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ABSTRACT

Characterization of Thin-Bedded Reservoir in the Gulf of Mexico:

An Integrated Approach. (May 2002)

Séverine Lalande, B.S., Ecole Nationale Supérieure des Mines de Paris

Co-Chairs of Advisory Committee: Dr Joel S. Watkins
Dr Wayne M. Ahr

An important fraction of the reservoirs in the Outer Continental Shelf of the Gulf

of Mexico is comprised of thin-bedded deposits from channel-levee systems. These

reservoirs are particularly difficult to describe. Not only is their architecture complex but

the quality of the reservoir is determined by connection and length of beds below the

resolution of usual reflection data. Improved characterization is needed to improve

development and production of these reservoirs. This study presents an integrated

approach to build a geologically consistent reservoir model, based on the 8 sand

reservoir in Northern Green Canyon block 18. The underlying idea of the construction of

this model is that reservoir quality is influenced more by the internal architecture than by

the statistical values of petrophysical parameters.

Seismic interpretation and attribute extraction provided the reservoir geometry

and stratigraphy. The structural framework and the limits of the reservoir have been

determined, showing the preeminent role of salt and faults in the constitution of this

reservoir.

Seismic attributes are calibrated to extract areal information on reservoir

architecture. Gross thickness and net thickness maps have been estimated using

geostatistical methods. Lateral variations in the quality of the 8 sand and the definition

zones with different average properties were inferred from geostatistical results.

Lithofacies characterization from cores showed that 3 facies could be used to

describe the internal variability. The fine-scale heterogeneity is described in each zone

from vertical facies distribution determined from wells.
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A truncated Gaussian sequential simulation was performed to reflect both the

regional trend and the internal variability on a 150*150*1 ft grid.

The major contribution of this work is to show the efficiency of this approach to

describe complex reservoirs where the impact of internal variability is a major control of

flow efficiency. This is especially valuable when the well information is scarce or not

uniformly distributed. This model will be used for flow simulation and sensitivity

analysis to improve the field description.
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CHAPTER I

INTRODUCTION

An increasing share of new discoveries has been found in deep marine

environments. These fields present very complex reservoir architecture related to the

spatial arrangement of sand bodies and internal variability (Sheibal et al. 1992). Their

characterization is challenging as the typical scale of heterogeneities is near or below the

resolution of seismic reflection data.

The complex internal architecture of these stacked turbidite reservoirs motivated

an integrated approach to build a realistic model for one of Green Canyon 18’s

reservoirs. Geostatistical methods were applied to synthesize geological and geophysical

interpretations.

LOCATION

Green Canyon 18 (GC18) is a 5888 acres block located 113 km (70 miles)

offshore Louisiana, south of Morgan City in 232 m (760 ft) water depth (Brinkmann et

al., 1987). The field was discovered in 1982; as of Dec 2001 it was jointly own by

Exxon Mobil (55% working interest), BHP (25% WI), Burlington (15% WI) and Kerr

McGee (5% WI) (Weimer et al., 1998a). The oil has 28 API gravity.

Producing intervals range from middle Pliocene to Pleistocene. Sixteen different

reservoir intervals have been completed between 2211 m and 4571 m (6700 ft and 13850

ft). The oldest pay (MP2-MP3) belong to the 3.8-3 Ma sequence and is produced in the

northern part of the prospect, in the south of Ewing Banks block 988.

The main pay consists of the “numbered sands”, 8 to 30, which are part of a

turbidite package in the 1.4-1.9 Ma sequence generally referred as the Calcidiscus

This thesis follows the style and format of the Bulletin of the American
Association of Petroleum Geologists.
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Macintyrei sequence. The younger reservoirs (Trim A and Trim B) in the Trimosina

sequence (0.8-0.3 Ma) are middle Pleistocene. Producing operations started in May

1987. As of October 1999, Green Canyon 18 reservoirs had produced 70 MMST of oil

and 88 Bcf of gas. Figure 1 shows the evolution of cumulative production.

Figure 1.  Green Canyon cumulative productions from 1987 to 1999.

The problems encountered in this field are related to the complex structure and

the difficulties of correlation of the sand bodies. The extension/connectivity of the

reservoirs remain uncertain after two 3D surveys. Risks are increased by overpressure

and compaction related problems. Green Canyon 18 has produced from 32 wells (49

completion intervals) and has experienced many well failures leading to the premature

loss of 50% of all producing intervals (Tackett W. M. pers. com. Aug 1998).

Improving development of this type of reservoir requires a better understanding

of flow parameters and requires construction of a realistic geological model integrating

all static data.
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DATABASE

The data set (see Figure 2 for geographical location) consists of:

- 3D migrated seismic survey from Diamond Geophysical/Burlington with a

spacing of line 65.62 ft and of trace 41.01 ft, covering the 3*3 sq. mi. block.

- 48 wells and deviation data (see Figure 3).

- 19 check shot surveys.

OBJECTIVES

This research focuses on the upper sand of the numbered interval: Sand 8. The

overall purpose of this study is to gain an understanding of this reservoir, integrating

geological and geophysical aspects in order to provide a geological model and guidelines

for flow simulation. The specific objectives are:

- Generate reservoir structure maps.

- Identify reservoir compartments on the basis of depositional and structural

characteristics.

- Identify key heterogeneities.

Specifically, this involves:

- Structural and stratigraphic mapping.

- Correlating 8 sand.

- Integrating seismic and geological information using geostatistical tools to

provide a quantitative representation of reservoir variability.
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Figure 2.  Northern Gulf of Mexico map showing the outer continental shelf leasing
areas. GC-Green Canyon. The star indicates the location of block GC-18.

Figure 3.  Shot point plot for GC-18 seismic survey.  Well paths are projected showing
location and deviation.
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CHAPTER II

BACKGROUND

In order to develop a model at the reservoir scale it is important to keep in mind

the properties of the parent depositional system. The geologic history of this area is

complex owing to a combination of high sedimentation rates, slope instability and salt-

related tectonism. The objective of this chapter is to describe the facies encountered in

turbiditic systems, to present the influence of salt tectonics on these systems in the

Northern Gulf of Mexico Outer Continental Shelf and to review the main stratigraphic

models developed in this region to improve reservoir definition.

DEPOSITS IN TURBIDITE SYSTEMS

The deepwater Gulf of Mexico has been an active exploration area for more than

30 years (Iledare, 2000: Kumins, 2000). The principal reservoirs consist of Neogene

turbidite systems. A “turbidite system” as described by Mutti and Normark (1987) or

“fan lobe” according to Bouma et al., (1985) represents deposition by gravity flow into a

basin. These deepwater depositional systems are characterized by a great variability in

size, facies, facies association and geometry of sand bodies. One of the causes lies in the

nature of the transportation system. Reading and Richards (1994) pointed out that the

primary controls of gravity flows are the dominant grain size and the volume of

sediment. These influence the extension of the system and the facies organization.

According to Bouma et al. (1985), three zones are generally distinguished to describe

turbidite systems: the upper fan (on the slope), the middle fan and the lower fan (on the

basin floor).

Figure 4 presents a conceptual model of a system analog to those encountered in

the Gulf of Mexico called a high-efficiency transportation system and characterized

primarily by fine-grained sediments (Reading and Richard, 1994). This model enables

the identification of the principal architectural elements of the system.
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Figure 4.  Conceptual model of a mud-rich turbiditic system, with the main architectural
elements. Modified from Reading and Richard (1994).

The major erosional feature that incises the slope is the feeder canyon, which

controls the flow from the shelf to the basin. At the base of the slope, the change of

gradient induces the beginning of the deposition. On the basin floor, the sedimentation is

organized in sinuous channel systems flanked by levees made of accumulation of

material that spills over the edges during time of high depositional rate. Channels are

defined as long-lived sediment pathways, which are both erosional and depositional

features. These adjectives are also used to describe their later filling (Varnai 1998).

Channels are said erosional when they are filled by shale.  Other channels filled by sand

exhibit blocky or fining upward log signatures reflecting the thinning of grain size. On

seismic, channels may be detected by elongated high amplitude anomalies. Levee

deposits reflect a change in the process of deposition from turbulent flow to traction,

which efficiently winnows sand (Bouma 2000). It results in fine-grained laminated sands

and can show the best porosity-permeability combination in the system. Net-to-gross
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sand varies from 30-50% in the proximal levees to 10% in the distal part (Weimer et al.,

1998b). Overbank refers to the high shale/sand ratio intervals of the levees. This facies is

commonly called “low pay, low resistivity sands” (Darling and Sneider 1992), the log

response is highly variable. It is generally described as “nervous” or “ratty”. Wireline

tools usually average over several layers. In levees, as the sand/shale laminations are of

the order of a few inches they do not enable a correct interpretation of reservoir

properties. Thin-bedded sand logs exhibit high gamma ray, low resistivity and high

apparent water saturation. On seismic sections, channel-levee systems are characterized

by irregular and discontinuous reflection and low to moderate amplitudes without

dominant pattern (Pacht and Bowen 1990).

As the system progresses on the basin floor, the channels become narrower, the

current is no longer contained and silt begins to spread out into depositional lobes or

sheet sands. Although it is believed that only one distributary channel is active at a time,

sheet sands are generally stacked and their individual thickness is difficult to assess.

Lobes may be separated by amalgamated hemipelagic shales deposited during intervals

when no sedimentation occurs in this zone. Log response of sheet sand is generally

blocky, reflecting the homogeneity of the sediments. On the seismic they sometimes

appear as mounded shapes in cross-section (Armentrout et al., 1995; Mitchum et al.,

1993).

Turbidite complexes consist of assemblages of individual turbidites systems.

Stacking occurs both vertically and laterally and influences greatly the continuity of the

sand bodies.



8

SALT TECTONIC INFLUENCE

One peculiarity of the Gulf of Mexico is the intense tectonic activity during

deposition. Salt movements and growth faults displacements greatly influence the

structural development and the depositional pattern.

Many studies have been conducted to decipher the complex relation between salt

movement, growth faulting and sediment loading (Karlo and Shoup 2000, Zhang 1994,

McBride et al., 1998).

Salt influences stratigraphy in different ways. First salt deformation through time

influences the location of mini-basins and thereby controls location of deposition. At

depositional time, shallow salt modifies the paleobathymetry and influences flow

pathway. Last, salt withdrawal provides accommodation space.

Figure 5.  Structure contour map of top salt or equivalent salt weld in Northern Green
Canyon. Shows shallow salt bodies in black(<3.0s TWT), thin salt in gray (>3.0s TWT)
and salt weld in white(<100 ms thick). Square indicates block GC 18. From McBride et
al. (1998).

  GC 18
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Figure 5, from Mc Bride et al., (1998), shows the contour of salt in the Northern

Gulf of Mexico. This area exhibits high salt relief, diapirs are found at the edge of

shallow sheets or at the saddle between elliptical lows.

The environment of deposition of the turbidite system is greatly influenced by

salt, Figure 6 (from Weimer et al., 1998b) shows a reconstitution of the flow path in the

same area during the 1.4-1.9 Ma sequence. The main sediment fairways are located in

the center of mini-basins. This map also indicates that basin floor fan deposits are mainly

deposited southern of the study area. The prevalent facies in Northern Green Canyon is

channel levee systems.

Figure 6.  Interpreted sediment pathway in Northern Green Canyon for 1.4-1.9 Ma
sequence. Square indicates block GC 18. From Weimer et al. (1998b). Shaded gray
zones represent paleo-highs associated with salt.

GENERALIZED STRATIGRAPHIC MODELS

The construction of a general stratigraphic model has attracted the interest of many

authors. Several regional studies integrating seismic stratigraphy and paleo-data have

helped to understand major depositional controls and their impacts on petroleum

  Basin floor fan
  Interpreted sediment pathway
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exploration (Mann et al., 1987, Weimer et al., 1998c, Zhang 1994). Turbiditic

sedimentation occurs mainly during sea level falls and lowstand periods. When the sea

level is high, river sediments are trapped along the inner shelf. When the sea level is low,

river sediments are deposited along the outer shelf. They are unstable and can easily

create turbidity currents (Bouma et al., 1985).

Mitchum et al. (1993) proposes a model that integrates growth faulting. It

emphasises the accommodation provided on the downthrown side of the fault (see

Figure 7). Zhang (1994) integrates the salt structure in an environment characterised by

intraslope basin separated by salt diapirs. He distinguishes two elements in the lowstand

system tract: the basal unit is called “lowstand intrasalt basinal fan” and correspond to

deposition when the area is a slope environment. The upper unit called the lowstand

wedge is mainly composed of channel levees, see Figure 8. Prather et al. (1998)

emphasis the idea of slope accommodation and described a two phases model where

upper slope basins are filled first and then bypassed to down dip basins. The first stage

deposits are described as “sand-prone ponded basin fill” and the latter as “shale-prone

bypass succession”, mainly made of leveed-channel with shallow erosional features.

The relative influence of salt and faults on sedimentation has varied through time.

Pliocene sequences are thick and considered to be mainly influenced by salt withdrawal

(Weimer et al. 1998c). Conversely, Pleistocene sequences are thinner, show a lower

sand/shale ratio and accommodation provided by growth faulting is believed to have

been more significant.

Green Canyon 18 producing intervals are representative of these channel-levee

systems deposited between shallow salt bodies. The primary reservoirs in Green Canyon

18 are the numbered sands 38 to 8 that occur in the 1,4-1,9 Ma sequence, they are part of

a mounded turbidite package. The lower reservoirs 38-18 are interpreted as part of a

lower lowstand unit whereas the upper sands belong to the upper lowstand or prograding

wedge unit and show smaller sand/shale ratios.
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Figure 7.  Sequence stratigraphic model showing idealized development of systems
tracts in an expanded Late Cenozoic section for the Northern Gulf of Mexico. From
Mitchum et al. (1993).

Figure 8.  Generalized model for sequence stratigraphy showing relationships between
salt tectonism, growth faulting and distribution of system tracts. From Zhang (1994).
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Several other deep-water fields producing offshore Louisiana are composed of

thin-bedded deposits. Shew et al. (1995) worked on Tahoe and Ram/Powell prospects

and incorporated data from many outcrops. According to him the key issue is to

determine the internal architecture especially to evaluate bed continuity. It can be better

than expected in overbank portions, covering several hundred of acres but flow

transmission between channel and levees is not necessarily good.

Weimer et al. (2000) pointed out that these reservoirs are generally more

complex than expected with production history of mature fields considerably different

than what was predicted. They also underlined the need of integrated approach thorough

the reservoir life.
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CHAPTER III

METHODS

The construction of a geologically consistent reservoir model has four major

steps, (1) the creation of a structural framework, (2) the delineation of the reservoir, (3)

the use of seismic attributes to characterize reservoir properties and finally (4) the

integration of different types of information through geostatistics for modeling of the

reservoir lithofacies. The seismic interpretation was performed using Geoframe IESX

package. Geostatistical study used ISATIS software.

STRUCTURAL MAPPING

Structural interpretation of the 3D time migrated survey involved salt and fault

recognition. Salt is characterized by strong reflection at the top and by incoherent

internal pattern. Faults were identified on sections by breaks in reflector continuity,

change in phase and abrupt change in reflector dip. Time slices were very useful in the

early time of mapping to help delineation of major faults. Figure 9 presents a seismic

section and its interpretation, showing salt body and a major fault.

RESERVOIR DELINEATION

In order to determine the shape of the 8 sand reservoir, precise mapping of this

interval was required; the method recommended by A.R. Brown in the 5th ed. of

Interpretation of three-dimensional seismic data (Brown 1999) was followed. The main

steps are:

- horizon identification at wells

- recognition of major faults



Figure 9.  Raw and interpreted crossline 3170 shows high amplitude reflection associated to salt limits and a major fault.
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- initial fault control

- initial horizon control

- automatic spatial tracking

- revision of horizons and faults

- time structure maps

- isochron map

- time to depth conversion

Well and seismic tying

Well paths were projected in the seismic interpretation using deviation data.

Most of the wells are highly deviated. Further calibration of wells and seismic involved

conversion of the depth units of well to time units using the time-depth curve derived

from the check-shot surveys. The information of all the check-shots was quite consistent,

as shown by Figure 10.

Figure 10.  Check-shot data in GC 18.
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The well log interpretation was performed by another graduate student (see

Plantevin, 2002). The 8 sand was identified in 14 wells, top and base of sand were

determined generally from comparison between resistivity curves. Separation between

the ILD and the microresistivity is an indicator of permeable formation (Boyer 1999)

and was found more accurate than the GR and SP variations to determine the limits of

the interbedded sands. Because the thickness of individual laminations is below the

resolution of the tool, gamma ray and spontaneous potential tend to give average values

that are difficult to interpret quantitatively. Log analysis also provided facies

interpretation and estimation of net thickness.

The top of the 8 sand is correlated with a strong positive reflection, however,

synthetic generation does not shows a very good match, as shown by the synthetic in

Figure 11. One cause may be the high deviation of the wells, although we extracted a

“tube” of seismic along the borehole path the reflector remained highly tilted. Moreover

the extraction of the coefficient of reflection does not use the density log but derive this

information from the velocity which as been pointed out by Burns (1986) as a reason for

unreliable sythetics in the Gulf of Mexico. Mapping was then carefully extended within

each fault block. Horizons were manually picked every 5 in-lines and cross-lines and

after quality control by quick gridding of time structure, automatic tracking was

performed using IESX ASAP module. Iteration of automatic tracking and manual

control of faults and horizon is a key step for delineation of subtle faulting. For this task,

we used a coherence cube and geometrical attributes based on the autotrack interpolation

of the picking. Dip and azimuth were extracted. Their interest is to enhance structural

features (Taner 1979): dip gives a confirmation of fault delineation and azimuth reveals

discontinuities in the sand body.
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Figure 11.  Composite display of well log curves, synthetic and seismic showing correlation of top 8 sand from well to seismic.
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Thickness

Seismic resolution was assessed based on usable frequency at this depth and

interval velocity. The Rayleigh limit gives the value of the tuning limit: maximum

constructive interference between the top and bottom of the bed takes place for this

value of bed thickness of 1/4 of the seismic wavelength (or, two-way time thickness is

1/2 of the seismic period). Based on the check shots the average velocity at the depth of

the reservoir is 7800 ft/s, the maximum usable frequency of the seismic is 35Hz. Hence

the limit is 14 ms twt or 56 ft. From the wells, the sand thickness is between 144 ft and

25 ft but because of the lack of continuity of the reflection in this interval and the low

apparent frequency in this interval it is difficult to map the base of the reservoir. The

base of the reservoir was picked from the wells and interpolated. Geostatistics methods

discussed in the next section improved our estimation from thickness at well using the

seismic isochron as a trend.

Time to depth conversion

Various methods are available for converting a horizon in time to depth, using

different velocity information: generally interval velocities from seismic or time-depth

curve from velocity surveys. As depth is well correlated to seismic two-way-time,

geostatistical estimation techniques are an alternative way to perform this conversion

(Brown, 1999; Bleines et al., 2001). Different geostatistical methods are discussed in the

following section. They all honor values at each well location and seismic information

can be incorporated as a secondary information. The main advantage is that it enables to

derive the variance of estimation, which is an estimate of the reliability.
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SEISMIC ATTRIBUTES

Attribute extraction

Seismic attributes are useful to detect subtle structural properties, geological change

and variations in reservoir properties. Attribute extraction was performed using an IESX

module called windowed trace (CSA) attributes.

Change in reservoir properties can be detected by reflective and transmissive

attributes. Reflective attributes are computed at the level of the horizon whereas

transmissive attributes involve integration over a time window. The interval of

computation was of 40 ms below the top of the reservoir delineated by picking,

corresponding to the maximum thickness of the reservoir.

We extracted six attributes:

- Instantaneous real amplitude: the default expression of the seismic traces extracted at

the horizon.

- Maximum amplitude : the largest positive value (peak) in the window

- Minimum amplitude : the largest negative value (through) in the window

- RMS amplitude : square root of the sum of square amplitude within the window

- Arc length: total length of the seismic trace over the time window.

- Energy half time: time required for the energy within a window to attain one-half of

the total energy within the entire window.

Amplitude attributes and RMS are generally good indicators of change in lithology

or hydrocarbons (Chen and Sidney, 1997). Arc length indicates reflection heterogeneity

and may be used to quantify lateral changes in reflection patterns. It has been used to

map depositional facies in the Gulf of Mexico. Energy half time has been used to map

vertical distribution of sand within the reservoir interval (Brown, 1999).

Attribute interpretation

Some attributes, such as amplitude (see Figure 12) improve the visualization of the

reservoir; they provide a better display of subtle geological features.
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Figure 12.  Amplitude map of the top of the reservoir showing low amplitudes (red) in
the southwest part related to variable quality of the reflector and elongated low
amplitude trend in the northwest intrepreted as dicontinuities in the reservoir.

In order to extract quantitative information from the seismic, we attempted to

correlate these attributes with well data. The values of the attributes at well locations

were extracted using a program in Visual Basic because IESX only allows to extract the

value at the closest trace, which can be pretty inaccurate. The well can be mispositioned

due to uncertainty of deviation data and seismic migration. Especially in this data set

where most of the wells are highly deviated, and many located very close to faults. With

this program we were able to check the consistency of the extracted values. Then we

computed the average of the 5 closest traces corresponding to a 130*82 ft bin.

Average values of porosity and net thickness were estimated at 11 well locations (see

Plantevin, 2002). In these interbedded reservoirs the average value of porosity has little

significance as it represents the average of shale and sands. The correlation coefficients

were computed between attributes and porosity and net thickness evaluated at well.

Results are displayed in Table 1. The correlation between average properties at wells and
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Table 1. Correlation coefficients between seismic attributes and well properties. The
correlation is generally non significant except for net thickness, gross thickness and
energy half time (abreviated e-half).

Figure 13.  Scatter plots of seismic attribute (energy half time) versus gross and net
thickness measured at wells.

net

thick ft

gross

thick ft

poro. e-half amp-

max

amp-

min

arclen dom

freq

rms

net thick ft 1.00 0.99 0.37 0.79 -0.18 -0.02 -0.15 0.50 0.20

gross thick ft 0.99 1.00 0.39 0.70 0.19 0.16 -0.21 0.52 0.22

porosity 0.37 0.39 1.00 0.19 0.24 0.10 -0.11 0.20 0.18

e-half 0.79 0.70 0.19 1.00 0.06 -0.19 0.14 0.48 0.42

amp-max -0.18 0.19 0.24 0.06 1.00 0.17 0.03 -0.12 0.49

amp-min -0.02 0.16 0.10 -0.19 0.17 1.00 -0.97 0.19 -0.63

arcleng -0.15 -0.21 -0.11 0.14 0.03 -0.97 1.00 -0.26 0.68

dom freq 0.50 0.52 0.20 0.48 -0.12 0.19 -0.26 1.00 -0.02

rms 0.20 0.22 0.18 0.42 0.49 -0.63 0.68 -0.02 1.00
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seismic attributes is generally poor except for half energy and net thickness. We also

find a very good correlation between net and gross thickness. The lack of correlation

between porosity and attributes Yet, because of the small number of wells, the interval

of confidence of the correlation is poor. For a correlation coefficient of 0.79, such as

between half energy and net thickness the interval of confidence at 95% and for 11

samples is 0.38-0.94.  The correlation coefficient is an indication of linear correlation

and is very sensitive to outlying values (Schultz et al. 1994, Kalkomey, 1997).  Hence it

is important to check the consistency of the correlation directly on scatter plots (Figure

13).

DATA INTEGRATION USING GEOSTATISTICS

Introduction

Modeling of the 8 sand reservoir followed a two-step approach: 1) the

determination of the reservoir shape and average reservoir properties, 2) then

determination of small-scale variability. Several authors recommend this methodology

when dealing with reservoirs that combine complex architecture and small-scale

heteogeneities (Alabert and Massonnat, 1990; Weber and van Geuns, 1990; Johann et al.

1996; Beucher et al. 1999, Jordan et al. 1995). Internal heterogeneities can be studied

from core and log data. However well data do not give any information on their lateral

extension especially in this channel/levees environment, as correlation of individual thin

beds is virtually impossible. The lateral variability of the reservoir must be inferred from

the seismic information. The final objective is to reconcile these two types of

information.

Seismic provides the geometry of the reservoir and some stratigraphic limits.

Seismic attributes also show relationships with reservoir properties. Because of its dense

coverage it is interesting to extract geological information from seismic, this can be done

following different approaches (Beucher et al., 1999; Johann et al., 1996):

- seismic facies analysis based on seismic pattern recognition,

- calibration of seismic attributes to predict facies proportion.
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With our data set, pattern regognition of the 8 sand was not possible, as the

stratigraphic features (such as channel) are too subtle to be directly mapped. However

variations in thickness and net pay could be studied from seismic data. Based on this

information the overall shape of the reservoir and the direction of the main flowpath

could be determined. In a second step, we focused on the representation of small-scale

heterogeneities. Stochastic simulations of lithofacies have proven effective techniques to

account for the incomplete information at fine-scale while preserving the internal

variability (Srivastava 1994). Simulations enable the construction of multiple,

equiprobable realisations of the reservoir that honor two types of statistical constraints:

the lateral continuity and the frequency of each facies.

Estimation of thickness

 The first step was to get the gross thickness of the reservoir. Many different

geostatistical techniques are available to integrate well and seismic data. The selection

depends particularly on the quality of the correlation between the two types of data.

Table 2 presents a comparison of common methods (Isaaks and Srivastava, 1989; Hohn,

1999; Doyen, 1989; Xu et al., 1992). In our case, the information of the seismic

interpretation was exploited using the collocated cokriging approach with Markov

hypothesis (Xu et al., 1992; Doyen et al., 1996). This method uses the seismic isochron

as a background variable to estimate the thickness. Its main advantage is that it avoids

deriving the spatial model from poorly distributed data such as well information when

we can rely on a dense and reliable background variable such as seismic. It takes full

advantage of the seismic information: the cross-variance (Cws) is derived from the

covariance (Cs) of the background variable (here the seismic), simply scaling it by the

ratio of the covariance and the correlation between the two variables:
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This estimation technique honors the values at well locations and incorporates a trend

that varies locally.
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Table 2.  Comparison of geostatistical estimation techniques. From Isaaks and Srivastava (1989), Hohn (1999), Doyen et al.
(1996), Xu et al. (1992).

Method Description Data required Pros Cons
Ordinary
kriging

Kriging is a weight averaging method
similar to inverse weight distance but
kriging weights depend on a model of
spatial correlation.

Stationary variogram. Best linear (minimum
variance) unbiaised
estimator.
Variance of estimation.

Accurate only with regularly
sampled data.
Smooth estimation.
Stationarity required.

Kriging with
external drift

Surimpose to the simple kriging
estimation a local drift represented by a
linear regression on the secondary data.

Variogram (of hard data)
Computation of a polynomial
drift based on the average plane
fitted through the data points.

Fast: the kriging system is
small.
 Accounts for non
stationarity

Dependent on the quality of
the correlation between the
two variables. The
estimation error does not
take into account the
variability of the drift
variable

Cokriging Kriging of different types of data at the
same time.

Variograms and crossvariogram
should have the same range and
be a linear combination of
elements that ensure positive
definiteness

Integrated different types
of data.

Smooth, secondary data
integrated in a global
structural model.
Not possible with dense
secondary data the kriging
matrix becomes singular.

Collocated
cokriging

Includes the seismic value at each point.
Retains the secondary data closest to the
location where the primary data is
modeled

Same as for cokriging The link between the two
variables is local.

Cross-covariance still needs
to be modeled.

with Markov
hypothesis

All variograms and cross variograms are
proportional for all distances

Variogram  of hard data and
cross-variance derived by scaling
the structural model computed
from the seismic, using the
experimental values of the ratio
of variance of the two data sets
and the coefficient of correlation

Avoids modeling cross
variance

The secondary variable
needs to be informed at all
nodes where estimation is
computed.

Indicator
kriging

Selection of cutoffs
Indicator variogram models

Enhances connectivity
patterns useful maps for
decision making
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Comparing the two variograms in Figure 14 shows the advantage of using

Markov collocation. In this specific case the range could not be inferred with confidence

from the wells’ information because sparse well data are not homogeneously distributed.

The variogram extracted from the seismic is much more precisely defined.

Figure 14.  (a) Omnidirectional variograms of the gross thickness from well information
only. (b) Variogram of reservoir isochron derived from seismic, D1 is the X axis, D2 the
Y axis. Thin lines are experimental variograms, bold lines are models. The dotted line
indicates the variance of the data.

Net thickness estimation

Net-to-gross is very difficult to measure from logs in these laminated reservoirs:

gamma ray log commonly used for this estimation does not have here the resolution

required (Hansen and Fett, 2000). It our case, net thickness was estimated from density

and neutron logs based on calibration with cores (see Plantevin, 2002). This evaluation

was possible only in 11 wells. The good correlation between net thickness and gross

thickness is interesting but it does not give any additional information. Conversely, the

correlation with a seismic attribute (energy half time) provides an alternative approach to

evaluate the lateral variations of reservoir quality.

(a) (b)
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Incorporating the seismic attribute as a secondary variable, we can estimate the

net thickness. We used the collocated cokriging approach (Xu et al., 1992; Doyen, 1989)

with a classical model of cross variogram that gives a close agreement with the attribute

map.

Heterogeneity representation

The core issue in building a reservoir model is the internal variability. In thin-

bedded turbidite reservoirs, heterogeneity is generally controled by the distribution of

the most porous facies: channels and proximal levees interbedded with more shaly

deposits (Alabert and Massonnat 1990, Handyside et al, 1992). Study of core data of the

8 sand (see Plantevin 2002) also led to the definition of three facies with distinctive

sand/shale ratio.

The choice of the simulation technique to reproduce this variability has a

enormous impact. To model litho-facies, that is to say non continuous variables, the

most common methods are boleean or object based techniques and different types of

sequential simulation (Srivastava 1994, Galli and Beucher 1997, Haldorsen and

Damsleth, 1992; Haas and Dubrule 1999). Boolean methods consider facies as objects

defined by their shape that are simulated over a background, for example sinuous

channels in an alluvial plain (Shmaryan and Deutsch 1999). Characteristics of the object

include size, orientation and anisotropy. Sequential simulation techniques follow a

completely different procedure. After a random path is defined to visited each grid node,

a conditional probability distribution is estimated (depending on the data already

simulated) at the current node and a random value is extracted from this probability

distribution. This value is included in the dataset and the process is repeated until all

nodes are simulated.  These methods differ by the way the probability distribution is

built. In the sequential indicator approach, the shape of the distribution does not assume

a classical function but is computed from the data giving a series of thresholds (Journel

and Alabert, 1990; Suro-Perez et al., 1991; Caers et al., 2000). The method used for this
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study is a truncated Gaussian approach (Matheron et al., 1987, Ravenne and Beucher

1988).

At each location the facies is described using and indicator function, Z(x), based

on a gaussian probability distribution, Y(x):

� ��
�

�
ii axYaIxZ )(1

)(

The point x belongs to facies (i) if  ai-1<Y(x)<ai .

In ISATIS software, Y(x) is simulated sequentially honoring the range of the

prevalent facies (Bleines et al. 2001). The thresholds ai are directly related to the

proportion of each facies and are ordered. In our case, the facies are characterized by a

variable sand fraction. The simulation is directly conditioned, as the proportions of each

lithofacies are determined at each horizontal level via vertical proportion curves (see

Figure 15, from Doligez et al., 1999). Vertical proportion curves correspond to the

percentage of facies computed in the well at different levels parallel to a reference

(Eschard et al., 1998). Lateral variations in the proportions of each facies also have to be

taken into account. Seismic derived map of thickness and net pay enabled us to

distinguish lateral zones in the 8 sand, each characterized by its sand proportions.

Figure 15.  Principle of computation of proportions curves. The relative proportion of
facies is characterized vertically from well data. (Modified from Doligez et al., 1999).
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CHAPTER IV

RESULTS

This chapter presents the results of the reservoir characterization: 1) the structural

and stratigraphic framework, 2) the extraction of geological information from seismic

and 3) the geostatistical modeling of lithofacies.

STRUCTURE AND STRATIGRAPHY

The major structural features of the field are the salt geometry and the fault

system. The salt forms a ridge culminating in the Southeast corner of the field in a diapir

that reaches the surface. The crest of the ridge, oriented NW-SE is lying between 4050

and 5050 ms.  The structure map of the top of the salt in Figure 16 shows that the ridge

is globally east dipping and the isochron in Figure 17 indicates that it is composed of

two elements, as shown also by the cross-section.

The block is traversed by a salt detachment fault dipping down to the basin (blue

on Figure 19). Several secondary listric faults intersecting the 8 sand have been mapped,

they all exhibit the same pattern, NNW-SSE to NW-SE trending, SW dipping. Figure 20

shows the time structure of sand 8 with the intersection of the main faults and a cross

section (Figure 19) indicates their vertical extend.

The structure at the top of the reservoir is shown in depth by Figure 21. The

upthrown block is an anticline oriented north south and dipping north. The top of the 8

sand is lying between 9500ft and 10500ft. The crest of the structure is located along the

fault. The strong dip of the field, opposite to the regional basin dip, seems induced by

salt movements. The gradient is steeper in the eastern side and close to the diapir. The

comparison of the isochron indicates that salt withdrawal was really significant after

deposition of the 8 sand.
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Figure 16.  Structure map of the top of the salt ridge

Figure 17.  Salt isopach, two salt bodies separated by a thinner zone in red <100 ms
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Figure 18. Coherence slice at 3176 ms (intersects the reservoir) showing some fault
traces and the origin of the diapir in the southeast.

Fault traces

Diapir origin
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Figure 20.  Time structure of the top of the 8 sand
reservoir with trace of major faults.

Figure 19. Interpreted section showing salt ridge
and major faults intersecting the reservoir.
Orange horizon is top of sand 8.
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Figure 21.  Depth structure of the top of the reservoir.

Feet
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Figure 22. Seismic derived isopach between the top of the reservoir and the top of the
CM sequence (1.4 Ma) indicating beginning of salt withdrawal early after deposition.

Stratigraphy

The seismic response of the 8 sand interval is characterized by shingled patterns

typically representative of channel levees depositional environment. The stratigraphic

features are very subtle and difficult to detect in this environment as individual channels

are usually below seismic resolution.  Amplitude map (see figure 12) shows elongated

trend of low amplitudes that can be related to discontinuities in the reflector. Figure 23

shows a cosine of phase display of a section. The continuity of the reflector is enhanced

compared to the usual amplitude display. It indicates overlapping of the eastern

reflectors. This configuration suggests for the northern zone lateral stacking and possible

discontinuities in the reservoir. The southern zone has a poor seismic response, and the

relationship between the two units can not easily be distinguished on the seismic.
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Figure 23.  Cosine of phase display of a section enhancing the continuity of the reflector.
It shows the shingled pattern of 8 sand and overlapping of the eastern reflectors.

GEOLOGICAL INFORMATION FROM SEISMIC

Thickness

The generation of thickness map enabled to see the general orientation of the

system. The first map was generated using well data only with the ordinary kriging

method (Figure 24). It shows the “hole pattern” produced by this estimation technique

when constraining data are too scarce. Although it does not shows realistic shapes it

enables us to detect the low reliability zones, the corresponding estimation variance map

shows the low reliability of the estimation away from the wells.
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Figure 24. a) Thickness map derived from well data only and b) its associated variance
of estimation. Away from the wells the uniform value shows the lack of information.

a)

b)
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Variance
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The second maps incorporate the seismic isochron information to infer spatial

variations away from the well, see Figures 25 and 26.

Reservoir thickness varies from 170 to 70 ft. The map (Figure 26) shows an

elongated thicker zone above 100 ft oriented North South and bent along the fault. This

area matches approximately the crest of the structure and can be considered as the main

reservoir unit. The width of this unit varies from 2500 ft in the north to 1000 ft along the

fault. All the producing wells are located in the area where the thickness of the reservoir

exceeds 100 ft.

Figure 25.  Seismic-derived isopach of the 8 sand reservoir.



37

Figure 26.  a) Thickness map incorporating seismic and well information and b)
associated variance of estimation, much reduced compared to the case with well
information only Figure 24.
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Net thickness estimation

Evaluating net thickness is very important in channel/levees reservoirs, this

parameter significantly affects flow units as it generally correlates with vertical and

lateral connectivity (Khan et al., 1996). The net thickness was estimated at 11 well

locations. The good correlation of net thickness with a seismic attribute enabled to

derive the map shown in Figure 29. Again we observe a north south trend, well

correlated with the thickness, especially at the eastern edge of the reservoir unit.

Figure 27.  Map of the seismic attribute (energy half time) used to derive the drift of net
thickness.
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 Figure 28.  Net thickness map incorporating well and seismic attribute information. The
arrow shows an anomaly where the net thickness is equal to the gross thickness.

The discontinuities between the northern and the southern zones can also be

noticed. The good correlation with the thickness was expected in this environment;

conversely the preeminent elongated zone in the eastern part is suspicious, as it lacks

correlation with the thickness and has no well confirmation.

The results are consistent with our interpretation of the system; an elongated

narrow zone shows the best net thickness flanked by intervals of decreasing net-to-gross.

These features however are field related. They do not characterize a general channel-

levee system but the result of the specific depositional arrangement in this block. The

main feature is the rapid lateral variability of the properties. The variogram extracted

from this map shows a range of 850 ft, which gives an indication on the lateral extension

of the seismic-derived facies.

Feet
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GEOSTATISTICAL MODEL

Reservoir modeling was based on vertical proportions curves of facies derived

from core and log analysis and on lateral change of the average net pay reflecting the

evolution from proximal to more distal regions of the channel/levee system.

Facies definition

Core description distinguished five facies. Three of them were retained to

represent the reservoir heterogeneity (see Plantevin, 2002).

- Facies A is made of thick intervals of clean sands with very rare and thin shale

laminations. It is thought to be a “channel” facies. The sand fraction is very high,

with an average of 81%

- Facies C is made of laminated sands; the thickness of each sand bed varies

between 0.2 and 5 inch and has an average of 2 inches. It is the typical levee

facies. The average percentage of sand is 54%.

- Facies E is shale dominated with some thin sands beds below 1 inch thick. It can

be the overbank facies, the sand content is very low: 6%.

The assumption for reservoir modeling was that heterogeneity in the reservoir is

mainly controlled by the proportions of each facies as they show distinctive

petrophysical properties and are not affected by diagenetic cementation (Plantevin,

2002).

Reservoir zonation

Seismic derived map of net thickness enabled to distinguish two lateral zones

with different average properties. In the eastern part, the average net to gross is 39%

whereas in the western part along the fault it is 45%. This distinction is an important step

as one of the hypotheses of simulation is stationarity, which assumes that the statistical

properties are homogeneous in the region simulated. When different zones are defined

based on variation in average properties, they are simulated independently.
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Moreover, as the conditioning rely not only on the average facies proportion but

also on their vertical association, it is important to preserve this variability. These

considerations finally led to the distinction of three zones presented in Figure 29. Zones I

and II cover the thickness above 120 ft and comprise all the producers. Zone I delineates

the elongated trend corresponding to the highest thickness and net pay and it delineates a

probable major flowpath. Zone III corresponds to the more distal parts of the levees and

the thickness is only 90 ft.

The limits of each zone were drawn from the net thickness map. These

boundaries between zones synthesize the seismic and geologic information. Faults are

not taken into account at this stage. However, their impact (sealing or not) would have to

be considered for flow simulation.

Figure 29.  Zonation of the reservoir based on net thickness and facies proportion at
wells. Zone I and II have an average net-to-gross of 45%. Zone I delineates the main
flowpath where channel facies are more continuous. Zone I is the most distal part with
an average net-to-gross of 39%. Faults are not taken into account.

Zone I

Zone III

Zone II
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Vertical Proportions

The vertical proportion curves of each zone are presented in Figure 30. The

comparison of these curves shows that although zone I and II have the same NTG, the

distribution of facies A is different. Zone I is characterized by a thick interval of facies

A, whereas in Zone II facies A is more scattered in the upper part of the reservoir. The

vertical proportion curve in Zone III shows as expected a larger proportion of the more

shaly facies, facies E; and an increase of facies C at the top of the unit.

Model

The simulation was performed with smoothed curve to reduce the impact of

mono-facies intervals created by the lack of samples. One realisation is displayed in

Figure 34. The vertical range is based on the average length of the facies interval from

well interpretation. It is of 10 ft for facies E and C and 5 ft for facies A, which indicates

the thinness of the eventual channels. The lateral range was derived from the net

thickness map. The underlying assumption is that because of the low total percentage of

facies A, lateral variations reflect mainly the continuity of facies C, the lateral range was

850ft. The simulation was performed on a 150*150*1ft grid.

The result of the simulation are shown in Figure 30 and 31, the grid is not in

structural position and shows sharp thickness variations but enable to see the vertical and

lateral evolution of the lithofacies. The 3-D view (Figure 30) shows that the lateral

continuity is good within each unit but the vertical continuity in variable. This is

consistent with conceptual models of channel/levee systems (Shew, 1995). The

simulated section (Figure 31) shows the details of facies repartition. Although these

lithofacies do not represent individual beds, this realisation gives a representation of the

impact of internal architecture on flow-units connectivity. Facies A, mainly composed of

sand has very good permeability, facies C highly laminated has anisotropic

transmissivity properties and facies E mainly composed of shale probably acts as a

permeability barrier (Plantevin, 2002).
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Facies A

Facies E

Facies C

Figure 30.  Vertical proportion curves generated from facies identified at wells
gathered by zones to respect lateral variation in average facies proportions (Zone
III with higher proportion of facies E) and vertical associations (Zone I with a
continuous interval of facies A whereas they are more scattered in the upper part in
zone II).

Facies E, shale dominant.

Facies C, thin laminations.

Facies A, sand dominant.

Vertical proportions Zone I

Vertical proportions Zone II Vertical proportions Zone III
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Figure 31.  3D lithofacies simulation of the 8sand on a 150*150*1ft grid with a lateral range of 850ft and  a vertical range of
10 ft. Within each unit the lateral continuity is good but the vertical continuity varies.
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Figure 32.  N-S section of the 8 sand lithofacies simulation. The separation in zones enables to represent the lateral variations
in average net-to-gross. The location map shows in red the simulated section and in blue the well section of Figure 33. Vertical
lines represent the projection of well locations.
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Figure 33.  Well correlation of the 8 sand from Plantevin 2002. The location map shows in blue the well section and in red the
simulated section of Figure 32.
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The simulated section (Figure 31) can be compared with well correlation from

Plantevin (2002), in Figure 32. Comparison with log correlation by Plantevin (2002)

shows the consistency of the simulation with the conceptual model and the advantage to

reproduce fine-scale variability to show more realistic internal connectivity patterns.

Thanks to the zonation of the reservoir based on seismic interpretation, the

simulated section reflects both the regional trends and the fine-scale repartition of

lithofacies.
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CHAPTER V

DISCUSSION AND SUMMARY

RESERVOIR STRUCTURE

The structure of the field, with a major salt detachment fault is representative of

the Outer Continental Shelf: salt mobilization creates a ridge, uplift of the ridge deforms

overlying layer and initiate growth faulting (Bradshaw and Watkins, 1996).

The depositional model of the block is interpreted as a tilted turbidite system due

to salt diapirism. The sediments were probably trapped on the northern side of the salt

ridge.  When the northern part continued to subside due to sediment loading and

withdrawal the sands were tilted and formed traps. The reservoir of interest is located

upthrown side of the main faults, which is fairly uncommon as the accommodation

allowed by growth faulting often lead to concentration of sand immediately downthrown

(Zhang, 1994). Only one well intersected the 8 sand level in the faulted block and it

showed a very thin layer (25ft). One possible explanation is that the paleotopography

was mainly affected by the uplift of the diapir in the southeastern part of the field and

that the flow path was bent on the northern flank of the salt.

DEPOSITIONAL ENVIRONMENT

The 8 sand is believed to have been deposited a channel/levee system. Several

channels may have been active through time but they are to small to be map on the

seismic. Thickness and net pay map suggest that the deposition occurred mainly along a

single path and show the lateral evolution of the lithofacies assemblage from proximal to

distal distributions.

The deposition was probably controlled by paleo-topography with accumulation

of sand on the north flank of the diapir. This environment is characterized by vertical

and lateral stacking leading to sharp variations in sand thickness and continuity. Yet the
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estimation of net thickness revealed that average the reservoir quality over the thickness

was highly dependent on the distance to the channel zone. The integration of seismic

interpretation and well log interpretation enabled to build a model that reflects these

regional trends and reproduce the internal variability.

GUIDELINES FOR RESERVOIR MODELING

The main interest of this integrated approach is to describe the reservoir

heterogeneities at different scales:

- At the field scale, the reservoir is bounded by a fault probably sealing (from

pressure data, Williams L.I. pers. com. 2000). Thickness, net pay map and

amplitude discontinuities suggest that the reservoir is likely to be constituted of

at least two units. One of the objectives of history matching is to confirm the

non-communication of these two units produced in the north by well A-3 and

A12 ST and in the south by A2, A25, and A27.

- At the reservoir scale, the average quality of the reservoir is globally linked to net

thickness, the thickest part is believed to be the closest to the channel.   However,

the horizontal and lateral communication of individual sand layers is highly

uncertain.  The rapid vertical and lateral change observed in well and core data

are likely to be major controls of the flow.

- The model generated reproduces the variability assessed from seismic and well

interpretation. The limits of the zones have a great impact on lateral continuity.

The position of these boundaries should be tested with flow simulation. A more

sophisticated approach would be possible with HERESIM software developed by

IFP (Doligez 1999, Eschard et al. 1998, Beucher et al., 1999). This software

allows to build 3-D proportions matrix that account quantitatively of the lateral

change in facies proportions.

- The proportion of each facies, especially A and E that shows distinctive

permeability values, should be part of a sensitivity study to asses uncertainties.
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- The lateral range of lithofacies within each unit can also have a major impact on

connectivity and should also be tested.

SUMMARY

For an optimal exploitation of a reservoir, a geologically consistent model is

required. This study of the 8 sand propose an approach to integrate all the available

information in order to describe a reservoir characterized by important internal

variability below the resolution of conventional tools. The principal steps of the study

are summarized here:

1) Structural analysis of the field showing the preeminent role of salt in the

constitution of trap and the presence of two major faults believed to be

sealing.

2) Stratigraphic mapping of the reservoir revealed variations in thickness

suggesting the location of the major flow-path and possible lateral stacking.

3) Thickness and net-to-gross estimation from using seismic data enabled to

detect the lateral variation in the quality of the reservoir.

4) Lithofacies characterization from core showed that three facies could be used

to describe the internal variability of the reservoir. These facies were defined

by the average thickness of lamination and proportion of sand (Plantevin,

2002) and constituted the elements of the description of the internal

variability of the reservoir.

5) The reservoir was simulated constrained by well and seismic. Seismic enable

to account for large-scale lateral variation in facies proportions. Well

information is used to model the vertical distribution of facies through

vertical proportion curves.

This approach enabled to build a consistent reservoir model despite the poor

spatial repartition of well data and the limited number of well. Lithofacies simulation

enabled to represent the internal heterogeneity and will allow several parameters to be

tested using flow simulation.
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