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INTRODUCTION 

Environmental disturbances in aquatic systems alter phytoplankton community structure, 

diversity and biomass (Hutchinson, 1961). For example, laboratory experiments and field studies 

have shown that episodic flushing and nutrient loading can result in enhanced phytoplankton 

species diversity (Padisak, 1993; Sommer, 1995; Hambright and Zohary, 2000; Buyukates and 

Roelke, 2002; Lovejoy et al., 2002). Competitive abilities of phytoplankton species vary as a 

function of the physicochemical environment. It follows that, high species diversity can then be 

maintained in systems where conditions fluctuate, thereby preventing competitive exclusion. 

Fluctuating conditions can also affect phytoplankton biomass in systems where phytoplankton 

and zooplankton interactions become decoupled, i.e., systems where phytoplankton response 

times are much less than that for zooplankton (Sommer et al., 1986; Reynolds, 1984; Lehman, 

1988).  

Because disturbances influence the structure of the phytoplankton community, the 

zooplankton community is also affected (Sommer et al., 1986; Steiner, 2001; Buyukates and 

Roelke, 2002). For example, succession from less-edible, slower growing, k-selected 

phytoplankton species to more edible, rapidly growing, r-selected species may occur following a 

favorable disturbance, and this may stimulate secondary productivity (Sommer, 1981; Reynolds, 

1984; Sommer et al., 1986). Zooplankton population shifts might also occur, e.g., increased 

productivity of small, rapidly growing phytoplankton may result in enhanced performance of 

zooplankton of small body-size with short generation times (Sommer et al., 1986; Reynolds, 

1984). Additionally, high phytoplankton species diversity may favor zooplankton forms that 

have adopted preferential grazing strategies (Reynolds, 1984; Reynolds, 1989). 

Disturbances might affect zooplankton in another way, i.e., through enhanced food-

quality.  For example, under conditions of pulsed flushing and nutrient loading some 

phytoplankton species uptake and store nutrients at a rate greater than their reproductive rate 

(Ketchum, 1939; Droop, 1968; Droop, 1983; Sommer, 1989; Pinckney et al., 1999; Worm and 

Sommer, 2000). Higher cell-quotas for nutrients that limit zooplankton growth may result in 

enhanced secondary productivity (Sterner and Hessen, 1994; Hessen and Bjerkeng, 1997; Roelke 

et al., 1999; Roelke 2000). Conversely, low frequency and magnitude of inflows may lead the 

system toward steady-state conditions, where cell quotas might approach critical levels.  Under 

these conditions, previously suitable prey might become unsuitable because of the nutritional 
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mismatch between predator and prey.  In this scenario, classical Lotka-Volterra predator-prey 

theory, where predator abundance increases with increasing food abundance, would fail to 

describe interactions between zooplankton and phytoplankton (Lotka, 1932). In other words, 

regardless of high food quantity, poor food quality would result in decreased performance of 

some zooplankton populations (Sommer, 1992; Roelke, 2000; Urabe et al., 2002). 

The structure of the zooplankton community might enhance or mask the effects of 

disturbances on phytoplankton community structure and food quality.  For example, a well-

established population of preferential grazers may exert strong top-down control on some 

phytoplankton populations, which would have otherwise proliferated following a disturbance 

(MacKay and Elser, 1998; Saunders et al., 2000).  Similarly, non-selective grazers might exert a 

controlling top-down force on accumulated biomass.  This would result in a continual recycling 

of nutrients to inorganic pools, thereby preventing phytoplankton cell quotas from declining to 

levels unsuitable for some grazers (Sterner and Hessen, 1994; Gulati and DeMott, 1997).  

In a previous numerical modeling study, Roelke (2000) indicated that pulsed flushing and 

nutrient loading events would result in greater phytoplankton species diversity and greater 

secondary productivity. In order to prove this concept, we conducted experiments of a flow-

through design, and rotifers and ciliates numerically dominated the zooplankton.  Synchronous 

with these experiments, and using the same natural assemblages, we conducted experiments 

using semi-continuous design.  In these experiments turbulence was less, and typically copepods 

were more prevalent and rotifers were much less abundant.  Here we compare succession 

patterns between the two types of experiments and evaluate how the differing zooplankton 

community structure influenced the role of pulsed inflows on phytoplankton species diversity 

and secondary productivity. 

 

MATERIALS AND METHODS 

Three semi-continuous and flow-through design experiments were performed on March 

15, June 7 and September 8, 2001 to test the influence of pulsed inflows of varying frequency on 

phytoplankton and zooplankton population size, as well as phytoplankton diversity. Here, “semi-

continuous” refers to experiments conducted in flasks where the volume was held constant. 

Natural plankton assemblages were collected from surface waters in 20 L Nalgene 

carboys from the Rincon Delta, Texas (27°52' N; 97°31' W). The samples were transported to the 
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laboratory located in College Station, Texas. This process took ~4 h. During this time samples 

were kept shaded and cool. At the laboratory, an aliquot of the water was filtered through 47 mm 

Whatman GF/F glass fiber filters. The aliquot was then autoclaved at 121ºC and 15 PSI for 30 

min, then left to cool. Solid standards were then dissolved into the aliquot to prepare media 

following a f/2 recipe (Guillard and Ryther, 1962), except for nitrogen and phosphorus, which 

were set according to previous studies (Roelke et al., 1997; Roelke, 2000; discussed more 

below). This process took ~2 h. To avoid bias from large zooplankton (Sommer, 1985), a 200 

µm mesh-size plankton net was used to pre-filter the remaining water, which was then used as an 

inoculum for the batch experiments. Each experiment was started ~6 h after water was collected 

from the delta. 

Each of the three experiments was comprised of two treatments, with each treatment 

performed in triplicate. The treatments were 1-day and 3-day pulsed inflows. In our analyses 

semi-continuous design, we assumed that volume displacement occurring daily was analogous to 

continuous flow. Chamber volumes were constant, so plankton were subjected to flushing losses 

as a function of the inflow. The incubators used in the experiments allowed control of 

temperature, irradiance and photoperiod (see Buyukates, 2003). The degree of flushing and 

nutrient loading (for nitrogen and phosphorus only) was chosen according to earlier studies 

(Roelke et al., 1997; Roelke 2000). This scheme replicated likely conditions in a target tidal 

creek where freshwater flow was replaced with the discharge from a nearby sewage treatment 

plant in the Rincon Delta.  

Temperature was held constant at 20°C for the batch experiments, which was the average 

seasonal temperature in the delta. Based on photoperiod range of the delta a 12-h L/D cycle was 

selected. Cool white fluorescent bulbs were used as a light source and irradiance was 200 µEm-

2s-1. This value was in the range of typical light saturated photosynthesis rates of many 

phytoplankton (Kirk, 1994).  

While the two experiment designs were very similar in regards to their physicochemical 

environment, a major difference was the level of turbulence. In the flow-through design, 

turbulence was controlled using an aerator powered through a time-delay relay (5 seconds on / 

40 seconds off). In the semi-continuous design, chambers were gently swirled twice each day. 

Consequently, turbulence was greater in the fflow-through experiments. 
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Periphyton growth on the sides of the incubators was avoided in both experimental 

designs. In the flow-through design experiments, horizontal surfaces, where periphyton growth 

was a problem in preliminary studies, were covered with aluminum foil, thereby inhibiting 

growth. The gentle swirling of the semi-continuous design experiments inhibits periphyton 

growth as well. In all the experiments reported below, periphyton did not accumulate in any of 

the chambers. Therefore, shading or nutrient uptake by periphyton was minimal. 

The water used for the inoculum was drawn from the same well-mixed carboy that 

contained the natural plankton assemblage in each experiment. Thus, initial phytoplankton and 

zooplankton community structures were assumed to be very similar in each of the treatments in a 

given experiment.  

Samples for microscopic analysis were collected at three-day intervals and preserved 

immediately with 5% glutaraldehyde, v/v. Plankton identification and counts were conducted 

using an inverted light microscope by the Utermöhl method (1958). Phytoplankton was 

identified to the taxonomic level of genus (Prescott, 1978). Zooplankton was categorized into 

copepods (adult, nauplii), rotifers, and ciliates.  Phytoplankton cell volumes were estimated by 

measuring cell dimensions and using common geometric shapes (Wetzel and Likens, 1991). 

Shannon-Weaver index was used to estimate species diversity (Shannon, 1949),  

′ H = pi log2 pi( )
i=1

n

∑   

where pi = biomass of species i / total biomass, and n = number of species at a specific 

time. The biovolume for each of the size classes (<20, 20-100, 100-200, >200 µm) were 

estimated by summation of the population biovolume of algal species whose maximal linear 

dimensions fell within the classes (Havens 1991a).  

Differences between mode of inflow among the three experiments conducted on March, 

June and September were determined by integrating the variables, i.e., bulk phytoplankton and 

zooplankton taxonomic categories, over the duration of each experiment, then applying a two-

factor repeated measures ANOVA (SPSS Inc., 1994).  These analyses tested for significant 

differences between the inflow treatments, i.e., continuous and pulsed inflow, time of year, and 

the interaction between the mode of inflow and time of year.  Statistically significant differences 

among treatments were assessed at the 5 % level of confidence.  
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RESULTS 

Treatments receiving 3-day pulses showed greater accumulation of adult copepod and 

nauplii populations in all experiments (Figs. 1, 2, 3, Table 1 and 2) and reduced accumulation of 

phytoplankton biovolume in all experiments of semi-continuous design and March and June 

experiments of the flow-through design (Figs. 4, 5 and Table 1 and 2). 

 

Zooplankton abundance in 1-day and 3-day pulse treatments  

Zooplankton community structure was different for each of the experiments.  

Numerically, adult copepods and nauplii dominated the macro-zooplankton in the March and 

June experiments (Figs. 1, 2) while rotifers were abundant in the September experiment (Fig. 3). 

Despite the varying zooplankton community structures, similar responses to the 

treatments were observed. Adult copepod and nauplii densities were significantly greater in 3-

day pulsed treatments in all experiments (Table 1). Rotifer densities did not differ among 

treatments in the March and June experiments, but did show significantly greater densities in the 

September experiment (Table 1). Protozoa abundance showed no differential response to 

variable inflow regime in any of the experiments (Table 1). 

Zooplankton abundance and structure in continuous vs. pulsed treatments 

Despite differences in zooplankton community structure for each of the experiments, 

rotifers dominated the macro-zooplankton in flow-through design in all experiments (Figs. 1, 2, 

3). In all experiments similar responses to the treatments were observed. Adult copepod and 

rotifer biovolume were significantly greater in pulsed flow treatments in all experiments (Table 

2). Nauplii and protozoa did show significantly greater densities in the March and June 

experiments but did not differ among treatments in the September experiment (Table 2).  

 

Phytoplankton biovolume in 1-day and 3-day pulse treatments  

Phytoplankton community structure also varied between experiments (Fig. 6). Initial 

phytoplankton community was comprised of diatoms, green algae, cyanobacteria, dinoflagellates 

and euglena in March and June while diatoms, green algae, cyanobacteria and cryptomonads 

dominated in September. Although cryptomonads were existent in September their contribution 

to the total phytoplankton biovolume was small. Some genera were found in all three 

experiments, others were only found in the third experiment. For example, Anabaena sep., 
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Peridinium sp., other dinoflagellate species, Euglena sp., Coscinodiscus sp., Skeletonema sp., 

and Odontella sp. were present only in March and June. Cryptomonad sp., Chlamydomonas sp. 

and small centric diatoms were present only in September.  

As with the zooplankton, similar responses to the treatments were observed in the 

phytoplankton, despite differences in community structures between experiments. The 1-day 

pulsed treatments showed higher total phytoplankton biovolume (~2 fold) in all experiments 

compared to 3-day pulsed treatments (Fig. 4). But at the 5% level, this trend was not significant 

in the June experiment (Table 1). 

Closer examination of each experiment showed that diatoms, Nitzschia closterium and 

Entomoneis sp., and coccoid forms of green algae dominated the phytoplankton in March, and 

both showed significantly greater accumulation of biomass in the 1-day pulsed treatments. 

Diatoms, N. closterium and Entomoneis sp., and dinoflagellates, Peridinium sp., dominated in 

June, but only dinoflagellates showed significantly greater accumulation of biomass in the 1-day 

pulsed treatments. And finally, diatoms, Entomoneis sp. and Chaetoceros sp., dominated the 

third experiment. In March and June there were not significant size differences between diatom 

species. In September small sized phytoplankton dominated the assemblage.  

In all experiments, 1-day pulses resulted in decreased species diversity relative to 3-day 

pulses (Fig. 7). Abrupt dips in diversity during the March and June experiments coincided with 

population shifts.  

 

Phytoplankton biovolume and composition in continuous vs. pulsed treatments 

Phytoplankton community composition varied between experiments. Despite differences in 

community structure similar responses were observed in the phytoplankton as with the 

zooplankton. The continuous flow treatments showed higher integrated total phytoplankton 

biovolume (~ 2 fold) in all experiments compared to pulsed treatments (Figs. 5). But at the 5 % 

level, this trend was not significant in the September experiment (Table 2). 

More detailed analysis of the phytoplankton community structure in each experiment (see 

Buyukates and Roelke, 2005) showed that coccoid and oblong forms of green algae and diatoms, 

Pleurosigma sp., Gyrosigma sp. and Navicula sp. dominated the phytoplankton in March, and 

both showed significantly greater accumulation of biomass in the continuous flow treatment. 

Dinoflagellates did not show significant differences and chrysophytes did only occur at the last 
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sampling time in pulsed flow treatments. Gloeocystis sp., coccoid and oblong forms of green 

algae, diatoms, Nitzschia sp. and Skeletonema sp., an unidentified dinoflagellate species 

dominated in June. Dinoflagellates and diatoms showed significantly greater accumulation in 

continuous flow treatments. Finally, various species of green algae and centric forms of diatoms, 

Nitzschia sp., and Navicula sp. dominated in September, but only diatoms showed significantly 

greater accumulation of biomass in the continuous flow treatments (Table 2). 

Phytoplankton species diversity showed similar trends in the March and June experiments 

(Fig. 7). During the March experiment, continuous flow resulted in a continued decrease in 

phytoplankton species diversity, while the chambers receiving pulsed flows showed a dramatic 

decrease after the first pulse, then an increase in phytoplankton species diversity (Fig. 7). This 

dramatic decrease in diversity at the first pulsed flow event coincided with a rapid increase in 

Navicula sp. and coccoid forms of green algae. Continued decrease of phytoplankton species 

diversity observed in the continuous flow chambers was due to the gradual accumulation of large 

diatoms, especially Pleurosigma sp. and Gyrosigma sp. In the June experiment, continuous flow 

resulted in decreased phytoplankton species diversity while higher diversity was observed in the 

pulsed flow chambers (Fig. 7).  An abrupt decrease in diversity in the fourth sampling time of 

pulsed flow coincided with the accumulation of Nitzschia species, especially Nitzschia 

closterium and Nitzschia longissima. Low diversity in the continuous flow chambers was due to 

the abundance of an unidentified dinoflagellate species.  In the September experiment as the 

diatom and green algal bloom ensued phytoplankton species diversity decreased in both 

treatments (Fig. 7). Accumulation of phytoplankton biovolume in the September experiment 

varied from the first two experiments (Fig. 5). In both treatments of the third experiment diatoms 

and green algae dominated the phytoplankton, and accumulated in biovolume to a level that was 

an order of magnitude greater than the previous two experiments.  

Except for the continuous flow treatment in the September experiment, variability within 

treatments was low. In this experiment, however, the magnitude and the timing of the maximum 

biovolume, and the phytoplankton composition at the genus level differed sp., Navicula sp., 

Characium sp. and Ankistrodesmus sp. were the prevalent genera. In the second chamber 

phytoplankton structure was comprised of a combination of centric diatoms, Nitzschia sp., 

Navicula sp., Characium sp., Entomoneis sp., Tetraedron sp., Gloeocystis sp. and Franceia 
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droescheri. In the third chamber Nitzschia sp., Entomoneis sp. and Franceia droescheri were the 

prevalent genera. 

 

Comparison of semi-continuous and flow-through design experiments 

Overall response, in terms of zooplankton abundance, phytoplankton biovolume and 

phytoplankton species diversity, was consistent between the semi-continuous experimental 

design and the flow-through incubation design. Phytoplankton and zooplankton community 

composition, however, varied between the experimental designs, despite the near-identical initial 

conditions.  For example, diatoms dominated in all treatments using the semi-continuous 

experimental design, whereas green algae, dinoflagellates and diatoms dominated in the March, 

June and September experiments of flow-through design, respectively (Figs. 8, 9, 10).  

In the March and June experiments, adult copepods and nauplii dominated the semi-

continuous design, and rotifers dominated the September experiment.  In the flow-through design 

experiments, rotifers were dominant in all experiments (Figs. 1, 2, 3). Finally, protozoa did not 

do well in experiments of semi-continuous design relative to the experiments of flow-through 

design (Figs. 8, 9, 10). 

Grazing pressure induced shifts in phytoplankton cell-size was observed in both types of 

designs (Figs. 8, 9, 10). However, the shift from smaller to larger cell-size  

was more prevalent in the semi-continuous experiments, in which the adult copepods  

among chambers within the continuous flow treatment. In the first chamber Nitzschia and nauplii 

were dominant, compared to flow-through experiments, where rotifers dominated. 

 

DISCUSSION 

The experiments showed that despite differences in zooplankton structure and 

phytoplankton community composition between the two experiment designs, trends in the model 

predictions by Roelke (2000) were supported. That is, secondary productivity and phytoplankton 

species diversity was higher under pulsed inflow and nutrient loading conditions. It may be that 

in both experimental designs, phytoplankton was of higher quality in the 3-day pulsed 

treatments, and this resulted in enhanced zooplankton growth. Another alternative explanation is 

that the increased diversity in 3-day pulsed treatments might have offered selective grazers a 

better environment, i.e., a broad range of phytoplankton to choose from. 
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In the March and June experiments of semi-continuous design and flow-through design, 

adult copepods and nauplii dominated the former, while rotifers dominated the latter. This result 

was likely due to the lower turbulence in the experiments of semi-continuous design, which 

might have favored copepod feeding and growth (Saiz and Alcaraz 1991; Alcaraz 1997; Petersen 

et al. 1998; Quintana et al. 1998). In addition, copepod adults can graze on rotifers, and also 

protozoa (Sterner 1989; Ingrid et al. 1996). It is likely that grazing by adult copepods contributed 

to the lower abundance of rotifers and protozoa in the March and June semi-continuous 

experiments.  

In the September experiment, both designs were dominated by rotifers. Water 

was collected for this experiment shortly after a heavy rain event in the watershed. Salinity was 

low and nutrient concentrations were high. Various species of rotifers, and small, fast growing, r-

selected phytoplankton dominated the plankton assemblage at this time. Previous studies showed 

that when food sources and physical conditions are favorable for rotifers, they could reproduce 

rapidly (Reynolds 1984; Gilbert 1985; Sterner 1989). In this way, rotifers can out-pace grazing 

pressure exerted by slower growing copepods, and come to numerically dominate the 

zooplankton community. Consequently, for the September semi-continuous design and flow-

through design experiments, grazer pressure as a function of zooplankton community structure, 

were similar. 

Because zooplankton structure varied between the March and June experiments of semi-

continuous design and flow-through design, the phytoplankton assemblages were subjected to 

different selective grazing pressure. For example, copepod adults and nauplii can graze on the 

same size and structure range of phytoplankton that are susceptible to rotifer grazing, but 

copepods are able to graze on larger phytoplankton species as well (Reynolds 1984; Sterner 

1989).  

Effects of differing grazing pressure between the two experiment designs for the March 

and June experiments were reflected in the phytoplankton succession trajectories. Although 

strong grazing pressure caused an increase in phytoplankton cell size in both types of 

experimental designs, shifts from smaller to larger cell-size was more prevalent in the semi-

continuous design, in which the adult copepods and nauplii were dominant, compared to flow-

through design, where rotifers dominated. This trend was strongest in the 3-day pulse treatments, 

where large diatoms were main survivors in the semi-continuous design (see Buyukates and 
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Roelke, 2005), and some combination of large diatoms, colonial green algae and dinoflagellates 

dominated the flow-through design. Even though zooplankton community structure was alike in 

both designs, the same phytoplankton cell-size shift observed in the March and June experiments 

was observed in the September experiment. Although rotifers dominated both semi-continuous 

and flow-through designs, the semi-continuous design had a more pronounced phytoplankton 

cell-size shift. Most likely, this was due to the presence of some copepods in the semi-continuous 

experiment, although not as much as the previous two semi-continuous experiments. These 

results are consistent with the hypothesis that phytoplankton community structure moves toward 

dominance of larger species under strong grazing pressure due to increased body size or biomass 

of zooplankton population (Carpenter and Kitchell 1984; Bergquist et al. 1985; Carpenter et al. 

1993). Again consistent with the model predictions of Roelke (2000), accumulation of grazer 

populations and phytoplankton species diversity was higher in the 3-day pulse treatments in both 

types of experiment designs. 

Higher phytoplankton species diversity in treatments receiving pulsed inflows might be a 

result of top-down control and fluctuating abiotic conditions. For example, selective feeding on 

the most abundant phytoplankton species would prevent exclusion of slower-growing species, 

thereby maintaining diversity (Sommer et al. 1986; Gismervik and Andersen 1997; Sommer and 

Stibor 2002). This process would exert greater influence on phytoplankton diversity with higher 

zooplankton populations. Similarly, fluctuating physicochemical conditions, which would have 

occurred in the pulsed inflow treatments, are known to constrain competitive exclusion and 

promote coexistence (Hutchinson 1961; Sommer et al. 1986; Sommer et al.1993).  

In summary, through comparison of experiments of semi-continuous and flow-through 

design, I showed that pulsed inflows supported greater accumulation of some grazer populations 

and higher phytoplankton species diversity, when zooplankton were dominated by rotifers or by 

copepods. The results of this study are consistent with previous model predictions (Roelke 

2000). Further experiments are needed to determine whether this relationship holds true when 

non-selective grazers dominate the zooplankton community structure.  
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Table 1. Zooplankton and phytoplankton biovolume accumulation in 1-day and 3-day flow 
treatments in March, June and September experiments. The table lists the zooplankton and 
phytoplankton groups and results of two-factor repeated measures ANOVA. Here, flow 
treatments (1-day vs. 3-day) are repeated measures and different experiment periods (March, 
June, September) are between–subjects measures that used variables of integrated zooplankton 
and phytoplankton population over the entire period of experiment. The mean difference is 
significant at the .05 level; n.s. = is not significant; BSEP = Between Subjects Experiment 
period; WSFT = Within Subjects Flow treatments; EPFT = Experiment per. x Flow treatment. 

 
Zooplankton groups Source SS DF MS F p 

BSEP 1.93E+17 2 9.66E+16 107.32 .000
WSFT 8.85E+16 1 8.85E+16 26108.92 .000

Copepodids 

  EPFT 4.63E+15 2 2.32E+15 683.33 .000
BSEP 6.26E+15 2 3.13E+15 263.09 .000
WSFT 3.31E+15 1 3.31E+15 1768.22 .000

Nauplii 

  EPFT 3.44E+14 2 1.72E+14 91.87 .000
BSEP 1.99E+17 2 9.97E+16 308.87 .000
WSFT 5.49E+15 1 5.49E+15 195.04 .000

Rotifer 

  EPFT 9.54E+15 2 4.77E+15 169.37 .000
BSEP 1.28E+17 2 6.41E+16 435479.79 .000
WSFT 8.54E+14 1 8.54E+14 3204056.70 .000

Protozoa 

  EPFT 1.79E+15 2 8.96E+14 3360922.00 .000
 

Phytoplankton groups Source SS DF MS    F     p 
BSEP 3.27E+18 2 5.45E+17 169.23 .000
WSFT 4.27E+17 1 4.27E+17 .58 .474 n.s.

Cyanobacteria 

  EPFT 4.17E+18 2 2.09E+18 2.58 .135 n.s.
BSEP 1.27E+21 2 6.33E+20 294.49 .000
WSFT 1.84E+20 1 1.84E+20 71.24 .000

Green algae 

  EPFT 7.14E+19 2 3.57E+19 13.82 .006
BSEP 3.52E+23 2 1.76E+23 161.81 .000
WSFT 3.37E+22 1 3.37E+22 106.27 .000

Diatoms 

  EPFT 3.82E+22 2 1.91E+22 60.20 .000
BSEP 9.98E+20 2 4.99E+20 724.76 .000
WSFT 3.65E+20 1 3.65E+20 269.11 .000

Dinoflagellates 

  EPFT 6.72E+20 2 3.36E+20 248.02 .000
BSEP 3.95E+21 2 1.98E+23 194.22 .000
WSFT 4.65E+22 1 4.65E+22 159.48 .000

Total 

  EPFT 3.24E+22 2 1.62E+22 55.59 .000
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Table 2. Zooplankton and phytoplankton biovolume accumulation in continuous and pulsed flow 
treatments in March, June and September experiments. The table lists the dominant zooplankton 
and phytoplankton groups and results of two-factor repeated measures ANOVA. Here, flow 
treatments (continuous vs. pulsed) are repeated measures and different experiment periods 
(March, June, September) are between–subjects measures that used variables of integrated 
zooplankton and phytoplankton population over the entire period of experiment. The mean 
difference is significant at the .05 level; n.s. = is not significant; BSEP = Between Subjects 
Experiment period; WSFT = Within Subjects Flow treatments; EPFT = Experiment per. x Flow 
treatment.   

 
Zooplankton groups Source SS DF MS F p 

BSEP 5.76E+15 2 2.88E+15 2.84 .136 n.s.
WSFT 1.74E+14 1 1.74E+14 8.36 .028

Copepodids 

  EPFT 6.14E+15 2 3.07E+15 147.22 .000
BSEP 1.72E+15 2 8.60E+14 12.07 .008
WSFT 1.07E+15 1 1.07E+15 30.18 .002

Nauplii 

  EPFT 8.66E+14 2 4.33E+14 12.27 .008
BSEP 5.77E+17 2 2.89E+17 687.92 .000
WSFT 1.47E+17 1 1.47E+17 5019.94 .000

Rotifer 

  EPFT 4.26E+16 2 2.13E+16 728.40 .000
BSEP 1.09E+19 2 5.46E+18 6193224.00 .000
WSFT 1.00E+18 1 1.00E+18 8699585.00 .000

Protozoa 

  EPFT 5.91E+18 2 2.96E+18 25697295.00 .000
 

Phytoplankton groups Source SS DF MS F p 
BSEP 2.80E+20 2 1.40E+20 309.37 .000
WSFT 7.30E+18 1 7.30E+18 18.85 .005

Cyanobacteria 

  EPFT 1.88E+19 2 9.40E+18 24.28 .001
BSEP 9.99E+23 2 3.10E+22 16.11 .004
WSFT 2.28E+22 1 2.28E+22 .76 .417 n.s.

Green algae 

  EPFT 3.68E+22 2 1.84E+22 .61 .573 n.s
BSEP 2.85E+24 2 1.43E+24 140.01 .000
WSFT 1.15E+23 1 1.15E+23 15.50 .008

Diatoms 

  EPFT 2.81E+23 2 1.40E+23 18.96 .003
BSEP 2.66E+22 2 2.12E+19 627.49 .000
WSFT 9.70E+21 1 9.70E+21 120.66 .000

Dinoflagellates 

  EPFT 1.91E+22 2 9.57E+21 119.01 .000
BSEP 6.87E+24 2 3.43E+24 51.51 .000
WSFT 8.11E+22 1 8.11E+22 1.35 .289 n.s.

Total 

  EPFT 8.82E+22 2 4.41E+22 .73 .518 n.s.
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 Figure 1. Accumulation of adult copepods, nauplii, rotifer and protozoa in semi-continuous and 
flow-through design experiments conducted in March. Symbols and error bars indicate the mean 
± 1 SD from triplicate chambers. In both experimental designs, zooplankton performed better in 
the three incubators receiving 3-day pulse inflows. 
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Figure 2. Accumulation of adult copepods, nauplii, rotifer and protozoa in semi-continuous 
and flow-through design experiments conducted in June. Symbols and error bars indicate the 
mean ± 1 SD from triplicate chambers. Zooplankton performed beter in the three incubators 
receiving 3-day pulse inflows compared to the three incubators receiving 1-day inflows. 
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Figure 3. Accumulation of adult copepods, nauplii, rotifer and protozoa in semi-continuous 
and flow-through design experiments conducted in September. Symbols and error bars 
indicate the mean ± 1 SD from triplicate chambers. Except for the protozoa in the flow-
through design, zooplankton performed better in the three incubators receiving 3-day pulse 
inflows. 
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Figure 4. Accumulation of phytoplankton biovolume in the semi-continuous design 
experiments conducted in March, June and September. Symbols and error bars indicate the 
mean ± 1 SD from triplicate chambers. Total biovolume was lower in the three flasks 
receiving 3-day pulse inflows compared to the three flasks receiving 1-day pulse inflows. 
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Figure 5. Accumulation of phytoplankton biovolume in the flow-through design 
experiments conducted in March, June and September. Symbols and error bars indicate 
the mean ± 1 SD from triplicate chambers. Except for the September experiment total 
biovolume was lower in the three incubators receiving 3-day pulse inflows compared to 
the three incubators receiving 1-day pulse inflows. 
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Figure 6. Initial phytoplankton community composition placed into generic taxonomic groups 
of diatoms, cyanobacteria, green algae, dinoflagellates and Euglena in March, June and 
September samplings. Graph shows only the abundant groups in each month.      
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Figure 7. Phytoplankton species diversity in the semi-continuous and flow-through design  
experiments in March, June and September.  Symbols and error bars indicate the mean ± 1 SD 
for 1-day and 3-day pulse flow treatments on triplicate incubators. In most cases, 1-day pulses 
resulted in lower diversity when compared to 3-day pulses. 
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Figure 8. Comparison of zooplankton group structure and phytoplankton cell size 
structure between the semi-continuous and flow-through design experiments conducted 
in March. 
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Figure 9. Comparison of zooplankton group structure and phytoplankton cell size 
structure between the semi-continuous and flow-through design experiments 
conducted in June. 
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Figure 10. Comparison of zooplankton group structure and phytoplankton cell size 
structure between the semi-continuous and flow-through design experiments conducted in 
September. 
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