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ABSTRACT 

 

Quantitative Transportation Risk Analysis Based on Available Data/Databases: Decision 

Support Tools for Hazardous Materials Transportation. (May 2006) 

Yuanhua Qiao, B.En., Tianjin University, Tianjin, China; 

M.S, Tianjin University, Tianjin, China 

Chair of Advisory Committee: Dr. M. Sam Mannan 

 

Historical evidence has shown that incidents due to hazardous materials 

(HazMat) releases during transportation can lead to severe consequences. The public and 

some agencies such as the Department of Transportation (DOT) show an increasing 

concern with the hazard associated with HazMat transportation. Many hazards may be 

identified and controlled or eliminated through use of risk analysis. Transportation Risk 

Analysis (TRA) is a powerful tool in HazMat transportation decision support system. It 

is helpful in choosing among alternate routes by providing information on risks 

associated with each route, and in selecting appropriate risk reduction alternatives by 

demonstrating the effectiveness of various alternatives.  

Some methodologies have been developed to assess the transportation risk; 

however, most of those proposed methodologies are hard to employ directly by decision 

or policy makers. One major barrier is the lack of the match between available 

data/database analysis and the numerical methodologies for TRA.  



 iv

In this work methodologies to assess the transportation risk are developed based 

on the availability of data or databases. The match between the availability of 

data/databases and numerical TRA methodologies is pursued. Each risk component, 

including frequency, release scenario, and consequence, is assessed based on the 

available data/databases. The risk is measured by numerical algorithms step by step in 

the transportation network. Based on the TRA results, decisions on HazMat 

transportation could be made appropriately and reasonably.  

The combination of recent interest in expanding or building new facilities to 

receive liquefied natural gas (LNG) carriers, along with increased awareness and 

concern about potential terrorist action, has raised questions about the potential 

consequences of incidents involving LNG transportation. One of those consequences, 

rapid phase transition (RPT), is studied in this dissertation. The incidents and 

experiments of LNG-water RPT and theoretical analysis about RPT mechanism are 

reviewed. Some other consequences, like pool spread and vapor cloud dispersion, are 

analyzed by Federal Energy Regulatory Commission (FERC) model.  
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CHAPTER I 

INTRODUCTION 

  

  

Many conveniences taken for granted in modern civilization depend in part on 

HazMat. These materials must be transported from producers to end users, which creates 

opportunities for incidents (e.g., traffic incidents, train derailments, equipment failures) 

that could release hazardous chemicals into the environment. The adverse impact could 

occur when HazMat are released to the environment, including personal injury, property 

damage, and environmental contamination. 

Risk is defined as a measure of human injury, environmental damage, or 

economic loss in terms of both the incident likelihood and the magnitude of the loss or 

injury (CCPS, 2000). To reduce the adverse impact associated with the HazMat 

transportation, it is important to assess the risk at first, and then it is necessary to develop 

management systems that involve procedures and actions to support strategic, tactical 

and operational decisions, including the transportation route selection, facility selection, 

emergency response in case an incident would occur, and so on and so forth. These 

systems can also be called decision support systems for HazMat transportation. The 

analysis on the transportation risk is the foundation of the decision support system. 

 

                                                 
 This dissertation follows the style and format of the Journal of Loss Prevention in the 
Process Industries. 
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In this chapter the definition of HazMat will be introduced followed by the status 

of the HazMat transportation and the regulations on HazMat transportation in the U. S. 

Then the introduction on the techniques and concerns of TRA will be provided in 

comparison with the chemical process quantitative risk analysis (CPQRA).  The 

objectives and scope of our research will be presented to define the boundaries of our 

work.  

 

1.1. Hazardous Materials Transportation 

1.1.1. Hazardous Materials 

According to the Code of Federal Regulations, Title 49 (49 CFR), Transportation, 

Part 171.8, HazMat is defined as a substance or material, including a hazardous 

substance, which has been determined by the Secretary of Transportation to be capable 

of posing an unreasonable risk to health, safety, and property when transported in 

commerce, and has designated as hazardous under section 5103 of Federal HazMat 

transportation law (OHMS, 2005a). More than 3300 substances and their products have 

been characterized as HazMat, including flammable, corrosive, radioactive, toxic, 

poisonous, and explosive substances. In 49 CFR, HazMat are separated into the 

following classes: 

• Class 1 – Explosives 

• Class 2 – Gases 

• Class 3 – Flammable liquids (and combustible liquids) 
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• Class 4 – Flammable solids; spontaneously combustible materials and dangerous                    

when wet materials  

• Class 5 – Oxidizers and organic peroxides  

• Class 6 – Toxic (poison) materials and infectious substances  

• Class 7 – Radioactive materials 

• Class 8 – Corrosive materials 

• Class 9 – Miscellaneous dangerous materials 

 

The majority of classes are segmented into divisions. This finer categorization of 

HazMat is very helpful for purposes of comparing risks. For example, Explosives in 

Class 1 are divided into six divisions, and risk associated with different divisions should 

be much more different with those within one division. Table 1.1 lists all the class 

numbers, division numbers, class or division names and 49 CFR sections which contain 

definitions for classifying hazardous materials. 

In subpart B of 49 CFR 171.1, the HazMat table designates the materials listed as 

HazMat for the purpose of transportation of those materials. For each listed material, the 

table identifies the hazard class, and gives the proper shipping name or directs the user to 

the preferred proper shipping name. In addition, the table specifies or references 

requirements in this subchapter pertaining to labeling, packaging, quantity limits aboard 

aircraft, and stowage of hazardous materials aboard vessels. 
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Table 1.1 

Hazardous materials classes and index to 49 CFR hazard class definitions 

Class 

No.  

Division 

No.  
Name of class or division  

49 CFR 

reference for 

definitions  

1  1.1  Explosives (with a mass explosion hazard)  173.50  

1  1.2  Explosives (with a projection hazard)  173.50  

1  1.3  Explosives (with predominately a fire hazard) 173.50  

1  1.4  Explosives (with no significant blast hazard)  173.50  

1  1.5  Very insensitive explosives; blasting agents  173.50  

1  1.6  Extremely insensitive detonating substances  173.50  

2  2.1  Flammable gas  173.115  

2  2.2  Non-flammable compressed gas  173.115  

2  2.3  Poisonous gas  173.115  

3   Flammable and combustible liquid  173.120  

4  4.1  Flammable solid  173.124  

4  4.2  Spontaneously combustible material  173.124  

4  4.3  Dangerous when wet material  173.124  

5  5.1  Oxidizer  173.127  

5  5.2  Organic peroxide  173.128  

6  6.1  Poisonous materials  173.132  

6  6.2  Infectious substance (Etiologic agent)  173.134  

7   Radioactive material  173.403  

8   Corrosive material  173.136  

9   Miscellaneous hazardous material  173.140  
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1.1.2. HazMat Transportation Incidents 

As detailed in the HazMat Shipments report from the Office of Hazardous 

Materials Safety (OHMS, 2005a), hazardous materials traffic levels in the U. S. now 

exceed 800,000 shipments per day and result in the transport of more than 3.1 billion 

tons of hazardous materials annually (OHMS, 2005b). 

According to the DOT statistics, 156,483 HazMat transportation incidents 

occurred from 1995 to 2004, resulting in a total of 226 fatalities and 3,218 injuries (US 

DOT, 2005). The detailed statistics for different transportation modes within that period 

are shown in Table 1.2. Figure 1.1 shows the tendency of the number of reported 

HazMat incidents from 1983 to 2004.  

 

 

Table 1.2 

HazMat transportation incidents, fatalities, injuries, and damages from 1995 to 2004 

Transportation mode Incidents Fatalities Injury Damages 

Air 10,721 110 157 2,055,546 

Highway 135,849 107 1,684 370,135,350 

Railway  9,813 9 1,375 154,493,434 

Water 100 0 2 3,873,145 
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Figure 1.1. Reported hazardous materials incidents.  

(OHMS, 2005c) 

 

1.1.3. HazMat Transportation Regulations 

The regulations that govern the transportation of HazMat have evolved over a 

period of more than 100 years (US DOT, 1998). The earliest regulation was promulgated 

in 1886 in response to turmoil within the railroad industry by the Supreme Court of the 

U.S.  

On January 3, 1975, the HazMat Transportation Act (HMTA), Title I of Public 

Law 93-633, was signed into law. The Act provided authority for the Secretary of 

Transportation to draw together previously fragmented regulatory and enforcement 

authority over the movement of HazMat in commerce into one consolidated and 
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coordinated effort. The HMTA was significantly amended by the Hazardous Materials 

Transportation Uniform Safety Act of 1990 (HMTUSA), Public Law 101-615, signed on 

November 16, 1990, and codified in 1994 in 49 U.S.C. §§ 5101-5127.  

A number of other authorities underlie DOT's regulation of HazMat 

transportation: the Federal Water Pollution Control Act Amendments of 1972; the 

Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental 

Response, Compensation, and Liability Act of 1980; and the Sanitary Food 

Transportation Act of 1990. Both HMTUSA and the HazMat Transportation 

Authorization Act of 1994 imposed on DOT additional responsibilities not codified in 

the Federal hazmat law. These laws have influenced and will continue to greatly 

influence the HazMat programs of all the modal administrations. 

Currently, the HazMat regulations are codified in 49 CFR Parts 100-185. Those 

regulations set forth standards applicable to HazMat transportation, which include 

classification, packaging, hazard communication, emergency response information, 

training of hazmat employees, handling, and incident reporting.  

In assessing the need for changes to the regulations, the Research and Special 

Programs Administration under DOT continuously monitors domestic transportation 

practices and experience and international regulatory developments. It evaluates requests 

for new or amended regulations received from the general public, the regulated industry, 

other Government agencies, and DOT's modal administrations. It also issues 

amendments to address specific safety problems, to incorporate new technology, and to 

respond to congressional mandates or executive orders.   
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1.2. Transportation Risk Analysis 

1.2.1. Quantitative Risk Analysis (QRA) Methods 

The techniques of chemical process quantitative risk analysis (CPQRA) are much 

better known than those of TRA, and there are many similarities in those two areas, so 

the techniques of CPQRA will be introduced first for better understanding of TRA.  

CPQRA is a methodology designed to provide management with a tool to help 

evaluate overall process safety in the chemical process industry (CCPS, 2000). 

Management systems such as engineering codes, checklists and process safety 

management (PSM) provide layers of protection against incidents. However, the 

potential for serious incidents cannot be totally eliminated. CPQRA provides a 

quantitative method to evaluate risk and to identify areas for cost-effective risk reduction. 

Many hazards may be identified and controlled or eliminated through the use of 

qualitative hazard analysis. Qualitative studies typically identify potentially hazardous 

events and their causes. In some cases, where the risks are clearly excessive and the 

existing safeguards are inadequate, corrective actions can be adequately identified with 

qualitative methods. QRA is used to help evaluate potential risks when qualitative 

methods cannot provide adequate understanding of the risks and more information is 

needed for risk management. It can also be used to evaluate alternative risk reduction 

strategies. The basis of QRA is to identify incident scenarios and evaluate the risk by 

defining the probability of failure, the probability of various consequences and the 

potential impact of those consequences. The risk is defined in CPQRA as a function of 
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probability or frequency and consequence of a particular incident scenario: 

Risk = F(s, c, f ) (1.1) 

Where,  

s = hypothetical scenario 

c = estimated consequence(s) 

f = estimated frequency 

 

This function can be extremely complex and there can be many numerically 

different risk measures (using different risk functions) calculated from a given set of s, c, 

f.  

 

1.2.2 Framework of TRA 

TRA methodologies have existed for about the same time period as have CPQRA 

methodologies, yet they are far less widely used and understood. TRA draws on many of 

the same tools and techniques as does CPQRA, but distribution activities are often 

performed in separate parts of an organization and may not be aware of all the internal 

resources available in risk analysis.  

TRA can be conducted on a qualitative or quantitative basis. Qualitative 

approaches include risk screening methodologies, which are generally unique for each 

company. Other qualitative approaches include carrier screening programs, route and 

container selection, and driver training and selection programs. The quantitative 

approach in TRA is similar to CPQRA, which is used to help evaluate potential risks 
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when qualitative methods cannot provide adequate understanding of the risks. It can also 

be used to evaluate alternative risk reduction strategies. The general steps of TRA are 

described below: 

• TRA Scope Definition converts user requirements into study goals and 

objectives. Risk measures and risk presentation formats are chosen in finalizing a 

scope of work for the TRA. A depth of study is then selected based on the 

specific objectives defined and the resources available.  

• Shipment Description is the compilation of the transportation activity 

information needed for the risk analysis. For example, mode, container 

specification, weather data, number of trips, volume per container, material, 

shipping conditions, route or origin and destination, and population data. This 

data set is then used throughout the TRA. 

• Hazard or Initiating Event Identification is a critical step in TRA. The 

incident-initiated events of concern can generally be identified based on 

historical data. Non-incident-initiated events may be identified through hazard 

identification techniques described in CPQRA Guidelines (CCPS, 2000). 

• Likelihood Estimation is the methodology used to estimate the frequency or 

probability of occurrence of an incident. Estimates may be obtained from 

historical incident data on failure frequencies, from failure sequence models such 

as fault trees and event trees or from special failure models. 

• Consequence Estimation is the methodology used to determine the potential for 

damage or injury from specific incidents. A single incident (e.g., rupture of a 
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pressurized liquid tank) can have many distinct incident outcomes, e.g., vapor 

cloud explosion (VCE), boiling liquid and so on.  

• Risk Estimation combines the consequences and likelihood of all incident 

outcomes from all selected incidents to provide a measure of risk. The risks of all 

selected incidents are individually estimated and summed to give an overall 

measure of risk.  

• Utilization of Risk Estimates is the process by which the results of a risk 

analysis are used to make decisions, either through relative ranking of risk 

reduction strategies or through comparison with specific risk targets.  

 

In a screening or other qualitative analysis many of these steps are not carried out 

explicitly. Risk screens may be developed to implicitly take one or more of these steps 

into account. A screening level analysis can even be conducted by comparing the data 

set for the shipment of concern with the data set and results for another shipment for 

which a quantitative TRA has been conducted, and simply determining if the shipment 

of concern poses more or less risk than the previously evaluated one. In quantitative risk 

analyses it may be possible to take the results of other studies and use them as the basis 

of one or more of the steps in the TRA, but these other results may first need to be scaled 

or adjusted before using them, and usually all steps need to be performed to get the 

quantitative results.   
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1.2.3 Similarities to Fixed Facility Evaluations 

There are both similarities and differences between transportation and fixed 

facility risk evaluations. As stated herein, the general process of a quantitative TRA 

involves: defining the scope of the analysis, describing the system or movement, 

identifying hazards or initiating events (accident and non-accident), numerating 

incidents, selecting incidents, incident outcomes, and incident outcome cases, estimating 

consequences, estimating frequencies, combining frequencies and consequences to 

estimate risk, and evaluating risk reduction alternatives. These steps are virtually the 

same as in a CPQRA, but there are subtleties within each step. Some of the differences 

are listed in the guidelines compiled by CCPS (1995). Both TRA and fixed facility risk 

evaluations can be qualitative or semi-quantitative as opposed to quantitative. In these 

cases, many of these steps are handled on a comparative basis or addressed in much less 

detail. 

Qualitative or semi-quantitative estimates of risk generally take into account 

experience, judgment, good practices, training, procedures, inspection and maintenance, 

codes and standards, past performance, etc., whether one is dealing with fixed facilities 

or transportation movements. 

The modeling of release consequences is largely independent of the cause of the 

release and is therefore basically directly transferable from the techniques of CPQRA to 

TRA. Risk measures are also common to the two types of quantitative risk analyses. The 

only real differences are in the details of how the risks are estimated and the units chosen. 

For example, in transportation one may wish to measure risk per trip or risk per year (or 
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both), while in CPQRA risks are generally measured on a per year basis or on a 

comparative basis with other results.  

 

1.2.4. Differences from Fixed Facility Evaluations 

The most fundamental difference between CPQRA and TRA is that TRA deals 

with a linear source of risk, versus a relatively discrete point source for a CPQRA. This 

linear source may be static as in the case of pipelines or may be a moving source for 

other modes of transport. In transportation, a release can occur anywhere along a route 

between the origin and destination. The unpredictability of the exact release location 

often requires the use of generalized approaches to limit the data needs and number of 

incident outcome cases. These generalized approaches may relate to one or more of the 

following: 

• Identification and selection of initiating events – may utilize an aggregate 

incident rate or a limited breakdown, such as derailments and collisions, rather 

than a detailed breakout by failure mode. 

• Selection of incidents and incident outcomes – particularly release sizes and 

rates, release orientation, material temperature and pressure at time of release. 

While a release in a facility is reasonably predictable in terms of the material 

conditions, these could change with the seasons for many HazMat transportations, 

and even from one end of a route to another. 

• Meteorological conditions for modeling – wind roses and stability class 

distributions vary from location to location, as does the ambient temperature and 
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humidity. 

• Ignition probabilities – the number, type, and proximity of ignition sources vary 

along a route, and it may be very difficult to get route specific data. 

• Population distribution – not only is there usually very little, if any, buffer 

distance between a route and the general population, but the population density 

constantly changes along the route. 

 

Generalized approaches help address these variabilities in a consistent and 

usually conservative manner. The ability to eliminate or prevent risks is much greater for 

fixed facilities. In transportation, risk reduction is generally all that can be obtained. The 

Office of Technology Assessment estimated that 62 percent of hazardous material 

incidents are due to human error. The degree of variability and influence of human 

performance is often cited as being much greater for some modes of transportation than 

others and for transportation in general in comparison to fixed sites. This is particularly 

true for road transportation where the route taken can vary from one trip to another. The 

role of outside forces such as weather and other drivers or operators can also be quite 

significant. For instance, extensive training of truck drivers does not change the 

performance of other drivers on the road. Thus, the ability to control the overall impact 

of human errors is diminished in transportation.  

The nature of TRA data can be different from CPQRA data. They are often 

expressed as a function of distance traveled or per trip, transit, or visit. External event 

causes of accidents are generally included in the data-including such items as vandalism 
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for rail transport, adverse weather for marine transport, and third-party damage for 

pipelines. 

Other difference between transportation and fixed facility risk evaluations is the 

nature of the risk reduction and mitigation alternatives available. By virtue of the 

unknown location of a transportation release (prior to its occurrence), it is much more 

difficult to identify and implement effective mitigative (post-release) strategies. 

Secondary containment via diking, selective grading, water sprays, foams, evacuations, 

etc. are either not feasible, or can only be initiated some significant amount of time after 

the release has occurred. Given the rapid dispersion of many large releases, such 

mitigation measures may be totally infeasible or untimely. 

 

1.2.5. Reasons for Conducting a TRA 

TRA is a powerful tool in HazMat transportation decision making system. It can 

help a decision maker in choosing a site for a facility or process relocation or expansion, 

by taking both fixed site and transportation risks into account. It is helpful in choosing 

among alternate routes by providing information on the relative risks associated with 

each route, in selecting a mode of transportation when more than one is feasible, and in 

selecting the most effective container or knowing if additional protective measures are 

warranted. Based on the TRA results, decision makers can select appropriate risk 

reduction alternatives by demonstrating the effectiveness of various alternatives. In case 

a transportation incident occurs, TRA could provide the bases for developing emergency 

response plans. It can also help to understand the influence of material state on risks and 
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make judgments about the tolerability of existing or increased movement levels. 

 

1.3. Current Problems with TRA 

Some regulations and rules have been set to regulate HazMat transportation 

activities; however, those regulations are mainly addressing hardware and procedures. 

Compliance with those regulations does not necessarily guarantee the desired reduction 

in the level of risk.  

Significant level of risk reduction may be gained by the employment of decision 

support systems for HazMat transportation, for example, by selecting the route with 

relatively less risk. Selection for the best route for HazMat transportation involves 

comparisons of alternatives in the domain of risk. The TRA is the baseline for routing 

selection and many other actions made by decision makers.   

Some numerical methodology has been developed to assess the transportation 

risk; however, most of those proposed methodologies were hard to employ directly by 

decision or policy makers. One reason is that the methodologies were proposed without 

input data, or the methodology was too complicated to obtain available input data. For 

example, incident frequency and conditional release probability data were assumed to be 

available in most of the methodologies, but in fact the acquisition of the required data 

calls for considerable effort.  

Many data or databases on HazMat transportation have been analyzed to assess 

the risk components. Consider the Hazardous Materials Information System (HMIS) as 

an example. HMIS is a national database with data on HazMat transportation incidents. 
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Battelle (2001) analyzed this database to measure the incident rate, the severity of 

transportation fatalities and injuries, and the dollar loss from high-consequence 

transportation incidents. Such kind of data/database analysis results should be adapted to 

a numerical model to measure the ultimate risk level.   

In many cases not all the data required by the TRA are available, thus some 

mathematical methodologies are needed to assess the required data based on expert 

experience or other information sources.   

The lack of the match between the data/database analysis and the numerical 

methodologies for TRA has prevented decision makers from making sound actions 

quickly. The methodologies to assess the transportation risk according to the availability 

of data or databases should be developed, so that the decisions on HazMat transportation 

could be made appropriately and reasonably based on the TRA results.   

 

1.4. Objectives and Scope 

From the above description, it is apparent that the match between the availability 

of data/databases and numerical methodologies for TRA needs to be pursued. To 

accomplish this goal, in this paper, each risk component, including frequency, release 

scenario, and consequence, is assessed based on the available data/database. The risk in 

the transportation network is then assessed by numerical algorithms step-by-step. 

The objectives of this research include: 

• Transportation network analysis to define the physical environment for TRA  

• Identification of HazMat transportation data/database 
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• Assessment of each risk component 

• Development of numerical methodologies to measure the transportation risk  

• Development of case study to show the application of methodologies 

• Development of routing methodologies for decision support system based on 

TRA results 

 

The ultimate goal of this research is to set up the framework for the assessment 

of transportation risk based on available data/databases, which will facilitate the set of 

regulations and rules, guide decision makers in HazMat transportation actions to prevent 

incident and reduce risk, and identify programs that can result in the greatest 

improvement in safety.   

 The scope of this research includes:  

• Highway transportation mode – our research will focus on the highway 

transportation rather than all the transportation modes including railroad, air, etc, 

because the highway mode dominates the transportation incident occurrence. As 

shown in Table 1.2, historically highway transportation has been responsible for 

almost 90% of the transportation incidents.  

• On-road incident only – our research only considers transportation incidents 

that occurred during transportation. Those that occurred during 

loading/unloading processes were not incorporated in our analysis, because those 

incidents are similar to fixed facility incidents.  
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• Bulk transportation – TRA will estimate only the incidents caused in bulk 

transportation, without including the non-bulk transportation. For example, 

anhydrous ammonia transported in cargo tanks MC 330 will be considered in our 

analysis, but those transported in small nurse tanks are not assessed.  

• Focused HazMat – to compare the risks that result from transporting various 

hazardous materials, the nature of the risk for each commodity needs to be 

evaluated and understood, but it is not practical to work on all the HazMat. In 

this research, only those most frequently shipped HazMat and those materials 

representative to different classes is evaluated.  

 

1.5. Organization of the Dissertation 

 This dissertation introduces a framework to assess the HazMat transportation risk 

step-by-step. Chapter I introduces HazMat transportation and the general framework for 

TRA, and introduces a broad overview of the importance of TRA.  

 Chapter II presents a detailed literature review of current research status of TRA. 

Preliminary work in this area has been categorized as procedures, data availability, risk 

measurement tools, and application of Geographic Information System (GIS). Fuzzy 

logic is employed in this research for estimation when data are not available, so the 

fuzzy logic models are also presented in this chapter. Chapter III characterizes the 

transportation network. The real transportation network is transformed into a network 

expressed by nodes and links, and by this way TRA can be performed in a well-defined 

network environment. A description of overall TRA methodology is provided in Chapter 
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IV in detail. The data/databases availability is analyzed at first for each of the risk 

components. Incident frequency and release scenario are assessed based on the analysis 

results. The consequence is estimated with a commercially available software, 

CANARY. Individual risk and societal risk for HazMat transportation are determined by 

numerical models. Chapter V presents the case study to illustrate the employment of our 

TRA methodologies in the real world. Based on the TRA, the optimized routing 

methodology is presented in Chapter VI. It proves that the TRA have the ability to 

benefit decision support systems in HazMat transportation. LNG plays an increasingly 

important role in the natural gas industry and energy markets. The combination of recent 

interest in expanding or building new facilities to receive LNG carriers, along with 

increased awareness and concern about potential terrorist actions, has raised questions 

about the potential consequences of incidents involving LNG marine transportation. 

Chapter VII describes the consequence analysis results for marine transportation of 

liquefied natural gas (LNG). 
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CHAPTER II  

BACKGROUND 

 

 

2.1. Previous Work on TRA 

Risk analysis is a sequential process, beginning with an understanding of the 

level of involvement of risk, the frequency and type of incident, and the consequence for 

a given incident scenario. The way those components are defined and determined should 

depend on the data available and the purpose of the risk assessment. In the past two 

decades, attention has been focused on risk analysis of HazMat within transportation 

networks, and the techniques of QRA initially developed for fixed plants have been 

extended to TRA.  

 

2.1.1. Procedures for Developing TRA Methodology 

Risk is defined in Chapter I in terms of two parameters: the likelihood of 

occurrence of an incident scenario and the magnitude of the incident consequence. Rowe 

(1983) characterizes quantitative risk analysis methodologies for transportation in three 

ways: (i) how they combine the two parameters to arrive at risk; (ii) the level of detail; 

and (iii) the methods for obtaining data and modeling parameters. As described in 

Chapter I, usually the framework for TRA includes the following steps: (i) TRA scope 

definition; (ii) shipment description; (iii) hazard or initiating event identification; (iv) 
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likelihood estimation; (v) consequence estimation; (vi) risk estimation; and (vii) 

utilization of risk estimation. In principle, these steps have to be repeated every time that 

any of the parameters involved in the above calculations changes along the itinerary, so 

usually a great deal of computation time is required to achieve the TRA goal. 

Researchers in this field have executed substantial efforts to explore the practical and 

reasonable methods to measure the risk associated with HazMat transportation.  

Ang (1989) suggested a general framework for risk analysis in transportation that 

decomposed the problem into three separate stages: (i) determination of an undesirable 

event, (ii) estimation of the level of potential exposure, and (iii) assessment of the 

magnitude of consequences.  

Abkowitz and Cheng (1988) attempted to measure the risk of hazardous material 

transportation by summing the cost of fatalities, major injuries, minor injuries, and 

damage to property. The risk was expressed as a risk profile, which is a probability 

distribution of incident likelihood and severity.  

Purdy (1993) estimated the impact to humans from flammable substances and 

toxic gases. The entire population that may be affected by a HazMat incident was 

considered in their model, including motorists on a road where an incident occurs, 

travelers on trains, and people who live near the transportation route.  

Erkut and Verter (1995) proposed that an assessment of HazMat transportation is 

a two-stage process that involves: (i) representation of risk via a quantitative model; and 

(ii) estimation of the model parameters. A basic model for risk assessment was presented 

in their work.  
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Kara, Erkut, and Verter (2003) pointed out that what differentiates HazMat 

transport models from other transport models is the explicit modeling of transport risk 

which usually consists of one or both of the following two factors: incident (i.e., spill, 

fire) probability and population impacted. They focused on modeling the incident 

probability and modeling the population exposure to quantify the risk along the 

transportation route.  

Vayiokas and Pitsiava-Latinopoulo (2004) developed a methodology for the risk 

assessment during road transportation of HazMat. Two critical factors have been taken 

into consideration: the probability of an outcome during incident occurrence and the 

consequences of the outcome. Theoretical risk source release model, exposure model, 

and consequence model were set up for the ultimate risk estimates.  

 Erkut and Verter (1995) and Leonelli, Bonvicini, and Spadoni (1999) proposed 

that a path between a given origin-destination pair can be represented by a set of road 

segments, where the road characteristics are uniform within each segment. The risk 

imposed on an individual due to a HazMat shipment can be estimated as the probability 

of an incident during transport multiplied by the probability of the individual 

experiencing the consequence as a result of the incident. At the same year, Spadoni, 

Leonelli, Verlicchi, and Fiore (1995) also proposed that the risk resulting from the 

transport of HazMat has to be calculated considering all the incidents occurring at any 

point of the road network, namely a set of linear source risk. The technique they used to 

perform linear source risk calculations is to divide each route into arcs, each then being 

considered as a point risk source. Next, a reassembling methodology has to be applied to 
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perform calculations of indicators of the area risk.   

Fabiano, Curro, Palazzi, and Pastorino (2002) developed a site-oriented 

framework of general applicability at local level. The evaluation of frequency took into 

account on one side inherent factors (e.g., slope, characteristics of neighborhood, etc.) on 

the other side factors correlated to the traffic conditions (e.g., dangerous goods trucks, 

etc.). The simple theoretical models were given to express both the incident frequency 

and the fatality number.  

Depending on the scope of the analysis, approximate as well as detailed 

approaches to TRA can be used. The former could be kept as simple as possible, in 

principle allowing also non-specialists to carry out the analysis and to immediately use 

its results for a basic evaluation of the risk level of the transport activity under 

consideration. The latter could be kept as accurate as possible, enabling a specialist to 

properly assess the risk, to investigate the presence of highly hazardous spots and to 

suggest effective mitigation measures. Bubbico, Cave, and Mazzarotta (2004a) proposed 

a simplified approach to TRA. Only limited number of incident scenarios and release 

consequences need to be estimated in this simplified approach. In this manner, TRA 

could be performed very rapidly to obtain the relevant risk measures, which can be then 

used for a preliminary assessment of the case.  

  

2.1.2. Risk Measurement Tools 

In CPQRA, a number of numerically different measures of risk can be derived 

from the same set of incident frequency and consequence data. Three commonly used 
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ways of combining incident frequency and consequence data to produce risk estimates 

are risk indices, individual risk, and societal risk (CCPS, 2000).  

Risk indices are single numbers or tabulations of numbers which are correlated to 

the magnitude of risk. Some risk indices are relative values with no specific units, which 

only have meaning within the context of the risk index calculation methodology. Other 

risk indices are calculated from various individual or societal risk data sets and represent 

a condensation of the information contained in the corresponding data set.  

Individual risk measures can be single numbers or a set of risk estimates for 

various individuals or geographic locations. In general, they consider the risk to an 

individual who may be in the effect zone of an incident or set of incidents. The size of 

the incident, in terms of the number of people impacted by a single event, does not affect 

individual risk. 

Societal risk measures are single number measures, tabular sets of numbers, or 

graphical summaries which estimate risk to a group of people located in the effect zone 

of an incident or set of incidents. Societal risk estimates include a measure of incident 

size (for example, in terms of the number of people impacted by the incident or set of 

incidents considered). Some societal risk measures are designed to reflect the 

observation that people tend to be more concerned about the risk of large incidents than 

small incidents, and may place a greater weight on large incidents. 

In the area of truck transport of HazMat, there have been widely varying 

applications of risk analysis since 1980s. They have been characterized by generic 
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treatment of HazMat or focus on a single substance or class, and have included a diverse 

set of risk measures.  

Abkowitz and Cheng (1988) measured the risk of HazMat transportation by 

summing the cost of fatalities, major injuries, minor injuries, and damage to property.  

Purdy (1993) estimated the risk through assessing the impact to humans from 

flammable substances and toxic gases. The entire population that may be affected by a 

HazMat incident was the measure of the risk level.  

Erkut and Verter (1998) used the expected undesirable consequences of HazMat 

transport as a measure of the associated societal risk, that is, their societal risk of 

HazMat transportation was defined as the probability of a release event during transport, 

multiplied by the consequence of that event. This societal risk of HazMat transport was 

calculated as an aggregation of the risks imposed on each individual living near the road 

used for transportation. They proposed each population center as a point on the plane 

whose population is assumed to be concentrated. This approach presumes that each 

individual in a population center will incur the same kind of risk due to the HazMat 

transportation. The risk imposed on an individual was calculated as a sum of the risks 

associated with each road segment on path. In general, a path between a given origin-

destination pair can be represented as a set of road segments, where the road 

characteristics are uniform within each segment.  

The most common risk measurements used to perform a quantitative risk analysis 

for a major incident in a plant, i.e., individual risk and societal risk, were also employed 

in TRA. Individual risk reflects the frequency of a specific health effect at a 
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geographical location. Its predictions are used to answer the question: how does the risk 

to an individual vary with location? Societal risk represents the overall risk associated 

with an activity to a particular population. The most common societal risk presentation 

technique is an f-N curve, which is a graph of the number of fatalities (N) on the 

abscissa and frequency (f) of N or more fatalities on the ordinate (CCPS, 1995). 

Methodology has been developed to evaluate individual and societal risk for a 

transportation network by a variety of authors (Fabiano, Curro, Palazzi, and Pastorino, 

2002; Vayiokas and Pitsiava-Latinopoulo, 2004). Advisory Committee on Dangerous 

Substances (1991) has pointed out that individual risk and societal risk are powerful 

tools for the measurement of transportation hazard impact. 

Spadoni, Leonelli, Verlicchi, and Fiore (1995) discussed the importance of the 

acceptability of risk criteria. Some European countries have adopted threshold values for 

individual risk by referring to statistical data on death probability either for natural 

events or for incidents not connected to industrial activities. The UK Health and Safety 

Executive has fixed a limit of 10-4, above which individual risk cannot be accepted under 

any circumstances and a limit value of 10-6 below which individual risk is considered 

broadly acceptable to members of the public. For the societal risk, the UK Health and 

Safety Executive has suggested for use as an upper maximum tolerable risk level a line 

of slope -1 through the point N=500, F=2*10-4 (per year) and, as a negligible risk level, a 

line of the same slope at three orders of magnitude below. The Dutch Government 

utilizes as an upper maximum tolerable level a line of slope -2 through the point N=10, 

F=10-5 (per year) and a parallel line two orders of magnitude below as negligible risk.    
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2.1.3. Data Availability in TRA 

Harwood and Russell (1990) made the first well-recognized attempt to assess the 

incident rate and the release probability based on certain databases. An analysis of 

existing incident, and exposure data before 1990 were presented in their report. The 

frequency, causes, circumstances, and consequences of HazMat transport have been 

characterized based on 5 years of data (1981-1985) from the HMIS. The analysis of 

exposure data were performed on the data available from the 1982 Truck Inventory and 

Use Survey conducted by the Bureau of Census.  

To develop system-wide truck incident rates, the data from three state highway 

agencies were analyzed by Harwood and Russell (1990). These agencies were the 

California, Illiouis, and Michigan Departments of Transportation. The incident rates, 

incident severity distributions, and incident type distributions for different highway and 

area type classes obtained in the analysis were presented. Some of the data analysis 

results were published later by Harwood, Viner, and Russell (1993).  

Rhyne (1994) compared the Harwood and Russell’ results with others performed 

earlier, and noted that the estimates of Harwood and Russell were reasonable for many 

risk calculations. Their results are still the most popularly cited for current research in 

TRA.  

Battelle (2001) analyzed HMIS database and utilized several sources of data to 

adjust the incidents reported in the HMIS. Data from 1990 through 1999 were used to 

create an annual portrait of HazMat impacts. This provided a large quantity of HazMat 

incident data from which consequence and likelihood values were obtained. Incident 
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number and impact results for HazMat transportation were broken down by HazMat 

classes. The incident rate and incident cost for each 12 HazMat classes were presented 

separately in this report. The results showed that more detail can be developed for some 

categories of HazMat because those classes or divisions have more incident exposure.  

 

2.1.4. Application of Geographic Information System (GIS) in TRA 

In order to perform an accurate TRA, the knowledge of territorial information of 

comparable accuracy is of paramount importance. In particular, data are needed about 

local distribution of population, incident rates, and weather conditions. Lepofsky, 

Abkowitz and Cheng (1993) first proposed to integrate GIS into TRA to manage those 

kinds of information. GIS is a system of computer software, hardware, and data that 

manipulates, analyzes, and presents information that is tied to a spatial location. GIS 

contain both geometry data (coordinates and topological information) and attribute data, 

i.e., information describing the properties of geometrical spatial objects such as points, 

lines, and areas. In the work of Lepofsky, Abkowitz, and Cheng (1993), GIS was 

employed to develop transportation networks that incorporate both physical and 

operational characteristics, and overlay these networks on other spatially referenced data.  

Fedra (1998) proposed to employ GIS in the spatial TRA. In GIS, the basic 

concept is one of location, of spatial distribution and relationships; the basic elements 

are spatial objects. GIS and its capability to map risks is clearly a powerful tool for risk 

assessment. The integration of GIS and simulation models, together with the necessary 

databases and expert systems, within a common and interactive graphical user interface 



 30

could make for more powerful, easy-to-use and easy-to-understand risk information 

systems. Based on a dedicated GIS as the central tool and user interface, databases of 

hazardous installations and hazardous chemicals are linked in a hypertext structure. They 

include tools for spatial risk assessment based on externally generated risk contours, and 

links to models describing accidental and continuous atmospheric releases, spills into 

surface water systems, and transportation risk analysis.  

 The dispersion models were suggested by Zhang, Hodgson, and Erkut (2000) to 

incorporate into route selection for HazMat transportation. To find minimal risk paths on 

a network, the Gaussian plume model is employed to model the air pollution dispersion. 

The information on surrounding locations in the model is treated by adopting raster GIS 

framework. The raster framework transforms a continuous space into a discrete one by 

modeling it as a tessellation of square arid cells called pixels. Raster is commonly used 

to approximate continuous surfaces in GIS. Raster GIS are organized as a number of 

layers, one assigned to each characteristic of interest. The traditional raster GIS overlay 

techniques were used to predict the spatial consequences of potential releases of airborne 

HazMat in a network. 

Verter and Kara (2001) set up a model to assess the total transport risk as well as 

the equity of its spatial distribution. They employed GIS to manage territorial 

information during the risk analysis of transportation network. A GIS-based model that 

was suitable for representing the HazMat transportation was constructed for Quebec and 

Ontario areas. Bubbico, Cave, and Mazzarotta (2002, 2004a) pointed out that the TRA 

tool developed based on the GIS approach allows risk assessment for various 
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transportation modes and permits to rapidly investigate possible benefits resulting from 

changes of routes.  

 

2.2. Fuzzy Logic and Fuzzy Logic Models 

Conventionally, a mathematical model of a system is constructed by analyzing 

input-output measurements from the system. However, additional important source of 

information on engineering systems is human expert knowledge. This knowledge is 

known as linguistic information. It provides qualitative instructions and descriptions of 

the system. While conventional mathematical model fails to include this type of 

information, fuzzy logic model can incorporate it conveniently. 

The core technique of fuzzy logic is based on three basic concepts: (1) fuzzy set: 

set with smooth boundary. Unlike the crisp set, fuzzy set has a smooth boundary, i.e., the 

elements of the fuzzy set can be partly within the set. Membership functions are 

employed to provide gradual transition from regions completely outside a set to regions 

completely in the set. (2) Linguistic variables: variables that are qualitatively as well as 

quantitatively described by a fuzzy set. Similar to a conventional set, a fuzzy set can be 

used to describe the value of a variable. (3) Fuzzy “if-then” rules: scheme, describing a 

functional mapping or a logic formula that generalizes an implication of two-valued 

logic. The main feature of the application of fuzzy “if-then” rules is its capability to 

perform inference under partial matching. It computes the degree the input data matches 

the condition of a rule. This matching degree is combined with the consequence of the 

rule to form a conclusion inferred by the fuzzy rule.  
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A fuzzy “if-then” rule associates a given condition to a conclusion, using 

linguistic variable and fuzzy sets. The most common fuzzy model, Mamdani model (Yen 

and Langari, 1999), consists of the following fuzzy “if-then” rules that describe a 

mapping from rUUU ××× ...21  to W : 

iR : If 1x  is 1iA , …, and rx  is irA , then y  is iC                                                  (2.1) 

Where, 

 jx  ( rj ,...,2,1= ): input variables 

 y : output variable  

ijA : fuzzy sets for jx  

iC : fuzzy sets for y  

 

The relationship between the various parameters and the accident is hard to be 

expressed by a function; however, it is possible to express the relationship among 

parameters by the fuzzy if-then rules. For example, if a driver is not experienced, then 

accident frequency is high. This type of association can be incorporated conveniently in 

fuzzy models. This characteristic is especially important given the complexity of 

transportation conditions and the level of human experience/knowledge on the system.  

 

2.3. Summary of Chapter II  

A comprehensive review of the research work done on TRA has been presented 

in this chapter. Efforts have been carried out to set up models to combine two parameters 
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of risk, likelihood of incident and the incident consequences, and to arrive at the 

measurements of risk. However, none of these methods has been extensively used in 

practice. The main reason is the unavailability and the lack of matching of the required 

input data to those models. 

Analysis has been performed on some historical databases to obtain the 

information on both the incident rate and the incident impact to personal health, 

properties and environment, but those data obtained could only be applied for qualitative 

comparisons between different transportation activities, and it is not enough for models 

to quantitatively evaluate potential risks or to evaluate alternative risk reduction 

strategies. 

This research is aimed at developing a practical and efficient TRA methodology 

based on available data/databases and expert knowledge. Historical data/databases are 

carefully observed and analyzed to derive the data according to the requirement of the 

model. Given the conditions where no enough data exist, some mathematical methods 

including fuzzy logic are employed to incorporate human linguistic information. The 

development of fuzzy logic model has been presented in this chapter. The TRA models 

are then set up based on the data analysis results. By matching the available data with the 

model set up, the TRA methodology can be applied directly in the decision support 

system to guide the operations of HazMat transportation.  
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CHAPTER III 

TRA METHODOLOGY 

 

 

3.1. Overview 

This chapter provides a general quantitative risk assessment methodology used to 

develop the risk profile. As presented in Chapter I, there are seven steps to perform 

TRA, including TRA scope definition, shipment description, hazard or initiating event 

identification, likelihood estimation, consequence estimation, risk estimation, and 

utilization of risk estimates. In our methodology development, some changes are made 

to this TRA framework due to our objectives/purposes.  

A general TRA methodology is developed in our study, which is expected to 

apply to the transportation of various HazMat. The shipment description is different 

according to the kinds of materials, so it is not included in our methodology. Only in the 

case study part, the shipment description is presented before the TRA.  

The development of our methodology takes account of the availability of 

data/databases. Hazard or initiating event identification is not performed in our study. 

From our incident frequency and release probability analysis, the hazard or initiating 

event is changed with the type of HazMat, tank condition, and other factors, and it 

affects the risk analysis result by changing incident frequency, release probability and 

consequence scenario. In our study the incident frequency, release probability and 
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consequence scenario are assessed based on the analysis of available data/databases, the 

effects of different kinds of HazMat, tank condition and other factors are considered in 

these steps, thus it is not necessary to perform the hazard or initiating event 

identification, and the release probability and consequence scenario analysis are included 

in our methodology.   

The whole TRA process is performed in transportation network, and some 

models and methodologies for network analysis are employed in our study, so it is 

necessary to characterize the transportation network at first.  

Based on above analysis, the TRA framework in our study is presented in Figure 

3.1. 

 

 

 

Figure 3.1. Framework for comprehensive TRA. 
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Risk estimation 

Utilization of risk estimation 
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3.2. Network Characterization 

3.2.1. Network Transformation 

Analyzing risks from HazMat transportation is significantly complicated because 

the factors that influence the risk, such as incident probability, release amount, 

meteorology, and population density, vary both temporally and geographically. TRA is 

performed in transportation network, so all of those parameters need to be characterized 

in the network before the risk calculation.  

In Industrial Engineering, network is defined as interconnected set of nodes and 

links. Node is the point where flow is created, relayed or terminated. Link is channel for 

moving flow between two directly connected nodes. A transportation route can be 

considered as composed of links and nodes, and the set of transportation routes is 

regarded as transportation network. Before performing TRA on certain transportation 

activities, we need to transform the real highway network into network expressed by 

nodes and links.  

The principle for the network transformation is that each link has to have uniform 

properties at all its points, i.e., road condition, traffic volume, and other properties 

associated with road should be the same in one link.  By this way all points in one link 

will cause the same potential of transportation incident when a vehicle passes through 

them, and each link can be considered as a unit when performing TRA. 



 37

The other principle is that each link has to be straight. This principle is to 

simplify the risk integration through all points of a link. This condition can easily be 

obtained without any loss in generality by adding fictitious nodes to the network.  

Based on those principles, the transportation road network can be transformed 

into the network expressed by nodes and links. Set in such a network defined by a set of 

nodes and links, all parameters on risk assessment can be easily characterized, which 

makes the overall risk assessment easy. On the other hand, decision makers can guide 

transportation activities by employing abundant algorithms and models developed for 

network circumstance. For example, the network “minimum cost flow” model can easily 

be employed in selecting the transportation route under certain conditions.  

 

3.2.2. Network Characterization 

Risk assessment is typically structured as a process resulting from the interaction 

between (i) the transportation network, (ii) the vehicle or traveling risk source, and (iii) 

the impact area. 

When performing the transportation risk analysis each link has to be 

characterized by some properties. For a link l of a set Nlink, the link properties to take into 

account are the following: 

• The geographical position in the impact area; to do this a Cartesian reference 

frame X/Y with origin OX/Y has to be arbitrarily overlapped on the impact area. 
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• The amount of the yearly shipments Nship(v) traveling on each link for each 

vehicle typology v, i.e., on a specific conveyance means carrying a specific 

substance.  

• The incident frequency Pincident, expressed in events/(km.vehicle). This variable is 

generally a function of the route features, the traffic conditions, environmental 

conditions, and driver status.  

 

As already mentioned therein, a transportation route can be viewed as a linear 

risk source, since a release can occur at each of its points; this means that each of its 

points can be considered as a point risk source, or, in other words, the generic vehicle 

has to be considered as a traveling risk source. Therefore the second step in 

transportation risk analysis is the vehicle or traveling risk source characterization.  

In order to perform this description, the concept of “vehicle typology” has to be 

introduced. Vehicle typology is a certain kind of vehicle conveying certain kind of 

HazMat which could caused hazard if a release occurs during the transportation. For 

example, a truck tanker conveying ammonia is a kind of vehicle typology. The 

combination of link and vehicle typology could define the risk source associated with 

each link. The properties associated with the link-vehicle typology pair for TRA purpose 

are defined as: 

• The release probability for each vehicle typology. That is the probability of 

having a release once an incident has happened. Vehicle construction standards 

strongly depend on the features of the transported substance; in other words the 



 39

release probability depends on the vehicle typology. Furthermore it can also 

depend on the link since it can be higher on high speed than on low speed route 

segments.  

 

In order to identify and quantify incident scenarios referred to each traveling risk 

source and to predict the consequence of each incident scenario, the following 

parameters are required: 

• The transportation conditions for each substance, i. e., the temperature and 

pressure values at which the substance is stored in the transportation vehicle and 

the vehicle capacity.  

• The probability of the size of the equivalent holes which have been chosen to 

describe all possible releases from each vehicle typology. For each vehicle 

typology and for each rupture size a physical aspect of the outcome and a release 

rate, or a release quantity in case of instantaneous release, have to be evaluated. 

• The final outcomes to which each hole size of each vehicle typology can lead, 

that is if a toxic cloud arises, or an explosive one, or a pool flame, or a jet-fire 

and so on. Each vehicle typology can lead to No final outcomes.  

• The probability of having the final outcome once a release has occurred, Po, i.e., 

the product of the probability of the release being of a specific equivalence size, 

once the releae has occurred, and the probability of having final outcome, once 

the release of this specific equivalence hole has occurred. 
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The impact area characterization includes both the definition of some parameters 

which influence the release effects evaluation and the description of the population 

distribution.  

To perform the release effects evaluation, it is necessary to define: 

• Some physical parameters, like the air temperature and air humidity; the average 

terrain roughness, the terrain typology, the grade of confinement and so on. 

• Meteorological conditions characterizing the impact area, given by atmospheric 

stability class and wind speed.  

• Wind probability density distribution that is the wind rise in the impact area, for 

each meteorological condition. The angle θ is used to mark a wind direction.  

 

All the parameters influencing the effects evaluation can vary from zone to zone 

of the impact area, especially when considering very large areas, and the procedure takes 

into account these variations.  

The distribution of the population on the impact area is an essential input for 

calculating societal risk. A population map is composed of zones, where people may be 

considered uniformly distributed, and of aggregation centers, where people are clustered. 

The total numbers of these zones and centers and their population density need to be 

determined.  
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3.2.3. Risk Analysis for Network Transportation 

Sine risk is additive, in transportation network the risk caused by a vehicle 

transporting along a highway route is the sum of risk caused by vehicle passing each link 

in the route, and the risk caused by each link is the sum of the risk caused by each point 

in that link.  The framework for risk analysis in transportation network is shown in 

Figure 3.2.  

 

 

 

 

Figure 3.2. Network TRA process. 
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3.3. Incident Frequency Analysis 

Risk is a combination of two parameters: frequency and the magnitude of the 

consequence. A quantitative risk analysis incorporates numerical estimates of the 

frequency and the consequences in a sophisticated but approximate manner. The 

specification of incident frequency has been the subject of extensive efforts in the risk 

assessment community. Currently, the most popular cited data for incident frequency 

took only few factors into consideration. We develop an approach on the basis of an 

analysis of national commodity flow information and HazMat incident data. The 

methodology is presented to predict the incident frequency for different types of roads 

by incorporating the effects of a large number of parameters, including the nature of 

truck configurations, operation conditions, environmental factors, and road conditions.  

 

3.3.1. Background on Incident Frequency Assessment  

Incident frequency can be defined as the number of incidents occurred per unit of 

road (mile, kilometer, etc.). It can be computed by dividing the number of incidents by 

the number of vehicle miles, which is the corresponding exposure measure of 

opportunities for an incident to occur.  

There are three basic options to assess incident frequency with reasonable 

accuracy (Rhyne, 1994). The first is to obtain one database (or more) and to perform 

analysis to determine both incident data and exposure data for the specific conditions 

under investigation (assuming that the dataset is structured to support distinction 
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between the desired variables). Second option is to access state databases for specific 

routes. States frequently have incident data and exposure data for the major state 

highways. A third option is to use an existing limited analysis of databases and apply the 

results to a specific route of interest.  

Detailed analyses of several publicly available databases have made it possible to 

specify incident frequency on a per-mile basis. One of the most detailed analyses of such 

data was conducted by Harwood and Russell (1990). On the basis of computerized data 

files from three states – California, Illinois, and Michigan, Harwood and Russell 

calculated the incident frequency by using the number of reported incidents and the total 

number of truck-miles exposed. The incident frequency is assessed as a function of road 

type, truck type, and population density. Brown and Dunn (2000) analyzed Harwood and 

Russell’s data and divided their statistics into two road categories – interstates and non-

interstates (state highways) – and three population density categories – urban, suburban, 

and rural. Bubbico, Cave, and Mazzarotta (2004b) have pointed out that both route-

independent and route-dependent parameters affect risk. 

Several problems exist in above analysis on incident frequency. The first one is 

that the well-accepted data on incident frequency, that is, the statistics of Harwood and 

Russell (1990), was obtained based on the analysis of incident databases of 1980s. The 

status of transportation incidents has changed over the last two decades as shown in 

Figure 1.1. So did the incident reporting system with the heightened consciousness on 

the risk of HazMat transportation incidents. The statistics of Harwood and Russell (1990) 

are to a large extent, update to take into account the changes since 1980s. The second 
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problem is that the neglect of the premier effect of transportation road on incident 

frequency. When performing database analysis to derive incident frequency, we should 

try to disaggregate the incident database for different road rather than for different kinds 

of HazMat or other parameters. The third problem is that these above analyses failed to 

improve the frequency data sensitivity by incorporating parameters describing the nature 

of the roads, characteristics of the trucks, environmental factors, and driver conditions. 

In our research an integrated methodology to predict incident frequency is developed by 

incorporating the effects of various parameters, including both route-dependent and 

route-independent variables.  

 

3.3.2. Data and Database Analysis 

Both incident and vehicle-mile data are required to assess the incident frequency. 

HMIS is the national database with data on HazMat transportation incidents. Container 

types, consequences of incidents, and other information are available in this database. 

However, incidents that occurred on intrastate roads and incidents not resulting in spill 

are not recorded in this database. Battelle (2001), in a report to the Federal Motor Carrier 

Safety Administration, suggested supplementing HMIS with additional databases that 

consist of data on non-spill incidents and other spill incidents (especially intrastate 

incidents).  

The Departments of Public Safety (DPS) incident databases from each state 

consist of incident data gathered from state highways. Since these databases are 

collected by state DPS, the probabilities of underreporting on intrastate incidents are 
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much less. These databases can be disaggregated into various sub-databases, with each 

sub-database corresponding to a road. This capability makes it relatively easy to assess 

the incident frequency for a specific road.  

In our research state DPS databases are analyzed to determine incident frequency. 

A sub-database associated with a certain road is formed by subtracting all incidents 

occurring on that road. Incidents recorded in DPS databases are described by parameters 

on road and environmental conditions. Several parameters that affect incident frequency 

are as follows:   

• Lane number (x1) 

• Weather (x2)  

• Population density (x3)  

 

Incident frequency specific for a road is predicted based on analysis on its sub-

database. This frequency is a function of above route-dependent parameters. 

Several route-independent parameters that affect incident frequency, but are not 

available in DPS databases, are as follows: 

• Truck configuration (y1) 

• Container capacity (y2) 

• Driver experience (y3) 

 

The frequency obtained by considering route-dependent parameters has to be 

modified by incorporating route-independent parameters, i.e., the assessment of the 
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frequency needs to incorporate data from different sets as follows: basic incident 

frequency is derived from DPS database initially; only the route-dependent parameters 

are considered; the effects of route-independent parameters on incident frequency are 

derived from other database such as HMIS or from expert knowledge. Then the final 

incident frequency is a function of both route-dependent and route-independent 

parameters. It is essential to use fuzzy logic in the modification process for the following 

two reasons: (i) the information available in HMIS is on nationwide transportation 

activities, while the data derived from DPS is for specific roads, i.e., data obtained from 

HMIS cannot be applied directly; (ii) the effects of several of the parameters on the 

frequency cannot be derived from any database; thus, expert judgment has to be 

employed in the assessment.  

In addition to the number of incidents, the number of miles traveled (exposure 

data) is needed. The most common cited exposure data source is the Commodity Flow 

Survey (CFS) (US Census Bureau, 2004). CFS is based on 5-year economic census. The 

most up-to-date CFS is that of 2002. It provides information on commodities shipped, 

their value, weight, and mode of transportation. Exposure data on state highways can 

also be obtained from state DOT or transportation institutes (TI). In many cases both the 

data from CFS and data from state DOT or TI are needed to assess the exposure data for 

specific roads.  

 

3.3.3. Incident Frequency Analysis Methodology 

Based on the analysis above, incident frequency can be predicted as follows:  
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• Number of incidents is derived from the DPS databases as a function of route-

dependent parameters. 

• The corresponding vehicle-mile data are obtained from states DOT or TI and 

from the 2002 CFS. The basic incident frequency is obtained by dividing the 

number of incidents by the number of miles traveled.  

• The basic incident frequency is modified by considering the effects of route-

independent parameters. Fuzzy logic is employed to incorporate the expert 

knowledge. The membership functions of these parameters are built based on the 

data available in the HMIS database or based on expert experience.  

 

The flow chart in Figure 3.3 presents the process of utilizing the variety of data 

sources to establish an incident frequency assessor. 

A case study is presented following the development of the methodology. 

HazMat incident frequency on US Highway 290 in Texas is predicted to illustrate the 

performance of our methodology. 
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Figure 3.3. Prediction of incident frequency – a flow chart. 

 

 

3.3.3.1. Basic Incident Frequency Assessment   

Table 3.1 shows the structure of DPS database. It consists of data extracted from 

Texas DPS, and this sub-database contains records on incidents that occurred on US 

Highway 290. There are more than three parameters that describe the conditions of each 

incident. These parameters are listed in the first row in the table. The parameters are 

treated as linguistic variables, and the numeric values in the table are designated to 

represent the values of those linguistic parameters. For example, the variable “surface 

condition” has four linguistic values: 1-dry, 2-wet, 3-muddy, and 4-snowy/icy.  
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Table 3.1 

DPS incident database – sample of records of incidents occurring on US Highway 290 

COUN
TY 
district 

MILE
1 
milepo
int 

WEATH
ER 

SURF_C
ON 

ROAD_C
ON 

INVES
T 

ROADW
AY 

INTRSE
CT 

…
 

101 315 1 1 0 3 1 4 …
101 356 2 2 0 3 1 3 …
101 313 1 1 0 2 1 2 …
101 332 1 1 0 3 1 4 …
101 381 2 4 5 6 3 4 …
101 364 8 4 5 2 3 4 …
101 384 8 4 5 6 1 4 …
101 308 8 4 5 5 3 4 …
101 243 8 4 5 6 1 4 …
101 211 3 1 4 5 9 3 …
101 367 2 2 2 5 9 3 …
… … … … … … … … …
 

 

DPS data for ten years (from 1992 to 2001) are utilized in this study. The data are 

sorted by using Matlab at first to obtain the number of incidents under all the given 

conditions in the databases. Then the number of incidents under any conditions needs to 

be estimated as a function of those three route-dependent parameters. An appropriate 

count data model is needed for this estimation. Four approaches were considered for this 

purpose: linear regression, Poisson regression, negative binomial model, and Bayesian 

estimation. The following paragraphs discuss these approaches.  

 

• Many of the early works in empirical analysis have been done using multiple 

linear regression models. However, these models suffer from several 

methodological limitations and practical inconsistencies. The two major 
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deficiencies are: a) linear regression assumes a normal distribution of the 

dependent variable, which is not valid for count (incident) data; b) linear 

regression may produce negative estimates for the dependent variable. 

• Poisson model has several advantages in comparison to normal regression model. 

It assumes that the data follows a Poisson distribution, a distribution frequently 

encountered when events are counted. Despite its advantages, Poisson regression 

assumes that the variance and mean of the dependent variable are equal. 

However, it is quite common to have the variance of data that is substantially 

higher than the mean. This phenomenon is known as “over-dispersion”. Over-

dispersion leads to invalid t-tests of the estimated parameters. This restriction can 

be avoided by using negative binomial regression, which allows the variance of 

the dependent variable to be larger than the mean.  

• Bayesian estimation can combine sample information with other information that 

may be available prior to collecting the sample. In Bayesian model, each input 

independent variable has a probability distribution that is a function of one 

parameter (known as prior). This approach is useful when uncertainty exists in 

input variables. However, in DPS databases, the four affecting parameters have 

been defined and categorized. 

 

Therefore, the negative binomial regression model is the best choice to assess the 

number of incidents. The regression model is derived from the statistical software SAS. 
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Then the number of incidents under any condition is estimated using the model 

established by SAS.  

Exposure data is obtained from state DOT or TI and the 2002 CFS. Since the 

number of incidents is a function of several parameters, the corresponding number of 

miles traveled needs to consider the effects of the same parameters, i.e., the exposure 

data have to be disaggregated by the same factors.  

Finally, the basic incident frequency is obtained by dividing the number of 

incidents by the number of miles traveled. This frequency is expressed as ( )321 ,, xxxfbasic . 

Figure 3.4 consists of schematic presentation of the algorithm of prediction of basic 

incident frequency. 

 

3.3.3.2. Modification to the Basic Incident Frequency Data  

Basic frequency data need to be modified to incorporate the effects of the 

following parameters: Truck configuration (y1), Container capacity (y2), and Driver 

experience (y3). These three parameters are not road-related variables, and their effects 

on the frequency are independent from road condition. In this study Fuzzy Mamdani 

models are employed to assess the effects of y1, y2, and y3 on the frequency. MatLab 

software is employed to help the model setup. A modifier, expressed as ( )3,2,1=imi , is 

generated for each of these 3 parameters, and then the ultimate incident frequency is 

expressed as: ( )321 mmmff basicultimate ×××= .  
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Figure 3.4. Schematic presentation of an algorithm of prediction of basic incident frequency. 

 

 

y1, y2, and y3 are treated as linguistic variables. The frequency modifiers are 

viewed as linguistic variables as well. Each linguistic variable is defined by several 

fuzzy sets. The membership function for each fuzzy set is determined either by expert 

experience or from available data. Analysis is performed on the HMIS database to 

develop the membership functions for Truck configuration. The membership functions 

for Driver experience and Container capacity are determined based on expert experience. 

Then, the fuzzy “if-then” rules are built to associate each affecting variable, yi, to the 
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corresponding modifier, mi. For example, driver experience (y3), as shown in Figure 3.5, 

is expressed by three fuzzy sets: novice, medium, and experienced. The driver 

experience modifier variable (m4) also includes three fuzzy sets: low, medium, and high.  

 

 

 

 

Figure 3.5. Driver experience membership function. 

 

 

The “if-then” rules are set up as: 

If driver experience is novice, then the driver experience modifier is high, 

If driver experience is medium, then the driver experience modifier is medium, 

If driver experience is experienced, then the driver experience modifier is low. 

 

Fis editor in Matlab is used to defuzzify the process based on input data in order 

to derive the output modifier. After the set-up of these rules, driver experience data can 

be input to the model. Then, defuzzification is performed in order to obtain a numerical 
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output value. The value obtained after the defuzzification is the driver experience 

modifier (m3) as shown in Figure 3.6. Other modifiers are obtained similarly.  

 

 

 

 

Figure 3.6. Defuzzification process in Matlab. 

 

 

3.3.4. Case Study 

3.3.4.1. Calculation of Number of Incidents by SAS 

As mentioned earlier, this case study will address sections from US Highway 290 

in Texas, a road connecting Houston and Austin.  Figure 3.7 presents the control section 

map for Houston area. The sections under study are between Highway 6 and Highway 

610 as shown in the figure.   

DPS databases from 1992 to 2001 are employed in this study. 9536 incidents are 

recorded for this period. The data was sorted by Matlab and input into SAS. 
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Figure 3.7. Control section map for Houston TX. 

 

 

The parameter estimations are shown in Table 3.2. The definitions of each value 

of the parameters of DPS are given in Table 3.3. The number of incidents under any 

conditions (denoted as POP, NUMN_LN, and WERATHER) is estimated by the 

following equation:  

( ) )( 3210,, kjiekjiN ββββ +++=  (3.1) 

Where, 

N: number of incidents 

i: linguistic value of population density, 0, 1, 3, 4, or 9 

j: linguistic value of number of lanes, 4, 5, 6, 8, or 10 

k: linguistic value of weather condition, 1 or 2 

0β : intercept of regression equation 

 

Highway 610
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1β : regression coefficient for variable population density 

2β : regression coefficient for variable number of lanes 

3β : regression coefficient for variable weather condition 

 

Pearson’s chi-square is used to calculate goodness of fit. The P-value for the 

Pearson’s chi-square is computed from the output of SAS. The calculated P-value is 

0.1976, which is larger than 0.05. Thus, the derived negative binomial models pass the 

chi-square goodness-of-fit test at the 0.05 confidence level, i.e., the level of fitness of the 

negative binomial model is acceptable.  

 

Table 3.2  

Parameter estimation  

Parameter Parameter categories Parameter estimates 
0 -1.5727      
1 -6.0371      
3 -1.7244      
4 -2.2201      

POP 
(β1) 
 

9 0.0000      
4 2.3151      
5 -2.3590      
6 2.6869      
8 2.5499      

NUMN_LN (β2) 

10 0.0000      
1 1.9717      WEATHER 

(β3) 2 0.0000      
β0 =3.1703 
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Table 3.3  

Parameter meaning in DPS 

Parameter Parameter categories Parameter meaning 
0 Rural       
1 Town under 2,499 pop.    
3 2,500-4,999 pop.     
4 5,000-9,999 pop.      

POP 
(β1) 
 

9 250,000 pop. and over      
4 Number of lanes = 4 
5 Number of lanes = 5 
6 Number of lanes = 6 
8 Number of lanes = 8 

NUMN_LN  
(β2) 

10 Number of lanes = 10 
1 Clear (cloudy)      WEATHER 

(β3) 2 Raining (other)      
 

 

The test for detecting over-dispersion in the Poisson process is performed in 

order to verify that either Poisson regression or negative binomial regression can be used 

to analyze DPS database. Table 3.4 and Table 3.5 provide the fit statistics for Poisson 

and negative binomial models. For Poisson model, the values of Pearson Chi-sq and 

deviance divided by the degrees of freedom are significantly larger than 1, i.e., this is a 

case of over-dispersion (Cameron and Trivedi, 1998), and Poisson models cannot be 

used. Since negative binomial models are not restricted by over-dispersion, it should be 

used in the methodology.  
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Table 3.4  

Criteria for assessing goodness of fit for Poisson regression 

Criterion DF Value Value/DF 
Deviance 15 2827.9395        188.5293 
Scaled Deviance       15 2827.9395         188.5293 
Pearson Chi-
Square         

15 2626.1428         175.0762 

Scaled Pearson X2   15 2626.1428         175.0762 
Log Likelihood         56708.2067  
 

 

Table 3.5 

Criteria for assessing goodness of fit for negative binomial regression 

Criterion DF Value Value/DF 
Deviance 15 26.9834 1.7989 
Scaled Deviance       15 26.9834 1.7989 
Pearson Chi-
Square         

15 10.4236           0.6949 

Scaled Pearson X2   15 10.4236           0.6949 
Log Likelihood         58058.0075  

 

 

3.3.4.2. Exposure Data Assessment 

Exposure data for US Highway 290 are obtained from Texas Transportation 

Institute (TTI).  The exposure data could be disaggregated by the number of lanes and 

population density group. The data disaggregated need to be segmented further to 

incorporate the effect of weather.   

According to the National Climate Data Center (2005), the normal annual 

precipitation is 47.84 inches. The rain rate is modeled by Crane (2005). His study shows 

that the percentage of raining time over a year in Houston area is about 3.9%. The 
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annual precipitation assessed by multiplying the raining rate by the raining time is about 

53.3 inches, very close to the data reported by the National Climate Data Center. Thus, 

the assessment by Crane is employed here, but was approximated as 5% of the raining 

percentage over a year. We assume the weather condition would affect the 

corresponding vehicle mile data equally over the number of lanes and population group.  

The completely disaggregated exposure data are shown in Table 3.6. By dividing 

the estimated number of incidents with the corresponding exposure data, the basic 

incident frequency is calculated. 

 

Table 3.6  

Exposure (vehicle miles) data for control section 58 and 59 on US Highway 290 

NUM_LN Exposure data 
(vehicle miles) 4 5 6 8 10 

0 498870024 1405378 951118019 / 3931089 
1 / / 4152767 / / 
3 444307187 / 14353884654 / / 
4 243085504 / 213621596 / / 

1 POP 

9 54087951 / 2601401642 1447712804 249977292 
0 26256317 73967 50058843 / 206899 
1 / / 218566 / / 
3 23384589 / 755467613 / / 
4 12793974 / 11243242 / / 

Weather 
 

2 POP 

9 2846734 / 136915876 76195410 13156700 
 

 

3.3.4.3 Fuzzy Logic Modification  

The basic frequency data need to be modified to incorporate the effects of Truck 

configuration (y1), Container capacity (y2), and Driver experience (y3). y1, y2, and y3, are 

treated as linguistic variables. The frequency modifiers are viewed as linguistic variables 
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as well. Each linguistic variable is defined by several fuzzy sets, and the membership 

functions for each fuzzy set are determined either by experts or from data.  

The effects of driver experience and the container capacity on the incident 

frequency is assessed utilizing expert experience. The membership functions plots and 

the corresponding modifiers plots are shown in Figures 3.5, 3.8, 3.9, and 3.10.  

Harwood and Russell (1990) studied the effects of truck configuration on the 

incident frequency. Based on their result, triangular membership functions are set for 

four different vehicle configurations and their modifiers as shown in Figures 3.11 and 

3.12. 

After the determination of membership functions, the fuzzy “if-then” rules are set 

using expert experience and the Harwood and Russell work (1990). Given any input data 

of the route-independent parameters, the corresponding modifier is derived from this 

fuzzy model. This process is the defuzzification process. Figure 3.6 illustrates the 

defuzzification process to derive the modifier for driver experience.  

 
 

 

 

Figure 3.8. Driver modifier membership function. 
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Figure 3.9. Container capacity membership function. 

 

 

 

 
 

Figure 3.10. Container modifier membership function. 
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Figure 3.11. Truck configuration membership function. 

 

 

 

 

Figure 3.12. Configuration modifier membership function. 
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3.3.4.4. Effect of Various Parameters on Incident Frequency 

Figures 3.13, 3.14, and 3.15 and Table 3.7 present the effect of number of lanes, 

truck configuration, population density, and road condition on the incident frequency.  

An increase in population density increases the frequency as shown in Figure 

3.13. When the number of lanes changed from 4 to 6, the incident frequency decreases 

somewhat when the population group is 0; however it increases for the other population 

groups.  Incident frequency is relatively low in rural areas, so the effects of number of 

lanes are not prominent. Other reason for this inconsistency may be poor data sample. 

Our study focus on control section 58 and 59 for US Highway 290. Study on more 

sections may be able to obtain the effects of number of lanes on the frequency in rural 

area. Figure 3.15 shows that weather conditions affects the frequency significantly. The 

frequency increases under rainy weather in comparison to the frequency under clear 

weather. The increase is more significant when the number of lanes is 6 and the 

population group is between 5,000 and 10,000. This may be the case, or may not be 

accurate due to the inadequacy of the data sample.  

As for route-independent parameters, an increase in both the complexity of 

vehicle configuration and container capacity increases the frequency (shown in Figure 

3.14). Table 3.7 illustrates the effects of driver experience. The accumulation of driver 

experience is helpful in decreasing the probability of incident. 
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Figure 3.13. Effects of number of lanes and population density on the incident frequency. 
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Figure 3.14. Effects of container capacity and truck configuration on the incident frequency. 

 

 
Table 3.7 

Effects of driver experience on the incident frequency 

Driver experience Driver modifier Incident frequency 
(Incident/vehicle mile) 

0.1 1.14 1.65821E-06 
0.6 0.791 1.15057E-06 
0.8 0.86 1.25093E-06 
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(4,0): Number of lanes=4 

          Pop group =0 

(6,4): Number of lanes=6 

          Pop group =4 

 

 

Figure 3.15. Effects of weather condition on the incident frequency. 

 

 

A methodology to predict incident frequency of HazMat transportation has been 

presented in this section based on empirical data. The integrated models incorporate the 

effects of both route-dependent and route-independent variables. This methodology can 

be applied to predict frequencies associated with a given road as long as data with 

incident records and exposure information are available for this type of road.  

 

3.4. Release Scenario Analysis 

3.4.1. Conditional Probability of Release 

The release probability is a conditional probability that a release will occur 

following an incident. The probability of a release in a case of transportation of HazMat 

is affected by the following four parameters: 

• Vehicle characteristics 

0.00E+00

5.00E-07
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• The nature of the incident 

• Characteristics of the transported material 

• The conditions of transport 

 

Vehicle characteristics include the strength and integrity of the container, as well 

as specific mitigation factors such as antisloshing devices and the height of the center of 

gravity of the loaded vehicle. Strength and integrity are functions of the material and 

wall thickness of the container, the presence or absence of a double wall, 

compartmentalization of cargo, and the use of any protective shielding devices. These 

measures either affect the potential for container rupture or puncture or, in the event of 

container failure, they affect the quantity of material released.  

Incidents can be classified as follows: (i) High speed collision, (ii) Low speed 

collision, (iii) Overturning, and (iv) Non-incident initiated release. 

The type of the HazMat and the conditions of transport also affect the release 

probability. These factors mainly affect the size of the release. Other factors are the 

material phase (liquid or gas), the temperature, and the pressure. While pressurized gas 

will increase the rate of the release, the size of the release area is the main factor that 

dictates the release rate. 

Rhyne (1994) has studied the incident force types and force magnitudes to 

evaluate the conditional failure probabilities for a spectrum of release sizes. However, it 

is still difficult to predict the size of the release by analyzing the impact of the 

mechanical force.  
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Due to the limitation in performing analysis of the impact of the mechanical 

force, a statistical inference will be used to extract the conditional probability of release. 

This methodology is based on sufficient historical data that allow inferring the 

conditional probability for the variety of containers. The selection of container for 

HazMat transport has been regulated in 49 CFR. Brown and Dunn (2000) also 

mentioned the information on the containers utilized to transport the selected HazMat. 

The selected HazMat include Chlorine, Ammonia, LPG, gasoline, and other explosives. 

By using the release data from the HMIS database, Brown and Dunn (2000) estimated 

the release probability by dividing the number of reported releases by the estimated 

number of incidents. Although this approach has a considerable degree of uncertainty, it 

provides a large statistical sample that consists of data on specific container types. The 

results of this analysis are used to obtain the conditional probability of release in our 

study.    

 

3.4.2. Consequence Scenario Analysis 

The size of a release affects the magnitude of the severity of the consequences. 

HMIS consists of information on whether a release occurred, as well as on the size of the 

release and on the resulting consequences. This combination of parameters is required to 

quantify the probability of release for a variety of consequence scenarios.  

Event Tree Analysis (ETA) is employed in our methodology in order to develop 

the propagation sequence of each of the variety of scenarios, and to calculate the final 

probability of each type of consequences. HMIS will be disaggregated for each 
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hazardous material and each type of container. For a variety of common hazardous 

materials, including ammonia, chlorine, LNG, LPG, and gasoline, data will be analyzed 

and substituted in the appropriate branches on the tree.   

ETA enables the assessment of multiple, co-existing system faults and failures as 

well. It functions simultaneously in the failure and success domains. Here the event tree 

has three possible release magnitudes:  

• A rupture: release area equal to the area of a 4-inch diameter hole 

• A puncture: release area equal to the area of a 1-inch diameter hole 

• A leak: release area equal to the area of a ¼ -inch diameter hole 

 

One or more hazards may be created by each of these failure categories. In LPG, 

for example, the possible consequences upon release are:  

• Torch fire: results from immediate ignition of the release 

• Flash fire: may result from delayed ignition of the release 

• Vapor dissipation: no ignition occurs after the release  

 

Figure 3.16 is an example of event tree of propagation of a release of propane.  
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LPG Release  

Release 
magnitude Delayed fire Immediate fire Outcome 

Rupture 0.03 

Yes 0.15 

No 0.85 

Yes 0.12 

No 0.88 

Puncture 0.25 

Yes 0.10 

No 0.90 

Yes 0.17 

No 0.83 

Leak 0.72 

Yes 0.02 

No 0.98 

Yes 0.03 

No 0.97 

P1=1.08*10-4 

P2=7.34*10-5 

P3=5.38*10-4 

P3=6.00*10-4 

P3=9.18*10-4
 

P6=4.48*10-3
 

P7=3.46*10-4
 

P8=5.08*10-4
 

P9=1.64*10-2
 

0.024 
release/incident 

Conditional 
release occurs 

Probability 

Torch fire from 
rupture 

Flash fire from 
rupture 

Dissipation from 
rupture 

Torch fire from 
puncture 

Flash fire from 
puncture 

Dissipation from 
puncture 

Torch fire from 
leak 

Flash fire from 
leak 

Dissipation from 
leak 

 

 

Figure 3.16.Example of event tree of propagation of a release of propane.  

 

 

3.5. Consequence Analysis 

Several factors govern the severity of the consequences. Among these factors are 

the amount of material released, toxicity of the chemical, health effects of the released 

materials, characteristics of the population and the environment adjacent to the site of 

the incident, and the weather conditions at the time of the incident. The interplay among 

these factors produces a risk spectrum.  
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A variety of consequence analysis software is available in the market. In this 

study we utilize CANARYTM, consequence analysis package, to assess the consequence. 

CANARYTM calculates the consequences, based on the physical properties and based on 

consequence models that are available in the literature. Given a release occurs during 

transportation, the majority of potential hazards can be modeled. These include toxic 

vapor cloud, flammable vapor cloud, unconfined vapor cloud explosion, pool fire, torch 

fire, flare, BLEVE, and confined explosion.  

 

3.6. Individual Risk Analysis  

A personal consequence could be minor injury, major injury, or fatality. This 

document concentrates on incurring the probability of death as a basis for assessing risk. 

The consequences resulting from an incident are obtained from CANARYTM, including 

overpressure due to explosion, toxic vapor density, and/or radiant heat flux. It is 

combined with the proper exposure times to obtain the corresponding received doses. 

Doses are then converted to fatalities using Probit Correlations (CCPS, 2000). Thus, the 

fatality probability can be estimated for any given point.  

Among the parameters that are considered in the risk analysis, are incident 

frequency and weather conditions. These variables are rarely constant along a route. To 

get a more accurate estimate of the risk, the transportation route is broken into a set of 

links. As presented in the network characterization part of this chapter, a basic 

assumption is that all factors are constant along a link. The individual risk at point M(x, y) 
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is the sum of all risk sources from all links in the transportation route. The following 

steps should be employed to obtain the overall risk along a route of transportation: 

• Summing the risks created by all points on a link, and 

• Summing the risks of all links in the route.  

 

 

 

Figure 3.17. Graphical presentation of the relationships between Link (l), point of release Q(x, y) 

and point of exposure M(x, y). 

 

 

As shown in Figure 3.17, a vehicle transporting HazMat is passing through point 

Q(x, y) on link l. As a result, a risk is posed on point M(x, y). In order to calculate the 

annual individual risk (fatalities/year) at M(x, y), the following input data are required: 

 

• Incident frequency. It is a function of the following parameters: Lane number (x1), 

Weather (x2), Surface condition (x3), Alignment (x4), Truck type (y1), Container 

capacity (y2), Container type (y3), and Driver experience (y4). For a given 

transportation activity and a given link, all the parameters are constant, except 

the Weather (x2), which is changing over the year. Therefore, the frequency at 

Link (l) 

M(x, y) 

Q(x, y) 
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point Q(x, y) is a function of the Weather (x2) for given transportation activity. 

Pincident(weather) denotes incident frequency. The number of weather conditions 

is denoted by Nweather, and the probability for each weather condition is Pweather. 

• Outcome probability. If a release occurs following an incident, various outcomes 

caused by different magnitudes of release are possible. The probability of each 

outcome has been estimated using ETA as described in 3.2. The total number of 

outcomes is marked as No, and the probability for each outcome is marked as Po. 

• Fatality. The fatality probability is a function of the consequence and of the 

exposure time (the exposure time is assumed constant for a given consequence 

scenario). The consequence is a function of the nature of the HazMat, type of 

release outcome, weather condition, and wind direction. Therefore, for the 

transportation of a given HazMat, the fatality probability is a function of release 

outcome and the wind direction noted as F(weather, o, w). The number of wind 

directions is noted as Nw, and the probability of each wind direction is Pw. 

 

The individual risk at point M(x, y) caused by the point risk source Q(x, y) is 

calculated by integrating the consequences associated with each wind direction over all 

wind directions, release outcomes, and weather conditions. This individual risk caused 

by a point risk source is known as a point individual risk (PIR): 

[ ]∑ ∑ ∑
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⎬
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In the calculation above we assumed that the vehicle is a stationary source 

at ( )yxP , . However, vehicles are in motion, and the effect of the velocity should be 

incorporated into the model. A linear integration along the link, with respect to time (dt), 

will incorporate the component of travel time on the link risk value. The link individual 

risk (LIR) will then have the following form:  

( )∫=
l

dtPIRLIR                (3.3) 

The sum of LIR s along the entire transportation route will represent the total 

individual risk (IR) posed on point M(x, y).  The total individual risk (IR) then can be 

expressed as follows: 

∑
=

=
linkN

l

LIRIR
1

  (3.4) 

 

3.7. Societal Risk Analysis 

Societal risk is the risk to a population. It reflects the frequency of health effects 

(usually fatalities) in a specific population, occurring as the result of exposure to a 

specific hazardous material. The societal risk is often expressed in terms of frequency 

distribution of multiple fatalities (f-N curve). The population map for the transportation 

network needs to be defined in order to calculate the societal risk. The population map is 

composed of zones where people are assumed to be uniformly distributed. Aggregation 

centers are points where people are clustered. Zones can have rectangular shape or can 

be linear. Rectangular areas describe the off-route residential quarters, while linear zones 
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represent the road network where motorists are present. Aggregation centers refer to 

particular areas where people are clustered, like schools, hospitals, commercial centers, 

and other similar locations.  

The total number of rectangle zones and the total number of linear zones in the 

network are marked as Nr and Nl, and the uniform population densities are denoted as 

rρ (persons/m2) and lρ (persons/m) respectively. The total number of aggregation 

centers is Nc, and the total number of persons in each center is Pc. 

The number of fatalities in a linear zone is obtained by linear integration (first 

segment of Equation (3.5)) of the fatalities along the line, and it is a function of an 

outcome and a wind direction noted as FL(wind, o, w). In rectangular zones, the number 

of fatalities is obtained by integration (second segment of Equation (3.5)) over the area 

of the rectangle noted as FR(wind, o, w). In an aggregation center, the number of 

fatalities is the fatality probability in the center multiplied by the number of people (third 

segment of Equation (3.5)) in the center noted as FC(wind, o, w). 

The number of fatalities over all zones, caused by a risk source Q(x, y), under 

given release outcome and given wind direction, is calculated as follows: 

[ ]
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The probability of having N fatalities under a given weather condition, release 

outcome, and wind direction is estimated by Equation (3.6): 
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( ) woweatherincident PPPPwoweatherNF ×××=),,(                                                     (3.6) 

 

By taking into account all wind directions, it is possible to evaluate the 

probability of having Nn (or more) fatalities for given weather condition and release 

outcome: 

( ) [ ]∑ ×=
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Considering the motion of the vehicle over all the links and the effects of all 

release outcomes and weather conditions, the probability of having Nn fatalities is 

calculated as follows: 

( )∑ ∑∑∫=
weather o LN N N

L nn dtoweatherNFNF
1 1 1

),()(                                                           (3.8) 

Equation (3.8) is actually an F-N curve. 

 

3.8. Conclusion on Chapter III 

This chapter has been dedicated to describe the basic modeling technique and 

overall methodology. The basic idea of the proposed methodology is to capture the 



 76

matching of data/databases availability with TRA techniques and to set up an applicable 

framework to assess transportation risk step by step.  

Risk assessment is a process resulting from the interaction between the 

transportation network, the vehicle or traveling risk source, and the impact area. All our 

risk components, including incident frequency, release probability, consequence 

scenario, and fatality, are carefully observed to determine their contributing factors and 

to figure out the proper data/databases for analysis. Mathematical models and risk 

analysis techniques like ETA are employed for each risk component assessment. 

Numerical models are presented to measure individual risk and societal risk caused by 

HazMat transportation network.  

The overall methodology is developed from available data/databases, which 

makes it an applicable and accountable resource in transportation decision support 

system. This generic method could be applied for most of TRA within the scopes 

described in Section 1.4. Decision makers could modify the methodology when dealing 

with different HazMat. The methodology could be simplified or elaborated further based 

on the requirement of users.   
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CHAPTER IV 

TRA CASE STUDY 

 

 

This chapter does not address all HazMat. It contains two representative case 

studies that use the TRA techniques presented in Chapter III.  

Historical data provide valuable clues to the risks of transporting hazardous 

materials. However, they do not necessarily reflect the actual distribution of risk among 

various hazardous materials because the risks associated with certain materials are 

largely driven by rarely occurring catastrophic events. For example, historical data for 

the past 20 years show that fatalities are more likely to result from events associated with 

the transportation of gasoline and other flammable materials than from other 

transportation incidents. Risk from flammable materials like propane is driven by 

frequently occurring incidents that involve number of injuries and fatalities. These types 

of incidents are called high-probability/low consequence events.  

Transporting toxic-by-inhalation materials poses significantly different risks than 

are associated with transporting propane or other flammable materials. Risks associated 

with toxic materials are strongly influenced by rarely occurring catastrophic incidents, 

such as the rupture of a tank that contains chlorine near a populated area in adverse 

atmospheric conditions. Such incidents are called low-probability/high-consequence 

events.  
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Because the historical record contains information on many propane incidents 

and because the maximum potential impacts from an incident involving propane are 

limited, these historical data provide an accurate measure of risk. However, for toxic 

materials, because of strong influence of low-probability events on the overall risk 

profile and because too few incidents have occurred to support statistical 

characterization, experience does not provide an adequate basis for defining toxic 

transportation risks. In this chapter, we illustrate how our methodology is employed for 

these two different cases: propane TRA and chlorine TRA.  

In reality, each study might require over 100 pages of calculations and 

documentation, while here we want to show the performance of our methodology, so 

some assumptions are used besides the exact data, and the assumptions used in an actual 

analysis are situation specific.  

 

4.1. Road Analysis 

The transportation route selected in our case study is sections of US Highway 

290. As explained in Chapter III, the incident data and information on road conditions 

(e.g., number of lanes) are obtained from TTI. The release and consequence scenario 

probabilities are derived from HMIS. The surrounding area information is required to 

measure the societal risk. GIS is employed in our study to characterize the population 

distribution. On a paper map, we cannot peel cities away from countries, or countries 

away from the ocean, but on a GIS map we can. A GIS map is made up of layers, or 
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collections of geographic objects that are alike. To make a map, we can add as many 

layers as we want. 

For our case study purpose, we peel Texas highway information from GIS and 

create the highway layer. A second layer on population distribution is also added to the 

map. Figure 4.1 is the two-layer GIS map for US Highway 290 sections between 

Highway 610 and Highway 6. Population blocks in the map can be characterized by both 

overall population and density. The area of each block is also available in GIS. Dividing 

population data into classes requires we choose both the number of classes and a method 

to determine where one class ends and another begins. 

GIS has six classification methods: natural break, equal interval, defined interval, 

quantile, standard deviation, and manual. Manual method is chosen in our study in order 

to have the same classification as data provided by TTI. Same as TTI data, the 

population distribution is divided into five classes. Figure 4.1 illustrates population 

distribution after classifying the data in the same way as TTI system.  

However, compared with TTI data, the population blocks along Highway 290 are 

not in the same classes. From example, according to TTI, Highway 290 segment that has 

8 lanes has a population class of 9, i.e., the population blocks along the 8-lane segment 

have population of more than 250,000 people, while in GIS, population blocks for that 

part have less than 2,499 people.  We believe the difference is caused because these two 

systems use different areas in define blocks. GIS records more information so that it is 

possible to assess each block in a smaller size.  
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Figure 4.1. GIS map with population block information for Highway 290 surrounding area. 

 

 

Before performing TRA associated with transportation on Highway 290, the 

transportation route needs to be divided into several links. As analyzed in Chapter III, 

unlike incident frequency, release probability, consequence scenario, and consequence 

are affected little by road condition. Incident frequency is a function of Lane number 

(x1), Weather (x2), Population density (x3), Truck configuration (y1), Container capacity 

(y2), and Driver experience (y3). Lane number(x1) and Population density (x3) are road 

features, so the dividing is based on the lane number and population group.  

As shown in Figure 4.1, the selected route can be divided into three parts based 

on the number of lanes. These three parts are denoted as l(1), l(2), and l(3). The 

population groups along l(2) and l(3) are uniform. Two different population groups are 
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associated with l(1). Only  Figure 4.1 black markers separate different links, with each 

link denoted in blue. By referring to the incident frequency calculation in Chapter III, the 

population group does not affect incident frequency much when the number of lanes is 6, 

so we do not divide l(1) further based on population groups. Thus, the selected route is 

divided into three links for risk assessment purpose.  

The notation on population group for each link is defined based on TTI data 

rather than on GIS, because TTI data has been employed therein and it is not necessary 

to spend more time for little improvement of accuracy. Table 4.1 is the definition for 

three links of this transportation route.  

 

Table 4.1 

Link definition 

Link  Number of Lanes Population Group 

l(1) 6 3 

l(2) 8 9 

l(3) 10 9 

 

 

4.2. Propane TRA 

4.2.1. Description 

Propane is one of the nation's most versatile sources of energy and supplies 3 to 4 

percent of our total energy needs. Nearly 11 billion gallons of propane are consumed 

annually in the U.S. by more than 60 million Americans (NPGA, 2005). The situation of 



 82

concern in this section is that involving the transportation of propane along 

transportation route as highlighted in Figure 4.1. Propane is commonly transported under 

pressure as a flammable liquid which vaporizes rapidly if releases. Table 4.2 describes 

the properties of propane. 

 

Table 4.2 

Properties of propane 

Lower flammable limit  2.1% 

Upper flammable limit 9.5% 

Boiling point -44 oF 

Molecular weight 44.1 

 

 

Two types of trucks are used for propane transportation: a highway transport 

(which typically carries 7,000 to 12,000 gallons) and a smaller bulk delivery truck, 

called a "bobtail" (which carries 1,000 to 5,000+ gallons).  In our case study the 

container capacity is assumed to be 10,000 gallons. One-third of the nation's propane is 

produced in Texas, so the number of trips per year on Highway 290 is assumed to be 

1,000. Table 4.3 describes the specifics associated with this case. 
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4.2.2. Incident Frequency Estimation 

 As detailed in Chapter III, the base incident frequency for these three links in the 

studied route can be assessed by the developed models. Table 4.4 lists the data 

calculated based on the model.  

 

Table 4.3 

Tank truck example description 

Product  Propane 

Contain type  MC331 

Container capacity 10,000 gallons 

Container temperature  70 oF 

Container pressure 125 psia 

Truck type Truck with single trailer 

Trips per year 1,000 

 

Table 4.4 

Incident frequency for different links 

Link Link 

length 

(mile) 

Population 

Group  

Number of 

Lanes 
Weather 

Basic 

Incident 

frequency 

Ultimate 

incident 

frequency 

1 3.1*10-8 4.6*10-8 l(1) 9.7 3 6 

2 8.2*10-8 1.2*10-7 

1 1.5*10-6 2.3*10-6 l(2) 2.4 9 8 

2 4.0*10-6 5.9*10-6 

1 6.8*10-7 1.0*10-6 l(3) 0.9 9 10 

2 1.8*10-6 2.7*10-6 
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The modifying parameters are Truck configuration (y1), Container capacity (y2), 

and Driver experience (y3). In this study the modifier associated with driver experience 

is assume to be 1, i.e., the driver has average experience. The other two modifiers are 

assessed from fuzzy models built in Chapter III, and the values of modifiers are 1.39 for 

y2 and 1.07 for y3.  The ultimate incident frequencies for these three links are shown in 

Table 4.4.  

 

4.2.3. Release and Consequence Scenario Analysis 

Since propane is flammable, flammability hazards and the potential for 

explosions must be addressed in the consequence analysis. As discussed in CCPS 

(1995), BLEVE is not a typical outcome unless there is a secondary source of fuel. Only 

consequences related with flammability are considered. The release probability and 

consequence scenarios have been analyzed in the example shown in Chapter III. Nine 

different consequence scenarios result after the release of propane from the tank. Torch 

fires/flash fires consequence resulting after propane releases have different dimensions 

and affect different areas, which are closely related with the release scenario. The 

probabilities of different consequence scenarios were derived from ETA.  

 

4.2.4. Consequence Simulation 

The consequence caused by each of these scenarios is simulated using 

CANARY. For all of these hazards, the concern of study is the fatalities caused by heat 
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flux. Table 4.5 is the CANARY output for heat flux of the center line along wind 

direction. Figure 4.2 shows the radiation flux vs. distance in the targeted ground level. 

The heat fluxes for other scenarios are simulated in the same way. With the 

changing of release orifice size, the heat flux along the wind direction also changes. The 

smaller the orifice, the less the heat flux at the same distance from the release source.  

 

Table 4.5 

Heat flux at the center line along wind direction vs. distance 

Downwind Distance  (feet)             Flux  (Btu/hr-sq.ft) 
16.4                 4723 
18.1                 4689 
20.0                 4611 
22.1                 4484 
24.4                 4302 
26.9                 4066 
29.8                 3775 
32.9                 3439 
36.3                 3068 
40.1                 2678 
44.3                 2289 
48.9                 1918 
54.0                 1579 
59.6                 1280 
65.9                 1026 
72.7                  815 
80.3                  644 
88.7                  507 
98.0                  398 
108.2                  312 
Downwind Distances to Endpoints  
24.4                 4300 
53.2                 1600 
89.2                  500 
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Figure 4.2. Radiation flux vs. distance in the targeted ground level. 

 

 

4.2.5. Risk Estimation  

The point individual risk is estimated by Equation (3.2). After obtaining all the 

probabilities present in the equation, the only missing item is the Fatality. These data are 

obtained from probit correlations. The fatality associated with flash fire is caused by heat 

radiation. The probit correlation for burn deaths from flash fire is (Crowl, 2002): 
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( )VY ln56.29.14 ×+−=   (4.1) 

 43
4

10ee ItV =  

 et = effective time duration (s) 

 eI  = effective radiation intensity (W/m2) 

 

To assess the individual risk, the observed point has to be defined in the network 

first, i.e., at that point a person is supposed to be stationed there for a whole year. The 

fatality probability of that individual is the individual risk for that point.  

This point M is chosen to be located in the highlighted block as shown in Figure 

4.1, because this point is next to l(2) whose incident frequency is a little bit larger than 

the other two. The distance of point M to l(2) is 30 feet. That is a reasonable distance for 

individuals to be stationed, and at that distance the heat flux is still high enough for 

worst scenario analysis.  

Figure 4.3 shows that the wind direction does not affect the heat flux much at a 

distance of 30 feet. So the wind direction is not considered any more. When weather is 

in class 1, and the consequence scenario is flash fire occurring after rupture, the heat flux 

is assessed to be 3775 Btu/hr.ft2. The effective time duration is supposed to be 60 

seconds. Then the probit under such conditions is calculated to be 4.005 according to 

Equation (4.1). The corresponding fatality probability is 10.6% (Crowl, 2002).  
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Figure 4.3. Flare radiation isopleths. 

 

 

Since the consequence scenario is flash fire, fatality is not supposed to occur 

when  weather condition is rainy, so only one weather condition is taken into account in 

the risk assessment. Without considering weather and wind condition in Equation (3.2), 

only fatalities associated with all other consequence scenarios need to be measured to get 
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the point individual risk, but the vapor distribution is not included in the calculation.  

Fatalities for other consequence scenarios are listed in Table 4.6.  

 

Table 4.6 

Fatalities caused by different scenarios 

Consequence scenario obtained from ETA Fatality (%) 

P1  10.6 

P2 10.6 

P4 1 

P5 1 

P7 <1 

P8 <1 

 

 

The overall point individual risk is calculated to be: 

( )( )

milevehicledeath
incident
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incident
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•
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∑
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105.3102.395.0  (4.2) 

 

 The link risk is to integrate the point risk through the whole link. Usually, when 

the heat flux is less than 500 Btu/hr.ft2 (1,562W/m2), we will not consider its effect on 

fatality. According to CANARY output shown in Table 4.5, the heat flux meets this 

level at distance of 89.2 ft. Thus only these points on link (2) whose distance to M is less 

than 89.2 ft are considered to contribute link risk. This requirement results in a 
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contributing segment whose length is 168 feet. To simplify the calculation, each point is 

assumed to create the same risk to point M, thus the link risk is calculated to be:  

vehicledeath
ft

mileft
milevehicle
death

lPIRLIR
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11
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5280
1168106.7

−

−
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•

×
=
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Considering the trips per year, the overall risks to an individual in a year is: 

yeardeath
year

vehicle
vehicle

death
TripLIRRIR

9

12

104.2

1000104.2

−

−

×=

×
×

=

×=

 (4.4) 

  

This result illustrates that the transportation risk associated with propane 

transportation does not result in high risk level if people are 30 feet away from the 

highway. The same method is utilized to assess risk caused at other point in the network. 

When people are very near to the transportation route, the risk could be very high due to 

the high heat flux of flash fire. 

 

 
4.3. Chlorine TRA  

4.3.1. Description 

Chlorine is a toxic gas that has a pungent suffocating odor. It is extremely toxic 

by inhalation and is heavier than air. Container for transporting chlorine on highway is 
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MC331, which is the same as propane. To compare risk caused by chlorine with that of 

propane, the chlorine shipment condition is chosen similar to propane transportation. 

Table 4.7 summarizes the shipment information through the route highlighted in Figure 

4.1.  As addressed in Chapter III, the incident frequency is affected by road condition, 

truck/container configuration, environmental condition, and driver status. The type of 

HazMat affects the incident frequency little, and if there is any, it is because the type of 

HazMat requires the change of these four, especially the first three kinds of parameters. 

Therefore, the data on incident frequency along the highlighted route in Figure 4.1 are 

assessed in the same way as shown in Section 4.2.2.  

 

Table 4.7 

Chlorine shipment on Highway 290 

Product  Propane 

Contain type  MC331 

Container capacity 10,000 gallons 

Container temperature  70 oF 

Container pressure 105 psia 

Truck type Truck with single trailer 

Trips per year 1,000 

 

 

4.3.2. Release and Consequence Scenario Analysis 

According to the Chlorine Institute (2003), chlorine production averaged 10.5 

million tons per year in the U.S. over the 1979-1987 period, and there were an estimated 
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60,000 to 90,000 separate sites in the U.S. using chlorine. There were also 

approximately one million containers of chlorine shipped each year in the U.S. including 

barges, railroad tank cars, tank trucks, ton containers, and 100 and 150 pound cylinders. 

Since 1989, there have been approximately 50,000 shipments per year of chlorine in 90-

ton rail tank car. Rail is the most common transportation mode for chlorine shipment.  

According to HMIS, there were 7 incidents associated with chlorine 

transportation from 1993 to 2002. The lack of enough data makes it impossible to 

employ the method presented in Chapter III to assess the release probability and 

consequence scenario. On the other hand, most of these chlorine highway incidents were 

related to non-bulk container, so the chlorine incident information recorded in HMIS is 

not within our research scope.  

In this research we assume the conditional release probability of chlorine upon 

the occurrence of an incident is the same as that of propane. This assumption is based on 

the similarities in container type and condition. For both propane and chlorine, MC331 is 

the mainly used container, both of them are liquefied gas, and they are under similar 

high pressure during transportation process. Based on this reason, the probabilities for 

rupture, puncture, and leakage are also assumed the same as those of propane.  

 

4.3.3. Consequence Simulation 

No matter what the release size, the consequence scenarios associated with 

chlorine are the toxic vapor dispersion and potential fatalities or injuries and 

environment damage. The toxic vapor dispersion is modeled using CANARY. For 
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rupture scenario, the release is assumed to be continuous, and the release time is 10 min, 

which is used as operator’s response time in risk management. CANARY output shows 

that the ground level concentration is 5*105 ppm at 30 ft downwind distance.  

 

The probit correlation on chlorine toxic death is (Crowl, 2002): 

( )VY ln69.11.17 ×+−=  (4.5) 

∑= TCV 75.2  

C = concentration (ppm) 

T = time interval (min) 

 

The time interval is assumed to be 10 min, same as the usual response time. Point 

M is at 30 feet away from release source and in wind direction; the death probability for 

individual at that point is 100%. For puncture release and leakage scenario, the fatality is 

calculated to be 100% as well.  

 

4.3.4. Risk Estimation  

The calculation of point risk requires the probability distributions of weather 

class, consequence scenario, and wind direction. However, CANARY does not have the 

capacity to assess the vapor dispersion under rain climate, so the weather effect is 

neglected here. There are three consequence scenarios corresponding to three different 

release scenarios, but the fatalities associated with all scenarios are 100%. Therefore it is 
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not necessary to consider each scenario’s probability. The wind direction varies 

throughout a year. For conservative analysis, in this research we use 90% as the 

probability of wind directing toward individual at point M. The point risk is equal to: 
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The Time Weighted Average (TWA) for chlorine is 0.5. According to CANARY 

output for rupture release consequence, the distance of vapor dispersed is 30,000 feet 

(5.7 mile) before the concentration becomes less than 0.5 ppm. That is, when chlorine 

truck is passing a certain segment in this route, fatality could be caused, but beyond that 

segment, transportation cannot cause fatality at point M. The length of that segment is 

11.4 mile. Here we assume M is located in such a way that all links in that segment are 

as those shown in Table 4.8. Part of l(1) next to Highway 6 does not contribute the risk 

caused at point M.  

 

Table 4.8 

Links characterization for risk assessment 

Link  Link length (mile) Ultimate incident frequency 

l(1) 8.1 4.6*10-8 

l(2) 2.4 2.3*10-6 

l(3) 0.9 1.0*10-6 
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Each link risk (LIR) is to integrate point risk along that link. Point risk should be 

assessed for every point in the link. For simplifying the process, here we use the uniform 

point risk to derive the route risk (RIR). By considering the trips per year, the risk 

associated with this route is: 

yeardeath
year

vehicle
vehicle

death
LPIRTripRIR

4

8

107.5

4.111000100.5

−

−

×=

××
×

=

××=

 (4.7) 

 

4.4. Comparison between Propane and Chlorine Transportation 

Because of strong influence of low-probability events on the overall risk profile 

and because too few incidents have occurred to support statistical characterization, 

experience does not provide an adequate basis for defining toxic transportation risks. 

The fact that the number of deaths and injuries for any given decades is small does not 

necessarily mean that the risk is small. Rather, it may reflect the good fortune that no 

large toxic releases have occurred near population area. As a result, the number of 

injuries or fatalities in a given time period can differ substantially from an average based 

on the distribution of possible incidents that accounts for low-probability/high-

consequence events.  

These terms of low probability and high probability are proposed in respect to the 

amount of material transported. The more popular usage and shipment of propane draws 

the conception that propane is much easier to result in incident or fatality than chlorine. 

However, causing more incidents does not mean the incident frequency is higher or the 
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transportation is more dangerous. The high number of incidents associated with propane 

transportation is mainly due to the large amount of trips. If all the transportation 

conditions (e.g., container type, container capacity, truck configuration) are the same for 

both propane and chlorine, the vehicles will have the same probability to be involved in 

transportation incidents in a trip.  

The consequence of toxic materials and flammable materials are very different. 

The heat radiation of flash/torch fire decreases rapidly with distance, and the exposure to 

that heat radiation is not lethal if the individual is not too close to the release source. 

However, the fatality is very high if the individual is exposed to even small amounts of 

chlorine. Therefore, the consequence would be severe if large amount of chlorine is 

released in the transportation.  
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CHAPTER V 

OPTIMUM ROUTING METHODOLOGY 

 

 

TRA aims at providing baseline for risk management on HazMat transportation 

activities. To reduce the risk associated with the handling of HazMat, it is important to 

develop risk management systems that involve procedures and actions for supporting 

strategic, tactical, and operational decisions that aim in reducing risk. such a risk 

management system is also called decision support system for risk management 

decisions, and it must be developed based on TRA results and take into consideration the 

transportation characteristics.  

Risk could be mitigated by the implementation of incident prevention actions, 

i.e., (i) judicious selection of route, (ii) alteration of vehicle/container design to reduce 

release severity, and (iii) improvement of driver training to reduce incident probability. 

In this chapter, network routing methodologies are addressed to provide risk mitigation 

tools for decision makers and to illustrate the importance of TRA in decision support 

system.  

 

5.1. Background 

The routing of HazMat operations is a complex, multiobjective problem 

involving environmental, engineering, economic, and political concerns. When 
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considering the simplest deterministic case, Abkowitz and Cheng (1988) and many other 

authors proposed to solve the routing problems by employing the classic shortest path 

algorithm. It involves finding the route from an origin to a destination which minimizes 

a single measure. The measure must be additive across links. The risk draws much 

concern as well as cost to be used as the measure. However, the methodologies did not 

explicitly consider the tradeoff between risks and cost. List and Mirchandani (1991) 

analyzed tradeoff between risk & cost. Zografos and Androutsopoulos (2004), Iakovou 

(2001), and List and Mirchandani (1991) proposed bi-objective models to address the 

effects of both cost and risk in routing decision.  

In some cases the bi-objective model causes problems to decision makers, i.e., 

combining both the transportation cost and risk is hard for the decision makers to 

determine weights that would make such a combination meaningful; it is also hard to 

choose the weights that would differentiate equitably between the risk and the transport 

cost for the entire network.  

Perceived risk reflects more the opinions of individuals or groups and is greatly 

influenced by feelings, perceptions, and emotions toward a specific problem. In our 

study, two optimum models are presented by taking account of decision makers’ 

perception and avoiding the tradeoffs between cost and risk. The optimum models could 

be developed and solved in optimization software LINGO.  
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5.2. Fuzzy Logic Optimum Routing Model  

5.2.1. Fuzzy Sets on Risk and Cost 

Many existing mathematical models indirectly address aspects of human 

perception in the decision making process. Yet, none of these models has an effective 

method of measuring the public's perceptions and incorporating these perceptions into 

the strict mathematical framework required by optimization techniques. Fuzzy logic 

provides one way of directly integrating perceptions.  

Figure 5.1 and Figure 5.2 depict the linear fuzzy sets used to represent the 

public's acceptance of any policy with respect to the cost and risk associated with that 

option. If a policy option has zero risk, its acceptability with respect to risk, μr, is unity. 

As risk exceeds the value Br, the acceptability decreases linearly to zero at Br
’. A similar 

fuzzy membership function is used for acceptability with respect to cost. The 

mathematical expression of the fuzzy risk membership function depicted in Figure 5.1 is: 

( )
r

rr
r S

BRiskS −−
≤μ   (5.1) 

Similarly, a fuzzy cost constraint is formulated as: 

( )
c

cc
c S

BCostS −−
≤μ   (5.2) 
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Figure 5.1. Linear risk fuzzy membership function. 

 

 

                     

Figure 5.2. Linear cost fuzzy membership function. 

 

5.2.2. Fuzzy Logic Optimum Model Setup 

For model setup, perceptions on risk and cost are incorporated into the model 

using fuzzy sets. A single, non-controversial, non-fuzzy objective function is formulated 

Br
’ Br 

Sr 

0 

μr 

1 

Bc
’ Bc 

Sc 

0 

μc 

1 



 101

while all fuzzy sets are represented as constraints. In this manner, the algorithm can be 

used to arrive at a solution that optimizes the objective function subject to the fuzzy 

constraints as well as the physical constraints governing the transport and HazMat.  

The network needs to be defined a little bit in routing process different than in 

the TRA process. The characterization process is shown in the following part.  

• Network G={N, L} 

• Link (i, j): from node i to node j 

l (i, j): length of link (i, j) 

C (i, j): link cost;   R (i, j): link risk 

T (i, j): number of trucks traveling on link (i, j) 

Cap (i, j): capacity of link (i, j) 

• Node (i) 

b(i): truck’s supply or demand 

b(i)>0 for supply nodes, <0 for demand nodes, =0 for other nodes 

 

All the above parameters are known or could be determined directly by users 

except the capacity of link (i, j). It is determined by combing the risk acceptance and the 

risk associated with the link. The Dutch government has general risk criteria for fixed 

facility, which is the individual risk less than 10-6. This criterion is implemented in 

transportation decisions in our study. Since transportation risk is additive,  the individual 

risk caused by each link, R(i, j) should be less than 10-6 to ensure that the overall risk 
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associated with the whole transportation route can meet this criterion. Thus the capacity 

of link is determined as:  

( ) ( )jiR
jiCap

,
10,

6−

=   (5.3) 

The objective is to maximize the overall acceptability of the routing solution with 

respect to cost and risk. Mathematically, this objective is expressed as 

cr μμ +=max   (5.4) 

This objective function is subject to several mathematical constraints that are 

necessary to physically define the HazMat transportation problems: 

• Mass balance for node  

• Link capacity constraint for each link  

• Fuzzy membership function for total cost and risk 

 

The first constraint ensures that all the HazMat originating at the origin is 

transported though the transportation route and delivered to the destination, and the 

truck’s supply and demand in the intermediate nodes are 0. The constraint is expressed 

as: 
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The second constraint guarantees the truck transport capacity for each link. The 

number of trucks passing through each link can not exceed the capacity of that link. By 

this way the risk associated with this segment is guaranteed not beyond the risk 

acceptance level.  

( ) ( )jiCapjiT ,,0 ≤≤  (5.6) 

The acceptability of the policy includes acceptability with respect to both cost 

and risk. The overall cost reflects the total cost of transporting HazMat. Mathematically, 

the cost is defined as: 

( )
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( )jiCjiTCost
Aji
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∈

 (5.7) 

The acceptance level to cost is defined in Equation (5.1).  

The overall policy risk also reflects the total risk associated with the HazMat 

transportation. Assuming independence, this objective is mathematically defined as: 

( )
( )

( )jiRjiTRisk
Aji

,,
,

×= ∑
∈

 (5.8) 

The acceptance level to cost is defined in Equation (5.2).  

Solutions to this model formulation completely specify the routing strategy 

corresponding to the maximum acceptance. The model solutions are governed by the 

physical constraints defining the routing process and driven by overall risk and cost 

considerations. The solution could be obtained from optimization software LINGO once 

all data are input to the model.  
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5.3. Alternative Users’ Determiner Optimum Model 

Fuzzy logic optimum model presented in Section 5.2 is a good routing approach 

when users already have the perception towards the risk and cost associated with 

HazMat transportation and the acceptance levels of risk and cost can be changed to some 

degree.  

However, if the decision makers already have a concept about the exact data of 

maximum acceptable risk, the model presented above needs to be modified to meet 

users’ demand. In this section, the optimum route under given risk tolerance is selected 

based on an alternative optimum model.  

Since the maximum acceptable risk has been defined by users, the objective 

function in the model is only the cost associated with the transportation activity: 

( )
( )

( )jiCjiTCost
Aji

,,min
,

×== ∑
∈

  (5.9) 

The constraints to the objective function include: 

• Risk constraint set by decision maker 

• Mass balance for each node i 

• Link capacity constraint for link (i, j) 

 

The first constraint is defined by decision makers regarding the acceptance of 

risk: 

( )
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   (5.10) 
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Here intconstraR  is given by decision maker.  

The constraints on mass balance and link capacity are the same as those 

described in Section 5.2.  

After the setup of the model, the optimum route can be obtained by using LINGO 

to get the solution to the input model. With the change of risk acceptance level, different 

routes can be utilized to ensure the minimum cost. The decision makers can thenchoose 

the optimum routes based on their own requirements for acceptable risk level. 
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CHAPTER VI 

LNG TRANSPORTATION CONSEQUENCE ANALYSIS* 

 

 

Liquefied natural gas (LNG) plays an increasingly important role in the natural 

gas industry and energy markets. Taking the U.S market as example, industry analysts 

predict that LNG imports could increase to 5% of the total U. S. gas supply by 2007 

(California Energy Commission, 2003). Marine transportation of LNG has been carried 

out with a very good safety record since 1959 (Otterman, 1975; ABS, 2004). However, 

the risks associated with LNG have been debated for decades. After September 11, 2001 

there is a heightened sense of concern over the potential for terrorist attacks on LNG 

tankers. No LNG tanker or land-based LNG facility has been attacked by terrorists. 

However, similar natural gas and oil facilities have been favored terror targets 

internationally. In October 2002, the French oil tanker Limberg was attacked off the 

Yemeni coast by a bomb-laden boat (Parfomak, 2003). The combination of recent 

interest in expanding or building new facilities to receive LNG carriers, along with 

increased awareness and concern about potential terrorist action, has raised questions 

about the potential consequences of incidents involving LNG marine transportation. 

                                                 
* Portions of this chapter reprinted with permission from “Assessment of the effects of 
release variables on the consequences of LNG spillage onto water using FERC models” 
by Qiao, Y., West, H., Mannan, M., Johnson, D., and Cornwell, J., 2006. Journal of 
Hazardous Materials, in press. Copyright (2006) by Elsevier; “LNG-water rapid phase 
transition: A literature review” by West, H., Qiao, Y., and Mannan, M., 2005.  LNG 
Journal, May, 21-24. Copyright (2005). 
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The major hazards of an LNG spill on water include: 

 

• Pool fires: If LNG spills near an ignition source, the evaporating gas in a 

combustible gas-air concentration will burn above the LNG pool (Methane, the 

main component of LNG, burns in gas-to-air ratios between 5% and 15%). The 

resulting pool fire would spread as the LNG pool expanded away from its source 

and continued evaporating.  

• Flammable vapor clouds: If LNG spills but does not immediately ignite, the 

evaporating natural gas will form a vapor cloud that may drift some distance 

from the spill site. If the cloud subsequently encounters an ignition source, those 

portions of the cloud with a combustible gas-air concentration would burn. The 

vapor cloud fire would burn its way back to the LNG spill where the vapors 

originated and then continue to burn as a pool fire.  

• Rapid phase transition or flameless explosion: The phenomenon of rapid vapor 

formation with concomitant loud “bangs” has been observed when LNG was 

released on water. This non-flaming physical interaction is referred to as “rapid 

phase transition (RPT)” or “flameless explosion.” West, Qiao, and Mannan (2005) 

believe that the rapid phase transition will not propagate into a significantly 

larger damage scenario. 

• Confined space explosions: If significant confinement of the vapor cloud occurs 

after an accidental LNG release, damaging overpressures (explosion) may occur. 
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In the first part of this chapter LNG-water RPT is analyzed and previous 

experiments and theoretical work on RPT are reviewed. In the second part we will focus 

on the flammable vapor clouds dispersion process. The related processes, including LNG 

spillage and pool spread and evaporation, will also be considered. The effects of tank 

conditions, release scenarios and environmental conditions on the LNG spillage, spread 

and dispersion processes will be evaluated.  

 

6.1. Rapid Phase Transition 

In addition to a fire and/or explosion hazard when natural gas is mixed with air, 

there is the possibility of a low temperature, non-chemical interaction of the LNG with 

water. This type of interaction is often referred to as flameless vapor explosion, or as 

RPT as used herein. RPT takes place when a liquid rapidly changes phase to vapor. The 

large increase in volume causes a localized pressure increase, which can give rise to an 

air or waterborne boom. Though RPT results in shock waves, it is less powerful than 

what one usually associates with a chemical explosion.  

   A report by Burgess, Murphy, and Zabetakis (1970) provided the impetus for 

efforts of many investigators in this field.  After September 11, 2001, this issue is under 

focus again due to the consideration of homeland security issues. No LNG tanker or 

land-based LNG facility has been attacked by terrorists. However, similar natural gas 

and oil facilities have been favored terror targets internationally. Two occurrences have 

been addressed by Parfomak a report for Congress (Parfomak, 2003).  
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    In this chapter the incidents and experiments of LNG-water RPT are reviewed. 

Theoretical analysis about the LNG RPT mechanism and quantitative LNG RPT damage 

assessments are presented. Conclusions are drawn based on literature review and the 

available theoretical/quantitative analysis results.  

    Most of the LNG RPT work was reviewed here; however, since some 

experimental results were never published, and many of the comments result from 

informal, but not proprietary sources, such a review is undoubtedly incomplete, but it is 

considered that the basic facts presented in this article are correct.  

 

6.1.1. Accidents Analysis and Experimental Results 

    The earliest reported observations of LNG RPT on water were made by Constock 

Liquid Methane Corporation at Bayou Long, Louisiana in 1956. LNG was intermittently 

pumped with flow rates of 0.23 m3/min maintained for periods of several days and on 

short occasions exceeded 0.95 m3/minute for a period of several hours. It is estimated 

that about 3785 m3 of LNG were spilled in a period of about 3 months during which 3 or 

4 very audible eruptions, loud enough to be heard 402 m away, occurred. Since none of 

these RPTs damaged standard window glass panes erected for these tests less than 15.2 

m from the spill area, it was concluded that this phenomenon was unlikely to constitute a 

hazard.  

    On April 26, 1959, Constock Methane conducted jettison tests at sea in which 

18.5 m3 of LNG were pumped overboard in a period of 7 minutes. No audible eruptions 

were reported.  
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       Tokyo Gas had conducted over 1000 small scale tests, starting in 1967, and the 

work has been addressed by Nakanishi and Reid (1971) and Burgess, Biordi, ad Murphy 

(1972) ,. The LNG quantities were 0.0012 or 0.0024 m3. Although they observed small 

pops near the end of the evaporation of the spill, they never encountered a violent 

eruption or RPT. 

    In 1968 and 1969, the U. S. Bureau of Mines Safety Research Center conducted a 

series of tests on spilling LNG on water (Burgess and Murphy, 1970). One set of tests 

consisted of dumping 0.0038 to 0.0076 m3 of LNG on 0.0189 m3 of water or brine 

contained in an aquarium of 0.0566 m3 capacity. 54 such tests were conducted with 

water followed by 2 tests with brine on the second of which RPT occurred which 

shattered the aquarium. Another series of 12 tests consisted of spilling 0.00378 to 0.472 

m3 of LNG on an artificial pond. In one of these tests, scheduled to be a 0.265 m3 test, 

RPT occurred within an eighth of a second after the spill bucket had been tripped; it was 

estimated that at most 0.0945 m3 were spilled. One observer standing on shore compared 

the RPT to a stick of dynamite. These noise observations are not a reliable indication of 

energy release as noted later in Section . 

    Subsequently, the Bureau conducted about 40 spills of LNG, totaling 1.13 m3, on 

their artificial pond with no instances of visible or audible RPTs (Burgess, Biordi, and 

Murphy, 1972). In addition, they performed tests using other hydrocarbons and variable 

compositions of LNG. In some cases weak RPTs, probably comparable to the one that 

shattered the aquarium, have been reproduced.    
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  Experiments were conducted by Garland and Atkinson (1971) at the University 

of Maryland.  Small amounts (5-20 ml) of LNG were dropped onto water, water/organic 

liquid mixtures, or, in certain cases, one-component organic liquid. No RPT was 

observed during all of those tests. When larger amounts of LNG (10-100ml) were 

poured onto a liquid mixture consisting of a 1 mm film of Hexane on 100 ml water, RPT 

occurred every time.  

    Esso Research Laboratories in New Jersey carried out tests during 1971, and the 

results were reviewed by Atallah (1997) and the LNG Research Center, MIT (1977). As 

found in other tests, pouring LNG on top of water did not lead to RPT.  However, when 

LNG was poured into a dry container and allowed to evaporate until only a foam 

remained, upon suddenly adding water to the foam, RPTs were produced which on 

occasion ruptured the container. Continental Oil Company had observed a similar 

phenomenon in their “dry- bucket” experiments in 1965 and 1971. Esso has since 

conducted numerous other tests including dumping LNG on liquids other than water. 

Weak RPT was sometimes noted if 3% sodium chloride salt solutions were employed. If 

LNG was poured on pentane or hexane, RPT was still observed.  

    A related test program was carried out by Nakanishi and Reid (1971) at MIT. No 

evidence of RPT was noted throughout the process for the small scale spills of LNG on 

cold or hot water. When, however, 10 to 100 ml of LNG was spilled on hexane, RPT 

occurred with a violent crack-like noise and the residual LNG was thrown violently out 

of the Dewar flask. RPT also occurred when LNG was spilled on water coated by 
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hexane usually 1 to 2 second after the start, though occasionally a delay of 5 to 10 

second was noted.  

    Beginning in 1970, the research laboratories of Shell Pipeline Company in 

Houston conducted about 300 laboratory tests consisting of spills from 30 ml to 6 l of 

cryogens on water (Enger and Hartman, 1972a). Weak RPT or pops occurred within one 

to two minutes after the spillage of LNG. The higher the temperature of the water, the 

less elapsed evaporation time was required for the pops to occur. Presumably, these pops 

are related to the persistence of the Leidenfrost film boiling into a metastable region, 

which ultimately terminates explosively in the transition boiling regime as demonstrated 

by Baumeistor, Hendrick, and Hamill (1966). 

    Shell has reported their work on larger spill tests. Reproducible RPT was 

obtained only with weathered LNG containing less than 40 percent methane (Enger and 

Hartman, 1972b). 

    LNG Research Center, MIT (1977) finished a report under contract to American 

Gas Association. Spills were made with six pure hydrocarbons on water and other fluids. 

RPT occurred under certain substrate temperatures for most of the spilled liquid-

substrate pairs. At temperatures less than those necessary for RPT, there was generally 

nucleate boiling and sometimes the substrate froze. At temperatures above the RPT, film 

boiling took place. Five binary hydrocarbon mixtures of ethane or ethene with a heavier 

hydrocarbon were studied with water as the only substrate. RPT was observed for every 

binary system under certain temperatures. If RPT did not occur, ice always formed 

rapidly.    
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  In 1980 the Burro series were conducted by Lawrence Livermore National 

Laboratory (LLNL) primarily to study vapor cloud dispersion (Koopman, et. al., 1982). 

The spill volume ranged from 24 to 39 m3, the spill rate from 11.3 to 18.4 m3/min. 

Energetic RPT explosions, though not expected, did occur during the Burro 6 and 9 tests. 

In test 9 the most severe RPT event produced blast overpressure of 0.05 bar measured at 

distance of about 30 m. The air-blast TNT equivalents of the observed RPTs were 

calculated from peak overpressures measured at known distances from the spill point. By 

this calculation the surface shock wave reflection produces an overestimate of the 

explosive energy by a factor of 1.8. In earlier reports the surface reflection reduction was 

not imposed. The maximum TNT equivalent was originally calculated to be equal to 6.3 

kg by Koopman et. al. (1982). After considering the surface reflection reduction, 

Goldwire et. al. (1983) and McRae, Goldwire, and Koopman (1984) estimated the 

maximum TNT equivalence for Burro test RPT explosion was 3.5 kg. It is most notable 

in Burro test 9 that RPT damaged the spill plate and spill pipe support structures.  

    In 1981 the Coyote series tests were performed in order to further study the RPT 

explosions (Goldwire et. al., 1983; McRae, Goldwire, and Koopman, 1984). Thirteen 

spills of 3-14 m3 with flow rates of 6-19 m3/min were performed with fuel of varying 

ratios of methane, propane and ethane.  Five spills of 8-28 m3 with flow rates of 14-17 

m3/min were also performed to obtain dispersion and combustion data. Six of the 

eighteen spills produced RPT explosions. The maximum overpressure measured at 

distance of 24.3 m from the spill source was 0.09 bar, which was estimated to have 

maximum TNT equivalence of 5.5 kg if the surface reflection reduction was not imposed 



 114

(Goldwire et. al., 1983; McRae, Goldwire, and Koopman, 1984). After imposing the 

surface reflection reduction effect, the maximum TNT equivalence was estimated to be 

3.0 kg . However, the maximum TNT equivalence of 5.4 kg and 6.3 kg ware noted by 

Atallah (1997) and Sandia (2004) respectively. Based on the LLNL report, which should 

be the most reliable source since they were published by the laboratory that conducted 

the Coyote series tests, the maximum TNT equivalence noted in the Sandia report may 

not account for the surface reflection reduction effect, while the data provided by Atallah 

may come from Burro tests rather than Coyote tests.  

    In 1980 LNG tests were conducted at Maplin Sands, England by the National 

Maritime Institute to obtain dispersion and thermal radiation data on 20 spills of LNG 

and 14 spills of propane onto water (Blackmore, Eyre, and Summers, 1982). The 

maximum spill size of 20 m3 was chosen for the experiments, both of LNG and 

refrigerated propane. RPTs were observed in one of the instantaneous LNG spills, and it 

is believed that the barge was damaged by the series of RPTs (Sandia, 2004). 

    Gaz de France has done a lot of research in this area (Gabillard, Dahlsveen, and 

Cronin,1996; Cleaver, Dahlsveen, and Heiersted, 1998; Nedelka, Sauter, Goanvic, and 

Ohba, 2003). In 1981, Gaz de France performed continuous spillages of LNG onto the 

sea at Lorient, France, with flow-rates up to 50 m3/h to reproduce the conditions of an 

LNG leakage from a loading/unloading arm. In a partnership with Shell Research in 

1982 and with British Gas in 1984, complete ruptures of a loading/unloading arm were 

simulated during 28 instantaneous spillages of volumes between 1 and 9 m3. The 

maximum RPT recorded was evaluated to be equivalent to 4.15 kg of TNT (Nedelka, 
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Sauter, Goanvic, and Ohba, 2003). However, the maximum measured overpressure and 

the corresponding distance to the source was not specified by Sandia (2004), Blackmore, 

Eyre, and Summers (1982) or Gabillard, Dahlsveen, and Cronin (1996), so that it is hard 

to evaluate the validity of the TNT equivalence data.  

    In 1987 the Falcon tests were conducted at Frenchman Flat in Nevada by LLNL 

(Shin, Meroney, and Neff, 1991). The Falcon tests were also addressed by Sandia (2004). 

The testing was performed on a 40 by 60 m pond, enclosed by an 88 m long by 44 m 

wide by 9.1 m high vapor fence. A 22 m wide by 13.7 m high barrier was erected 

upwind of the pond, in order to simulate the obstruction of a storage tank. Five tests 

were performed with spill rates of 8.7-30.3 m3/min (20.6-66.4 m3), and methane 

concentrations of 88-94.7%.  Large RPT explosions occurred approximately 60 seconds 

after the spill, and a fireball started inside the vapor fence at 81 seconds for Falcon test 

#5, which had a spill rate of 30.3 m3/min, total volume of 43.9 m3, and methane content 

of 88%. RPT also occurred with Falcon 3, with a spill rate of 18.9 m3/min, total volume 

of 50.7 m3, and methane content of 91%.  

    The Falcon test is significant because it is the only case where RPT was 

considered an ignition source. However, there are two theories. One theory claims 

sufficient energy release to cause methane ignition, whilst the other theory suggests an 

aerosol formation, which then ignited surrounding gas by an electrostatic mechanism. 
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 6.1.2. Hot Liquid-Water RPT   

    To explore the mechanism of RPT, some investigators also tried to use other 

liquid-liquid systems that can interact similar to the LNG/Hydrocarbons-water system. 

For example, Anderson and Armstrong at the Argonne National Laboratory worked on 

water-molten NaCl and Sodium-molten UO2 systems to produce RPT with well-defined 

fluid geometry (Anderson and Armstrong, 1973).  

    In retrospect, the violent interaction of LNG with water is probably quite similar 

to the steam explosions that have been observed for many years in almost every industry 

where very hot liquids are handled such as the aluminum, copper, paper (soda and Kraft 

smelt), nuclear, and the iron and steel industries. A critical review of these physical 

explosions, including a postulated mechanism and a mathematical model, has been 

published by Genco and Lemmon (1970). Although this work constitutes an excellent 

frame of reference for analyzing the consequences of such explosions, their 

mathematical model is not directly applicable to the LNG-water eruptions, particularly 

with respect to the scale-up parameters.  

    A significant point of difference between the liquid metal-water explosions and 

the LNG-water combination is that the former can be reproduced consistently in the 

laboratory at conditions comparable to those encountered in actual practice. On the other 

hand, as is evident from the summaries in the preceding paragraphs, LNG-water RPT 

can be reproduced with any degree of consistency only when the experimental variables 

and procedures are carefully controlled under conditions which are not likely to be 

encountered in actual practice. It is also significant to note that despite the occurrence of 
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explosions in these other industries under conditions of actual practice, they have 

continued to operate in a relatively safe and prudent manner.  

 

6.1.3. The Audible Pop Phenomenon 

It is essential to recognize clearly that two separate phenomena have been 

observed under the category of LNG-water eruptions: (1) the audible burst or pop, and (2) 

RPT. These two phenomena have at least one element in common in that superheating of 

the LNG is a contributing factor, which culminates in an eruption, although of different 

magnitudes, in both instances. However, beyond this premise, the detailed mechanisms 

leading to the RPT could conceivably be different since the elapsed time differs by at 

least three orders of magnitude (about a factor of a thousand) for these two phenomena. 

For example, in the small-scale Shell experiments, which have also been observed by 

others, an elapsed time of about 75 to 125 seconds was required to achieve a pop after 

LNG  (usually around 30 ml) at –161 °C was poured onto water (or brine) having an 

initial temperature of 15 °C to 86 °C. The shorter times are associated with the higher 

water temperatures, and the reproducibility of the results when correlated as elapsed time 

versus initial water (or brine) temperature was quite remarkable (Enger and 

Hartman,1972a; Enger and Hartman,1972b). Similarly, the Bureau of Mines observed in 

pouring LNG continuously at a rate of 0.45 kg/s onto water that no audible activity was 

encountered during the first 60 seconds. However, after 120 to 180 seconds, audible 

pops were observed about every 30 to 60 seconds for the entire period of 600 seconds 

involved in the continuous spill (Burgess, Murphy, and Zabetakis, 1970). On the other 
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hand, the single, major RPT observed by the Bureau of Mines on their Bruceton pond 

transpired within a fraction of a second after the LNG first contacted the water. It is 

significant to note that this almost instantaneous interaction has not been reproduced in 

experiments except under carefully controlled, unusual conditions as demonstrated by 

Shell. Some idea of the probability of obtaining a substantial RPT can be gleaned from 

the aforementioned Bayou Long tests by Constock. Since 3 or 4 RPTs were noted over a 

period of several months, during which LNG was spilled continuously at rates of 0.23 

m3/min to 0.95 m3/min, it is estimated that on the average one very audible eruption was 

encountered for every 950 m3 spilled.  

 

6.1.4. RPT Conditions and Mechanism 

The composition of spilled hydrocarbons has great effect on the occurrence of 

RPT. As reviewed by the LNG Research Center, MIT (1977), previous studies by Esso 

Research Laboratories have shown that LNG with a high methane content (> 40%) does 

not undergo a RPT when spilled on ambient water. Natural gas typically consists of at 

least 80% methane, and LNG is usually over 90% methane. It may contain other 

hydrocarbon gases (e.g., propane) and nitrogen. This may explain why large scale LNG 

RPT have not been reported. In no case did a RPT occur when the methane 

concentration was greater than 40%. Methane need not be present for a RPT to take 

place.  

    On the other hand, Esso Research Laboratories were able to obtain RPT in quite 

small scale spills of LNG on hot water with initial methane concentrations in excess of 
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50%. After spillage, there was 4 to 15 seconds of film boiling before the occurrence of 

RPT, which was, therefore, sufficient time to boil off much of the methane as the 

original thickness of the LNG layer was only 2-4 mm (LNG Research Center, MIT, 

1977) 

    Shell Pipeline also concluded from their experiments that RPT from LNG spilled 

onto open water at ambient temperature can only occur if the methane content of the 

LNG is less than 40 mole% (Enger and Hartman, 1972b). Furthermore, RPT will not 

occur if the mole ratio of propane to ethane in the LNG is 1.3 or greater.  

LNG can eventually age in a storage tank, by boiling off methane, to reach the 

composition required to produce a RPT on ambient water. In the Maplin Sands tests, 

Blackmore et al. believe that operational delays encountered in this particular test 

allowed the LNG to age sufficiently for RPT to occur (Blackmore, Eyre, and Summers, 

1982). However, if the initial methane content is 95 mole%, for example, only 10% of 

the initial volume of the liquid will remain when the LNG has aged to the critical 

composition. At this time the normal boiling point of the liquid remaining will be –148 

°C or higher, about 13°C hotter than normal LNG.  

    Temperature is another important factor for RPT. Enger and Hartman (1972a) 

noted that the water had to have an initial temperature between 54 °C and 70 °C for RPT 

to occur when liquid propane was spilled on water. In the tests conducted by the LNG 

Research Center, MIT, various hydrocarbons were spilled onto different host liquids. It 

was also noted that the temperature of host liquid must fall within a certain range on 

RPT occurrence (LNG Research Center, MIT, 1977). For example, when 2-
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Methylpropane was spilled onto the ethylene glycol/water mixture, RPT occurred only 

when the substrate temperature is from 101 °C to 106 °C, with violent boil noted from 

97 °C to 100 °C and film boil observed from 108 °C to 115 °C.  

    The requirement for weathering directs suspicion on the heavier hydrocarbons 

which are usually present in LNG. It is further reinforced by the fact that no RPT has, as 

yet, been reported with pure liquid methane on water. Nevertheless, it does not 

necessarily follow that pure liquid methane (or other pure liquids, for that matter) will 

not have RPT when dumped on liquids having an appropriate temperature difference 

across the interface.  

    The amount of LNG spillage has a minor effect on RPT occurrence. During the 

experiments conducted by the LNG Research Center, MIT (1977), no RPT was observed 

when very small amounts of LNG were spilled on hexane, while when 10-100 ml of 

LNG was spilled on hexane, RPT occurred.  

    Esso research laboratories also found in their several experiments, in which LNG 

was spilled on hexane films on water, that the amount of LNG required to obtain RPT on 

a 1.5 cm film was 4 l (LNG Research Center, MIT, 1977).  

    Impact force may be another minor factor for this phenomenon. Porteous and 

Reid (1976) pointed that impacting the cold, volatile liquid upon the hot liquid may lead 

to very destructive RPT or to RPT that would not have occurred if the liquids were 

contacted in a gentler fashion.  

    While there are considerable variations in both the spilled liquid and the host 

liquid, all RPTs seem to have at least one common characteristic, that is, RPT occurs 
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only when the substrate temperature reaches between that necessary to give film boiling 

and that in nucleate boiling. This is based on visual observations of the boiling 

phenomena. Not only is the substrate temperature important, but also its melting point. 

In 1973, Yang (1973) reported the results of spills of LNG onto various organic liquids, 

that is, the hydrocarbon substrates, and his work was addressed by LNG Research Center, 

MIT (1977). It was found in Yang’s tests that, with a few exceptions, RPT occurred with 

organics which had melting points below –51 °C. Substrates that have high melting 

points can freeze almost as soon as LNG is poured on them. A frozen surface provides 

nucleation sites which prevent RPT.  

    A generally accepted explanation for RPT mechanism was proposed by Katz and 

Sliepcevich (1971). The essence of their explanation is that RPT results from 

superheating of LNG. Using the literature on pool boiling and superheating of liquids, 

they have qualitatively explained many of the observed phenomena surrounding LNG-

water reactions. Take the delayed RPT as an example. Here the composition of the 

hydrocarbon is such that when it reaches the water, it is in film boiling. Boiling changes 

the composition of the hydrocarbon as with the platelets so that the temperature rises and 

the temperature difference between the water and the hydrocarbon decreases. After 

boiling for a period of time, the temperature difference due to the changing hydrocarbon 

temperature reaches the Leidenfrost Point and enters the liquid-liquid superheat 

temperature difference region where without any phase change, the liquid film reaches 

the limit of superheat and RPT occurs. Katz (1972) gave a figure to describe this process. 

A similar explanation was given by LNG Research Center, MIT (1977). 
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6.1.5. RPT Models 

    Some fundamental aspects of heat transfer and nucleation characteristics in 

liquid-liquid systems were discussed by Fauske (1974) in an attempt to predict RPT. 

Rausch and Levine carried out the analysis using a geometric thermodynamic model to 

predict RPT. The physical basis of the model is that a second order phase transition takes 

place when a system passes through a critical region. In passing through a critical region, 

thermodynamic stability conditions are violated. The critical region marks the point of 

separation between definite stability and definite instability and consequently a second 

order phase transition may be looked upon as corresponding to incipient instability 

(Rausch and Levine, 1973).   

    Atallah (1997) reviewed several RPT models, including McRae’s analysis of four 

models for cryogen-water RPT, with respect to a possible application in explaining the 

China Lake results. Atallah (1997) pointed out that a numerical solution to the transient 

heat equation is necessary for small volumes of cryogen. However, calculation of 

transient superheating of a drop composed of a mixture of cryogens of different 

volatilities must include species mass transport. Evaporation of the more volatile species 

will result in surface enrichment of the less volatile species, if the diffusion rates are 

slower than the evaporation rates, but no experiment or calculation using the surface 

enrichment effect has been carried out for LNG-water mixtures. LNG-water mixing code 

and RPT propagation code were compiled by Gaz de France to provide an insight into 

the possible hazards presented by RPT events and a quantified estimation, expressed in 
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terms of TNT equivalence, of the associated risks (Nedelka, Sauter, Goanvic, and Ohba, 

2003). 

    As proposed in reports by the Federal Energy Regulatory Commission (FERC) 

(2004) and ABS Consulting Inc. (ABS, 2004), the modeling of RPT could be helpful in 

two aspects: (1) understanding overpressures resulting from the RPT and (2) 

understanding dispersion of the “puff” of LNG expelled into the atmosphere by the RPT. 

The sizes of the overpressure events have been generally small, and it is not expected to 

cause significant damage to an LNG vessel. However, RPT may increase the rate of 

LNG pool spreading and the LNG vaporization rate. No theoretical or experimental basis 

could be identified for modeling either the overpressure or source term effects.    A 

possible example dispersion analysis was performed to examine the importance of an 

RPT in estimating downwind flammable concentrations. The ABS analysis results 

indicated that the total evaporation duration time will decrease significantly (due to 

bigger pool contact area), but the downwind distance to LFL will increase only slightly.  

    Sandia (2004) reviewed several theoretical models that have been proposed to 

explain the formation of RPT, and it was postulated that much different behavior may 

occur at larger scales, which could not be predicted from smaller scale studies. It was 

concluded that the impacts of RPT will be localized near the spill source and should not 

cause extensive structural damage. 

    The consortium of BG, Gaz de France and the University of Trondheim have not 

yet released the commercial version of a computer program, called CRYO-CULDESAC, 

which purports to model the RPT phenomena. 
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6.1.6. Damage Assessment  

6.1.6.1. Uncertainty of RPT Magnitude Estimation by Sound Waves 

    The RPT occurred in one of those series of tests conducted by the U. S. Bureau 

of Mines. The magnitude was comparable to the explosion of a stick of dynamite 

according to one of the observers standing onshore. However, this estimation of the 

magnitude of the blast should be viewed with suspicion since the loudness of an 

explosion is a very unreliable measure of its absolute intensity. As explained by Cook 

(1958), if two sound waves of a single and equal frequency are compared, the loudness 

varies somewhat as a function of the intensity level. On the other hand, noise, such as 

that produced by RPT, possesses a continuum of frequencies, and the loudness sensation 

from such waves will not be related directly to the intensity level since the ear is a 

nonlinear instrument, the response of which varies with frequency. Furthermore, 

estimates of the absolute intensity of sound by audible means are at best subjective since 

they are strongly influenced by the observer’s frame of mind. Finally, it is well known 

that in the range beyond the damage limits, air blasts, while non-destructive, are 

observed to be extremely variable and depend critically on meteorological conditions 

(Cook, 1958). The fact that an LNG spill on water generates its own localized inversion 

layer, which is enhanced by low wind conditions, will tend to amplify the loudness and 

sharpness of the noise at some distance from the RPT source.  
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6.1.6.2. Damage Potential Estimation 

    The damage at any particular distance from a TNT explosion source can be 

estimated from the maximum overpressure at that point. The maximum overpressure can 

be calculated from the following empirical Equation (6.1) as addressed by Genco and 

Lemmon (1970). The cylindrical explosive charge of TNT is assumed in this empirical 

equation as analyzed by Lipsett (1966): 
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where                  

mPΔ = maximum overpressure, Psig 

0P = ambient pressure, Psig 

Z = 
3

1
)/(96.3 WR×  

R = distance from the source, ft 

W = TNT equivalent weight, lb 

 

The assumption of a cylindrical charge in Equation (6.1) gives lower values for 

the maximum overpressure than a rectangular charge. Furthermore, it is questionable to 

what extent this equation is applicable to LNG-water RPT. The best guess at the moment 

is that Equation (6.1) will overestimate the overpressure for an LNG-water RPT since it 
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originates near the surface of the water. Consequently, the shock wave will be attenuated 

at the air-water interface and most of it will be directed upwards.  
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Figure 6.1. Damage potentials. 

 

 
Figure 6.1 was generated from Equation (6.1). It shows the variation of peak 

overpressure with distance for several TNT equivalent weight parameters. Figure 6.2 is a 

cross-plot of Figure 6.1 and is somewhat more convenient for damage estimation. From 

Figure 6.2 it is evident that 4.5 kg of TNT (equivalent to 20 sticks of dynamite) would 

not puncture a ship’s hull at a distance of 2.7 meter. These assigned distances are 

roughly what might be encountered in LNG tanker unloading practice.  
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Figure 6.2. Damage potentials: cross-plot. 

 

The highest overpressure recorded in the Shell large-scale spill tests was 14 

kg/cm2 (13.8 bar) at a distance of one meter below the liquid-liquid interface (Enger and 

Hartman, 1972a). From Figure 6.1 this overpressure and distance would classify the 

explosion as equivalent to about 0.91 kg of TNT. An LNG-water RPT of this magnitude 

would have to be less than 1 foot from a ship’s hull to cause even minor damage to the 

hull structure. In this case the damage due to low temperature embrittlement by direct 

contact of the LNG with the hull would be a more serious threat than any LNG-water 

RPT. 

    Notice that TNT equivalent weight estimation of an explosion from peak 

overpressure-distance data is extremely sensitive to the distance measurement. Due to 
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surface penetration of the falling liquid, the distance between the explosion source and 

the pressure transducer in the Shell tests may be less than 1 meter. If the actual distance 

was 0.057 meter, the TNT equivalent of their largest blast is reduced to 0.045 kg of TNT. 

It should be emphasized that the majority of RPTs observed by Shell resulted in smaller 

maximum overpressures, further decreasing the chance of damage due to an LNG spill 

on water. 

 

6.1.7. RPT Explosion Energy Release 

    As noted previously herein, estimates of energy release based on sound are very 

unreliable indicators. The available experimental data about RPT explosion energy 

release are shown in Table 6.1, and only those data recorded by sensors are illustrated in 

the Table. Experimental data on blast pressures for LNG-water RPT are not in abundant 

supply, and some overpressure data were not clearly noted in the reference. In Table 6.1 

the TNT equivalents are derived from Figure 6.1 or Equation (6.1) on the basis of 

measured overpressures at known distances from the spill points. 

The largest overpressure recorded by Conoco was 24.8 bar at about 0.15 meter 

from RPT source. This is estimated to be equivalent to 0.0045 kg of TNT. In one series 

of tests, a plexiglass container was destroyed by RPT and one 0.0026 m2 remnant was 

found 42.7 meter from the point of detonation. By calculation of the force required to 

hurl this piece of plexiglass, an estimate of the peak overpressure can be made. The 

calculated value was 26.6 bar. The important point is that this value provides an 
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independent check on the order-of-magnitude of the data recorded by the pressure 

transducers.  

 

Table 6.1  

Summary of RPT explosion energy release*  

Test 
Spill 

Size 

Maximum RPT 

Overpressure vs. 

Distance to source 

TNT Equivalence 

U. S. Bureau of Mines 6 liters 4.1 bar at 0.076 m < 0.0045 kg  

Conoco a / 24.8 bar at 0.015 m 0.0045 kg 

University of Maryland b 200 ml 28.4 bar ≅ 0.0045 kg 

MIT 350 ml 13.8 bar at 0.1 m < 0.0045 kg 

Shell a  / 13.8 bar at 1 m 0.91 kg 

Burro Tests 24 m3 0.05 bar at 30 m 3.5 kg 

Coyote Tests 28 m3 0.09 bar at 24.3 m 3.0 kg 
 

* Overpressure data that could not be validated according to the measured overpressure 
gauge and the corresponding distance to source are not included in this table, including 
that from Gaz de France.  
 
a The corresponding spill size was not clearly noted.  
b The distance to measure the overpressure was not specified clearly in the reference; it 
was stated that “a miniature pressure transducer was fixed above the surface of the liquid 
sample”. A distance of 0.15 meter from the source is assumed to assess the 
corresponding TNT equivalence.   
 
    

6.1.8. Scale-up 

    The TNT equivalent of a large spill cannot be estimated simply by a linear 

scaling of the volumes of the small scale spills for which RPT has been observed. The 
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LNG-water explosion is highly dependent on the amount of liquid-liquid contact area, 

which is available for heat transfer. This heat transfer area does not increase in direct 

proportion to LNG spill volume. Burgess, Biordi, and Murphy (1972) developed 

equations for predicting the spreading rate of LNG on water. These equations can be 

used to show that the possible heat transfer contact area is relatively limited even for 

large spills. Another aspect of increased heat transfer contact area is the time required for 

the larger spill to reach this available surface area. It seems reasonable that a number of 

distinct RPTs at various times would be more likely in a large spill than one large 

simultaneous release. The fact that larger spills require larger distributions over time and 

space reinforce the probability of multiple weak RPT.  

    Timing and spatial configuration of any explosive source are critically important 

parameters. Explosive demolition of urban buildings takes advantage of these factors. 

Using a timed sequence of distributed explosions, a building can be razed without 

damage to neighboring facilities. If, however, the same amount of explosive were 

detonated at the same time and in one location, the resultant overpressure could do 

extensive damage to surrounding property.  

    The following Equation (6.2) provides a method for estimating the distributed 

effect of TNT explosions:  

4
1

⎟
⎠
⎞⎜

⎝
⎛=

N

d
NWW ρ

ρ                                                           (6.2)  

where                

W  = actual TNT equivalent weight 
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NW = normal density TNT equivalent of the dispersed explosive 

dρ = density of the dispersed explosive 

Nρ = normal density of the explosive 

    Compare the explosive power of 0.45 kg of TNT distributed over 2.83 m3 with 

the same 0.45 kg of TNT concentrated at the center of this explosive volume. The 

normal density of TNT is about 1603 kg/m3. The density of the distributed explosive is 

0.16 kg/m3. Equation (6.3) shows that: 

( ) lbsW 1.0
100

01.00.1
25.0

=⎟
⎠
⎞

⎜
⎝
⎛=   (6.3) 

 

    One lb of TNT, that is 0.45 kg of TNT, distributed over 2.8 m3 is equivalent in 

damage potential to 0.045 kg of TNT concentrated at the center of the explosive volume. 

This result is in line with observed behavior; damage done by a distributed source is 

always less than an equivalent amount of explosive concentrated at one point.  

 

6.1.9. RPT Impact on LNG Leak Contacting Ship Ballast 

    No studies have addressed the potential for damage from an RPT which results 

from the leak of LNG upon contact with the ballast water. Most comments on this 

subject have assumed that only a small leak would occur, with the resulting RPT 

assumed to be very minor. RPT following a major terrorism event has been dismissed as 

irrelevant considering the major impact of an intentional LNG sabotage scenario. 
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6.1.10. Varied Opinion in RPT Reported Incidents: Badak, Indonesia, December 1992 

6.1.10.1. Quoting Directly from an Paper 

   The following is quoted directly from the paper of Nedelka, Sauter, Goanvic, and 

Ohba (2003). 

“An LNG leak occurred when starting a liquefaction train, and the decision was 

made to operate the train despite the leak. Protective water curtains were used to reduce 

the effects of the vapor cloud produced. Approximately 11 hours after the plant was 

started, RPTs occurred in a drainage channel covered by a concrete slab. The drainage 

channel and concrete slab were broken, adjacent pipe was damaged, and some concrete 

blocks were thrown approximately 100 m. No personnel were injured because the area 

had been evacuated because of the leak.” This simplified quote has many erroneous 

statements 

 

6.1.10.2. Quoting from an Eyewitness  

    The rundown line from Train E had a stub with a valve and blind flange installed 

for the future tie in of Train F. The incident in question occurred when the valve that had 

been repaired was ready for re-installation prior to the tie in being made for Train F. the 

maintenance crew prepared to remove the blind flange and re-install the valve. Because 

of the existence of some residual LNG in the LNG rundown line, a small amount of 

liquid started to come out the bottom of the flange when the flange was spread. The 

leaking LNG was channeled to an area where there was a closed storm water drain that 

fed into a central closed storm water drain that ran down the center of the process area. It 
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was here that the RPT occurred due to there being a significant amount of water in the 

drain and then the LNG coming into contact with this water and rapidly vaporizing 

causing the 30" drain pipe to lift out of the ground. The actual explosion occurred 

underground and not in the open storm water sewer system (Harris, et. al., 1992) 

 

6.1.10.3. Quoting Directly from Bontang Safety Manager  

The following is quoted directly from John Boone, the Bontang safety manager.  

“Some people believe that the damage was caused by the RPT phenomena, but 

many others later realized that the over-pressurization of closed drains (which did not 

have any pressure relief) could also be an explanation. There were many local RPTs on 

the surface, which made the observers focus on the RPT explanation.” Figure 6.3 

provides a visual sketch of the situation. 
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Figure 6.3. Badak, Indonesia incident, December 1992: was it RPT or unrelieved overpressure? 

(Based on Harris, et. al., 1992) 
 
 

 

6.1.11. Conclusion on RPT 

Experimental and theoretical studies that have been carried out about LNG – 

water RPT are review. Even though RPT is a rare occurrence as shown by the 

experiments reviewed in this article, it did occur when some conditions were fulfilled.  

The effects for RPT have been explored based on early studies, and the well-accepted 

vapor mechanism has been described. Such understanding is beneficial for LNG tanker 
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transportation since the possibility of RPT occurrence could be reduced by avoiding 

those conditions that favor RPT.   

It has been emphasized that larger LNG spills will not likely constitute a 

significantly larger damage potential than what has already been observed in the 

experimental tests by various investigators, although scale factors for LNG-water RPT 

cannot be developed without further experimental work and mathematical modeling. In 

the early LNG industry development, a concern that RPT could initiate an Unconfined 

Vapor Cloud Explosion prompted many of the tests that are reported herein. However, 

the potential for UVCE has been proved to be not feasible. 

Out of all the many RPT tests, the Falcon 5 test shows a unique anomaly. It 

appears that an RPT may have been the ignition source of the downwind vapor. While 

that was a very unique event, it indicates that downwind vapor dispersion of a large 

LNG spill on water has an even smaller likelihood due to the potential for RPT based 

ignition. 

Some theoretical models have been developed to predict the maximum 

overpressure resulting from RPT, but much more data on RPT with better pressure and 

distance measurements would be required to provide input for eventual model validation.  

 

6.2. Assessment of Variables’ Effect on Consequences of LNG Spillage onto Water  

In this section we will focus on the flammable vapor clouds dispersion process. 

The related processes, including LNG spillage and pool spread and evaporation, will 
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also be considered. The effects of tank conditions, release scenarios and environmental 

conditions on the LNG spillage, spread and dispersion processes will be evaluated.  

 

6.2.1. Background 

6.2.1.1. Experimental Test about LNG Spillage onto Water 

Quantitative data began to emerge from the Lake Charles experimental project in 

the 1950s. In 1968 and 1969, the U. S. Bureau of Mines Safety Research Center at 

Pittsburgh conducted LNG spill tests up to about 16.6 ft3 (0.47 m3) on a quiescent pond 

(Burgess, Murphy, and Zabetakis, 1970; Burgess, Biordi, and Murphy, 1972). Esso 

Research and Engineering Company carried out LNG spillage on water testS to obtain 

the downwind dispersion data characteristics of a marine environment (Feldbauer, et. al., 

1972). Most of the tests were conducted at two sizes—about 250 gallons and about 2500 

gallons. In 1980 Maplin Sands tests, involving spilling quantities of refrigerated gas of 

up to 20 m3, were performed by the National Maritime Institute and were sponsored by 

Shell to obtain dispersion and thermal radiation data (Blackmore, Eyre and Summers, 

1982). The Burro tests were conducted by the Lawrence Livermore National Laboratory 

and the Naval Weapons Center in 1980 (Koopman, et. al., 1982). A total of nine LNG 

releases onto water were performed, with spill volumes ranging from 24 to 39 m3. In 

1987, the Falcon tests were conducted in Nevada to provide a database on LNG vapor 

dispersion from spills involving obstacles and to assess the effectiveness of vapor fences 

for mitigating dispersion hazards (Shin, Meroney, and Neff , 1991). The highest spillage 

volume during the tests was 66.4 m3.  
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6.2.1.2. LNG Source Term Calculations 

Fay (2003) presented two models to assess the LNG release processes from the 

cargo tank ruptures, one for scenarios with holes above the seawater level, and the other 

for scenarios with holes below seawater level. Further analysis in his paper was based 

only on the former model. 

In May 2004, under the contract with the Federal Energy Regulatory 

Commission (FERC), ABS Consulting Inc. developed consequence assessment methods 

for incidents involving releases from LNG carriers (ABS, 2004). FERC (2004) updated 

the ABS report in June 2004. An orifice model was used in ABS/FERC report to 

evaluate the rate of LNG release from the tank. Currently almost all authors use the 

orifice model, but variations exist in assumed initial conditions and orifice coefficient. 

 

6.2.1.3. LNG Vaporization Rate on Water 

LNG vapor generation is calculated based on the heat transferred from the water 

into the spilled LNG pool. In the model developed by Otterman (1975), which is the 

most widely accepted LNG evaporation model, the vaporization rate of 0.04 lb ft-2 s-1 

(that is about 0.20 kg m-2 s-1) was based upon the experimental data from the Bureau of 

Mines. Sometimes vaporization rates were reported as thickness regression rates, with a 

typical value of 1 inch per minute. Opschoor (1980) derived an evaporation rate of 0.01 

lb ft-2 s-1 (0.05 kg m-2 s-1) from the convective heat flux equations. However, FERC 

(2004) recommended using the value of 0.034 lb ft-2 s-1 (0.17 kg m-2 s-1), which 
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corresponds to a heat flux of about 26,954 BTU hr-1 ft-2 (85 kW/m2). This value was 

obtained during the Burro tests.  

 

6.2.1.4. LNG Pool Spread on Water 

Early spread models were based on the steady state Bernoulli equation and axi-

symmetric spread on water (Enger and Hartman, 1972a; Gideon and Putnam, 1977). 

With this approach, spread is driven strictly by gravity, and the rate is given as a 

function of pool height only. Raj and Kalelkar (1973) derived a different spreading 

relationship by equating gravitational force and inertial resisting force. Otterman (1975) 

derived the spread model based on the oil spill experiment data, and concluded that those 

three methodologies yield almost identical predictions for the maximum pool radius. 

Bosch and Weterings (1997) employed a method based on self-similar solutions 

of the shallow water equations and lubrication theory. This method is called Webber’s 

method. This approach accounts for the resistance to spreading as a result of turbulent or 

laminar friction. Because Webber’s method has a much sound theoretical basis and 

accounts for friction effects, a majority of researchers believe that it is more realistic 

than other simpler models that ignore friction effects; thus, FERC recommended using 

Webber method. 

Although wave action is expected to affect both the shape and rate of spread of 

LNG on water, little effort has been expended in defining this relationship. Quest (2003) 

has made some initial attempts to quantify this effect, but the lack of experimental data 

has made validation difficult. 
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6.2.1.5. Flammable Vapor Dispersion 

Modeling of flash fires is primarily a matter of applying a dispersion model. The 

most well known codes to model LNG dense gas dispersion are FEM3, SLAB, 

HEGADAS and DEGADIS. FEM3 is based on Navier-Stokes, and the model 

computationally solves time-averaged, three-dimensional, turbulent transport equations 

that come from conservation of mass, species, momentum and energy balances. The 

other three models, SLAB, HAGADAS and DEGADIS, are one-dimensional integral 

models, and they use similar profiles that assume a specific shape for the crosswind 

profile of concentration and other properties. The downwind variation of spatially 

averaged crosswind values is determined by using the conservation equations in the 

downwind direction only.  

In 1992, the American Gas Association, under provisions of 49 CFR 193, 

petitioned the Department of Transportation to specify the use of DEGADIS for 

calculation of the gas dispersion protection zones in the regulation. FERC also 

recommended using DEGADIS to model the LNG vapor cloud dispersion process.  

 

6.2.2. Hazard Assessment Methodology 

6.2.2.1. FERC Models for Assessing LNG Carrier Spills on Water  

The orifice model was employed by FERC (2004) to assess the LNG release 

process. This model calculates the flow from a circular hole in the side of a cargo tank 

that allows the LNG to flow directly from the tank into the water, using the following 

equation: 
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gHRCQ ld 22πρ=                                                     (6.4) 

where                                                                      

Q = mass flow rate, lb s-1 

dC = discharge or orifice coefficient  

lρ = density of LNG, lb f-3 

R = radius of hull breach, ft 

H = static head above hull breach, ft 

g = gravitational acceleration, 32.2 ft s-2 

 

It is worthwhile to note that static head consists of both the liquid height and the 

ullage pressure. For the fixed volume release from a cargo tank, the flow rate will drop 

as the liquid level above the breach drops. The discharge orifice coefficient is assumed 

to be 0.65 as recommended by FERC. 

As described in the background, Webber’s method was recommended by FERC 

to model the LNG pool spread. A value of 85 kW/m2 for heat flux was adopted by FERC. 

The DEGADIS model was employed by FERC to assess the vapor dispersion process. 

For flash fires, the level of concern is typically defined as the Low Flammability Limit 

(LFL) for the substance. The downwind distance to LFL and the time to reach LFL were 

derived from the DEGADIS model.  
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6.2.2.2. FERC Scenario for Cargo Tank Vapor Dispersion 

The base scenario modeled by FERC is:  

• LNG properties: 

LNG composition: Methane  

LNG density: 422.5kg m-3 (26.38 lb ft-3) 

• Release scenario: 

Volume of vessel: 883,000 ft3 (25,000 m3) 

Percent of cargo tank volume spilled: 50% 

Total spill quantity: 441,500 ft3 (12,500 m3) 

Hole diameter: 3.3 ft (1 m) 

Initial liquid height above hole: 43 ft (13 m) 

Pool shape: semi-circular 

• Environmental conditions:  

Air temperature: 71 °F (22 °C) 

Relative humidity: 70% 

Wind speed: 6.7 mph (3.0 m s-1) and 4.5 mph (2.0 m s-1) 

Pasquill-Turner stability class: D and F 

Surface roughness: 0.03 ft (0.01 m) 

Averaging time: 1 min 

• Heat transfer parameters: 

Heat transfer parameters: 

Film boiling heat flux to pool: 26,900 BTU hr-1 ft-2 (85 kW/m2) 
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Evaporation mass flux: 0.034 lb ft-2 s-1 (0.17 kg m-2 s-1) 

 

The results of LNG pool spreading and vapor dispersion for the above scenario 

were reported by FERC as shown in Table 6.2. 

 

Table 6.2 

 Computed results using FERC methodology for LNG release base scenario 

PARAMETERS FERC RESULTS 

Initial spill rate 7,600 lb/s  (3,400 kg/s) 

Total spill duration 51 min 

Maximum pool radius 418 ft (127 m) 

Wind speed and stability class 6.7 mph (3.0 m/s) and D stability 

Downwind distance to LFL 6,500 ft (2,000 m) 

Time LFL reaches maximum distance 16 min 

Wind speed and stability class 4.5 mph (2.0 m/s) and F stability 

Downwind distance to LFL 11,000 ft (3,400 m) 

Time LFL reaches maximum distance 29 min 

 

 

6.2.2.3. WinFERC Model for Scenario Assumptions Sensitivity Analysis 

The FERC/ABS spill/spread models are employed in this paper to analyze the 

sensitivity of scenario assumptions to the LNG hazard assessment (Qiao, West, Mannan, 

Johnson, and Cornwell, 2006). A Fortran program was developed to compute the spill 
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and spread of LNG on water and to produce a suitable input file for use with the 

DEGADIS vapor dispersion model. The Fortran program was carefully tested against the 

results produced by the MathCad version of the FERC/ABS report. This model, which 

will be referred to as WinFERC, was used to perform the portions of the parametric 

study dealing with the spill and spread of LNG on water. The WinFERC interface is 

shown in Figure 6.4.  

 

                  

 
Figure 6.4. WinFERC model interface. 

 

 

The vapor dispersion process is then modeled by DEGADIS model, with the data 

provided by WinFERC as input to DEGADIS.  

The effects of different scenario assumption variables on the LNG hazard 

assessment results, especially the hazardous vapor cloud dispersion, are analyzed by 

using WinFERC and DEGADIS models. Those affecting variables include breach 
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diameter, ullage pressure, weather conditions and surface roughness. The base scenario 

to model in this paper is the same as the FERC scenario as described earlier. During the 

sensitivity analysis processes, almost all the variables will be the same as those in the 

base FERC scenario, and change is only allowed for the variable that is under sensitivity 

analysis, or unless specified.  

 

6.2.3. Sensitivity of Scenario Assumptions to the LNG Hazard Assessment 

6.2.3.1 Breach Diameter 

  The results shown in Figures 6.5 and 6.6 illustrate the effects of breach diameter 

on the release results, including the time to empty vessel and pool size. The time to 

empty vessel decreases dramatically with the increase of hole diameter as shown in 

figure 6.5. In figure 6.6, initially the LNG pool radius increases in correlation with 

increases in the breach diameter, but the pool radius reaches an asymptotic value when 

the breach diameter is larger than 5 m.   

Figures 6.7 and 6.8 also show the effect of breach diameter on the LNG vapor 

dispersion process at two sets of atmospheric conditions. The distance to reach LFL 

follows a similar curve as the LNG pool radius.  
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Figure 6.5. Time to empty vessel vs. hole diameter. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. LNG pool radius vs. hole diameter. 
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Figure 6.7. LNG vapor dispersion results at 5m/s wind speed and D stability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8. LNG vapor dispersion results at 2m/s wind speed and F stability. 
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6.2.3.2. Wind Stability Class and Wind Speed 

Figures 6.7 and 6.8 illustrate that the LFL downwind distance is increased when 

the wind stability class changes from D to F and the wind speed decreases from 5 m s-1 

to 2 m s-1. When the wind stability class transforms from neutral class D to moderately 

stable class F, the atmosphere turbulence tends to be weak, so that the LFL downwind 

distance increases. The decrease of wind speed also diminishes the turbulence level to 

some degree, so the LFL downwind distance will be increased. The difference in Figure 

6.7 and 6.8 presents the combined effects of wind stability and speed on the LNG vapor 

dispersion process. It is interesting to note that, although the distances to the LFL at 

small breach diameters are different, the LFL distances for breach diameters above five 

meters are similar. 

 

6.2.3.3. Cargo Tank Ullage Pressure 

 The cargo tank ullage pressure in an LNG tanker is usually less than 2 psig. For 

sensitivity assessment purpose, the maximum ullage pressure considered here is 4 psig. 

According to Equation (6.4), the spill rate is proportional to the square root of static head 

above the breach, thus the time to empty vessel would be decreased with an increase of 

ullage pressure, as shown in Figure 6.9. Figure 6.10 illustrates that the pool radius is 

enlarged with the increase of ullage pressure. The vapor dispersion process is also 

influenced by the change of ullage pressure. As shown in Figure 6.11, when the hole 

diameter is 1 m, the LFL downwind distance is increased as the ullage pressure is 

increased from 0 psig to 2 psig, but LFL downwind distance is not strongly affected 
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when ullage pressure is higher than 2 psig. For LNG released from 5 m diameter hole, 

the LFL downwind distance remains constant with the increase of ullage pressure. 
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Figure 6.9.  Time to empty vessel for spilled LNG vs. ullage pressure. 
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Figure 6.10. LNG pool radius vs. ullage pressure. 
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Figure 6.11. LNG vapor dispersion vs. ullage pressure. 
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the heavy LNG vapors might overwhelm the changes in surface roughness below a 

roughness level of 0.003 m. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.12. Effect of surface roughness on dispersion distances. 
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The typical modern size of LNG vessels is 135,000 m3 in 4-6 cargo tanks, so here 

a cargo tank volume of 25,000 m3 is assumed. The diameter is 36.28 m for a Moss 

spherical tank, and the height is 29.24 m for a membrane square tank. The breach is 

assumed to be 30% from the bottom of each tank, resulting in an initial liquid level of 

10.88 m above tank bottom for a spherical tank and 8.77 m for a square tank. So the 

initial liquid height above breach hole is 25.4 m for a spherical tank and 20.47 m for a 

square tank. By running the MatLab program, the spill rates versus time for these two 

kinds of tanks are modeled, and the results are shown as Figure 6.13. 

The initial spill rate is higher for a spherical tank because of its higher static head 

above hull breach. The spill process is determined by the tank geometry. The spill rate 

decreases linearly with time for a square tank, while for a spherical tank, the spill rate 

decreases very quickly at the beginning, and decreases a little slowly after that. 
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Figure 6.13. Spillage rate vs. time for spherical tank and square tank. 

 

 

6.2.4. Discussion  

6.2.4.1. Model Validation against Available Experimental Test Data 

Experimentation has generally been performed on a fairly small scale. The 

largest spillage volume to date was 66.4 m3, which was also the largest scale tested 

during Falcon tests in 1987 (Shin, Meroney, and Neff, 1991). However, the consequence 

models validated with these small scale experimental data are being used for spill 

scenarios of 25,000 m3 and larger. Jones and McGugan (1978) proposed that the 

minimum area required to enable a spill to be scaled up reliably to the dimensions of a 

realistic spill of tens of meters across is 1 m2. The scale up factor of more than 350 to 1 
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(25,000 m3 to 66.4 m3) in LNG spill modeling process has left the scale up process under 

question for its reliability.  

As a number of experiments were performed at small scale and their relevance to 

real-life large spills is uncertain, a reasonable scale up factor needs to be determined and 

evaluated so that it is possible to test models and, subsequently, to permit any necessary 

modification based on the data gathered from a series of carefully controlled 

experiments that are at an adequately large scale.   

 

6.2.4.2. LNG Spillage Process 

It can be seen from Equation (6.4) that the mass flow rate is the direct function of 

the square root of the static head, the area of the breach hole, and the data of discharge 

coefficient.  

A value of 1.0 for the discharge coefficient, which is for ideal frictionless case, is 

not reasonable in the case of a rough, irregular hole that would be expected in a spill 

from an LNG carrier. The International LNG Alliance and the International Gas Union 

suggested a value of 0.65, and the Center for LNG suggested a reasonable, conservative 

estimate of discharge coefficient ranges from 0.6 to 0.8, thus FERC recommended 0.65, 

which can be defended as a reasonable estimate.  

  In this paper, a hole diameter of 1 m is selected as the base release scenario. 

Pitblado, et. al. (2004) at DNV proved that 0.25 m will be a credible hole diameter for a 

puncture type event, the maximum credible hole from accidental operational events will 

be 0.75 m, and 1.5 m from terrorist events. With the hole size changing in a wider range, 
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from 0.5 m to 30 m, Figure 6.6 illustrates that the time to empty the vessel is changed 

linearly with the logarithm of the hole size as determined by Equation (6.4).   

The static head incorporates both the liquid height above the breach and the 

ullage pressure in the tank. The ullage pressure is dependent on the LNG composition 

and cargo tank design, and can vary from about atmospheric pressure to about 2 psig. 

The time to empty the vessel is approximately a linear function of the ullage pressure as 

shown in Figure 6.9. The assumed location of the breach opening will affect the time to 

empty the vessel in the same way, since the breach location will determine the liquid 

height given the fixed tank volume and configuration. Most analysts assume the breach 

occurs at the waterline for modeling purpose.  

The tank configuration is not a direct factor in computing the release rate in 

Equation (6.4), but it does have an effect on the release scenario as shown in Figure 6.13. 

The spill rate can be expressed as: 

dtdhAdtdVQ // ××=×= ρρ  (6.5) 

 

In Equation (6.5) A is uniform for the square tank, while for a spherical tank, A 

is changing during the whole release process. The cross area is so small at the top of the 

spherical tank that the height drops rapidly initially and the spill rate declines quickly at 

the beginning. The cross area in the middle of the tank becomes larger and changes less, 

so the spill rate decline more slowly than the beginning.  
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6.2.4.3. Sensitivity of Pool Spreading Process  

The LNG will spread on the water and continuous evaporation will take place if 

LNG spillage occurs. The LNG pool will continue to spread until the minimum layer 

thickness corresponding to the maximum pool diameter is reached. The vapor 

production will increase during the spreading simply by virtue of the increasing area of 

the evaporating liquid. This will reach a maximum when the pool has reached a size 

corresponding to the equilibrium LNG quantity.  

Otterman (1975) described the spreading process for an axi-symmetric pool 

through the following equation: 

 

[ ] 2
1

12 hg
dt
dr

Δ=   (6.6) 

Where  

2r
Vh

π
=

 

V = LNG volume on water, ft3 

r = pool radius, ft 

1

1
1 ρ

ρρ −
=Δ

 

1ρ = density of water, lb f-3 

ρ = density of LNG, lb f-3 

g = gravitational acceleration, 32.2 ft s-2 
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Through this equation, spread is driven only by gravity and the pool reaches the 

maximum with the pool layer thickness at the minimum. Webber’s method accounts for 

the friction effects, and the maximum pool size should occur when the pool is in the 

minimum thickness and the gravity driven force and the turbulent or laminar resistance 

force are in equilibrium.   

For a long term release, the pool will spread until the evaporation rate matches 

the rate of spillage. Thus the detailed modeling of pool spreading is not necessary. The 

pool area can be estimated from the spill rate divided by the evaporation rate per unit 

area. 

The change of maximum pool size with the hole size in Figure 6.6 can be 

explained by the combined effects of long term release scenario and instantaneous spill 

scenario. When the breach hole diameter is less than 4 m, the LNG spillage can be 

viewed as long term release process. With the hole size becoming larger, the spill rate is 

higher, resulting in a larger pool. When the breach hole diameter is larger than 4 m, the 

spill process can be simplified as instantaneous spill, and the maximum pool size is 

independent of the hole size.    

As illustrated in Figure 6.9, when the tank ullage pressure is less than 4 psig and 

the breach hole diameter is 1 m, the time to empty the vessel declines linearly with the 

ullage pressure. The spill process can be assumed as long term release when tank ullage 

pressure is less than 4 Psig. The increment of the ullage pressure increases the spill rate, 

so the maximum pool size increases with the increasing of ullage pressure accordingly.  
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6.2.4.4. Sensitivity of Vapor Dispersion Process 

Blackmore, Eyre and Summers (1982).found that plume dispersion behavior is 

dependent on source conditions, especially for continuous LNG spills. The results 

illustrated in Figures 6.7 – 6.11 prove that the hole size and ullage pressure affect the 

dispersion process.  

Increasing breach hole size and ullage pressure has similar effects in enlarging 

the spreading pool. A larger pool size means that the overall evaporation rate will 

increase. As the evaporation rate increases, the downwind distance to a given 

concentration increases. When the increase of the spill rate can not enlarge the pool size 

and the subsequent evaporation rate, the downwind distance to LFL will not change any 

more as shown in Figures 6.7, 6.8 and 6.9.    

The wind stability class is an indicator of atmosphere turbulence level. A higher 

turbulence level will increase the dilution of the LNG plume with the air. So the 

downwind distance to LFL will increase when the turbulence level degrades. The 

decreases of the surface roughness and the wind speed have the similar effects on the 

vapor dispersion process. In Maplin Sands tests, liquid propane was continuously 

released from a tank at an average spill rate of 2.3 m3/min. When the win speed is 5.5 

m/s and 3.8 m/s, the observed dispersion distances to LFL were 215 m and 400 m, 

respectively (Blackmore, Eyre and Summers, 1982). The same trend has been found in 

our model results shown in Figures 6.7 and 6.8. 
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6.2.5. Conclusions 

When an LNG cargo tank is ruptured, the LNG flows out of the hole onto the 

surface of water, in an amount and at a rate depending on the tank size, dimension, 

location of the rupture and ullage pressure. The spilled fluid spreads on the water surface, 

eventually evaporating entirely, mixing with air and dispersing downwind.  

The FERC modeling algorithms were employed in this paper to analyze the LNG 

spillage consequences. The computed results illustrate that the changes of breach size 

and ullage pressure will change not only the spill duration and pool size, but also the 

dispersion process. Variations of tank configuration affect the spill process. The wind 

stability, wind speed and surface roughness affect the vapor dispersion process for 

breach diameters less than 4 m, but have a smaller effect on spills from breach diameters 

larger than 5 m.  
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

7.1. Conclusions 

This research is aimed at developing a practical and efficient TRA methodology 

to support the operations of HazMat transportation. A quantitative risk assessment 

methodology is provided in this dissertation to measure the risk profile. The basic idea of 

the proposed methodology is to capture the matching of data/databases availability with 

TRA techniques and to set up an applicable framework to assess transportation risk step 

by step.  

Risk components, including incident frequency, release probability, consequence 

scenario, and fatality, are carefully observed to determine their contributing factors and 

to figure out the proper data/databases for analysis. Given the conditions where no 

enough data exist, some mathematical methods including fuzzy logic are employed to 

incorporate human’s linguistic information. Then these components are assessed based 

on the analysis on available data/databases, commercially available software, and expert 

knowledge. Mathematical models and risk analysis techniques like ETA are employed 

for each risk component assessment. 

The measure of the overall risk level considers the interaction between the 

transportation network, the vehicle or traveling risk source, and the impact area. 
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Numerical models are presented to measure individual risk and societal risk caused by 

HazMat transportation.  

By matching the available data with the model set up, the TRA methodology can 

be applied directly in the decision support system to guide the operations of HazMat 

transportation.  

The overall methodology is developed from available data/databases, which 

makes it an applicable and accountable tool in the decision support system to guide the 

operations of HazMat transportation. This generic method could be applied for most of 

TRA within the scopes defined therein. Decision makers could modify the methodology 

when dealing with different HazMat. The methodology could be simplified or elaborated 

further based on the requirement of users.   

 

7.2. Recommendations  

This work is proposed based on the analysis on available data/databases. An 

abundant supply of data/database will facilitate the improvement of accuracy and 

practicality of our methodologies. In recent years, especially after September 11, 2001, 

fewer institutes, agencies, or organization would like to disclose incident data to the 

public, even to our researcher. It is recommended that institutes associated with HazMat 

transportation (e.g., American Petroleum Institute and Chlorine Institute) grant the 

accessibility to transportation incident databases, so that the changes in HazMat 

transportation in recent years could be tracked, and TRA methodology can be proposed 

with a solid background.  
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GIS has proved to be helpful in TRA. Many environmental features necessary for 

TRA are attainable in GIS, but some important features may not be there. For example, 

the number of highway lanes, which is critical to the risk measurement, could not be 

found in GIS. It also happens to wind direction probability and other parameters. More 

effort could be devoted to collecting data on crucial parameter outside of GIS and 

merging that information with GIS. By this way, all the environmental information 

needed for TRA can be pulled out directly from GIS, and the TRA process will be more 

efficient.  

Our methodology is developed to assess the transportation risk over a year. 

However, the risk for any certain given transportation scenario should be analyzed to 

take account of the effect of time varying parameters. Our model for incident frequency 

assessment has considered the time varying parameters like weather and driver 

experience. More work needs to be performed to assess other risk components taking 

into consideration the effect of time varying parameters. 

If more incident data are accessible, e.g., transportation institutes of all states 

could standardize their data collection and provide the incident data on more highways, a 

global model could be built in the similar way as presented in this dissertation. A user 

friendly computer program could then be compiled. By coupling this model with a more 

powerful GIS, the risk associated with any route could be easily assessed.   

In our optimum routing models, it has been proved that TRA is important in 

guiding the route selections of HazMat transportation. Transportation decision support 

system is a complex system. More actions could be facilitated by utilizing TRA results. 
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Further research is recommended to explore the application of TRA in emergency 

response and other actions made in decision support system to mitigate transportation 

hazard and ensure a safer environment.  
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