Achieving High Chilled Water Delta T in District Cooling Plants

Zhan Wang, Gang Wang, Ke Xu, Yuebin Yu, Mingsheng Liu Energy Systems Laboratory Department of Architectural Engineering University of Nebraska-Lincoln

Nov. 1, 2007

Outline

✓ Introduction **Conventional Method** V **Improved Method** \checkmark V **Case Studies** Conclusions \checkmark

✓ INTRODUCTION

Objectives of District Chilled Water Plant

- To ensure that every building in the district cooling system receive enough chilled water.
- To save pump power in both the central plant and buildings.
- > To avoid chilled water penalty

✓ <u>CONVENTIONAL METHOD</u>

Conventional Connections (systems)

✓ <u>CONVENTIONAL METHOD</u>

Basic Operation

When T_{CHWS} is lower than the set point

Blend return chilled water with primary supply chilled water from the central plant to <u>achieve high chilled</u> water ΔT .

✓ <u>CONVENTIONAL METHOD</u>

✓ IMPROVED METHOD

Science and Good Practices

✓ IMPROVED METHOD

Recommended Connection

✓ CASE STUDIES

Three Case Studies

✓ <u>CASE STUDIES</u>

System Information in Building #1

Type of building	Museum
Age of construction	1931/1994
Area (ft ²)	213,000
Operation schedule	24/7
CHW consumption in Aug. 2007 (ton hrs)	99,230
Number of blending station	2
Circulating pump configuration for each station	1 with a VFD
Circulating pump power (HP)	20
Cooling coil valve configuration	2-way
CHWS, T2 range (°F)	42~45
Humidity problem	No

✓ <u>CASE STUDIES</u>

✓ CASE STUDIES WITH RETROFITS

Basic Improved Operation in Building #1

Variable speed circulating pump

1.1 Disable circulating pump1.2 Modulate PRV to maintain ΔP

If PRV is 100% open <u>& ΔP is less than the set point</u>

2.1 Maintain PRV 100% open2.2 Enable circulating pump and modulate it to maintain ΔP

✓ <u>CASE STUDIES</u>

Chilled Water ∆T in Building #1 after CC®

Comparison of ∆T in Building #1

✓ CASE STUDIES

Building #2 System Information

Type of building	Office
Age of construction	1970's
Area (ft ²)	230,000
Operation schedule	60hrs/week
CHW consumption (ton hrs) Aug. 2007	193,000
Number of blending station	1
Circulating pump configuration	3 constant
circulating pump power (HP)	40 each
Cooling coil valve configuration	2-way & 3-way
CHWS, T2 range (°F)	42~50
Humidity problem	Yes

✓ CASE STUDIES WITH RETROFITS

Basic Improved Operation in Building #2

Constant speed circulating pump

1.1 Disable circulating pump 1.2 PRV maintain T_{CHWR}

If PRV is 100% open

& T_{CHWR} is higher than the Stpt

2.1 Maintain PRV 100% open
2.2 Enable circulating pump(s) and modulate it to maintain T_{CHWR}

Comparison of ΔT in Building #2

✓ <u>CASE STUDIES</u>

Building #3

Type of building	Office
Age of construction	1970's
Area (ft ²)	71,500
Operation schedule	70hrs/week
CHW consumption (ton·hr) Aug. 2007	36950
Number of blending station	1
Circulating pump configuration	3 constant
circulating pump power (HP)	10 each
Cooling coil valve configuration	2-way & 3-way
CHWS, T2 range (°F)	42~50
Humidity problem	Yes

Comparison of ΔT in Building 3

Achieving High Chilled Water Delta T in District Cooling Plants

✓ <u>CONCLUSIONS</u>

Conclusions

- > Building blending station is not necessary to maintain the required T_{CHWR} or ΔT temperature.
- Without blending station, building pump power is eliminated.
- Without blending station, thermal comfort is improved by ensuring good control for space humidity and temperature.

