 

1 1 0 0 1 0 
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Where 0 = = 







00
00

, 1= = 







10
11

, 2 = = 







01
11

 , 3 = = 







11
10

 

 

The equivalent Tanner graph for both the cases would be: 

 

 

 

                     

                               

 

 

Figure 4: Comparison of Tanner graph at GF(4) and GF(2) 
   

From the above graph we see that for the binary case there exists a short cycle of 

length=4 which is absent in the non-binary case. This is one of the main reasons why we 

expect LDPC codes over non-binary fields to perform better than LDPC codes over the 

binary field. 

 

2.3 Sum-Product Algorithm: The decoding of the LDPC codes over GF(q) is done 

using the sum-product algorithm in an iterative fashion. The encoding is viewed as a set 

of bit nodes connected to the check node that satisfies the check as shown in (1). A bit 

node participates in a set of checks because there are more than 1 non-zero elements in 

the column. The H matrix determines the set of check nodes to which bit nodes are 

connected. 

 

The decoder first receives p bits from the channel that make up a q�ary symbol. The prior 

distribution for that symbol is set to: 

 

  i

i

a
x

p
i

a ff 1=Π=                (2) 

 

1

1

23
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Where i

i

a
xf  is the likelihood that the ith constituent bit is equal to ai , an element from the 

finite field.  

 
2.3.1 Update at Check Node :Rij

a is the message that check i send to node j. It is the 

probability of the check being satisfied assuming the bit node to which it is connected is 

equal to symbol a where a is an element from the finite field GF(q). So the probability is 

calculated by summing over all configurations of x (the codeword) for which the check is 

satisfied and also the bit node is equal to symbol a. 

  

∑ ∏
∈

=
j

k

k
xx jiNk

x
ii

a
ij QxzPR

: \)(
)|(                (3) 

 

The probability P(zi| x) is the probability that the check is satisfied or not and hence is 

equal to zero or one. Qij
a �s are the messages that the bit node sends to the check node that 

is suppose to approximate the node�s belief that it is equal to symbol �a� given messages 

received from all other check nodes. N(i) denotes the set of noise nodes connected to that 

check node and N(i)/j denotes the set of noise nodes connected to check node except j. 

 
2.3.2 Update at Bit Node: The messages that bit node j sends to check i is the 

probability that the bit node is equal to symbol a according to the set of check nodes 

connected to that bit node. 

 

∏
∈

=
ijMk

a
k

a
jij

a
ij j

RfQ
\)(

α              (4) 

 

Where M(j) is the set of check nodes connected to the bit node j and a
jf  is the prior 

probability that xj is equal to symbol a. The normalization constant αij ensures that Σ Qij
a 

=1. 

 

2.3.3 Hard Decisions: At each iteration we compute the vector as: 
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∏
∈

=
)(

maxarg
jMk

a
kj

a
jj RfY            (5)   

This vector should satisfy the parity check equation HY=0 for the decoding to be 

declared to be as successful. If the condition is not met then we iterate again. This 

continues until we reach a fixed number of iterations after which we declare a decoding 

failure. 

 

2.4 Fourier Transform Decoding: The complexity of the message passing decoding 

algorithm scales as O(q2) . Using Fourier transform decoding as described by Richardson 

and Urbanke [8] we reduce the complexity.  

 

The update of check node is described in (3) is  

  

∑ ∏
∈

=
j

k

k
xx jiNk

x
ii

a
ij QxzPR

: \)(

)|(  

 

where N(i) is the set of bit symbols that participate in check i. The above equation 

represents a convolution of Qik
xk quantities. Using Fourier transform we can change the 

summation to a product of Fourier transform of Qik
xk and then later take the inverse 

Fourier transform. The Fourier transform is taken over GF (q). The Fourier transform F 

of a function f over GF(2) is given by F0 = f0 + f1 and F1 = f0 - f1 Similarly transforms 

over GF(4) can be viewed as : 

 

F0 = [f0 + f1] + [f2 + f3]          (6) 

F1 = [f0 - f1] + [f2 - f3]           (7) 

F2 = [f0 + f1] - [f2 + f3]           (8) 

F3 = [f0 - f1] - [f2 - f3]           (9) 

 

The inverse transform is the same followed by division by 4. The transforms over GF (2k) 

 are viewed as a sequence of binary transforms in each of k dimensions and the inverse 

 transforms are the same, followed by division 2k.  
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2.5 Simulation Results: For encoding we transmit an all zero sequence. Since the code is 

linear there is no loss of generality.  Binary input Gaussian channel is simulated and we 

examine the success of decoding after several iterations on a block and several blocks. 

Each q-ary symbol is transmitted over various uses of channel. For example each symbol 

over GF(4) is transmitted over 2 uses of the binary channel and similarly each symbol 

over GF(8) us transmitted over 3 uses of the channel. The sum product algorithm is used 

to decode and the performance is observed by plotting the bit error rate with Eb/No. The 

figure 5 shows simulation results for rate 1/3 code with transmitted blocklength equal to 

49152 binary bits where as the figure 6 shows the performance of the code with rate ¼ 

and transmitted block length=6000 bits: 

 
 

Figure 5: Performance of LDPC codes rate 1/3, transmitted block length=49152 bits over 

GF(2),GF(4),GF(8) with mean column weight=2.5 
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 Figure 6: Performance of LDPC codes rate ¼ , block length=6000 transmitted bits 

 
We see that for rate 1/3 codes there is a significant improvement in performance by going 

from GF (2) to GF (4) and then to GF (8). For rate ¼ the best codes are defined over 

binary field and the codes over GF (4) and GF (8) perform worse with the same binary 

block length. So we see that non-binary LDPC codes perform better than the binary codes 

only for certain mean column weight. 

 

 The reason can be attributed to the dependence of decoding algorithm on the matrix 

weight. As the matrix weight is increased, the number of neighbors for the check node 

increases and so the check node is less confident of its neighbors and the decoder 

performs worse. At the same time increasing the field order would produce similar effect 

because now the neighbor has more possible states. So going to higher order field with 

high matrix weight should give worse performance. But intuitively we also see that 

producing more stringent conditions on the check node reduces error. Davey shows the 

effect of changing the field order and mean column weight on the decoding algorithm. 
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Davey [5] used Monte Carlo methods to simulate LDPC codes of infinite length whose 

associated graphs have a tree structure and hence the decoding algorithm is known to be 

exact. First an ensemble S of S noise symbols is created according to the channel model. 

Then the messages, which go from the noise node to the check node, are updated after 

each iteration. The ensemble of noise symbols and associated Q messages are computed 

according to the channel model. Then the values of the check updates are calculated 

assuming that all the other noise nodes connected to it are coming from the same 

ensemble S. The number of noise nodes connected to a check node is determined by the 

rate and the mean column weight. After we have the check updates we can create a new 

ensemble from the updates of the check nodes. Similarly new ensembles are created after 

each iteration. The ensemble contains approximations to the distribution of Q messages 

in an infinite network after an arbitrarily number of iterations. For successful decoding 

the average entropy of the Q messages should become arbitrarily small as the decoding 

progress. The decoding is declared a success if the average entropy drops below a certain 

threshold after some iteration. So now Davey compares the decoding performance on the 

basis of rate and matrix column weight. He shows that for rate ½ and mean column 

weight 3 codes over GF (4) will perform the best followed by codes over GF (2) and then 

codes over GF (8), which is exactly what the results show. On the other hand for rate ¼ at 

mean column weight 3 codes over GF (2) will perform the best followed by codes over 

GF (4) and then GF (8). Davey shows that for rate ½ GF (8) would perform best at mean 

column weight of 2.8 followed by GF (4) and then GF (2) and for rate ¼ the mean 

column weight should be 2.6. The above approach does not give any insight into the 

convergence properties of the decoding algorithm. We explain these results using EXIT-

charts in Chapter IV. 
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CHAPTER III 

Non-Binary Product Accumulate Codes 
 
From the previous chapter we see that non-binary LDPC codes perform better than binary 

LDPC codes. Also we see that binary Product Accumulate code offer advantages over 

binary LDPC codes. So we generalize Product Accumulate codes to non-binary fields 

using the same principles as used for non-binary LDPC codes. The transfer function for 

the inner code of a non-binary PA code is of the form 1/(1+aD), where �a� is a weight 

randomly chosen from the finite field GF (q). A weight is chosen on the intuition that it 

would increase the robustness of the code. It has been later verified from the simulations 

that introducing weight indeed results in a better performance for short block lengths. The 

SPC in the outer code now has t random weights attached to it making the checks more 

stringent. The parity element is produced as: 
 

    .0)1(*)(*)(
0

=++∑
=

tayiaix
t

i
      (1) 

 

Where a(i)�a(t+1) are randomly chosen weights from the finite field GF(q). �y� is the 

parity element produced as a result of the above equation.  
 
 
3.1 Decoding of Non-Binary PA Codes: In general, the ML decoding of serially 

concatenated codes is prohibitively complex. Iterative decoding is usually employed, 

wherein the constituent decoders exchange �extrinsic� information in a turbo-like 

fashion. Since the decoding is performed in non-binary field the exchange of extrinsic 

information is in the form of actual probabilities or log of probabilities instead of log-

likelihood ratios.  From the figure 7 we see how the soft extrinsic information is 

exchanged between the two decoders.  

 

 

 

 



           

 

             

17 

  

 

 
        Pch 
                                                       Pext11                                           Pap2                                                Pext2     
      Pap1 
 
 
 
 
 

Figure 7:Block diagram depicting decoding for Serially Concatenated codes 
 

The decoder D1 receives apriori information (pap1) for each input bit from the decoder 

D2. It also receives channel information pch from the demodulator. It then computes 

extrinsic information pext1 for the input bits. This information is passed to the outer 

decoder D2 that treats the information as apriori information pap2. D2 then computes the 

extrinsic information pext2 for the outputs and passes it to D1. The decoding proceeds 

until either all checks are satisfied (successful decoding) or a fixed number of iterations is 

reached. The idea behind extrinsic information is that the decoder D1 provides soft 

information to D2 using information not available not D1. 

  

For a PA code the outer code is a parallel concatenation of SPC codes. The outer code 

can be decoded using message-passing algorithm. It can be represented on a graph with 

bit nodes and check nodes. �t+1� bits participate in a check and each bit participates in 2 

checks except the 2*p parity elements which are produced by the single parity check 

equations, which participate in just one check. The inner code is decoded using BCJR 

algorithm [13] on non-binary fields. 

 

3.2 Trellis Based Decoding: We propose to use the trellis based decoding to decode the 

outer code. The operations in the SPC encoder can be represented on an irregular trellis 

as shown in figure 8. Each path in the trellis shows a check being satisfied. Once we can 

draw the trellis we reduce the decoding complexity by using assumptions not so evident 

in the message passing decoding. For codes over GF(q) the corresponding trellis has q 

states. The paths in the trellis represents all possible codewords of the single parity check 

code. This is explained more clearly with an example for GF(4).  

D1 

  π 

  π-1
  D2
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For GF(4) the trellis has 4 states. For t=2 the trellis has t+1=3 stages. The number of 

codewords equals to 16. The trellis in Fig 8 has 16 paths and each path corresponds to 

one of the codewords. For example the path aaa corresponds to codeword 000 where as 

the path bbb corresponds to codeword 303. 

 
                        a                 a                a 

 

 

 

                       b                                       b 

 

 

                                    b 

 Figure 8: Trellis for t=2 SPC encoder over GF(4) 
 
The first state is always 0. In the first stage there can be transition from state 0 to any 

state 0,1,2,3 depending on the input symbol. At the second stage there similarly there can 

be transition to any stages from any stage depending on the input symbol. At the third 

stage the transition is always to the state 0 denoting a check being satisfied. Once the 

trellis is drawn we apply BCJR decoding algorithm to get extrinsic information of the 

transitions on the trellis. Then we iteratively decode the outer TPC/SPC code in turbo 

fashion by passing soft information from one decoder to the other. 

 

The sum-product and BCJR (forward-backward) algorithms are equivalent. The BCJR 

takes all paths into consideration before deciding the best path. Similarly in the sum-

product algorithm, the update of check nodes is done by taking into consideration all 

possible combinations of values that bit nodes can take in order to satisfy the check. So 

the performance of both the decoders is the same except for the complexity. The sum 

product algorithm was discussed in the previous chapter and the BCJR algorithm is 

discussed below in section 3.2.1. 
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3.2.1 BCJR Algorithm: The Bahl Cocke Jelinek and Raviv algorithm [9] is used on 

Markov chains to produce aposteriori probabilities for the input and output symbols. The 

inner encoder is a differential encoder which is a convolutional code of the form 

1/(1+aD) and can be viewed as Markov chain. Once the trellis is drawn, we can identify 

the states, the transitions, etc. For the inner code the number of states at each stage is �q� 

the field order. For the outer code, the maximum number of states at any stage for each 

trellis is also �q�.   

 

We define the following quantities: 

 

),()( 1
t

tt rmSPm ==α  --------forward path metric     (2) 

)|()( 1 mSrPm t
N

tt == +β  ---Backward path metric      (3) 

)|,(),( 1 mSrmSPmm tttt ′===′ −γ �branch metric     (4) 

 

Here St  denotes the state of the encoder at any time �t�, rt  is the received sequence. 

((m, m/)  ∈  (0,1,2,3) for q=4) 

 

)|,(),( 1 mSrmSPmm tttt ′===′ −γ  

     =∑ ′==′==′=== −−−
i

tttttttt mSmSPmSmSrPmSmSiaP )|(*),|(*),|( 111  

 

The first term in the equation is either �0� or �1� depending on whether the transition 

between states m and m′  exists or not. The second term is the probability of the output 

symbol given the present state is m and the previous state is m′ . This is the value 

obtained from the channel. The third term is the apriori probability of the input symbol 

for the transition from m′  to m. In the absence of parallel transitions (which is the case 

for all examples considered here), the summation reduces to a single term: 

 

=′).( mmtγ )|(*),|( 11 mSmSPmSmSrP ttttt ′==′== −−  
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3.2.1.1 Forward Recursion 
 

),()( 1
t

tt rmSPm ==α  

           = ∑
′

−
−

−
− ′==′=

m

t
t

t
t

t
t rmSrmSPrmSP ),|,(*),( 1

111
1

11  

           = ∑
′

− ′′
m

tt mmm ),(*)(1 γα          (5) 

   .  
 
The term αt(m) is the probability of being in state m at time t given the received sequence 

until time �t�. When the encoding starts the encoder is always in state 0 and hence we  

initialize α0(0) =1. Also α0(m) =0 for m ≠ 0. At each stage we normalize the α t(m) to 

maintain numerical accuracy. 
  
3.2.1.2 Backward Recursion 

 

∑
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 =∑
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+ ′′
m

tt mmm ),(*)(1 γβ               (6) 

 

The term βt(m) is the probability of receiving the sequence N
tr 1+ given that the current 

state is m. The trellis always ends in state 0 at t=N because of tail bits insertion in the 

encoder and so we initialize βN(0) =1. If we do not insert tail bits and the trellis ends in 

state m, we initialize βN(m) =1. For single parity check encoder the trellis ends in state 0 

at every (t+1)th stage. We normalize the βt(m) at each �t� to preserve numerical accuracy. 

 

The aposteriori probability of the input symbols is computed as: 
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′
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tttt
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t mmmxmraP )(*),,3(*)()|3( 11 βγα     (10) 

  

where at is the input on the trellis at time �t� and r1
N is the received sequence. xt is the 

input/output associated with the transition from state m′  to m. 

 

The equations when expanded on GF(4) are as:  

 

P(at=0 | Y1
N) = αt-1(0)*γt(0,0)*βt(0) +αt-1(1)*γt(1,1)*βt(1)+ αt-1(2)*γt(2,2)*βt(2)+  

αt-1(3)*γt(3,3)*βt(3). 

 

P(at=1 | Y1
N) = αt-1(0)*γt(0,1)*βt(1) +αt-1(1)*γt(1,0)*βt(0)+ αt-1(2)*γt(2,3)*βt(3)+  

αt-1(3)*γt(3,2)*βt(2). 

 

P(at=2 | Y1
N) = αt-1(0)*γt(0,2)*βt(2) +αt-1(1)*γt(1,3)*βt(3)+ αt-1(2)*γt(2,0)*βt(0)+  

αt-1(3)*γt(3,1)*βt(1). 

 

P(at=3 | Y1
N) = αt-1(0)*γt(0,3)*βt(3) +αt-1(1)*γt(1,2)*βt(2)+ αt-1(2)*γt(2,1)*βt(1)+  

αt-1(3)*γt(3,0)*βt(0). 

 

Once again the probabilities are normalized and clipped to maintain numerical accuracy. 

 

 3.2.2 Max-Log-MAP: The BCJR algorithm may be implemented in the log domain. The 

new definition of α t(m) and βt(m) is as follows: 

 

)(log)( mm tt αα =′          (11)  
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)(log)( mm tt ββ =′          (12) 

)),(log(),( mmmm tt ′=′′ γγ         (13) 

 

The previous definition of gamma is given as:  

)|,(),( 1 mSrmSPmm tttt ′===′ −γ  

                = )|(*),|( 11 mSmSPmSmSrP ttttt ′==′== −−  

 

 ))|,(log()),(log( 1 mSrmSPmm tttt ′===′ −γ  

    = log ))|(*),|(( 11 mSmSPmSmSrP ttttt ′==′== −−  

= ))|(log()),|(log( 11 mSmSPmSmSrP ttttt ′==+′== −−   (14) 

 

The forward and backward recursions are now defined in equation (15) and (16). 

 

∑
′

− ′′+′′=′
m

ttt mmmm )),()(exp(log)( 1 γαα       (15) 

∑
′

+ ′′+′′=′
m

ttt mmmm )),()(exp(log)( 1 γββ       (16) 

 

The initial conditions for the recursions are: 

α/
0(0) = 0   and α/

0(m) = -∞ for m ≠ 0. 

β/
N(0) = 0   and β/

N(m) = -∞ for m ≠ 0 

 

From the above recursions it is clear that all the multiplications are converted to additions 

but the exponential and logarithmic terms still remain. In order to simplify the exponent 

terms we use the approximation given in equation (17). 

 

)1log(),max()log( ||
21

221 xxxx iexxee −−++=+      (17) 

 

The second term approaches zero as |x1- x2| increases. We can quantize the term 

)1log( || 21 xxe −−+  and store the values of )1log( || 21 xxe −−+  for 4 or 8 levels. If we use this 
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correction then the resulting algorithm is called Log-MAP algorithm. So each 

computation of the form )log( 21 xx ee +  now required only a max operation and a look-up. 

There is no exponential calculation as well as no logarithm function calculation. The term 

)1log( || 2xxie −−+  may be dropped altogether with a small penalty in performance. This 

version of the algorithm is called the Max-Log-Map algorithm. 

 

The MAP takes all paths through the trellis into calculation at each step and classifies 

them into q sets. Then afterwards at each step it groups the paths into respective sets. The 

Max-Log-MAP algorithm looks at only q paths at each step. The paths can change from 

step to step but one will always be maximum-likelihood (ML) path. This explains the 

difference in performance between Log-MAP and Max-Log-MAP. 

 

The equations for the max-log-map algorithm are written in equation (18) and (19). 

 

)),()((max)( 1 mmmm ttmt ′′+′′=′ −′ γαα       (18) 

)),()((max)( 1 mmmm ttmt ′′+′′=′ +′ γββ        (19) 

 

The normalization of α ′ �s and β ′ s is given in equation (20) and equation (21). 

 

))),()(((maxmax)),()((max)( 11 mmmmmmm ttmmttmt ′′+′′−′′+′′=′ −′−′ γαγαα  (20) 

))),()(((maxmax)),()((max)( 11 mmmmmmm ttmmttmt ′′+′′−′′+′′=′ +′+′ γβγββ  (21) 

 

Rewriting the equations 7-10 in terms of log probabilities we get 

))(),,()((max))|(log( 1,1 mmmixmriaP ttttmm
N

t βγα ′+′=′+′== −′     (22) 

 

Once again we normalize as shown in equation (22). 

))(),,()((max))|(log( 1,1 mmmixmriaP ttttmm
N

t βγα ′+′=′+′== −′  

        - ))|(log(max 1
N

tm rmaP =      (23) 
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3.2.3 Complexity Comparisons: The complexity of message passing algorithm and 

Max-Log-Map can be tabulated as: 

 

Table 1: Table comparing the complexity of different algorithms used to decode PA 

codes over GF(q) 

 

 Max-Log-Map Sum-Product Fourier Transform 

Additions 5 q2 +2q q2 +3q 5q 

Multiplication 0 q2 +3q 4q 

Max ops 2q+3 0 0 

  

In table 1 we also show the complexity of Fourier transform decoding that can be used to 

decode the outer code. Fourier transform decoding reduces the complexity of the update 

at check node. The update of check node is a convolution of messages coming from the 

bit nodes and by Fourier transform decoding we convert the convolution to a product of 

Fourier transforms. The details of Fourier transform decoding are given in section 2.4. 

From the above table we see that Max-Log-MAP has a much lower complexity as it does 

not involve any multiplications. Also when we are working in log domain and do not deal 

with actual probabilities then the algorithm is numerically much more stable.  

 

3.3 Interleaver: When we generalize PA codes to non-binary fields we can use a bit 

interleaver or a symbol interleaver. Intuitively we would think that interleaver working at 

bit level would provide more interleaving gain than interleaver working at symbol level . 

This is because using a symbol interleaver is equivalent to using k bit interleavers that 

implement the same interleaving pattern where the field order is GF (2k). Interleaving k 

bits separately allows the spreading of components of one error event to k times more 

error events. Thus a symbol level interleaver introduces a structure that reduces the 

interleaver gain. But still we work at symbol level. This is because working at bit level 

requires the projection of symbol extrinsic information onto bit extrinsic information in 

each passing of the extrinsic information between SISO�s. This destroys the mutual 
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information between bits belonging to the same symbol, thereby reducing the 

effectiveness of the APP evaluation.  
 

3.4 Results:  In order to obtain the simulation results for non-binary PA codes we 

generate random symbols over GF(q), encode the symbols by the procedure described in 

the introduction section of this chapter. The symbols are then converted to binary and we 

use BPSK modulation at the transmitter. AWGN channel is considered for all the 

simulations. At the decoder we use Max-Log-Map algorithm or Message Passing 

algorithm to decode. Figure 9 shows the simulation results for rate ½ Product 

Accumulate Codes for a Block Length=2000 transmitted bits over different non-binary 

fields. Message passing algorithm is used to decode the outer code and BCJR algorithm 

decodes the inner code. The number of iterations considered is 50 after which we declare 

decoding failure. Figure 10 compares the performance of the Product Accumulate Code 

over GF(4)  with two different decoding algorithms, Max-Log Map and Message Passing. 

Figure 11 shows the simulation results for rate ½ PA codes with transmitted block 

length=128000 bits over GF(2) and GF(4). The number of iterations we consider is 100 

after which we declare decoding failure.  
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Figure 9: Simulation Results for rate ½ PA codes with transmitted block lengths =2000 

bits over GF(2),GF(4) and GF(8) 

 
From the results it can be seen that at very low SNRs code defined over GF(2) performs 

better than GF(4) and also GF(8) but at higher SNRs  code defined over GF(8) performs 

better than GF(4) and GF(2) . We know that a serial concatenated code performs worse at 

lower SNRs if the inner encoder has more memory. Increasing the field order is 

equivalent to increasing the memory. So binary PA codes perform better than non-binary 

PA codes at low SNRs. 
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Figure 10: Simulations using Max-Log MAP decoding and Message passing algorithm 

for rate ½ PA codes over GF(4) with transmitted block lengths= 2000 bits 

 
From the above plot we see that the loss in the performance is approximately equal to 

0.3dB when we use Max-Log-MAP algorithm. This is the trade off we achieve between 

complexity and performance.  
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Figure 11: Simulation results for PA codes with transmitted block lengths =128000 bits 

over GF(2) and GF(4) 

The above plot shows we achieve a gain of 0.03dB at higher block length and BER=10-5 

which is quite small. We thus conclude that codes over GF(q) with higher block length do 

not show significant improvement in performance than binary codes but for small block 

lengths the improvement in performance is quite significant.   
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CHAPTER IV 

EXIT-CHART TECHNIQUE 

 
4.1 Motivation: From the simulation results shown in the previous chapter several 

questions arise. We would like to see, asymptotically if there is an improvement in 

performance between binary and non-binary codes. Also we would like to design non-

binary codes without going into actual BER simulations. We use Extrinsic Information 

transfer chart (EXIT-chart) to address all the above issues. EXIT-charts are known to 

accurately predict the behavior of iterative decoding for binary codes. But the extension 

of this technique to non-binary fields is non-trivial.  

 

4.2 Introduction: Extrinsic Information transfer chart [6] is a tool to predict the behavior 

of iterative decoding by looking at the input/output relations of the individual decoders. 

EXIT-charts are used to describe the behavior of iterative decoding without performing 

actual BER simulations. EXIT-chart is a technique designed on the lines of density 

evolution technique introduced by Richardson and Urbanke [8]. Similarly SNR measures 

developed by Hesham El Gamal and A.Roger Hammons Jr [10] have also been used to 

study the convergence of iterative decoding of turbo codes. It has been shown that the 

iterative decoder converges to zero probability of error as the number of iteration 

increases if and only if Eb/No exceed a certain threshold. In other words there exists a 

threshold which characterizes the convergence of the iterative decoder. 

 

 In order to plot the EXIT-charts we use the following assumptions. 

 

1) The extrinsic information passed from one sub-decoder to other is a Gaussian random 

variable. 

2) The extrinsic information entering the decoder are jointly and pair wise independent. 
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These assumptions can be validated by experimental data. These assumptions are 

reasonable since the channel is Gaussian and the computation of extrinsic information 

involves summation of various random variables. 

 

Extrinsic Information transfer characteristics are based on mutual information to describe 

the flow of extrinsic information through constituent decoders. Based on the EXIT-chart 

techniques constituent encoders can be designed to give low convergence threshold or 

give better turbo cliff position. 
 

 

 

 

 

 

Figure 12: A SISO decoder showing its input and output 

 

From the above figure 12 we see that a soft in soft out (SISO) decoder gets apriori 

information as the input and it outputs the extrinsic information. The apriori information 

entering the decoder is the extrinsic information passed from the other decoder. The 

apriori information entering the decoder is modeled as a Gaussian random variable based 

on the assumptions described above. In order to characterize the apriori information we 

use mutual information between the apriori information and the coded bits. Mutual 

information is used as a measure to describe the flow of extrinsic information between 

the constituent decoders. 

 

The mutual information between extrinsic information and coded bits for inner decoder is 

a function of its input mutual information and Eb/No.  

 

)/,(
11 obAE NEIfI =                (1) 

 

SISO 
Decoder 

apriori extrinsic



           

 

             

31 

  

 

E1 is the output extrinsic information of inner decoder and A1 is the input apriori 

information to the inner decoder. 

 

For the outer decoder the mutual information between the output extrinsic information 

and coded bits is only a function of its input mutual information since it does not receive 

any input from the channel. 

 

)(
22 AE IfI =                 (2) 

 

where E2 is the output extrinsic information and A2 is the corresponding input apriori 

information. 

 

The function 
1EI is plotted with respect to 

1AI as an EXIT-curve. On the same figure we 

also plot 
2EI with respect to 

2AI but with the axes of this curve reversed. The figure now is 

called EXIT-chart and we can study the evolution of iterative decoding by visualizing the 

flow of extrinsic information between the SISO decoders. The charts are characterized by 

different values of Eb/No. 

 

Mutual information is defined in equation 3. 
 

I(X;Y)=H(X)-H(X|Y) 

            (3)  

The first term is simple to compute and we use Monte Carlo simulations to compute the 

second term.        

 

I(X;Y) = ∑∑∑ ==−−−
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The mutual information between a random variable and the information symbol can also 

be calculated as: 
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We transmit an all zero sequence and so the above equation takes the form as: 
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For GF(4) the above function is defined as: 
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If we transmit all zeros sequence the above equation takes the form as: 
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An example of EXIT-chart is given in figure 13. EXIT-chart for PA codes at GF(4) is 

drawn at Eb/No=1.2dB. 
 

 

 

 

Figure 13: EXIT-chart showing evolution of decoders at Eb/No =1.2dB 

 

From figure 13, we can explain the evolution of the iterative decoding. The x-axis 

represents the input mutual information of the inner decoder and output mutual 

information of the outer decoder with respect to the coded bits. The y-axis represents the 

output mutual information of the inner decoder and input mutual information of outer 

decoder with respect to the coded bits.  
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From the stepwise curve shown we can study the evolution of the iterative decoding. At 

iteration 0 the SISO inner decoder receives zero input mutual information and outputs 

mutual information I1. This mutual information is fed to the outer decoder, which outputs 

mutual information O1. Then at next iteration O1 is fed to SISO inner that produces I2. 

Interleaving and de-interleaving do not change the mutual information. The iterations 

continue as long as both the curves do not meet. The iteration stops when there is an 

intersection between the two EXIT-curves. This indicates the presence of a fixed point. If 

this happens the decoder does not converge.  
 

The convergence threshold is defined as that Eb/No when the step curve just manages to 

sneak through the EXIT-curves. A large gap between the EXIT-curves indicates fast 

convergence. If the gap is small then the convergence occurs after a large number of 

iterations.  

 

For the case of parallel-concatenated codes, both the encoders are same. So we plot the 

transfer curve of one decoder and the transfer curve of the other decoder is obtained by 

taking a mirror image along the x=y line.  
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4.3 EXIT-chart for Non-Binary Codes: The problem in plotting EXIT-charts for non-

binary case is modeling the apriori information. The apriori information for non-binary 

codes cannot be taken as a product of k Gaussian random variables, where 

GF(q)=GF(2k), as that would amount to destroying the mutual information between bits 

belonging to the same symbol. Instead, we assume this product of k Gaussian random 

variables is the input to the previous decoding stage and the corresponding output is what 

is input to the decoder under consideration. 
 
 
 
        
                                                                                         1                                                                          
           
 
 
                                                                                                 2 
 

 

Figure 14:A Serial Concatenated Decoder 

 
 

With reference to Fig. 14, we cut the loop at section 1 and input k Gaussian random 

variables (with the appropriate mutual information) to the outer decoder. The (extrinsic) 

mutual information generated by this decoder is treated as the apriori input to the inner 

decoder and forms the basis of computing the transfer characteristics of the inner 

decoder. In a similar fashion, the loop is cut at 2 (Fig. 14) next, and k Gaussian random 

variables are input to the inner decoder. The (extrinsic) mutual information generated by 

the inner decoder is then passed to the outer decoder as apriori information and forms the 

basis of computing the transfer characteristics of the outer decoder. 

 

Similar to the binary case, the two transfer characteristics so obtained can be plotted on 

the same graph to obtain the EXIT chart for a non-binary concatenated code. 
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4.4 EXIT-Chart for Non-Binary LDPC Codes: The main objective is to study why 

certain irregularities are better for non-binary LDPC codes. We use EXIT-charts to study 

the convergence behavior of non-binary LDPC codes with different mean column weight. 

The decoding algorithm for LDPC codes was described in section 2.3. The iterative 

decoding algorithm proceeds with an update at the bit node followed by an update at the 

check node. We can interpret an LDPC code as a serial concatenated code. The inner 

decoder gives the update at the bit nodes and the outer decoder gives the update at the 

check nodes. The interpretation is a bit loose because a serial concatenated decoder 

exchanges only one extrinsic message per bit of the code word whereas an LDPC decoder 

exchanges several messages per bit of the code word. Inspite of this difference, the 

algorithm of the previous section can still be used to compute the EXIT chart for a non-

binary LDPC code. 
 
In figures 15 and 16 we show EXIT-chart for binary and non-binary LDPC codes at mean 

column weight=2.8 and Eb/No= 1.0.  
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Figure 15: EXIT-chart for non-binary LDPC codes with mean column weight=2.8, 

rate=1/2 and Eb/No= 1.0 dB 
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Figure 16: EXIT-chart for binary LDPC codes with mean column weight=2.8, rate=1/2 

and Eb/No= 1.0 dB 

 

In the figures 15 and 16 21 , AA II  represent the input mutual information to the bit node 

and check node respectively and 21 , EE II represent the output mutual information of the 

bit node and check node respectively. From the figure 16 we see that for the binary 

LDPC codes there is a fixed point at 1.0dB and from figure 15 we see that the decoding 

algorithm converges easily for non-binary LDPC codes at Eb/No =1.0dB. After plotting 

EXIT-charts for several Eb/No we find that the convergence threshold for non-binary 

LDPC codes is equal to 0.4dB. This would mean that the non-binary LDPC codes would 

perform much better than the binary LDPC codes at very large block length and lower 

Eb/No.   

 

EXIT-charts are known to accurately predict the convergence thresholds for binary codes 

but for the non-binary codes the accuracy is yet to be investigated. In order to verify the 
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accuracy of the convergence threshold at non-binary level we plot the actual decoding 

trajectory for one block with a large block length on the EXIT-chart. 
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Figure 17: EXIT-chart showing the actual trajectory for one block for rate ½ LDPC code 

at mean column weight=2.8 and Eb/No= 1.0 dB 

From figure 17 above we see that there is a discrepancy between the actual decoding 

trajectory and the one predicted by the EXIT-charts. This discrepancy comes possibly 

from the Gaussian approximation we use for the extrinsic information at non-binary 

fields. At first iteration the bit node receives mutual information equal to 0 and outputs 

mutual information equal to 0.57. The check node receives mutual information equal to 

0.57 and outputs mutual information equal to 0.07. Until this point the actual decoding 

trajectory and the one predicted by EXIT-chart seem to match. At the next iteration the 

bit node receives mutual information equal to 0.07 and outputs mutual information equal 

to 0.62 but the EXIT-chart predicts mutual information equal to 0.65. In order to 

understand this discrepancy we plot the histogram of the actual extrinsic information and 
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extrinsic information with Gaussian approximation at the output of the bit node at second 

iteration. Since we transmit all zeros we only plot the histogram for probabilities that the 

symbol equals to zero.  

 

One curve in figure 18 shows the distribution of actual extrinsic information at second 

iteration. In order to obtain second curve we cut the loop at 1 in figure 14 and feed the 

check node with k Gaussian random variables approximating the extrinsic information 

with the mutual information obtained at the output of bit node. These random variables 

are then fed to the check node and the output from check node is then fed to the bit node. 

The second curve shows the histogram of the extrinsic information obtained by using this 

Gaussian approximation. 
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Figure 18: Histogram of actual extrinsic information and extrinsic information using 

Gaussian approximation 
 



           

 

             

40 

  

 

From the plot we see that the extrinsic information using Gaussian approximation is more 

optimistic than the actual extrinsic information. The erroneous region can be magnified to 

get a better view of the above curve as shown in figure 19. 
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Figure 19: Histogram of actual extrinsic information and extrinsic information using 

Gaussian approximation in the erroneous region 

 

For the erroneous regions, we see that the area under the curve for actual extrinsic 

information is more than that for the extrinsic information obtained using Gaussian 

approximation. Hence we get less output mutual information for given input mutual 

information during actual decoding in comparison to the output mutual information 

predicted by EXIT-charts. 
 

So the convergence threshold predicted by EXIT-charts for non-binary LDPC codes is 

optimistic. Although the convergence threshold of non-binary LDPC codes is not an 

accurate measure of the decoding algorithm we can still use it as a tool to compare the 

behavior of the decoding algorithm at different mean column weights. We plot EXIT-



           

 

             

41 

  

 

charts for non-binary LDPC codes with different mean column weight at several Eb/No. 

For mean column weight 2.8 and 2.6 we take the profile given in [17]. For the other mean 

column weight we randomly generate the profile by using column weights of weight 2 

and weight 3. The convergence threshold is tabulated in Table 2. 

 

Table 2: Convergence threshold of rate ½ non-binary LDPC codes with different mean 

column weights. 

            

Mean Column 

Weight 

Convergence 

threshold (dB) 

2.6 0.5 

2.8 0.4 

3.0 0.65 

3.2 0.7 

3.4 0.8 

 

 

From the above table we see that the best codes for the LDPC codes over GF(4) are the 

ones with mean column weight 2.8. This is exactly what we see from the results provided 

in [3]. We conclude that there is a consistency in the results obtained from the EXIT-

charts and the procedure provided in [5], although the convergence threshold predicted 

by EXIT-charts is optimistic.  

 

4.5 EXIT-Chart for PA Codes: The EXIT-charts for PA codes are plotted following the 

procedure described above for serial concatenated codes. We plot the EXIT curves for 

both the decoders on the same plot with axes swapped for the outer decoder.  

 

 

 

 

 



           

 

             

42 

  

 

The EXIT-chart for binary PA code at Eb/No =1.0 dB is shown below in figure 20  
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Figure 20:  EXIT-chart for binary PA codes at Eb/No =1.0 dB 

 

Figure 20 shows that the convergence threshold for binary PA codes is about 1.0 dB. This 

is in excellent agreement with the simulation results we see in figure 10. So we verify the 

claim that EXIT-charts accurately predict the convergence threshold for the binary codes. 

For non-binary case the EXIT-chart is plotted in figure 21. 
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Figure 21: EXIT-chart for PA codes over GF(4) at Eb/No =0.7dB 

 

From the above plot we see that there is a very small tunnel through which the stair case 

plot can still pass through. So the convergence threshold for non-binary PA code is about 

0.7 dB. This would mean that there is a gain of 0.3 dB between binary PA codes and non-

binary PA codes. But from the simulations we know that the convergence threshold of 

non-binary PA codes is about 0.92dB.  So, once again we see that the convergence 

threshold predicted by EXIT-charts for the non-binary is optimistic. This can also be 

verified by plotting an actual decoding trajectory of a large block on the EXIT-chart. 

 

 

 

 

 



           

 

             

44 

  

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inner Decoder 

Outer Decoder 

 
Figure 22: EXIT-chart with the actual decoding trajectory for rate ½ non-binary PA code 

at Eb/No =1.0dB 
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CHAPTER V 
CONCLUSION 

 
 
Product Accumulate code over GF(4) show a performance improvement of 0.2dB at short 

block length=2000 transmitted bits and rate =1/2 over binary Product Accumulate code. 

For long block lengths the performance improvement is quite small. The reason can be 

attributed to the absence of cycles at large block length for both the binary case and non-

binary case. But for short block length there are cycles and by moving to non-binary 

fields the cycles in the corresponding graph is reduced. This explains the significant 

performance improvement of the non-binary PA codes.  

 

The trellis based decoding proposed for PA codes reduces the complexity of decoding 

further by eliminating the need for multiplication used in message passing algorithm. 

Also the new decoding algorithm is numerically more stable than the message-passing 

algorithm. 

 

EXIT-charts are used to explain why certain irregularities in non-binary LDPC codes 

perform better. We compare the convergence threshold of non-binary LDPC codes with 

different mean column weights. The Gaussian approximation used is optimistic and it 

does not predict the convergence threshold accurately. However, we can still use this 

technique to search for the non-binary LDPC code with the best mean column weight. 

We see that the best LDPC codes over GF(4) exists for mean column weight =2.8. We 

also use EXIT-chart to show that the convergence threshold for non-binary PA codes lie 

0.3dB below the convergence threshold of binary PA codes.      
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