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ABSTRACT 
 

Microdisk Fabrication by Emulsion Evaporation. (May 2006) 
 

Susanna Wing Man Wong, B.S., University of California, San Diego 
 

Chair of Advisory Committee: Dr. Zhengdong Cheng 
 
 

 Colloidal suspensions of disk-like particles have been of interest in both colloidal 

and liquid crystal studies because they exhibit unique liquid crystalline phases different 

from those of rod-like molecules. Disk-like particles, such as asphaltenes in heavy oil 

industry, clay particles in agriculture, and red blood cells in biology, are of great interest 

in a variety of industries and scientific areas. However, to fabricate monodisperse 

microdisks, uniform in structure or composition with precise control of particle size and 

shape has not yet succeeded. In this thesis, we show an experimental strategy of using 

microfluidic technique to fabricate homogeneous α-eicosene microemulsions with 

chloroform in an aqueous solution of sodium dedecyl sulfate (SDS).  The monodisperse 

chloroform emulsions, generated by the glass-based microfluidic devices, ensure the 

precise control on microdisk particle size and shape. A systematic investigation was 

performed to study the relation between the resulted microdisk size and the initial 

concentration of α-eicosene in chloroform before evaporation. The smectic liquid 

crystalline phase inside the wax particles controls the coin-like disk shape below the 

melting temperature of wax’s rotator phase. The kinetics of the disk formation is 

observed using a polarized light microscope. Dynamic light scattering is used to 

characterize the Brownian motion of the microdisks, and the rotational diffusion is 

estimated from the image sequences taken by the charge-coupled device (CCD) camera. 
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Effort has been put into collecting a large quantity of microdisks to investigate the 

discotic liquid crystalline phases, which can be readily probed by light scattering and 

microscope. In comparison, X-ray and neutron have to be used for the atomic liquid 

crystalline phase investigation.  
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CHAPTER I 
 

INTRODUCTION 
 

 
 
Liquid Crystals 
 
 Liquid crystals were first discovered in 1888 by the Austrian chemist Friedrich 

Reinitzer when he was conducting experiments on a cholesterol based substance. He 

discovered that the substance has two different melting points, and later on, he named this 

material as “liquid crystal” since it shares both properties of solid and liquid phase.

 Between liquid and solid phases, liquid crystals appear in different phases when 

temperature changes. Isotropic phase is the one that has the property closest to liquid 

phase. It has the highest number of symmetry and lowest ordering of molecules because 

the molecules are all randomly aligned into different directions. Figure 1.1 shows 

different phases of liquid crystals of rod like molecules. When temperature is lowered, 

kinetic energy of molecules in isotropic phase is reduced; molecules in isotropic phase 

orient themselves into a certain position to maximize entropy and change into nematic 

phase. Nematic phase has lower symmetry and higher degree of ordering of molecules 

than the isotropic phase. Molecules in the nematic phase are oriented on average along a 

particular direction, but they still have random translational motions.  

 

 

_______________________ 

This thesis follows the style of the AIChE Journal. 
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 As temperature is further decreased, molecules are changed into the smectic phase. 

The smectic phase has even lower symmetry and higher degree of ordering than the 

nematic phase. Molecules in the smectic phase are aligned into layers or planes. They 

have translational motions within a single layer, but not between layers. As temperature 

is further decreased, the smectic phase will be changed into the crystalline phase. 

Crystalline phase has the lowest symmetry and highest degree of ordering because 

molecules are regularly ordered in position and aligned in only one direction.  

 

  

 

 

 

Figure 1.1. Different phases of liquid crystals of rod-like molecules between liquid and 
solid phase. As temperature decreases, molecules change from isotropic, nematic, smectic, 
and finally to the crystalline phase.  
 
 
 
 

Isotropic Nematic Smectic Crystalline 

Decrease temperature 
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 Liquid crystals made of disk shaped molecules or particles are the least studied 

compared to others made of, for example, rod shaped molecules or particles. This thesis 

contributes to the study of discotic liquid crystals by producing uniform wax disks 

obtained from chloroform solution droplets.  

 Similarly to the rod shape molecules, disk shaped molecules can also orient 

themselves into discotic isotropic, discotic nematic, and discotic columnar phases. Figure 

1.2 shows different phases of discotic liquid crystals. Depending on the temperature, disk 

concentration, or pressure, discotic liquid crystals change from isotropic, to nematic, then 

to columnar phase. For example, by decreasing the temperature, columns in discotic 

columnar phase will orient themselves into hexagonal or some other rectangular shapes. 

Research has shown that different tilt angles of disk shaped molecules in columnar phase 

liquid crystals can form different shapes of columnar phase such as hexagonal, 

rectangular, oblique, rectangular face-centered, and tilted columns 1.  
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Discotic Isotropic Discotic Nematic Discotic Columnar 

Decrease temperature/ 
increase disk concentration  

 
 
Figure 1.2. Different phases of discotic liquid crystals of disk-like molecules. As 
temperature decreases or disk concentration increases, discotic liquid crystals change 
from isotropic, nematic, then to columnar phase.  
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Emulsions 
 
 Emulsion is a mixture of two immiscible liquids. They stay as two separate layers 

with a boundary between them. One liquid, the dispersed phase, will be dispersed to the 

other phase, the continuous phase. In our daily life, milk, mayonnaise, and butter are the 

examples of emulsions. For example, butter has a continuous lipid phase surrounds water 

droplets, so water-in-oil emulsions are formed. On the other hand, milk is an example of 

the oil-in-water emulsions.  

 Emulsions can be unstable because free energy is associated with the interface 

between the two phases. As more and more emulsions are formed, the interfacial area 

increases, therefore, more energy is required to keep the emulsions from coalescence. For 

example, by mixing oil and vinegar salad dressing, unstable emulsions will be formed. In 

addition, they will aggregate together and small droplets will combine to form larger size 

droplets if we do not shake it continuously. In order to prevent coalescence, surfactant or 

emulsifier can be used. For our system, sodium dodecyl sulfate (SDS) is used to serve as 

a surfactant to stabilize the interface between the two immiscible liquids. Moreover, 

detergent is another surfactant that will chemically interact with both oil and water, thus 

stabilizing the interface between oil and water droplets. Besides coalescence, creaming is 

another property of emulsions. Creaming is the migration of one of the liquids to the top 

of the emulsion under the influence of buoyancy or gravitational force.  

 Emulsions are extensively studied by physicists, chemists, and chemical engineers 

for their novel phase behavior and interfacial properties. Besides emulsions are useful in 

food industries, they can also be utilized as a template, which is called emulsion template, 
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to produce porous rutile titanium dioxide 2. Figure 1.3 demonstrates the monodisperse 

oil-in-water emulsion droplets that are stabilized by a surfactant and suspended in a 

second immiscible liquid, titania sol. It is because macroporous titania can undergoes 

phase transition to rutile phase by calcination without collapse of the pore structure. 

Monodispersity of emulsions is an important factor that people consider in colloidal 

science, because a wide size distribution will prevent the crystalline phases formation 3.  

 

 

 

 

Figure 1.3. Monodisperse oil-in-water emulsions formed an order arrangement 3. 
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Microfluidics 
 
 Microfluidics is a technology in which it handles and deals with small quantities 

of fluids. The advantages lies in low production cost per device and low power to operate. 

Also, it occupies small physical space and materials for performing experiments, so 

reagents and reactants can be used efficiently. Moreover, volume and flow rates can be 

controlled precisely, and it gives a fast response time.  

 Flow in microfluidic channels has been studied for years. Reynolds number (Re) 

can be applied to characterize the channel flow µνρ /Re l= , where  is the dimension of 

the capillary, 

l

ν  is the velocity of flow, ρ is the density of the fluid, and µ  is the 

viscosity of the fluid 4. For microfluidic channel flow, Reynolds number is always small, 

Re < ~2000, so that the flow can be considered as laminar.   

 In order to fabricate microfluidic devices, different kinds of materials have been 

utilized successfully in science fields, especially in chemistry and biotechnology. 

Polydimethylsiloxane (PDMS) is the one widely used today in microfluidics 5-7. PDMS is 

a material that is durable and chemically inert, non-toxic, non-flammable and optically 

transparent. It is intensively used also because it is inexpensive, flexible, and can be 

molded with high fidelity. Although it is commonly used, PDMS is extremely 

hydrophobic and has a strong tendency to adsorb other molecules onto the surface 8. 

Therefore, in our experiment glass microfluidic device has been fabricated and used 

successfully to avoid the hydrophobicity problem of PDMS, since α-eicosene involved in 
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our experiment is hydrophobic. Figure 1.4 demonstrates the fabrication of microfluidic 

device by using polydimethylsiloxane (PDMS) 9.  

 
 
 
 

 
 
Figure 1.4. Fabrication of microfluidic device by using polydimethylsiloxane (PDMS) 9.  
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CHAPTER II 
 

COLLOIDAL PARTICLE FORMATION VIA DROPLET EVAPORATION 
 
 
 

 Emulsion evaporation is used to generate the wax particles. By calculating the 

final number of wax particles generated during solvent evaporation, we observed that 

wax solution droplets are split into multiple small wax particles.   

Wax Contained Chloroform Emulsions in Water 

 Sodium dodecyl sulfate (SDS) [CH3-(CH2)11-OSO3
--Na+] is an amphiphilic 

molecule which consists of a hydrophilic polar head and a hydrophobic non-polar tail. At 

high concentrations of SDS, SDS monomers aggregate into structure called micelles. A 

micelle is thermodynamically stable aggregation, where the non-polar tails are 

sequestered inward to avoid exposure to water, and the polar heads are oriented outward 

in contact with aqueous solution. This configuration avoids the contact of the 

hydrophobic tail with water, and minimizes the energy. The micelles can be made of a 

mixture of surfactants, for instance SDS and butanol. The butanol is called a cosurfactant. 

Figure 2.1 illustrates the SDS monomer; and SDS monomers formed micelle. SDS is 

used to stabilize the interface between two immiscible liquids. In this experiment, the two 

immiscible solutions that we used are α-eicosene dissolved chloroform and diluted SDS 

in deionized water.  

 Different concentrations of α-eicosene, 5 wt%, 2wt%, 500ppm, were prepared by 

dissolving each of them in chloroform. SDS was diluted with deionized water into a 

concentration of 20mM. These two solutions were prepared at our lab ambient 
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temperature, 220C. Other research conducted for emulsification that melted α-eicosene at 

800C in a concentrated SDS solution 10. 

 

 

 

 

      

       (a)            (b) 

 

Figure 2.1. Emulsification with surfactants. (a) Sodium dodecyl sulfate (SDS) monomer 
consists of a hydrophilic polar head and a hydrophobic non-polar tail. (b) SDS micelle 
formed by hydrophilic polar heads orienting outward in contact with water, and 
hydrophobic non-polar tails sequestering inward to avoid exposure to water.  
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Glass Microfluidic Device 

 We constructed our own microfluidic device which is made by glass, figure 2.2 

shows the structure of the device. It consists of two glass capillaries, one is concentric 

and the other is square in shape, that allows SDS solution to flow from the outside of the 

inner capillary, and wax dissolved chloroform flow from the center position of the 

microfluidic device. Figures 2.3 and 2.4 sketch the microfluidic device’s configurations 

and flow directions of the two solutions.  

 

 

 

 

 
 
 
Figure 2.2. The glass microfluidic device was used in our experiments.  
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Figure 2.3. Cross-section of the microfluidic device. Red arrow shows the in-flow of the 
α-eicosene chloroform solution. Yellow arrows show in-flow of the SDS solution. 
Orange circles represent the chloroform emulsions produced. They are then collected at 
the exit end of the inner capillary.  
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Figure 2.4. Cross-section of the capillaries. Outer 1.0 mm ID square capillary surrounds 
the inner round capillary which has a 0.80 mm ID and 1.0 mm OD. Emulsions are 
produced and collected in the round capillary. The space between the outer square 
capillary and the inner round capillary allows the solutions’ laminar flow.  
 

 

 At the orifice of the inner capillary, uniform sized emulsions start to form when 

the flow of two solutions reach steady state. They are then collected at the end of the exit 

of the inner capillary and stored in a 20mM SDS solution. The SDS surfactants are used 

to help to stabilize the chloroform-water and wax-water interface.  

 This glass microfluidic device has several advantages. First, it can produce 

uniform size of droplets. Figure 2.5 shows the uniformity of the α-eicosene droplets that 

produced by this glass microfluidic device. Secondly, the size of the orifice and ratio of 

the flow rates of the two solutions can be manipulated, so that the size of the droplets can 
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also be controlled. Thirdly, this microfluidic device is three dimensional, it allows SDS 

solution to flow around the wax droplets and stabilize them against coalescence. 

Comparing to other microfluidic device, for example polydimethylsiloxane (PDMS) 

microfluidic device, it only works well for hydrophilic droplets in hydrophobic fluids. On 

the other hand, for our glass microfluidic device works well for both hydrophilic and 

hydrophobic droplets. 

 
 
 
 

 

Figure 2.5. Uniform α-eicosene droplets are produced by th
10 µm
 

e glass microfluidic device. 
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Droplets Evaporation  
  
 Before evaporation of chloroform, the droplets will stay at the bottom of the vial, 

since the density of chloroform (ρ = 1.498 g/cm3) is much heavier than that of the 

aqueous SDS solution and α-eicosene [CH2=CH-(CH2)17-CH3]. In order to let the 

droplets undergo a temporal change in composition, chloroform evaporation is needed 

and which may lead to the formation of concentration gradients inside the droplets 11. For 

evaporating quickly the chloroform out of the emulsions, surface evaporation has been 

chosen and carried.  

 Surface evaporation is performed on the glass surface at a temperature of 22oC 

which is our laboratory’s ambient temperature. After α-eicosene contained droplets are 

produced from the microfluidic device, they form a thin layer on top of a flat glass 

surface. Waiting until all droplets are dried, glass slides are then submerged into a beaker 

of 20mM SDS aqueous solution and put into an ultrasonic bath. All α-eicosene particles 

resulted from emulsion evaporation are washed away from the flat glass surfaces and 

then collected. Figure 2.6 shows the surface evaporation of α-eicosene in chloroform 

droplets is performed on the glass surface and 20mM SDS is surrounding the droplets.  
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Aqueous SDS 

Glass slide 
 

Figure 2.6. Surface evaporation of α-eicosene in chloroform droplets is performed on the 
glass surface. 20mM SDS is surrounding the droplets.  
 

 

 Evaporation of small droplets has also been studied in other research, which 

demonstrated a mechanism of flow generation within the droplets floating in denser oil 12. 

They have established a FEMLAB simulation for hydrodynamic flows inside the droplet, 

which was in a good correlation with their experimental observations. Also, the internal 

circulation of evaporating the small droplets is found and which is driven by Marangoni 

instabilities 12.  

 The wax particles will cream up to the top of the aqueous solution due to the 

buoyant force, as the density of α-eicosene (ρ = 0.795 g/cm3) is lighter than that of water. 

Some of the particles have shown birefringence as we observed them after surface 

evaporation but before cooling down in the refrigerator. This is because isotropic-smectic 

phase transition point of α-eicosene is around 26oC 13, which is around the room 

temperature. 

 After collection, the wax particles are then stored in the refrigerator at a 

temperature of 3oC in order to let the isotropic-to-smectic phase transition being carried 
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out. Figure 2.7 sketches the generation of disk-like particles from spherical particles as 

phase transition takes place from isotropic to smectic phase.  

 

 

 

 

Figure 2.7. Generation of disk-like particles through isotropic-smectic phase transition.  

 

 

 Nucleation and growth occur in phase transition in which nuclei of a new phase 

are first formed, and then followed by the raising of the new phase at a faster rate. This 

process requires formation of new surface; therefore, surface free energy is a key 

parameter in which it is the energy required to create a surface. By varying pressure and 

temperature, phase change of a system can be initiated. In our daily life, cloud seeding, 

ice formation, or pop can fizzing are some of the examples of nucleation and growth. As 

we open a soda can, pressure is released and the bubbles of carbon dioxide float onto the 

top surface of the liquid and its size is increasing at the same time.  
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 Nucleation is the beginning of a phase transition which nuclei are formed in 

solution. Increasing number of particles in nucleation depends on the liquid phase 

instability as temperature is decreasing, and so a driving force will be established toward 

equilibrium. Homogeneous nucleation is the condensation of a single chemical 

compound. Growth of the freshly nucleated particles is diffusion controlled. The size of 

particles is growing in this diffusive growth while the number of particles nucleated will 

stay nearly constant. 

 In order to analyze the processes of solvent evaporation and solute crystallization, 

models such as concentration profile in evaporating droplets have been developed. One 

of the investigations shows that increased drying temperatures lead to a decrease of bulk 

density of the dry particulate matter due to increased particle sizes 11.  

 In general, solute particle shape is determined by the number of nuclei nucleated 

and the growth of crystals. These are also influenced by the temperature and the solvent 

evaporation rate. Since the concentration of the solute is the highest at the surface of the 

solution droplets, crystallization was expected to initiate there 11. Figure 2.8 presents the 

concentration profile in evaporating droplets. Droplet shrinks with time during 

evaporation, and at high evaporation rates large concentration gradients are formed.  
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Figure 2.8. Concentration profile in evaporating droplets 11.  
 
 
 

 Spray drying is a process of generating droplets containing the required material 

in solution, and then to dry the particles until the solvent is completely removed, leaving 

a solid residue. Single crystal may be resulted when the solute concentration is low and 

the solubility is high; and crystallization occurs at a small size of droplet. On the other 

hand, multiple crystals will be resulted when the system is at a higher solute 

concentration and a lower solute solubility. To decrease the number of crystals formed, a 

decrease in nucleation rate, for example by lowering the rate of solvent evaporation, can 

be performed 14. Hollow structured particle is formed when the particle has a large 

number of crystals, and because crystallization occurs at the surface, particles will be 

accumulated at the surface of the droplets. Cenospheres are formed as solute precipitates 

at the surface of the droplet. The size and density of cenosphere can be controlled by 
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lowering the solvent evaporation rate, so that the solute has more time to precipitate, and 

a more compact particle should be formed. A shell is formed by using a low solubility 

compound and high solvent evaporation rate. Also, when further drying of the shell, a 

collapsed cenosphere is formed. Figure 2.9 shows the morphology of particles obtained 

from spray drying of solution droplets 14.  This model is different from our model of disk-

like particles formation from wax solution droplets evaporation, because this model is 

evaporating in the air while our system is evaporating under aqueous SDS medium. In 

addition, SDS can prevent aggregation of the wax droplets.  

  

 

 

 

       (a)     (b)          (c)                         (d)         (e) 

Figure 2.9. Possible modes of wax particle formation for spray drying. Formation of (a) 
single solid particle, (b) multiple particles, (c) cenosphere, (d) shell, (e) collapsed shell, as 
initial wax concentration increases 14.  
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 Estimation of rate of chloroform evaporation under aqueous SDS medium is 

calculated by measuring the diameter of the wax droplet and the time elapsed during 

chloroform evaporation. Figure 2.10 demonstrates the sequential pictures of the freshly 

produced wax droplets that are taken at different time. These pictures are used to estimate 

the rate of chloroform evaporation in aqueous SDS medium by recording the diameters of 

the large wax droplet that is shown in the figure as time elapsed. As time is increasing, 

wax droplets are shrinking in size. By measuring the diameter of the wax particles, the 

rate of wax droplet shrinkage under aqueous SDS medium can be estimated. Figure 2.11 

plots the diameters of the wax droplet against time under aqueous SDS medium, and the 

rate of chloroform evaporation is calculated by dividing the area of chloroform droplets, 

which assumes to be spherical in shape, shrinks as time elapsed. It is estimated to be 

s
m2

1210634.7 −×−  for the larger size wax droplet that is shown in figure 2.11.  

 

 



  22

 

t = 1min t = 0 t = 3min 

50 µm 

t = 7 min t = 10min t = 5min 

t = 12min t = 15min 

Figure 2.10. Estimation the rate of chloroform evaporation in aqueous SDS medium. As 
time increase, wax droplets are shrinking in size. By measuring the diameter of the wax 
particles, the rate of wax droplet shrinkage can be estimated.  
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Figure 2.11. Diameter of initial concentration 5 wt% of wax droplet decreases during 
chloroform evaporation. Rate of chloroform evaporate is estimated to be 

s
m2

1210634.7 −×− . 
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 In order to determine the final number of wax particles formed during solvent 

evaporation, we used mass balance equation:  

c
d

n
d

n i
ii

f
ff

33

23
4

22
⎟
⎠

⎞
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ πρπρ  

where the subscripts i and f represent the initial and final states; n is the number of wax 

particles; ρ is the density of α-eicosene; d is the diameter of α-eicosene particles; c is the 

initial α-eicosene in chloroform concentration. Assuming ni is equal to 1, as wax droplets 

haven’t started splitting into particles at time zero. Also, assume the initial and final α-

eicosene density does not changed, and the aspect ratio for our system is equal to 4. 

Therefore, the mass balance equation reduced to: 
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Figure 2.12 shows the plot of nf versus the initial α-eicosene in chloroform concentrations. 

The higher the initial wax concentration, the more split wax particles are obtained. The 

result is consistent with the solution droplets drying morphology 14 into the multiple 

crystals model. The number of final number of wax particles split from the experimental 

observation is about 80,000.  

 Figure 2.13 sketches the model of disk-like particles formation from wax droplets 

evaporation. Uniform 50µm diameter wax contained chloroform droplets are firstly 

produced by the glass microfluidic device, they are then undergone chloroform 

evaporation. As solvent evaporates, nucleation and growth of wax droplets occurs at the 

surface of the droplets, since the wax molecules have a higher concentration there. And 
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finally, the wax droplets change into disks under the isotropic-smectic phase transition. 

We observed the wax droplets have a size change from the time just after the solvent 

evaporated, about 1µm, to the time as disk-like wax particles are formed, which are larger 

than 1µm in diameter.  
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Figure 2.12. A plot of final number of wax particles formed, nf, versus the initial α-
eicosene in chloroform concentrations, c. It shows the higher the initial wax 
concentration, the more split wax particles are obtained. 
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Figure 2.13. Model of disk-like particles formation from wax solution droplets 
evaporation.   
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CHAPTER III 
 

WAX-DISK FORMATION 
 
 
 

 Anisotropic wax particles are formed after solvent evaporation. Nucleation and 

growth of the smectic phase occur, and caused the apparent size of the wax particles 

increase and finally the disk-shaped wax particles were generated. Disk-shaped wax 

particles morphology change is due to defect annealing. Since wax are in anisotropic 

smectic phase, they are birefringent and can be observed under the polarized light 

microscope.  

Phase Transition  

 Transformation from phase to phase, for the first order transition such as 

crystallization, requires nucleation and growth of the new phase. Nucleation depends on 

whether the energy is allowed to be minimized thermodynamically such as the 

minimization of the Gibbs free energy, and also kinetically how fast the nucleation rate is.  

 Molecules always collide with each other. In general, molecules will have a lower 

energy when molecules are collided and stayed together, than further apart, if there is 

intermolecular attraction. Free energy is minimized when molecules are in crystal 

structure comparing to liquid. This energy difference is called volume free energy (ρ∆µ), 

where ρ is the density of the bulk liquid, and ∆µ is the chemical potential difference 

between the bulk solid and bulk liquid 15. Solid grows in size, since the magnitude of the 

total volume free energy decreases. However, when solid forms in a liquid, an interface is 



  28

created in which a surface free energy γ  is associated with it. As liquid phase transfer 

more into solid phase, total surface free energy increases. Lekkerkerker H.N.W. has 

shown that the classical theory of the free energy )( G∆  is: 15   

γπµρπ 23 4
3
4 rrG +∆=∆  

where the first term deals with the bulk free energy change, and the second term deals 

with the surface free energy change. Both terms are involved in the energy minimization 

and the phase transitions.  

 When liquid is cooled, only a few molecules will stick together at the freezing 

point, because they still have comparatively high energy. As liquid further cooled, much 

more nuclei are formed. When the number of nuclei is large enough, the supercooled 

liquid will quickly change into a solid by the growth of the crystallites. This process is 

called homogeneous nucleation and growth. It usually occurs when the material is highly 

pure.  

Particle Morphology Change Due to Defect Annealing 

 After the wax particles nucleated, they start to grow in size with time. When the 

system is cooled through the transition temperature, the disk-like wax particles formed. 

Domain changes inside the particles dictate the dynamics of disk-like shape formation. 

Coarsening of domains can be described by the power-law: describes the shape 

change; where L is the characteristic length of the wax particles size, t is the time and n is 

the growth exponent 

ntL ∝

16. Research 17 has been studied for the coarsening in foams made 

from the pure liquid crystal, 8CB (4-n-octylcyanobiphenyl), without the presence of any 
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solvent or surfactant, its growth exponent (n) of it is 05.020.0 ±≈ . For our experiment, 

the data obtained for 500ppm, 2 wt% and 5 wt% of the initial wax concentrations 

dissolved in chloroform, the growth exponents are 0.278, 0.147 and 0.145 respectively. 

Graphical results are shown in the later section (figure 3.18, section 4). The smaller the 

size of the particle, the faster its dynamics is. The mechanisms for coarsening in different 

phases are influenced by the material flow in domains and the growth of domain size by 

the flow from small domains and integrate into larger domains.  

 In smectic phase, wax molecules arranged into fluid layers with perpendicular 

orientation. Theoretically, layers are perfectly parallel to the free surfaces. Due to the 

domain defects the particle looks spherical even in smectic phase. The shape of liquid 

crystals changes from spherical to disk-shaped particles with decreasing domain defects, 

moreover, the wax disks formation is a defect annealing process. As in liquid crystal 

annealing, the apparent size of the wax particles grows. Figure 3.1 shows the focal conic 

domains that appear in smectic phase. When the focal conic domains in smectic phase 

orient themselves into a sphere, their apexes are pointing into the center of the sphere 

while their circular top portions are facing outward. Furthermore, hexagonal shaped wax 

particles were also observed in which their formation is due to the defect annealing. 

When they observed under the polarized light microscope, the birefringent characteristic 

is shown at their edges. Figure 3.2 illustrates the hexagonal shaped wax particles are 

observed from the initial concentration 500ppm of α-eicosene in chloroform after 3 days 

refrigeration. 
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(a)     (b) 

 
Figure 3.1. Focal conic domains in smectic phase. (a) A cross-section of a focal conic 
domain. (b) When the focal conic domains orient themselves into a sphere, their apexes 
are pointing into the center of the sphere while their circular top portions are facing 
outward.  
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10 µm 

Figure 3.2. Hexagonal shaped wax particles are observed from the initial concentration 
500ppm of α-eicosene in chloroform after 3 days refrigeration.  
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Birefringence of Liquid Crystals 

 Birefringence is one of the salient characteristics of liquid crystals, and it occurs 

in anisotropic phases: nematic, smectic, and crystalline phases. Liquid crystals experience 

birefringence due to the orientation characters, alignments and shapes of their molecules. 

Optical axis is the straight line passes through the centers of curvature of the lens surfaces, 

and when light travels along this axis would not be deflected in any direction. The 

electric field is everywhere perpendicular to the optical axis, and it is called the ordinary 

(o-) ray. Ordinary ray travels at the same velocity in every direction through the 

anisotropic materials. The light wave with the electric field parallel to the optic axis is 

called the extraordinary (e-) ray. Extraordinary ray travels at a velocity that depends on 

the propagation direction within the anisotropic materials. Birefringence defines as the 

difference in refractive indices, ∆n = ne - no, between the ordinary (no) and extraordinary 

(ne) rays 18. The retardation between the ordinary and extraordinary ray increases with 

increasing the anisotropic material’s thickness 19. One of the methods to determine 

birefringence is performed by F.N. Ecevit 20 using the continuous wavelet transform 

(CWT).  

 Because of the birefringence of the smectic phase appears inside the disks, they 

are observed under the polarized light microscope as shown in figures 3.3 to 3.14.  
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10 µm 

Figure 3.3. Wax particles are produced from the initial concentration 5 wt% of α-eicosene 
in chloroform after 3 days refrigeration. The micrograph was taken using a polarized light 
microscope. Diameter of the α-eicosene disks on average is about 1.22µm.  
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10 µm 

Figure 3.4. Wax particles are produced from the initial concentration 5 wt% of α-eicosene 
in chloroform after 13 days refrigeration. The micrograph was taken using a polarized 
light microscope. Diameter of the α-eicosene disks on average is about 1.22µm.  
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10 µm 

Figure 3.5. Wax particles are produced from the initial concentration 5 wt% of α-eicosene 
in chloroform after 23 days refrigeration. The micrograph was taken using a polarized 
light microscope. Diameter of the α-eicosene disks is about 1.43 - 1.84µm. 
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10 µm 

Figure 3.6. Wax particles are produced from the initial concentration 5 wt% of α-eicosene 
in chloroform after 42 days refrigeration. The micrograph was taken using a polarized 
light microscope. Diameter of the α-eicosene disks on average is about 2.04µm. 
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10 µm 

Figure 3.7. Wax particles are produced from the initial concentration 2 wt% of α-eicosene 
in chloroform after 13 days refrigeration. The micrograph was taken using a polarized 
light microscope. Diameter of the α-eicosene disks on average is about 1.43µm. 
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10 µm 

Figure 3.8. Wax particles are produced from the initial concentration 2 wt% of α-eicosene 
in chloroform after 22 days refrigeration. The micrograph was taken using a polarized 
light microscope. Diameter of the α-eicosene disks on average is about 1.63µm. 
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10 µm 

Figure 3.9. Wax particles are produced from the initial concentration 2 wt% of α-eicosene 
in chloroform after 47 days refrigeration. The micrograph was taken using a polarized 
light microscope. Diameter of the α-eicosene disks on average is about 1.70µm. 
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10 µm 

Figure 3.10. Wax particles are produced from the initial concentration 500ppm of α-
eicosene in chloroform after 9 days refrigeration observed under the microscope without 
using the polarizers.  
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10 µm 

Figure 3.11. Wax particles are produced from the initial concentration 500ppm of α-
eicosene in chloroform after 9 days refrigeration observed under the polarized light 
microscope.  
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10 µm 

Figure 3.12. Wax particles are produced from the initial concentration 500ppm of α-
eicosene in chloroform after 12 days refrigeration. The micrograph was taken using a 
polarized light microscope. Diameter of the α-eicosene disks on average is about 0.90µm. 
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10 µm 

Figure 3.13. Wax particles are produced from the initial concentration 500ppm of α-
eicosene in chloroform after 28 days refrigeration. The micrograph was taken using a 
polarized light microscope. Diameter of the α-eicosene disks on average is about 0.94µm. 
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10 µm 

Figure 3.14. Wax particles are produced from the initial concentration 5 wt% of α-
eicosene in chloroform after 2 months refrigeration. It shows the diameter and thickness 
of the α-eicosene disk is about 1.43µm and 0.32µm respectively, that is, the aspect ratio 
is 4. The diameter and thickness measurements of the disks are pointed out by the yellow 
arrows.  
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Observing the Wax-Disks 

 Due to the Brownian thermal forces 7, microdisks are fluctuating in different 

orientations. For observing the wax microdisks in our laboratory, an inverted polarized 

light microscope (Nikon TE2000-U) was used. Figure 3.15 demonstrates the 

configuration of the inverted polarized light microscope. The polarized light microscope 

can distinguish between isotropic and anisotropic materials, and investigate the structure 

and composition of materials.  

 Isotropic materials demonstrate the same optical properties in all directions, as 

they have only one refractive index and allow all vibration directions of light passing 

through them. When light enters an isotropic material, it is refracted at a constant angle 

and passes through the material at a single velocity without being polarized by interaction 

with the electronic components of the crystalline lattice. On the other hand, anisotropic 

materials have crystallographically distinct axes and act as beam splitters. Also they 

interact with light in a manner that is dependent upon the orientation of the crystalline 

lattice with respect to the incident light. When light enters along the optical axis of 

anisotropic crystals, light is refracted at a constant angle and passes through the material 

at a single velocity, which has the manner as the interaction with isotropic materials 19. 

However, when light enters a non-equivalent axis, it is refracted into two rays, which are 

polarized, orientated at right angles to one another, and traveled at different velocities. 

This is called double refraction.  

 Polarized light microscope consists of two polarizing filters in the light path 

called polarizer and analyzer, as shown in figure 3.15. When both the polarizer and 
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analyzer are in the optical path, their polarization directions are positioned at a certain 

angle to each other. When the polarizer and analyzer are crossed at right angles to each 

other and an isotropic media is between them, no light is passing through the system and 

a dark field of view present in the eye piece.  

 

 

 

 

  

Polarizer 

Analyzer 

Figure 3.15. Inverted polarized light microscope (Nikon TE2000-U) used in our 
laboratory. A polarizer and an analyzer are installed in this microscope as shown by the 
yellow arrows.  
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  When normal light rays first pass through the polarizer, part of the light rays will 

be absorbed, and the transmitted light rays will be polarized, meaning light only vibrates 

at one single direction. Figure 3.16 demonstrates the light rays passing through the 

birefringent material under the polarized light microscope. The transmitted light rays then 

pass through the anisotropic crystal where light rays are refracted and divided into two 

different components which are vibrating parallel to the crystallographic axes and 

perpendicular to each other. That is because the liquid crystal molecules have their own 

orientations and alignments; they observed differently of the light ray. Depending on the 

phases or the molecules’ orientations of liquid crystals, the polarization of the transmitted 

light rays will be altered again after passing through the liquid crystals. The polarized 

light rays after passing through the birefringent material are then passed through the 

analyzer, which is oriented to pass a polarized vibration direction perpendicular to that of 

the polarizer, hence, the analyzer passes only those components of the light rays that are 

parallel to the polarization direction of the analyzer. As one of the waves is retarded 

compared to the other, interference occurs between the waves as they pass through the 

analyzer. Therefore, bright colors can be seen when observed through crossed polarizers. 

The wax molecules inside my anisotropic wax disks are in the smectic phase at room 

temperature around 220C. They are birefringent and can be observed under the polarized 

light microscope. In addition, polarized light microscope requires strain-free objectives 

and condensers to avoid depolarization effects on the transmitted light 19.  
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Figure 3.16. A systematic sketch of the polarized light microscopy.  
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50 µm 

 
Figure 3.17. α-eicosene contained chloroform droplets are initially produced in the glass 
microfluidic device. Diameter of the cuvette opening is about 100 µm (as shown by the 
two yellow arrows). Size of the spherical emulsions is about 50 µm, and they are uniform 
in size due to the steady operation state.  
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 The size and the shape of the microdisks are analyzed. Figure 3.17 shows initially 

5 wt% α-eicosene in chloroform microemulsions were freshly produced in the 

microfluidic channel, and the size of the spherical emulsions is about 50µm in diameter. 

They are then transferred on the flat glass surface to evaporate the chloroform, and they  

are split into about 1µm to 2µm particles after chloroform has been observed to evaporate 

out. Figure 3.3 to 3.14 show different size of the α-eicosene particles vary with different 

initial α-eicosene concentrations as the refrigeration days increases. Figure 3.14 shows 

that the particles from the initial concentration 5 wt% of α-eicosene in chloroform after 2 

months refrigeration has a diameter and thickness of 1.43µm and 0.32µm respectively. 

Therefore, the aspect ratio is about 4 (diameter of wax disk: thickness of wax disk). For 2 

wt% α-eicosene disks after 47 days refrigeration shows the aspect ratio is also about 4; 

the diameter and thickness on average are found out to be about 1.70µm and 0.41µm 

respectively.  

 With all the data that we obtained from the experiments, the correlation between 

the size of wax particles and the time that the wax particles samples are stored in the 

refrigerator was plotted. Figure 3.18 shows the increasing size of the wax-disks as time 

increases. It is because the wax particles in isotropic phase are changing into wax disks in 

smectic phase and the molecules of the wax are orienting themselves into layers, that 

causes the aspect ratio, which is about 4, is observed. The aspect ratio increases as the 

wax particles are changing into disks. Moreover, birefringent occurs at the early time 

which means the phase transition from isotropic to smectic phase is fast. In order to 

produce disks, defect annealing takes place between domains in smectic phase.   
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 The power-law is fitted into each set of data, and they have a trend of decreasing 

the growth of the wax particles as the initial wax concentration increases. Besides, the 

disk populations of different initial wax concentrations are also plotted. Figure 3.19 

shows the wax disks population for different initial concentrations as the time of samples 

stored in the refrigerator increases. The disk populations were estimated by observing the 

disk-like wax particles which appear to be birefringent under the polarized light 

microscope.  
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Figure 3.18. Size of wax-disks for 5 wt%, 2 wt% and 500ppm initial concentrations 
plotted against days of samples stored in the refrigerator.  
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Figure 3.19. Wax-disk population for 5 wt%, 2 wt%, 500ppm initial concentrations 
plotted against days of samples stored in the refrigerator.  
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CHAPTER IV 
 

DYNAMIC LIGHT SCATTERING AND DIFFUSIONS OF WAX DISKS 
 
 

 
Dynamic Light Scattering (DLS) 
 
 Dynamic light scattering (DLS) is a common spectroscopic technique using in 

colloidal science. It measures the fluctuations in the scattered light intensity (I) arising 

from the motion of the sample 21. For light scattering, the incident photon induces an 

oscillating dipole in the electron cloud. As the dipole changes, energy is scattered in all 

directions. When the size of particles is large compared to the wavelength of the incident 

light, the scattered pattern becomes extremely complex 21 and the intensity is angle 

dependent. If the light is coherent and monochromatic, as from a laser for example, it is 

possible to observe time-dependent fluctuations in the scattered intensity using a suitable 

detector such as a photomultiplier. Besides, DLS has a high sensitivity for small 

concentration of sample, and very small amount is required for scattering. 

 In analyzing the time dependence of the intensity fluctuation can yield the 

diffusion coefficient (D) of the particles by using the Stokes Einstein equation:  

H

B

R
TK

D
πη6

=  

where KB is the Boltzmann constant, T is the temperature, η is the viscosity of the 

aqueous phase, and RH is the hydrodynamic radius of a particle, that also equals to the 

effective diameter (a) obtained from the DLS.  
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 Fluctuations are a result of Brownian motion and can be correlated with the 

particle diffusion coefficient and size. The correlation function given by the DLS 

describes the degree of non-randomness in an apparently random signal. Figure 4.1 

shows at short delay times, correlation function is high as particles diffuse, as time 

increases correlation diminishes to zero and the exponential decay of the correlation 

function is characteristic of the diffusion of the particles. Figure 4.2 shows the correlation 

function of initial 5 wt% wax-droplets obtained from the dynamic light scattering in a 

semi-logarithmic plot.  
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Figure 4.1. Correlation function of initial 5 wt% wax-droplets obtained from the dynamic 
light scattering.  
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Figure 4.2. Correlation function of initial 5 wt% wax-droplets obtained from the dynamic 
light scattering in a semi-logarithmic plot.  
 
 

 

 For a monodisperse samples, single exponential decay will be observed. While for 

polydisperse samples, a series of exponential decays will be observed instead. 

Determining the particle size distribution can be done by the analysis of the 

autocorrelation function with numerically fitting the data with calculations. For our 

experiment, disk particles sample is analyzed by DLS. 

Translational and Rotational Diffusions of Isotropic Wax Particles 

 The disk-like wax particles produced are certainly not spherical in shape. 

Therefore, disk particles should not be directly described by the Stokes Einstein equation.  
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 The anisotropic translational coefficient (ε) equation for ellipsoidal particles is 

described as 21:  
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for b/a > 1 ellipsoids, where the ellipsoidal particle has the semiaxes a < b = c with axial 

ratio (b/a). From our experimental data, b/a is about 4, so the anisotropic translational 

coefficient (ε) is calculated to be -0.446.  

 The data obtained from DLS gives the effective diameter (a) = 483.5nm, and by 

rearranging the Stokes Einstein equation: 
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where Deff is the effective diffusion coefficient. By using the aspect ratio (b/a = 4) that we 

observed from the experimental data, the diameter of disk (b) calculated by DLS is equal 

to 1.93µm. Compared to the experimental observed diameter of disk which is equal to 

1.63µm, the percentage of error is about 15.5%. Possibility of error could be caused by 

the uncertainty when estimating the size of the disks by using the scale bar from the 

microscope, as the size of disks are very small that is in the order of micron-meter.  

 Furthermore, the correlation time for the translational diffusion (τT) is obtained 

from DLS which is equal to 0.0127s. Also, we have estimated the correlation time (τR) 
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for the rotational diffusion and that is obtained by calculating the time between each 

frame has taken from the video that shows the rotational motion of the disk. Figure 4.3 

illustrates a series of pictures have taken for the initial 5 wt%, 2 wt% and 500ppm wax 

concentrations. The time (t) for the wax disk rotates from its edge into its circular plane 

has been recorded. Four times this time (4t) is the complete 360 degree rotation of the 

wax disk particle; and this correlation time (τR) for the rotational diffusion is equal to 

1.56s.  
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(a) 
 

 
    

 
(b) 
 

 
     

 
(c) 
 
Figure 4.3. Estimation of the rotational diffusion time (τR). It is estimated by calculating 
the time between each frame from the video that shows the rotational motion of the disk. 
(a) Initial 5 wt% wax concentration disk-like particle. (b) Initial 2 wt% wax concentration 
disk-like particle. (c) Initial 500ppm wax concentration disk-like particle. 
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CHAPTER V 
 

CONCLUSIONS 
 
 
 

 Microdisks are interested in our research studies because are in great interest of 

different industries, for example, clay particles in agriculture, asphaltenes in heavy oil 

industry, and red blood cell in cell biology.  

 By using our three-dimensional glass microfluidic device, uniform size wax 

droplets surrounded by 20mM SDS solution are produced. Then surface evaporation of 

chloroform is performed, so that nucleation and growth of wax particles can occur. The 

phase transition from isotropic to smectic phase is observed under the polarized light 

microscope, as the wax particles in anisotropic phase show the birefringence 

characteristic. As phase transition occur at low temperature, wax droplets changed its 

spherical shape into disk shape. Also, we observed the diameter, population, and aspect 

ratio of disks are changing with time. A model of wax particle formation is proposed, and 

the final number of wax particles split is calculated by using the mass balance equation. 

Uniform microdisks around 1µm size are produced by emulsion evaporation of the initial 

50µm size droplets. 

 Dynamic light scattering (DLS) is also used to characterize the size of the wax 

particles. The correlation function obtained from DLS gives us information of the 

effective diameter for diffusion, polydispersity, translational delay time. For our wax 

disks, axisymmetric Brownian particles, both translational and rotational diffusions 

should be considered. Both translational and rotational diffusion coefficients are 
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calculated by the equations established by Brenner for the axisymmetric Brownian 

particles. Also, the rotational delay time was estimated by taking frames of pictures from 

the disk rotation videos that we obtained from the experiment.  
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