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ABSTRACT 

 

Inferring Interwell Connectivity from Injection and Production Data  

Using Frequency Domain Analysis. (May 2007) 

Ayse Nazli Demiroren, 

B.S., Istanbul Technical University 

Chair of Advisory Committee: Dr. Jerry L. Jensen 

 

This project estimates interwell connectivity, a characteristic that is crucial to determine reservoir 

continuity while developing a waterflooding project.  It tests the combination of Fourier transforms (FT’s) 

of the flow rate data and analytical solutions from analog electrical circuits to infer the inverse diffusivity 

coefficient (IDC).  I solved the transmission line equation analytically for 0D, 1D, and 2D 

resistance/capacitance (RC) network models and used those solutions to compare with the flow rate FT’s 

to determine the diffusivity parameters.  I used the analogy between the electrical response of RC 

networks and the fluid response of permeable reservoirs on the basis of the similarities in the governing 

equations. 

 

I conclude that the analogy works accurately in simple reservoirs, where the assumptions of an analytical 

solution are met, i.e. single-phase fluid and a homogeneous system.  For two-phase liquid cases, I 

determined that the analogy remains applicable because we still could produce accurate interwell 

connectivity information.  When I investigated cases with dissolved-gas production around the wellbore, 

however, the analogy broke down and the results were not as good as the liquid systems.  
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CHAPTER I 

INTRODUCTION 

 

1.1  Introduction 

 

The main objective of this work is to develop a proof of concept to infer interwell connectivity between an 

injector, and a producer in a waterflooded field.  This study is performed to determine if certain deviations 

from the assumed conditions can be tolerated by the method while still producing an accurate estimate of 

interwell connectivity.   

 

This chapter includes the overall objectives of the study and the literature review in previous interwell 

connectivity studies, use of sinusoidal rates in reservoir characterization, use of electrical analogs in 

reservoir engineering and the mathematical background in FT’s.  

 

1.2. Research Objectives 

 

The overall objectives of this work are: �
 To apply a method using the FT’s of the flow rate data. �
 Exploit the correspondence of fluid flow with electrical RC network models to estimate the diffusivity 

parameters. �
 To validate the use of this technique by applying it to the hypothetical cases.  �
 To examine the effects of gas around the wellbore that might cause inconsistency in interwell 

connectivity analyses by using the proposed technique. �
 To list the conditions under which this concept is applicable. 

 

 

 

 

_________________________ 

This thesis follows the style and format of the SPE Journal. 
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1.3. Statement of the Problem 

 

As noted by Muskat (1949), an electrical analyzer is a powerful tool to analyze water-drive reservoirs 

when the reservoir itself is not of simple geometry or uniform physical properties.  Keeping this in mind, 

the basic idea here in our study is to assume that the reservoir system is equivalent to a resistance-

capacitance network, where the fluid flow in a porous media is equivalent to the flow of an electric current 

in a circuit. 

 

Fluid flow can only occur when pore spaces in the reservoir rock are connected. In the same way, 

electricity can only flow if conductive materials are connected to each other, forming a circuit for 

electricity to follow. This similarity is expressed by the mathematical equations describing the flow.  The 

hydraulic and electrical conductivities are related because of the similarity between the differential 

equations describing each process.  More specifically, the reason why we use the analogy between 

reservoir and RC network is that the capacitance placed in an RC circuit is capable of storing electrical 

energy in itself; similarly, the reservoir is also a permeable rock that stores mechanical energy due its 

compressibility.   

 

Physically, for 0D (tank) models, the dissipation of the electrical current or the fluid wave depends on the 

change of voltage or pressure in time with regardless of dimensions of the model.  The lumped values of 

the parameters through the reservoir or the circuit are used in the calculations.  Therefore, the interwell 

connectivity information estimated from those models can not reflect the heterogeneity of the 

displacement processes.  On the other hand, in 1D and 2D dimensional models, the length of the model, 

the interwell distance and the spatial distributions of the parameters, i.e R,C, φ, k …, can be incorporated 

into the calculations.  Hence, those models offer more sophisticated solutions to predict the interwell 

diffusivity for a displacement process. 

 

Mathematically, the similarity of the governing equations of fluid and electrical flow also provide us an 

opportunity to express the analogy between permeable reservoir rocks and conductive RC systems.    
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RC network analogs were introduced to the literature by Bruce (1943) to simulate the unsteady-state 

performance of undersaturated oil reservoirs under water drive.  In that study, he used the capacitance term 

in the RC network to model the storage term in the reservoir.  He used the storage equation (Eq. 1.1). 

Physically, he assumed the reservoir as a tank model where mass of fluid flowing in less the mass flowing 

out is equal to the accumulation term from material balance and depends on the change in pressure with 

time regardless of what the reservoir dimensions are.  Accordingly, he showed the storage equation in 

electrical flow (Eq. 1.2) as analogous to the fluid flow.  In these equations, he expressed the accumulation 

by the product of the pore volume and the total compressibility factor in a reservoir and by a capacitance 

term in an analog RC device.  Thereby, he constructed a link analytically between the coefficients of the 

time derivatives in those equations.  However, the resistance that is analogous to the transmissibility term 

in a reservoir is ignored in his models since the model that he used in his study is only a tank model, in 

other words a dimensions-free network. 

 

1 2

dp
q q V cp t

dt
− = . ......................................................................................................................... (1.1) 

 

1 2 E

dv
i i C

dt
− = . .............................................................................................................................. (1.2) 

 

Where 

CE = Capacitance, µfarads 

Vp = Pore volume, bbl 

ct = Total compressibility, 1/psi 

q1  =  Flow rate in, bbl/day 

q2 = Flow rate out, bbl/day 

p = Pressure, psi 

t = Time, day 

i1 = Current in, �A 

i2 = Current out, �A 

v = Voltage, volts 
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Alternatively, we introduce an analogy between fluid flow and electrical flow that has the ability of 

incorporating dimensional models into the study to identify more complex reservoirs by analog RC 

devices.  Our initiative to apply sinusoidal rates to the injecting well comes from the electrical systems in 

which it is easy and common to use sinusoidal excitations to identify a linear system.  Furthermore, the 

similarity of the governing equations lets us perform an analogy to determine interwell diffusivity.  

Therefore, we use Eq. 1.3 that is the fluid flow diffusivity equation in petroleum engineering studies (e.g., 

Lee, 2003, p.4) and Eq. 1.4 that is the transmission line equation for the voltage distribution in 

communications engineering (Everitt, 1956, p.303).  Mathematically, imposing the same boundary 

conditions on those two equations results in similar distributions for pressure and voltage.  Then, we can 

easily show that the pressure difference in a reservoir between two locations is equivalent to the difference 

in voltage in an RC network between two terminals.   

 

2

2

cp pt

k tz

φµ∂ ∂
=

∂∂
. ...............................................................................................................................(1.3) 

 

2

2

v v
RC

tz

∂ ∂
=

∂∂
. .................................................................................................................................(1.4) 

 

Where 

z  =  Point in space, ft 

φ  =  Porosity, d.less 

µ  = Viscosity, cp 

k =  Permeability, md �  = Voltage, volts 

R = Resistance, ohms 

C  = Capacitance, farads 

 

Since we can solve pressure and voltage differences between two ends analytically for dimensional models 

from Eqs 1.3 and 1.4, we can also incorporate the resistance term of an RC network, which was ignored 

earlier by Bruce.  We can construct an alternative analogy between fluid and electrical flow by using the 
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information from both capacitance and resistance.  We aim to use RC analog networks not only for a tank 

model, but also for 1D and 2D models in our study, then we can consider the interwell distance and the 

reservoir geometry and the spatial distribution of the diffusivity parameters in estimation of interwell 

connectivity.  When we compare Eqs. 1.3 and 1.4, the analogy is exact for 1D and 2D models as we give 

in the following form: 

 

ct RC
k

φµ
= . .......................................................................................................................................(1.5) 

 

The units of both expressions in Eq. 1.5 are in T/L
2
.  Hereinafter, we name the left hand side of Eq.1.5 the 

inverse diffusivity coefficient (IDC). 

 

The important thing for the dimensionless 0D RC model is that the voltage difference in the circuit is not a 

function of the length of the circuit; therefore, the transmissibility is not included in the analogy between 

the reservoir and the analog RC device.  There is no resistance in the 0D system because it only stores 

material (charge or fluid).  There has to be flow of charge or fluid for resistance (energy loss) to come into 

play: 

 

p
V c Ct = . ..........................................................................................................................................(1.6) 

 

In electrical engineering, as we mentioned it is a very common procedure to apply a sinusoidal input to an 

RC network and to measure the system output at each frequency.  The transfer function, H(f), which is the 

output to input ratio of sinusoidal excitations can be calculated and plotted against frequency.  This plot 

can be used to show how much of the input is being transferred to the output as the frequency changes.  

Likewise theoretically, we can apply this simple procedure to the reservoir assuming the injection rate data 

as the input and the production rate data as the output.  In fluid flow; however, it is not simple to 

distinguish the frequency components of the rate distributions in the time domain.  Therefore, we use FT 

to decompose the flow rate into its harmonic components. This way, it is also possible to calculate the 

transfer function (TF) of a reservoir as in Eq. 1.7 and plot it in the frequency spectrum.  
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( )
( )

( )

Y f
H f

X f
= . ..................................................................................................................................(1.7) 

 

Where 

Y(f) =  FT of the production rate  

X(f) = FT of the injection rate 

H(f) = Reservoir transfer function (RTF) 

 

Fourier analysis is named after Jean Baptiste Fourier, who showed that any periodic function can be 

represented as the sum of sinusoids with integrally related frequencies.  The purpose of those analyses is to 

express a given arbitrary function, as a linear combination of a set of harmonic sine and cosine basis 

functions (Harman, 2000).  The Fourier series approximates a function f(t) by using the following 

equation: 

 

[ ]0( ) ( ) ( ) ( )
2 1

a N
f t a Cos nt b Sin nt s tn n Nn

≈ + + =∑
=

. ...................................................................................(1.8) 

 

Where sN (t) is the Fourier approximation to the function f(t) obtained by using a trigonometric polynomial 

of degree N assuming  f(t) is continuous on the interval [-
�

, 
�

].  The constant term a0 and the coefficients 

an and bn in Eq. 1.8 can be computed by the following formulas for n=1,2…N.  

 

1
( )

0
a f t dt

π

π π
= ∫

−
. ................................................................................................................................(1.9) 

 

1
( ) ( )a f t Cos nt dtn

π
π π

= ∫
−

. ..................................................................................................................(1.10) 

 

1
( ) ( )b f t Sin nt dtn

π

ππ
= ∫

−
. ...................................................................................................................(1.11) 

 

The discrete Fourier transform (DFT) of the transfer function, H(f), produces a complex number that 

consists of a real part and an imaginary part.  Those parts are used to calculate the magnitude and the 

phase of the transfer function.  In theory, when a sinusoid enters a linear system, the output is also a 

sinusoid at exactly the same frequency as the input. Only the amplitude and phase can change. So, systems 
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can be represented by how they modify the amplitude and phase of the cosine waves.  Therefore, the 

frequency domain representation of the transfer function is possible by the polar notation of the magnitude 

shown in the following equation: 

 

22
( ) ( ) ( )H f H f H fr i= + . ...................................................................................................(1.12)  

 

The magnitude gives information about the change in the amplitude of the input whereas the phase is 

informative about the phase shifts of the input.   

 

In this study, we apply a method that requires us to investigate the degree of attenuation in the magnitude 

to infer the connectivity information; therefore, we use only the magnitude of the DFT of the injection and 

the production rates.  The phase shift that we exclude tells us more about time lags that occur because of 

various reasons of reservoir heterogeneity.   

 

We explain the basics of Fourier series more in Appendix A.   

 

In this study, we compute FT’s of the flow rate data in Matlab, which uses the fast Fourier transform 

algorithm (FFT).  In Fig. 1.1a, we define a raw signal, f(t), in the time domain as the following equation: 

Cos(2�(0.125t)+Cos(2�(0.05t)).  In Fig. 1.1b, we represent the FT of the raw signal after we compute it in 

Matlab.  The frequency components of that signal in the spectrum are found to be 0.05 Hz and 0.125 Hz, 

respectively.  Our purpose to demonstrate those figures is to show that we apply FT to obtain further 

information, which might be hidden in its frequency content, from the signal that is not readily apparent in 

the raw signal.   

 

 

 

 

 

Figure 1.1—Representation of a given sinusoid in the time domain (a) and in the frequency domain (b).  
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We can recognize sinusoidal functions easily in the frequency spectrum, as we experience in the previous 

example.  In the scope of this project, we also analyze random flow rate data as well as the sinusoidal rate 

data because the field data can not practically be periodic to carry out the FT and to do the spectral 

analysis in the frequency domain. However, the application of the random data produces some 

disadvantages throughout the spectral analyses, which we mention in Chapter II. 

 

In the circuit analysis, H(f), which is the transfer function, is analyzed to determine the value of RC 

coefficient.  In a similar way, we analyze RTF to evaluate IDC, /c ktφµ  for dimensional models; 
p

V ct  for 

0D models.  Then, we can use those coefficients to determine the reservoir connectivity.   

 

To determine IDC, we use analytical solutions of Eq. 1.4.  We solve the transmission line equation 

analytically in three ways:  

 �
 0D RC Network Model: This is the storage equation in Eq. 1.1 where the dimensions of a circuit are 

reduced to 0 dimensions; therefore, the analogy is reduced to only capacitance 

term in the circuit.  This model is analogous to the material balance tank model 

upon which Bruce also based his study in 1943.  0D model is a tank model that 

requires only the lumped values of the parameters; therefore, it lacks the 

resistance, which connects multiple blocks of reservoir or circuit, and spatial 

variations. 

 �
 1D RC Network Model: It is the solution to a 1D voltage distribution in an RC network; therefore, it 

uses the resistance as well as the capacitance in the circuit while identifying the 

fluid flow.   It designates the fluid flow in a very narrow reservoir where flow is 

restricted to one direction. This may be a channel, a fracture or some other 

narrow conduit of flow. 

 �
 2D RC Network Model:  It is the solution to a 2D voltage distribution in a radial system and provides a 

more sophisticated solution to the interwell connectivity problem.  It describes 
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the fluid flow in a very large reservoir where drainage area is large enough for a 

multi-dimensional flow.   

 

We provide more details on analog RC network models, their analytical solutions and frequency domain 

representations in Chapter II.   

 

In this proposed work, the main goals are to compare the transfer functions of RC network models with 

those of flow rate data obtained from reservoir simulation to determine which network model behaves 

most similarly to the reservoir flow, and to investigate whether multi-phase production in the reservoir 

affect the similarity. 

 

To achieve this, RTF’s are compared with the three RC transfer functions (RCTF), which we produce 

from the analytical solutions. We performed the comparisons between RCTF and RTF in the frequency 

domain.  We selected the analytical solution that fits the RTF curve best as the solution that represents the 

reservoir behavior.  Eventually, assigning the coefficient of the best representative analytical solution, 

which is the RC network coefficient, to the diffusivity parameters yields the interwell connectivity 

information.  

 

We use the analogies between the coefficients of the RC networks and the diffusivity parameters, Eqs. 1.5 

and 1.6, as the basis of this study to interwell connectivity.  Basically, we use reservoir parameters to 

calculate the RC network coefficient for a particular reservoir model.  The reservoir model, of which its 

RTF matches its corresponding RCTF, approves the analogy under the given assumptions between the 

fluid flow and the electrical flow successfully.   

 

In case of not being able to match none of the RCTF under exact reservoir parameters, we adjust the RC 

network coefficient to match the RTF.  Then, we assign the modified coefficient back to the diffusivity 

parameters to predict a new range of / kφ . 

 

Ultimately, we evaluate the interwell connectivity in terms of / kφ  letting us make predictions about the 

range of the least predictable parameter in reservoir characterization that is the permeability.  Since 
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porosity is mostly available from well logs and core data, this study offers an alternative way to estimate a 

range of permeability.    

 

1.4  Literature Review 

 

1.4.1  Interwell Connectivity Studies 

 

There have been various studies that have attempted to resolve the uncertainty in interwell connectivity 

and to quantify the degree of communication between wells in a reservoir. These methods include non-

parametric statistics, wavelets, neural networks, and material balance tank models. 

 

Heffer et al. (1995)
 
developed a new method to test two main principles:  �

 The rate correlations between wells are generally good indicators of communication in a reservoir. �
 The rate correlations between wells can be explained partially by geomechanical processes. 

The method that they developed, couples the lateral direction of the fluid flow and the orientation of 

horizontal earth stresses.  To predict the lateral communicaton between wells, they used the Spearman 

rank correlation coefficients between pairs of wells, each pair comprising one injector and one producer.  

The Spearman rank correlation is a very convenient non-parametric (distribution-free) statistic which is 

used as a measure of the strength of the associations between the injector and producer flow rate data.  

However, the correlations that were calculated gave spurious negative correlations and no systematic 

behavior of correlations with time lag was found.  Therefore, the applications were conducted with no time 

lag.  Eventually, the two principles mentioned above were validated by the applications and it was 

concluded that the coupled model provides a better understanding of the reservoir behavior to optimize the 

waterflooding planning. 

 

Refunjol (1996)
 
applied the Spearman rank correlation coefficient to the flow rates of injector/producer 

pairs composed of each injection well and all adjacent producers. As an extension to the current literature 

at that time, she investigated the effect of time lag between injectors and producers. Different time lags 

were used to find a maximum rank correlation coefficient for each possible injector – producer pair, so 
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that the maximum coefficient values of all injectors could be used to predict the preferential flow trend in 

the reservoir.  Refunjol also found negative correlation coefficients which she explained by the influence 

of a third well.  Most of the results for maximum rank correlation ranged from zero time lag to 6 months.  

However, some of the results had time lags up to 23 months, which is an extremely long period of time.  

Overall, her work could determine the general preferential flow trends and the interwell connectivity 

between well pairs successfully. 

 

De Sant Anna’Pizarro (1999)
 
also used the Spearman rank correlation coefficient between the well pairs.  

He aimed to test the validity of the non-parametric statistics method and to explain the reasons of the 

negative correlation coefficients that Refunjol obtained.  He used numerical simulations and pointed out 

the advantages and limitations of using the Spearman rank correlation coefficient of the flow rate data in 

reservoir characterization.  He proved that the method seemed to be more appropriate to indicate the 

potential flow barriers and permeability anisotropy.  He also concluded that the Spearman rank correlation 

coefficient can increase if the injection rate is autocorrelated with time.   

 

Jansen and Kelkar (1997)
 
applied wavelet transforms to describe the interwell relationships, stating that 

the conventional cross correlation techniques tend to fail since the production data are non-stationary.  

Thus, they suggested that production data needed to be treated firstly by wavelet transform, so that it could 

be broken down into its frequency spectra, then the cross correlation between the pairs of wells could be 

performed.  Then, the interwell relationships could be described more reliably.  The significance of this 

study was its ability to break the flow rate data into its frequency components and still retain the time 

information so that time dependent cross correlation methods could also be applied.  They also believed 

that another property of the wavelet transform, which is the ability of treating non-stationary data, played a 

very important role while capturing the dynamics of the well behavior better. In this work, more reliable 

correlations between well pairs were successfully obtained. 

 

Panda and Chopra (1998) suggested a different, integrated approach other than the statistics-driven 

methods to estimate the well interactions.  They applied an artificial neural network, where the 
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multivariate data set includes the flow rate data of the well pairs, as well as the petrophysical parameters 

and well locations.  The neural network was trained by a data set and the results were used to determine 

the presence of reservoir heterogeneities and the permeability trends.  Eventually, this method seemed to 

work more accurately than cross correlating the flow rate data visually; therefore, it could be more 

successful in management of a waterflooding project.  However, this method had some limitations such as 

the lack of physical process representation in neural networks. That limited its use in numerical 

simulation. The authors stated that it required more research.  

 

Soeriawinata and Kelkar (1999) also applied Spearman rank cross correlation by considering that the well 

pairs operating simultaneously cause both superposition and noise.  The authors stated that the 

superposition of injectors has a significant effect on a producer’s response, which could be either 

constructive or destructive interference.  The method includes a trial and error approach which aims to 

select the best well pair that has the highest correlation coefficient.  The study was applied to a 

hypothetical waterflooding project as well as to a real field.  The authors stated that the injected water 

flowing outside the lease boundary and the noise due to the inaccuracy in measurements resulted in lower 

cross correlations in the real field case, as they expected.  An important assumption was made during this 

study, which was that the cross correlation of the summation of the water injection rates to the liquid 

production rate would be higher than the cross correlation of each single injector.  Eventually, it was noted 

that this method was very helpful to define the reservoir connectivity and easy to use for small operator 

and producer companies.  

 

Albertoni and Lake (2002) introduced a technique to estimate the interwell connectivity based on a linear 

model by combining multivariate regression analysis with diffusivity filters that account for the time lags 

and the attenuation between the wells.  The method allows a fieldwide analysis to be made, where all the 

wells can be analyzed at a single step.  It offers two solutions covering the case when the fieldwide 

injection rate is different than the fieldwide liquid production rate and the case when the two are almost 

equal.  The linear model weighting coefficients are shown to be independent of the injection and 

production rate data and depend solely on geology and relative position amongst the wells.  The model 
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they created is free of the compressibility parameter; therefore, it does not include the capacitance effect 

and is a purely “resistive” model which is useful for determining the permeability trend.  The method is 

validated on two different hypothetical fields and an application to a real field in Argentina.  They tested 

the hypothetical models in anisotropic media through multi-layered reservoirs, reservoirs with a sealing 

fault or partially sealing faults, or with a channel.  The applications of this method were restricted to only 

oil and water production; free gas production was not included in the calculations.  The assumptions that 

were made throughout the work are no change in the number of wells, in BHP of the producers, in skin 

and well properties, in total compressibility factor, completion procedures, and in the effective 

permeabilities. 

 

Al-Yousef
 
et al. (2005) modified the technique introduced by Albertoni and Lake (2002) to describe the 

interwell connectivity based on fluctuations in production and injection rates.  They extended the work by 

using a nonlinear model which includes a capacitance term that accounts for the system compressibility.  

They also used analog RC models which were based on a tank model and they used the productivity index 

as analogous to the capacitance term.  The model determines two coefficients to better quantify the 

interwell connectivity.  The first of these two coefficients is the weight that quantifies the connectivity and 

should depend on the geology and the relative position of wells.  The second coefficient is the time 

constant which quantifies the degree of fluid storage between wells.  The advantages of this method 

compared to the previous work are the applicability to the fields where the wells are frequently shut-in and 

the flow rates include primary production.  This method also can incorporate the BHP values if available. 

 

1.4.2 Studies Using Sinusoidal Rates in Reservoir Description 

 

In reservoir characterization, sinusoidal rate application has been used for decades.  It is attractive due to 

the periodic nature of the fluctuations, which makes the main signal easier to recognize among various 

types of noise in the reservoir.  Sinusoids broaden the applicability of the analyses into frequency spectra, 

which enables us to use various tools such as the FT and wavelets.  Eventually, the frequency 

representation of the sinusoidal data may provide more information to evaluate the reservoir behavior. 
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Johnson et al. (1966) developed a new method, named “pulse-testing” alternative to interference tests.  

The interference test is not practical due to the interruption of all field operations held during the test and 

the very long periods of time necessary to obtain a measurable pressure response with the conventional 

gauge at the responding well.  The method of Johnson et al. is able to measure transmissibility and storage 

between a pulsing well and a responding well with the help of a more sensitive gauge than the 

conventional one. The advantage of pulse-testing is that imposing a series of pulses(cyclic disturbance) 

makes it easier to diagnose and distinguish the pressure response from noise at the responding well.  The 

exponential integral solution to the diffusivity equation is used to describe the pulse-test pressure response.  

The response amplitude and the time lag obtained from the test results are used to calculate the average 

values for transmissibility and storage. In simple reservoirs, where the assumptions of the analytical 

solution are met, this method can provide quantitative values for reservoir parameters; on the other hand it 

provides qualitative information in heterogeneous and complex reservoirs. It is concluded that the 

response amplitude is dependent on well spacing, transmissibility, pulse interval and shut-in period as well 

as the rate of the pulse.  

 

Kuo (1971) introduced analyses to determine reservoir properties from flow tests in one or more wells by 

imposing either sinusoidal or periodic multiple rates. He derived the pressure response equations based on 

the radial diffusivity equation and offered equations to calculate permeability values and the skin factor.  

In the case where a sinusoidal flow rate is imposed at either a single well or several wells, the pressure 

responses are calculated from the equations and the reservoir parameters are measured from the maximum 

response amplitude and the phase lag. On the other hand, in application of periodic multiple rates, 

formation parameters are calculated from the slope and intercept of a linear pressure response against time 

function. The result of that work is that if a sinusoidal flow rate is imposed to a well, the responding flow 

rate will be also periodic after the transients passed.  This method is very similar to the conventional 

drawdown or multi rate flow tests; however, it differs in regulating the flow rates and interpreting the 

results. Those solutions are valid under homogenous, single-phase and slightly compressible reservoir 

conditions and have no advantages compared to the previous work by Johnson et al. (1966).  However, in 
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heterogeneous reservoirs, plotting the amplitude ratio and phase shift against frequency provides a 

possibility of determining heterogeneities.  Moreover, application of both single and multi-well tests 

enables flexibility to compare the solutions between wells and offer more accurate results.  

 

Rosa and Horne (1991) developed an analytical solution to quantify the pressure response caused by cyclic 

flow rate variations in a heterogeneous reservoir with radial permeability variation assuming single-phase 

flow, slightly compressible fluid and isotropic porous medium properties.  They applied the perturbation 

method for a qualitative analysis and to initiate the quantitative study. The method comes up with a useful 

formula that expresses the radius of cyclic influence in terms of the frequency of the cyclic flow rate.  The 

radius of cyclic influence identifies the region of the reservoir that is influenced by the pressure response 

during a pulse test.  This formula is used to design the pulse-test to yield the optimum result in estimating 

the permeability distribution. The results of this work on multi-composite radial reservoirs are very 

enlightening in terms of understanding the frequency dependent mechanisms in a reservoir. For instance, it 

is concluded that pressure responses caused by the flow disturbances are sensitive to the permeabilities of 

different regions. It is shown that the higher the frequency, the larger is the region of influence between 

the well pairs at multi-well flow tests. The idea behind that is the increasing frequency enhances the 

contribution from the permeabilities near the pulsing well because the high frequencies do not deeply go 

into the reservoir, they just go to the region near the pulsing well.   

 

Hollaender, et al. (2002) proposed that harmonic testing can be used to determine the same reservoir 

parameters as conventional testing.  However, there are some limitations and also some advantages in 

using flow rate data which are generated periodically during well tests. These issues are explained by 

several practical applications. In some applications, Fourier analysis is used to determine the amplitude 

and the phase shift of the sinusoidal variation of the flow rate to use it in the interpretation of the well test. 

It is concluded that it takes more time to run harmonic testing to obtain the same amount of information as 

conventional testing.  The good point is that it does not require interrupting the production. These tests are 

less influenced by the noise and the potential noise can be averaged effectively. Since there is not a very 

high signal-to noise ratio, it enables to operate with small rate changes, which minimizes rate dependent 
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non-Darcy effects.  The study is based on single-phase liquid production. The gas well harmonic testing is 

said to be significantly more complex and is not included in this work. 

 

A major concern in reservoir connectivity has been to establish the most reliable and consistent reservoir 

behavior under certain assumptions.  Generally, this is achieved by trying to describe the response of 

reservoir to a certain known stimulus through various methods.  As mentioned, the more recognizable a 

stimulus applied upon the reservoir is, the better and closer reservoir identification can possibly be made.   

 

Among all these works, a general concept that captures the reservoir behavior by broadening the 

applicable methods into frequency domain by particularly using the electrical analogs of the reservoir will 

be very useful and enlightening.   

 

1.4.3 Studies Using Electrical Devices in Reservoir Identification 

 

RC analog models, based on Bruce’s methodology, were applied on 4 reservoir fields in Saudi Arabia in 

1960s.  The work performed by Wahl, et al. (1962) explains how a huge RC network that had 2501 

capacitors and 4900 resistors was built to simulate the fluid flow in oil reservoirs.  The field was divided 

into gridblocks to correspond to the mesh points in the RC model.  The results of the analog model and the 

reservoir were compared in terms of field pressure and the graphs are presented in the work.  The history 

match of the average field pressure in the reservoir provided very good results to model future predictions 

of reservoir performance.  

 

1.4.4 Frequency Response Analysis 

 

The information in signals is provided in two ways as in time and frequency domains.  The simplest way 

to analyze the signal is in the time domain because each measured sample contains information that is 

interpretable without reference to any other sample and you know at what amplitude when the event takes 

place.  On the other hand, the information provided by frequency domain is more indirect and it requires 
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relationship between many points in the signal.  By taking advantage of the periodicity of the many things 

in the universe, information can be obtained in terms of frequency, phase and amplitude (Smith, 1999).  

 

Systems are analyzed in the time domain by using convolution.  A similar analysis can be done in the 

frequency domain.  Using the FT, every input signal can be represented as a group of cosine waves, each 

with a specified amplitude and phase shift.  The DFT (Discrete Fourier Transform) can be used to 

represent every output signal in a similar form.  This means that any linear system can be completely 

described by how it changes the amplitude and phase of sinusoids passing through it.  This information is 

called the system's frequency response (Smith, 1999).   

 

In Fig. 1.2, an impulse, x[n], and the impulse response, y[n], which is output of a linear system, h[n], are 

shown both in the time domain and frequency domain.  The illustration shows that FT’s of x[n], h[n], y[n] 

can be taken and they can be represented in the frequency domain, as well as in the time domain.  As it is 

seen, they are denoted X[f], H[f], Y[f] in the spectra, respectively.  Also in Fig. 1.2, the inverse discrete 

FT is shown to transform the signals in spectra back to time domain.  Since IDFT is not in the scope of 

this study, it will not be mentioned in detail. 

 

 

Figure 1.2—Comparing operations in time and frequency domains (Smith, 1999). 

 

The frequency response term is used to describe the steady-state response to a sinusoidal input by a linear, 

time invariant system with zero initial conditions.  The frequency response at one frequency is computed 
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as the ratio of the amplitudes of the FT of the output signal to the FT of the input signal at the specified 

frequency (Harman, 2000). 

 

After the FT of the input is taken, the frequency response analysis is performed.  These analyses are very 

popular since the sinusoidal inputs are very common in engineering applications.  As noted earlier, any 

periodic signal of interest can be represented as a linear combination of sinusoidal components.  

Therefore, either stochastic or deterministic kind of flow rate data can be used throughout the applications 

in this study.   

 

In the frequency domain, the input spectrum is multiplied by the frequency response, resulting in the 

output spectrum. That corresponds to a convolution in the time domain. 

 

( ) ( ) ( )X f H f Y f× = . .................................................................................................................. (1.13) 

 

Where 

X(f) = FT of the input (injection rate or voltage at the sending end) 

Y(f) =  FT of the output (production rate or voltage at the receiving end) 

H (f) = Transfer function of the reservoir (frequency response) 

 

Referring to Fig. 1.2, the mathematical expression of the transfer function, H(f), which is the frequency 

response of a linear system, is noted already in Eq 1.7 in the previous sections:  

 

( )
( )

( )

Y f
H f

X f
= . ..................................................................................................................................(1.7) 

 

The transfer function is the frequency response of the output to a sinusoidal input in a linear system, i.e 

electrical circuit and reservoir.  If the injection rate or voltage at the input end is an impulse, the 

production rate or voltage at the receiving end is called the impulse response.  The discrete Fourier 

transform (DFT) of the impulse response is the frequency response. 

 

We perform the evaluation of the transfer functions and the comparisons between analytical solutions 

(RCTF) and simulated reservoir applications (RTF) in the frequency domain.   
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Low-Pass filters 

 

The low-pass filters are the sorts of frequency responses that are dealt here in spectral analyses through 

transfer functions.  They are filters that allow low frequency components to pass whereas they block the 

high frequencies after a certain cut-off frequency.  The full blockage of the high frequencies at a definite 

cut-off frequency is actually an ideal case.  In most of the cases presented in this study, the stopband does 

not exist because it appears only in very compressible reservoir models, whereas mainly slightly 

compressible reservoir models are targeted in the applications.  Usually filters consist of only stopband 

and transition band.  The representation of the frequency response of a low-pass filter is available through 

calculation of the transfer function.  Thus, there are two types of low-pass filters featured throughout the 

study, which belong to RC networks and reservoir models. 

 

In evaluation of these filters, there are three important characteristics to describe filter performance as 

shown in Fig. 1.3.  These are: 

 �
 Passband:  It refers to the frequencies that pass through the filter.  There should be no ripples in 

the passband in order not to let frequency amplitudes through the filter be changed. 

 �
 Transition band: It is a region between passband and stopband. To separate closely spaced frequencies, 

there has to be a fast roll-off, which requires the transition band be narrow.  

 �
 Stopband: It contains the frequencies that are blocked by the filter.  To adequately block the 

stopband frequencies, there should be good stopband attenuation and be very close to 

zero with no ripples.  
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Figure 1.3— A low-pass filter representation, which shows passband, transition band and stopband  

(Smith, 1999). 

 

The low-pass filters are important to identify the frequency response of an impulse by a linear system, 

which can be either RC network or reservoir throughout the study.  As we will demonstrate by the transfer 

functions of these systems in Chapter II and III, these systems are also low-pass filters.  In both of these 

systems, high frequency components are attenuated because of the compressibility and the capacitance 

terms that keep the low frequency components at the same magnitude.  Since both RC networks and 

reservoir models are due to the same sort of attenuation in high frequencies, these systems can be 

compared with each other in a common frequency domain with regards to the changes in their energy 

levels.  

 

1.5 Conclusions 

 

1. Interwell connectivity studies indicate that conventional cross correlation techniques may not always 

provide the most accurate results due to the nature of the input data.  Therefore, frequency domain 

applications, neural networks and multivariate regression analyses are performed in the literature.  The 

major problems that remain unsolved in those studies are in the saturated reservoir cases, when the 

amount of injected fluid exceeds the amount of produced fluid, and when the bottom-hole pressures are 

fluctuating.  In our study, we intend to investigate if multi-phase production, that occurs when bottom-

hole pressure at the producer drops below the bubble-point pressure, affects the analogy that we apply 

by using RC analog devices in identification of fluid flow in simulated reservoir models. 
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2. The most important conclusion that we draw from sinusoidal flow rate applications is that the more 

recognizable a stimulus applied upon the reservoir is, the easier and more accurate reservoir 

identification is possible.  Especially, when we deal with low-pass filters in the frequency domain, it is 

very crucial to keep the main signal with as little noise as possible.  Therefore, we use sinusoidal flow 

rates, which are very commonly applied in electrical engineering practice to identify a linear system, to 

keep it simple to interpret the main signal during analyses in the frequency domain. 

 

3. In this study, we apply an analogy between RC networks and reservoir systems owing to the fact that 

energy accumulation in both systems can be expressed similarly as stated in Eqs 1.1 through 1.4.  The 

mutual relationship between those systems can be summarized as the following: �
 Storage of energy in these systems is due to the compressibility (reservoir) and the capacitance (RC 

network ) terms. �
 High frequency components are attenuated due to the storage in the systems (low-pass filters). �
 There is the similarity of the governing equations which enables us to construct the analogy in 

dimensional RC models based on their coefficients. 

 

4. On the basis of that analogy, we solve the transmission line equation analytically for 1D, and 2D RC 

models and use the storage equation for 0D RC model to compare them later on with the sinusoidal flow 

rate data obtained from reservoir simulations.  The goal is to determine which network model behaves 

most similarly to the reservoir flow, and to investigate whether multi-phase production in the reservoir 

will affect the similarity. 
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CHAPTER II 

ELECTRICAL ANALOGS TO SMALL COMPRESSIBILITY SITUATIONS 

 

2.1 Introduction 

 

As stated by Bruce (1943), an electrical device, which consists of a resistance and capacitance, can be used 

to simulate the fluid flow in a porous media.  The capacitance placed in a circuit is capable of storing 

electrical energy in its field; likewise, reservoir rock and fluids act as a sponge that stores mechanical 

energy.  Table 2.1 is used to classify the correspondences between an electrical circuit and a reservoir 

rock and fluid system.  This is a table summarizing the entire concept in terms of the terminology from 

both disciplines.  

 

Table 2.1— Analogy of parameters between an electrical circuit and a reservoir is presented along with 

heat flow correspondences that help to understand 1D and 2D analytical solutions. 
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This chapter is allocated for three different RC model analytical solutions, which we use ultimately in the 

identification of reservoir behavior.  First of all, we present the derivation of the transmission line 

equation.  Then, the analytical solutions to the transmission line equation are shown.  We would like to 

note that we take advantage of the similarity of the mathematics of fluid, electrical and heat flow while 

solving the transmission line equation and forming the transfer functions.  Therefore, throughout the study 

notice that both temperature (T) and voltage (V) represent the pressure (P) term. 

 

2.2  Derivation of the Transmission Line Equation of a Resistance - Capacitance Network Model 

 

The transmission line provides a medium allowing the current flow through a pathway between two 

terminals due to a difference in potentials.  The following 1D, semi-infinite RC network (Fig. 2.1) is used 

for the derivation of the transmission line equation, which will be derived in terms of both current, i and 

voltage, � .  The transmission line is assumed to have no inductance and no leakage.  Resistance is in ohms; 

capacitance is in farads. 

 

 

Figure 2.1—1D semi-infinite RC network setup for transmission line derivation. 

 

Considering a distance of 
�

z between two points on a semi-infinite transmission line, the change in 

voltage (Eq. 2.2) and current (Eq. 2.4) are expressed respectively by Ohm’s law (Eq. 2.1) and Kirchoff’s 

law.  Kirchoff’s current law states that the algebraic sum of the currents entering any node is zero.  And, 

Kirchoff’s voltage law states that the algebraic sum of the voltages around any loop is zero. 
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v iR= . ............................................................................................................................................. (2.1) 

 

For voltage: 

 

( ) ( ) ( ) ( )v z z v z R z i z+ ∆ − = − ∆ . .................................................................................................. (2.2) 

 

Dividing both sides by 
�

z and taking the limit as 
�

z��, space derivative of voltage can be written: 

 

( )v
Ri z

z

∂
= −

∂
. .................................................................................................................................. (2.3) 

 

For current: 

 

( ) ( ) ( ) v
i z z i z C z

t

∂
+ ∆ − = − ∆

∂
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Dividing both sides by 
�

z and taking the limit as 
�

z�0, space derivative of current can also be written: 

 

i v
C

z t

∂ ∂
= −

∂ ∂
. .................................................................................................................................... (2.5) 

 

As it is noticed, the space derivatives of voltage and current depend on one another in Eqs 2.3 and 2.5.  

Both of them depend on only one independent variable, which is space, z.  Therefore, the transmission line 

equation can be expressed in two ways.   

 

First way is to differentiate Eq. 2.3: 

 

( )2

2

i zv
R
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∂∂
= −

∂∂
. ............................................................................................................................ (2.6) 

 

Substituting Eq. 2.5 into 2.6, the transmission line equation in terms of voltage takes the following form: 

 

2

2

v v
RC

tz

∂ ∂
=

∂∂
. ................................................................................................................................. (2.7) 



 25 

 

Second way to derive the transmission line equation in terms of current is to differentiate Eq. 2.5: 

 

2

2
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C
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= −
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Interchanging the order of differentiation on the right hand side results in: 
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Substituting Eq. 2.3 into Eq. 2.9 gives the new form of the transmission line equation: 
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The transmission line equation is a second-order partial differential equation.  Since the coefficient of the 

time derivative on the right hand side is assumed constant and not a function of either voltage or current, it 

is a linear PDE, just like the diffusivity equation (Table2.1).   

 

We want to clarify that the similarity between the diffusivity equation and the transmission line equation is 

not the reason of the analogy between RC networks and reservoirs.  It is mainly because of the storage of 

the energy in the systems, as explained earlier.  The similarity between the governing equations enables us 

only to construct a link between RC networks and reservoirs through the coefficients of the time 

derivatives.  Additionally, we mention correspondences to the heat flow equation here in Chapter II 

because we use the analytical solutions of 1D and 2D RC models from the heat equation solutions of 

Carslaw and Jaeger, 1986. 
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2.3  RC Network Analytical Solutions 

 

Three types of solutions of the governing transmission line equation (Eq. 2.7) are represented in this 

section.  These solutions are respectively for 0D (lumped) RC model, 1D RC model, and 2D RC model.  

In each subsection, the ultimate goal is to show the RCTF.   

 

2.3.1 Zero Dimensional Solution 

 

This solution is based on a tank model where a material balance is applied on the RC network model in 

accordance with Kirchoff’s Laws. The change in voltage is expressed in terms of only the time derivative.  

Reservoir engineering applications of this type of RC model are reported by Bruce (1943), Wahl et al. 

(1962), and Al-Yousef et al. (2005).  The RC model of interest is sketched in Fig. 2.2.  The 

correspondence between electrical flow and fluid flow is already shown on Table 2.1 in terms of the 

storage term due to the relationship between the capacitance and the compressibility. 

 

 

 

Figure 2.2—A lumped electrical model with elements for total resistance (Rt) and total capacitance (Ct). 

 

Assuming sinusoidal excitation of angular frequency ω, the transfer function of a series circuit can be 

explained by an impedance divider. Impedance means the ratio of voltage to current (from Ohm’s Law).   

Simply, RC network is divided into two parts by a voltage.  And, the voltage differences at both ends of 

the circuit are expressed in terms of impedances.   The voltage at the sending end (Vin) represents the 

Rt 

Ct 

current 

 in, io 

current 

out, i1  
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impedance of both resistor and capacitor as shown in Eq 2.11, whereas the voltage at the receiving end 

(Vout) consists of only the capacitor’s impedance (Eq. 2.12).   

 

( ) 1
R

in
V f

j Cω += . ........................................................................................................................(2.11) 

 

( ) 1
outV f

j Cω= . .............................................................................................................................(2.12) 

 

Where � = Angular frequency, radian/sec 

j = Imaginary unit  

 

Recalling the frequency response of a linear system to an input, which is given in Eq. 1.7, the transfer 

function of a lumped RC network can be given by the following equation:  

 

( ) ( )
( )0

V fout
H f

D
V fin

= . ................................................................................................................. (2.13) 

 

Where 

Vout(f) = Voltage at the receiving end, volts 

Vin( f) = Voltage at the sending end, volts 

H0D(f) =  Transfer function of a lumped RC network 

 

Substituting the impedances of the resistor and the capacitor, the new form of the transfer function is given 

below (Irwin, 2002): 

 

( )0

1

1
D

H f
j RCω

=
+

. ................................................................................................................. (2.14) 

 

This analytical solution, besides 1D and 2D applications, has a different approach, assuming the model of 

interest a dimensionless tank model.  The important point is that this model, which is being lumped into 

zero dimensions, can be representative of an originally multi-dimensional model.   
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2.3.2 One Dimensional Solution 

 

The solution is based on a linear semi-infinite 1D RC network (Fig. 2.3), where voltage is preferred to be 

harmonic function of time.  Using a periodic function at the inner boundary condition makes it a better 

solution since FT’s are used to decompose the flow rates, which are specifically selected to be sinusoidal 

functions of time.  The corresponding reservoir flow rate generations are explained in Chapter III.  

 

 

Figure 2.3—A 1D electrical model with elements for resistance (R) and capacitance (C). 

 

The 1D solution to the second-order PDE (Table 2.1) is given in the following form (Carslaw and Jaeger, 

1986, p.65): 

 

( ) 2 2,

RC RCz zjj t
v z t Ae e e

ω ωω − −
=

 
 
  

. .............................................................................. (2.15) 

 

This is the voltage distribution across 1D semi-infinite RC network.  Since we use flow rate data from the 

simulated reservoir models in the frequency domain analysis, we should compute the flux of the current 

flowing across a unit cross sectional area.  The flux of current at a unit cross sectional area in 1D electrical 

flow is given in the following form (Table 2.1): 

 

( ) 1
,

RC

dv
F z t

dz
= −  

 
 

. .................................................................................................................. (2.16) 

 

Thus, we obtain the voltage gradient from the space derivative of voltage distribution in Eq. 2.15: 

 

R 
C 

current 

 in, io 



 29 

( )
( )

1

1
2

2
j

RC
z jdv j tRC

A e e
dz

ω
ωω+

− +
= − . ................................................................................ (2.17) 

 

Hence, we can express the current flux in an electrical flow in the following way: 

 

( ) ( ) ( )1
2, 1

2

A

RC

RCz jRC j t
F z t j e e

ω
ω ω− +

= − + . ................................................................... (2.18) 

 

The transfer function of a linear system is available through the ratio of the output to the input: 

 

( )
( )1

,
( )

0,D

F z t
H z

F t
= . ...........................................................................................................................(2.19) 

 

Where 

H1D(z) = Transfer function of the 1D RC network 

F (z,t) = Flux at the receiving end of the RC network (output) 

F (0,t) = Flux at the sending of the RC network (input) 

 

The current flux at the sending end of the 1D RC network is given as: 

 

( ) ( )0, 1
2

A

RC

RC j t
F t j e

ω ω= − + . ............................................................................................. (2.20) 

 

Ultimately, the transfer function of the 1D linear RC network takes the form of Eq. 2.22: 

 

( ) ( )
1

1
2

D

RCz j
H z e

ω− +
= . ......................................................................................................... (2.21) 

 

 ( )1
2 2

D

RC RCz zj
H z e e

ω ω− −
= . ............................................................................................. (2.22) 

 

The first term on the right hand side is the magnitude of a complex number.  It represents the attenuation 

of the voltage.  The second term is the complex part of the number, which represents the phase change. In 

this study, only the attenuation part of transfer functions is going to be used. 
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2.3.3 Two Dimensional Solution 

 

The analytical solution is based on a radial 2D RC network and relatively more complicated than the 

previous models (Fig. 2.4) but it supplies a better alternative to identify more complex systems.  The radial 

solution of the transmission line equation requires a unit line source solution with the following periodic 

source assumption: 

 

( )0,
i t

v r t ce
ωρ= = . .................................................................................................................... (2.23) 

 

 

 

Figure 2.4—A 2D electrical model with elements for resistance (R) and capacitance (C). 

 

The 2D solution to the second-order PDE (Table 2.1) is given in the following form (Carslaw and Jaeger, 

1986, p.263): 

 

( ) [ ],
2

RC j t
r t e j RCro

ων ω
π

= Κ . ............................................................................................... (2.24) 

 

Where  

K0(r) = Modified Bessel function of the second kind, zero order 

 

The flux of current over a cylinder in 2D electrical flow is given in the following form: 

 

current 

 in, io 

current 

out, i1  
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( ) 1
, 2

RC

v
F r t r

r
π

∂
= −

∂
 
 
 

. ........................................................................................................... (2.25) 

 

The voltage gradient: 

 

12

dv RC j t
j RCe j RCr

dr

ωω ωπ= Κ    . ........................................................................................ (2.26) 

 

Where  

K1(r) = Modified Bessel function of the second kind, first order 

 

Thus, the flux at the receiving end of the network: 

 

( ),
1

j t
F r t r j RCe j RCr

ωω ω= − Κ    . .................................................................................... (2.27) 

 

The flux at the sending end of the network: 

 

( )0,
j t

F t e
ω= − . .......................................................................................................................... (2.28) 

 

Hence, the transfer function of the 2D RC network model is given as the ratio of fluxes at the receiving 

and sending ends of the network: 

 

( )
( )2

,
( )

10,
j RC

D

F r t
H r r j RCr

F t
ω ω= = Κ    . ................................................................................ (2.29) 

 

2.4  RC Transfer Functions 

 

We exhibit the applications on RC models in this section to demonstrate how we present the analytical 

solutions of RC models in this study.  Through the calculation of a transfer function, we can perceive ideas 

on how effective a circuit performs because of a voltage potential.   
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Recalling the fact that RC network is a low-pass filter, we interpret the RCTF’ss according to the 

characteristics of low-pass filters, which are mentioned in Chapter I.  Using Eqs. 2.14, 2.22, and 2.29, 0D, 

1D, and 2D transfer functions show different behavior (Figs. 2.5a, 2.5b, and 2.5c).  In general, all figures 

present a smooth passband until the start of the transition region.  This means the low frequency 

components are able to pass through the circuit with no change in their amplitudes until a certain cut-off 

frequency when attenuation of high frequency components, is reached.  In most of the cases we deal, a flat 

stopband does not exist, which means there is not complete blockage of high frequencies, but only 

attenuation. 
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Figure 2.5— Three RC model representations in transfer functions when the distance is 460m for 1D and 

2D models for (a) RC=14.5 sec/m
2
 (b) RC=1.45 sec/m

2 
(c) RC=0.145 sec/m

2
.  Change in the 

low-pass filter characteristics can be seen as we decrease the RC coefficient an order of 

magnitude on each figure.  

a 

c 

b 
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The analytical solutions that we produced for 1D and 2D RC models are functions of the RC coefficient 

and the distance between two measurement points whereas, for 0D model, there is only the RC coefficient 

that needs to be specified.  In Figs. 2.5a through 2.5c, we demonstrate RCTF’ss for three RC coefficients.  

These coefficients are an order of magnitude different from each other to show how attenuations of the 

functions lessen drastically and the stopbands become longer as we decrease the RC coefficient.  The 

range of the frequencies is determined to be 0 to 0.5 1/day considering that the maximum frequency 

produced by the DFT is 0.5 1/day. 

 

Fig. 2.5a is the representative of a case where capacitance is very high, which means the circuit is capable 

of storing a lot of energy.   As the characteristics of a low-pass filter are considered, the stopband is  

smooth, the transition region is broad and the attenuation is large, especially for the 2D model.  All three 

models have very low cut-off frequencies meaning only very small range of frequencies are kept in the 

same magnitude through passband.  Most of the frequencies, which begin from ~0.002 1/day are 

attenuated in these RC circuits.  The main difference between 0D, 1D, and 2D models is the degree of 

attenuation.  In 0D model, the attenuation is only 2 orders of magnitude, whereas it goes up to 4 orders of 

magnitude in 2D model.  This means there is more filtering performed in 1D and 2D models over the 

range of frequencies considered. 

 

Fig. 2.5b represents the case where the capacitance is reduced an order of magnitude, which yields an RC 

coefficient of 1.45 sec/m
2
.  As a result of reducing the coefficient, the circuit lessens dramatically its 

ability to attenuate the high frequencies.  This can be deduced from a higher cut-off frequency ~0.02 1/day 

(for 0D model) and less attenuation in high frequency components, which is only an order of magnitude.  

The difference between the three models is very small:  the 1D and 2D model behavior is the same and the 

0D model is the most distinguishable result with a more specific cut-off frequency where the start of the 

attenuation is easily discerned.  In all, in comparison with the higher RC coefficient application, the 

attenuation reduced very much. 
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Fig. 2.5c is the application of the smallest RC coefficient on three RC models.  The capacitance has the 

least influence on the circuit among all representations.  It has almost no storage capability.  Therefore, the 

attenuation is almost none when compared with the highest RC coefficient application in Fig. 2.5a.  The 

cut-off frequency increased from 0.002 1/day (highest RC case) to 0.2 1/day (lowest RC case) for 0D 

model.  The characteristics of the models have changed enormously because the attenuation has lost its 

effect on the signals due to a lower RC coefficient. The changes in the attenuation and the passband have 

become relatively very small.  

 

2.5  Conclusions 

 

1. At high RC coefficient in Fig. 2.5a, all analytical solutions have almost same passbands; the 

distinguishing parameter is the degree of attenuation. 

 

2. At middle RC coefficient in Fig. 2.5b, proximity among analytical solutions increases and they all 

present the same amount of attenuation.  The only parameter that can help us to characterize models is 

the cut-off frequency, where the transition region begins in a low-pass filter.   

 

3. At small RC coefficient in Fig. 2.5c, the changes in the attenuation are relatively smaller and the lengths 

of the passbands are longer; however, we can distinguish characteristics of the low-pass filters with 

different cut-off frequencies and attenuations easily.   

 

4. Considering that we will use those analytical solutions to identify fluid flow for the reservoir models 

that we simulate for sinusoidal flow rates, we expect 1D RCTF to be similar with the fluid flow in a 

narrow conduit and 2D RCTF to be similar with the multi-dimensional fluid flow in a large drainage 

area.  0D RCTF has the capability of matching with all reservoir models that 1D and 2D are supposed to 

match because it is a lumped model that can describe pressure distribution with regards to the time 

derivative of the voltage and pressure that is free of dimension. 
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CHAPTER III 

DETERMINATION OF RESERVOIR TRANSFER FUNCTIONS 

 

3.1 Introduction 

 

A reservoir transfer function’s (RTF) role in this study is to see which one of the three RC transfer 

functions (RCTF) can be used to determine interwell connectivity.  Previously, we describe that RCTF are 

calculated for reservoir systems with small compressibility values.  Here, we simply explain what methods 

we applied to come up with our choice of RTF and what we did to avoid spurious results in the frequency 

spectra to be able to make accurate comparisons between RTF and RCTF.  

 

In this chapter, we applied deterministic, stochastic and random flow rate data to come up with the best 

possible RTF with the least margin of error that causes ambiguous results in the determination of the 

interwell connectivity. 

 

3.2 Spectral Analyses on Reservoir Flow Rate Data 

 

The reservoir model, on which this interwell connectivity study is based, consists of one injector and one 

producer well in a homogeneous reservoir.  As we explain in Chapter I, we infer the connectivity 

information from the relationship of the coefficients of RTF and RCTF.  Therefore, it is very important to 

make correct predictions from their relationship in the frequency spectra. 

 

 We analyze the spectra in terms of the change in their amplitudes of high and low frequency components.  

And, we calculate RTF (Recall Eq. 1.7) to analyze the amount of attenuation of high frequency 

components in low-pass filters. 

 

3.3  Choices of Injection Rates Used in Spectral Analyses 

 

In each of the following applications, we used a reservoir geometry of 1500ft x 150ft x 20ft (Fig.3.1) to 

simulate the production rates in accordance with the particular injection flow rate.  And, we used the 
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reservoir simulation results only from the single-phase (only water) production in a homogenous and 

isotropic reservoir to develop the understanding needed to explain RTF.  The reservoir parameters that we 

used for the reservoir simulation is stated in Table 3.1. 

 

Table 3.1—Reservoir parameters used in the numerical simulation for all types of rate profiles. 

Reservoir dimensions 1500x150x20 ft
3
 

Grid refinement 150x50x5   

Gridblock dimensions 10x3x4 ft
3
 

Interwell distance 1508 ft 

Production phase water  phase 

φ 0.1 d.less 

k 100 md 

µw 1 cp 

Bw 1.01 RB/STB 

Cw 1.00E-05 1/psi 

BHP @producer 250 psi 

Initial pressure 1470 psi 

Duration 4096 days 

 

 

 

 

 

 

 

Figure 3.1—Reservoir model used in the numerical simulations. 

 

1500 ft 

(a) – cross sectional view 

Interwell  

distance =1508ft 

(b) – top view 

20 ft 

150 ft 

Injector 

Producer 
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3.3.1 Sinusoidal (Deterministic) Flow Rates 

 

Our main initiative in using FT’s is its ability to decompose an arbitrary function into its sinusoids.  

Hence, using Fourier method, one can obtain very successful and precise results in the frequency spectrum 

by using a deterministic function and transforming this function into the frequency domain by Fourier 

method. (Recall Fig. 1.1)  Therefore, we used pure sinusoidal flow rates to investigate the effect of 

reservoir behavior as a low-pass filter on the frequency components.   

 

In order to understand the phenomenon in the frequency domain better, we simplified the injection rate 

profile by using pure sinusoidal components with no noise.  We used four perfectly sinusoidal functions 

with single frequency and a fifth function that is the sum of the four sinusoids to understand how the 

amplitudes of those particular frequencies change after simulating the fluid flow in a reservoir (Table 3.1).  

Frequency components that we used in this analysis are shown in Table 3.2.  The flow rates generated for 

this part of the study are presented in Fig. 3.2. 

 

The Fourier spectra of those four distinct injection flow rates are in Fig. 3.3.  The only crucial information 

that one should perceive from this figure is only the magnitudes of the following specified frequencies, 

0.04, 0.05, 0.1 and 0.2 1/day stated in Table 3.2.   

 

Table 3.2—Frequency components used to generate 5 different injection rate profiles. 

 Injection Rate No. Frequency, 1/day 

1 0.04 

2 0.05 

3 0.10 

4 0.20 

5 0.04, 0.05, 0.1, 0.2 
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 Figure 3.2—Pure sinusoidal injection rates generated in the time domain. 

 

The magnitudes of the particular frequencies are at the correct frequency and at the same amplitude, 

512,000.  Therefore, the slope of the four amplitude values is 0.  The fifth flow rate is a double check to 

see if we calculated the magnitudes correctly in Matlab and also to check if the response goes under any 

change when data includes more than one frequency component.  This is the spectrum of the injection 

flow rates. 

 

The Fourier spectra of the production rates changes drastically (Fig. 3.4).  The amplitudes of those four 

frequencies are attenuated.  This figure shows that the amplitudes decreased due to the low-pass filtering 

process in the reservoir, which is actually the effect of the compressibility factor.  The low level of noise 

in the injection rates has increased by three orders of magnitude due to the noise added by the simulation.  

RTF is shown in Fig. 3.5. 
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Figure 3.3—Sinusoidal injection rates in the frequency domain. 
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Figure 3.4—Simulated sinusoidal production rates in the frequency domain. 
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Figure 3.5—RTF produced from sinusoidal flow rates after removing the noise. 

 

This example shows that: 

 �
 Because we can easily discern the frequency contents of the main signal, the use of deterministic input 

functions such as sinusoidal functions gives very accurate results in the frequency domain.   �
 The application of sinusoidal functions avoids the noise in spectrum making the main signal easily 

detectable. �
 An injection signal with more sinusoidal components is desirable to better define RTF. 

 

3.3.2  Periodic (Stochastic) Flow Rates 

 

We generated the periodic flow rate randomly; however we specified some constraints on initial injection 

rate, amplitude, cycle.  We also added noise and phase to the data.  As a result of this procedure, we used a 

stochastic flow rate (Fig.3.6), which is randomly generated due to the constraints tabulated in Table 3.3 

for the analysis of RTF.  We used the numerical simulation parameters stated in Table 3.1 to produce the 

water production rates in Fig. 3.6.   
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Table 3.3—Constraints used in random periodic flow rate generation (Albertoni, 2002). 

Min. Initial Rate (bbl/d) 500 

Max. Initial Rate (bbl/d) 1500 

Initial Rate (bbl/d)  793.5922 

Phase (rad) 2.254553 

Min. Amplitude (bbl/d) 30 

Max. Amplitude (bbl/d) 100 

Amplitude (bbl/d) 54.07199 

Min. Cycle (mths) 7 

Max. Cycle (mths) 30 

Cycle (mths) 8.812222 

Noise 70 
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Figure 3.6— Generated periodic injection rate and the simulated water production rates in the time 

domain. 

 

The periodic flow rate, which we used in the analyses, consists of various frequencies; the biggest cycle, 

which is distinguishable in the time domain, repeats every 100 days and it corresponds to the lowest 

frequency component (0.01 1/day) in the spectrum (Fig. 3.7).  Despite the fact that not every cyclicity can 

be seen in the time domain (Fig. 3.6), the frequency domain representations in Figs. 3.7a and 3.7b make it 

easier to distinguish all the cyclicities in the data.  The semi-log plot emphasizes the changes of the high 

frequency amplitudes more than the log-log plot.  By this way, the most dominant frequencies in the data, 

which are 0.01 and 0.02 1/day, are easily discerned.  In the log-log plot, it is harder to see the changes in 
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higher frequencies; therefore semi-log plot is also presented.  These figures exhibit what happens to 

frequencies during fluid flow in the specified reservoir when inverse diffusivity coefficient (IDC) is set to 

1.45 sec/m
2
.  Reservoir being a low-pass filter attenuates the high frequency components and the Fourier 

spectra of the production and injection rates exhibit the fluid flow in terms of frequencies.   
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Figure 3.7— Periodic injection rate and the simulated production rate spectra after FT’s are computed. (a) 

log-log plot (b) semi-log plot. 

 

Dealing with this sort of data set, which has a lot of frequencies in it, requires a very good resolution in the 

frequency domain.  To be able to maintain such good resolution to distinguish all the frequency 

components in a time series, it is very crucial to increase the number of data points, thereby decrease the 

space between each frequency component.  Increasing the number of data points in this part of analysis 

would be useful to discern each one of the high frequency component.  However, increasing the number of 

points in time series costs us higher run times during simulation, since computation at every day was 

performed at the numerical simulation.  

 

RTF in Fig. 3.8 summarizes the whole procedure ending up with a nice low-pass filter behavior, which 

means there is a smooth passband in low frequencies and a transition band, where attenuation of high 
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frequencies is performed.  The attenuation at high frequencies is about 2 orders of magnitude.  However, 

the cycles being very dominant in the data does not allow for a precise interpretation in RTF spectrum.   
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Figure 3.8—RTF produced from a periodic flow rate data. 

 

RTF analyses on the periodic flow rate data does not result a satisfactory answer to form an analogy with 

the RC models; therefore, we extended the analyses towards the investigation of perfectly sinusoidal rate 

data.   

 

RTF produced by stochastic periodic flow rates (Fig. 3.8) is not wrong, but does not supply a firm basis to 

construct an analogy between RC models.  They can provide only qualitative information about a RTF. 

However, what we need to use is a quantitative approach to be able to compare an RCTF with that of a 

reservoir.  

 

3.3.3 Random Flow Rates 

 

We used a normally distributed random series (mean=1000 STB/day, standard deviation=200 STB/day). 

to investigate the impact of random data on RTF.  We used this random series as an injection rate profile 
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to simulate the reservoir given the parameters in Table 3.1 and to produce the simulated water production 

rates.  The time domain injection and production rates are shown in Fig. 3.9. 

 

Fig. 3.10 is the representation of the flow rates in the frequency domain, showing the attenuation of high 

frequency components of the production rates.  The amplitudes of the low frequency components suffer 

almost no change, whereas there is about two orders of magnitude change in amplitudes of high frequency 

components.  This is a typical response of a low-pass filter, as mentioned in Chapter I.   
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Figure 3.9— Randomly generated injection rate and the simulated water production rates in the time 

domain. 
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Figure 3.10— Random injection rate and the simulated production rate spectra after FT’s are computed. 
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Figure 3.11—RTF produced from random flow rates. 

 

RTF in Fig. 3.11, makes it easier to discern the degree of attenuation shown in Fig. 3.10.  The amount of 

the attenuation is directly related to the diffusivity parameters that affect the flow pattern. Therefore, the 

compressibility, which is the parameter of interest due to its analogy to the capacitance term in RC 
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models, has a considerable effect on the amount of attenuation.  IDC under the specified conditions in 

Table 3.1 is 1.45 sec/m
2
 and produces 2 orders of attenuation in high frequencies of the random rate 

spectrum.   

 

The amount of noise in this case is large because: 

 �
 The data set itself is already a randomly generated noise. �
 The discretization error is generated through the numerical simulation. �
 Although it is very small and adjustable in the software by the number of digits of the decimal numbers, 

the round-off error caused by fast Fourier algorithm in Matlab are existent. 

 

 Resolution in the frequency domain 

 

While using a pure random time series in our analysis, we did not aim to discern a main signal in the 

frequency domain.  However, our initiative behind applying this time series is based on the fact that if the 

impulse response of  the random time series is infinitely long, the data points in the frequency response 

should be infinitesimally close together, which results in a continuous line in the frequency domain 

(Smith, 1999).  Theoretically, this implies that the FT of an infinitely long random time series forms a flat 

line in the frequency domain.  This way it would be easier for us to plot any kind of change in RTF with 

regards to the flat injection rate spectrum.  However, the discrete time series, which we use in the random 

data analysis, consists of only 4096 points.  Thus, the injection rate spectrum in Fig. 3.10 is not a flat line 

and it deviates from the theory by ending up with a lot of noise.  Therefore, the simulated production rate 

spectrum also has a lot of noise with some additional noise coming from the numerical simulation and 

Matlab computations.   

 

This is an issue related to the resolution of points in the frequency domain.  In this study, considering the 

amount of time that a reservoir simulation takes to run and the main signal, which is the injection rate, 

should be a power of 2 as mentioned in any Matlab manuals, we selected 4096 data points to produce the 

data sets to be utilized in the analyses.   
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Convolution with the Blackman window function 

 

To reduce the amount of noise, which is caused by the randomness of the time series in RTF spectrum, we 

used convolution with Blackman window.  It is a basic moving average filtering method that aims to 

smooth the noise.  We convolved the random injection rate (Fig. 3.9) profile with a 7 point Blackman 

window shown in Fig.3.12.  Besides Hamming window, Blackman window is a very common window 

function used in digital signal processing to remove the noise from the main signal in the time domain.  

The Blackman window function is given in Eq. 3.1: 

 

( ) 2 4
0.42 0.5 0.08

1 1

n n
w n Cos Cos

N N

π π
= − +

− −
   
   
   

............................................................................... (3.1) 

Where 

w(n)  =  Blackman window function 

N = Width of the window 

n = Integer with values 0 ≤ n ≤ N – 1 
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Figure 3.12— 7 point Blackman window function, which we used to convolve the injection rate spectrum 

in Fig. 3.9. 

 

Fig. 3.13a shows the convolved injection rate and the corresponding simulated production rate spectra.   

Fig. 3.13b shows RTF in the case when the random injection rate profile (Fig. 3.9) is convolved by a 7-

point Blackman window function (Fig. 3.12).  Then, we used the convolved injection rate profile to 
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simulate the water production rates.  Taking the FT’s of the convolved injection rates and the simulated 

production rates; we calculated RTF and plotted as in Fig. 3.13b.   

 

The only difference between Fig. 3.11 and 3.13b is using the raw injection rate profile in the former and 

the convolved rate profile in the latter.  Despite the smoothing operation in the time domain, the difference 

between two figures is not as we expected.  The convolution with the Blackman window function (Eq.3.1) 

does not cause a dramatic improvement in the spectrum by removing most of the noise in the frequency 

domain.  The filtering process performs very well and attenuates the high frequency components in 

Fig.3.13b; however, the spread in the spectra that is caused by the randomness of the input does not 

improve.  Eventually, the moving average filtering has not performed well in the frequency domain as 

much as it has in the time domain.   
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Figure 3.13— Convolved injection & simulated production rates spectra (a) and RTF produced from a 

convolved random flow rate data(b). 

 

Especially, the frequencies higher than 0.2 1/day are assumed to be erroneous because a transfer function 

can not be bigger than 1.  In a linear system, it is not possible to receive a steady-state impulse response 

amplitude higher than the impulse amplitude itself.  The reason of this erroneous region in Fig. 3.13b is 

due to applying two filters simultaneously to a system.  These two filters are respectively 7-point 
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Blackman function and the reservoir itself.  The attenuation caused by a Blackman function is ~4 orders of 

magnitude as seen in convolved injection rate spectrum in Fig. 3.13a; whereas the attenuation caused by a 

reservoir simulation is only ~2 orders of magnitude as seen in simulated production spectrum in Fig. 

3.13a.  Thus, the difference of 2 orders of magnitudes between these two filters appears as an erroneous 

region in RTF. 

 

As a result of using random injection rates in the analyses, the nature of the data does not allow us to do 

precise interpretation in RTF spectrum with respect to the RCTF. Therefore, deterministic rate profiles are 

investigated if better results can be obtained from RTF spectra to construct a link between RC models and 

reservoir.  

 

3.4  Reservoir Transfer Functions 

 

The development of this type of RTF is based on the study performed with pure sinusoidal functions in the 

previous section.  Taking advantage of FT’s’ success to decompose a sinusoidal function into its sinusoids 

perfectly well, we made up of a function with 30 different sinusoids to produce an injection rate to be used 

throughout the remainder of this work.  The frequencies that we used to generate this set of injection rate 

are shown in Table 3.4.  According to the list of frequencies, the biggest frequency is 0.4899 cycle/day, 

which has 2.04 sample/cycle; on the other hand the smallest frequency is 0.00098 cycle/day, which has 

1020.41 sample/cycle.  The range of frequencies is important because it has to be broad enough so that 

RTF can be descriptive at both very low and very high frequencies.   
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Table 3.4—30 frequency components used in the injection rate profile. 

No. 

Frequency, 

1/day No. 

Frequency, 

1/day No. 

Frequency, 

1/day 

1 0.00098 11 0.04004 21 0.22217 

2 0.00171 12 0.05005 22 0.24438 

3 0.00244 13 0.06006 23 0.25000 

4 0.00513 14 0.07007 24 0.26001 

5 0.00732 15 0.08008 25 0.27002 

6 0.01001 16 0.09009 26 0.28003 

7 0.01514 17 0.10010 27 0.30029 

8 0.02002 18 0.14014 28 0.35010 

9 0.02515 19 0.17993 29 0.39990 

10 0.03125 20 0.19995 30 0.48999 

 

We generated a sinusoidal injection rate profile with an initial flow rate of 1000 stb/day and an amplitude 

of 30 stb/day.  We display it in Fig. 3.14 along with the simulated water production rates.  We used the 

reservoir conditions given in Table 3.1 to simulate the homogeneous single-phase production at the 

producer.  The production rates are being smoothed by the filtering process in reservoir due to the 

compressibility effect, which is set to 1e-5 1/psi.  As a result, the sharp edges of the injection flow rate are 

filtered and they no longer exist in the simulated production rates.   
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Figure 3.14— Sinusoidal injection rate generated with 30 frequency components and the correspondent 

simulated production rates. 
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We display the frequency-amplitude representation of the data sets (Fig. 3.14) in Fig. 3.15.  The 

attenuation at the high frequency components is marked only about an order of magnitude, which is 

related to IDC set at 1.45 sec/m
2
.   
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Figure 3.15— Sinusoidal injection rate spectrum generated with 30 frequency components and the 

correspondent simulated production rate spectrum. 

 

RTF of the 30 frequency components is shown in Fig. 3.16.  This representation clearly shows the low 

pass filtering effects of the reservoir.  

 

We also performed an application of the same injection rate with some noise added over the data to check 

the availability of the same RTF.  The amount of noise that we added to data set is ~10% of the total input.  

Fig. 3.17a displays the conventional RTF after noise is added over the sinusoidal injection rate.  It is very 

hard to recognize the main signal in this spectrum.  However, the main idea of using specific sinusoidal 

components in the input data reveals its advantage when we plot only these points in the frequency domain 

(Fig. 3.17b).  It is very obvious that using only these points in the graph at the specified frequencies is 

very useful in identifying the main reservoir behavior during the displacement process, even though the 

process is very noisy. 
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Figure 3.16—RTF produced from sinusoidal flow rate data based on 30 frequencies. 
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Figure 3.17—RTF produced from noisy sinusoidal flow rate data w/30 frequencies. (a) Noisy 

representation (b) 30 frequency representation.  

 

3.5  Conclusions 

 

Determining suitable injection signals for evaluation of RTF has been achieved.   

1. Possible sources of noise throughout the applications cause wide ranges of spread at every frequency.  

Overall, possible sources of noise in the study can be stated as the following: 
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 Data set is already incorporated with noise. �
 The discretization error generated through the numerical simulation. �
 The round-off errors caused by fast Fourier algorithm in Matlab. 

 

2. Because noise masks the main signal by causing a wide range of spread in the spectrum, stochastic and 

random flow rates can be used for only qualitative purposes in the study.  The spread of the noise is 

caused by the randomness of the data sets.  

 

3. For quantitative purposes, sinusoidal flow rates are advantageous because of the use of FT’s and the 

analogy we use against RC networks.  

 

4. For the rest of the study, we have selected a sinusoidal injection rate with 30 specified frequencies as the 

injection rate to ensure that there is no noise masking the impulse response in the frequency domain. 

 

5. The number of frequency components that we specified at the input function should be arranged by trial 

and error to find the optimum number that represents passband, cut-off frequency, transition region and 

stopband.  For this study, 30 frequencies are enough to represent the functions. 
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CHAPTER IV 

VALIDATION OF THE PROPOSED METHOD FOR CONNECTIVITY ESTIMATION 

 

4.1 Introduction 

 

We calculated RCTFs (RCTF) based on three analytical models to compare the spectral performance of 

several displacement processes with these analytical solutions.  The ultimate goal is to select the analytical 

solution which best represents the reservoir behavior and predict the interwell connectivity.   

 

Another objective is to determine which displacement cases emulate the spectral behavior of any of the 

three RC networks and to evaluate their effects on estimating interwell connectivity if there are deviations 

from the assumed conditions. 

 

4.2 Reservoir Models Used in Simulation Analysis 

 

We used a standard reservoir geometry, as we used in Chapter III, in the applications unless otherwise 

stated (Fig. 3.1).  This is a 5 layer model allowing fluid flow in y-direction and limited flow in z-direction.  

The injector is located in gridblock at (1, 1); the producer is located at (150, 50).  The interwell distance is 

about 1508 ft (~460m). The gravity effect is on.  Waterflooding is performed in each simulation.  1% 

random error is added to the injection rate which is based on 30 frequencies.  Simulated production rates 

given the reservoir parameters, which will be specified in each section, are modeled in Eclipse by E100.   

 

We used a fine discretisation to reduce the truncation error and the instability as much as possible. The 

fully implicit simulation option is used in Eclipse Black Oil Simulator (E100) to produce the simulated 

values.  The fully implicit option takes longer than the IMPES option, due to three unknowns per 

gridblock, but performs better when big fluctuations exist in the rate profile.  The validation of the 

simulation model is detailed below. 

 

We investigated three displacement processes: water displacing water, water displacing oil, and water 

displacing oil and gas.  And, we used applications from different reservoir geometries, such as narrow and 
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large reservoirs.  Finally, we represented RTF from each application and compared them with RCTF and 

discussed the implications for connectivity estimations.  

 

4.2.1 Simulation Model Validation 

 

 Model validation is necessary to ensure stable and accurate answers from the numerical reservoir 

simulations.    

 

The criterion to test whether the results are stable is to compare the production rates of the producer from 

two following distinct runs: 

 �
 The case when the injector is turned off.  There is only primary depletion. (Qin_off) �
 The case when the injector is turned on.  The producer is supported by the injector.(Qin_on) 

 

The production rates, when the injector is on, should be higher than the case when the injector is off. 

Initial tests showed that this was not the case for the early times of a reservoir simulation. Therefore, very 

small gridblock and timestep refinements were used to overcome this problem. Table 4.1 shows the grid 

refinements, timesteps and the mobility ratios, used throughout the sensitivity analyses.  The reservoir 

parameters used in the simulation model are shown in Table 4.2. 

 

Table 4.1—Reservoir parameters tested throughout the sensitivity analyses. 

Grid Refinement 15x10x1   

    15x10x2   

    15x10x2   

    150x10x5   

    150x10x10   

    150x30x5   

    150x50x5   

Timestep refinement 1 Day 

    0.1 Day 

    0.01 Day 

Mobility Ratio 1  d.less 

    10 (µo=10cp) 
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Table 4.2—Reservoir parameters used in the simulation model validation. 

Reservoir dimensions 1500x150x20 ft
3
 

Interwell distance 1508 ft 

Production phase water, dead oil   

φ 0.1 d.less 

kx, ky 100 md 

kz 1 md 

µw 1 cp 

Bw 1.01 RB/STB 

Cw 1.00E-04 1/psi 

  1.00E-05 1/psi 

  1.00E-06 1/psi 

µo 1 cp 

Bo 1.07 RB/STB 

Co 1.00E-04 1/psi 

  1.00E-05 1/psi 

  1.00E-06 1/psi 

Cf 1.00E-08 1/psi 

BHP @producer 250 psi 

Initial pressure 1470 psi 

Constant injection rate 160 STB/day 

Sor 0.2 d.less 

Swc 0.35 d.less 

 

The sensitivity analyses, using 0.1 day of timestep and 1e-5 1/psi total compressibility, show (Fig. 4.1) 

that the problem does not occur at favorable mobility ratio at all.  At unfavorable mobility ratio (Fig. 4.2); 

however, the problem appears at the very early life of the reservoir up to 2 days.  The problem increases 

despite finer timesteps when we use larger compressibility fluids. (Fig. 4.3) 

 

Making both timestep and gridblock improves the results, but it requires very long run times. Therefore, 

we used the 150x50x5 grid and 0.1 day timestep in the displacement process simulations.  
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Figure 4.1— Flow rate difference in the cases when tstep=0.1day, mobility ratio=1, Ct=1e-5 1/psi for 

different reservoir grid dimensions. 
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Figure 4.2—Flow rate difference in the cases when tstep=0.1 day, mobility ratio=10, Ct=1e-5 1/psi for 

different reservoir grid dimensions. 
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Figure 4.3— Flow rate difference between two cases when (a) unfavorable mobility ratio=10 

tstep=0.01day; (b) favorable mobility ratio=1 tstep=0.01 day. 

 

4.3 Single-phase (Water-only) Production Case 

 

A water-only case forms a basis for comparison with the more realistic cases considered later.  It involves 

the least amount of heterogeneity and represents a situation where the assumptions of the analytical 

solutions are met.  Even though the reservoir is kept as a homogeneous model throughout the entire work, 

producing one more phase and including the relative permeability curves into the model creates 

heterogeneity in the system. 

 

According to the reservoir parameters (Table 4.3), the inverse diffusivity coefficient (IDC) varies between 

1.45e-1 sec/m
2
 and 7.25e+0 sec/m

2
.  The lower the compressibility (Fig. 4.4), the higher is the transfer 

function amplitude.  This implies the filtering ability of the reservoir lessens as the compressibility effect 

gets smaller.  In the most compressible system, the high frequency values have ripples in the stopband due 

to the discretisation error generated by the numerical simulation.  
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Table 4.3—Reservoir parameters used for single-phase reservoir simulation. 

Production phase water   

φ 0.1 d.less 

kx, ky 100 md 

kz 1 md 

µw 1 cp 

Bw 1.01 RB/STB 

Cw 5.00E-05 1/psi 

  1.00E-05 1/psi 

  5.00E-06 1/psi 

  1.00E-06 1/psi 

BHP @producer 250 psi 

Initial pressure 1470 psi 

Duration 4096 days 
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Figure 4.4—RTFs for single-phase production under various total compressibility values. 
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Figure 4.5—Comparison between three RCTFs (RC=1.45e+0 sec/m

2
) and RTF for Ct=1e-5 1/psi when 

IDC=1.45e+0 sec/m
2
. 

 

The three analytical models and the RTF (Fig. 4.5) indicate that the 0D lumped model represents the 

reservoir behavior better than the other two solutions.  In this case, the 2D and 1D model solutions 

underestimate RTF, whereas 0D solution fits the frequency cut-off and the transition region in high 

frequencies very well. 

 

In other cases (Fig. 4.6), the 0D lumped model provides the best approximation to the transfer functions of 

slightly compressible homogeneous systems.   
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Figure 4.6—Comparison between RCTF and RTF for (a) Ct=1e-6 1/psi (b) Ct=5e-6 1/psi (c) Ct=1e-5 1/psi 

(d) Ct=5e-5 1/psi. 

 

When the total compressibility is between 1e-5 1/psi and 1e-6 1/psi (Figs 4.6a-6c), the lumped RC 

solution matches RTF very well.  However, when the system gets more compressible (Fig. 4.6d), the 

lumped model loses its ability to match the reservoir behavior and 2D model fits the fluid flow behavior 

better.  In the most compressible system, the 2D model is more descriptive for the frequency cut-off and 

the transition region of the RTF.    

 

As IDC increases, the attenuation in frequency spectrum increases because the reservoir rock has more 

potential to accumulate reservoir fluids in its media.  In this example, we keep the porosity, permeability 

and viscosity value same and, modify only the total compressibility factor.  Therefore, the change in the 

a b 

c d 
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attenuation as a result of the accumulation is caused by the compressibility factor.  We can conclude from 

these analyses that 2D analytical solution is better than the other solutions to describe the reservoir 

behavior when high IDC values are used in the applications.  

 

The analogy between these two media ensures that RC coefficient should be equal to the estimated IDC to 

infer the connectivity in terms or φ/k as seen in Table 4.4.  If RCTF does not match RTF, then we adjust 

the RC coefficient of the analytical model to approximate the reservoir behavior.  In such a case, we assign 

the modified RC coefficient to the estimated IDC, which yields the estimated φ/k values from the analogy 

between RC networks and reservoir.   

 

For single-phase systems, we matched all RTFs with an analytical solution with no modification on the 

coefficients because the assumptions of the simple reservoir met the assumptions of the analytical 

solutions.  We present the inferred values of diffusivity parameters in terms of φ/k in Table 4.4. 

 

Table 4.4— The IDC in each case is compared with the RC coefficient that is used to calculate the 

analytical solution.  Since the analytical solutions match with RTFs very well, no 

modification is done to the IDC.  Therefore, the IDC, the RC coefficient and the estimated 

IDC values are equal to each other.  Given the Ct and µ values, φ and k relationship is 

calculated from the IDC equation.  

 

    Estimated   Estimated 

Ct IDC RC RC IDC Ct.µ φ/k 
1/psi  sec/m

2
 sec/m

2
 Model  sec/m

2
 cp/psi 1/md 

Fig. 4.4   Fig. 4.6  Table 4.2  

1.00E-06 1.45E-01 1.45E-01 0D 1.45E-01 1.00E-06 1.00E-03 

5.00E-06 7.25E-01 7.25E-01 0D 7.25E-01 5.00E-06 1.00E-03 

1.00E-05 1.45E+00 1.45E+00 0D 1.45E+00 1.00E-05 1.00E-03 

5.00E-05 7.25E+00 7.25E+00 2D 7.25E+00 5.00E-05 1.00E-03 

 

4.4 Two-phase Production Cases 

 

We simulated the following two-phase fluid systems to evaluate their spectral behavior: �
 Dead oil and water production  �
 Dry gas and water production  
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4.4.1 Dead Oil and Water Production Case 

 

We reduced the injection rates by a factor of 10 from those of the base case.  We show the relative 

permeability curves and the reservoir parameters that are applied in the models in Fig. 4.7 and Table 4.5, 

respectively. 

 

We used total fluids production rates for the transfer function calculations (Fig. 4.8).  In this application, 

we modeled slightly compressible systems with total compressibility values of 5.5e-6, 2.8e-6 and 5.5e-7 

1/psi.  The IDC given the reservoir parameters varies between 7.98e-1 sec/m
2
 and 7.98e-2 sec/m

2
. 

 

The most compressible system with total compressibility of 5.5e-6 1/psi shows similar high-frequency 

behavior to that seen in the high diffusivity water-only case.   
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Figure 4.7—Relative permeability curves that we used in dead oil and water production. 
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Table 4.5—Reservoir parameters that we used for dead oil and water production. 

Production phase water, dead oil   

φ 0.1 d.less 

kx, ky 100 md 

kz 1 md 

µw 1 cp 

Bw 1.01 RB/STB 

Cw 1.00E-05 1/psi 

  5.00E-06 1/psi 

  1.00E-06 1/psi 

µo 1 cp 

Bo 1.07 RB/STB 

Co 1.00E-05 1/psi 

  5.00E-06 1/psi 

  1.00E-06 1/psi 

Cf 1.00E-08 1/psi 

Sor 0.2 d.less 

Swc 0.35 d.less 

BHP @producer 250 psi 

Initial pressure 1470 psi 

Duration 4096 days 
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Figure 4.8— Transfer functions for dead oil and water production under various total compressibility 

values. 
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Figure 4.9— Comparison between RCTF and RTF for IDC=4.06E-01 sec/m
2
 when (a) RC=4.06e-1 

sec/m
2
 (b) RC=3.22e+0 sec/m

2
. 

 

There is a poor fit between RTF and any of the RC models when RC = φµCt/k (Fig. 4.9a).  For this case, 

the total fluids production is dominated by water production because water breaks through around 500 

days.  Thus, for a better fit, the RC value needs to be modified since most of the production is controlled 

by the endpoint effective permeability of 22.5 md.  An additional modification is done on compressibility 

value by increasing it to 5e-6 1/psi, which is the water compressibility factor.  As result of the comparison, 

the 2D RC model is selected as the best descriptive analytical solution possible (Fig. 4.9b).   
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Figure 4.10— Comparison between RCTF and RTF for IDC=7.98E-02 sec/m
2
 when (a) RC=7.98e-2 

sec/m
2
 (b) RC=6.44e-1 sec/m

2
. 
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In Figs. 4.10a and 4.11a, the results of the least and the most compressible system show what happens 

when we change the IDC of the reservoir system from 7.98e-2 to 7.98e-1 sec/m
2
.  For each system, we get 

very poor matches when RC = φµCt/k.  Since water production dominates the total fluids production, we 

make the similar modifications as we did in the previous case and reach succesful the matches in Figs. 

4.10b and 4.11b.  In both cases, matches are very good and the modifications that we did because of the 

major water production make sense.  The only difference between the cases is the type of the analytical 

solution that matches the RTF.  In the least compressible case, it is the 0D model; on the other hand, it is 

the 2D model that gives the best match in the most compressible case.  This application supports the result 

that we end up with the water-only case.  As IDC increases, the accumulation in the reservoir increases; 

thereby, the heterogeneity of the displacement and the attenuation in the high-frequency components 

increase.  Hence, 2D sophisticated solution becomes more descriptive for fluid flow identification in 

compressible reservoir models. 
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Figure 4.11— Comparison between RCTFs and RTFs for IDC=7.98e-1 sec/m
2
 when (a) RC=7.98e-1 

sec/m
2
 (b) RC=6.44e+0 sec/m

2
. 

 

In this application, we modified the IDC values by switching the parameters from the total compressibility 

and the absolute permeability values to that of the water phase.  As result of these modifications, we 

calculated the “estimated” IDC values; hence the “estimated” diffusivity parameters in Table 4.6.  
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Table 4.6— Interwell connectivity parameters estimated from spectral analyses in the dead oil and water 

production case.  Modifications that we made to the RC coefficient led us to the estimated 

values of IDC and φ/k.   

 

    Estimated   Estimated 

Ct IDC RC RC IDC Ct.µ φ/k 
1/psi sec/m

2
 sec/m

2
 Model  sec/m

2
 cp/psi 1/md 

Fig. 4.8 Fig. 4.9-11    Table 4.5  

5.50E-07 7.98E-02 6.44E-01 0D 6.44E-01 5.50E-07 8.08E-03 

2.80E-06 4.06E-01 3.22E+00 2D 3.22E+00 2.80E-06 7.93E-03 

5.50E-06 7.98E-01 6.44E+00 2D 6.44E+00 5.50E-06 8.08E-03 

 

4.4.2 Dry Gas and Water Production Case 

 

We performed another application on two-phase production in a reservoir that has a gas cap.  We used the 

reservoir parameters and the relative permeability curves shown in Table 4.7 and Fig. 4.12, respectively.  

In this application, we investigated the effect of free gas production on transfer functions.  We reduced the 

injection rates by a factor of 10 from those of the base case.   

 

Fig. 4.13 illustrates RTFs produced from three different total compressibility values.  Basically, we kept 

the gas compressibility constant around 1e-5 1/psi and changed water compressibility to 1e-5, 5e-6 and 1e-

6 1/psi.  Water BT takes place around 500 days out of 4096 days.  The range of IDC that we applied in this 

case is 2.3e-1 and 4.64e-1 sec/m
2
. 

 

 

Figure 4.12—Relative permeability curves used in dry gas and water production. 
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Table 4.7—Reservoir parameters used for dry gas and water production. 

Production phase water, dry gas   

φ 0.1 d.less 

kx, ky 100 md 

kz 1 md 

µw 1 cp 

Bw 1.01 RB/STB 

Cw 1.00E-05 1/psi 

  5.00E-06 1/psi 

  1.00E-06 1/psi 

µg 0.01 cp 

Bg 0.96 RCF/SCF 

Cg 1.00E-05 1/psi 

Cf 1.00E-08 1/psi 

Sgir 0.12 d.less 

Swc 0.2 d.less 

BHP @producer 250 psi 

Initial pressure 1470 psi 

Duration 4096 days 
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Figure 4.13—RTFs for dry gas and water production under various compressibility values. 
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Figure 4.14— Comparison between three RCTFs and RTF for IDC=2.03e-1 sec/m
2
 when (a) RC=2.03e-1 

sec/m
2
 (b) RC= 1.16e+0sec/m

2
. 
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Figure 4.15— Comparison between three RCTFs and RTF for IDC=3.19E-01sec/m
2
 when (a) RC=3.19e-

1 sec/m
2
 (b) RC=3.15e+0 sec/m

2
. 
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Figure 4.16— Comparison between three RCTFs and RTF for IDC=4.64e-1 sec/m
2
 when (a) RC=4.64e-1 

sec/m
2
 (b) RC=5.58e+0 sec/m

2
 

 

In Figs. 4.14a, 4.15a and 4.16a, we compare each RCTF with three analytical solutions to pick one of 

them as the best representative of the reservoir behavior.  However, none of them fits the RTF for the 

particular IDC.  Therefore, we applied similar modifications, as we did in the previous dead oil and water 

production case.  As results of these modifications, we picked the 0D model as the best analytical solution 

that identifies the reservoir in the dry gas and water production case (Figs. 4.14b, 4.15b and 4.16b). 

 

We summarize the results from this application in Table 4.8.  Similarly, we adjusted the RC coefficient of 

each analytical solution and calculated the “estimated” values of IDC to infer the connectivity in terms of 

φ/k.  Finally, estimated results show that one can also understand that higher the compressibility in the 

reservoir; more difficult the reservoir fluid recovered by the injected water due to higher values of φ/k.  

Also, we show that 0D analytical solution is successful in fitting the reservoir behavior even at high 

compressibility values unlike the previous cases.  
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Table 4.8— Results of the interwell connectivity inferred from the dry gas and water production case. 

Higher the compressibility, lower the interwell connectivity parameters are obtained. 

 

    Estimated   Estimated 

Ct IDC RC RC IDC Ct.µ φ/k 
1/psi sec/m

2
 sec/m

2
 Model  sec/m

2
 cp/psi 1/md 

Fig. 4.13 Fig. 4.14-16    Table 4.7  

1.40E-06 2.03E-01 1.16E+00 0D 1.16E+00 1.40E-06 5.71E-03 

2.20E-06 3.19E-01 3.15E+00 0D 3.15E+00 2.20E-06 9.87E-03 

3.20E-06 4.64E-01 5.58E+00 0D 5.58E+00 3.20E-06 1.20E-02 

 

4.5 Dissolved Gas Production Around the Wellbore 

 

We investigate if we can establish the similar analogy between RC networks and reservoir behavior when 

dissolved gas is produced around the wellbore due to the drop of reservoir pressure below saturation 

pressure. 

 

We used the standard reservoir geometry and reduced the injection rates by a factor of 10 given the 

reservoir parameters in Table 4.9 and the relative permeability curves in Fig. 4.17.   

 

In this case, we applied different varieties of compressibility factor values to indicate the effects of both 

very high and very low compressibility effects. (Table 4.10)  In total, we simulated 6 simulation models 

under the conditions stated in Table 4.9.  Gas evolution around the wellbore is shown by saturation maps, 

which are located in Appendix B.  Water breakthrough (BT) occurs around 345 day.  Oil and dissolved gas 

production is performed up until BT.  After BT, water production dominates the total fluids production.  

Although free gas production is not included in the application, dissolved gas production around the 

wellbore is available at very small values from the gas saturation maps. 
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Table 4.9—Reservoir parameters used for the simulated reservoir model. 

Production phase water, live oil, dissolved gas 

φ 0.1 d.less 

kx, ky 100 md 

kz 1 md 

µw 1 cp 

Bw 1.01 RB/STB 

Cw  (when Co_undersaturated=1e-6 1/psi) 1.00E-06 1/psi 

 1.00E-05 1/psi 

 5.00E-06 1/psi 

µo_undersaturated 0.94 cp 

Bo_undersaturated Appendix B  

Co_undersaturated (when Cw=1e-6 1/psi) 1.00E-06 1/psi 

 5.00E-06 1/psi 

 1.00E-05 1/psi 

 5.00E-05 1/psi 

Cf 1.00E-06 1/psi 

Swc 0.35 d.less 

Sor 0.35 d.less 

BHP @producer 3500 psi 

Initial pressure 4100 psi 

Saturation pressure 4000 psi 

Duration 4096 days 

 

Table 4.10—Compressibility factors used for the simulated reservoir model. 

 Simulation 

Oil 

Compressibility 

Water 

Compressibility 

Total 

Compressibility 

 Run # Factor, 1/psi Factor, 1/psi Factor, 1/psi 

1 1.00E-06 1.00E-06 1.70E-06 

2 1.00E-06 5.00E-06 3.10E-06 Part 1 

3 1.00E-06 1.00E-05 4.85E-06 

4 5.00E-06 1.00E-06 3.10E-06 

5 1.00E-05 1.00E-06 4.85E-06 Part 2 

6 5.00E-05 1.00E-06 1.89E-05 
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Figure 4.17—Relative permeability curves used in the reservoir simulation. 

 

We present the effect of the dissolved gas production in terms of TF in Fig. 4.18.  Each one of the 

functions represents a simulation run when oil and water compressibility factor is set to a specific value.  

We can show the simulations runs in two parts (Table 4.9): 

 �
 Part 1: Co is equal to 1e-6 1/psi.  Cw is changed to 1e-6, 5e-6, 1e-6 1/psi. �
 Part 2: Cw is equal to 1e-6 1/psi.  Co is changed to 1e-6, 5e-6, 1e-5, 5e-5 1/psi. 

 

As a result of this sensitivity analysis, we investigate the variations in attenuation of each simulation 

model due to the differences in total compressibility factors and the heterogeneity of the systems due to 

the dissolved gas production.   

 

The most compressible case is when we set the oil compressibility to 5e-5 1/psi.  Ripples at the stopband 

are at their highest level in this case. The least compressible system is when both oil and water 

compressibility values are set to 1e-6 1/psi.   

 

Our objective is to understand if we can still use RCTFs to identify an RTF when dissolved gas production 

occurs around the wellbore.  Obviously, the dissolved gas production does not mask the main signal in the 

spectrum due to the useful presentation of the main signal that consists of 30 frequency components.  

Hence, we can still apply our method to infer connectivity parameters even though the displacement 
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process gets more complicated by adding the dissolved gas into the producing phases.  Moreover, we can 

quantify the heterogeneity of the system only by the RC coefficient of RCTF that fits the particular RTF.  

Because we have experienced from the spectral analysis so far that higher the RC coefficient, more 

heterogeneous the system is. 
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Figure 4.18— RTFs produced from the live oil and water production simulations for various 

compressibility values. 

 

We display the comparisons of RTFs with the correspondent RCTF in Figs. 4.19, 4.20 and 4.21.  As we 

have performed in the previous applications, we compare three RCTFs, which we calculated by the exact 

diffusivity parameters, with the RTF (Figs 4.19a, 4.20a, and 4.21a).  If none of three RC models fit the 

particular RTF, we adjust the RC coefficient to fit the reservoir behavior (Figs 4.19b, 4.20b, and 4.21b).  

Then, we assign the adjusted RC coefficient to the IDC to compute the estimated values of interwell 

connectivity information, which is φ/k. (Table 4.11) 

 

We show that 0D RC model fits the least compressible systems perfectly well (Fig.4.19b), as we have 

experienced previously, when we adjust the RC coefficient to 8.99e-1 sec/m
2
. 
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Figure 4.19— Comparison between RTF for IDC=2.47e-1 sec/m
2
 and RCTFs when (a) RC=2.47e-1 

sec/m
2
 (b) RC=8.99e-1 sec/m

2
. 
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Figure 4.20— Comparison between RTF for IDC=4.5e-1 sec/m
2
 and RCTFs when (a) RC=4.5e-1 sec/m

2
 

(b) RC=1.92e+0 sec/m
2
. 

 

Although their total compressibility factors are same (Ct=3.1e-6 1/psi and 4.85e-6 1/psi, respectively), 

reservoir behavior in Figs. 4.20a and 4.21a show different results.  The reason of this situation is the water 

production that dominates the total fluids production and has different water compressibility values in each 

run (Table 4.10).  However, the RCTF that fits one RTF can not fit the other RTF; therefore, the fits that 

we obtain in these practices will not be perfect to infer connectivity parameters (Figs. 4.20b and 4.21b), 

but they are very close to make estimations. 
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Figure 4.21— Comparison between RTF for IDC=7.03e-1 sec/m
2
 and RCTFs when (a) RC=7.03e-1 

sec/m
2
 (b) RC=3.14e+0 sec/m

2
. 
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Figure 4.22— Comparison between RTF for Ct=1.89e-5 1/psi and RCTFs when (a) RC=2.74e+0 sec/m
2
 

(b) RC=6.89e+0 sec/m
2
. 

 

Figs. 4.22a and 4.22b present the most compressible system that we applied in this case.  It is the most 

heterogeneous case of all applications and cases that we have practiced so far.  We have already 

experienced that we can see the heterogeneity of the displacement process by looking at the degree of the 

attenuation of RTF in its high frequencies.  In this case, stopband also exists by forming ripples and 

making it hard to fit an RCTF.  As we stated, we do not include the ripples of a stopband in the 
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quantitative analysis.  After adjusting the RC coefficient to obtain a better match in Fig 4.22b, the fit to the 

RTF is good enough to make an estimation of the interwell connectivity parameters. 

 

Finally, the results of the dissolved gas production around wellbore indicates that except for the least 

compressible system, all models have a good enough match with an RCTF to make estimations.  The least 

compressible system has the best match; hence it offers the most reliable interwell connectivity 

information.  In other words, we can not make perfect matches and perfect estimations when we handle 

more complicated displacement processes as in Figs. 4.20, 4.21, and 4.22.  Table 4.11 summarizes the 

results obtained from this application displaying the estimated IDC from the analogy and the interwell 

connectivity information in the last column. 

 

Table 4.11—Interwell connectivity inferred from the dissolved gas production case. 

   RC  Estimated   Estimated 

Sim Ct IDC Coefficient RC IDC Ct.µ φ/k 
Run 1/psi sec/m

2
 sec/m

2
 Model  sec/m

2
 cp/psi 1/md 

# Fig. 4.18     Table 4.10  

1 1.70E-06 2.47E-01 8.99E-01 0D 8.99E-01 1.70E-06 3.65E-03 

2 3.10E-06 4.50E-01 1.92E+00 0D 1.92E+00 3.10E-06 4.27E-03 

3 4.85E-06 7.03E-01 3.14E+00 2D 3.14E+00 4.85E-06 4.46E-03 

4 3.10E-06 4.50E-01 1.21E+00 1D 1.21E+00 3.10E-06 2.69E-03 

5 4.85E-06 7.03E-01 2.42E+00 2D 2.42E+00 4.85E-06 3.44E-03 

6 1.89E-05 2.73E+00 6.89E+00 2D 6.89E+00 1.89E-05 2.52E-03 

 

4.6  Conclusions 

 

1. We performed applications only on single-phase (water-only) production and two-phase production 

under various total compressibility factors including the dissolved gas evolution around wellbore 

application. 

 

2. We successfully matched RTFs with the correspondent RCTFs in the single-phase production results 

with no modification on the RC coefficient.  Therefore, the estimated IDC is equal to the original IDC. 
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3. When we increase the total compressibility to 5e-5 1/psi in the single-phase production, a stopband, 

besides a passband and a transition band, appears along with some ripples at high frequency values.  In 

this case, we used 2D RC model to identify the reservoir behavior. 2D RC model is more descriptive 

when RC coefficient increases up to 7.25 sec/m
2
.   

 

4. In the two-phase dead oil and water production, we obtained the best result from the least compressible 

reservoir model when water compressibility is set to 1e-6 1/psi.   Lumped 0D RC model fits perfectly to 

the RTF when we modified the RC coefficient due to the relative permeability to water and the water 

compressibility factor. In more compressible systems when we set the water compressibility to 1e-5 and 

5e-6 1/psi, 2D RC model captures RTF better; however the results are not as accurate as the one in the 

least compressible reservoir model. 

 

5. In the two-phase dry gas and water production, we again obtained the most reliable analogy from the 

least compressible reservoir model when total compressibility factor is 1.4e-6 1/psi.  In that case, unlike 

the other applications, 0D RC model fits RTFs for all compressibility values. However, the results are 

all good enough to make estimations for interwell parameters. 

 

6. As a result of the dissolved gas production around the wellbore application, we can state that dissolved 

gas production that has been excluded from the interwell connectivity studies so far, can be analyzed by 

our method to infer interwell connectivity parameters.  However, the results are not as good as the liquid 

production cases. 

7. We kept the fits of the models to RTFs to only visual assessments rather than applying statistical 

methods such as coefficient of determination (r
2
) to prove how close the fits are.  The reason to that is 

these applications are not used systematically in a project that provides very sensitive information.  The 

applications are only representative of a proof of concept that might be a beginning of a more detailed 

study.  
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CHAPTER V 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

5.1 Summary 

 

This study is a proof of concept, which infers IDC parameters between an injector and a producer in a 

waterflooded homogenous reservoir by utilizing only the injection and the production flow rate data.  The 

method requires frequency domain analysis of the flow rate data by using FT’s and an analogy between 

RC networks and reservoirs that provides analytical solutions to the transmission line equation.   

 

Hypothetical reservoir models are simulated in the validation part to investigate under which conditions 

the method works.  Ultimately, dissolved gas production around wellbore is modeled to see if the spectrum 

of the reservoir flow rate data is masked by the dissolved gas production, so interwell connectivity 

inference is possible by this method. 

 

In Chapter I, the objectives of the study, the analogy between an RC network and a reservoir are explained 

and a wide range of literature reviews is depicted.  The analogy between an RC device and a reservoir is 

already available in literature by Bruce (1943).  He introduced the analogy between these two media based 

on a tank model by the following material balance formulas: 

 

net p t

dp
q V c

dt
= ................................................................................................................................ (5.1) 

 

net E

dv
i C

dt
= ................................................................................................................................... (5.2) 

 

Depending on Bruce’s work and the similarity between diffusivity equation and transmission line equation 

as stated respectively in Eqs. 5.3 and 5.4, the analogy in this method is based on the relationship between 

the coefficients in Eq.5.5. 
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Analytical solutions of RC network that are derived in 3 dimensional choices are used to identify the 

reservoir behavior through the use of transfer functions.  The analogy for 1D and 2D dimensional models 

between two coefficients in Eq. 5.5 is used to define the IDC and thereby, the ranges of porosity and 

permeability values to infer interwell connectivity.   

 

In Chapter II, 0D, 1D and 2D analytical solutions to the transmission line equation are shown and 

RCTF’ss are introduced.  The results of the analytical solutions are represented in terms of RCTF’ss which 

are stated in the following equations. 

 

( )0

1

1
D

H f
j RCω

=
+

..................................................................................................................... (5.6) 

 

( )1
2 2

D

RC RCz zj
H z e e

ω ω− −
= .................................................................................................. (5.7) 

 

2
( )

1
j RC

D
H r r j RCrω ω= Κ    .................................................................................................... (5.8) 

 

Three RCTF’ss are calculated given the RC coefficient and the interwell distance between the well pair.  

RC coefficient is calculated from the relationship stated in Eq. 5.5.   

 

In Chapter III, frequency domain analyses performed on reservoir flow rate data are shown and RTFs of 

various discrete time series are introduced.  A specific injection flow rate is generated based on 30 
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frequencies to produce a very accurate RTF to be used in further analysis to maintain an analogy with a 

RCTF.  

 

In Chapter IV, hypothetical reservoir models created in Eclipse are used to validate the method through 

the use of RC and RTF’s, which are explained separately in Chapters II and III, respectively.  Cases are 

applied on single and two-phase production.  Ultimate goal was to investigate if dissolved gas production 

around wellbore masks the RTF spectrum and destroy the main signal to be analyzed.   

 

5.2 Conclusions 

 

The analogy between RC networks and reservoirs are applied on hypothetical cases that are modeled in 

black oil simulator.  No real field data is used to validate the results.  The concluding remarks from this 

study are as follows: 

 

1. Using only injection and production flow rate data in frequency domain with the transfer functions and 

an analogy to the RC networks is a multi-disciplinary work.  It provides an estimation of connectivity 

information between a well pair in a homogenous porous media.  

 

2. This method indicates that higher the RC coefficient determined from an analogy between an RC 

network and a reservoir, higher the heterogeneity of the displacement process.  Thus, the RC coefficient 

yielded from the analogy provides a quantitative approach to re-estimate the IDC, which results in a 

alternative way to infer interwell connectivity.  

 

3. In addition to the tank model, which is used as a solution of the analog RC devices in the literature, 2D 

RC analytical solutions can also be applied to perform analogy between electrical flow and fluid flow. 

 

4. This analogy is proven to be applicable to provide quantitative results only in a simple reservoir where 

the assumptions of the analytical solutions are nearly met.  The analog RC network models are able to 

identify the RTF’s only if the following conditions are provided: �
 Homogeneous, isotropic porous media 



 82 �
 Small compressibility values around 1e-6 1/psi �
 Sinusoidal injection rate which has enough frequencies to construct the RTF. 

 

5. Although the parameters of the hypothetical reservoir models do not meet the analytical solution 

parameters in two-phase production applications, deviations from the assumptions can be tolerated in 

the following applications performed in this study to estimate diffusivity parameters: �
 Dead oil + water production �
 Dry gas + water production 

 

6. Dissolved gas production incorporates huge heterogeneity to the reservoir system; therefore the 

estimations provided from the analogy result poor predictions.   

 

7. For high compressibility values in a reservoir, this method provides qualitative information based on the 

ripples appearing in the stopbands.  This might be useful in making qualitative comparisons between 

different reservoir models. 

 

8. Injection rate based on 30 particular frequency components is very useful in maintaining a main signal 

in frequency domain while performing spectral analysis on flow rate data, even in noisy processes. 

 

9. Fourier transforms are very successful for the purposes of this study in terms of extracting the main 

signal at average amplitudes. 

 

10.The analytical solutions are unable to reflect the behavior of a stopband in a RTF.  The ripples that 

appear in high frequency components are excluded from the quantitative analyses.  However, they can 

be used to provide qualitative information. 

 

5.3 Recommendations for Future Work 

 

This method is applied on very simple hypothetical reservoir models to show a proof of principle between 

a single well pair.  The analogies are based on the matches between RC and reservoir TF’s only visually.   
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The study can be extended over simple reservoir geometries for small compressibility values on multiple 

well pairs along with weighting averages.  In this case, the matches between transfer functions can be 

evaluated statistically in more detail and the estimated reservoir parameters from multiple well pairs can 

be cross plotted to infer the connectivity.  
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NOMENCLATURE 

 

CE = Capacitance, µfarads 

Vp = Pore volume, bbl 

ct = Total compressibility, 1/psi 

q1  =  Flow rate in, bbl/day 

q2 = Flow rate out, bbl/day 

p = Pressure, psi 

t = Time, day 

i1 = Current in, �A 

i2 = Current out, �A 

z  =  Point in space, ft 

φ  =  Porosity, d.less 

µ  = Viscosity, cp 

k =  Permeability, md �  = Voltage, volts 

R = Resistance, ohms 

C  = Capacitance, farads 

Y(f) =  FT of the production rate  

X(f) = FT of the injection rate 

H(f) = Transfer function of the reservoir 

f(t) =  a given arbitrary function 

a0 = the constant term in the Fourier series approximation 

an = a coefficient in the Fourier series approximation 

bn = a coefficient in the Fourier series approximation 

sN (t) = n
th

 partial sum of the Fourier series approximation 

N = degree of polynomial 

n = 1,2…N 

t = time, sec 

f =  Frequency, 1/sec 

Vout =  Voltage at the receiving end, volts 

Vin =  Voltage at the sending end, volts � = Angular frequency, radian/sec 

j = Imaginary unit  



 85 

A =  Constant coefficient 

j = Imaginary unit 

r = radius, ft 

T = Temperature, K � = Heat diffusivity � = Heat diffusivity coefficient 

K = Thermal conductivity, W/mK �  = Density, kg/m
3
 

c = Specific heat, J/gK 

F(z,t) = Heat flux or current flux 

F (z,t) = Flux at the receiving end of the RC network (output) 

F (0,t) = Flux at the sending of the RC network (input) 

w(n)  =  Blackman window function 

N = Width of the window 

n = Integer with values 0 ≤ n ≤ N – 1 

K0(r) = Modified Bessel function of the second kind, zero order 

K1(r) = Modified Bessel function of the second kind, first order 

H0D(f) =  Transfer function of a lumped RC network 

H1D(z) = Transfer function of the 1D RC network 

H2D(f) =  Transfer function of the 2DRC network 
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APPENDIX A 

FUNDAMENTAL KNOWLEDGE IN FOURIER TRANSFORMS 

 

A.1 Fourier Series 

 

Davis (1973) states that Fourier analysis is the decomposition of a signal into its harmonic constituents.  A 

signal is composed of three parts: a linear trend in the average value of the signal, various periodic 

components and a random component.  After removing the trend component, the remaining parts consist 

of a signal (periodic components) and noise (random components).  One of the purposes of Fourier 

analysis is to extract the dominant periodic components. 

 

As mentioned earlier, the purpose of Fourier analyses is to express an arbitrary function, f(t), as a linear 

combination of a set of N harmonic sine and cosine basis functions (Harman, 2000). 
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where sN (t) is the Fourier approximation to the function f(t) by using a trigonometric polynomial of degree 

N assuming  f(t) is continuous on the interval [-
�

, 
�

].  The constant term a0 and the Fourier coefficients an 

and bn in Eq. A.1 can be computed by Eqs A.2, A.3 and A.4 respectively for n=1,2…N. 
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Applications of periodic functions can have periods other than 2π.  Therefore, the following Eq. A.5 will 

be a representation that covers a period of T.  If the given arbitrary function, f(t), is periodic on the interval 

[-T/2, T/2] instead of [-π, π], the limits of integration for the Fourier series can be changed from [-�, �] by 
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rescaling the variable t as 2�t / T.  Then, the constant term a0 and the coefficients an and bn in Eqs. A.2, 

A.3 and A.4 need to be redefined to be able to make the new Fourier approximation to the function f(t) on 

that given interval by the following expressions.  
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Therefore, the new approximation to the given arbitrary function which is continuous on the interval [-T/2, 

T/2] is as Eq. A.8  Since the sum contains an infinite number of terms, the equality sign in Fourier series 

expansions is used instead of the approximation sign. 
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Assuming the variable t represents time, the function f(t) repeats every T seconds (period) which means 

that the frequency of the series above is f0 =1/T, in cycles per second, or hertz.  Eq. A.8 can be rewritten 

by incorporating f0: 
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or 
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where   
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The first terms in sine and cosine functions, which are an and bn, are called the fundamental components, 

the other terms are the harmonics with frequencies that are integer multiples of the fundamental 

component’s frequency.  When the Fourier series is used to approximate f(t), the f(t) must be a continuous 

function of time.   

 

Generally, the Fourier series of a periodic function with period T seconds contains the fundamental and 

numerous harmonics.  The component magnitudes of the series allow the interpretation of the function in 

terms of its frequency spectrum.  The plot of the magnitude of the frequency components is called the 

frequency spectrum, where the frequency components are spaced f0=1/T hertz apart from each other.   

 

A.2 Fourier Transform 

 

The FT is an extension of Fourier analysis to the analysis of non-periodic functions.  In the analysis of 

such functions, the sum of the discrete frequencies must be replaced by an integral.  Let the function f(t) be 

continuous in every piece for  -
�

< t <
�

 and let ( )f t dt
∞
∫

−∞
 exist so that the result is finite, then the FT of 

f(t) is as follows: 
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where F(i�) represents the frequency spectrum of f(t).  It may be complex even if f(t) is real.  Thus, the 

magnitude |F(i�)| is called the amplitude spectrum of  F(i�) (Kreyszig, 2000).   

 

A.3 Discrete Fourier Transform 

 

The Fourier series and the FT are applied to functions f(t) that are continuous and known for all values of 

t.  However, Fourier analysis by computer requires a finite number of samples of f(t) (Kreyszig, 2000). 
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Typically, the signals are sampled at equally spaced points in time.  As noted in previous sections, it is 

assumed that the function or a signal being analyzed is infinitely long in time when solving analytically.   

 

Assume that a function f(t) is sampled at intervals 
�

t=Ts seconds to create a set of N points.  The length in 

time of the sampled signal is (N-1)Ts seconds.  The function at point n is denoted by f(nTs) for n=0,…,N-1 

values.  The discrete Fourier transform (DFT) produces the frequency spectrum by the following formula: 
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for k=0,…,N-1. 

 

As a result of applying the DFT, the N sample points of f(t) in the time domain produce N frequency 

components in the discrete spectrum spaced at intervals fs=1/(NTs).   

 

The DFT of a real function f(t) results with a complex number of Fk.  Thus, the magnitude of the complex 

number is needed to be taken by the following equation: 

 

22
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The algorithms that are used to calculate the DFT are called fast FT algorithms.  Throughout the study of 

this proposed work, Matlab has been used for DFT calculations.   
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APPENDIX B 

GAS SATURATION MAPS RELATED TO THE DISSOLVED GAS APPLICATION 

 

Gas evolution around wellbore is modeled in reservoir models from 6 reservoir simulation runs which are 

summarized in Table B.1.  Varieties of oil and water compressibility factors are used to produce these 

saturation maps.  Regarding the change in oil compressibility factors, formation volume factor versus 

pressure figure is displayed in Fig. B.1. According to the following Figs. B.2 – B.7, it is shown that gas 

evolution around the wellbore decreases by the increasing compressibility factor of oil.   

 

Table B.1—Summary of simulation runs in dissolved gas production case. 

Simulation 

Oil 

Compressibility 

Water 

Compressibility 

Total 

Compressibility 

Run # Factor, RB/STB Factor, RB/STB Factor, RB/STB 

1 1.00E-06 1.00E-06 1.70E-06 

2 1.00E-06 5.00E-06 3.10E-06 

3 1.00E-06 1.00E-05 4.85E-06 

4 5.00E-06 1.00E-06 3.10E-06 

5 1.00E-05 1.00E-06 4.85E-06 

6 5.00E-05 1.00E-06 1.89E-05 
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Figure B.1—Oil formation volume factor versus pressure. 
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Figure B.2— Gas saturation map showing dissolved gas evolution around the wellbore when Co=1e-6 

1/psi and Cw=1e-6 1/psi. 
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Figure B.3— Gas saturation map showing dissolved gas evolution around the wellbore when Co=5e-6 

1/psi and Cw=1e-6 1/psi. 
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Figure B.4— Gas saturation map showing dissolved gas evolution around the wellbore when Co=1e-5 

1/psi and Cw=1e-6 1/psi. 
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Figure B.5— Gas saturation map showing dissolved gas evolution around the wellbore when Co=5e-5 

1/psi and Cw=1e-6 1/psi. 

 

 

 



 95 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0 200 400 600 800 1,000 1,200 1,400

Distance, ft

G
as

 S
at

u
ra

ti
o
n
, 

d
.l

es
s

Sg @ 30day

Sg @ 60day

Sg @ 90day

Sg @ 100day

Sg @ 200day

Sg @ 300day

Sg @ 400day

Sg @ 500day

Sg @ 600day

Sg @ 700day

Sg @ 800day

Sg @ 900day

Sg @ 1000day

Sg @ 2000day

Sg @ 3000day

Sg @ 4000day

 

Figure B.6— Gas saturation map showing dissolved gas evolution around the wellbore when Co=1e-6 

1/psi and Cw=1e-5 1/psi. 
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Figure B.7— Gas saturation map showing dissolved gas evolution around the wellbore when Co=1e-6 

1/psi and Cw=5e-6 1/psi. 
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