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ABSTRACT

Single Location Doublet Well to Reduce
Salt-Water Encroachment: Phase T - Numerical Simulation

by

Donald L. Reddell

C.E. Jacob received patents in 1965 for a single location well doublet
that would produce fresh water overlying salt-water without upconing of
the heavier salt-water and pollution of the fresh water zone. No known
evaluation of the concept or development of design criteria has been accom-
plished. 1In this study, a finite difference radial flow model was developed
to determine groundwater velocities and salt concentration as a function of
time and space. This model was verified and is available for evaluating
design criteria for Jacob's single location well doublet. Initial runs with
the model indicate that the concept has potential, particularly in aquifers
with clay lenses in the salt-water zone. Additional runs with the model
will be needed to fully establish the design criteria necessary for Jacob's

gingle location well doublet.
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CHAPTER T
INTRODUCT ION

Salt-water encroachment is a problem for groundwater development in many
areas of the world. 1Imn many coastal areas, fresh groundwater occurs as lenses
floating on sea water. As groundwater is developed, the natural flow toward
the ocean is reversed and sea-water intrusion occurs., As the salt-water travels
inland, the chloride content of wells increases and they become contaminated.
Many well fields have been abandoned., Similarly, in many areas of the western
United States fresh water aquifers overlie saline-water aquifers. When wells
are heavily pumped, salt-water moves upward from the lower saline aquifers,
contaminating the well.

A major groundwater problem area in Texas is the El Paso area in the Rio
Grande Basin. In particular, the Hueco Bolson Aquifer is being mined, with water
level declines of 0.3 to 0.7 meter per year occurring. Surface water in the
Rio Grande at El Paso is fully appropriated, and its quality for municipal use
is marginal much of the time; exceeding 3000 ppm total dissolved solids many
times. The city of El Paso is forced to use available groundwater for their
nunicipal use, Projections by the Texas Department of Water Resources indicate
that adequate groundwater is available to meet projected water requirements of
E1l Paso through the year 2030 if saline-water encroachment can be controlled.

The Hueco Bolson Aquifer is underlain by saline-water sands. As the fresh
water from the aquifer is mined, the saline-water rises into the overlying fresh
water sands and contaminates wells. The Texas Water Development Board (1977)
stated that presently and in the future, saline-water encroachment due to mining
of the Hueco Bolson Aquifer has and will continue to deteriorate groundwater
quality. To reduce the problem, the city of El Paso constructs their new wells
so that in-well blending of fresh and slightly saline-water takes place during
pumpage. The controlled blending of fresh and slightly saline groundwater will
reduce encroachment and extend the useful 1life of the aquifer. However, no
long~term solution has been found.

C.E. Jacob, the noted groundwater hydrologist, received patents in 1965
for a single location well doublet that would produce fresh water overlying salt-
water without upconing of the heavier salt-water (Wickersham, 1977). No paper

was written by Jacob describing or evaluating his invention prior to his death



in 1970. All written documentation of his concept is included in two patent
applications (Jacob 1965a and Jacob 1965b).

Jacob's patents call for a well Lo penetrate the fresh water zone and
extend a substantial distance below the static interface into the salt-water
zone. The well bore is divided into lower, intermediate, and upper chambers
by the use of two conventional packers spaced along the well bore. The lower
packer is set just above the normal static interface, The upper packer is
spaced above the lower one and is located in the fresh water zone., Two opposed
pumps connected by a common power shaft are simultaneously operated to produce
a flow of liquid into and through the three separated well chambers, The upper
pump is placed in the top chamber where fresh water is drawn into it and on to
the surface for use, The second or lower pump is placed in the intermediate
chamber where some saline-water is drawn into it and is discharged into the
lower chamber. The saline-water passes through the lower chamber and is injected
back into the aquifer several feet below where it was withdrawn. Jacob's idea
was to create a "closed cell" of salt-water circulation which would eliminate
transfer of the undesired saline-water across a streamline boundary. Thus,
fresh water overlying salt-water could be pumped while reducing or eliminating
upconing and contamination of the fresh water supply.

No known evaluation of Jacob's patents has been made. This report de-
scribes an evaluation of Jaceb's single location well doublet, The specific
objectives of the study were as follows:

1. Develop a numerical model of Jacob's single location well doublet

and evaluate its usefulness with salt-water encroachment problems.

2. Use the numerical model to evaluate design criteria for the construction

of Jacob's single location well doublet,

Funding for this project was to have been for a 24-month pericd. However,
because of budgeting problems at the 0ffice of Water Research and Technology
during the fall of 1981, money was not actually allocated to the principal
investigator until March of 1982. Thus, funding was available for only 18 months,
and only Objective 1 above was completed., Objective 2 is not complete and is

not included in this report.



CHAPTER II

PREVIOUS WORK

Slichter (1905) injected a salt solution into a well and observed the
time of arrival at a nearby observation well., He observed that the salt did
not arrive at the observation well as a slug, but instead the salt concentration
eradually increased with time to some maximum value. Since Slichter's work,
many investigations have been made on the flow of miscible fluids in porous
media. These investigations are divided into the following four categories
for discussion purposes: (A) theoretical investigations, (B) analytical

investigations, (C) experimental studies, and (D) numerical simulation.

A. Theoretical Investigations

The theoretical investigations have been oriented towards developing a
basic understanding of the dispersion phenomena. These studies attempt to
define the dispersion coefficient in terms of medium properties, fluid proper-
ties, and the fluid velocity.

Dispersion and diffusion may be visualized by the injection of a slug of
dye into a fluid flowing through a porous medium. The center of the slug
will travel along the column axis with the average fluid veleocity. As time
increases, the slug will increase in size and mix with the surrounding native
fluid to form concentration profiles, This wvariation in concentration is
created by both dispersion and diffusion. Diffusion is a direct result of
thermal motion of the individual fluid molecules and takes place under the
influence of a concentration gradient. Dispersicn in porous media is a
mechanical or convective mixing process which is the result of individual
fluid particles traveling at variable velocities through irregular shaped pores
and along tortuous microscopic pathlines,

Dispersion results in a variation of concentration similar to that
created by diffusion. However, dispersion is the result of convective mixing
on a microscopic scale; not of a concentration gradient. Because of the
difficulty in describing the boundary conditions for flow through porous media
on a microscopic scale, a macroscopic model is used. When using the macroscopic
model, dispersion is assumed to be proportional to the concentration gradient.
A detailed description of the transition from a microscopic to a macroscopic

model is given by Bear (1979).



To investigate the dispersion process, many porous media models have been
used. Perhaps one of the simplest models is a bundle of capillaries. Taylor
(1953, 1954) investigated the displacement of a fluid from a straight capillary
tube of radius, r, by another fluid miscible with the first. His results in-
dicated that the tracer was dispersed relative to a plane moving with velocity,

V, exactly as in a Fickian diffusion process, but with a diffusion coefficient,

r
T 48D (1

where D, is the molecular diffusion coefficient. Aris (1956) generalized
Taylor's results by considering a bundle of capillary tubes and obtained an

effective diffusion coefficient,

(2)

where T is a coefficient depending on the shape of the capillary tube's cross-
section. Ananthakrishnan et., al. (1965} investigated the range of applica-
bility of Equation 2.

Another theoretical approach Is to develop a statistical model of the
microscopic motion of marked fluid particles and to average these motions to
obtain a macroscopic description of dispersion. Scheidegger (1954) neglected
molecular diffusion and used the theory of a random walk extended to three
dimensions. However, he assumed that the probability for a particle to move a
given distance was the same for all directions. This leads to a dispersion
coefficient that has the same value in all directions, and has subsequently
been proven wrong.

De Josselin de Jong (1958) also used a statistical approach and was pro-
bably the first to develop a model which defined the dispersion coefficient as
an anisotropic quantity. His model was constructed of interconnected straight
channels oriented at random but uniformly distributed in all directions. The
final result was a concentration profile described by a three-dimensional
normal distribution in which longitudinal dispersion was greater than trans-
verse dispersion. The concept of longitudinal and transverse dispersion has
been verified experimentally (de Josselin de Jong (1958); Bear (1961b)}).

Saffman (1959, 1960) used a statistical appreach similar to de Josselin

de Jong (1958}, However, Saffman introduced molecular diffusion into his model



and studied the relationship between mechanical dispersion and molecular
diffusion. Saffman's first model (1959) assumed dispersion was large compared
to molecular diffusion. Saffman's second model (1960) was for the case where
molecular diffusion and dispersion are of the same order of magnitude.

Other statistical models have been investigated by Danckwerts (1953),
Beran (1955), Rifai et. al, (1956), and Day (1956). Scheidegger (1957) developed

two theoretical models which vielded,
D~V (3)
for one model, and
DarV (4)

for the other model. Equation 4 represents a model where enough residence time
exists in each flow channel for molecular sideways diffusion to cause complete
mixing between invading and original fluids. Equation 3 represents a model in
which no mass is allowed to be transferred from one streamline to ancther by
molecular diffusion. As shall be seen, experimental evidence indicates that
Equation 3 comes closer to physical reality. Scheidegger (1960) summarized
much of the statistical work done prior to 1960.

Using the results of de Josselin de Jong's work (1958), Bear (1961a)
developed an expression for the dispersivity tensor in terms of the average
distance traveled by the tracer in the medium. Bear implied that the disper-
sion coefficient, Dij’ was a second rank tensor linear in the components of
the velocity. Scheidegger (196l) suggested by induction that:

v V
m n

s €, .
ij ijmn

(5)

v

where Eijmn is the coefficient of dispersivity, which is a porous medium
property, and van/V is a tensor which represents the linear influence of
velocity. Scheidegger concluded that the coefficient of dispersivity was a
fourth rank tensor with 81 components; but due to certain symmetry properties,
contains only 36 independent components in the general case of an anisotroepic
medium., In isotropic media, there are only two dispersivity constrants.
Work by Poreh (1965) showed from physical and dimensional reasoning that
the tensor form of the coefficient of dispersiomn is,
iles vr v v 6
1717 2°D i

Dd ii d



where d = pore size parameter, Sij = kronecker delta, ViVj is a tensor representing
the linear influence of velocity, and Fl and F2 are even functions of Vd/Dd and
Vd/v, the Peclet and Reynolds numbers, respectively. Bear and Bachmat {1967) also
showed the dispersion coefficient, Dij’ to be a function of the Peclet number.

Several investigators, including Scheidegger (1961) and de Josselin de Jong
and Bossen (1961), have suggested that the dispersion of a tracer in fluid flow
through saturated homogeneous porous media can be described by the differential
equation,

dc _ @ dc

= (D,
at BXi ij BXj

- Vi C] (N

where C is the tracer concentration, t is time, Vi is the component of the
velocity vector in a cartesian coordinate system, and Xi(i=1’2’3) is the
cartesian space coordinates. The double summation convention of tensor notation
is implied in the use of Equation 7. Bachmat and Bear (1964) gave the disper-
sion equation in curvilinear coordinates consisting of streamlines and equipoten-
tials (&-¥ coordinates). Bear and Bachmat (1967) used basic fluid flow equations
which are averaged over a representative volume element of porous media to yield
the equation of motion and the equation of dispersion.

Perkins and Johnston (1963) gave a good summary of diffusion and dispersion
in porous media. A more detailed summary of the theory of dispersion in porous

media was given by Bear et. al. (1968, Chapter 11).

B. Analytical Solutiomns

Most dispersion problems have a direct analogy with heat flow. For this
reason, a good reference for amalytical solutions is Carslaw and Jaeger (1959)
or Crank (1956). Some of the more important analytical solutions are discussed

below.

Longitudinal Dispersion —— A semi-infinite column (X3>0) of homogeneous
and isotropic porous media with a plane source maintained at X3=0 is maintained
at a constant specific discharge, q, in the X3—direction. For an isotropic
media, the axes of the dispersivity tensor is assumed to coincide with the

velocity vector. Thus, Equation 7 reduces to

dc _ D 82 C _ ac
ot L 2 3 93X
a3 X3

(8)
3



where DL is the longitudinal dispersion coefficient. Initial and boundary

conditions are given by,

Cc(0,t) st 20

C(X;,0) =0 ; X320 (9)

C(wo,t) =0 ; ¢t >0

Ogata and Banks (1961) used Laplace Transforms to obtain the solution,

X, -V_.t V., X X, + V., t
%}- = %[erfc&4i———;i0 + exp( D )] erfc(—i———éiﬂ] (10)
0 ZVI%j: L 2 VDLt

where erfe(u) = 1 - erf(u). Ogata and Banks showed that the second term in

Equation 10 may be neglected in most cases. For instance, if DL < 0.002 V3 X3

a maximum error of less than three percent is introduced by neglecting the
second term. Therefore, unless the region close to the source is considered,

an approximate solution to Equations 8 and 9 is

X, - V.t
£ o Lerfe=2—2] (11)

CO 2 \/ DLt

Ogata (1961, 1964a) gave a solution in integral form to the problem where

"a" is injected at X3=O. This problem must consider both

longitudinal dispersion and transverse dispersion. Using his solutions, Ogata

a slug of radius

(1964a) developed experimental procedures for determining both DL and DT'
In many physical problems, the tracer being used may react with the solid
matrix of the porous medium. Depending on the reaction, the tracer may be
adsorbed to the matrix or additional tracer may be produced. To handle such
cases, a production term dependent on the concentration is added to Equation 3.
Using varying functional relationships for the production term, solutions to
this problem have been obtained by Ogata (1964b), Banks and Jerasate (1962),
Banks and Ali (1964), and Lapidus and Amundson (1952). A closely related
problem is that of radioactive decay of a tracer. Bear et., al. (1968, p. 347)
gave the solution to Equations 8 and 9 where the tracer continuously undergoes
radioactive decay. Coats and Smith (1964) investigated the effects of dead-end
pore volume on dispersion and gave several solutions to the simple diffusion
model characterized by Equation 8.
Longitudinal and Lateral Dispersion -~ If a rectangular column (0 < X3 < 13,
< 12) is used and a tracer source is maintained over a portion of the input

0 < X,



area (0 < X2 < b), then both longitudinal and lateral dispersion will occur.

Assuming a homogeneous and isotropic medium with unidirectional flow in the

X3-direction and BCIBXI = 0, Equation 7 becomes,
2 2
Jgc a_c i c ac
— =D + D -V, ™~— (12)
ot L axi T axg 3 3X3

The initial and boundary conditions are given by:

C(XZ,O, t)=CO;05X2§b;t20
C(Xz’ 0, t) =0 ; b < X2 < 12 ; t>
3¢(0, XB’ t)
=0;t >0
8X2
9e(l,, X,, t)
zax3 =0 t>0
2
C(XZ’ @, t) = Bounded
c(xz,x3,0)=o;ofxzflz;x3>o (13

A series solution to Equations 12 and 13 was given by Bruch and Street (1967).
Harleman and Rumer (1963) gave the following approximate steady state solution

to Equations 12 and 13,

1 X, = b
= L erfo [mmmcieee ] (14)
0o 2 2Y Dy X,/V,4

nlo

In their work on waste-water recharge and dispersion, Hoopes and Harleman
(1965, 1967a, 1967b) have developed several approximate solutions to the radial
dispersion problem. Raimondi et. al. (1959) also gave an approximate solution
to the radial dispersion problem. Esmail and Kimbler (1967) gave a solution
which allows for altermate injection and production.

Dagan (1967) gave an analytical solution for dispersion in a nonhomogeneous
porous column, Using the Laplace Transform, Shamir and Harleman (1966, 1967)
developed analytical solutions for longitudinal and lateral dispersion in layered
porous media. Bear and Todd (1960, pp. 27-33) gave some analysis of the unsteady
flow problem. Banks and Jerasate (1962) allowed the coefficient of dispersion to

vary with time, and solved the problem by introducing a different time scale.



C. Experimental Results

Much of the experimental work has attempted to establish relationships
so that the dispersion coefficients may be calculated from media and fluid proper-
ties. As was pointed out earlier, theoretical models indicate that the dispersion
coefficient is a second rank tensor. Experiments of de Josselin de Jong (1958},
Bear (1961b) and Bear and Todd (1960) confirm this concept. Scheidegger's work
(1961) indicated that for homogeneous and isotropic media. the dispersion
tensor reduces to two independent terms; (1) the longitudinal dispersion co-
efficient, DL’ and (2} the lateral dispersion coefficient, DT'

Most of the experimental determinations of the longitudinal dispersion
coefficient used Equations 10 or 11 as a basis for analysis, Ebach and White
(1958) performed experiments on a wide range of particle sizes, shapes, and
Reynolds numbers. They empirically postulated that for Reynolds numbers,

R < 100,
P, Vd)Bl

Eaa e (%)

where V = fluid velocity, d = particle size of the porous media, and

v = kinematic viscosity. The experimentally determined coefficient o, is strongly

1
dependent on the porous medium while Bl is dependent on flow regime. However,

evidence exists (Adam, 1966) that Bl is also dependent on medium properties,

Experimenters have found a large variation in the values of a., and Bl. A large

percentage of this variation may be attributed to experimentai techniques;
egspecially the different methods for measuring concentration.

1=O.66 and Bl=1.2 while Hoopes and

1=1.70 and Bl=1.2. Ebach and White (1958) found a1=1.92
and Bl=1.06. Experimental results for longitudinal dispersion were given by

Banks and Ali (1964); Blackwell {(1962), Cairns and Prausnitz (1960), Carberry

Harleman and Rumer (1963) found o

Harleman (1965) found o

and Bretton (1958), Simpson (1969), and many others.
Equation 15 prompted investigators of lateral dispersion to fit thedir
experimental data to the form,
P Vd)sz

e
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Harleman and Rumer (1963) found a2=0.036 and 82=0.7. Hoopes and Harleman (1965)

found a2=0.11 and 62=0.7. Lateral dispersion has been investigated by Simpson
(1962}, Blackwell (1962), Grane and Gardner (1961), van der Poel (1962), and Li
and Lai (1966).

Harleman et. al. (1963) were able to correlate the longitudinal dispersion

coefficient with permeability,

D B
L vk 3
= 0 (17)

where k is the permeability with units of L2. Harleman et. al. found a3=54
for spheres and 88 for sand with B3=1.2 for both media. Hoopes and Harleman

(1965) found results similar to Equation 17, with o, dependent upon the media.

Rumer (1962) investigated longitudinal dispersion aid the effects of unsteady
flow on the dispersion coefficient. Simpson (1969) investigated the effects
of turbulent flow on the longitudinal dispersion coefficient, and Hoopes and
Harleman (1967a) showed the dispersion coefficient along streamlines to be the
same for both uniform and nonuniform flow at the same velocity.

The effects of molecular diffusion on the above Reynolds number type
relationships has been debated in the literature. Relationships such as Equa-
tions 15, 16, and 17 would appear to be invalid for all ranges of Reynolds
numbers. Biggar and Nielsen (1960) gave a very lucid account of the effects of
molecular diffusion on dispersion. They proved that molecular diffusion is
very important at small flow velocities, when the medium consists of a natural
soil skeleton instead of washed sands or glass beads, and for unsaturated flow.
They hypothesized that the presence of dead-end pores (a characteristic of the
soil) is highly important in determining the effects of molecular diffusion on
the total dispersion process. Coats and Smith (1964) also treated the dead-end
pore problem. Bear et. al. (1968, pp. 332-335) stated that the dispersion co-
efficient depends on the flow pattern (e.g. velocity), Peclet number (Vd/Dd),
and on some fundamental medium characteristics. A plot of DL/Dd Vs, Vd/Dd is
broken up into five regions and characteristics of each region are discussed
by Bear.

Adam (1966) used dimensional analysis and experimental results to determine
the effects of anisotropic porous media on the dispersion tensor. Adam argued
that experimental evidence indicating the dispersion coefficient is nonlinear

in the wvelocity (i.e., exponent of velocity is different than one) is incompatable
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with Equation 3 proposed by Scheidegger (1961) and Bear (196la). However,
List and Brooks (1967) analyzed numerous experimental results and were critical
of the velocity power law relationships.

From these various investigations the conclusion is reached that the dis-
persion coefficient is indeed a tensor of rank two; but an adequate relationship
has not been developed for describing the phenomenon over a large range of flow
parameters. Much more theoretical work is needed in this area.,

A study of dispersion using the concept of similitude has been done by
very few people. Raats and Scotter (1968) considered geometrically similar
media and sought the conditions for dynamic similarity. Bachmat (1967) investi-
gated the criteria for similitude of the dispersion phenomena in homogeneous and
isotropic porous media. Heller (1963) also presented a good discussion on
scaling of flows in porous mediums.

Few results from field experiments are available. Harpaz and Bear (1964)
presented results of laboratory and field tests on underground storage opera-
tions with a single recharging well and with two wells, one recharging and one
pumping. Lau et. al. (1957) performed some field tests to evaluate various
tracers, and found the chloride ion to be the best. Field oriented laboratory
experiments have been conducted by Hoopes and Harleman (1965, 1967b) on waste-
water recharge and by Rumer and Harleman (1963) on salt-water intrusion along
coastal aquifers. Esmail and Kimbler (1967) investigated the effects of gravity
segregation and dispersion on the problem of storing fresh water in saline

aquifers,

D, Numerical Solutions

Because of the difficulty in obtaining analytical solutions to groundwater
flow problems, many investigators are now using numerical solutions. Numerical
solutions of immiscible flow problems have met with more success than miscible
flow problems. Much work remains to be done on developing satisfactory numerical
techniques for the dispersion problem.

Many of the reservoir simulation techniques involving immiscible fluids
have been developed in the petroleum industry. Douglas, Peaceman, and Rachford
(1959) employed an alternating-direction-implicit procedure (ADTP) to solve a
two-dimensional, two-phase, incompressible flow model. Blair and Peaceman (1963)
extended this to include the effects of compressibility. Larkin (1964) used the
alternating-direction~explicit-procedure (ADEP). Quon et. al. (1965, 1966) also

used ADEP in a reservoir simulator. Coats and Terhune (1966) and Carter (1967)
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compared the ADIP and ADEP techniques. Bjordammen and Coats (1967) compared
alternating direction and successive overrelaxation techniques for the simulation
of two- and three-dimensional, two-phase flow reservoirs., Other reservoir
simulators have been described by Dougherty and Mitchell (1964), Fagin and
Stewart (1966), and Breitenbach, Thurnau, and van Poollen (1968a, b, and c).

Digital compufer simulators in the groundwater field have not been as
widely developed as in the petroleum industry. Bittinger et. al. (1967),

Tyson and Weber (1964}, and Chun, Weber, and Mido (1964) have presented informa-
tion on reservoir simulation in the groundwater industry. The above mentioned
works are just a few of the ones which have been developed in the last few years
on reservoir simulation using numerical analysis and digital computers.

The problem of miscible flow has not been treated as extensively numeri-
cally as the immiscible flow problem. Peaceman and Rachford (1962) presented
a centered-in-time and centered-in-distance equation combined with a "transfer
of overshoot" procedure which was demonstrated to work well in one dimension.
However, subsequent testing has shown that for multidimensional displacement
their method involved a numerical dispersion cof the same order of magnitude as
the physical dispersion.

Garder, Peaceman and Pozzi (1964) used the method of characteristics to
improve the numerical solution to the miscible flow problem, but did not con-
sider the dispersion ceoefficient as a tensor. Stone and Brian (1963) made a
thorough analysis of a numerical scheme to solve the one-dimensional dispersion
equation. They used three adjacent grids at two time levels, and assigned
arbitrary weighting coefficients to the convective and time terms. They then
proposed an iterative scheme with three cycles per time step to improve the
solution. No consideration was given to the effects of changes in viscosity or
density.

Hoopes and Harleman (1965) used an explicit finite difference scheme to
obtain a solution for the problem of radial flow from a well. By neglecting
lateral dispersion, they also obtained a solution to a two-well problem. The
size of the grid spacing and time increment were restricted for the explicit
scheme because of a stability criterion. This presented some problems because
of large amounts of required computer time.

Shamir and Harleman (1966) used a very ingenious concept in their numerical
technique. First they wrote the dispersion equation in terms of the stream
function and potential function (i.e., in terms of & and ¥ coordinates). They

noted that the velocity is everywhere tangential to the streamlines, and thus
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their equation was one dimensional in the convective term. They then used the
Stone and Brian (1963) numerical technique for one-dimensional flow and handled
the lateral dispersion with an ADIP technique. If the major axis of the dis-
persion tensor coincides with the velocity vector, then Shamir and Harleman's
technique will consider the dispersion coefficient as a temsor. However, their
scheme does not consider the effects of density or viscosity changes; nor does
it consider unsteady flow except in the few cases where the streamlines do not
change position with time.

Nelson (1965) described a computer program for predicting waste transport
in groundwater. The program generated permeability information and stream
functions using a potential map with a small amount of permeability information.

However, he considered a "piston type" flow and neglected dispersion entirely.

Summary -- In summary, the following results are important to the present
study:

(1) The dispersion coefficient is an anisotropic quantity and must be
treated as a second rank tensor.

(2) The dispersion coefficient is linearly related to the components of
velocity as given by Equation 5.

(3) The analytical solution to the longitudinal dispersion problem is
given by Equation 10.

(4) An approximate steady state solution to the longitudinal and lateral
dispersion problem is given by Equation 14.

(5) The longitudinal and lateral dispersion coefficients can be obtained
from the empirical relationships given by Equations 15, 16, and 17.

(6) Numerical solutions to the problem of miscible displacement in porous
media have proven to be difficult. The numerical techniques of Stone
and Brian (1963), Garder et. al. (1964), and Shamir and Harleman (1966)

appear to be the most successful,



CHAPTER III
MATHEMATICAL MODEL

An analysis of Jacob's single location well doublet involves two miscible
fluids: (1) fresh water and (2) saline water. These fluids have two different
densities and are separated by a transition zone. Dispersion is a predominate
characteristic of the simultaneous flow of two miscible fluids. The sclutiecn
of Jacob's single location well doublet requires the simultaneous solution of
a set of coupled equations: (1) the equation governing fluid flow and (2) the
equation governing the convective-dispersion transport of a tracer. We will

consider the tracer to be a conservative fluid (no adsorption or decay).

Fluid Flow Equation

A flow equation for the mixture of two miscible fluids is derived by
combining the conservation of mass equation for the mixture, Darcy's law, and
an equation of state describing the pressure-volume-temperature-concentration
relationship. The result is an equation involving two dependent variables,

fluid pressure and tracer concentration. Assuming radial symmetry, i.e.

Eégl = (O , the final equation in cylindrical coordinates is:

prk k

1 r @8 3ho .3 pz 3P 3
r 93r [ u ar s ar)] + 3z [ u 8z tog Bz)]
aP aC
- L gu 1
po ¢0 (B + CF) ot + a¢0 ot + pr (18)

where: Ar, Az = dimensions of volume element (L),
r, z = cylindrical coordinate svstem (L),
p = fluid density (ML‘3),
p_ = reference fluid density (ML_S),
k_, k = Permeability in r and z directions, respectively (Lz),
= fluid viscosity (FTL“Z),
fluid pressure (FL_Z),

= acceleration of gravity (LT_Z),

o 00 M OE N
Ik

= elevation of volume element above datum (L),
¢ = reference value of porosity (-},

fluid compressibility (LZF_l),

w Q
I

2 -1
C,., = formation compressibility factor (L°F 7},
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a = proportionality factor relating concentration and density (*),

C = mass concentration of tracer (ML_B),

p = density of produced or injected fluid (ML_B),

LT
H

rate of fluid production or injection (L3T_l),

t = time (T).

To obtain Equation 18, the following assumptions were made: (1) Darcy's
law is applicable, (2) single phase flow, (3) isothermal flow, (4) a linear
relationship between change in porosity and change in pressure, (5) size of
volume element does not vary with time, and (6) a linear relationship between
density, pressure, and concentration,

The flow of groundwater through an aquifer is used in this study, and
the validity of Darcy's law presents no serious obstacles, For problems in the
nonlinear flow regime, additional terms involving the gradient of pressure
raised to some power would be needed in Equation 18. Should a multiphase problem
be considered, then equations of the form of Equation 18 would need to be
developed for each phase and the saturation, S, would be different than one.
The assumption of isothermal flow eliminates having to consider the density in
Equation 18 as a function of temperature, and considering the size of the
volume element invariant with time permits the elimination of rdrd8dz from each
term in Equation 18. The use of a linear relationship between "change in
porosity" - "change in pressure" and density-pressure-concentration is discussed

below.

Dispersicon Equation

A convective-dispersion equation may be obtained by combining the conserva-
tion of mass equation for the tracer, Fick's law, and an equation of state. The

general dispersion equation is given by:

ac 1 .9 * 3¢ * 3¢ 3 * 3¢ ~ % 3¢
_— = = —— —_— —_— + — ___.+ —_—
ot T {Br [x Drr or T Prz Bz] 0z [x Dzr ar * Dzz Bz]}
3¢ dc
- - - - - 19
Vedr ~ V2 3z Cp Q (19)
* * * 3 . _ v + L
where: D , D , D " D = hydrodynamic dispersion coefficient which is a
rr rz z zz second rank tensor (L2T“ ),
V_, V_ = fluid seepage velocity in rand z directions,
T z X -1
respectively, (LT™1),
C = concentratjon of tracer in produced or injection

P fluid L73), and

all other terms are as previously described.



—16-

Assumptions necessary to obtain Equation 19 are: (1) diffusion is
described by Fick's law, (2) the convective mixing called dispersion is propor-
tional to the concentration gradient, and (3) single-phase flow exists.

The use of Fick's law to describe diffusion means that a dilute solution
is being used. In addition, any diffusion due to temperature gradients or
velocity gradients is disregarded. Assuming that dispersion is proportional to

a concentration gradient is discussed by Bear (1979).

Auxiliary Equations

Because of the interrelationship among several of the parameters in
Equations 18 and 19, the following auxiliary equations are needed in the mathe-
matical model. The components of the seepage velocity for the fluid mixture may
be obtained from Darcy's law, and are given by:

k,

__ 4
Vi = !

3P 3h
5.t e ax )
i i

i=r, z (20)

The relationship between the porosity of the porous medium and the fluid

pressure is assumed to be,

¢ =0, [1+cCy, (P-P)] (21)

where: ¢O

P
o

original porosity (dimensionless), and

original fluid pressure (FL_Z).

The density of the fluid mixture is assumed to be a linear function of the fluid

pressure and tracer comncentration,

o=p +B (P-P)+a(C-C) (22)

original fluid density (ML—B), and

where:
Yo

c
0

3.

original tracer concentration (ML

Also, the viscosity is assumed to be a linear function of the concentration,

W= u + a(Cc - co) (23)

where: Ho original viscosity (FTL_Z), and

H

proportionality factor relating concentration and viscosity
(dimensionless),

The use of Equations 21, 22, and 23 are assumptions. Equation 21 has heen
used in the petroleum industry with success (Breitenbach et. al, 1968b}. Depend-

ing upon the fluids used, relationships other than those given by Equations 22
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and 23 may be desirable. In this study, salt water and fresh water are used as
the two fluids, and the linear relationships of Equations 22 and 23 are believed

to be adequate,.

Dispersion Coefficients

Equation 19 is developed in a general way so that any value may be used for
the four components of the dispersion tensor. However, the use of a functional
relationship is desirable which will give the values of all four components in a
systematic manner.,

Assuming an isotropic porous medium, the "tortuosity" tensor, Tij’ is

given by:

T,. = TS., {24)
1] 1j
where: T
S, .
ij

Thus, the four components of the diffusion tensor are:

tortuosity factor (dimensionless), and

"
il

kronecker delta.

D, T =D, T =D, T (25a)
and

D, T =D T =20 (25b)

Scheidegger (1961) gave the relatiomship,

=&, —h (26)
ij ijmn v

the dispersivity of the medium, a fourth rank temsor (L),

g
=x
]
R
D
m
n

ijmn
V , V_ = the components of velocity in the m and n directions,
m’ n s -
respectively (LT ), and
V = magnitude of the velocity (LTul).

For an isotropic media, Scheidegger shows that the dispersivities reduce

to only two terms, £ and €ys with

Camna ~ 1
faaBs - 2
EquB =5 (g7 - €5)
SuBBu =% (g7 - €2)

all other e's =0 (2N
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The longitudinal and transverse dispersion coefficients are related to the
dispersivities by:

Do=¢, V (28a)
and

DT = €2 \' (28b)

Expanding Equation 26, introducing Equations 27 and 28, and adding the diffusion
tensor given by Equation 25, the following functional relationship for the four

components of the hydrodynamic dispersion coefficient are obtained:

. vV v vV Vv
D =D r2+D 24D, T ,
TY L v T V2 d
. VvV Vv Vv v
D =0D +p 2EF+p. T ,
22 T V2 L VZ d
vV v
*_*_ r z
Drz"Dzr (DL DT) V2 * (29)

Other functional relationships for obtaining the components of the hydrodynamic
dispersion tensor are given by Bear et. al. (1968), Poreh (1965), and List
and Brooks (1967).



CHAPTER IV
DEVELOPMENT OF COMPUTER SIMULATOR
The computer simulation of the miscible displacement problem will be
developed by writing the finite difference form for each of the equations given

in Chapter III. The computer simulator is developed for a two-dimensional

vertical flow problem.

Finite Difference Form of Two-Dimensional Flow Equation

An implicit, centered-in-space finite difference scheme is used to approxi-
mate the time and space derivatives of Equation 18, The two-dimensional finite

difference equation has the form:

QI : Pti:ii,k o N, Pii:fi,k + p: N: Pi-llﬁl o, N, P?,Lllc—l
- [o:[~ N: + p; N; + p: N: +o N+ Pk (CFi ) + Bi,k)/At] P;,::i
,
o Tk (CFiik S %k (CEJk - C?,’b Pp Q
=T At Pixt At + (3hrhz) 4,k
- D% et + D% NaanT + D% Klgan! + (00) Ngan]] (30)

Here i and k indicate the grid row and grid column respectively, and t indicates
time level.

A cylindrical grid system is superimposed onto the region of interest, and
Equation 30 written for each grid. The dimensions of the grids, Ar, and Az, are
assumed to be variable over the entire region. The coefficients, pi’z and N:,z’
are held constant during each time step. Approximation of the original non-linear
equation is obtalned by adjusting the values of pi . and Ni after each computa-

+ + ? ?
tion. If the change in p; 2 and N; is small during each At, this procedure will
3

produce acceptable results. ,

The change in concentration with respect to time on the right hand side of
Equation 30 is calculated using the change in concentration from the previous
time step, Ato. If the change in concentration during each At is small, this
will also produce acceptable results. If necessary, an iteration between the
solution of the flow equation and the dispersion equation can improve this

approximation.
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If the rectangular grid system has m-rows and n-columns, then there will
be mn grids. Since Equation 30 contains unknown pressures from each of the four
adjacent grids plus an unknown pressure for the grid in question, the result
of writing Equation 30 for all grids is a set of mn simultaneous algebraic

equations., This set may be written in matrix form as:
[A] [P] = [rhs] (31)

where [A] i1s a mn by mn matrix containing the coefficients of pressure, [P] is
a mn column vector containing the unknown pressures, and [rhs] is a mn column

vector containing all the factors on the right hand side of Equation 30.

Finite Difference Form of Two-Dimensional Dispersicon Equation

The numerical solution of the multi-dimensional dispersion equation (Equa-
tion 19) has been a difficult problem. If the convective and production terms
are neglected, the equation is a second order partial differential equation of
parabolic type (heat flow equation) and is of the same form as Equation 18. A
dispersion equation of this type could be solved in the same way as the flow
equation given in Equations 30 and 31. This particular type of equation has
bheen successfully solved numerically many times.

Now suppose that the dispersion and production terms of Equation 14 are
neglected. Then the resulting equation is a first order partial differential
equation of hyperbolic type and has been treated numerically with some success
in one dimension. However, extension to two or more dimensions has proven diffi-
cult. Usually one of two things happens: (1) the numerical solution develops
oscillations or (2) it becomes smeared by "artificial dispersion” resulting from
the numerical process. Thus, when convection and dispersion are considered
simultaneously, this "artificial dispersion” may dominate the low physical
dispersion which characterizes miscible displacement.

In problems of miscible displacement, the amount of dispersion is usually
very small, and this makes the convective-dispersion equation almost of the
hyperbolic type. Garder et. al. {1964) recognized this and developed a
numerical technique for solving the convective-dispersion equation based on the
method of characteristics.

The basis of the method of characteristics is the introduction of a set of
moving points into each grid. Each of the moving points is assigned a concen-
tration, which varies with time. At each time interval, the moving points in

a two-dimensional system are relocated using a finite difference form given by,
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t+l t +1

t
Xri = Xr2 + AL Vrg (32)
and
x0T o xE 4 oae vt (33)
z4 zE z3

where t+1 is the new time level, t is the old time level, At is the time increment,
sz and Xzﬁ are the coordinates of the 2th moving point, while vri and Vzl are the
velocities of the #th moving point in the r- and z-directionms.

Each cell in the grid system is assigned a concentration equal to the average
of the concentrations of the moving points located inside the cell at time t+1.
The concentration of the cell and each moving point inside the cell is then
modified for dispersion by solving dc/dt = f(Xl, XZ’ X3, t) using an explicit,
centered-in-space finite difference equation. The two-dimensional form of

this equation is:

L el L, - - -y
+E, (szi+1 - Citi) - E,, (Czti B C;Ti-l)
+ (C§Ti+1 + CEI?,k+1 } Cztﬁ—l ) Czi?,k-l)
-6, (sz?,k+1 + CETﬁ+1 B Citi-l B Cif?’k'l)
+ G:r (C;:?,k+1 + Cz:?,k N Cif?,k+1 - Czt?,k)
" Cpr (CEI?,k + O ket SRR oY

Here i and k indicate grid rows and grid columns respectively, t+l is the new

time level and t+A is a time level somewhere between t and t+l.

Finite Difference Form of Velocity Equation

In the method of characteristics described above, a determination of the
seepage velocity is necessary for relocating the moving points during each time
step. This is accomplished with the following procedure. The flow equation
(Equation 18) is solved for the pressures at time level t+l1. These pressures
are assigned to the centers of each of the grids. Using these pressures and

Darcy's law, a value for the seepage velocity at the contact between two
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adjacent grids may be calculated. A seepage velocity is assigned to each moving
point within a grid based on the value of the seepage velocities at the inter-

faces. A linear interpolation is used in making this assignment.

Boundary Conditions

Appropriate boundary conditions due to geologic and hydrologic influences
must be used to obtain a solution. These conditions take the form of (a) no-flow
boundaries, (b) hydraulic boundaries at ground surfaces, (c¢) groundwater under-
flow boundaries, and (d) known tracer concentrations maintained at certain
boundaries.

No-flow boundaries are simulated by assigning a permeability of zero, a
longitudinal dispersion coefficient of zero, and a transverse dispersion
coefficient of zero to the grids located along the boundary. Hydraulic boundaries
at the ground surface are most commonly encountered in the form of a direct
connection between a groundwater aquifer and a river or lake, and are simulated
by programming a time-varying or constant water pressure in the appropriate
grids. Groundwater underflow boundaries occur when only a portion of an aquifer
is being studied. This boundary condition may be simulated in many ways, but
perhaps the simplest is to project the pressure gradient and concentration
gradient across the boundary and calculate the rate of underflow using these
projected gradients, Boundary conditions for known tracer concentrations must
be specified also., These conditions are handled in this simulation by the
moving points. As fluid leaves the model, moving points with their corresponding
concentration values are removed from the system. As fluid enters the model,
moving points with the appropriate boundary concentrations are added to the

system,

Description of the Computer Program

The computer simulation was programmed in Fortran IV using vector processing
and ran on the Cyber 205 Computer at Colorado State University.

The MAIN program accepts the input data and governs the sequence of opera-
tions to be performed. Subroutine INICON assigns a uniform distribution of
"moving" points to each grid along with the initial value of concentration
assigned to each point. Subroutine READIN reads in or assigns appropriate
values to all physical quantities such as permeability, porosity, viscosity, etc.
All of the initial values are then printed out using subroutine INIPRT and sub-

routine MATROP.
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Subroutine MATSOL sets up the coefficient matrix, [A], and the right hand
side column vector, [rhs], for solving the pressure equation. This subroutine,
as is presently written, may take care of two types of boundary conditions:

(1) a constant pressure boundary, and {2) a no-flow boundary. Other boundary
conditions besides these may easily be added to the program. MATSOL checks
the boundary conditions and makes the appropriate changes in [A] and [rhs].

To solve the set of equations set up by MATSOL, the solution of a set of
simultaneous equations is required. A general numerical solution should offer
several solution techniques such as Gauss elimination, successive overrelaxation
(SOR), or iterative alternating directiom implicit procedure (ADTPIT). For a
review of these techniques, the reader is referred to Breitenbach et. al. (1968b}.

Gauss elimination is by far the most reliable numerical method one can
choose for sclving the matrix given by Equation 31. Several codes for use on
vector processing machines are available; so we chose Gauss elimination as our
matrix solver,

Subroutine VELOCY calculates the velocities at each grid interface. This
routine also calculates the longitudinal and lateral dispersion coefficients
using a velocity power relationship. With values for the dispersion coefficients
and velocity components, Equation 29 is used to calculate the components of the
dispersion temnsor.

Subroutine MOVPT uses the velocities calculated in VELOCY to obtain the
velocity components of each moving point. Each point is then moved to a new
location by use of Equations 32 and 33. A section of this subroutine determines
which of the points has moved out of the model. These points are tagged and
introduced at an inflow boundary with the appropriate boundary concentration.

O0f all the subroutines developed for this simulator, MOVPT is probably the
least general, At the present time, minor changes in the program must be made
when boundary conditions are changed to allow for the proper removal and re-
introduction of the moving points. After each point has been moved to a new
location, the average concentration of each grid is calculated by arithmeti-
cally averaging the concentrations of the "moving points" located in the grid.

With the average concentrations of each grid determined, subroutine DISP
uses Equation 34 to determine the change in concentration due to dispersion.

The end result is the concentration of each grid at time t+At. To conclude a
time step, a mass balance of the system is calculated and appropriate changes in

density, viscosity, and porosity are made using Equations 21, 22, and 23. A test
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for print out is made and the program returns to subroutine MATSOL where the
pressure equation is resolved and the entire process repeated for the nest

time step.



CHAPTER V

RESULTS AND DISCUSSION

Because of the difficulty in obtaining theoretical criteria for the
validity of the numerical simulator, experience with actual problems is a
necessity. The numerical solution of the pressure equation has been done
successfully many times. However, the solution of the dispersion equation by

the "method of characteristics" (MOC) has not been so widely studied.

Verification

Unfortunately, there is little field data available from operating saline
aquifer systems, Therefore, verification of the model was done by numerical
checks and comparison with analytical solutions for simplified systems.

The model was numerically checked by performing a water and tracer mass balance

at the end of each time step., The ratio:
{Input—Output)

MEB = Change in Storage (33)

was unity to a minimum of seven significant digits for both the water mass and
tracer mass for all time steps. This indicates that all water mass and tracer
mass was conserved in the system.

Due to the coupling of the two transport mechanisms, it was undesirable
to completely isolate one from the other. However, tracer and water mass fluxes
were used which allowed this complicated flow system to approach simpler systems
for which analytical solutions are available,

For example, by making the tracer concentration in the injected water equal
to the tracer concentration of the groundwater, the system should respend as if
there were water mass flow only. Comparison of values of water pressure from a
representative plane of the simulation with these calculated from the popular
Theis (1935) solution is shown in Figure 1, This pressure profile was for a
confined aquifer with a transmissivity of 0.13 m2 s_1 and a storage coefficient
of 1.4 x 10"5 after water had been injected at 0.63 m3 s_1 for 5000 sec. The
model predicts a slightly lower water table than the theis solution due to the
constant head boundary at 104 m. as opposed to the infinite radius assumed in

the Theis (1935) solution.
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Figure 1. Comparison of computer model and Theis
solution for water level rise,
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A constant water and tracer mass injection rate and a negligible fluid and
media compressibility reduces the system to nearly the one solved analytically
by Hoopes and Harleman (1967a). Values of concentration from a representative
plane of the simulation are compared to the analytical solution of Hoopes and
Harleman in Figure 2. This concentration profile was for a 50 m thick aquifer
with confining layers on the top and bottom. Water with a concentration of
100 percent was injected at 0.063 m3 5—1 into the well for 7.0 x 104 sec. The
coarse grid spacing accounts for some of the disagreement at the concentration

front between 2.34 and 11.8 m. The models' concentration front leads slightly

due to some numerical dispersion in the model.

Verification of the Method of Characteristics

If the results of known analytical solutions can be reproduced, a great
deal of confidence in the numerical solution can be gained. An amalytical
solution to the one dimensional problem with a step input of the tracer as a
boundary condition is available. Garder et, al. (1964) showed that accurate
solutions of one-dimensional problems can be obtained by the MOC over a wide
range of values of the dispersion coefficient, including zero. They also showed
that the moving points do not need to be uniformly spaced, and that increasing
the number of moving points beyond two points per grid did not significantly
improve the accuracy of the solution. A run was made using the data of
Garder et. al. (1964), and excellent results were obtained.

An analysis of the slightly more difficult problem of two dimensional
dispersion is the next logical step. A rectangular region, OfX3§R3 and O§X2§22
is considered in which the flow is along the X3—axis with a steady, uniform

seepage velocity, V.. A fluid of concentration, Co’ is injected over a portion

3
of the input boundary (Ofngb), while the remaining portion of the boundary
(bixziﬁz) is injected with a fluid of =zero concentration. A schematic of this
particular problem is shown in the upper right hand corner of Figure 3.

When the input concentration at X_,=0 is maintained for a long time, the

concentration distribution will approaih a steady state, Harleman and Rumer
(1963) neglected the longitudinal dispersion term in the differential equation
and solved the steady state problem. Neglecting the lognitudinal dispersion is
valid because 32C/3X§ is very small at steady state. Their approximate solution

for the steady state case was:

%"' erfc [—F——] (36)
)
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The numerical solution of this problem using the MOC was compared with the
solution given by Equation 36. Data for this run are: 25 x 20 grids on
0<X e = 0.001 cm2/sec,
= 0.2 cm, b=2.2 cm, and At = 2.0 sec.

3 = 0.10 cm/sec, DL = 0.01 cmz/sec, D
= 0,4 cm, AX

3§10 cm and 0<X,<4 cm, V

points per grid = 4, AX3 9
As was domne for the one dimensional problem, the computer program bypassed the
solutions of the pressure equation and velocity equation. Steady state condi-
tions were achieved at about 200 seconds, or after about 100 time steps. The
computer time required to solve the dispersion equation for this problem was
about 0.55 secs/time step. The step input of concentration was handled
numerically by letting C/CO = 1.0 for X2<b, C/CO = (0.5 for X2=b, and C/C0 = 0.0
for X2>b.

The numerical solution provided the transient concentration distribution,
but no check of its accuracy was made since Equation 36 is for steady state.
The numerical results at steady state (t=200 secs) are compared with the
approximate analytical solution (Equation 36) in Figure 3. The accuracy of the
results appear to be quite good except for the area close to X,=0. This should

3

be expected since the assumption of BZC/BX2 =0 in the analytical solution is

not valid in this area. Some of this disciepancy may also be the result of the
very steep concentration profile in the Xz—direction for the area close to X3=0.
Although not tried, smaller grid dimensions in the Xz—direction might improve
the results.

The MOC appears to be capable of solving problems of longitudinal and
lateral dispersion with as much ease as it did longitudinal dispersion aleone.

No problems with "overshoot" occurred and no numerical smearing was noticed.

Digpersion Along Equilibrium Salt-Water Wedge

In the above section, the numerical simulation of the dispersion equation
and the water flow equation were compared with known analytical solutions. How-
ever, the total simulator using both the dispersion equation and the flow equa-
tion have not been used. A problem which seems favorable to this type of
analysis is the salt-water intrusion problem. Rumer and Harleman (1963) used a
laboratory model of a two-dimensional confined aquifer to investigate convection
and dispersion along a salt-water wedge. Columbus (1963) used a Hele-Shaw model
to investigate sea—water intrusion in an unconfined model neglecting dispersion.
Because Rumer and Harleman's (1963) data contained information on the value of
the coefficients, a computer run was made using the data from one of their

laboratory rumns.



-31-

The equilibrium salt-water wedge, when subjected to the steady flow of
fresh water to the ocean, will develop a transition zone. Using Darcy's law
and the Dupuit-Forchheimer approximation, the specific discharge of fresh water

per unit width of ocean front, g, can be written as

~ dh*
7Ky (37)

in which K = hydraulic conductivity, y is the distance between the top of the
aquifer and the wedge interface, and h* is the piezometric head (Figure 4).
The medium is assumed to be homogeneocus, isotropic, and no mixing occcurs at
the interface.

The condition of equal pressures in the salt-water and the fresh water at

each point along the interface yields

y=h -k (38)

where p_ and ps are the densities of fresh and salt-water, respectively, and

f
Ap = ps - Pge Substituting Equation 38 into Equation 37, integrating and
solving for h , Rumer and Harleman (1963) found an equation for the interface of

the following form:

o 2

_ 23 0.741 § 19
YT o wm, 1t &aers, (39

Although the static interface between fresh and salt-water will be subjected
to dispersion, Rumer and Harleman (1963) showed that the position of the mean
isoclor (C=0.5) is adequately predicted by Equation 39.

Rumer and Harleman (1963) gave the following information for their Run
No, N-2: §=0.0733 cmz/sec, Ap/pf=0.006, K=0.835 cm/sec, porous medium = plastic
spheres, and median grain diameter = 0.965 mm. A computer run was made using
Rumer and Harleman's information, plus some additional data required by the
numerical simulator. The data used in the computer run are: AX1=6.0 cm,

AX,=6.0 cm, At=500 sec, k=9.885 x 10 %m?, =0.39, o _=1.000, p =1.006, 40=0.006,

u=.0116 poise, fluid compressibility = 0.0, rock compiessibility = 0.0, 1=0.0,
0=0.006, grid dimensions = 12 x 27, depth of aquifer = 60 cm, length of aquifer =
156 cm, £=33 cm, §=0.0736 cmzlsec, moving points per grid = 2, and the accelera-
tion of gravity = 980 cm/secz. In addition to these data, the dispersion

coefficients were assumed to be given by:
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Figure 4. Equilibrium wedge in a confined aquifer.
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D.p v d p 1.2
L - 0.66 (—29 (40)
H u
and
Dop Vd..po 0.7
Lu— = 0.036 (—-%9—_) (41)

The reason for using Equations 40 and 41 is that Harleman and Rumer (1963)
determined these relationships for the same medium (plastic spheres) used by
Rumer and Harleman (1963) in their study of sea water intrusiom.

The computer run was made for 60 time steps or about 8.33 hours. Whether
this was long enough for the wedge to reach equilibrium is unknown. The con-
centrations were not changing very rapidly, and the toe of the wedge was moving
very slowly. Therefore, the wedge was assumed to be in equilibrium. The
computer time required for sclving both the flow equation and dispersion equation
for this 12 x 27 grid network was about 3.4 sec per time step.

A comparison of the fresh water head calculated numerically and by Equation
39 is shown in Figure 5. The comparison shows that the numerical results and
those by Equation 39 are very close except for the region close to the ocean
front. This would be the region affected most by the use of the Dupuit-
Forchheimer assumptions.

Figure 6 shows a comparison of the mean concentration line (C/CO=O.50)
calculated numerically and the interface location obtained from Equation 39.
These results are good except in the vicinity of the wedge toe. Several factors
may be contributing to this error. First, the numerical results may not be
completely at a steady state. Another factor which proved a limitation on this
problem is the extremely steep concentration profiles. In fact, the profile is
so steep that the grid concentrations obtained from the computer were generally
either C/CO=1.0 or C/CO=O.O. Very few grids had a value for C/C0 between these
two extremes. Thus, a large amount of interpolation was required to determine
the line C/CO=O.5. To alleviate this problem, smaller spatial dimensions are
needed. Last, it must be remembered that Equation 39 is only an approximation

itself.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

A two-dimensional radial flow model for a mixture of miscible fluids
(fresh water and salt-water) was derived. Also, a two-dimensional radial convec-
tive-dispersion equation describing the movement of a tracer miscible with
groundwater was derived. Finite difference forms of these two egquations were
developed.

The model was verified for a radial flow preoblem in which salt-water is
injected into a fresh water zone. The model was then built to simulate Jacob's
single location well dcublet for controlling salt-water intrusion. The method
appears to be promising, particularly in aquifers with clay lenses. The model
was developed for running on a vector processing computer such as the Cyber 205
or Cray. Copies of the model are available upon request.

While an evaluation of design parameters for the single location well
doublet was a second goal of this research, funding for the project was ter—
minated after one year, and design parameters have not been evaluated. Through
a grant from the CDC Corporation, Cyber 205 computer time has been made available
to us and we will complete the evaluation of design parameters for the single

location well doublet.
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