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ABSTRACT 

 

Supported Phospholipid Membranes as Biometric Labs-on-a-Chip: Analytical Devices 

That Mimic Cell Membrane Architectures and Provide Insight into the Mechanism of 

Biopreservation. (May 2006) 

Fernando Albertorio, B.S., Pontifical Catholic University of Puerto Rico 

Chair of Advisory Committee: Dr. Paul S. Cremer 

 
 This dissertation focuses on the applications of solid supported phospholipid 

membranes as mimics of the cellular membrane using lab-on-a-chip devices in order to 

study biochemical events such as ligand-receptor binding and the chemical mechanism 

for the preservation of the biomembrane.  Supported lipid bilayers (SLBs) mimic the 

native membrane by presenting the important property of two-dimensional lateral 

fluidity of the individual lipid molecules within the membrane.  This is the same 

property that allows for the reorganization of native membrane components and 

facilitates multivalent ligand-receptor interactions akin to immune response, cell 

signaling, pathogen attack and other biochemical processes.  

The study is divided into two main facets.  The first deals with developing a 

novel lipopolymer supported membrane biochip consisting of Poly(ethylene glycol) 

(PEG)-lipopolymer incorporated membranes.  The formation and characterization of the 

lipopolymer membranes was investigated in terms of the polymer size, concentration 

and molecular conformation.  The lateral diffusion of the PEG-bilayers was similar to 

the control bilayers.  The air-stability conferred to SLBs was determined to be more 
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effective when the PEG polymer was at, or above, the onset of the mushroom-to-brush 

transition.  The system is able to function even after dehydration for 24 hours.  Ligand-

receptor binding was analyzed as a function of PEG density.  The PEG-lipopolymer acts 

as a size exclusion barrier for protein analytes in which the binding of streptavidin was 

unaffected whereas the binding of the much larger IgG and IgM were either partially or 

completely inhibited in the presence of PEG.   

The second area of this study presents a molecular mechanism for in vivo 

biopreservation by employing solid supported membranes as a model system.  The 

molecular mechanism of how a variety of organisms are preserved during stresses such 

as anhydrobiosis or cryogenic conditions was investigated.  We investigated the 

interaction of two disaccharides, trehalose and maltose with the SLBs.  Trehalose was 

found to be the most effective in preserving the membrane, whereas maltose exhibited 

limited protection.  Trehalose lowers the lipid phase transition temperature and 

spectroscopic evidence shows the intercalation of trehalose within the membrane 

provides the chemical and morphological stability under a stress environment. 
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CHAPTER I 

 

INTRODUCTION 

 

1.1. Purpose/Objective 

 The study reported in this dissertation has focused on improving the technology 

of artificial solid supported phospholipid membranes as a mimic of the cellular 

biomembrane.  The need for an improved bio-mimic system is evident in the recent 

focus of various areas of research in more complex systems such as transmembrane 

proteins1, ion channels2, ligand-receptor interactions, protein-lipid interactions, and 

membrane dynamics.  Therefore, improvements within this field will allow for the 

creation of better biosensors and model systems for biophysical research.3, 4  This work 

is divided into two areas where the first focuses on the incorporation of poly(ethylene 

glycol) PEG-lipopolymers within solid supported lipid bilayers for the development of a 

novel biosensing platform.  The second area is centered in employing solid supported 

lipid membranes as an alternative model system in which to elucidate a molecular 

mechanism of biopreservation. 

 We have employed various analytical techniques that are surface selective.  The 

importance and need for surface selective analytical methodology arises from the fact

 _______________________ 

This dissertation follows the style and format of the Journal of the American Chemical 
Society. 
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that most of the biochemical processes that take place on the biomembrane occur at an 

interface.  Therefore, the solid supported membrane system provides an advantage over 

bulk techniques, in which the biological interface is still defined, in this case, at the 

bilayer/aqueous interface, and the surface biochemical reactions that take place on the 

biomembrane can be studied in a native-like environment.  The techniques employed 

interrogate chemical structure, function and morphology of the system, and will be 

described in chapter II.  Briefly, they include vibrational sum frequency spectroscopy, 

which allows us to probe the chemical structure at an interface while fluorescence 

microscopy is employed to assay the function of the supported membrane, and atomic 

force microscopy provides morphological information and structure of our system.  The 

combination of these and other analytical techniques, along with Lab-on-a-Chip 

technology, allows us to acquire data on various levels, thus permitting us to formulate 

molecular mechanisms of the biochemical phenomena under investigation. 

 

1.2. The Biological Membrane 

 The biomembrane has been observed since the early 1900s.5  However, earlier 

observations of the nature of oil/water mixtures have been recorded more than a century 

ago.  Benjamin Franklin, in 1774, first observed the behavior of oil droplets on water 

and noticed that the oil spread, and formed a thin film over the water surface.6  In 1890, 

Lord Raleigh conducted the first quantitative experiment of oil/water mixtures 

attempting to determine the thickness of the oil film.  However, the most noted
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Figure 1.1.  (A) The Langmuir trough apparatus with a monolayer of fatty acids.  Oleic 

acid is shown to align itself at the air/water interface.  The hydrophobic portion points 

towards the air while the carboxylic acid interacts with the underlying water.  (B)  The 

Danielli-Davson model of the biomembrane. 
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contribution was made by Irving Langmuir7, who made quantitative measurements of 

the area and thickness of oil films employing an improved apparatus, initially developed 

by Agnes Pokels, known today as a Langmuir trough.6, 7  Langmuir turned his attention 

to the behavior of fatty acids and proposed that the fatty acids spontaneously orient 

themselves at the air/water interface by pointing their hydrophobic chains toward the air, 

while the carboxylic group interacts with the underlying water as illustrated in figure 1.1.  

 The first to study the lipids found in biomembranes was Evert Gorter.8  Using 

extracted lipids from red blood cells, Gorter and Grendel demonstrated that lipid 

molecules can form a double layer or bilayer as well as a monolayer and also noted that 

the surface area of the extracted lipids was twice the area of the native cell.8  Based on 

these observations, Danielli and Davson proposed the first model of the biological 

membrane, shown in figure 1.1., in which the lipids form a bilayer while proteins are 

adsorbed on both sides of the membrane.9  However, this model was incomplete and did 

not account for the functionality of the biomembrane.  This and other models were 

further refined through observations made by light microscopy and electron 

microscopy.10 

 Singer and Nicolson in 1972 presented the fluid mosaic model of the 

biomembrane.11  The model incorporates the basic bilayer structure of Gorter and 

Grendel, but is modified in that the proteins are incorporated within the bilayer and are 

as fluid as the lipid molecules that constitute the membrane.8  This model suggests the 

complexity of the biomembrane, and the key property that the lipid molecules that 

constitute the bilayer exhibit lateral diffusion.  In fact, such lateral
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Figure 1.2. The fluid mosaic model of the biomembrane. The phospholipids form a 

bilayer and the proteins are globular and are incorporated within the fluid membrane.    
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diffusion allows for the reorganization of the membrane constituents such as membrane 

associated proteins, transmembrane proteins and other biomolecules.11  The fluid mosaic 

model is represented in figure 1.2.   

The chemical nature of the biomembrane is manly composed of phospholipids, 

which are amphiphilic molecules that posses a hydrophilic head and hydrophobic tails.12  

The amphiphilic nature of lipids allows them to reorganize into bilayers, for example, 

where the hydrophobic tails exclude water and the hydrophilic heads orient toward the 

aqueous environment.  Fatty acids, in esterified form, are the major components of lipids 

and are carboxylic acids with a long chain hydrocarbon side group.  The most common 

are palmitic, oleic, linoleic and stearic acid.  The physical chemical properties of fatty 

acids vary with their degree of unsaturation.  Saturated fatty acids are very flexible and 

the hydrocarbon chain exists in a fully extended conformation in order to minimize steric 

interaction between neighboring methylene groups.  Their melting temperature increases 

with molecular weight.  The first site of unsaturation usually occurs between the C9-C10 

position.  Double bonds are usually in the cis configuration.  This reduces the effective 

packing of the hydrocarbon chains by reducing van der Waals interactions, thus inducing 

a lowering of the melting temperature as the degree of unsaturation increases.  Lipid 

fluidity is dependent on the melting temperature of the fatty acid residues. Therefore, the 

degree of unsaturation plays an important role in the membrane properties. 
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Figure 1.3.  The chemical structure of a phosphocholine lipid. 
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Glycerol is the other building block in the chemical make-up of lipids.  Triesters 

of glycerol form triacylglycerides, which are neutral fats that function as energy 

reservoirs in animals and plants.  Although they are a class of lipids, they are not a 

component of the biomembrane.  Phosphoglycerides consist of sn-glycero-3-phosphate 

esterified at its C1 and C2 positions to fatty acids as shown in figure 1.3.  A phosphoryl 

group is linked at the C3 position that has a group X at its other end.  Group X may 

consist of a variety of other molecules such as a choline, ethanolamine or serine group.    

This is the basic chemical structure of a phospholipid that constitutes the biological 

membrane.12  

 In summary, the amphiphilic nature of the lipid molecules that self-arrange to 

form the lipid bilayer which is the unit structure of the biomembrane allows for various 

key properties of the biomembrane.10  The membrane is a semi-permeable barrier 

allowing for the selective passage of certain molecules.6, 12  It provides a fluid and 

dynamic surface for biochemical reactions to take place and finally, a variety of 

biomolecules other than lipids are incorporated within the biomembrane.  These may be, 

for example, cholesterol, and sphingolipids which allow for phase segregation, for lipid 

rafts formation, transmembrane proteins which may be embedded within the bilayer, 

membrane-associated proteins, glycolipids, proteoglycans, and other molecules that 

share the biomembrane environment.11  
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1.3. Solid Supported Phospholipid Membranes 

 The biomembrane is an integral part of the cell physiology.13  Many biochemical 

reactions such as cell signaling, ligand-receptor14 binding, immune response, pathogen 

attack and endo/exocytosis among others, occur at the membrane surface.12, 15, 16  These 

biochemical processes are of great importance in the areas of pharmaceutical industry, 

and medical and biophysical research.17  It is therefore important to develop in vitro 

strategies that closely mimic the native biomembrane. 

 Since their inception in the mid 1980s, solid supported lipid bilayers18-20 (SLBs) 

introduced by McConnell21 and co-workers22, have proven to be useful mimics of the 

cell biomembrane.21, 23  They preserve the lateral fluidity of the lipid molecules which is 

a fundamental property of native membranes.24, 25  This allows for the reorganization of 

membrane components and thus facilitates the investigations of a variety of biochemical 

and biophysical phenomena, such as ligand-receptor26-28 interactions and protein-lipid 

interactions, among others.   

 The formation and methods of preparation of solid supported lipid bilayers has 

been discussed in the literature.29-34  The use of synthetic or natural extracts of lipids is 

common in the formulation of this in vitro system.  They are typically formed by either 

Langmuir-Schaffer techniques35 or via vesicle fusion36.  In the Langmuir-Schaffer 

technique, the bottom leaflet of the bilayer is first formed by pulling a substrate, for 

example a borosilicate slide, through a lipid monolayer as shown in figure 1.4.37  The 

aliphatic portion of the lipids will orient themselves toward the air, while the polar
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Figure 1.4. The assembly of a solid supported lipid bilayer by Langmuir-Blodget (A) 

followed by the Schaffer technique (B). 

Langmuir Trough

Lipid monolayer
Air

Hydrophilic
substrate

LB Transfer

Aqueous
subphase

A

Langmuir Trough

Lipid monolayer
Air

Hydrophilic
substrate

LB Transfer

Aqueous
subphase

Langmuir Trough

Lipid monolayer
Air

Hydrophilic
substrate

LB Transfer

Aqueous
subphase

A

Schaffer

Langmuir Trough

Supported Monolayer

Air

Aqueous subphase

B

Schaffer

Langmuir Trough

Supported Monolayer

Air

Aqueous subphase

Schaffer

Langmuir Trough

Supported Monolayer

Air

Aqueous subphase

B



 11

headgroups orient towards the hydrophilic substrate.  The upper leaflet can either be 

formed by a schaffer technique or via vesicle fusion.36  Although this methodology has 

not been employed for these studies, this technique has proven useful for the formation 

of hybrid-lipid bilayers38, cushioned membranes1, 39 and for the incorporation of 

transmembrane helices and peptides within the supported membrane.39, 40 

The method employed in this study for the assembly of solid supported 

membranes is the technique of vesicle fusion.41  In this technique, small unilamellar 

vesicle solutions are prepared following a similar protocol for the preparation of 

liposomes.42  Briefly, a lipid in chloroform solution is dried under vacuum.  During this 

stage, a packing of lipids occurs as the solvent is removed.  The next step involves the 

resuspension of the packed lipids in aqueous buffer solution.  Herein, the lipids tend to 

form a stable structure called liposomes, which are micrometers in size and are 

multilamellar.43  Repeated freeze-thaw is done in order to break-up the multilamellar 

vesicles and form large unilamellar vesicles (LUVs).43  Finally, the process of extrusion 

at high pressure through a polycarbonate filter membrane is performed in order to obtain 

small unilamellar vesicles (SUVs) of sizes that range from fifty to hundreds of 

nanometers.  The size of the vesicles can be tailored by employing membranes of 

different pore sizes.  It should also be noted that a similar product may be achieved by 

using probe sonication.42  

Because of their size, small unilamellar vesicles possess a high radius of 

curvature.41  The vesicle fusion method exploits this property by using vesicles with a
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Figure 1.5.  The fusion of small unilamellar vesicles to a planar borosilicate substrate.  
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typical size of 50-100 nm.41, 44  Generally, these vesicle solutions are exposed to a planar 

hydrophilic substrate such as silicon, borosilicate, quartz or mica.41  The SUVs 

spontaneously fuse to the substrate resulting in a single lipid bilayer.29, 30, 45  The process 

of vesicle fusion is illustrated in figure 1.5.  However, the exact mechanism of vesicle 

fusion is still debated in the literature.  

Various methods have been employed to study the mechanism of small 

unilamellar vesicle fusion.  Fluorescence microscopy of dye-encapsulated vesicles has 

been utilized to study the kinetics of membrane fusion.29, 34, 46  Atomic force 

microscopy47 (AFM) has also been employed to elucidate the intermediate steps of 

fusion while the quartz crystal microbalance with dissipation (QCM-D)48 technique has 

proven useful to study the onset, kinetics49 and pathways of vesicle fusion.49-51  Other 

reports have utilized elipsometry or surface plasmon resonance (SPR) microscopy or 

spectroscopy.47, 52 

A general mechanism is that vesicles that encounter the solid/aqueous interface 

of a hydrophilic substrate may proceed via one of two pathways.52  The first pathway 

implies that vesicles with a radius greater than the critical radius (rc) will undergo direct 

fusion to the underlying substrate.  In the second pathway, vesicles with a radius smaller 

than rc will undergo vesicle-vesicle fusion until their radius equals the critical radius and 

then proceed via the first pathway.53  It should be noted that in order for either pathway 

to proceed, a minimal surface density of vesicles is required.  Known as a percolation 

threshold, this is the minimal concentration of vesicles needed in order to form an 

infinitely continuous two-dimensional film.52, 53  
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There are external factors that will affect the mechanism of fusion.  These have 

been studied by QCM-D48 in which the change in two parameters, frequency and 

dissipation are monitored as a function of time.  The change in frequency is related to the 

adsorbed mass or surface density, and the dissipation is related to the type of film i.e. 

hardness or softness of the adsorbed film.48  The fusion of vesicles to the quartz crystal 

under aqueous conditions is monitored.  Intact adsorbed vesicles or a lipid bilayer can be 

distinguished with this technique by their respective changes in frequency and 

dissipation.54  Therefore, the effects on the kinetics and pathway of fusion may be 

studied by changing parameters such as vesicle size, charge, lipid composition, 

concentration, temperature, pH and the electrolyte solution.55  QCM-D has been 

compared to other methods such as elipsometry and SPR50, which do not provide a clear 

distinction between adsorbed vesicles and a fused lipid bilayer.56, 57  Fluorescence 

microscopy is useful in assaying the function of the two-dimensional lipid film.  In 

particular, fluorescence recovery after photobleaching36 (FRAP) provides information 

about the 2-D lateral diffusion of the fluorescently labeled lipids within the bilayer.58  

This methodology will be discussed in Chapter II. 

The fusion of small unilamellar vesicles to planar substrates depends on various 

parameters.  The size of the vesicles, concentration and charge will affect the vesicle 

curvature and their interaction with the substrate.  The hydrophilicity, surface charge and 

surface roughness of the substrate play an important role in the assembly of solid 

supported lipid membranes.  Other parameters such as vesicle composition, lipid phase
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Figure 1.6.  Phospholipid membrane supported on a hydrophilic substrate.  There is a 

molecular thin layer of water in between the substrate and lipid bilayer. 
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transition temperature, and the electrolyte solution will affect, to various degrees, the 

overall fusion process. 

A supported lipid bilayer is characterized by having a thickness of 4.5-5nm.59, 60  

The most important feature is that a thin water layer of ~1-2nm exists between the 

substrate and the lipid film.61  The presence of this water layers affords structural 

stability and maintains two-dimensional lateral fluidity of the supported membrane.62  A 

model membrane is shown in figure 1.6. 

 

1.4. Stability of Phospholipid Membranes 

Solid supported bilayers preserve the lateral mobility of the individual lipid 

molecules because a thin water layer resides between the lower leaflet of the membrane 

and the underlying solid surface.63  Lateral fluidity makes these platforms ideal for 

creating biosensors because they can readily mimic the same two-dimensional 

rearrangements that take place on cell surfaces during ligand-receptor recognition 

events.25, 28  The forces that hold the bilayer at the solid/aqueous interface of a glass 

substrate involve electrostatic, van der Waals, hydrophobic, and steric interactions.64  A 

major problem is that the lipid bilayer delaminates from the interface if the thin film is 

exposed to the air/water interface.  This detachment occurs because it is energetically 

unfavorable to remove the hydrophilic lipid headgroups from solvation waters.  

Therefore, when an air bubble arrives at the surface, the membrane must reorganize to 

expose some of its lipid chains to the nascent air/water interface, while the rest of the
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Figure 1.7. The introduction of an air interface destroys the solid supported bilayer by 

peeling it away from the surface in vesicle sections (note: some lipids also form a 

monolayer at the air surface). 
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lipid material becomes part of newly formed vesicles in the aqueous solution as depicted 

in Figure 1.7.63 

Attempts to preserve supported bilayers in order to protect them upon exposure 

to air have been presented in the literature.65, 66  The main motivation is to present a 

novel system for biosensing applications.  Certain strategies have involved the use of 

tethered or hybrid bilayers systems.38, 64  These systems are generally prepared via the 

Langmuir-Blodgett method in which the bottom leaflet is covalently attached to the 

underlying support.35, 67  The type of chemical modification depends on the substrate.  

thiol or silane modified lipids are employed for either gold or SiO2 substrates.  These 

chemical modifications help anchor the lipid bilayer to the support.  Other methods 

employ bolaamphiphiles monolayers and substrate modifications in order to achieve air 

stability.38   Polymerizable synthetic lipids have also been used to create a new class of 

stable lipid bilayers.68  These lipids usually contain dienes and can either be chemically 

or photo-polymerized, and have been found to be resistant to exposure to air and 

chemical solvents.  Photo-polymerization has also been applied for the spatial addressing 

of lipid membranes for sensing applications.69-71  Finally, other attempts to stabilize lipid 

membranes have been achieved by employing charged lipid vesicles, thus relying on the 

electrostatic interactions between the bilayer and substrate.72  Although these methods 

yield air stable supported bilayers, these systems lack or experience a loss in the lateral 

mobility of the lipids within the membrane.  Hence this affects their performances as 

biomimics and sensing platforms.    
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Consistent with the mechanism for lipid bilayer removal that is described above, 

our laboratory developed a simple method for preventing delamination.  The approach 

involved specifically binding a protein monolayer of streptavidin to a biotin containing 

phospholipid surface.63  This should have had two effects on the bilayer stability.  First, 

it would increase the bending elastic modulus (stiffness) of the membrane and thus 

increase the barrier for lipid patches to roll up into sheets and peel away as vesicles.  

Second, the presence of the protein coat should make it difficult for the upper leaflet of 

the bilayer to rearrange to form a monolayer film at the nascent air/water interface.63  

The strategy described above works exceedingly well at preventing the 

delamination process from occurring.  In fact, the lipid molecules remained mobile when 

the system was placed in ambient air.  The diffusion constant in the lipid membrane 

before removal from water was D=1.9 x 10-8 cm2/sec.  While in air near 100% relative 

humidity, D = 2.9 x 10-9 cm2/sec and returned to the original value upon rehydration in 

bulk water.  Of equal significance was the fact that the mobile fraction of labeled lipids 

in the membrane was greater than 90%.63   

Despite the success of the approach described above, it is unsuitable for the 

creation of biosensors.  Unfortunately, it is necessary to blanket the entire bilayer with a 

relatively close-packed streptavidin film to afford air stability.  Therefore, when 

additional ligands are also incorporated into the film for sensing applications, they are 

unavailable for binding with their target protein analytes because the protective 

streptavidin layer sterically blocks additional ligand-receptor binding. 
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In summary, the methods presented in the literature towards membrane 

preservation generally consist of chemical modification of the lipid film, substrate 

modification, a complex assembly method or a steric effect.  Therefore these methods 

can compromise of the underlying characteristics of the system.  

 

1.5. Summary 

 Solid supported phospholipid membranes are useful mimics of the cell 

biomembrane.  They preserve the property of two-dimensional lateral fluidity of the 

individual lipid molecules and membrane constituents found in native membranes.  As 

biomimics, they have a vast utility as biosensors and present the opportunity to study 

cellular biochemical and biophysical processes.   

 Our interest and main goal of the study reported herein is to improve the 

technology of solid supported membranes by further mimicking other aspects of the 

native biomembrane architecture.  Primarily, the study focuses on improving the stability 

of supported phospholipid membranes by employing lipopolymer incorporated bilayers.  

In order to address this problem, we utilized an alternative membrane coating that 

stabilizes the lipid bilayer, while still allowing facile ligand-receptor binding to take 

place.73  The particular architecture needs to be porous enough to allow access for 

proteins, toxins, and other large analytes of interest in the solution phase to bind to 

surface-associated ligands, while still affording the required air stability.  Poly(ethylene 

glycol) PEG conjugated lipids were used for this purpose.  The choice of membrane 

stabilizer is inspired by the elaborate chemistries found on bacterial and eukaryotic cell 
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surfaces.  Cell surfaces are often terminated with a variety of glycosylated proteins, 

glycolipids, and polymeric structures that can extend tens of nanometers above the 

plasma membrane.74  The glycocalyx affords stability to real cells, and plays a role in 

cell signaling and cell-cell interactions.75   Such an approach has been notably absent 

from most model membranes mimics to date.   

 The second goal of the study was to investigate and model the process of 

biopreservation using the solid supported membrane system.  Herein, SLBs have proven 

useful in elucidating a molecular level mechanism of biomembrane preservation by 

small disaccharides.   

 This study represents and contributes to the improvement of the biosensing 

capabilities of solid supported phospholipid membranes.  It also demonstrates the close 

biomimicking properties of SLBs and how this model system can be employed to 

elucidate biomolecular interactions and processes. 
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CHAPTER II 

 

EXPERIMENTAL 

 

2.1. Synopsis 

 This chapter presents the methodology employed throughout this study.  The 

goal of all the experimental techniques is to obtain surface specific data of the system 

under investigation.  The experimental techniques explain herein are designed to obtain 

functional, chemical and morphological information about the system.  The use of 

surface selective analytical methods to study solid supported phospholipid membranes 

for a variety of applications has been demonstrated.   

 This chapter discusses the application of microfluidic technology76 in 

combination with SLBs as analytical devices.77  A fluorescence microscopic method 

used to probe the function of solid supported lipid bilayers in terms of their two-

dimensional lateral diffusion78 will also be presented.   

 Vibration sum frequency spectroscopy79 (VSFS) has been employed to 

investigate the chemical nature of the interface.  This spectroscopic technique is useful 

for the determination of the orientation, alignment and chemical nature of species that 

are interacting at an interface, such as a solid/aqueous or aqueous/air interface.80   

 Furthermore, atomic force microscopy81 (AFM) has been used as a 

morphological probe of the solid supported lipid membrane system.  This section 

presents the methodology employed to probe a solid supported membrane in its native 
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environment.  The instrument design and the experimental technique of fluid AFM is 

presented. 

 Other experimental methods such as the conjugation of fluorescent dyes and 

purification of labeled proteins will be described.  The preparation of vesicle solutions 

and other chemicals employed in this study will be explained in their respective 

chapters.    

 

2.2. Soft Lithographic Preparation of Microfluidic Devices         

 Since its development in the 1980s by Whitesides14, 82 and coworkers, the soft 

lithographic technique has made it possible to create a wide variety of spatially 

addressed devices.32, 45, 83, 84  Soft lithography is defined as a set of methods for the 

fabrication of structures using elastomeric materials, polymeric stamps or conformable 

molds.  It is an effective and low cost method for the creation of micro- or nano-

structures.  For these reasons, soft lithography85 is the method of choice for the 

development of microfluidic devices.  Generally, the process can be divided into three 

main steps.  The first step is photolithography in which a structure is transferred to a 

photoresist polymer using a photomask; after which a chemical etching or dry etching 

procedure is performed.  The final steps involve the use of an elastomeric material called 

poly(dimethylsiloxane) PDMS in which, after the curing or cross linking step, a negative 

image of the photomaster is transferred to the PDMS stamp.  The procedure is illustrated 

in figure 2.1.76, 86  

 



 24

 

 

 

 

 

Figure 2.1  Schematic of the soft lithography procedure. 
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Figure 2.2.  Photograph of a 5-channel microfluidic device. 
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The procedure is useful for creating low aspect ratio microchannels.  In this 

study, we created 5-channel PDMS microfluidic devices as shown in figure 2.2.  The 

devices are manufactured using a similar procedure as described above.  An S-1813 

photoresist is acquired from Shipley.  After exposing the photoresist covered slide to UV 

radiation, the photoresist is baked, and developed.  At this stage a hard baking procedure 

is done at 100 oC for 24 hours in order to remove excess solvent; after which a chemical 

etching procedure is done using hydrofluoric acid solution according to a published 

procedure.82  This provides etched microchannels with a height of ~27 μm and a width 

of ~ 300 μm.  A profilometer is used to characterize the finished product.  The procedure 

is finished by pouring the PDMS elastomer followed by curing at 70 oC for 1 hour.  

When the device is ready to be used, the PDMS stamp is pealed and the inlets and 

outlets or perforated.  The tall channels allow for the devices to be pumped manually 

with a syringe and are also reusable.73 

 

2.3. Conjugation of Fluorescently Labeled Proteins 

 The use of reactive fluorescent dyes for the conjugation of proteins to be detected 

by fluorescence microscopy is an integral part of the systems employed in this study.  

The careful selection of fluorescent molecules is important in order to achieve high 

signal-to-noise, and lower limits of detection.  Important factors are the quantum 

efficiency (QE) of the selected dye, excitation and emission wavelength, solubility and 

reactive moiety.  Derivatives of fluorescein, like Rhodamine dyes, Texas Red and the 

Alexa dye family, have been widely applied in the area of biomedical research because
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Figure 2.3.  The chemical structure of an Alexa-fluor dye with a succinimidyl ester 

reactive group.  The succinimidyl ester reacts with the primary amines of the proteins 

and thus allows for the fluorescent conjugation of biomolecules.  
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of their high QE, thermal and chemical stability, solubility in aqueous medium and ease 

of conjugation.  This was achieved by the addition of more conjugated fused rings, 

amine and carboxylic groups at the ends and the coupling of a reactive group such as a 

succinimidyl ester. 

 Figure 2.3 shows the chemical structure of an Alexa-fluor dye, which are 

acquired from Molecular Probes (Eugine OR.).  The reactive group is a succinimidyl 

ester, which readily reacts with primary amines.  Since proteins contain primary amines 

from amino acids like argenine and lysine, these biomolecules are easily labeled under 

aqueous conditions.  The degree of labeling or mole dye/mole protein can be tailored by 

changing the solution conditions.  The labeling of proteins such as IgG has been 

performed according to established procedures, typically 1mg/ml protein from 1 hour at 

room temperature at pH 8.0.  The unreacted dye is separated from the analyte by size 

exclusion chromatography (SEC).  

 

2.4. Fluorescence Recovery after Photobleaching FRAP      

 The technique of fluorescence recovery after photobleaching FRAP is one of the 

standard methods to measure the translational dynamics of a fluorescent species.78  

Initially intended to measure the diffusion coefficients of dye molecules87, FRAP, has 

been most recently employed in measuring the lateral diffusion on membrane 

components such as proteins and labeled lipid molecules.36, 58  The technique is 

represented in figure 2.4. 
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Figure 2.4.  A fluorescence recovery after photobleaching curve.  An intense laser 

bleaches part of the sample and the fluorescence recovery of the bleached region is 

monitored as a function of time.  The resulting FRAP curve is used to calculate the 

diffusion constant and mobile fraction of the analyte. 
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In a typical FRAP experiment the sample is photobleached with an intense laser 

for a short period of time; after which the recovery of fluorescence intensity of the 

bleached region is monitored as a function of time and a FRAP curve is generated.  The 

fluorescence intensity before and during the experiment, are normalized according to the 

following equation: 

 
0FF

FF
y

i

to

−
−

=     (2.1) 

where y is the normalized fluorescence intensity, Fi represents the fluorescence intensity 

before bleaching, F0 is the intensity of the photobleached region at t = 0, and Ft is the 

intensity of the bleached region as a function of time.  We also assume that the 

fluorescently labeled component is initially uniformly distributed within an infinite two 

dimensional plane and that the observable consists of only one component diffusing 

within the plane.78  Applying first order kinetics allows us to fit the FRAP curve to a 

single exponential rise to maximum equation as follows: 

 )ktea(y −−= 1                                            (2.2) 

 where a represents the mobile fraction of the component and k is a constant. To 

calculate the time at half recovery (t1/2), we assume a = 1, then t1/2 = ln2/k since the 

process follows first order kinetics.  The diffusion constant (D) is calculated using the 

following equation73, 78, 87: 

 D
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In this equation, w represent the full-width-at-half-max of the Gaussian laser beam and 

γD is a correction factor for the amount of induced photobleaching.   

 It should be noted that the FRAP experiment depends on the control of various 

parameters.  The laser beam is typically Gaussian and circular, however, variants of this 

technique may employ an elliptical beam.58  The laser power and bleach time must 

remain constant in order to insure consistent results.  It is important that for fast 

diffusing molecules with a D > 10-8 cm2/s, the bleach time must be much less than t1/2.  

Other factors that affect the diffusion measurements by FRAP include temperature and 

photobleaching of the sample during data acquisition.  This may be controlled by 

adjusting the image acquisition time intervals during the time-laps imaging.  

 The fluorescence recovery after photobleaching (FRAP) curves used for this 

study were obtained by exposing the sample to laser irradiation from a 2.5 W mixed gas 

Ar+/Kr+ laser (Stabilite 2018, Spectra Physics).  Planar bilayer samples were irradiated at 

568.2 nm with 100 mW of power for times not exceeding 1 sec.  A 17.0 μm full-width at 

half-max bleach spot was made by focusing the light onto the bilayer through the 10x 

objective. The FRAP experiments were performed using an inverted epifluorescence 

Nikon Eclipse TE2000-U microscope and the bilayers observed with a 10x objective.  

Images were obtained using a MicroMax 1024b CCD camera (Princeton Instruments) 

and data analysis was performed with MetaMorph software (Universal Imaging).  The 

fluorescence microscopy system employed for FRAP measurements is shown in figure 

2.5. 
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Figure 2.5.  The inverted fluorescence microscope system used for acquiring 

fluorescence recovery after photobleaching measurements of diffusion constants of solid 

supported phospholipid membranes. 
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Figure 2.6.  The fluorescence recovery after photobleaching curve for a 

phosphatidylcholine bilayer with 0.1 mole% Texas Red DHPE as a fluorescent probe.  A 

typical value for phospholipid two-dimensional diffusion constant of 4.3±0.2 x 10-8 

cm2/s was obtained.  The mobile fraction or percent recovery of the fluorescently labeled 

probe is 97%. 

 

 

Time (sec)
0 20 40 60 80 100 120 140 160 180

R
ec

ov
er

y

0.0

0.2

0.4

0.6

0.8

1.0

D = 4.3±0.2 x10-8 cm2/s

Time (sec)
0 20 40 60 80 100 120 140 160 180

R
ec

ov
er

y

0.0

0.2

0.4

0.6

0.8

1.0

D = 4.3±0.2 x10-8 cm2/s



 34

 A typical fluorescence recovery after photobleaching experiment for a supported 

phospholipid membrane is shown in figure 2.6.  The bilayer consists of 

phosphatidylcholine lipids with 0.1 mole% Texas Red DHPE.  The lipid bilayer is 

bleached with an Ar+/Kr+ laser at 568.2 nm at a power of 100mW for 1 second.  The 

fluorescence recovery is monitored by time-laps imaging.  The resulting FRAP curve 

gave a diffusion constant of 4.3±0.2 x 10-8 cm2/s.  The mobile fraction or percent 

recovery of the labeled fluorophores was 97%.  

 The FRAP experiments employed in this study are used to determine the function 

of the supported phospholipid membranes.  By monitoring the changes in diffusion 

constants and mobile fractions, we are able to determine if perturbations to the supported 

membrane had an overall effect on its function and characteristics. 

 

2.5. Ligand-Receptor Binding Using Microfluidic Technology 

 Ligand-receptor26, 88 binding can be investigated using solid supported 

phospholipid membranes formed inside microfluidic devices.17, 28  The SLBs are formed 

via vesicle fusion and may incorporate surface bound receptors that consist of 

functionalized lipids.  One such example is biotin-capped phosphatidylethanolamine 

(biotin-PE).  The surface density of the receptor can be varied inside each microchannel.  

The system is interrogated by flowing over a fluorescently labeled ligand, such as 

streptavidin.88, 89  The levels of binding are quantified using an epi- or total internal 

reflection (TIRF) fluorescence microscope.90, 91  A binding curve is generated from the 

resulting image.  The process is shown in figure 2.7. 
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Figure 2.7.  Schematic drawing of a microfluidic device used to perform one-shot 

binding assays (top, left-hand side).  (Middle) A total internal reflection microscopy 

image of the channels in a working microfluidic device. Each channel has a different 

concentration of fluorescently tagged protein flowing through it.  (Right) A schematic 

representation of a bilayer coated on the surface of the microchannel and the binding of a 

protein to a ligand presented on it.  (Below) The binding curve obtained from the data in 

the image above it. 
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2.6. Vibrational Sum Frequency Spectroscopy VSFS 

The use of a surface selective spectroscopic technique is crucial in order to 

elucidate molecular level information of interacting species at an interface.  Applications 

involving linear spectroscopic methods are limited due to their inability to discriminate 

between molecules at the surface from those in the bulk.  Since its advent in the 1980s, 

VSFS has made it possible to obtain vibrational spectra specific to the interface.79 

 The theory of VSFS has been described in the literature.92-94  VSFS is a second 

order nonlinear optical technique that combines a variable infrared laser beam and a 

visible laser beam which overlap at a surface or interface.  The selection rules that 

govern such processes only allow for molecules present at the surface, (or media that 

lack inversion symmetry) to produce a polarization at the sum frequency, Ρ(2)(ωVIS + 

ωIR) which is the SF signal that is detected.  The SF signal is resonantly enhanced as the 

input IR frequency corresponds to the vibrational modes of the molecular moieties that 

are properly aligned at the surface; therefore, vibrational spectra of molecules, at an 

interface or surface under investigation can be obtained.  The SF intensity (ISFG) is 

proportional to the square of the surface nonlinear susceptibility )2(χ and within 

the )2(χ term there exists a resonant )2(
Rχ , and a non-resonant  )2(

NRχ contribution, which is 

expressed as follows:  

 IRVISn RNRSFGSFG III
n

2)2()2()2( 2

∑+∝Ρ∝ χχ  (2.4) 

where IVIS and IIR are the intensities of the incident visible and tunable IR beams.  The 

individual resonance )2(
nRχ are proportional to: 
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where nΑ is the oscillator strength or intensity, nω , nΓ are the resonant frequency and 

damping constant of the nth vibrational mode and IRω is the input IR frequency.  The 

exponential term nie ϕ , describes the relative phase of the nth vibrational mode and it 

accounts for interferences between modes that overlap in energy.  The oscillator strength 

An, contains the product of both the IR and Raman transition moments, therefore an SF 

active mode must obey both the IR and Raman selection rules.94, 95   

 The following expression explains that only molecules that obey both IR and 

Raman selection rules may contribute to the SF signal.  This SF selection rule is given 

by: 
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in which the Aq term is proportional to the product of the infrared and Raman transition 

dipole moments and where μn and αlm are the dipole moment and polarizability, and Q is 

the normal coordinate.  In other words, the signal arises from the ordering of dipoles at 

the interface, where centrosymetry is broken. 

The scanning SFG spectrometer utilized in this study contains four main 

components and is illustrated in figure 2.8.59, 62, 96-99  The source is an Nd:YAG (PY61c, 

Continuum, Santa Clara, CA) laser, operating at 20 Hz repetition rate and with a peak 

width of 21 ps,  generating a 1064 nm beam. Second, an optical parametric 

generation/optical parametric amplification (OPG/OPA; LaserVision, Bellevue, WA
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Figure 2.8. The schematic of a scanning vibrational sum frequency spectrometer.  The 

sample stage contains a Langmuir trough which is used to investigate the molecules at 

the air/water interface.  
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stage serves to generate the tunable IR beam between 2700 – 4000 cm-1 and a visible 

bean at 532 nm, after which the tunable IR and 532 nm beams are temporally and 

spatially aligned in the sample stage, the SF signal is detected with a photo-multiplier 

tube (PMT).  The signal is processed through a gated integrator and a PC operating a 

program written in Lab-View software is used to display the spectra and operate the 

spectrometer.  The polarization combination was ssp, referring to the SF, visible and IR 

beams respectively. 

 The acquired SFG spectra can give us information about the aligned chemical 

species at the interface.  Of particular importance is the alignment of interfacial water 

molecules.95, 99  The alignment of water molecules is highly dependent on the type of 

interface.  If we consider a solid/aqueous interface, such as SiO2 or quartz interface, the 

surface electrostatics will impart differences in the alignment of interfacial water 

molecules, since SiO2 is a dielectric material.  The pH of the aqueous medium, which 

affects the surface pH and electrostatics, will also play a mayor role in interfacial water 

alignment.  An example SF spectrum of a quartz/aqueous interface is shown in figure 

2.9a.  The SF spectrum reveals two important OH spectral features.  A peak at 3200 cm-1 

is attributed to tetrahedrally coordinated water molecules.  These are well ordered at the 

surface and are strongly affected by the surface potential.  Another peak at 3450 cm-1 is 

attributed to water molecules with less ordered hydrogen bonding.99  Figure 2.9b is a 

cartoon representation of the interfacial water structure.  Water molecules closest to the 

interface are tetrahedrally aligned, followed by water molecules that are less ordered and  
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Figure 2.9.  The SF spectra of a quartz/aqueous interface at pH 8.0 (A). A cartoon 

representation of the interfacial water structure (B). 
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Figure 2.10.  An SFG spectrum of a DMPC monolayer at the aqueous/air interface. 
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have fewer hydrogen bonds as illustrated in figure 2.9b. 

 The alignment of molecules at the aqueous/air interface can also be 

interrogated.80  Using a Langmuir trough, we can obtain SF spectra of a lipid monolayer.  

Figure 2.10 shows an SFG spectra of dimyristoyl phosphatidylcholine (DMPC) at an 

water/air interface.  The two main spectral features, a peak at ~2875cm-1 and ~2940cm-1, 

are from the CH3 symmetric stretch and CH3 asymmetric vibration respectively.98 

 

2.7. Atomic Force Microscopy 

Since its invention in 1986 by Binnig81 et. al., scanning probe microscopy (SPM) 

has become one of the more prevalent surface analytical techniques to gain 

morphological information of a sample at the sub-micrometer and nanometer level.  

Herein we will focus on Atomic Force Microscopy (AFM), which detects surface 

topography and roughness, as shown in figure 2.11.100  AFM has the potential to obtain 

high resolution images (~1nm2 to 250 μm2), without adversely affecting the structure of 

sensitive bio-molecules such as proteins, since the imaging can be obtained under 

environmental or physiological conditions.47, 101  

A typical AFM consists of four main components, a probe, piezoelectric scanner, 

photodiode detector and a controller to provide a feedback loop mechanism for the 

instrument.102  The probes utilized for AFM consist of either a silicon nitride (Si3N4) 

pyramidal tip (for contact mode) or etched silicon (for tapping mode) which is attached 

to a flexible cantilever.20  The resolution of this technique depends on the sharpness of
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Figure 2.11. The schematics of an atomic force microscope.  The insert shows an 

electron micrograph of a silicon nitride cantilever and tip. 
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the tip, which range from 5-20 nm in diameter.  In contact mode AFM data are obtained 

by scanning the tip under constant height (z-constant) or force (F-constant).  Tapping 

mode AFM consists of scanning the tip attached to an oscillating cantilever across the 

sample surface.  The cantilever is oscillated at or near its resonant frequency, which 

ranges from 100-500 kHz in air and 5-10 kHz in fluid, with an amplitude ranging from 

20–100 nm from the surface.20  Since the tip-sample interaction is constant, higher 

lateral resolution is achieved with lower forces and less damage to the sample.  The 

piezo scanner allows for the precise movement of the sample in x, y and z coordinates 

when a voltage is applied to the piezoelectric material.  The PZT scanner consists of a 

lead zirconate titanate piezo electric ceramic.20, 103  The photodiode detector, located in 

the scan-head, is divided into four sections or quadrants (A, B, C, and D).  The signal is 

detected for each quadrant as well as a sum signal (A+B+C+D).  The signal arises from 

a diode laser beam that is reflected off of the cantilever.  As the probe samples the 

surface features, the cantilever is deflected, which in turn causes a deflection of the laser.  

The change in deflection of the laser is detected by the photodiode, while at the same 

time the controller provides the feedback loop in order to adjust the z position of the 

piezo scanner such that the vertical deflection voltage, defined as (A+B)-(C+D), of the 

photodiode is (A+B) = (C+D) or in other words, the laser is at the center of the 

photodiode quadrants. 

The imaging of biological samples is best done under fluid conditions employing 

tapping mode.47  This is due to in part by the forces experienced by the tip during the 

imaging process.  The main forces experienced are coulombic and attractive van der
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Figure 2.12.  The atomic force micrograph of an anealled borosilicate microscope slide 

(A) and (B) of a supported phosphatidylcholine bilayer. 
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Waals forces between the tip and the sample surface.  Surface tension, electrostatic and 

fluid damping or capillary forces also have an affect on the tip-surface interactions.100, 104  

This is especially evident in soft samples, such as biologicals materials.   

 In order to circumvent these problems, the AFM imaging is best performed under 

water for biological specimens, and the tapping mode provides less tip-sample 

interactions that can lead to denaturation of biomolecules or other artificial effects. 

Figure 2.12a shows a typical liquid tapping mode AFM for an annealed borosilicate 

microscope slide.  Borosilicate microscope slides serve as the support for the 

phospholipid membranes employed in this study.  It is important to verify the surface 

roughness of the substrate, and AFM is an excellent tool to ascertain such morphological 

information.  The RMS of this sample is 0.100 nm for 1μm x 1μm area.  Figure 2.12b is 

a liquid tapping mode AFM image of a supported phophatidylcholine bilayer.  A line 

scan through a defect within the lipid membrane shows a height of ~5.0 nm, which is in 

good agreement with published results for the thickness of a supported lipid 

membrane.47, 105  In general, the image shows a uniform lipid bilayer and further 

confirms the existence of a phospholipid membrane on top of a borosilicate microscope 

slide.        
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CHAPTER III 

 

FLUID AND AIR-STABLE LIPOPOLYMER MEMBRANES FOR BIOSENSOR 

APPLICATIONS 

 

 

3.1. Synopsis 

 The behavior of polyethylene glycol (PEG) conjugated lipids was investigated in 

planar supported egg phosphatidylcholine bilayers as a function of lipopolymer density, 

chain length of the PEG moiety, and type of alkyl chains on the PEG lipid.  Fluorescence 

recovery after photobleaching measurements verified that dye-labeled lipids in the 

membrane as well as the lipopolymer itself maintained a substantial degree of fluidity 

under most conditions that were investigated.  PEG densities exceeding the onset of the 

mushroom-to-brush phase transition were found to confer air-stability to the supported 

membrane.  On the other hand, substantial damage or complete delamination of the lipid 

bilayer was observed at lower polymer densities.  The presence of PEG in the membrane 

did not substantially hinder the binding of streptavidin to biotinylated lipids present in 

the bilayer.  Furthermore, above the onset of the transition into the brush phase, the 

protein binding properties of these membranes were found to be very resilient upon 

removal of the system from water, rigorous drying, and rehydration.  These results 

indicate that supported phospholipid bilayers containing lipopolymers show promise as 

rugged sensor platforms for ligand-receptor binding. 
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3.2. Introduction 

 Supported phospholipid bilayers22, 45, 83, 106 could potentially serve as highly 

selective sensor devices for a variety of biological analytes.1, 22, 44, 77  Phospholipid 

membranes are attractive because of their two-dimensional fluidity29, 61, 107, 108, which 

allows the individual molecular constituents to rearrange laterally just as they would on 

the surface of a cell membrane.28, 66, 109-111  Moreover, supported bilayers are quite 

resistant to non-specific protein adsorption and biofouling.66  Unfortunately, such 

platforms have not been widely exploited for practical biosensors.  One problem stems 

from their instability upon exposure to air, which causes the fluid lipid membrane to 

reorganize and/or delaminate from the surface.29, 37, 64, 66, 68, 70, 71, 112  Since the lipids are 

only held to the substrate by van der waals forces46, the thin film can curl up and peal 

away from the aqueous/solid interface as air is introduced.63  Moreover, any bilayer 

segments remaining behind at the solid/air interface probably reorganize to have their 

hydrophobic alkyl chains face toward the air as shown in figure 3.1a.   

 In an effort to overcome these limitations we recently designed a supported 

membrane containing a close packed protein layer linked to its outer surface63 as 

illustrated in figure 3.1b.  This modification increased the bending elastic modulus44, 113 

of the bilayer and thereby substantially raised the barrier to delamination.  Also, the 

presence of the hydrophilic protein layer inhibited lipid reorientation after air exposure.  

When the system was pulled through the air/water interface, the bilayer remained intact 

on the surface and a thin water film could be visibly seen above the patterned bilayer  
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Figure 3.1. Initial strategy to preserve a solid supported lipid membrane.  (A) The 

stability of a phospholipid membrane exposed to air.  (B) Protection of the lipid bilayer 

with a protein coating.  (C) The protein coating leaves no room to undergo facile ligand-

receptor binding, therefore limiting the systems biosensing capabilities. 
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regions.  Furthermore, the supported membrane was not destroyed even when dried 

under a stream of flowing nitrogen.  In fact, it remained two-dimensionally fluid in the 

presence of humid air as well as when it was reintroduced to bulk water.  Unfortunately, 

such a system is unsuitable for sensor design because the tightly packed proteins leave 

no room for the binding of additional analyte species from aqueous solution when 

binding ligands are incorporated into the membrane (Figure 3.1c).  It would therefore be 

desirable to design a protective coating for the supported bilayer that would afford air 

stability while still allowing target analytes to bind to ligands presented in the 

membrane.   

 In order to achieve this goal, we73 have incorporated poly(ethylene glycol) 

phosphatidylethanolamine (PEG-PE) lipopolymers114 into supported lipid membranes115, 

116 (Figure 3.2).   Poly(ethylene glycol)117 is an inert, water soluble polymer which has 

been employed in various areas of surface science as well as biochemical/biomedical 

research.  The size and degree of polymerization of PEG molecules can be easily 

tailored, and the polymer can be attached to other moieties via a linker.117  An example 

of this is the derivatization of phosphatidylethanolamine (PE) lipids via attachment to 

the free amine on the head group.  Such PEG-conjugated lipids are commercially 

available.  Utilizing PEG-PE provides a controlled means of varying the polymer density 

on a lipid membrane surface by varying the mole fraction of the lipopolymer used to 

make phospholipid vesicles.13, 118   

 The physical-chemical114 properties of PEG-PE and PEG lipopolymers including 

oligomer length (np) and surface density have been well characterized for lipid
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Figure 3.2. The fusion of PEG-lipopolymer vesicles to a borosilicate substrate forms a 

stable supported lipopolymer membrane. 
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Figure 3.3. Illustration of the mushroom to brush transition of PEG-conjugated lipids at 

the surface of a phospholipid vesicle as the packing density is increased.  The letter D 

represents the lipopolymer spacing and the circle around the two PEGs shows the Flory 

radius.  When the distance is sufficiently small, the molecules switch from the globular 

to the elongated brush conformation and protrude further from the membrane surface.  

This height is designated by the letter L.119 
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vesicles.120  A unique feature of PEG is its conformation, which is dependent on its mole 

fraction in the lipid bilayer.  This is shown in figure 3.3.  At low surface density, PEG 

exists as a globular conformation, which is referred to as the "mushroom" state.  As the 

density increases, the polymer undergoes a transition from the globular to a brush like 

conformation.121  This process is usually called the mushroom-to-brush transition.  It is a 

broad phase transition and depends on the concentration and the chain length of the 

PEG.117, 121, 122  

  The behavior in the mushroom state can be modeled by Flory-Huggins theory, 

which describes the characteristic folded radius (RF) of a random coil as a function of 

monomer size and chain length.118  The transition to the more elongated brush phase 

commences when the spacing between PEG-conjugated lipids is less than 2RF.  By 

applying the polymer scaling laws, we can determine the Flory121 radius for a given 

PEG-lipopolymer using the following expression: 

 5
3

pmf naR =                                           (3.1) 

Where am is the monomer size of an ethylene glycol unit which equals 0.39 nm, and np is 

referred to the degree of polymerization.  The Flory radius for a PEG polymer in 

solution was found to be similar within experimental error to the radius of a PEG 

lipopolymer within a lipid membrane at low density, i.e. in the mushroom conformation.  

This suggests that the polymer scaling laws can be applied to the PEG polymers attached 

to a phospholipid membrane.  With this information, we can estimate the mushroom-to-

brush transition for a PEG lipopolymer of a given size.118, 123  This is given by the 

following equation: 
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Where χp
m→b is defined as the mole fraction of the onset of the mushroom-to-brush 

transition, np is the degree of polymerization and Al is the membrane surface area per 

lipid molecule.124  The surface area will depend on the phase transition of the individual 

lipids.  For a lipid in the fluid phase, Al ranges from ~0.60 – 0.70 nm2, and for a lipid in 

the gel phase, Al decreases and ranges from ~0.40 – 0.48 nm2 due to the close hexagonal 

packing of the lipids.  The approximate length (Lbrush)125 of the polymer in the brush 

conformation can be calculated by: 
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brush =                                (3.3) 

Where am is the monomer size (0.39 nm) and D is the interpolymer distance or spacing, 

which is related to the polymer density within the film.  As the density increases, the 

length of the polymer brush increases due to the entropic and repulsive interactions 

between the PEG moieties.126, 127  

 The mole fraction χp of the onset of the mushroom-to-brush transition for PEG 

polymers of various sizes are calculated in table 3.1.  This illustrates the tendency of χp 

to decrease with increasing polymer molecular weight or size.  The Flory radius is also 

shown in this table and according to equation 3.1, the RF increases with increasing 

polymer size. 
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Table 3.1.  Application of the Polymer Scaling Laws to PEG Lipopolymers. 

 

 

 

 

 

 

 

 

* The Al = 0.65 nm of phosphocholine lipids in the fluid phase 
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  One use of PEG conjugated-lipids has been in an effort to stabilize lipid vesicles 

for drug delivery.128, 129  It was found that introducing the lipopolymer reduces vesicle 

aggregation and promotes vesicle-vesicle fusion.130  On the other hand, PEG molecules 

have been more generally employed at interfaces as a coating to resist non-specific 

protein adsorption.131  There are several theories to explain the ability of PEG-coated 

surfaces to resist biofouling.  These include the effects of steric repulsion132, tightly 

bound layers of hydration waters133, and the conformation of the PEG chains.  In most of 

the cases studied, the PEG molecules were covalently anchored to the underlying surface 

through a linker group.  For example, a thiol115, 116 has been used to attach PEG to Au or 

Ag surfaces, while a silane was employed when using glass or quartz.  The method of 

grafting PEG to a surface is believed to play a key role in the repulsion of 

biomacromolecules.134-136   

In our systems, PEG is linked to a two-dimensionally fluid phospholipid bilayer, 

rather than grafted to a fixed location.  Thus, the polymer chains should have more 

flexibility to accommodate the introduction of protein molecules from aqueous solution. 

This is a key point, as we have demonstrated that the density of the lipopolymer can be 

titrated, according to the scaling laws, in order to render the lipid film air stable while 

allowing for facile ligand-receptor interaction.  In other words, proteins may indeed be 

able to diffuse through the PEG film and specifically bind with ligands that are presented 

in the membrane.      

The choice of pegylated bilayers for stable biosensor design is inspired by the 

cell glycocalix74, which is a thick carbohydrate film consisting of oligosaccharides, 
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polysaccharide chains, and adsorbed proteoglycans that can rise tens of nanometers 

above the plasma membrane.75  There is some evidence in the literature that these sugar 

layers play a role in stabilizing the cell membrane in the dry state.137-139  On the other 

hand, when cells are fully hydrated, the carbohydrate films are presumably flexible 

enough to allow external proteins to diffuse through them and bind to the underlying 

membrane constituents.140  It has been proposed that a PEG coating can serve as a 

simple mimic of a glycocalix on a supported phospholipid membrane141, since such a 

system is lacking in the literature.  

 Herein we demonstrate that the surface density and chain length of PEG-PE are 

critical parameters in affording air-stability.  Specifically, the lipopolymer protects the 

membrane in the more tightly packed brush conformation while delamination and 

damage occur in the mushroom state.   Furthermore, PEG coatings allow proteins such 

as streptavidin to bind with biotinylated lipids (biotin-PE) within the membrane under all 

surface densities tested.  The results indicate that the binding behavior is not greatly 

affected by the presence of the lipopolymer coating and that a biotinylated membrane 

above the onset of the mushroom to brush transition is able to bind streptavidin after it 

has been removed from bulk solution, rigorously dried, and reintroduced to water. 

 

3.3. Experimental 

Materials. Chemicals described herein are used without further purification 

unless indicated. The lipid 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-

[methoxy(polyethylene glycol)] (PEG-DPPE), 1,2-disearoyl-sn-glycero-3-
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phosphoethanolamine-N-[methoxy(polyethylene glycol)] (PEG-DSPE) and 1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol] (PEG-DOPE) 

were purchased from Avanti Polar Lipids (Alabaster, AL) with PEG molecular weights 

of 550 and 2000 Da.  1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) 

(sodium salt) (biotin cap-PE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[amino(polyethylene glycol)2000] (ammonium salt) (NH2-PEG2000 DSPE) and L-α-

phosphatidylcholine from egg (egg PC) were also purchased from Avanti Polar Lipids.  

N-(Texas Red sulfonyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (Texas 

Red DHPE), Alexa Fluor-488 labeled streptavidin, and Alexa Fluor-594  succinimidyl 

ester were obtained from Molecular Probes (Eugene, OR).  Purified water, which was 

acquired from a NANOpure Ultrapure Water System (Barnstead, Dubuque, IA), had a 

minimum resistivity of 18.2 MΩ·cm.  This water was used in the preparation of all 

buffer solutions. Phosphate buffer saline (PBS) was prepared using 10.0 mM sodium 

phosphate with the addition of 150 mM NaCl (Sigma-Aldrich).  The pH was adjusted to 

7.4 by the addition of NaOH (EM Science).  Poly(dimethylsiloxane) (PDMS) was used 

to fabricate PDMS wells and microfluidic devices.  The polymer and crosslinker were 

purchased from Dow Corning (Sylgard Silicone Elastomer-184, Krayden Inc.).  Glass 

microscope slides were purchased from VWR International and were cleaned and 

annealed according to established procedures.  

Preparation of Pegylated Unilamellar Vesicles and Bilayer Formation.   

Small unilamellar vesicles106 were prepared from egg PC, PEG-PE lipopolymer, and 0.5 

mol% Texas Red DHPE, which was incorporated as a fluorescence probe.  The desired 
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mole fraction of PEG550-DOPE or PEG2000-DOPE was mixed with egg PC and dye-

conjugated lipid in chloroform.  The solvent was then evaporated under a stream of 

nitrogen followed by desiccation under vacuum for 4 hours.  Rehydration of the lipids 

was performed in PBS solution at pH 7.4.  After 10 freeze-thaw cycles the large vesicles 

were extruded through a polycarbonate filter, which had an average pore size of 50 nm.  

Small unilamellar vesicles prepared by this method were 70 ± 10 nm in diameter as 

determined by dynamic light scattering using a 90Plus Particle Size Analyzer from 

Brookhaven Instruments Corporation. 

    All PEG-PE containing vesicles were delivered to the surface of planar glass 

microscope slides in a PDMS/glass microfluidic device format using previously 

described techniques.76, 77, 86  After a 30 minute incubation period, the microchannels and 

microwells were thoroughly rinsed with the appropriate buffer or purified water.  The 

samples were placed under an inverted epifluorescence Nikon Eclipse TE2000-U 

microscope and observed with a 10x objective.  Images were obtained using a 

MicroMax 1024b CCD camera (Princeton Instruments) and data analysis was performed 

with MetaMorph software (Universal Imaging). 

PEG-labeling.  Dye labeling of NH2-PEG2000 DSPE was accomplished by first 

preparing small unilamellar vesicles of egg PC with various quantities of this molecule 

(0.5 to 5 mol%).  The labeling reaction was carried out by incubating the SUVs with 

Alexa Fluor-594 succinimidyl ester for 2 hours at room temperature.  The succinimidyl 

ester reacted with the primary amine to form a covalent linkage between the amine PEG 

chain and the fluorescent dye.  Any unreacted dye was separated from the labeled 
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vesicles via size exclusion chromatography.  It should be noted that this procedure will 

label about half the amines present in the vesicles. 

Fluorescence Recovery after Photobleaching (FRAP).  FRAP78 curves, which 

have been previously utilized to assay the lateral fluidity of polymer tethered142 bilayer 

systems, were obtained herein by exposing the sample to laser irradiation from a 2.5 W 

mixed gas Ar+/Kr+ laser (Stabilite 2018, Spectra Physics).  Planar bilayer samples were 

irradiated at 568.2 nm with 100 mW of power for times not exceeding 1 sec.  A 17.7 μm 

full-width at half-max bleach spot was made by focusing the light onto the bilayer 

through the 10x objective.  The recovery of the photobleached spot was monitored by 

time-lapse imaging.  The fluorescence intensity of the bleached spot was then 

determined as a function of time after background subtraction and intensity 

normalization.  All fluorescence recovery curves were fit to a single exponential to 

obtain both the mobile fraction of dye-labeled lipids and the half-time of recover, t1/2, 

following standard procedures.29  

Drying Procedures for Bilayers.  Before drying, the pegylated bilayers were 

thoroughly rinsed with purified water in order to remove salt from the buffer solutions.  

The excess water and the PDMS stamp were removed and the supported membrane was 

dried under a stream of nitrogen.  Subsequently, the bilayers were imaged in order to 

access damage caused by drying.  The bilayers were stored for time periods up to 24 

hours in a dust-free container before rehydration.  Rehydration was performed with 

either purified water or PBS buffer at pH 7.4.  A FRAP curve was obtained to ascertain 

whether the lipid bilayers regained lateral mobility. 
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Ligand-receptor Binding.  Biotin-streptavidin binding was employed as a 

model of ligand-receptor interactions in the presence of the lipopolymer.  Vesicles were 

prepared by adding 1 mol% biotin-cap-PE to a given lipid mixture.  Binding was assayed 

by flowing 0.20 mg/ml Alexa Fluor-488 streptavidin over a biotinylated membrane and 

incubating the protein solution for 30 minutes followed by copious rinsing with PBS 

buffer at pH 7.4.  The bilayers were imaged under a 10x objective and the fluorescence 

intensity of the bound streptavidin was determined after background subtraction and 

image normalization.  

 

3.4. Results and Discussion 

Vesicle Fusion with PEG-PE. Supported phospholipid bilayers containing 

various concentrations of PEG-PE in egg PC with 0.5 mol% Texas Red DHPE were 

characterized in a first set of experiments.  The bilayers contained lipopolymer with 

either 12 (PEG550-DOPE) or 45 (PEG2000-DOPE) ethylene oxide repeat units.  All 

supported bilayers appeared to be uniform down to the diffraction limit under 

fluorescence microscopy using a 100x objective.  FRAP data were obtained for each 

system and an example with 5 mol% PEG550-DOPE is shown in Figure 3.4a.  In this case 

the mobile fraction of Texas Red DHPE was 98 ± 1% and the τ1/2 value was 23 sec.  As 

discussed in Chapter II, the diffusion constant, D, can be obtained from the τ1/2 value by 

employing the following equation: 

 Dt
wD γ

2
1

2

4
=                                           (3.4) 
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Figure 3.4. FRAP curves of PEG bilayers on planar borosilicate substrates.  (a) The 

recovery curve for a membrane containing 5 mol% PEG550-DOPE in egg PC with 0.5 

mol% Texas Red DHPE. (b) The same conditions as (a), but with 5 mol% PEG2000-PE.  

The mobile fraction of the dye moiety in the bilayers is 96 ± 1% in both cases.      
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w is the full width at half max of the Gaussian profile of the focused beam and γD is a 

correction factor that depends on the bleach time and the geometry of the laser beam.78  

For the data in Figure 3.4a the value of the diffusion constant, D = 3.7 ± 0.2 x 10-8 

cm2/sec, was obtained by using w = 17.7 μm and γD = 1.1.  In the case of 5 mol% 

PEG2000-DOPE (Figure 3.4b), the diffusion constant was 4.0 ± 0.2 x 10-8 cm2/sec with 98 

± 1% recovery.  Both values were identical within experimental error to data obtained 

with pure egg PC bilayers (D = 4.0 ± 0.2 x 10-8 cm2/sec with 98 ± 1% recovery).   

The effect of the lipopolymer density on the diffusion constant of the Texas Red 

labeled lipids is shown in Figure 3.5.  As can be seen, there is little if any dependence of 

the measured value of this constant on the PEG550-DOPE density.  Moreover, the mobile 

fraction of the probe remained at ~98% for all concentrations employed.  Analogous 

experiments were performed with PEG2000-DOPE (Figure 3.5).  In contrast to the case 

with PEG550, the results for the highest lipopolymer densities did show a slowing of the 

diffusion constant.  However, this only occurred at lipopolymer concentrations of at least 

10 mol%.  By contrast, the onset of the mushroom to brush phase transition occurs at 1.4 

mol% for a PEG2000-PE in a lipid membrane.  Therefore, the initial drop in the diffusion 

constant occurred well into the brush transition.  Additional FRAP experiments were 

performed with egg PC membranes containing various concentrations of PEG2000-DPPE, 

PEG2000-DSPE, and PEG550-DPPE.  The results showed that the absence of double bonds 

and the lengthening of the alkyl chains had no noticeable effect on either the diffusion 

constants or mobile fractions measured within experimental error. 
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Figure 3.5. Texas Red DHPE diffusion constants in egg-PC bilayers with various 

concentrations of PEG550-PE bilayers (black dots) and PEG2000-PE bilayers (red dots). 
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Figure 3.6. The diffusion constant of Alexa-594 Labeled PEG2000 DSPE in egg-PC 

bilayers as a function of the lipopolymer density. 
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In order to further characterize membrane fluidity, we investigated the diffusion 

of the PEG lipopolymer itself within the egg PC bilayer.  This was accomplished by 

employing amine terminated PEG2000-DSPE (NH2-PEG2000-DSPE) that was labeled with 

Alexa Fluor-594.  Supported lipid bilayers were formed on glass in the same fashion 

described above.  Diffusion constants for the dye labeled PEG2000-DSPE were obtained 

as a function of its density in the egg PC membranes and the values obtained are plotted 

in Figure 3.6.  At PEG densities below the onset of the mushroom-to-brush transition 

(1.4 mol% for a PEG2000), uniform diffusion constants were observed that closely 

matched those of the dye labeled lipids.  At 1.5 mol% lipopolymer, however, a slight 

decrease in D to 3.0 ± 0.2 x 10-8 cm2/s was seen.  This corresponds almost exactly to the 

onset of the mushroom-to-brush transition.  The mobile fraction of the Alexa Fluor 594 

labeled PEG2000 DSPE decreased to 60% ± 5% at this PEG density.  At higher PEG 

concentrations, the decrease in the diffusion constant continued.  Such behavior is 

expected as the polymer molecules have increasing interactions with their neighbors as 

they are brought into ever closer proximity.142 

 Air-stability of Pegylated Supported Bilayers. In the next set of experiments 

we wished to determine the ligand densities and oligomer repeat lengths of PEG that 

would confer air-stability to the supported bilayers.  A typical example of bilayer 

delamination in the absence of PEG-PE is shown on the left side of Figure 3.7.  Much of 

the lipid material is transferred to the aqueous solution as the water phase retreats.  This 

was verified by fluorescence analysis of the remaining solution.  Additional 
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Figure 3.7. Fluorescence micrographs of planar supported phospholipid bilayers 

containing various concentrations of PEG-PE.  The bilayers were imaged after removal 

from bulk aqueous solution and rigorous drying by blowing dry nitrogen over the 

sample.  
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Table 3.2. The diffusion constants and percent recovery of Egg-PC supported 

membranes before and after dehydration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

95 ± 13.4 ± 0.298 ± 14.0 ± 0.25% PEG2000-
PE/egg-PC

93 ± 43.3 ± 0.298 ± 13.7 ± 0.25% PEG550-
PE/egg-PC

______98 ± 14.0 ± 0.2egg-PC

% Recovery
Dry/Rehydrated

Diffusion
Dry/Rehydrated

(x10-8 cm2/s)

% Recovery
Control

Diffusion
Control
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95 ± 13.4 ± 0.298 ± 14.0 ± 0.25% PEG2000-
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fluorescently labeled material was left on the glass surface and formed a patterned which 

reflected the direction in which the cover slip was removed from solution.  The 

introduction of either PEG550-DOPE or PEG2000-DOPE changed this situation 

remarkably.  Indeed, even at low concentrations, the lipopolymer caused most of the 

bilayer to remain at the interface.  As long as the PEG chain was in the mushroom state, 

however, significant damage to the bilayer could be clearly observed.  Taking FRAP 

images after drying in air and subsequent rehydration confirmed the idea that some areas 

retained fluidity, while others did not.  For the case of 5 mol% PEG550 in egg PC, the 

fraction of the bilayer that returned to full fluidity after rehydration was ~40 to 50%.  By 

contrast with the above results, performing experiments at lipopolymer concentrations 

above the onset of the mushroom to brush transition yielded supported membranes that 

showed excellent air-stability and lacked any obvious signs of damage or stress (Figure 

3.7).  This markedly improved air stability was imparted precisely at the onset point of 

the mushroom to brush transition, which is known to be 7 mol% for PEG550-DOPE and 

1.4 mol% for PEG2000-DOPE as stated above.  Furthermore, table 3.2 demonstrates the 

effect of the presence of the PEG-lipopolymer on the two-dimensional diffusion 

constants before and after dehydration.   

 Control experiments were performed to test whether PEG containing membranes 

in the brush phase could withstand many cycles of drying and rehydration.  This is 

shown in figure 3.8.  The results indicated that as long as the membranes were not 

rigorously blown dry, they could easily withstand multiple cycles of removal from bulk  
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Figure 3.8. Dehydration/rehydration cycles of PEG-lipopolymer membranes. 
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water.  On the other hand, membranes containing 5 mol% PEG2000-DOPE showed 

evidence for modest damage after 10 cycles of rigorous drying and rehydration.  In fact

the first indications of stress were noted after 5 drying cycles and the fluorescence 

intensity began to drop as well.  This indicates that the bilayers, while well protected by 

the PEG layer, nevertheless probably still sustain some finite damage upon each drying 

cycle.  Such damage, however, is almost impossible to note by fluorescence microscopy 

after just one cycle.   This is significant because most remote sensing applications would 

probably require fabricating a supported lipid bilayer device in one location, drying the 

platform for shipment, and rehydrating of the system at a second location for use as a 

sensor.  Thus only one drying cycle should be typically necessary. 

The Effects of Poly(ethylene glycol) on Ligand-receptor Binding. In a final 

set of experiments the ability of the pegylated membranes to bind proteins from the 

aqueous solution was determined when appropriate binding ligands were incorporated.  

To achieve this, supported membranes were prepared with biotin-cap-PE.  Next, 

fluorescently labeled streptavidin was introduced into the bulk solution at 0.2 mg/ml and 

allowed to incubate for 30 min before being rinsed away with PBS solution.  Three 

different membrane compositions were investigated: egg PC, egg PC with 5 mol% 

PEG550-DOPE, and egg PC with 5 mol% PEG2000-DOPE.  For each of these cases the 

binding of Alexa 488-streptavidin was tested in the presence and absence of 1 mol% 

biotin-cap-PE in the membrane (Figure 3.9).  As can be seen from the fluorescence 

micrograph of the microfluidic channels, the level of non-specific adsorption of 

streptavidin was quite low in all cases in the absence of biotinylated lipids.  On the other  
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Figure 3.9. The effects of PEG-PE on streptavidin binding to supported membranes 

containing biotin-cap-PE.  (A) Fluorescence micrograph of the microfluidic device 

containing various membrane chemistries.  Alexa Fluor 488 labeled streptavidin was 

flowed over the bilayer coated microchannels, incubated for 30 min, and rinsed away 

with PBS buffer before imaging.  (B)  A bar graph of the relative fluorescence intensity 

in each channel of the device.  The intensity for streptavidin binding to the channel 

containing 1 mol% biotin-cap-PE in egg PC was normalized to 1.0.    
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Figure 3.10. Bar graph of streptavidin binding in lipid bilayers containing biotin-cap-

PE.  A comparison is made between bilayers in which Alexa Fluor 488 labeled 

streptavidin is introduced over freshly prepared bilayers (blue bars) and after the bilayers 

have been dried in nitrogen, allowed to sit 24 hours in air, and rehydrated with bulk 

water (yellow bars). 
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hand, streptavidin binding was substantially greater in those membranes where biotin 

was incorporated.  Significantly, the presence of the pegylated lipids seemed to have

little influence on the extent of protein binding under these conditions.  This was the 

case for both the 5 mol% PEG550-DOPE membrane as well as the membrane containing 

5 mol% PEG2000-DOPE.  The polymer should be in the mushroom state in the former 

membrane, while it is well into the brush transition in the latter. 

The experiments described above were repeated on membranes with the same six 

lipid chemistries, but after the supported bilayers were exposed to air, dried under 

nitrogen, left in ambient air for 24 hours, and reintroduced to bulk PBS.  This time only 

the membranes containing 5 mol% PEG2000 showed the same extent of streptavidin 

binding within experimental error as the corresponding membranes that were not 

exposed to air (Figure 3.10).  The membrane that contained biotin and 5 mol% PEG550 

showed roughly 75% as much binding, while the membrane that contained only egg PC 

(either with or without biotin) showed an amount of streptavidin binding that was 

consistent with non-specific adsorption. 

 

3.5. Summary and Conclusions 

Previous investigators have shown that the incorporation of PEG into bilayers 

increases the bending elastic modulus of the membrane.143, 144  This PEG induced 

stiffening varies as a function of grafting density and chain length.145  Other reports 

indicate that the degree of hydration (nh) of PEG molecules increases significantly when 
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PEG is in the brush conformation.123, 146  A PEG550-PE molecule is associated with ~36 

water molecules in the mushroom state, whereas a PEG2000-PE can bind ~138 water 

molecules under similar conditions.  In the brush conformation, the degree of hydration 

increases by ~30% for both molecules.  On the other hand, phosphatidylcholine in a lipid 

bilayer has only ~2.5 – 6 water molecules per lipid head group.  The incorporation of 

PEG increases the degree of hydration of the membrane even when the larger footprint 

size of the PEG vs. a regular phosphatidylcholine headgroup is taken into account.118  

This, of course, occurs because the PEG thickens the hydrophilic layer.  It is almost 

certainly this increase in the hydration layer thickness in combination with the increase 

in the bending elastic modulus which imparts stability upon air exposure.  Such effects 

are reminiscent of the behavior of amorphous sugar glasses that can trap water at the 

surface of cell membranes as well as rigidify them.147  

It should be noted that polyethylene glycol moieties are commonly employed at 

interfaces to resist non-specific protein adsorption.148  In the present work, however, 

these molecules had little if any effect on the extent of streptavidin binding to the lipid 

membranes (Figures 3.9 & 3.10).  The key difference is that the PEG chains employed 

here were linked to a two-dimensionally fluid phospholipid bilayer, rather than grafted to 

a fixed location on the surface.149  Thus, the polymer chains are more flexible and able to 

reorganize to accommodate incoming protein molecules at least up to the size of 

streptavidin (66 kD).  On the other hand, the PEG film might alter the kinetics and 

thermodynamics of biotin-streptavidin binding.150  In particular, it is possible that the kon 

and koff values could be somewhat suppressed in the presence of the lipopolymer film.  
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Furthermore, the size of the protein species may play a significant role in whether these 

physical constants are altered.  In fact, it has been previously shown that particles of very 

large size, such as streptavidin immobilized on 2.8 μm polystyrene beads, do not readily 

bind to biotin moieties presented on pegylated bilayers in a rolling type assay.  

In summary, pegylated phospholipid bilayers on planar solid supports can be 

employed as air-stable platforms for binding proteins.  The lipopolymer layer remained 

flexible enough to accommodate protein binding, while dye labeled lipid molecules were 

generally unaffected by the presence of PEG-PE up to moderate densities.  It would 

therefore seem that polyethylene glycol can imitate a cell glycocalix in a key respect.  It 

protects the lipid bilayer from substantial damage upon exposure to air.  It may also be 

the case that such films can act as size selective filters.  Thus they might allow binding 

of smaller proteins, while preventing the binding of larger complexes.  On going studies 

in our laboratory will now determine whether such size restrictions in these model 

systems can be correlated with the in vivo behavior of the cell glycocalix. 
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CHAPTER IV 

 

A POLY(ETHYLENE GLYCOL) SIZE-SELECTIVE FILTER FOR LIGAND-

RECEPTOR BINDING ON SOLID SUPPORTED LIPID MEMBRANES 

 

4.1. Synopsis 

 A technique for size selective, on-chip discrimination of proteins analytes was 

developed using poly(ethylene glycol) (PEG) lipopolymers incorporated into supported 

lipid membranes.  By employing various PEG lipopolymer in supported lipid 

membranes at mole fractions corresponding to the onset of the mushroom-to-brush 

transition, we observed a protein size-dependent effect on the levels of binding of three 

protein analytes: streptavidin, IgG and biotinylated IgM, to membrane-bound biotin-PE 

receptors.  When the PEG lipopolymer is well into the brush conformation, complete 

exclusion occurs for the larger proteins (IgG and IgM), while streptavidin is still able to 

penetrate through the PEG layer and bind to the surface-bound ligands.  This method 

integrates microfluidics with nanoscale size size-exclusion films for separation of 

protein mixtures even if all species recognize the identical ligand.      

 

4.2. Introduction      

The ability to selectively discriminate between analytes, while performing 

multiple tasks ‘on-chip’, is a highly desirable property for the next generation of 

biosensors that will be used to study such things as multivalent ligand-receptor binding, 
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viral infections of cells, and as monitors of toxins in our environment.  To meet the 

requirements of such surface-based bioanalytical applications, these new devices must 

be capable of selective detection of analytes while minimizing nonspecific interactions 

from species that may arise from the environment or the bulk.14  Nonspecific interactions 

lead to surface fouling, which compromises the selectivity, sensitivity, and life-time of 

the device.131   

Solid supported phospholipid membranes21, 22, 33, 106 are an ideal biomimetic 

analytical platform that is receiving much attention in the area of biosensing because 

they are easily incorporated into microfluidic devices77, and more importantly, for their 

ability to mimic real cell surface properties.24, 30, 45, 151  A fundamental property of 

supported lipid bilayers (SLBs) is the two dimensional lateral fluidity of the lipids within 

the thin film.24, 29  SLBs can mimic the same lateral rearrangements that take place 

within the cell biomembrane that in turn, allows for processes such as multivalent 

ligand-receptor binding26, pathogen attack, inflammatory response, and cell152 signaling 

to take place.25, 28, 111  However, current SLB devices suffer from several drawbacks that 

hinder their use as robust platforms for the above mentioned applications.  These 

drawbacks include fragility of the thin membranes46, lack of air stability63, fouling by 

nonspecific adsorption54, and the inability to discriminate between different-sized 

analytes that can block target ligands in the membrane.27    

The goal of our current work is to incorporate other aspects of the native 

biomembrane architecture that might aid in the prevention of biofouling and aggregation 

as well as discriminate between different proteins that can bind to the same ligands.  In 
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particular we mimic the cell surface glycocalyx74 structure using poly(ethylene glycol) 

PEG incorporated lipopolymers.1, 39  This polymer coating is inspired by the elaborate 

chemistries found on bacterial and eukaryotic cell surfaces.  The cell surface glycocalyx 

consists of glycosylated proteins, glycolipids, proteoglycans that can extend tens of 

nanometers above the plasma membrane.  It affords membrane stability, plays a role in 

cell signaling, cell-cell interactions, and may possibly function as a macromolecular 

filter.140  PEG has been proposed as a mimic141 of the cell surface glycocalyx in artificial 

bilayer systems, and its incorporation within supported membranes has allowed for the 

air-stabilization of SLBs while providing a porous architecture for facile ligand-receptor 

interactions.73  Since the size, density, and structural conformation of the PEG 

lipopolymer can be tailored within lipid membranes, the accessibility of a variety of 

ligands, i.e. proteins, antibodies and toxins, to surface bound receptors can be controlled.   

 The interactions of various proteins with grafted PEG polymers have been well 

studied for an assortment of PEG sizes and polymer conformations.132  Both 

theoretical122 and in vitro studies have shown a conformation-dependent ability of PEG 

to avoid nonspecific protein adsorption and affect ligand-receptor binding using a variety 

of techniques, including surface force measurements153, 154, micropipette techniques118, 

surface plasmon resonance131 (SPR), fluorescence microscopy155, among other surface 

analytical methods136.  At low surface density, the polymer chains avoid each other and 

consequently assume discrete mushroom-like conformations on the surface, allowing 

proteins to interact with the uncovered surface.117  At high PEG densities, the polymer 

chains are forced to interact with each other, forming a brush-like structure that creates a 
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higher steric repulsion from the surface for the proteins that encounter the polymer 

brush.122, 156  The net effect of steric repulsion, van der waals attraction, and hydrophobic 

interactions are dependent on the degree of polymerization (np) and grafting density of 

the PEG, which in turn also affects the length and thickness of the polymer network.127  

These tunable parameters also affect how easily a protein or analyte can pass through the 

polymer meshwork.120       

Here we present results for PEG lipopolymers incorporated into supported 

membranes that perform ‘on-chip’ filtering of protein analytes of various sizes.  An 

important aspect of our system is that the PEG lipopolymer experiences similar two-

dimensional lateral diffusion73, 142 to that of the fluid lipid film and does not adversely 

affect either the lipid or ligand mobility in the membrane.  Another unique aspect of 

PEG is the ability to control polymer grafting density, and thus conformation.  

Therefore, we can tailor the repulsive interactions that proteins of various sizes will 

encounter for a given PEG coating.  By combining microfluidic technology with 

fluorescence detection, we demonstrate selective, ‘on-chip’ screening of three proteins: 

streptavidin, IgG, and the much larger protein, IgM, to surface-bound biotin lipids. 

 

4.3. Experimental 

 Vesicle Preparation. Small unilamellar vesicles (SUVs) were prepared 

according to an established procedure42 by mixing appropriate amounts of 1-Palmityol-

2-Oleyol-sn-Glycero-3-Phophocholine (POPC) lipids and 1,2-Dioleyol-sn-Glycero-3-

Phosphoethanolamine-N-[Methoxy(polyethylene glycol)] lipids of molecular weights: 
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350, 550, 750, 1000, 2000, 3000, and 5000 Da with 1 mole % 1,2-Dipalmityol-sn-

Glycero-3-Phosphoethanolamine-N-(Biotinyl) (sodium salt) Biotin-PE lipids (Avanti 

Polar Lipids, Alabaster, AL).  In the first set of experiments, the mole fraction of each 

PEG-lipopolymer (with degree of polymerization ,np = 8, 12, 17, 22, 45, 67, and 114 

respectively) was adjusted to the onset of the mushroom-to-brush transition (χm→b), 

where the polymer grafting distance (D) is less than 2RF according to scaling theory118.  

For the second set of experiments, vesicles were made containing PEG2000 or PEG5000 in 

the brush conformation, approximately 3 times χm→b (see table 4.1).  The sizes of SUVs 

were determined to be 100 ± 5 nm by dynamic light scattering (90 Plus Particle Sizer, 

Brookhaven, CA).   

 Microfluidic Device and Microwell Preparation. PDMS microfluidic devices 

and microwells were fabricated according to established procedures of Yang45 and 

Albertorio73 et al using Polydimethylsiloxane acquired from Dow Corning (Sylgard, 

silicone elastomer-184).  The devices were bonded to clean and anealled borosilicate 

glass coverslips.  Bilayers were formed inside microchannels and microwells via vesicle 

fusion.36  Finally, the excess unfused vesicles were rinsed out with phosphate buffer 

saline solution (PBS: 10 mM Na2HPO4
-, 5mM NaH2PO4

2-, 150 mM NaCl) at pH 7.4.   

 Protein Labeling. Texas Red-conjugated Streptavidin, Alexa-fluor-488 labeled 

streptavidin, unlabeled streptavidin and Alexa-fluor-594 succinimidyl ester were 

purchased from Molecular Probes (Eugene, OR).  Anti-biotin IgG and biotinylated IgM 

were acquired from Rockland Immunochemicals (Gilbertsville, PA) and were
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Table 4.1. Properties of PEG Lipopolymers. 
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* The flory radius (RF) and χm→b were calculated according to Marsh118  
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Table 4.2. Protein Molecular Weights and Sizes.   

36175.5Size (nm)

90015052.8Molecular 
Weight (kD)

IgMIgGStreptavidinProtein

36175.5Size (nm)

90015052.8Molecular 
Weight (kD)

IgMIgGStreptavidinProtein

 

* The size and molecular weight for these proteins were acquired from Needham114 et.al. 

and Roberts157 et.al.  
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conjugated to Alexa-fluor-594 succinimidyl ester and purified by size exclusion 

chromatography.  All protein solutions were 1 µM in PBS buffer, pH 7.4.  Properties 

such as molecular weight and size for each protein89, 120, 157 are summarized in table 4.2.  

 Fluorescence Microscopy. Ligand-receptor binding experiments were carried 

out either inside microfluidic devices or in microwells and the protein binding was 

detected via fluorescence microscopy using an inverted epifluorescence Nikon Eclipse 

TE 2000-U microscope with a Sensys CCD (Photomatrics, Roper Scientific).  1 mole% 

biotin-PE was employed as the membrane bounded receptor for all experiments.  After 

bilayers were formed and rinsed with PBS buffer, the surfaces were incubated with a 

1mg/ml solution of fibrinogen (Sigma-Aldrich) for 30 minutes in order to reduce the 

nonspecific background binding.  Afterwards, the fibrinogen was rinsed out with PBS 

buffer and the protein analyte solution (either streptavidin, IgG or IgM) was injected and 

incubated for 1 hour followed by copious rinsing with PBS buffer.  Fluorescence 

imaging was carried out under either 4X or 10X magnification.  The levels of protein 

binding and background correction are analyzed using Meta-Morph software (Universal 

Imaging) and always normalized to the control bilayer (POPC + 1mole% Biotin-PE).  

 

4.4. Results and Discussion 

 The aim of the first set of experiments was to measure the effect of PEG size on 

ligand-receptor binding.  Specifically, we tested the ability of three proteins, spanning a 

range of several orders of magnitude in molecular weight (table 4.2), to penetrate 

through the various PEG lipopolymers and bind to membrane-bound biotin ligands.  The 
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mole fraction of the PEG lipopolymers was held at the onset of the mushroom-to-brush 

transition in order to ensure maximum packing of the polymer, thus allowing for a 

sufficiently porous network for proteins to diffuse through.  The results are shown in 

figure 4.1, where the fluorescence intensity is normalized to the control bilayer (POPC + 

1 mole% biotin-PE) and plotted against the molecular weight of the PEG lipopolymers.

  In the case of streptavidin, we observed that the protein is indeed able to diffuse 

through the polymer network and bind to the surface-bound biotin molecules at all PEG 

molecular weights within experimental error.  Overall, the lipopolymer is unable to 

sterically hinder streptavidin from penetrating the PEG layer, even though we expect the 

packing of the PEG moieties at the mushroom-to-brush transition to coat nearly the 

entire membrane surface.  For the antibiotin IgG, the levels of binding progressively 

drop with increasing PEG size and seem to plateau at ~75%.  Even for the largest PEG 

lipopolymer, PEG5000, some IgG is able to pass through the polymer layer and bind to 

the surface biotins.   

A similar binding effect was observed for the biotinylated IgM, however, here 

the experiment was carried out in a slightly different way using a biotinylated IgM since 

antibiotin IgM was not readily available.  In this case, the bilayers are first exposed to 

unlabeled streptavidin for one hour to ensure complete binding to the biotinylated 

membrane, as our results above indicate.  Streptavidin, having four biotin-binding 

pockets (two on each side), is able to penetrate the PEG layer, bind, and irrespective of 

orientation, present at least two available binding sites for the biotinylated IgM to attach 

to.  The biotinylated IgM solution was injected into the microfluidic channels, allowed to  
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Figure 4.1. The effect of PEG size on protein binding.  Peg-lipopolymer incorporated 

bilayers are prepared at the onset of the mushroom-to-brush transition.  The level of 

binding of each protein: streptavidin (blue), IgG (red), and biotinylated IgM (green) to 1 

mole% biotin-PE surface bound receptor is normalized to the control channel (POPC+1 

mole% biotin-PE).  The dashed lines are guides for the eye.  
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incubate for one hour followed by rinsing with PBS buffer and then subsequently 

imaged.  The levels of binding are again normalized to the control, 1 mole % biotin in 

POPC.  Interestingly there is an almost immediate drop in binding at an intermediate 

PEG size (PEG750) which plateaus to a level of ~50%.       

 A similar filtering effect was observed for avidin-biotin binding in giant 

unilamellar vesicles (GUVs) in the presence of PEG750.114  However, in that case the 

binding was only allowed to proceed for 2 minutes, raising the question as to whether 

the system reached thermodynamic equilibrium.  The affinity binding constant of 

streptavidin-biotin has a (Ka~ 1015 mole-1)150  and it is typical to wait about 1 hour28, 89 

during binding experiments before quantifying results; therefore, in our experiments, we 

incubated our chips with each protein solution for one hour to ensure thermodynamic 

equilibrium and complete binding.   

 Figure 4.1 shows that there is definitely a protein-size effect when it encounters 

the polymer in the mushroom-to-brush state, indicating that, up to a certain degree, the 

proteins are able to diffuse through the porous network and encounter the surface bound 

receptors.  This data corroborates findings of several studies reported in the literature.  

First, similar size-exclusion effects have been modeled, typically for higher grafting 

densities, in which mean field theory was employed to estimate the change in binding 

affinity of a protein as a function of lipopolymer density and size.129, 149  A similar effect 

was also modeled for proteins of various sizes as they encountered a particular 

lipopolymer brush.120, 158, 159  Furthermore, the repulsion interactions of PEG were 

demonstrated experimentally by the surface force apparatus.160  
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 In the second set of experiments, we aimed to achieve complete filtering of the 

proteins by titrating the polymer density to the brush conformation, where the 

interpolymer distance is less than the flory radius (D < RF), which causes more 

interaction between polymer chains as well as chain elongation.  The brush configuration 

increases the steric repulsions that proteins will encounter at the polymer/aqueous 

interface.  We chose to work with PEG2000 and PEG5000 at mole% of 5 and 1.5 

respectively, which is ~3 times greater than the corresponding mole % for the onset of 

the mushroom-to-brush (χm→b) transition (table 4.1).  The data are summarized in figure 

4.2.  The streptavidin case, in blue, shows statistically no affect on binding due to the 

polymer brush, compared to both the control and mushroom-brush case at PEG 

molecular weights 2000 and 5000 Da.  IgG binding, shown in red, already dropped to 

~75% at 1.5 mole% PEG2000 (χm→b for PEG2000).  By increasing the mole% of PEG2000 to 

5% (brush state), the level of binding drops to ~20%, thus the lipopolymer brush filters 

out ~80% of the incoming IgG.  The size exclusion effect is more pronounced for the 

larger PEG5000 in the brush state, at 1.5 mole% PEG5000, where nearly 100% of the 

incoming IgG are filtered out.  Figure 4.3 illustrates how the polymer brush might hinder 

the binding of IgG to surface-bound receptors. 

 A similar trend is observed for the largest protein, IgM, shown in green.  At 1.5 

mole% PEG2000, the level of binding is ~50%, thus filtering out half of the biotinylated 

IgM.  At 5 mole%, the same polymer decreased binding to ~10%, blocking ~90% of the 

protein from reaching the surface ligands.  The effect is similar for the largest PEG5000 

lipopolymer, in which the polymer mushroom only excludes ~50% of the IgM, while at
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Figure 4.2. Protein filtering induced by the presence of a polymer brush at the surface.  

The levels of binding of streptavidin (blue), IgG (red) and biotinylated IgM (green) are 

compared for PEG2000 and PEG5000 at a mole fraction of the onset of their respective 

mushroom-to-brush transition and at 3 times higher, in the brush conformation. 
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Figure 4.3. The ‘on-chip’ filtering of IgG using PEG2000 incorporated supported bilayers.  

Bilayers are formed inside a microfluidic device (left side).  The levels of IgG binding 

are compared and normalized to the control channel (uppermost channel).  The protein is 

able to penetrate the polymer layer at low polymer densities corresponding to the 

mushroom conformation (middle channel), while at high densities, or brush 

conformation, (lowest channel) the protein is filtered.  The process is schematically 

represented in the right side.  

 

 

PEG - Brush

PEG - Mushroom
No PEG

1.5% PEG2000

5% PEG2000

Microfluidic Device

PEG - Brush

PEG - Mushroom
No PEG

1.5% PEG2000

5% PEG2000

PEG - Brush

PEG - Mushroom
No PEG

1.5% PEG2000

5% PEG2000

Microfluidic Device



 91

1.5 mole% the brush completely filters out the incoming protein.  In this particular case 

there could be another plausible explanation for the reduction in binding of biotinylated 

IgM, instead of a size-exclusion effect.  It is possible that the streptavidin bound to the 

biotinylated membrane may not be properly oriented for subsequent binding of 

biotinylated IgM.  However, our data indicate that the polymer brush does not affect the 

levels of streptavidin binding (Figure 4.2) compared to the control and mushroom-to-

brush regime, as it might if the protein was not able to align properly to the surface 

because of the presence of the dense lipopolymer layer.  Furthermore, the data in figure 

4.1 show a similar trend for the drop in binding of biotinylated IgM compared to the 

antibiotin IgG.  Since the size of an IgM (~36 nm) is roughly twice as large as an IgG 

(~17 nm), one would expect a decrease in the level of binding by half to be reasonable 

and this coincides with the data presented in figure 4.2.       

 These data illustrate that the mushroom state of PEG lipopolymers does not 

afford sufficient steric repulsion to block or filter proteins from the surface even at 

maximal coverage at the onset of the mushroom-to-brush transition.  On the other hand, 

the polymer brush provides sufficient repulsion that results from a balance of steric 

effects, van der waals attraction, and hydrophobic interactions that leads to either almost 

or complete filtering of the protein analytes.  However, these effects are mitigated for a 

sufficiently small-sized proteins, as demonstrated by the streptavidin data.  These types 

of size exclusion effects have been modeled using mean field118, 122 and scaling theory127, 

153, 160 for protein adsorption132 and ligand-receptor binding161, as mentioned above, and 

we provide additional supporting evidence to these theories.      
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 A major advantage of combining size-selective filtering with microfluidic 

transport on ‘lab-on-a-chip’ devices is that it could possibly lead to assays that use 

complex mixtures of analytes, such as crude cell extracts for proteomics applications, 

and even whole blood serum samples for medical diagnostics, without having to purify 

the serum or extracts first.  There are microfluidic devices that are capable of carrying 

out cell cytometry on chip to analyze cellular chemical contents.162  Such a device 

consists of a complex series of channels and valves, usually a cell manipulation channel, 

reagent introduction channel, a reaction chamber, and a separation channel. Capillary 

electrophoresis separates discrete cellular components, which can then be identified and 

analyzed, or possibly sent to another area of the chip for subsequent experiments, 

perhaps for ligand-receptor binding studies.162  The new type of on-chip screening 

device presented here is different from the latter in that it is not necessary to have a 

complex series of channels and a discrete separation chamber within the chip but rather 

separation can occur simultaneously within the binding channel.  We demonstrate a 

simplified version of such an experiment in figure 4.4, where we used a mixture of 

streptavidin and antibiotin IgG to prove that we can screen for proteins with an affinity 

towards the same receptor.  Figure 4.4 shows a microfluidic device in which the first two 

channels (from left-to-right) contain control bilayers (POPC + 1 mole% biotin-PE) and 

the third channel contains 1.5 mole% PEG5000 + 1 mole% biotin-PE.  Alexa-488 labeled 

streptavidin and Alexa-594 labeled IgG were respectively introduced into the first two 

channels (control bilayers), while a 1:1 mixture of the two proteins was introduced into
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Figure 4.4. The size selective filtering of protein mixtures inside a microfluidic device.  

Shown on the left is a microfluidic device in which the first two channels (from left-to-

right) contain POPC + 1 mole% biotin-PE.  The third channel contains 1.5 mole% 

PEG5000 + 1 mole% biotin-PE.  Fluorescence micrographs were acquired and overlaid 

after the bilayers were exposed to Alexa-488-streptavidin (green) and Alexa-594-IgG 

(red).  Shown on the right is the line scan of the fluorescence intensity (A.U.) for each 

channel.  In channel 3, in which the protein mixture was introduced, the binding of 

streptavidin (green line) is similar to that of the control channel while the level of 

binding for IgG (red line) is depressed.    
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Figure 4.5. SLB biofouling induced by the growth of mold.  Left: An unprotected POPC 

supported bilayer exposed to mold spores in a Petri dish (right-most image) initially 

appeared normal, but after 12 days, mold and/or bacteria seemed to infiltrate the bilayer.  

After 19 days, the growth was quite substantial and whole quadrants became destroyed.  

Middle: A POPC bilayer protected by 5 mol% PEG-conjugated lipids.  This bilayer 

showed complete growth inhibition even after 19 days. Note: the dark lines were 

scratches purposely made in the bilayer to determine the background fluorescence level 

and identify different chip regions. 
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the third channel.  According to the data presented in figure 4.2, we should observe a 

complete filtering of the IgG in the presence of the polymer brush.  After collecting 

fluorescence images in both the green channel (streptavidin-Alexa-488) and the red 

channel (IgG-Alexa-594), and subsequent overlay of the images, we indeed observe that 

in the third microfluidic channel a selective filtering can be achieved for the protein 

mixture as indicated by the line scan shown on the right side of figure 4.4.   

 Finally, we have tested the ability of PEGylated bilayers to resist bacterial and 

mold growth.   Resistance to such contamination is especially important for bilayer 

devices that will be used continuously in water or humid environments where the 

possibility of biofouling by mold, algae, and bacteria is quite high.  The results are 

shown in figure 4.5.  Supported POPC lipid bilayers, with 0.1 mole% Texas Red DHPE 

as a fluorescence probe, containing either 5 mole% PEG2000 or 1.5 mole% PEG5000 were 

formed inside PDMS microwells.  The membranes were subsequently imaged under 

10X magnification and left in a humid environment for a period of 2 weeks.  We 

observed that bilayers without lipopolymer constituents did not resist the growth of mold 

after two weeks, while bilayers that contained a dense coating of lipopolymers were 

found to be very resistant to mold growth (figure 4.5).   

 

4.5. Summary and Conclusions  

 Size selective filtering using poly(ethylene glycol) lipopolymer incorporated into 

supported lipid membranes allows further enhancement of rapid, on chip screening of 

protein analytes.  By controlling the size and density of the PEG polymer we are able to 
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provide an ‘on chip’ method for the discrimination of complex mixtures of protein 

analytes; that in turn will lead to better devices for a variety of applications that exhibit a 

superior resistance towards biofouling.  Furthermore, we show that sensing devices that 

aim to mimic the cellular membrane should incorporate more of the complex 

architecture of a native membrane to improve its overall performance (selectivity) and 

lifetime by reducing fouling caused by large contaminants.  
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CHAPTER V 

 

ON THE MECHANISM OF CRYPROTECTION: THE INTERACTIONS OF TWO 

ANALOG SUGARS TREHALOSE AND MALTOSE WITH 

PHOSPHATIDYLCHOLINE SUPPORTED LIPID MEMBRANES 

 

 

5.1. Synopsis 

 A study of biopreservation using solid supported phospholipid membranes as a 

model system is presented.  A cryoprotection mechanism for two analog sugars, 

trehalose and maltose is proposed.  Herein, we present the effects of trehalose and 

maltose on the main phase transition temperature of DMPC supported phospholipid 

bilayers by employing temperature controlled fluorescence recovery after 

photobleaching.  Trehalose is observed to lower the main phase transition temperature 

Tm, while maltose increases it.  We observe the occurrence of buckling of the thin film 

which seems to coincide with the ripple phase in the gel state of the supported DMPC 

bilayer and a suppression of such phase by the addition of trehalose.  Trehalose is 

observed to maintain lipid phase segregation and avoid lipid mixing, while maltose does 

not.  The interaction of each sugar at the air/water and monolayer/aqueous interface was 

probed with vibrational sum frequency spectroscopy (VSFS).  Finally, the effectiveness 

of cryoprotection for each sugar is presented.  We observe that trehalose is the most 

effective preservation agent compared to maltose and poly(ethylene glycol) PEG-
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lipopolymer incorporated bilayers.  Our findings suggest that because of  the ‘clam shell’ 

type structure of trehalose, due to its C1α-C1α linkage, it is more effective at penetrating 

further into the lipid membrane, thus replacing interfacial water via H-bonding within 

the headgroups, and henceforth, reducing lipid packing and van der waals interactions of 

the acyl chains.   

 

5.2. Introduction 

 Achieving long-term stability of ‘biologicals’ is an important goal of the 

pharmaceutical and food industry, and medical research.163, 164  For example, the 

preservation of proteins165, cells, tissues, and vaccines is usually done under cryogenic or 

freeze-dried conditions in the presence of additives.166  However, in most instances, only 

short-term preservation is accomplished.  An understanding of biopreservation at the 

molecular level would provide a means in which to create better synthetic mimics that 

work as well as natural preservants.  Biopreservation involves the ability of an organism 

to protect itself from an external stress in order maintain physiological function.137, 167  

Such external stress may be caused by an anhydrobiotic168 (dry) or a cryogenic169 

environment where the biomembrane is most vulnerable to damage.  Many organisms 

may employ specialized proteins or synthesize a large amount of di- and tri-saccharides, 

which upon synthesis, are relocated to the extracellular side of the biomembrane.170     

Among these, are small non-reducing sugars such as trehalose171, and other sugars such 

as sucrose172, glucose and larger fructans173 that function as lipopreservatives.  Even 

though in vivo and in vitro174 experimentation have yielded some information about the 
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molecular species involved in preservation, a molecular level mechanism as to why 

some lipopreservatives work better than others is still unclear.  

Trehalose, a non-reducing disaccharide has proven to be the most effective lipo-

preservative within anhydro- or cryobiotic conditions.175  Simple model systems, such as 

liposomes176, 177, have been employed to study the interactions of trehalose and other 

sugars with the lipid membrane.178  These studies generally consist of determining the 

extent of liposome fusion and leakage upon dehydration/rehydration or during freeze 

fracture.179, 180  The morphological effects are also observed by assaying for lipid phase 

segregation176, 181 since irreversible phase segregation of lipids and membrane 

constituents is an inherent consequence during these events.182, 183  Results indicate that 

trehalose is the best at preventing lipid phase segregation181, liposome fusion and 

leakage.179, 180  Formation of an amorphous sugar glass, direct interaction of trehalose 

with the lipid molecules and the physiochemical aspects of water-sugar interaction are 

observations that have lead towards two main proposed hypotheses.  The first 

hypothesis, ‘water replacement’184, proposes that the direct interaction of trehalose with 

the lipid head groups via hydrogen bonding replaces water molecules at the 

lipid/aqueous interface.185, 186  This water replacement model suggests that the direct 

interaction of trehalose with the lipids is responsible for preservation of the 

membrane.187  Fourier transform infrared spectroscopy (FTIR) results indicate a change 

in the H-bonding environment of the phosphoryl group in the presence of trehalose.188  

Neutron diffraction experiments indicate that trehalose has a high affinity towards 

disrupting tetrahedrally coordinated water molecules known as ‘ice-like’ water.189, 190  A 



 100

second hypothesis, ‘vitrification’191, suggests that there is a formation of an amorphous 

sugar glass at the lipid/aqueous interface where the osmotic and volumetric properties of 

the sugar lowers the phase transition temperature (Tm) of the lipid molecules within the 

membrane.192, 193  Most observations are obtained by differential scanning calorimetry 

(DSC) of dried liposomes.181  An increase in the phase transition temperature occurs 

when liposomes are desiccated due to the decreased headgroup spacing of the lipids, 

which in turn allows for stronger van der waals interactions of the lipid acyl chains.  

However this increase in Tm is suppressed in the presence of not only trehalose, but to 

various degrees, other sugars.192, 193  This leads to the question of why there is a natural 

preference towards trehalose than other sugars, and even more interesting is the 

comparison with its analog sugar, maltose, which is a reducing sugar. 

Our focus has been to investigate the cryobiotic preservation mechanism by 

directly comparing trehalose and maltose utilizing a solid supported lipid membrane 

system.  Solid supported lipid bilayers1, 21, 22, 29 have proven to be an ideal system in 

which to mimic the biomembrane.77, 84  Properties such as the lateral fluidity of the 

individual lipid molecules and membrane constituents are preserved in these membrane 

mimics.24, 29, 40, 46, 61, 194  Lateral fluidity is essential to membrane function, as it facilitates 

a variety of processes such as ligand-receptor binding26, 28, 90, cell signaling195 and 

trafficking, and exocytosis among others.  An advantage of the SLB format is that we 

can study the function of the membrane in terms of the lateral fluidity of the lipids and 

how this is affected, for example, by a cryogenic stress.  Under low temperature 

conditions, the lateral diffusion of lipids is suppressed.  This is primarily due to that most 
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of the lipids are undergoing their liquid-to-gel main phase transition and other pre-phase 

transitions.105, 196, 197  In the gel state, a decrease in headgroup spacing leads to an 

increase in van der waals interactions of the acyl chains, thus ordering the hydrophobic 

tails.80, 198  This may also have an effect on the morphology and lipid phase segregation 

of the membrane due in part to the formation of ice at the membrane interface.  

Therefore, we hypothesize that a lipoprotectant should have an effect on the lipid phase 

transitions, and that therefore a direct interaction with the lipid moiety is needed.   

Herein, we employ lipid bilayers supported on a borosilicate substrate of either 

POPC or DMPC in combination with fluorescence microscopy to compare the effects of 

the analog sugars, trehalose and maltose, on the DMPC main phase transition 

temperature (Tm).  We used fluorescence recovery after photobleaching58, 78 (FRAP) to 

study the phase transition temperature change by measuring the diffusion constant of the 

lipid bilayer as a function of temperature.  We observed that trehalose suppressed the 

liquid-to-gel transition temperature of DMPC while maltose appeared to slightly 

increase it.  We also observed cracking and buckling of the supported lipid bilayer a few 

degrees lower than the main transition which coincides with the ripple phase transition.  

As a consequence, an effect of the presence of the sugars is observed.  The 

morphological effect of cryogenic temperature, by exposing POPC lipid bilayers to -80 

oC, was also probed.  A difference in the ability of each lipopreservative in membrane 

protection is reported.   

Vibrational sum frequency spectroscopy79, 80, 95 VSFS was used to study the 

chemical nature of the interaction of each sugar at the air/water and monolayer/aqueous 
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interfaces.98  Finally, we compared the ability of each sugar to avoid lipid phase 

segregation at low temperatures utilizing a Langmuir monolayer system.  This study 

reveals differences in how trehalose and maltose interact with a supported lipid 

membrane. 

 

5.3. Experimental 

Materials. 1-Palmitoyl-2-Oleoyl-sn-Glycero-3-Phosphocholine (POPC), 1,2-

Dimyristoyl-sn-Glycero-3-Phosphocholine (DMPC) and 1,2-dioleoyl-sn-glycero-3-

phosphoethanolamine-N-[methoxy(polyethylene glycol] (PEG-DOPE) with a PEG 

molecular weight of 350, 550 and 2000 Da were purchased from Avanti Polar Lipids 

(Alabaster, AL). N-(Texas Red sulfonyl)-1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (Texas Red DHPE) were obtained from Molecular Probes 

(Eugene, OR).  Purified water acquired from a NANOpure Ultrapure Water System 

(Barnstead, Dubuque, IA), had a minimum resistivity of 18.2 MΩ·cm, and was used in 

the preparation of all buffer solutions.  Phosphate buffer saline (PBS) was prepared 

using 10.0 mM sodium phosphate with the addition of 150 mM NaCl (Sigma-Aldrich).  

The pH was adjusted to 7.4 by the addition of NaOH (EM Science).  Solutions of D(+)-

trehalose (99.5%, Fluka Biochemika, CH) and D(+)-maltose monohydrate (90%, Acros 

Organics, NJ) were prepared in deionized water at 20% or 2.0% w/w.  The chemical 

structure of trehalose and maltose are illustrated in figure 5.1.  Poly(dimethylsiloxane) 

(PDMS) was used to fabricate PDMS wells devices.  The polymer and crosslinker were 

purchased from Dow Corning (Sylgard Silicone Elastomer-184, Krayden Inc.).  Glass
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Figure 5.1. The chemical structure of trehalose (A) and maltose (B). 
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microscope slides were purchased from VWR International and were cleaned and 

annealed according to established procedures.45  

Preparation of Small Unilamellar Vesicles and Bilayer Formation. Small 

unilamellar vesicles42 were prepared from either POPC or DMPC and 0.1 mol% Texas 

Red DHPE, which was incorporated as a fluorescence probe.  PEG lipopolymer 

incorporated vesicles were prepared as previously described.73  Briefly, the solvent was 

then evaporated under a stream of nitrogen followed by desiccation under vacuum for 4 

hours.  Rehydration of the lipids was performed in PBS solution at pH 7.4.  After 10 

freeze-thaw cycles the large vesicles were extruded through a polycarbonate filter, which 

had an average pore size of 50 nm.  Small unilamellar vesicles prepared by this method 

were 80 ± 10 nm in diameter as determined by dynamic light scattering using a 90Plus 

Particle Size Analyzer from Brookhaven Instruments Corporation. 

    Vesicles were delivered to the surface of planar glass microscope slides in a 

PDMS/glass microwell device.  After a 10 minute incubation period, the microwells 

were thoroughly rinsed with the appropriate buffer or purified water.  The samples were 

placed under an inverted epifluorescence Nikon Eclipse TE2000-U microscope and 

observed with a 10x objective.  Images were obtained using a MicroMax 1024b CCD 

camera (Princeton Instruments) and data analysis was performed with MetaMorph 

software (Universal Imaging). 

Fluorescence Recovery after Photobleaching (FRAP). FRAP curves were 

obtained by exposing the sample to laser irradiation from a 2.5 W mixed gas Ar+/Kr+ 

laser (Stabilite 2018, Spectra Physics).  Planar bilayer samples were irradiated at 568.2 
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nm with 100 mW of power for times not exceeding 1 sec.  A 17.0 μm full-width at half-

max bleach spot was made by focusing the light onto the bilayer through the 10x 

objective.  The recovery of the photobleached spot was monitored by time-lapse 

imaging.  The fluorescence intensity of the bleached spot was then determined as a 

function of time after background subtraction and intensity normalization.  All 

fluorescence recovery curves were fit to a single exponential to obtain both the mobile 

fraction of dye-labeled lipids and the half-time of recovery, t1/2, following standard 

procedures.73, 78  The diffusion constant, D, could be obtained from the τ1/2 value by 

employing the following equation: 

 D
wD γ
τ 2/1

2

4
=                                             (5.1) 

Where w is the full-width-at-half-max of the Gaussian profile of the focused beam and 

γD is a correction factor that depends on the bleach time and the geometry of the laser 

beam.  Herein w = 17.0 μm and the value of γD is 1.2.  The diffusion constant for a 

POPC bilayer and DMPC bilayer, above its Tm was 4.0 ± 0.2 x 10-8 cm2/sec with 98 ± 

1% recovery.  

Determination of the Main Phase Transition Temperature Tm. The Tm of 

DMPC lipid bilayers supported on borosilicate was acquired using a ‘homebuilt’ 

temperature controlled system illustrated in figure 5.2a.  Briefly, this consisted of two 

square brass tubes (1/8”x1/8”, K&S Engineering, IL) spaced ~1mm apart that have been 

expoxy glued to a metal ring.  The brass tubes are fitted to rubber hoses that in turn are 

connected to a temperature controller (VWR Scientific).  The spacing between the brass
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Figure 5.2. (A) Temperature control device for fluorescence recovery after 

photobleaching experiments. (B) Langmuir trough set-up for an upright-fluorescence 

microscope. 
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tubes allows for a more precise control of the temperature by avoiding temperature drift.  

After calibration, the error in the temperature system was found to be 0.2 oC.  A PDMS 

microwell system is place on top of the brass tubes, while the temperature of the PDMS 

system is monitored by a thermocouple (Omega Engineering, CT).  FRAP measurements 

are taken as a function of temperature starting at 35 oC to 11 oC.  The diffusion constant 

is plotted as a function of temperature (oC) and the data are fit to the following equation 

in order to obtain Tm: 

 

b
TmTe

ay )(1 −−
+

=    (5.2) 

Vibration Sum Frequency Spectroscopy VSFS. VSFS relies on second order 

nonlinear optical process by which two incident lasers: a tunable infrared ωIR and fixed 

visible beam (ωvis) are both focused temporally and spatially upon an interface.  The 

resulting output is a signal generated at the sum of the incident frequencies ωSF = ωIR + 

ωVIS.  In the dipole approximation the process is forbidden for centrosymetric media.  

However, at an interface, where centrosymetry is broken, oscillators that are aligned to 

the incoming polarizations will generate a sum frequency signal.  Therefore, as the 

tunable IR beam reaches a vibrational mode for of an aligned species, its sum frequency 

signal is increased, thus generating an IR spectrum of the interface. 

Our62, 96, 98, 99 VSFS experiments are performed using an Nd:YAG laser (PY61; 

Continuum, Santa Clara, CA) operating at 20 Hz repetition rate with a peak width of 21 

ps producing an output at 1064 nm.  The 1064 nm beam is pumped through an optical 

parametric generation/amplification OPG/OPA stage (Laser Vision; Belleview, WA).  
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This produces the tunable IR (2700 cm-1 – 3700 cm-1) and the fixed visible beam a 532 

nm.  The polarization used in our experiments was SSFSVISPIR.  SF spectra were acquired 

using a Langmuir trough from 2700 cm-1 – 3700 cm-1 in which solutions of 2% w/w 

trehalose and maltose were probed at the air/water interface.  DMPC monolayers with 

2% and 20% trehalose and maltose sub phases were also investigated.  

Langmuir Monolayer Fluorescence Microscopy. Monolayers of DMPC lipids 

with 0.05 mole% Texas Red DHPE were spread on a Langmuir trough (Nima, France) 

mounted on the stage of an upright fluorescence microscope (Eclipse E800, Nikon) as 

shown in figure 5.2b.  The monolayers were spread from a 1μM lipid solution in 

chloroform at 27 oC on either a pure water subphase or a 2 % w/w trehalose or maltose 

aqueous solution.  After the solvent was allowed to evaporate, the pressure was adjusted 

to 20.0 mN/m.  The temperature was lowered and images were acquired every 1 oC 

using a 10X long working distance objective. 

Cryogenic Freezing of Lipid Bilayers. POPC and PEG-containing POPC lipid 

bilayers made inside PDMS microwells are first assayed by FRAP, followed by freezing 

at -80 oC for 24 hours.  The frozen membranes are imaged under 10X magnification to 

verify surface uniformity and morphology.  They bilayers are re-imaged after they have 

been thawed and FRAP measurements are acquired to verify the function of the lipid 

membranes.   
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5.4. Results and Discussion  

 An important property of phosphatidylcholine (PC) lipids is their temperature 

dependent ability to undergo phase transitions between various states.79, 196, 199  The main 

phase transition is the fluid-to-gel transition199, which is associated to the ordering of the 

lipid acyl chains or the transition from liquid disordered to liquid order (gel) phase.  

Other gel/gel transitions can exist below the main phase transition.199  These phase 

transitions depend on the lipid type and chemical structure, such as length of the acyl 

chains and head group.200  An intriguing phase is the ripple phase transition201, which is 

dependent on thermal hysteresis of the system and is characterized by nanometer size 

corrugations in the lipid film.202   

Different techniques have been employed to study lipid phase transitions203-205. 

Typically differential scanning calorimetry (DSC) is performed using a liposome 

preparation and the main phase transition is typically a sharp transition.  DSC and 

fluorescence anisotropy206, 207 have been the preferred methods in which to study the 

effects of trehalose and other sugars on the Tm of various lipids.  Atomic force 

microscopy has been employed to study the main phase transition of supported DMPC 

bilayers on mica.  A broadening as well as a shift of the main phase transition has been 

observed for the mica supported bilayers.103  Herein, the method of temperature 

controlled fluorescence recovery after photobleaching (FRAP) provides the advantage of 

monitoring the changes in lipid diffusion in a supported bilayer as it undergoes the main 

phase transition.  Figure 5.3 illustrates how the two-dimensional lateral diffusion of a
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Figure 5.3. DMPC main phase transition determination by temperature controlled 

fluorescence recovery after photobleaching (FRAP). 
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DMPC bilayer supported on borosilicate is affected as it undergoes the main fluid/gel 

transition.  Our data indicate that the Tm for the control DMPC bilayer (in the absence of 

salts) is 23.3 ± 0.5 oC.  The insert illustrates the effects of salts in the main phase 

transition temperature for DMPC.  We observed an increase in Tm to 26.1 oC in the 

presence of PBS buffer (10 mM sodium phosphate, 150 mM NaCl at pH 7.40). The 

effect of salts on the main transition temperature has been observed.208 However, when 

20% w/w of trehalose dissolved in deionized water is added, we noticed a shift and 

broadening of the main phase transition.  In this case, the suppression of the fluid-to-gel 

transition is accompanied by a shift in the Tm to a lower temperature of 16.5 ± 0.5 oC.  

We also observed that for the case of 20% w/w maltose, dissolved in deionized water, 

the converse effect.  The main phase transition was shifted to a slightly higher 

temperature Tm of 26.7 ± 0.8 oC.  This indicates differences in the interaction of the two 

sugars with the underlying lipid membrane.193 

 We also observed an effect on the lipid film morphology as the temperature was 

lowered below the phase transition temperature.  Cracking and corrugations of the 

control DMPC lipid films were observed to occur at ~ 18 oC.  Fluorescence micrographs 

acquired under 10X magnification are depicted in figure 5.4 for all three cases.  At 27 

oC, above the main phase transition, the lipid bilayer films appear to be uniform.  When 

the temperature is lowered passed the Tm for DMPC (23.7 oC), features that appear like 

cracks and larger corrugations are present in the control lipid film as well as in the 20% 

w/w maltose bilayers.  Although the pre-transition seems to be suppressed in supported
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Figure 5.4. Observation of cracking and corrugations within DMPC solid supported lipid 

bilayers below the main phase transition. (A) control DMPC membrane, (B) 20% w/w 

trehalose treated bilayer and (C) 20% w/w maltose treated bilayer.  Scratches were 

intentionally made with metal tweezers for focusing purposes.    

 

 

 

DMPC + 
Trehalose

27 oC 18.0 oC

Control
DMPC

DMPC + 
Maltose

A

B

C

DMPC + 
Trehalose

27 oC 18.0 oC

Control
DMPC

DMPC + 
Maltose

A

B

C



 113

lipid bilayers, this phenomena seems to coincide with a metastable ripple phase 

formation.  Ripple phases have been rarely observed in a single supported lipid bilayer.  

When they are observed, they appear as nanometer size periodic corrugations, as studied 

by AFM and EM.  Some models suggest that ripple phases are formed by periodic 

spontaneous curvature in the lipid bilayer.  It has been suggested that this originates from 

an electrostatic coupling of water molecules with the polar lipid headgroups.209  Another 

hypothesis suggests that the ripples form in order to relieve packing frustration within 

the gel state, because of the close packing of headgroups and acyl chains exceed some 

osmotic threshold.210, 211   

Our results with trehalose show that these cracking or corrugations are 

suppressed within bilayers exposed to 20% w/w solutions of this sugar.  This result, in 

addition to the broadening and shifting of the main phase transition temperature of 

DMPC supported bilayers may suggest that trehalose is changing the local H-bonding 

environment of the lipid head groups, by perhaps hydrogen bonding to the phosphoryl 

group and to some extent the carbonyl groups of the fatty acid chains.212  This has been 

shown by FTIR188 and computational modeling213-215.  Furthermore, the close interaction 

of trehalose with the polar headgroups in turn will replace water molecules at the 

lipid/aqueous interface.216  This interaction increases the headgroup spacing and thus 

minimizes the van der waals interactions of the acyl chains, which is evident by the shift 

of the Tm to a lower temperature.  A change in the local water environment at the lipid 

headgroup will induce changes in the packing density of the polar heads and acyl chains, 
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thus minimizing or eliminating the packing frustration experienced by the lipid 

membrane in the gel state.   

In the case of maltose, cracking and buckling of the lipid film was observed.  

These results hint at that the intercalation of maltose within the lipid headgroups has to 

be less than that of trehalose, since maltose appears not to be reducing the lipid packing 

in the gel phase, as demonstrated in our Tm measurements 

Phase Segregation in DMPC Monolayers. We studied the main phase 

transition of DMPC monolayers using a Langmuir trough on an inverted fluorescence 

microscope, as depicted in figure 5.2b.  We aimed to study the phase segregation that 

occurs below the liquid-to-gel transition and determine if trehalose and maltose maintain 

or suppresses phase segregation.  A good lipoprotectant should avoid lipid mixing and 

maintains phase segregation, since it is important for biomembrane structure and 

function. 

 Fluorescence micrographs using 10X magnification were acquired for DMPC 

monolayers spread at 27 oC on a water subphase (control monolayer), or either on a 2% 

w/w trehalose or 2% w/w maltose aqueous solution.  Images were taken as a function of 

temperature while the monolayer was cooled to ~10 oC.  Figure 5.5 illustrates the 

progression of the DMPC monolayer as it transitions through the liquid-to-gel phase.  At 

27 oC, in the liquid phase, all the monolayers appear to be uniform.  At 23 oC the control 

DMPC monolayer begins to exhibit phase segregation in the form of small domains, 

while the 2% trehalose and 2% maltose monolayers appear to remain uniform.  As the 

temperature is lowered, the control monolayer exhibits an increasing phase segregation
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Figure 5.5. Phase segregation in DMPC monolayers as the main phase transition is 

crossed. (A) control DMPC monolayer, (B) DMPC monolayer with 2% w/w trehalose 

subphase.  Trehalose maintains phase segregation and avoids lipid mixing. (C) DMPC 

monolayer with 2% w/w maltose subphase.  All DMPC monolayers contain 0.05 mole% 

Texas Red DHPE as a fluorescent probe. 
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while the 2% trehalose monolayer remains uniform and the 2% maltose monolayer 

begins to show small ‘domain-like’ features.  At 13 oC, well into the gel phase, the 

control monolayer shows a high surface coverage of domains.  The 2% maltose 

monolayer also exhibits a high surface density of domains, however, qualitatively they 

appear to be much smaller than those found in the control monolayer.  Interestingly, the 

2% trehalose monolayer shows no domains and is uniform even well into the gel state.   

This illustrates and supports the observations the trehalose maintains phase 

segregation and avoids lipid mixing.217  The intercalation of trehalose within the lipid 

headgroups may consequently lower the van der waals interactions among acyl chains, 

which could make it harder for lipids to reorganize or phase separate. 

 Vibrational Sum Frequency Spectroscopy. To further test our previous 

observations we have investigated the interfacial alignment of both sugar molecules by 

VSFS.  In the first set of experiments, we tested the interaction of trehalose and maltose 

at the air/water interface using solutions of 2% and 20% w/w of each compound.  The 

SF spectrum is shown in figure 5.6.  Interestingly, trehalose (at 2% and 20%) shows a 

high tendency towards the air/water interface as indicated by the alignment of (-CH) 

moieties present our SF spectra at ~2875 and 2940 cm-1.  However, in the case of 

maltose, no such spectral features are present for both 2% and 20% w/w sugar solution.  

To rule out contamination from our sample, we also tested for glucose, ethylene glycol 

and other possible trace contamination and found no such spectral features.  Indeed, the
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Figure 5.6. The SF spectra of trehalose, maltose and glucose.  Shown in (A) is the SF 

spectra of 2% w/w solutions of trehalose and maltose.  (B) is the spectra of glucose.  The 

bottom panel shows the spectra for a 20% w/w solution of trehalose (C).  The SF spectra 

indicate that trehalose preferentially partitions towards the air/water interface.  
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Figure 5.7. The SF spectra of the interaction of trehalose with a DMPC monolayer.  

Shown on the left is the SF spectra of a DMPC monolayer on a water subphase.  The 

right hand spectra is of a DMPC monolayer with 20% w/w trehalose subphase. 
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chemical assignment of these peaks and identification of the specific moieties from the 

sugar giving rise to the spectral features is not a trivial task. 

 Another key observation that hints at the preferential partitioning of trehalose 

towards the air/water interface and its interaction with the hydrophobic medium is its 

depression of the water surface tension as measured by a Wilhelmy balance (data not 

shown).  This effect was not observed for other sugars that were tested.                 

 To further probe the interfacial behavior of trehalose, we acquired SFG spectra of 

this sugar at the DMPC monolayer/aqueous interface to test if trehalose will 

preferentially partition towards the air/water interface in the presence of a lipid 

monolayer or remain in the bulk.  To this end we employed deuterated DMPC lipids 

since the (-C2H or -CD) mode is shifted towards a lower frequency and there are no 

spectral features in the range of 2800 – 3100 cm-1.  The SFG spectra are shown in figure 

5.7.  We first acquired a spectrum of hydrogenated DMPC monolayer in a water 

subphase.  There are two major spectral features.  A peak at 2875 cm-1 and 2940 cm-1, 

are indicative of the CH3 moiety of the lipid molecules.  A broad peak at 3200 cm-1 is 

due to interfacial water molecular alignment. 

 The right hand spectra of figure 5.7 is of the deuterated DMPC monolayer with a 

20% w/w trehalose subphase.   Shown is the region of 2800 – 3100 cm-1, in which the 

bare deuterated monolayer does not yield any spectral features as explained above.  

However, in the presence of trehalose, we observe (-CH) moieties at ~2950 cm-1 that 

originate from the sugar molecules.  This indicates that in the presence of a lipid 

monolayer, a fraction of the trehalose molecules try to partition closer the air interface.  
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The lower signal-to-noise in this spectrum is due to a lower density (or number) of 

molecules that are aligned at the interface compared to the bulk.  The SFG intensity 

depends on the number of interfacial aligned moieties (β), to the polarization employed 

in the measurement.         

Cryoprotection of Supported Lipid Bilayers. POPC bilayers have been 

employed to test the cryopreservation properties of both sugars.  In these experiments 

bilayers were exposed to either 20% w/w or 2% w/w solutions of both sugars.  We also 

aimed to test the following hypothesis: the freezing of interfacial water at -80 oC will 

also cause substantial membrane damage; thus if trehalose is replacing interfacial water 

molecules it will provide the best protection under these conditions.  In order to help 

answer this question, we also employed PEG-containing lipopolymer bilayers.73  The 

PEG moiety is known to bind ~3 water molecules per monomer repeat unit.218  

Therefore, by using PEG-lipopolymers of various sizes, we aim to increase the 

localization of water molecules at the lipid headgroups.  The preparation of PEG-

lipopolymer bilayers was previously demonstrated.73  We have used three different PEG-

lipopolymers, PEG350, PEG550, and PEG2000 at mole percents equal to 11%, 7% and 1.5% 

respectively, which is at the onset of the mushroom-to-brush transition.118  Diffusion 

measurements were taken before freezing.  After which the samples were frozen at -80 

oC for 24 hours.  The samples were then thawed and imaged at 10X magnification and 

diffusion measurements were acquired. 

 The results are summarized in figure 5.8.  For simplicity, we have divided the 

figure into three main groups, trehalose and maltose treated, and PEGylated bilayers.
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Figure 5.8. The cryoprotection of supported POPC membranes. (A) control POPC 

membrane, (B) trehalose treated, (C) maltose treated and (D) PEG-lipopolymer 

membranes.  Scratches were intentionally made with a tweezers for focusing purposes 

and background correction.    
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The control POPC bilayer exhibits extensive damage due to cracking and buckling of the 

two dimensional film.  However, it should be noted in areas where we acquired diffusion 

data, the diffusion constant was similar within experimental error, to the before freezing 

case (4.0±0.2 x10-8cm2/s).  The 20% w/w trehalose treated bilayer exhibited no damage 

followed by the 2% w/w trehalose bilayer which showed very minimal damage.  The 

diffusion constants of these bilayers after freezing were similar to the initial diffusion.  

Both maltose treated bilayers (20% and 2% w/w) exhibited substantial cracking and 

buckling, but their diffusion constants were similar to the control bilayers.  The PEG-

bilayers were interesting because they also exhibited damage during freezing.  Although 

their diffusion constants were similar to the control diffusion within experimental error, 

the PEG-lipopolymer was unable to afford protection to the membrane.   This may 

suggests that the increase localization of water at the lipid headgroup causes damage 

upon freezing, thus hinting at that in order to achieve cryoprotection of the lipid 

membrane, water replacement may be an important issue.   

 

5.5. Summary and Conclusions   

 We propose that the effective cryopreservation of trehalose, as a lipopreservative, 

can be explained in that trehalose is able to further partition deeper into the lipid 

headgroups.  There is an important difference between trehalose and maltose which rests 

within their respective chemical structure.  In the maltose molecule, the two glucose 

rings are linked via a C1α-C4α linkage, which a typical glycosilic linkage for most 

disaccharides.  However, in the trehalose molecule, the glucose rings are linked via a
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Figure 5.9. The 3D structure of trehalose and maltose. 
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C1α-C1α bond.  This linkage yields a more ‘clam shell’ or bi-dentate type structure.  By 

comparison, maltose exhibits a more open structure.  This has been shown by X-ray 

diffraction.  The structure of each sugar is illustrated in figure 5.9.  Our SFG data 

suggest that it may be this difference in the structure of trehalose compared to maltose 

which allows it to preferentially partition closer towards the hydrophobic medium.  

Furthermore, SFG of selectively deuterated trehalose may provide a better means by 

which to identify the SF peaks present in the trehalose spectra.   

 We hypothesize that it is due to this unique structure of trehalose that allows for 

this sugar to penetrate further into the lipid headgroup space compared to maltose and 

possibly other sugars.  This offers an explanation of other studies that have shown that 

trehalose alters the H-bonding environment of the phosphoryl group.  To achieve this, 

intercalation of the sugar in between the polar heads replaces water molecules.  This in 

turn changes the packing environment of the lipid molecules in the gel phase by 

lowering the van der waals interactions among acyl chains, resulting in a lowering of 

packing frustration and improving the film stability.  Consequently, such an environment 

makes it difficult for lipid mixing and phase segregation is maintained as evidenced by 

our data. 

Furthermore, the comparison of trehalose to its analog, maltose, can shed more 

light into the effectiveness of other sugars.  Differences in the stabilization of proteins219, 

220 have been observed for these sugars in which the presence of trehalose prevented 

amyloid formation while maltose had little effect on protein stability.221   
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Finally, we have demonstrated the utility of supported lipid bilayers as a model 

system in which to study the mechanism of cryopreservation and anhydrobiosis under 

physiological conditions.222   
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CHAPTER VI 

 

CONCLUSIONS 

 

 The conclusions of this study further support the proposition solid supported 

phospholipid membranes are useful cell biomembrane mimics.  In combination with 

microfluidic technology, this lab-on-a-chip platform is a powerful system to study 

biochemical processes such as ligand-receptor binding, model pathogen attach, 

inflammatory response, model lipid rafts, micro domain, and other membrane 

biophysical phenomena.    

 Nature’s general solution for generating both high sensitivity and specificity at 

the membrane surface has been to employ multivalency.  Lateral diffusion of the 

recognition components allows more sensitive detection.  Indeed, the organism’s 

immune system can detect the presence of foreign elements at much lower 

concentrations than possible with monovalent binding and therefore induce a faster 

immunoresponse.  Indeed, multivalent binding can be especially critical for viruses like 

influenza for which each individual interaction is quite weak and by employing a 

multivalent approach, only a few interactions are required to trigger infection.  A cartoon 

representation of a generic virus binding via multivalent interaction is shown in figure 

6.1.   

 Supported membranes within lab-on-a-chip type devices could be used for 

monitoring multiple toxins in parallel by having each species bind to its own surface-
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Figure 6.1.  An illustration of a generic virus (in green) binding initially to one 

membrane-associated ligand (in yellow) on a solid-supported lipid bilayer, followed by 

the lateral rearrangement of other ligands and their subsequent binding to receptors on 

the particle surface. 

 

 

 

 



 128

associated ligand or combination of ligands.  Since it is easy to create spatially addressed 

arrays of lipid bilayers on a single chip, one could even create platforms for screening 

applications in a clinical setting.  There are, however, several requirements for early-

warning detection devices to function in real world environments.  First, the device must 

be robust enough to survive rough transport and storage conditions, that is, the lipid 

bilayer film must resist mechanical and thermal stresses associated with transit to point 

of use, as well as possible prolonged storage before implementation.  Second, to protect 

them in both shipping and storage, they should be able to withstand current preservation 

techniques, such as dehydration or freezing.  Once at the point of use, they must recover 

full function upon rehydration or, ideally, be permanently air stable.  Third, they should 

be exceedingly resistant to contamination outside the laboratory setting to avert 

environmental fouling or bacterial growth during long term monitoring.  Finally, the 

devices must be highly sensitive and specific to the intended analytes. 

 A notable drawback to the solid supported lipid bilayer system has been their 

inherent lack of stability in air as shown in figure 6.2a and 6.2b and discussed in Chapter 

I.   This limits their applicability as ‘real world’ sensing devices to the laboratory 

environment.  An initial strategy to coat the membrane with a streptavidin layer yielded 

an air-stable bilayer platform, as illustrated in figure 6.2c, but was incapable of 

subsequent interactions as a sensing device.   

 My contribution towards enhancing the stability of phospholipid membranes in 

air is achieved by employing poly(ethylene glycol) PEG incorporated lipopolymer 

membranes.  Shown in figure 6.2d, this strategy was inspired by mimicking the similar
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Figure 6.2. A bilayer formed on a solid substrate submerged in an aqueous environment 

(A).  A thin water layer beneath the bottom leaflet and the substrate preserves the lipid 

mobility. (B) The introduction of an air interface destroys the solid supported bilayer by 

peeling it away from the surface in vesicle sections.  Some lipids may also form patches 

of monolayers at the air surface. (C)  Protein coatings, such as Streptavidin (dark blue 

rectangles) bound to biotinylated lipids (yellow triangles), help to reduce delamination, 

but also cover other ligands (purple triangles) so that they are unavailable for binding 

with the target antigens.  (D) PEGylated lipids protect the bilayer from delamination and 

provide more space between the bottom leaflet and the support.    
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polymeric architectures found in real cells.  By choosing the size of PEG and controlling 

the polymer density and thereby the conformation of the lipopolymer, the property of 

air-stability may be conferred.  This phenomena precisely occurs at the onset of the 

mushroom-to-brush transition, where the surface density of polymer is high.  From this 

point onward, complete protection is afforded to the lipopolymer incorporated supported 

membrane.  The lipopolymer functions by trapping interfacial water and stiffening the 

underlying membrane as shown in figure 6.3.   

 This work opens up a variety of opportunities for supported membranes as 

biosensing devices that are more robust and can even function in air.  The incorporation 

of PEG lipopolymers further mimics the biomembrane by acting as a cell surface 

glycocalyx.  The cell glycocalyx, as discussed in Chapters III and IV, is composed of 

glycosylated proteins, glycolipids, and transmembrane proteoglycans, which can be 

viewed as polymeric structures that extend tens of nanometers above the plasma 

membrane.  The PEG layer, acting as a glycocalyx mimic, can be used to filter or size 

discriminate among incoming protein analytes as described in Chapter IV.   This 

strategy, employed with microfluidic technology, can be used to perform multiple tasks 

‘on chip’, thus making it possible to analyze complex mixtures of analytes.  For 

example, be titrating the PEG size, surface density and conformation, would prove 

useful in the area of proteomics, whereby crude cell extracts can be sorted ‘on chip’ and 

for clinical diagnostics of whole blood serum, as depicted in a cartoon representation 

shown in figure 6.3.  The method has proven handy in discriminating between two 

protein  
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Figure 6.3.  Left: PEG at low surface densities (red) assumes a mushroom configuration 

that does not protect from delamination upon air exposure, prevent large particles (in 

green) from fouling the surface, or prohibit aggregation of bound moieties (in dark blue).  

Right: PEG at higher surface densities assumes a brush configuration that protects well 

from air exposure and acts as a filter for larger particles (green) so that they do not 

interrupt the sensing of smaller target analyte (dark blue rectangles), which are still able 

to pass through the meshwork of the lipopolymers and bind to the membrane surface.   
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analytes (streptavidin and antibiotin IgG) that exhibit similar affinity towards the same 

surface bound receptor.  Furthermore, the PEG layer can also act as a cytoskeleton 

network, further separating the artificial membrane from the underlying support, which 

may aid in the incorporation of transmembrane proteins and increase the range of 

substrates that can be used to form supported membranes. 

 Supported phospholipid bilayers can be used as models for the chemistry of 

biopreservation.  As discussed in Chapter V, SLBs were employed to elucidate the 

molecular mechanism of the interaction of trehalose, a known lipopreservative, with the 

phospholipid membrane.  The interactions of sugar molecules with the biomembrane has 

been proposed to be a key factor in the preservation of biological organisms during a 

stress event, such as anhydrobiosis (desiccation) or cryobiotic conditions.  These events 

have been studied by in vivo and in vitro experimentation, but only until recently, solid 

supported lipid bilayers were used as a stage specific system in which to model these 

environmental conditions. 

 I accomplished the goal of proposing a mechanism to explain the natural 

preference towards trehalose as the best lipopreservative compared to other 

disaccharides.  Particularly, the study focused on comparing the activity of trehalose and 

its analog, maltose.  Differences in their interactions with phosphatidylcholine 

membranes were found.  For example, trehalose seems to depress the liquid-to-gel or 

main phase transition of a supported DMPC bilayer, while maltose exhibited the 

converse effect.  Trehalose was also found to prevent damage of the underlying film 
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when exposed to temperatures below the main phase transition and even at lower 

cryogenic temperatures, whereas maltose was unable to afford protection.   

 A key breakthrough was achieved by VSFS, where the interactions of both 

sugars at the air/water and lipid monolayer/aqueous interface were studied.  A slight 

difference in the chemical structure of both sugars became increasingly important.  

Specifically, the difference lies in the glycosilic bond.  In maltose, the two glucose rings 

are bound by a C1α-C4α linkage.  Interestingly, trehalose presents a C1α-C1α glycosilic 

bond.  This bond confers a more compact or bi-dentate structure to the sugar molecule in 

which the two rings are closer together than in the case of maltose.  The model presented 

in this study suggests that it is this difference in the structure of trehalose compared to 

other common disaccharides, that allows this sugar to penetrate further into the lipid 

membrane.  This local interaction within the headgroup space causes changes in the H-

bonding environment and leads to changes in the van der Waals interactions of the 

aliphatic tails.  Therefore the interaction of trehalose can induce an effect on physical 

properties such as phase transition temperature of the lipid bilayer, film stability at lower 

temperatures than the main phase transition temperature, and maintain lipid phase 

segregation. These affects are what we propose is the reason why trehalose is naturally 

preferred as a lipopreservative among other disaccharides.                     
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