COOL STORAGE ECONOMIC FEASIBILITY ANALYSIS
FOR A LARGE INDUSTRIAL FACILITY

ROCCO FAZZOLARI
Associate Professor
Nuclear & Energy Eng.
University of Arizona
Tucson, Arizona.

JOSE A. MASCORRO
Graduate Assistant
Nuclear & Energy Eng.
University of Arizona
Tucson, Arizona.

R.H. BALLARD
Energy Manager
McDonnell Douglas Helicopter Co.
Mesa, Arizona.

ABSTRACT

The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis. The aggregation of building information for predicting central plant behavior at the site is discussed. The dollar benefits and costs for the project are favorable, providing a payback in the neighborhood of 4 to 5 years.

INTRODUCTION

The rationale for cold storage is primarily for electric load leveling by shifting the air-conditioning power requirements from the peak time hours to off-peak hours, normally at night. The utility—in this case Salt River Project (SRP)—has an interest in electric load leveling because it postpones or reduces the need for adding additional power plants. The utility can provide incentives to its customers to install thermal storage by contributing to the capital costs and by means of time-of-day electric rates which offer cheaper electric charges during the off-peak hours.

This paper describes the plant modeling and analysis procedures for determining the economic feasibility of using thermal storage at McDonnell Douglas Helicopter Co. (MDH) in Mesa, Arizona [1]. MDH is a large assembly plant consisting of eleven air-conditioned buildings totaling 2,000,000 square feet of diversified activities. The site has a central chilled water plant and distribution system.

COMPUTER MODEL OF THE FACILITIES

In order to assess the potential benefits of thermal storage, it was desirable to have representative hourly electric demand profiles for the central chiller plant operations throughout the year. Historical measured data for the chillers of the central plant were not available. A computer energy use model of the facilities to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis. The aggregation of building information for predicting central plant behavior at the site is discussed. The dollar benefits and costs for the project are favorable, providing a payback in the neighborhood of 4 to 5 years.

The only available data to validate this model were some recent monthly electric profiles recorded by SRP. Specifically, the electric profile for June was used to calibrate the computer model. We obtained very good agreement for all of the other months choosing random days without making any adjustments to the data. Figure 1 shows comparison of a real and computed profile for a typical day of March and June. Since the electric profile from month to month reflect the impact of the varying weather conditions on the chiller plant operation, we were satisfied that DOE-2 was satisfactorily indicating the site cooling loads and electricity demands; Figures 2 and 3 show the cooling load for some days of March and June.

Proceedings of the Fifth Symposium on Improving Building Systems in Hot and Humid Climates, Houston, TX, September 12-14, 1988
Although WE-2 includes a storage sub-model, we chose not to do complete simulation runs initially. Instead, typical monthly cooling profiles for one day were introduced into a spreadsheet and analyzed. This approach saved much computational time and allowed us more insights as to the impact of various system parameters and the rate schedule. One key parameter that impacts the economics of thermal storage is the chiller plant efficiency, which includes the chillers pumps and cooling tower. The storage capacity is an important cost driver and a key factor in establishing the monthly energy and demand shift from the peak hours.

Financial cost/benefit studies have been on-going for more than a year. The WE-2 studies were expanded to include the calculation of the utility bills once the design parameters were fixed. The results of these most recent studies are presented here.

The benefits to MDH of having the storage system are, financial in nature and due to the reduced energy and demand charges resulting from shifting the cooling load from the on and off peak hours. With storage, the chiller operations will be partially reduced or completely eliminated during the on peak hours. The anticipated savings vary from month to month because of climatic variations and because different winter and summer rates are applicable. Figures 4 and 5 show the monthly reduction in demand and energy charges as predicted by the simulations. The yearly benefits are estimated to be $152,000 for the connected load in 1987. Since both the connected load and the utility rates, however, are expected to increase in the future, the savings estimate are a conservative forecast.
The installed cost of the eutectic salt tank, with a phase change at 47 F is expected to be approximately $92 per ton-hr. The pumps and associated piping are estimated to cost $63,000.

A financial incentive contribution is to be provided by SRP which depends on the magnitude of the demand shifted to the off peak hours. The current program allows $250/kw up to 300 kw and $115/kw thereafter.

The demand shift will be affected by the tank discharge rate during the 5 peak hours. Considering that the cooling load at MDH drops off after 400 p.m., the optimal discharge schedule, in terms of the sizes, would be to base load the chillers during on peak hours to the lowest level permitted by the storage capacity i.e., the tank would be discharged according to the load. The optimum scheme is shown by Figures 6 and 7. A shift of 2200 kw is possible with this strategy.

At the other extreme, the tank would be unloaded uniformly at 2000 tons/hr which corresponds a 1700 kw shift. A constant shift may be more desirable for SRP's planning strategies of deferring new generation capacity; however, the motivating realities of the rates do not dictate this scheme operation to the customer. Furthermore, MDH is shifting load by its current schedule of the working hours at the plant.

CONCLUSIONS

The payback to MDH will be affected by a number of factors—the initial tank cost, the incentive provided by SRP, the chiller plant efficiency and the capacity of the storage. In addition free cooling (using cooling towers instead of chillers) can enhance the savings to MDH by providing additional night cooling hours. Free cooling can increase the yearly dollar benefits by as much as 10 percent [1]. The payback estimate for this project range between 4 and 5 years considering the benefits of free cooling.

ACKNOWLEDGEMENTS

We wish to express our appreciation to McDonnell Douglas Helicopter Company and Salt River Project for sponsoring this study.

REFERENCES

Proceedings of the Fifth Symposium on Improving Building Systems in Hot and Humid Climates, Houston, TX, September 12-14, 1988