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ABSTRACT 

 

Optimized Upper Bound Analysis of Polymer Coated Metal Rod Extrusion Through 

Conical Die. (May 2006) 

Ritesh Lalit Shah, B. E., College of Engineering, Pune, India 

Chair of Advisory Committee: Dr. Jyhwen Wang 

 

Extrusion is a metal forming process used extensively in industry to produce different 

structural, mechanical, electrical, architectural, automotive and aerospace application 

parts. Currently after extrusion, the rod is subjected to environmental wear due to long 

storage time and hence requires an additional cleaning process before further use. This 

cleaning process can be eliminated by extruding a polymer coated metal rod workpiece 

such that the polymer coating is sustained on the final product after the extrusion 

process.  

 

In the present research study a new upper bound analytical model is developed to predict 

the forces required to conduct extrusion of a polymer coated metal rod successfully. The 

search for the lower upper bound power functional is modeled as a non linear 

optimization problem. Optimizing the functional also determines the set of constraints 

defining the shape of rigid plastic deformation boundaries and the final coating 

thickness. Also an upper bound analytical model was developed to predict forces for 

failure of the polymer coating during the extrusion. Both the analytical models for 



 

  

iv

successful and failed extrusion are compared to obtain critical die angle which can 

provide tooling and process design guidelines. Finite element analysis simulations were 

modeled using commercially available software package, ABAQUS. Predictions of FEA 

simulations were in good agreement with published results and with the predictions of 

analytical model developed in this study.  
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CHAPTER I 

INTRODUCTION 

 

Since last few decades, much effort has been devoted to develop plasticity theories to 

understand the mechanics underlying metal forming processes in better manner as these 

processes have played a phenomenal role in shaping the innumerous products that we 

use today. Among the various forming processes in existence, extrusion is a vital 

forming process and is used extensively in industry to produce different structural, 

mechanical, electrical, architectural, automotive and aerospace application parts. 

 

Extrusion is a forming process, which consists of material flow through confined and 

converging dies to change the size and/or shape of the original billet. Axisymmetric 

extrusion means that both the deformation process and outgoing product is symmetric in 

shape about the central axis and is used mostly to produce rods and wires in industry. 

Composite rod extrusion or polymer coated metal rod extrusion produces a thin polymer 

coating on an extruded metal rod.  

 

 

 

 

 
 
The thesis follows the style and format of ASME Journal of Manufacturing Science and 
Engineering. 
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1.1 Polymer coatings 

 

In general a composite material is made up of two or more different materials to achieve 

desired structural properties or cost effectiveness. As composites replace conventional 

materials in more and more applications, production of composite materials by metal 

forming processes has become an important subject to study. Due to their low coefficient 

of friction, use of polymers as an intermediate lubricant in metal forming operations 

such as deep drawing and extrusion is well known and explored by Schey [1], Rao [2] 

and Mear et. al. [3]. Good lubrication properties of plastics allow reducing critical loads 

required for deformation process. Other advantages of using polymer coating over metal 

rod during extrusion can provide surface protection against general damage, corrosion 

and chemical attack. This is due to the fact that polymers have good ductility and good 

corrosion resistance from most chemical agents.  

 

There are several industrial applications of polymer coating on metal rods in industry 

and a real life scenario is explained next. Rods or billets, produced by axisymmetric 

extrusion, are stored in warehouse for weeks before actually being used to make final 

products by further processing. Due to moisture and other elements present in the 

environment, the surface of the rods may be corroded or damaged. Before using the rod 

or billet for further processing, it has to undergo some cleaning operation like pickling 

and subsequent washing, which is time consuming and cost ineffective, since it does not 
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add any value to the final product. Hence, one viable solution is to produce rods or 

billets with a polymer coating which will protect it against all such damages.  

 

There are various methods used to apply polymer coating to a metal substrate and the 

method of choice depends on many factors like coating thickness required, production 

rate and cost optimization, size and shape of the part, and environmental requirements 

may also play an important role. Various methods used to apply polymer coating are 

adhesives, vapor deposition, hot dipping, spray coating, immersion coating or powder 

coating. 

 

While selecting the polymer to be used as a coating, there are some important parameters 

to be considered. Polymers are made of long chains of molecules and are classified into 

thermoplastics and thermosets. Thermoplastics have no bonding between molecules 

whereas thermosets have strong intermolecular bonding. Just like metals, thermoplastic 

polymers also have melting point (Tm), where phase transforms from solid to liquid. But 

for polymers there is another important temperature called the glass transition 

temperature (Tg), which is far more important than the melting point temperature for 

considering the polymer’s use in an application for the reasons summarized below. 

 

Many mechanical and physical properties change drastically when temperature 

approaches the glass transition temperature, Tg, such as modulus of elasticity, viscosity, 

coefficient of diffusion and light refraction index. Figure 1 shows the change in modulus 



 

  

4

with temperature for a typical thermoplastic. Below the glass transition temperature 

thermoplastics act as elastic brittle solids and are unable to deform plastically and thus 

are not suitable for use as coating. Above the glass transition temperature, thermoplastics 

show low elastic modulus and high deformability. Hence they should be operated above 

the glass transition temperature, Tg, for forming operations. Thermoplastics become 

increasingly soft and viscous and behave more like a viscous fluid as the temperature 

approaches the melting point. Use of Polyethylene (PE) or Polypropylene (PP) can be 

considered as a coating material, since their glass transition temperatures are below room 

temperature. 

 

 

 

 

Fig. 1 Typical mechanical properties for a thermoplastic [4] 
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1.2 Composite rod extrusion 

 

During composite rod extrusion a metal rod of particular initial diameter having a thin 

polymer coating is forcefully passed through conical die to form an elongated metal rod 

with reduced final diameter and coating thickness. Since the process is axisymmetric, the 

cross section remains unchanged in shape and the final product is also axisymmetric. 

During the process of extrusion the metal and polymer both undergo plastic deformation. 

Figure 2 shows successful axisymmetric extrusion of a polymer coated metal rod. 

Successful axisymmetric extrusion of a polymer coated metal rod depends on the 

optimum combination of following parameters - die angle, reduction ratio, coating 

thickness, initial velocity and friction, apart from proper tool geometry (such as die 

length, fillet radius etc.) and material properties. 

 

 

 

Fig. 2 Successful extrusion of polymer coated metal rod 
 



 

  

6

1.3 Defects in composite rod extrusion 

 

An important concern in metal forming processes is whether the desired deformation can 

be accomplished without fracture of the workpiece. Even though several studies have 

been performed on the polymer coating as an intermediate lubricant film during 

extrusion; but survivability and formability of polymer coating layer on the final product 

is not given much attention before. In fact, little research has been done to study bonded 

polymer coatings as a lubricant and much development work devoted to bonded polymer 

coatings is still needed [1]. Adhesive forces between the polymer and metal depend on 

the method used to deposit the polymer layer on the metal, but the forces are primarily 

due to weak Van der Waals attraction force. On the other hand cohesive forces in 

polymers are due to stronger covalently bonded structure among its monomer chains. 

Hence predicting adhesive failure of polymer is as important, if not more, than 

predicting cohesive failure. Following are the most likely failure cases which might 

occur during axisymmetric extrusion of a polymer coated metal rod. 

 

1.3.1 Center bursting or chevroning 

 

Center bursting or chevroning, as it is also called, is the presence of voids in the material 

in a repetitive manner along the center line of the final product with no visible defects at 

the surface as shown in Figure 3. Avitzur [5] was the first to develop an analytical model 

to predict the center bursting defect in axisymmetric extrusion of single material. During 
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composite rod extrusion the same defect could occur with the polymer being intact and 

center burst defect present at the center of the core metal. This defect in composite rod 

extrusion is more harmful than surface fracture since visually there is no sign of the 

underlying defect at the surface. Figure 4 below shows a hypothetical failure of center 

bursting for polymer coated metal rod extrusion. 

 

 

Fig. 3 Center bursting in extruded steel rods Hosford et. al. [6] 
 

 

Fig. 4 Center bursting or chevroning defect in composite rod extrusion 
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1.3.2 Cohesive failure of polymer coating 

 

As the polymer coated metal rod is extruded it undergoes plastic deformation due to 

shear stresses developed within the material. The outermost layer of the polymer 

experiences the higher strain rates as compared to the inner layers or central layer and 

hence it is more likely to fail under these stresses. Hence, high stresses in the outer 

layers of polymer coating might initiate a crack at the surface which would propagate to 

the inner layer. Cohesive failure can be recognized visually as the intermittent absence 

of polymer coating on the metal rod in the final product, as shown in Figure 5. Thus, 

during cohesive failure the final product has bare core metal rod at places and has 

polymer coating at other places, which is obviously not the desired result. Clift [7] did 

pioneering work in predicting fracture during various metal forming processes; for 

axisymmetric extrusion he found criteria developed by Cockroft [8] to be more suitable 

for predicting the ductile fracture. 

 

 

Fig. 5 Cohesive failure of polymer coating during composite rod extrusion  
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1.3.3 Adhesive failure of polymer coating 

 

Due to difference in yield strength and stress-strain relationship of metal and polymer, 

each material undergoes a different plastic deformation during extrusion. Obviously 

polymers have lower yield strength and hence they experience larger strains as compared 

to the core metal rod. The ratio of polymer coating thickness to the radius of metal rod 

would not be in exact proportion before and after the extrusion. If the final coating 

thickness is less than the value derived from proportion of initial coating thickness to 

initial radius of metal rod, the exit velocity of the polymer will be greater than that of the 

metal and the polymer will has a tendency to rush ahead of the metal at the exit end of 

die. If the difference in exit velocities is large enough, it may overcome the adhesive 

force between the metal and polymer and the polymer coating might fail. In this type of 

failure, the final product is bare metal rod with no coating, as shown in Figure 6.  

 

Fig. 6 Adhesive failure of polymer coating during composite rod extrusion 
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1.4 Research objective  

 

To the author’s best knowledge there has been no previous work done in predicting the 

range of process parameters for successful axisymmetric extrusion of a polymer coated 

metal rod. The objective of this research study is to develop an analytical model to 

predict success or failure of axisymmetric extrusion of polymer coated metal rod through 

a conical die. Although empirical optimization of the process is possible but it involves 

trial and error which is too tedious, expensive and time consuming and hence developing 

an analytical solution is more viable solution and it also enhances the understanding of 

the process in a better manner. An analytical model allows for optimizing the process 

parameters that will increase tool life, minimize power requirement and improve part 

quality in a cost effective manner. A commercial finite element package, ABAQUS, is 

used to simulate the axisymmetric extrusion using an elastic-plastic material model and 

validate the results predicted by the analytical model developed in this study. Initially to 

verify the setup of the problem, FEA simulations of simple metal rod extrusion are 

validated against the published theoretical results for simple metal rod extrusion. Once 

the finite element analysis results are compared with that of mathematical model, a range 

of process parameters will be evaluated to predict successful extrusion of polymer 

coating on the final product. An important concern in metal forming processes is 

whether the desired deformation can be accomplished without fracture or defects in the 

workpiece. Hence, an effort is made in this study to predict the failure of polymer 

coating during the extrusion. 
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CHAPTER II 

LITERATURE REVIEW 

 

The primary concern in metal forming operations is to predict the forces required to 

definitely cause plastic flow. Accurate prediction is difficult due to uncertainties such as 

frictional forces, non-homogeneous deformation and strain hardening of material during 

complex deformations. Hence, many researchers have developed analytical models viz. 

upper bound method, slip line method and slab method, to predict approximate forces 

required during extrusion. The upper bound method, slip line method and slab method 

are described concisely in Hosford et. al. [6]. As computing resources became more 

powerful and easily available, researchers also predicted the forces required during 

extrusion using the finite element method. For axisymmetric extrusion, the upper bound 

method is most suitable, since the slab method is more appropriate for plane strain 

problems, the slip line method being more complex and finite element method is too 

time consuming, problem specific and computing intensive. Hence it was decided that 

the upper bound method would be the most suitable method to develop a mathematical 

model for polymer coated metal rod extrusion through conical die. 

 

Among various methods of solutions, the upper bound method as an analytical method 

for analysis of the axisymmetric extrusion process was first used by Kudo [9] and 

Avitzur [10] and has been used widely since then. Kobayashi et. al. [11] devised a 

method for finding kinematically admissible velocity field and stress field for 
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axisymmetric forming problems to find the upper and lower bound limit for 

axisymmetric extrusion along with two other forming operations. Bianchi et. al. [12] 

compared viscoplastic finite element model with slip line and upper bound method 

solutions for non hardening material subject to plain strain as well as axisymmetric 

extrusion. Even though the finite element method gives detailed information, it takes 

considerable computation time and thus is not yet so practical for optimizing the process 

in extrusion. Avitzur [5] developed condition for center bursting during extrusion and 

wire drawing by assuming spherical velocity field and using upper bound method for 

conical die. Zimmerman et. al. [13] modified their spherical velocity field by introducing 

additional parameter and was able to calculate lower upper bound for conical die than 

predicted by spherical velocity field used by Avitzur [5]. Chen et. al. [14] developed a 

generalized method to find velocity field from stream functions for first time and applied 

to three axisymmetric dies viz. cosine, elliptical and hyperbolic. Before streamline 

approach was developed there was no method to develop generalized velocity field and 

so it was just assumed to be spherical, triangular or some mathematically less intensive 

shaped velocity field. Velocity field derived from streamline functions give lower upper 

bound than spherical velocity field used by Avitzur [5]. Hence the velocity field derived 

from the flow functions was decided to be used to implement the upper bound method. 

 

Chang et. al. [15] developed velocity field for axisymmetric extrusion through curved 

dies using upper bound method. Nagpal [16] proposed the generalized flow functions 

method for finding kinematically admissible velocity field for axisymmetric extrusion. 
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Yang et. al. [17,18] used generalized deformation boundaries and generalized velocity 

field using streamline flow method for analysis of axisymmetric extrusion through 

arbitrarily curved dies which gave lower extrusion pressure estimates than Chang et. al. 

[15]. He also showed that deformation boundaries are curved inside on both the ends of 

die and not vertical as was used by others until then. Hence curved rigid-plastic 

deformation boundaries would be used to develop the mathematical model as it gives 

lower upper bound solutions. Altan et. al. [19] proposed two different flow models and 

compared both of them with Avitzur’s [10] spherical velocity model and found that flow 

function models do give lower upper bound results.  Alexandrov et. al. [20] formulated 

kinematically admissible velocity field based on simple radial flow field combined with 

asymptotic behavior near velocity discontinuity to reduce complexity of mathematics 

involved giving nearly same results. 

 

As it can be seen that upper bound method was almost becoming standard method to 

apply to axisymmetric extrusion problem and many researchers were trying to lower the 

upper bound solutions by developing newer methods to derive kinematically admissible 

velocity field. Also it was proved by and large that flow functions method to derive 

velocity field along with curved rigid-plastic deformation boundaries (Figure 7) give 

lower upper bound than spherical velocity field (Figure 8) and other methods. Hence it 

was decided to develop the analytical model for composite rod extrusion using upper 

bound method using flow function method to derive kinematically admissible velocity 

field with curved rigid-plastic deformation boundaries.  
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Fig. 7 General kinematically admissible velocity field derived from streamlined 
flow function [17] 

 
 

 

Fig. 8 Kinematically admissible spherical velocity field [10] 
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With advancement in technology composites had more and more applications and 

researchers felt need to study behavior of composites undergoing axisymmetric 

extrusion.  But as stated earlier to best knowledge of author no study has been carried to 

study polymer coated metal extrusion but many researchers did studied bimetal extrusion 

i.e. one metal coated with another and extruded simultaneously. Osakada et. al. [21] was 

the first to show that composite rods can undergo successful deformation under certain 

process conditions. Tayal et. al. [22] suggested a finite element solution for problem of 

mutilayer composite extrusion which is independent of number of constituent metals 

involved and die geometry. Treating the flow of metals as flow of viscous, non-

Newtonian incompressible fluid he even predicted the geometry of the interface 

separating the two materials. Avitzur et. al. [23,24] used torroidal velocity field to 

predict fracture of core metal in bimetallic rods during co-drawing as well as co-

extrusion and hence established a fracture criterion.  As it can be seen the problem was 

tackled by various approaches and during the course of time better and better solutions 

were being developed. 

 

Yang et. al. [25] analyzed extrusion of composite rods through curved dies by using flow 

function approach. Two different flow functions of second order and third order are used 

and compared with each other. He proved that second order flow function was in better 

agreement with experimental observation than third order flow function in terms of 

predicting extrusion load and in deformation region. Hwang et. al. [26] proposed 

different set of initial flow function to investigate plastic deformation behavior of the 
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rods during axisymmetric extrusion of composite rods. Relative slip is allowed at 

interface of two metals. Later Kwon et. al. [27] worked on predicting the cohesive 

failure of the coated material using fracture criteria developed by Cockcroft et. al. [7].  

 

And hence it is deduced that going for higher order flow functions just increases the 

complexity in calculations without improving the accuracy of results. So the 

mathematical model for polymer coated metal rod extrusion is developed by using the 

most basic first order flow function as it reduces the complexities. Also the rigid-plastic 

deformation boundaries used in developing the model would be a polynomial curve. The 

nature of the deformation boundary will be decided by optimization process and hence it 

can be curved inwards or outwards at each die end or straight as determined by the 

optimization. Developing a failure model of the polymer coated metal rod extrusion is 

very important as it gives us the working range of process parameters. Hence it was 

decided that failure model has to be developed which hasn’t been developed by other 

researchers.  
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CHAPTER III 

ANALYTICAL MODEL 

 

This chapter presents an analytical model of polymer coated metal rod extrusion through 

conical die to predict range of process parameters where the extrusion would be 

successful. As stated earlier, finite element analysis method and experimental method, 

both are expensive, time consuming and impractical to optimize the problem. Hence 

effort is made in this study to develop a generalized analytical model, which will provide 

insight into the mechanism governing polymer coated metal rod extrusion and let us 

explore effects of various parameters on the process. Also added advantage of 

developing analytical model is it can predict range of process parameters of coating 

failure. 

 

3.1 Upper bound method 

 

For many plastic deformation processes, including axisymmetric extrusion, exact 

analytical solutions are difficult to obtain due to the mathematical complexity involved 

and hence researchers inevitably use some approximation method. There are many 

approximate but highly developed methods applied to axisymmetric extrusion, like limit 

analysis, slab method, slip line method and upper bound method. But among all 

approximate methods, upper bound method is most powerful [27] and it has been widely 

used to develop analytical model for numerous metal forming processes, such as forging, 
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wire drawing, tube sinking, strip rolling, and extrusion. The upper bound method has 

been used for analysis of axisymmetric rod extrusion process because of its effectiveness 

to optimize process parameters, design die shapes with reduced computation time.  

 

An upper bound analysis, as the name suggests, predicts a load that will surely cause the 

plastic deformation of the workpiece. Unlike an exact solution, upper bound analysis 

doesn’t need to satisfy stress equilibrium and only satisfies self consistent flow field. 

The upper bound analysis makes use of energy principle to equate the internal rate of 

energy dissipation with rate of external work done. A brief and excellent explanation 

about upper bound analysis is given in Hosford et. al. [8]. To apply upper bound method 

to polymer coated metal rod extrusion, a kinematically admissible velocity field needs to 

be assumed. The basic requirements for the velocity components to be kinematically 

admissible velocity field are given below: 

• It should satisfy the incompressibility condition throughout the volume  

• It should satisfy boundary conditions that allows velocity discontinuity tangential 

to the boundary but not normal to the boundary.  

 

Hence the geometrical configuration of the material determines some boundary 

conditions and must be known. During axisymmetric extrusion the geometrical 

configuration of work material is confined by die surface on the outer surface and its 

nature at the entry and exit surface of plastic deformation is to be determined, for which 

there are two commonly used approaches. First one is to assume the nature of plastic 
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deformation boundary at entry and exit end of die such as the spherical velocity field 

developed by Avitzur [10] and second is to construct a velocity field by assuming proper 

flow functions. As discussed earlier flow functions method is employed in developing 

this analytical model as it gives lower upper bound and it has been shown that spherical 

velocity field is a special case of flow function method. Strain rates can be derived from 

velocity field, which can be integrated to calculate the power consumed internally in the 

deformation field using the appropriate strength properties of the material. In applying 

the upper bound technique and developing analytical model for polymer coated metal 

rod extrusion, several simplifying assumptions are made in this thesis and are 

summarized below: 

• The work materials i.e. metal and polymer are isotropic and homogeneous. 

• The work materials are incompressible and die is assumed to be rigid body. 

Usually extrusion dies are made from heat treated and hardened tool steel which 

has much higher yield strength than the workpiece and hence it is safe to assume 

the die as rigid body. 

• Both metal and polymer undergo plastic deformation predominantly and elastic 

strain is neglected. 

• Effect of temperature between the composite rod and die is neglected and the 

process is assumed to be isothermal because practically the extrusion die is kept 

cool by circulating water around it.  

• A constant friction factor model is assumed for die and workpiece interface. 
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• Polymer and metal are symmetric about the central axis and there is no axis shift 

during or after the deformation.  

• Coating thickness is small as compared to the metal rod radius (
20

m
p

R
t ≤ approx.) 

• All plastic deformation occurs by shear on few discrete planes in the deformation 

zone. Everywhere outside the deformation zone material is considered to be 

rigid. Hence both metal and polymer are considered to be rigid – plastic, strain 

rate independent and von-Mises materials. 

• For polymers phenomenon of creep is neglected and their behavior is assumed to 

be analogous to metals. 

 

3.2 Upper bound model for successful extrusion of polymer coated metal rod 

 

As discussed above polymer coated metal rod extrusion could lead to successful 

extrusion or one of the various failure discussed above. Both the successful and failure 

conditions are modeled separately in this study. Figure 9 shows generalized 

kinematically admissible velocity field for the mathematical model developed along with 

rigid-plastic boundaries marking the deformation zone. Due to symmetry about central 

axis it is only necessary to consider the field in any one plane containing the axis. 
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Fig. 9 Model for successful extrusion of polymer coated metal rod 
 

3.2.1 Flow functions 

 

(Note – Throughout the mathematical model subscript ‘m’ and ‘p’ refers to metal and 

polymer respectively and ‘i’ and ‘f’ refers to initial and final condition respectively. Also 

‘r’ and ‘z’ refers to the respective coordinate axis wherever applicable.) 

As shown by Nagpal [16] stream function for selecting generalized velocity field for 

axisymmetric extrusion is given as 

∑
=

=
N

j

j
jaf

1
)( ηηφ                (1) 

where streamline constants in metal and polymer are of the form  
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)(2

2

zR
r

m
m =η                 (2) 

)()(
)(

22

22

zRzR
zRr

mp

m
p −

−
=η                (3) 

As discussed before in literature review going for higher order flow functions increases 

the complexity and does not gives any better solution and hence first order flow 

functions are taken in this study. Hence the flow functions for metal and polymer are 

given respectively  

ppp

mmm

a

a

ηφ

ηφ

1

1

=

=
                (4) 

Therefore substituting (2) and (3) in (4) we get flow functions for metal and polymer  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

)(2

2

1 zR
ra
m

mmφ                (5) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=
)()(

)(
22

22

1 zRzR
zRra

mp

m
ppφ               (6) 

As rigid – perfectly plastic model is used for work material in this study the flow 

functions for metal and polymers have to satisfy the following boundary conditions at 

rigid – plastic deformation boundaries  

2

2rVi
m

−
=φ   miΓon               (7) 

2

2rVmf
m

−
=φ   mfΓon               (8) 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

2

22
mi

ip
RrVφ  piΓon               (9) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

2

22
mf

pfp

Rr
Vφ  pfΓon             (10) 

Negative sign is due to the fact that flow from input to output die condition is in negative 

Z direction. Other boundary conditions to be satisfied are deduced from the geometrical 

configuration of the extrusion process and are given below 

mm a1=φ   )(at zRr m=            (11) 

0=mφ    0at =r            (12) 

pp a1=φ   )(at zRr p=            (13) 

0=pφ    )(at zRr m=            (14) 

Die function and interface function are derived from geometry and are given as 

( )
z

L
RR

RzR
pi

pfpi
pfp

−
+=)(             (15) 

z
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RzR
mfmi

mfmi
mfm ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+=)(             (16) 

By applying boundary conditions (7) and (11), ma1 can be solved as  

( )
⎟⎟
⎠

⎞
⎜⎜
⎝
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−
=
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2 2

2
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2
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m
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2
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1
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m
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=               (17) 

Similarly by applying boundary conditions (9) and (13) pa1 can be solved as  
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RRV
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Substituting (17) in (5) flow function for streamlines in metal is given 
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)(2 2

22

zR
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m

mii
mφ              (19) 

Similarly substituting (18) in (6) flow function for streamline in polymer is given 

( )
⎟
⎟
⎠

⎞
⎜
⎜
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−−−

=
)()(

)(
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2222

zRzR
zRrRRV

mp

mmipii
pφ            (20) 

Boundary conditions given by (8) and (10) are satisfied automatically by the virtue of 

mass flow rate remains equal 

22
mfmfmii RVRV =              (21) 

( ) ( )2222
mfpfpfmipii RRVRRV −=−             (22) 

Also boundary conditions given by (12) and (14) are satisfied due to proper choice of η  

 

3.2.2 Rigid-plastic deformation boundary 

 

Researchers using flow function method to derive kinematically admissible velocity 

field have mostly used mostly straight rigid-plastic boundary which is fixed. Rigid-

plastic deformation boundary is modeled as a polynomial curve to lower the upper 
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bound result. At the same time the rigid-plastic deformation boundary is kept flexible by 

allowing the optimization method to determine the exact nature of curve.  

 

Deformation boundary in the polymer is assumed to have a linear relationship because 

the thickness of polymer coating is very small as compared to the core metal and hence 

the contribution of shear losses at those boundaries is small as compared to the total 

power required. Equation governing rigid plastic boundaries in polymer is given as  

Let bzapf +=Γ              (23) 

Solving for a and b by applying boundary conditions at die and metal-polymer interface 

pfpf RazRr =⇒==     0 and at            (24) 

mf

pfmf
mfmf L

RR
LzRr

−
=⇒== b     and at           (25) 

Substituting (24) and (25) in (23) final equation for rigid-plastic boundary in polymer 

material at exit of die is given as 

z
L

RR
R

mf

pfmf
pfpf ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+=Γ             (26) 

Applying the similar approach for the rigid-plastic boundary in polymer material at entry 

of die equation for piΓ can be derived. Boundary conditions at entry of die are  

pipi LzRr ==  and at              (27) 

mimi LzRr ==  and at              (28) 
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Substituting (27) and (28) in (23) final equation for rigid-plastic boundary in polymer 

material at entry of die is given as  

z
LL
RR

LL
LRLR

mipi

mipi

mipi

mipipimi
pi ⎟

⎟
⎠

⎞
⎜
⎜
⎝
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−
+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=Γ           (29) 

Rigid-plastic deformation boundary in metal at die exit is assumed to be second order 

polynomial and its general equation is given as  

Let cbrarzmf ++=⇒Γ 2             (30) 

Applying Boundary condition due to axis of symmetry and solving for constant 

ofof LLzr =⇒== c     and 0at            (31) 

Due to axisymmetric extrusion the rigid-plastic deformation surface has to be 

perpendicular to the axis of symmetry or else there will be singularity. Hence applying 

that boundary condition and solving for constant  

002    0
0

=⇒=+⇒=
=

bbar
dr
dz

r

           (32) 

Also boundary condition due to metal polymer interface needs to be satisfied  

2     and at 
mf

ofmf
mfmf R

LL
aLzRr

−
=⇒==           (33) 

Substituting the values of constant derived in (31), (32) and (33) in (30) general equation 

for rigid-plastic deformation boundary at exit of die in metal, mfΓ  is given as 

of
mf

ofmf Lr
R

LL
z +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
= 2

2  
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)(
)( 2

ofmf

mfof
mf LL

RLz
r

−

−
=⇒Γ             (34) 

Similarly assuming rigid-plastic deformation boundary in metal at die entry as given in 

(30) and applying boundary conditions  

oiLzr ==  and 0at              (35) 

mimi LzRr ==  and at              (36) 

0
0

=
=rdr

dz                (37) 

Substituting (35), (36) and (37) in (30) and solving for constants we get the final form of 

equation of rigid-plastic deformation boundary for metal at die entry as  

)(
)( 2

oimf

mfoi
mi LL

RLz
r

−

−
=⇒Γ             (38) 

Hence the equations of rigid-plastic deformation boundary can be summarized as below 

z
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3.2.3 Velocity field 

 

In zone II, zr VV  and  are velocities in r and z directions respectively and can be 

determined from flow functions as  

zr
Vr ∂

∂
−=

φ1               (39) 

rr
Vz ∂

∂
=

φ1               (40) 

Using (39) and (40) to find velocity in metal in r and z direction respectively as given  
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Similarly using (39) and (40) velocity in polymer in r and z direction is given as  
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where,  
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zdRzR m

m
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dz
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zR p
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)(
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Note that  

)(
)(

zR
V
V

m
zmRrzm

rm ′=
=

 and            (47) 

)(
)(

zR
V
V

p

zpRrzp

rp ′=
=

             (48) 

 

This proves that velocity field derived follows the die profile and interface profile and 

hence satisfies the geometrical boundary conditions at the surface. Hence this velocity 

field derived from the flow functions assumed satisfies one of the conditions to be 

kinematically admissible. 

 

3.2.4 Velocity discontinuity 

 

Velocity discontinuity is the tangential velocity along any rigid-plastic deformation 

boundary that a particle suffers when it crosses that boundary. These discontinuities are 

the reason for shear losses across these boundaries and hence add up to the total internal 

energy dissipation. ( )ΓΔV  is the difference between velocity component tangential to 

boundary given by Γ . Hence velocity discontinuity at miΓ  is given as  

( )
ds
drV

ds
dzVVV rmzmii

mi
−+=Δ

Γ
           (49) 

This can be rearranged as following  
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( )
ds
dz

dz
drVVVV rmzmii

mi
−+=Δ

Γ
           (50) 

Similarly Velocity discontinuity at piΓ is given as 

( )
ds
drV

ds
dzVVV rpzpii

pi
−+=Δ

Γ
 

which can be rearranged as,  

( )
ds
dz

dz
drVVVV rpzpii

pi
−+=Δ

Γ
           (51) 

Similarly velocity discontinuity at mfΓ  is given as 

( )
ds
dz

dz
drVVVV rmzmmff

mf
−+=Δ

Γ
           (52) 

And velocity discontinuity at pfΓ  is given as 

( )
ds
dz

dz
drVVVV rpzppff

pf
−+=Δ

Γ
           (53) 

Just like rigid-plastic deformation boundary there is a velocity discontinuity where ever 

there is interface between two materials. Hence Velocity discontinuity between die 

surface and polymer is given as 

( )[ ]212)(1 zRVV pRrzpR pp
′+=Δ

=
           (54) 

And velocity discontinuity between metal and polymer is given as 

( )[ ]212)(1 zRVVV mRrzmzpR mm
′+−=Δ

=
           (55) 
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3.2.5 Strain rates 

 

Strain rates can be determined from velocity and are used to calculate effective strain 

rate which in turn is used to calculate total power. We know from knowledge of 

elasticity that strains are given by 

( )ijjiij UU ,,2
1

+=ε              (56) 

Hence strain rates are given by 

( )ijjiij VV ,,2
1

+=ε&              (57) 

Applying the above principle given by (57) strain rates in metal are derived below as 
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Since 0=mVθ  

Therefore, 0=mrθε              (62) 

And similarly 0=mzθε             (63) 

It is important to note that 0=++ mzzmrrm θθεεε &&&  

Sum of all the principal strains is zero which satisfies the condition of incompressibility 

and hence we can verify that the flow functions we have chosen are valid flow functions 

for flow in metal through conical die. Hence the velocity field derived from the flow 

functions satisfies another important criterion to be kinematically admissible velocity 

field, which is a primary requirement for upper bound method to be applicable. 

 

Applying the above principle given by (57) strain rates in polymer are derived below as  
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               (67) 

Since 0=pVθ  

Therefore, 0=prθε              (68) 

And 0=pzθε               (69) 

Again note that 0=++ pzzprrp θθεεε &&&  

Sum of all the principal strains is zero which satisfies the condition of incompressibility 

and hence we can deduce that we have chosen a valid flow function for flow in polymer. 

 

3.2.6 Total power  

 

As the name suggest the power predicted by upper bound theorem is always greater than 

the actual power required for carrying out the axisymmetric extrusion. According to the 

upper bound theorem total power dissipated is given as sum of the power required for 

internal deformation, friction losses and shear losses and is given by this simple equation 

sfi WWWJ &&& ++=*              (70) 

where,  
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iW&  = total internal power required for deformation 

sW&  = total power of shear deformation 

fW&  = total frictional power dissipated 

 

3.2.6.1 Power for internal deformation 

 

Rate of energy dissipation for internal deformation is given by  

∫= dVWi εσ &&               (71) 

The constitutive law of rigid-plastic material yielding by von-Mises criterion gives 

effective stress and strain rate as   

0σσ =               (72) 

ijijεεε &&&
2
1

3
2

=                  (73) 

Total internal power dissipated for plastic deformation is sum of two parts; first power 

required for plastic deformation of metal and second power required for plastic 

deformation of polymer and is given as 
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which can be expanded as  
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Strain rate ε&  in metal can be derived as given below 
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Since, 0 and 0 == mzmr θθ εε &&  

Substituting (61) and (62) in (76) we get 
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Substituting (57), (58), (59) and (60) in (79) and simplifying we get 
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Similarly strain rate in polymer can be derived, 
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( )2222 2
2
1 rzppzzprrpp εεεεε θθ &&&&& +++=            (79) 

 

3.2.6.2 Power due to shear deformation 

 

Due to tangential component of the velocity along the rigid-plastic deformation 

boundaries there are shear losses and power due to shear losses is given by  

∫Γ Γ
Δ= dsVWs 3

0σ&              (80) 

The velocity field developed has four rigid-plastic deformation boundaries viz. at the 

entry of die in metal and polymer and at the exit end of die in metal and polymer. 

Consequently there is velocity discontinuity along all the four above mentioned 

deformation boundaries accounting for shear losses at each boundary. Hence the power 

required due to shear losses at the four rigid plastic deformation boundaries is sum of the 

power dissipated at each boundary and is given by  
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Total power dissipated due to shear losses given by equation (83) can be determined by 

substituting the velocity discontinuity along all the 4 rigid-plastic boundaries given by 

equations (50), (51), (52) and (53) 
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3.2.6.3 Power due to friction losses 

 

Since there is relative motion between the work material and die surface during 

extrusion process there are frictional losses. Actual mechanics of friction is very 

complex and there are some laws are used to model friction based on common 

simplifying assumptions made for determining friction stress τ between the work piece 

and the tool. Two such laws used for modeling friction commonly are Coulomb friction 

law and constant friction law.  

 

In Coulomb Friction law, friction stress τ at the contact surface is directly proportional to 

the contact pressure p, between the rod and the die, and is given by pμτ = . Constant of 

proportionality μ is called coulomb coefficient of friction and is assumed to be constant 

for a particular setup. While applying Constant Friction law, friction stress τ at the 

contact surface is directly proportional to the flow strength of the material, 0σ , and is 

given by 3/0στ m= . Constant of proportionality, m is called friction factor. Its value 

is assumed to be constant for a particular setup with 10 ≤≤ m . 

 

Coulomb friction law is not suitable for bulk metal forming processes like rod extrusion 

because it involve high contact pressures, which sometimes predicts friction stresses 

greater than the shear strength of the material suggesting sticking model rather than 

sliding model at the interface. This law is more suitable for sheet metal forming 

processes where contact pressures are much lower. On the other hand Constant friction 
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law is more suitable for bulk metal forming processes because, unlike Coulomb friction, 

the amount of friction is independent of the contact pressure. 

 

Hence applying constant friction law, frictional power dissipated along the die surface 

and interface of metal and polymer can also be obtained from the velocity discontinuities 

given by (54) and (55) along these surfaces as  
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Although in the successful extrusion bonding between polymer and metal is assumed to 

be perfect and there wouldn’t be any friction at polymer-metal interface. This condition 

is imposed by keeping friction coefficient between the two materials to be zero ( 0mm = ) 

 

There are numerous ways to develop a kinematically admissible velocity field, hence it 

is important to optimize the total power with respect to geometric variables. Hence the 

successful axisymmetric extrusion model is optimized with respect to five geometric 

variables mfRmfLmiLofLoiL  and ,,,  to vary the geometry of velocity field to 

determine minimum upper bound solution. Allowing the four length parameters to 

change due to optimization gives the model capability to obtain the nature of rigid-

plastic boundaries by minimum power law. Also it is important to note that final coating 

thickness is variable and it is not assumed to be in fixed proportion of the initial 

thickness to initial radius. 
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3.3 Upper bound method for failure of polymer coating 

 

Figure 10(a) and (b) show the shear planes for the velocity discontinuity field and 

hodograph, respectively, for polymer coated metal rod extrusion where polymer coating 

is shaved off the metal rod at the die entry. Note that plot is not to scale and polymer 

coating is exaggerated to show details of velocity discontinuity field and shear planes 

with clarity. Although this type of velocity discontinuity field is postulated for plane 

strain extrusion in Hosford et. al. [6] it can be applied to polymer coating because the 

thickness of polymer is very less as compared to its distance from axis and hence the 

effect of curvature is reduced greatly. Also if the polymer coating is imagined to cut 

open along its length and then unrolled it would appear as an infinitely wide sheet of 

polymer undergoing extrusion. Hence it satisfies the criteria of plane strain and this 

approach is practical has been proven by Jawroski et. al. [28], who applied similar 

approach to develop shaving model for polymer coated metal can ironing which is also 

an axisymmetric plastic deformation process.  The difference in the velocity field 

developed in this study is that the final coating thickness of the shaved polymer is not 

assumed to be same as the initial coating thickness of the incoming work piece as used 

by Jawroski et. al. [28].  More complex velocity discontinuity fields may be developed 

to obtain still lower values of an upper bound, but this simpler field developed here is 

considered sufficient to demonstrate the idea of modeling failed extrusion and obtain 

applicable results. Also keeping the deformation field simpler reduces the mathematical 

complexity.  
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(a) 

 
 

 

(b) 

Fig. 10 Mathematical model for failure of polymer coating showing (a) velocity 
discontinuity field (b) and the respective hodograph 
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Due to polymer coating getting shaved at the die entry in this shaving model the power 

calculated for internal deformation, shear losses at die entry and die exit still remains the 

same.  

 

Tangential velocity along the shear planes can be determined from geometry as given 

below 
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It is important to note that the shaved off polymer or ‘chips’ do not have same exit 

velocity as the inlet velocity of polymer coating into the die. And hence the thickness of 

the chips is also not same as the initial thickness of polymer coating. Final coating 

thickness can be determined from mass flow principle 

o

ii
o V

tVt
2

=               (87) 

Friction is assumed to exist between metal and die at the metal and die interface all 

along the die length due to polymer coating being shaved off. Also friction is assumed to 

be existing between polymer and metal along length OB. There is energy dissipation at 

shear planes AB, BC and CA due to tangential velocity discontinuity across these planes. 
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The actual length of contact between the shaved off material and the tooling is difficult 

to predict and hence following approximation is used  

φcotoCD tL =               (88) 

which is taken from solid film lubrication studies of Wilson et. al. [29]. Hence there is 

frictional energy dissipation along length CD due to the ‘chips’ in contact with die. The 

lengths of shear planes can be determined from geometry as given below 
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Total upper bound for polymer coating failure is sum of power given by equation (46) 

and power dissipated for shear losses and frictional losses given by 

∑∑ += mkAVkAVP frictionshear            (93) 

As for the successful extrusion model total power for failure model is also optimized 

with respect to geometric parameters θ  and φ  along with miofoi LLL  and , . This gives the 

optimum power required if failure as described in model were to occur. By comparing 

the optimized power predicted by successful extrusion model and shaving model range 

of process parameters can be determined which would result in successful extrusion. 
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3.4 Optimization of power 

 

The power estimated by upper bound method is always greater than the actual power 

required for the deformation process. Hence it is necessary to minimize the power 

predicted by upper bound method so that it approaches the exact result. The total power 

required, given by Equation (70) is to be optimized with respect to all the geometric 

parameters. Optimization of power functional is modeled as non linear non constraint 

multi variable optimization and simplex search algorithm is used to carry out the 

optimization. The simplex search method is employed via function ‘fminsearch’ in 

MATLAB which is also called Nelder and Mead simplex search for the algorithm it 

follows [30]. Numerical integration is implemented using function ‘quadl’ and 

implements a high order method using an adaptive Gauss/Lobatto quadrature rule. The 

five parameters for optimization were Loi, Lof, Lmi, Lmf and Rmf shown in Figure 9. 

Hence the nature of rigid plastic deformation boundary and final coating thickness is 

determined by the process of optimization. Optimization was done in two steps where in 

first step all the values for parameters were given in SI units or meter. In second step the 

optimized values of the five parameters were converted into millimeter and ran only for 

single iteration to give upper bound power integral. This has to be done because of the 

method ‘quadl’ used for numerical integration. It is believed that giving the values of 

parameters in millimeter would make the method to take higher divisions and give better 

results. The MATLAB code is given in Appendix I. 
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Simplex method is a direct search method that does not uses numerical and analytical 

gradients. An N dimensional simplex is the closed geometrical entity obtained by joining 

N+1 point. Hence a two dimensional simplex looks like triangle and three dimensional 

looks like a tetrahedron. Hence sometimes simplex method is also called polyhedron 

search method. The guiding principle of simplex search algorithm is to find the 

functional at all the N+1 vertices and move the simplex away from the vertex of 

maximum functional value and hence towards the optimum point through a iterative 

process. This movement is achieved either by reflection, contraction or expansion 

operation. Simplex search algorithm and all the three operations described above are 

explained by Rao [31] and is given briefly in Appendix II. 
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CHAPTER IV 

FINITE ELEMENT ANALYSIS 

 

Finite element simulations are used to compare with the results of analytical model. A 

commercial finite element analysis (FEA) tool – ABAQUS is used to simulate the 

extrusion of polymer coated metal rod through conical die using elastic-plastic material 

model. For plastic deformation process like extrusion, FEA simulations can predict the 

extrusion pressure to definitely cause the extrusion with fair accuracy. But it is important 

to understand that FEA gives results for a particular set of tooling and process 

parameters and it doesn’t improves the understanding of process readily. To generate the 

family of curve hundreds of FEA simulations are required to be carried out, which is 

time consuming and also requires lot of computing resource. Hence a mathematical 

model is more viable but to validate its predictions, FEA simulations were used as a 

secondary method to compare them both since FEA simulations gives fairly accurate 

results.  

 

4.1 Model setup 

 

Die was modeled as rigid body and metal and polymer were modeled as elastic-plastic 

materials. Material properties for metal and polymer used in simulations are listed in 

Table 1 below. Since ABAQUS uses values of all material and geometric properties 

independent of units hence all the properties listed are in SI units and consistency of 
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units is maintained throughout. Polymer was modeled as perfectly plastic material as can 

be seen for varying plastic strain the yield stress remains same. Some other parameters 

used for simulations are stated below -  

Coefficient of friction between polymer and die – 0.1 

Mass scaling factor – 1e5 

Velocity – 0.01 m/s 

 

Table 1 Material properties used for FEA simulations 
 

Property Plastic 
Strain Metal Polymer 

Density (kg/m3)  2700 1400 
Young's Modulus (Pa)  6.90E+10 8.90E+09 
Poisson's Ratio  0.33 0.33 
Yield strength (Pa) 0 6.00E+07 8.00E+07 
Yield strength (Pa) 0.125 9.00E+07 8.00E+07 
Yield strength (Pa) 0.25 1.13E+08 8.00E+07 
Yield strength (Pa) 0.375 1.24E+08 8.00E+07 
Yield strength (Pa) 0.5 1.33E+08 8.00E+07 
Yield strength (Pa) 1 1.65E+08 8.00E+07 
Yield strength (Pa) 2 1.66E+08 8.00E+07 

 

4.1.1 Meshing 

 

As the nature of problem was axisymmetric hence only two dimensional model 

demonstrating cross section was created. Mesh used was also two dimensional with 

quadrilateral elements covering radial and longitudinal directions. The quadrilateral 

elements were varying widely in sizes, with small elements used where large strains 
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were anticipated and vice versa. In axisymmetric extrusion through conical die the 

farther the material is away from central axis the larger the strain would be; hence 

elements closer to die were much smaller as compared to ones closer to central axis. 

This was achieved by using biased meshing. The polymer material was meshed with 

quadrilateral elements of fine size. The details of meshing are shown below in Figure 11.  

 

 

Fig. 11 Biased mesh details 
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4.1.2 Adaptive meshing 

 

ABAQUS uses updated Lagrangian finite element formulation, where mesh deforms as 

the material deforms, after each iteration. This poses problems when there are large 

material deformations because mesh gets heavily distorted and job aborts. Even applying 

distortion control doesn’t help to contain the large distortion of mesh and preventing the 

job from aborting. Hence to solve this problem adaptive meshing was used. For large 

deformations of material adaptive meshing maintains high quality mesh throughout an 

analysis by allowing the mesh to move independently of the material. Hence adaptive 

meshing only moves the nodes while mesh topology (i.e. elements and connectivity) 

remains the same [32]. But adaptive mesh domain is supported in the step module only 

for ABAQUS/Explicit analyses. Hence even though the problem of polymer coated 

metal rod extrusion is of quasi-static nature ABAQUS/Explicit solver was used during 

the simulations. Also ABAQUS/Explicit has the ability to handle the nonlinear effects of 

complex contact problem well [32].  

 

4.1.3 Mass scaling 

 

Another problem that was faced during simulations was it was taking long time of over 

one hour to complete the FEA simulation. Since the computing resources available at the 

research facility in Texas A&M University allowed only 20 min of interactive session 

hence it necessitated to submit the simulation in batch jobs, which takes quite a few 
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hours waiting in the queue before its processing starts. Mass scaling is often used in 

ABAQUS/Explicit for improved computational efficiency and hence it was used to 

achieve less time consuming and economical solution. Because element stiffness matrix 

in the equilibrium equation plays an important role determining efficiency and accuracy, 

hence mass scaling factor must be chosen so that it does not alter the solution 

significantly. Too low a mass scaling factor results in long run times and too high 

distorts the results completely. Fixed mass scaling factor applied to whole model should 

be chosen such that kinetic energy in the model should be small as compared to total 

energy. To verify this test a mass scaling factor of 1e5 was used and the kinetic energy 

was found to be less than 1% of total energy. Also density was increased 10 times from 

2700 kg/m3 to 27000 kg/m3 and simulation was run again to check if the mass kinetic 

energy is having significant impact on the total work done, which was not the case. 

Results of the two simulations are given below in Figure 12.  

 

To carry out same simulations for different die angles a parametric study was performed. 

Parametric study was implemented using a script that had python Lutz [33] instructions 

to generate and execute parametrized input file for different parameter value. Python 

script and the corresponding parametrized ABAQUS input file are given in Appendix III 

along with the major control cards in the ABAQUS input file; neglecting the geometry 

details and node and element definition in the input file. 
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(a) 

 

(b) 

Fig. 12 Change in kinetic energy as compared to internal energy and total work for 
(a) mass scaling 1e5 (b) density increased 10 times along with mass scaling 1e5 
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4.2 Preliminary simulation 

 

Due to dynamic nature of the problem it is important to conduct some preliminary FEA 

simulation of simple metal rod extrusion through conical die and verify with already 

published results. This is important to demonstrate simulation capability and accuracy of 

the setup of problem. Also it helps to solve the problems encountered with relatively 

simple model and in general builds confidence in using ABAQUS for our composite rod 

extrusion.  

 

Two simulations were carried out for validation purpose. First was successful extrusion 

of bare metal rod without any coating present and second was to demonstrate center 

bursting failure in the simple metal rod extrusion. In simple extrusion reduction ratio 

was 2.0, die angle was 26°57’, flow stress of metal was taken as 166 MPa and friction 

factor was assumed as 0.1. Results using FEA simulations and Avitzur’s [5] 

mathematical model are compared below in Table 2. As can be seen from Table 2 the 

two results were comparable. Avitzur [5] developed criteria for center bursting and 

developed plots showing the criteria for various reduction ratio and various friction 

factor as the die angle changes as shown in Figure 13. In Figure 13 for a particular 

friction factor, area above the respective solid line is the region for successful extrusion 

and area below it is the region where center bursting failure occurs. When the successful 

extrusion simulation carried in this study was plotted on the chart it was well in the safe 

range as shown by the point marked in green on Figure 13. 
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Table 2 Comparison of extrusion pressure predicted by FEA simulations and 
Avitzur's [5] mathematical model 
 

 FEA Simulations Avitzur’s mathematical model [5] 

Extrusion Pressure 
(MPa) 320.22 357.46 

 

Second simulation was carried out to show central bursting as predicted by the criterion 

developed by Avitzur [5], which is shown in Figure 13 below. In this case a metal rod of 

initial diameter 100 mm was reduced to 70 mm giving the reduction ratio as 1.42. Die 

angle used was 24° and friction factor used was 0.1 and it is marked in red on Figure 14 

below. Hence as per the criteria, extrusion carried out with these process parameters 

should have center bursting failure and FEA simulations predicted the same result. 

Figure 14 (a) and (b) shows the velocity and shear stress profile respectively for the 

extrusion carried out with given process parameters. It is noticed that velocity and shear 

stress of the work material at the central axis is varying widely at regular intervals which 

would cause to produce voids in material at regular intervals along the axis and this 

phenomenon is known as center bursting. 
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Fig. 13 Center bursting criteria developed by Avitzur [5] 
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(a) (b) 
 

Fig. 14 Center bursting phenomenon (a) velocity plot (b) shear stress plot 
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4.3 Velocity field 

 

While carrying out polymer coated metal rod extrusion one more interesting thing found 

was the velocity profile of successful extrusion as shown in Figure 15 below. Velocity is 

constant before entering the conical die and after exiting it also. And the velocity 

gradient can clearly be seen as curved inwards instead of straight line or spherical in 

nature which is similar to the mathematical model developed in this study. 

 

 

Fig. 15 Velocity gradient during polymer coated metal rod extrusion 
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CHAPTER V 

DISCUSSION OF RESULTS 

 

The extrusion force predicted by mathematical model for various die angles is compared 

with FEA simulation results in Figure 16. The mathematical model is in good agreement 

with FEA simulations results.  
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Fig. 16 Comparison of extrusion force predicted by mathematical model and FEA 
simulations for various die angles. Other parameters: Velocity = 10 mm/s, Friction 

factor = 0.1, Initial coating thickness = 5%, Reduction Ratio = 1.33 
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Using 100 mm as initial radius might be of concern since extrusion of such a large radii 

rod is not very frequent in real world. Hence a study was performed to verify if the 

extrusion pressure predicted by the mathematical model developed in this study was the 

constant if a smaller initial radius was to be used. Hence a polymer coated metal rod of 

Initial radius 10 mm was extruded to final radius of 7.5 mm keeping the reduction ratio 

same as 1.33. Keeping the other parameters same, extrusion pressure was determined 

and compared with the extrusion pressure predicted by taking 100 mm initial radius. The 

two results are given in Table 3 below and are in good agreement. Hence we can be 

confident in using the extrusion pressure given in Figure 16. 

 

Table 3 Comparison of extrusion pressure predicted by mathematical model for 
Initial Radius 100 mm and 10 mm. Other parameters are: α = 15°, Reduction ratio 
= 1.33, Initial coating thickness = 5%, m = 0.1 
 
 Initial Radius = 100 mm Initial Radius = 10 mm 

Extrusion Pressure (MPa) 66.59 60.76 
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The process of optimization to obtain minimum power also determines the value of the 

lengths defining the nature of rigid plastic deformation boundaries and also establishes 

the final polymer coating thickness. The variation in the four normalized lengths with 

respect to the die length for various die angles is shown in Figure 17 below. Significance 

of this chart lies in the fact that as the value of four lengths Loi, Lof, Lmi and Lmf varies 

the nature of rigid plastic deformation boundaries changes substantially.  
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Fig. 17 Comparison of all the normalized length for various die angles 
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To demonstrate a case in point, consider the values of normalized lengths for die angle 

20°. The nature of rigid plastic deformation boundary for the stated case is shown in 

Figure 18. On the other hand consider the values of normalized lengths for die angle 45° 

and the nature of rigid plastic deformation boundary for it is shown in Figure 19. It can 

be seen that the two deformation boundaries are substantially different from each other. 

In Figure 18 the deformation boundary at entry of die is curved outwards, whereas in 

Figure 19 the deformation boundary at entry of die is seen to be curved inwards.  

 

This change in deformation boundary is emphasized in Figure 17 by the intersection 

point of normalized length Loi and Lmi which occurs approximately at die angle of 38°. 

For all the die angles lower than die angle of 38° the rigid plastic deformation boundary 

at entry of die is curved outwards similar to one shown in Figure 17. And for all the die 

angles greater than die angle of 38° the rigid plastic deformation boundary at entry of die 

is curved inwards similar to one shown in Figure 18. For the die angle where Loi 

intersects Lmi (i.e. approximately 38° in this case) the deformation boundary would be 

exactly a straight line. This shows that mathematical model developed in this study is 

flexible to determine the shape of velocity field on its own while minimizing the upper 

bound power functional. This is very important as upper bound method results are only 

as good as the velocity field assumed and this method has the capability to find the 

boundaries.  
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Fig. 18 Rigid plastic deformation boundaries for die angle 20° 
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Fig. 19 Rigid plastic deformation boundaries for die angle 45° 
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While minimizing the upper bound power functional another parameter that is optimized 

along with the four lengths discussed above is the final coating thickness. Variation in 

final coating thickness for various die angles is shown in Figure 20. It is clearly seen that 

the final coating thickness is not in the same proportion as that of initial coating 

thickness to initial rod diameter, which seems logical too as it is being squeezed on both 

sides by work material and die material i.e. two metals. For die angle below 11.5° 

tendency of the polymer coating is to thicken which as practically is not possible. Hence 

below 11.5° the final coating thickness would be close to the initial coating thickness i.e. 

5 mm in this case. For die angle above 16° the final coating thickness is much less than 

given by the fixed ratio of initial thickness to initial rod diameter. The effect of this can 

be detrimental as the exit velocity of polymer is greater than that of metal because from 

principle of mass flow rate we have  

2
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V t
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t
=               (94) 
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mi mi
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mf

V RV
R

=               (95) 

Hence there is a tendency of the polymer to rush ahead of the metal at the exit of die. If 

the difference between two velocities is too high, it might result in cohesive or adhesive 

failure of polymer coating as shown in Figure 4 and Figure 5 respectively. If the energy 

imparted to polymer due to added velocity is greater than the shear stress of polymer 

then polymer would have a cohesive failure. But if adhesive force between polymer and 

metal is less than the shear stress than adhesive failure would be predominant mode. 
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Based on this fact a failure criterion can be developed and the capability of this 

mathematical model can be demonstrated.  
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Fig. 20 Variation in final coating thickness for various die angles 
 

 

The mathematical model for successful extrusion and adhesive failure of extrusion 

developed can be utilized to determine some important results such as critical die angle 

for polymer coated metal rod extrusion to be successful. A comparison between the 

extrusion pressure required for successful extrusion and for adhesive failure of polymer 

coating during extrusion is shown in Figure 21. It is clearly shown that below a certain 

die angle called critical die angle power required for successful extrusion is less than 
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power required for adhesive failure of extrusion and hence is the preferred mode 

according to the limit theorem of Drucker et. al. [34]. The critical angle in this case is 

12° and above this die angle the adhesive failure would require less power as compared 

to successful extrusion and hence will be the dominant mode. With knowledge of 

various process parameters like reduction ratio, initial coating thickness, velocity and 

material properties critical die angle can be determined mathematically. Family of such 

curves could be generated to give critical die angle for various set of process parameters, 

which could be proved to be very useful for designing the polymer coated metal rod 

extrusion.  
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Fig. 21 Comparison of extrusion pressure required for extrusion for failure and 
successful extrusion of polymer coated metal rod. Parameters are: Reduction Ratio 

= 1.33, Vi = 10 mm/s, initial thickness = 5% 
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To verify the theoretical results FEA simulations were carried out at various die angles 

for same process parameters and indication of failure were found for die angle in the 

range of 11.77° - 15°. Figure 22 shows result of FEA simulation for die angle 11.77° and 

it can be clearly seen that there is uniform von-Mises stress in polymer coating and 

hence no indication of failure. Whereas Figure 23 shows result of FEA simulation for die 

angle 15° and it is seen that von-misses stress in polymer coating is not uniform and has 

repetitive high and low stress which will indicates the polymer will fail. 

 

One important observation that is noted here is due to polymer coating the range of 

process parameters for successful extrusion is reduced. If we see the center bursting 

chart developed by Avitzur [5] as shown in Figure 5 for reduction ratio of 1.33 the 

maximum die angle for which extrusion is successful is around 20°. Whereas for 

polymer coated metal rod extrusion the critical angle reduces to around 12°. Hence it can 

be deduced that polymer coating reduces the range of die angle for the polymer coated 

metal rod extrusion to be successful as compared to bare metal rod extrusion. 
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Fig. 22 Results of FEA simulation at die angle 11.77° with zoomed section. Other 
parameters are: Reduction ratio = 1.33, Vi = 10 mm/s, ti = 5 mm, mp = 0.1 
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Fig. 23 Results of FEA simulation at die angle 15° with zoomed section. Other 
parameters are: Reduction ratio = 1.33, Vi = 10 mm/s, ti = 5 mm, mp = 0.1 
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Variation in power required for extrusion for various initial coating thickness is shown in 

Figure 24 below. Power remains fairly constant for initial polymer coating thickness 

upto 10% of total incoming diameter but falls rapidly thereafter. This seems logical as 

polymer has lower flow stress as compared to that of metal and hence power required to 

plastically deform polymer would be less than metal. Variation in final coating thickness 

for various initial coating thicknesses is shown in Figure 25 below. 
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Fig. 24 Total extrusion power for various initial thickness. Other parameters are: 
Reduction ratio = 1.33, Vi = 10 mm/s, α = 15°, mp = 0.1 
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As can be seen in Figure 25 the final coating thickness predicted by the analytical model 

is much less than the ratio of initial coating thickness to initial rod radius. This would 

impart the polymer greater velocity as compared to metal at the exit of die. This 

phenomenon can be seen in FEA simulations also when observed carefully. As shown in 

Figure 22 the polymer is trying to rush away quicker than metal coming out of exit of die 

and hence a small overhang can be seen. As mentioned earlier this disproportionate 

velocity may cause cohesive or adhesive failure of polymer at the die exit depending on 

the adhesive bond between polymer and metal being greater or less than the shear stress 

of polymer.  
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Fig. 25 Final coating thickness for varying percentage of initial coating thickness. 
Other parameters Rpi = 100 mm, R pf = 75 mm, Vi = 10 mm/s, α = 15° 
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CHAPTER VI 

CONCLUSIONS 

 

A new mathematical model implementing upper bound method has been developed to 

predict extrusion pressure required to successfully carry out polymer coated metal rod 

extrusion. Also mathematical model was extended to incorporate adhesive failure case 

and it was capable to predict the extrusion pressure for adhesive failure. FEA results 

were in good agreement with the results predicted by mathematical model. The new 

mathematical model developed has following advantages –  

• Simple flow functions of first order were used to develop the mathematical 

model to reduce the mathematical complexity but still give acceptable results. 

Optimization was used to minimize the upper bound power functional to 

determine extrusion pressure.  

• Mathematical model for adhesive failure of the coating was also developed and 

integrated with the mathematical model for successful axisymmetric extrusion to 

determine the failure at certain die angle. Hence a critical angle was established 

for the polymer coated metal rod extrusion process. If the die angle is above the 

critical angle it will result in adhesive failure and if the die angle is less than 

critical angle the extrusion will be successful and the final product would have 

intact polymer coating on it. 

• The upper bound power functional is modeled as unconstrained non linear 

optimization problem and the optimization process searches for the five 
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parameters to determine the nature of boundary of velocity field. The rigid plastic 

deformation boundaries do not have a fixed geometry and it can have widely 

varying profile as determined by the optimization process. Hence depending on 

the die angle it can be curved outside at the die entry end making it similar to 

Avitzur’s [5] spherical velocity field  or it can be curved inside at the die entry 

end making it similar to the velocity field developed by Hwang et. al. [26] 

• By modeling the final coating thickness as one of the search parameters in 

optimization it was also shown that final thickness of polymer coating is not in 

proportion with the ratio of initial thickness to the initial radius of work piece. 

• Range of die angle for the polymer coated metal rod axisymmetric extrusion to 

be successful reduces due to polymer coating as compared the extrusion of bare 

metal rod. 

 

The results of this study are summarized below –  

• Extrusion pressure predicted by the mathematical model for successful extrusion 

developed in this study is in good agreement with the extrusion pressure 

predicted by FEA simulations. 

• Effect of initial radius of polymer coated metal rod used in the mathematical 

model to determine the extrusion pressure for a particular reduction ratio is 

insignificant and hence the predictions by the mathematical model are effective. 
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• The nature of rigid plastic deformation boundary changes at approximately 38° 

of die angle. For die angle below 38° the deformation boundary at the entry end 

is curved outside and vice versa.  

• The final coating thickness is not in proportion of the initial coating thickness to 

initial work piece radii. Above die angle of approximately 16° the final coating 

thickness is much less than the original proportion and below approximately 

11.5° it is almost equal to the initial coating thickness. 

• Critical die angle for the study conducted was found to be 12°. As predicted by 

the mathematical model and FEA simulations above die angle of 12° the 

extrusion of polymer coated metal rod through conical die would not be 

successful and vice versa.  

• As the initial coating thickness is increased from 5% to 20% the power required 

to successfully extrude the work material reduces considerably.  

 

The future work can include conducting the experimentations to verify the extrusion 

pressure predicted by the mathematical model developed in this study. Parametric study 

can be done using the mathematical model developed to find critical angle for a range of 

reduction ratio. Also the mathematical model can be improved by incorporating more 

complex polymer behavior and the thermal effects as a result of the heat generated due 

to the polymer coated metal rod extrusion process. 



 

  

72

REFERENCES 

 

[1] Schey, J. A., 1984, Tribology in Metalworking: Friction, Lubrication and Wear, 
American Society of Metals, Metals Park, OH. 

 
[2] Rao, U. S., 1967, “Polyethylene as a Lubricant for Deep Drawing,” Sheet Metal 

Industries, 44, pp. 673-678. 
 
[3] Mear, D. R., Topper, H. H., 1963, “Plastics as Lubricants for Deep Drawing and 

Presswork,” Sheet Metal Industries, 40, pp. 567-570. 
 
[4] Groover M. P., 1996, Fundamentals of Modern Manufacturing: Materials, Processes 

and Systems, John Wiley & Sons Inc., New York, NY. 
 
[5] Avitzur, B., 1968, “Analysis of Central Bursting in Extrusion and Wire Drawing,” 

Journal of Engineering for Industry, 90, pp. 79-91. 
 
[6] Hosford W. F., Cadell R. M., 1983, Metal Forming Mechanics and Metallurgy, 

Prentice-Hall Inc., Englewood Cliffs, NJ, pp. 143 – 149. 
 
[7] Clift, S.E., Hartley, P., Sturgess, C.E.N., Rowe, G.W., 1990, “Fracture Prediction in 

Plastic Deformation Processes,” Int. J. Mech. Sci., 32(1), pp. 1-17. 
 
[8] Cockroft, M.G., Latham, D.J., 1968, “Ductility and the Workability of Metals,” 

Journal of the Institute of Metals, 96, pp. 33-43. 
 
[9] Kudo, H., 1960, “Some Analytical and Experimental Studies of Axisymmetric Cold 

Forging and Extrusion,” Int. J. Mech. Sci., 2, pp. 102 – 127. 
 
[10] Avitzur, B., 1966, “Analysis of Metal Extrusion,” ASME J. of Eng. for Ind., 87, pp. 

57-70. 
 
[11] Kobayashi, S., Thomsen E. G., 1965, “Upper- and Lower-Bound Solutions to 

Axisymmetric Compression and Extrusion Problems,” Int. J. Mech. Sci., 7, pp. 127-
143. 

 
[12] Bianchi, J. H., Sheppard, T., 1987, “A Comparison of a Viscoplastic Finite-Element 

Model with Slip-Line Field and Upper-Bound Solutions for Non-Hardening 
Material Subjected to Plane Strain and Axisymmetric Extrusion,” Int. J. Mech. Sci., 
29, pp. 61-81. 

 



 

  

73

[13] Zimmerman, Z., Avitzur, B., 1970, “Metal Flow through Conical Converging Dies - 
a Lower Upper Bound Approach Using Generalized Boundaries of the Plastic 
Zone,” Journal of Engineering for Industry, 92, pp.119-129. 

 
[14] Chen, C. T., Ling, F. F., 1968, “Upper-Bound Solution to Axisymmetric Extrusion 

Problem,” Int. J. Mech. Sci., 10, pp. 863-879. 
 
[15] Chang, K. T., Choi, J. C., 1971, “Upper-Bound Solutions to Extrusion Problems 

through Curved Dies,” Developments in Mechanics: Proc. 12th Midwestern Mech. 
Conf., 6, University of Notre Dame, West Lafayette, IN, pp. 383-396. 

 
[16] Nagpal, V., 1974, “General Kinematically Admissible Velocity Fields for Some 

Axisymmetric Metal Forming Problems,” Journal of Engineering for Industry, 96, 
pp. 1197-1201. 

 
[17] Yang, D. Y., Han, C. H., Lee, B. C., 1985, “The Use of Generalized Deformation 

Boundaries for the Analysis of Axisymmetric Extrusion through Curved Dies,” Int. 
J. Mech. Sci., 27(10), pp. 653-663. 

 
[18] Yang, D. Y., Han, C. H., 1987, "A New Formulation of Generalized Velocity Field 

for Axisymmetric Forward Extrusion through Arbitrarily Curved Dies," Journal of 
Engineering for Industry, 109, pp. 161-168. 

 
[19] Altan, S. B., Antar, N., Gultekin, E., 1992, “A Comparison of Some Deformation 

Models in Axisymmetric Extrusion,” Journal of Materials Processing Technology, 
33, pp. 263-272. 

 
[20] Alexandrov, S., Mishuris, G., Miszuris, B., Sliwa, R. E., 2001, “On the Dead-Zone 

Formation and Limit Analysis in Axially Symmetric Extrusion,” Int. J. Mech. Sci., 
43, pp. 367-379. 

 
[21] Osakada, K., Limb, M., Mellor, P.B., 1973, “Hydrostatic Extrusion of Composite 

Rods with Hard Cores,” Int. J. Mech. Sci., 15, pp. 291-307. 
 
[22] Tayal, A. K., Natarajan, R., 1981, “A Finite Element Analysis of Axisymmetric 

Extrusion of Composite Rods,” Int. J. Machine Tool Des., 21(3/4), pp. 227-235. 
 
[23] Avitzur, B., Wu, R., Talbert, S., Chou, Y. T., 1982, “Criterion for the Prevention of 

Core Fracture During Extrusion of Bimetal Rods,” Journal of Engineering for 
Industry, 104, pp. 293-304. 

 
[24] Avitzur, B., Wu, R., Talbert, S., Chou, Y. T., 1986, “Analysis of Core Fracture in 

Drawing of Bimetal Rods and Wires,” Journal of Engineering for Industry, 108, pp. 
133-140. 



 

  

74

[25] Yang, D. Y., Kim, Y. G., Lee, C. M., 1991, “An Upper Bound Solution for 
Extrusion of Composite Rods through Curved Dies,” Int. J. Mach. Tools Manufact., 
31(4), pp. 565-575. 

 
[26] Hwang, Y.-M., Hwang, T.-F., 2002, “An Investigation into the Plastic Deformation 

Behavior within a Conical Die During Composite Rod Extrusion,” Journal of 
Materials Processing Technology, 121, pp. 226-233. 

 
[27] Kang, C. -G., Kwon, H. C., 2002, “Finite Element Analysis Considering Fracture 

Strain of Sheath Material and Die Lubricant in Extrusion Process of Al-Cu Clad 
Composites and Its Experimental Investigation,” Int. J. Mech. Sci., 44, pp. 247-267. 

 
[28] Jawroski, J. A., Schmid, S. R., 1999, “Survivability of Laminated Polymer 

Lubricant Films in Ironing”, Tribology Transactions, 42, pp. 32-38. 
 
[29] Wilson, W. R. D., Halliday, K., 1977, “An Inlet Zone Analysis for the Lubrication 

of a Drawing Process by Rigid-Plastic Solid”, Wear, 42, pp. 135-148. 
 
[30] Lagarias, J.C., Reeds, J. A., Wright, M. H., Wright, P. E., 1998, “Convergence 

Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM 
Journal of Optimization, 9(1), pp.112-147.  

 
[31] Rao, S. S., 1996, Engineering Optimization Theory & Practice, Third Edition, John 

Wiley & Sons Inc., New York, NY, pp. 368-376. 
 
[32] Editors of ABAQUS Manual, ABAQUS/CAE User's Manual, Hibbitt, Karlsson & 

Sorenson Inc.  
 
[33] Lutz, M., 1996, Programming Python, O’Reilly & Associates, Inc., Bonn, 

Germany. 
 
[34] Drucker, D.C., Prager, W., Greenberg, H.J., 1952, “Extended Limit Design 

Theorems for Continuous Media”, Q. J. Appl. Math., 9, pp. 381-389. 



 

  

75

APPENDIX I 

optimize.m 

%============================================================== 
%   This is the Main program called from Matlab Interactive  
%   Window and effectively calls all the other program to  
%   get optimzed solution for successful extrusion as well 
%   as failed extrusion.  
% 
%   Also it writes the initial values of all the parameters 
%   and value of functional and process variables after each 
%   iteration in a file named 'solution.xls' in the same  
%   directory where this file is.  
%============================================================== 
clear all; 
clc; 
Vi = 0.010;            % Note Ram Velocity is in mm/sec 
Rpi = 0.100;           % Initial Radius 
Rpf = 0.075;            
RA = 1-(Rpf^2/Rpi^2);  % 50 Percent Area Reduction 
Ratio_i = 0.05;        % Initial Radius Ratio 
Rmi = (1-Ratio_i)*Rpi; %          
alpha = 20;            % Die Angle in degrees 
Lpf = 0; 
Lpi = (Rpi-Rpf)/tan(deg2rad(alpha)); 
Rmf = Rpf-0.001 
y = [Vi, Rpi, Rpf, Rmi, Lpf, Lpi,]; 
  
x0 = [Lpi-4,Lpf+4,Lpi-1,Lpf+1,Rmf]; % Initial guess Loi,Lof,Lmi,Lmf,Rmf 
  
first = ['Loi' , 'Lof', 'Lmi', 'Lmf', 'Rmf', 'Vi', 'Rpi', 'RA', 'Rpf', 
'Ratio', 'Rmi', 'Alpha', 'Lpf', 'Lpi']; 
second = [x0(1), x0(2), x0(3), x0(4), x0(5), 0, Vi, Rpi, RA, Rpf, 
Ratio_i, Rmi, alpha, Lpf, Lpi]; 
dlmwrite('solution.xls',first,'\t'); 
dlmwrite('solution.xls',second,'-append','delimiter','\t','newline', 
'pc'); 
options = optimset('OutputFcn', 
@outfun,'Largescale','off','Display','iter','MaxFunEvals',100,'MaxIter'
,50,'TolFun',1e+3,'TolX',0.001); 
[x,fval,exitflag,output] = fminsearch(@(x) fun(x,y),x0,options); 
 
sol = [x(1), x(2), x(3), x(4), x(5), fval]; 
dlmwrite('solution.xls',sol,'-append','delimiter','\t','newline','pc'); 
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fun.m 

function J = fun(x,y) 
%============================================================== 
%   This is the function called by optimize.m and calcualted  
%   total upper bound power by summing all its components 
% 
%   It calls various other functions to obtain the value of 
%   components of total power.  
%============================================================== 
syms r z real; 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
% Known values  
Vi = y(1); 
Rpi = y(2); 
Rpf = y(3); 
Rmi = y(4); 
Lpf = y(5); 
Lpi = y(6); 
  
% unknown values passed as arguments 
Loi = x(1); 
Lof = x(2); 
Lmi = x(3); 
Lmf = x(4); 
Rmf = x(5); 
 
% Flow Stress values from abaqus simulation -  
Sigmam = 166e6; 
Sigmap = 80e6; 
  
% coefficient of friction values 
mm = 0; 
mp = 0.1; 
  
% Part I of Energy dissipated due to internal deformation in Metal 
z1 = Lof; 
z2 = Loi; 
Rlo = 0; 
Rhi = 'Rm'; 
fnc = 'Wim'; 
Wim1 = DblIntg(fnc,Rlo,Rhi,z1,z2,0.01) 
 
% Part II of Energy dissipated due to internal deformation in Metal 
z1 = Lmf; 
z2 = Lof; 
Rlo = 'Gammamf'; 
Rhi = 'Rm'; 
Wim2 = DblIntg(fnc,Rlo,Rhi,z1,z2,0.01) 
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% Part III of Energy dissipated due to internal deformation in Metal 
z1 = Loi; 
z2 = Lmi; 
Rlo = 'Gammami'; 
Rhi = 'Rm'; 
Wim3 = DblIntg(fnc,Rlo,Rhi,z1,z2,0.01) 
 
% Total Energy dissipated due to internal deformation in Metal 
Wim = (2*pi*Sigmam/sqrt(3))*((Wim1) + (Wim2) + (Wim3)) 
 
% Part I of Energy dissipated due to internal deformation in Polymer 
z1 = Lmf; 
z2 = Lmi; 
Rlo = 'Rm'; 
Rhi = 'Rp'; 
fnc = 'Wip'; 
Wip1 = DblIntg(fnc,Rlo,Rhi,z1,z2,0.01) 
  
% Part II of Energy dissipated due to internal deformation in polymer 
z1 = Lpf; 
z2 = Lmf; 
Rlo = 'Gammapf'; 
Rhi = 'Rp'; 
Wip2 = DblIntg(fnc,Rlo,Rhi,z1,z2,0.01) 
  
% Part III of Energy dissipated due to internal deformation in polymer 
z1 = Lmi; 
z2 = Lpi; 
Rlo = 'Gammapi'; 
Rhi = 'Rp'; 
Wip3 = DblIntg(fnc,Rlo,Rhi,z1,z2,0.01) 
 
% Total Energy dissipated due to internal deformation in Polymer 
Wip = (2*pi*Sigmap/sqrt(3))*((Wip2) + (Wip3) + (Wip1)) 
  
% Total energy dissipated due to internal deformation 
Wi = Wim + Wip 
  
% Energy dissipated due to frictional losses at polymer-die interface 
z1 = Lpf; 
z2 = Lpi; 
fnc = 'DeltaVRp'; 
Wfp = (2*pi*mp*Sigmap/sqrt(3))*quadl(fnc,z1,z2); 
  
% Energy dissipated due to frictional losses at polymer-metal interface 
z1 = Lmf; 
z2 = Lmi; 
fnc = 'DeltaVRm'; 
Wfm = (2*pi*mm*Sigmam/sqrt(3))*quadl(fnc,z1,z2); 
  
% Total energy dissipated due to frictional losses 
Wf = (Wfp) + (Wfm) 
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% Energy dissipated due to shear losses at boundary Gammami 
z1 = Loi; 
z2 = Lmi; 
fnc = 'DeltaVmi'; 
Wsmi = 2*pi*Sigmam/sqrt(3)*quadl(fnc,z1,z2) 
  
% Energy dissipated due to shear losses at boundary Gammamf 
z1 = Lmf; 
z2 = Lof; 
fnc = 'DeltaVmf'; 
Wsmf = 2*pi*Sigmam/sqrt(3)*quadl(fnc,z1,z2) 
  
% Energy dissipated due to shear losses at boundary Gammapi 
z1 = Lmi; 
z2 = Lpi; 
fnc = 'DeltaVpi'; 
Wspi = 2*pi*Sigmap/sqrt(3)*quadl(fnc,z1,z2) 
  
% Energy dissipated due to shear losses at boundary Gammapf 
z1 = 0; 
z2 = Lmf; 
fnc = 'DeltaVpf'; 
Wspf = 2*pi*Sigmap/sqrt(3)*quadl(fnc,z1,z2) 
  
% Total energy dissipated due to shear losses 
Ws = (Wsmi) + (Wsmf) + (Wspf) + (Wspi); 
  
% Total Power using upper bound method 
J = Wi + Wf + Ws 
 
DblIntg.m 

function a = DblIntg(fnc,Rlo,Rhi,z1,z2,tol) 
%============================================================== 
%   function DblIntg executes a double integral of the function 
%   'fnc' over the limits z1<z<z2, Rlo(z)<r<Rhi(z).  The limits 
%   on the r integration can be either scalars or functions of 
%   z.  The function calls function 'G2d', which executes a 1-d 
%   integration over r for each value of z. 
% 
%   If the integration limits of the inner integral (over r) are 
%   functions of z, the user must supply functions called 'Rhi' 
%   and 'Rlo'.  Otherwise, simple numerical values can be used. 
% 
%   The limits of the outer integral (over z) must be scalars. 
% 
%   The integrand function, fnc(r,z), is a user-supplied function 
%   of two variables.  The name of this function, enclosed in 
%   single quotes, is the first element of the argument list. 
% 
%   The accuracy is determined by the tolerance, tol.  If  
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%   omitted, a value of tol = 1.e-3 is used. 
% 
%   The use is 
% 
%        a = DblIntg(fnc,'Rlo','Rhi',z1,z2,tol) 
%============================================================== 
  if nargin < 6;  
      tol=1.e-3; 
  end;  
  tl=tol; 
  a = quadl('G2d',z1,z2,tol,0,Rlo,Rhi,fnc,tl); 
 

G2d.m 

function f = G2d(z,R1,R2,fnc,tl) 
%============================================================== 
%  G2d is one of a set of functions used to evaluate a double 
%  integral.  Its purpose is to integrate 'fnc(r,z(i))' over  
%  r from R1 to R2, which are either functions of z(i)) or   
%  scalars.   This function is called by 'DblIntg' 
%============================================================== 
  z = z(:); 
  n = length(z); 
  if isstr(R1)==1; 
      r1=feval(R1,z); 
  else; 
      r1=ones(size(z))*R1; 
  end 
  if isstr(R2)==1; 
      r2=feval(R2,z); 
  else; 
      r2=ones(size(z))*R2; 
  end 
  for i = 1:n 
     f(i) = quadl(fnc,r1(i),r2(i),tl,0,z(i)); 
  end 
  f = f(:); 
 

outfun.m 

function stop = outfun(x,optimValues,state) 
%================================================================ 
%   This function is called from optimize.m after every iteration  
%   to check the value of functional.   
%   Also it appends the values of all the process parameters 
%   and value of functional after each iteration in the file 
%   named 'solution.xls'  
%================================================================ 
stop=false; 
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sol = [x(1), x(2), x(3), x(4), x(5), optimValues.fval]; 
dlmwrite('solution.xls',sol,'-append','delimiter','\t','newline','pc'); 
  
if optimValues.fval < 0 
   stop = true; 
end; 
 

DeltaVmf.m 

function r1=DeltaVmf(z) 
%============================================ 
%  Function DeltaVmf is called from fun.m   
%  to evaluate the shear losses at the  
%  rigid-plastic deformation boundary Gammamf 
%============================================ 
 
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r = sqrt((z-Lof)*Rmf^2/(Lmf-Lof)); 
Vrm = -Vi.*Rmi.^2.*r.*(Rmi-Rmf)./(Lmi-Lmf)./(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^3; 
Vzm = -Vi.*Rmi.^2./(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).^2; 
Vmf = Vi.*Rmi.^2/Rmf.^2; 
  
r1 = abs((Vmf+Vzm).*(((z-Lof).*Rmf.^2./(Lmf-Lof)).^(1./2))-
Vrm.*((1./2).*(Rmf.^2)./(Lmf-Lof))); 
 

DeltaVmi.m 

function r1=DeltaVmi(z) 
%============================================ 
%  Function DeltaVmi is called from fun.m   
%  to evaluate the shear losses at the  
%  rigid-plastic deformation boundary Gammami 
%============================================ 
 
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r = sqrt((z-Loi).*Rmi.^2./(Lmi-Loi)); 
Vrm = -Vi.*Rmi.^2.*r.*(Rmi-Rmf)./(Lmi-Lmf)./(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^3; 
Vzm = -Vi.*Rmi.^2./(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).^2; 
 
r1 = abs((Vi+Vzm).*(((z-Loi).*Rmi.^2/(Lmi-Loi)).^(1./2))-
(Vrm.*(0.5.*(Rmi.^2)./(Lmi-Loi)))); 
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DeltaVpf.m 

function r1=DeltaVpf(z) 
%============================================ 
%  Function DeltaVpf is called from fun.m   
%  to evaluate the shear losses at the  
%  rigid-plastic deformation boundary Gammapf 
%============================================ 
 
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r = Rpf + (Rmf-Rpf).*z./Lmf; 
 
Vrp = -Vi.*(Rpi.^2-Rmi.^2).*((Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).*(Rmi-
Rmf)./(Lmi-Lmf).*((Rpf+(Rpi-Rpf).*z./Lpi).^2-r.^2)+(Rpf+(Rpi-
Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi.*(r.^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2))./(r.*((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2).^2); 
Vzp = -Vi.*(Rpi.^2-Rmi.^2)./((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^2); 
  
Vpf = Vi.*(Rpi.^2-Rmi.^2)./(Rpf.^2-Rmf.^2); 
  
r1 = abs(Vpf+Vzp-Vrp.*((Rmf-Rpf)./Lmf)).*(Rpf + (Rmf-Rpf).*z./Lmf); 
 

DeltaVpi.m 

function r1=DeltaVpi(z) 
%============================================ 
%  Function DeltaVpi is called from fun.m   
%  to evaluate the shear losses at the  
%  rigid-plastic deformation boundary Gammapi 
%============================================ 
 
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r = (Rmi.*Lpi-Rpi.*Lmi)./(Lpi-Lmi)+(Rpi-Rmi).*z./(Lpi-Lmi); 
 
Vrp = -Vi.*(Rpi.^2-Rmi.^2).*((Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).*(Rmi-
Rmf)./(Lmi-Lmf).*((Rpf+(Rpi-Rpf).*z./Lpi).^2-r.^2)+(Rpf+(Rpi-
Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi.*(r.^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2))./(r.*((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2).^2); 
Vzp = -Vi.*(Rpi.^2-Rmi.^2)./((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^2); 
  
r1 = abs(Vi+Vzp-Vrp.*((Rpi-Rmi)./(Lpi-Lmi))).*((Rmi.*Lpi-
Rpi.*Lmi)./(Lpi-Lmi)+(Rpi-Rmi).*z./(Lpi-Lmi)); 
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DeltaVRm.m 

function r1=DeltaVRm(z) 
%============================================ 
%  Function DeltaVRm is called from fun.m   
%  to evaluate the frictional losses at the  
%  metal polymer interface given by 'Rm' 
%============================================ 
 
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
  
r = Rmf + (Rmi-Rmf).*z./(Lmi-Lmf); 
Vrm = -Vi.*Rmi.^2.*r.*(Rmi-Rmf)./(Lmi-Lmf)./(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^3; 
Vzm = -Vi.*Rmi.^2./(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).^2; 
Vrp = -Vi.*(Rpi.^2-Rmi.^2).*((Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).*(Rmi-
Rmf)./(Lmi-Lmf).*((Rpf+(Rpi-Rpf).*z./Lpi).^2-r.^2)+(Rpf+(Rpi-
Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi.*(r.^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2))./r.*((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2).^2; 
Vzp = -Vi.*(Rpi.^2-Rmi.^2)./((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^2); 
  
r1 = abs(Vzp-Vzm).*sqrt(1+((Rmi-Rmf)./(Lmi-Lmf)).^2); 
 

DeltaVRp.m 

function r1=DeltaVRp(z) 
%============================================ 
%  Function DeltaVRp is called from fun.m   
%  to evaluate the frictional losses at the  
%  die and polymer interface given by 'Rp' 
%============================================ 
 
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
  
r = Rpf + (Rpi-Rpf).*z./Lpi; 
Vrp = -Vi.*(Rpi.^2-Rmi.^2).*((Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).*(Rmi-
Rmf)./(Lmi-Lmf).*((Rpf+(Rpi-Rpf).*z./Lpi).^2-r.^2)+(Rpf+(Rpi-
Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi.*(r.^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2))./r.*((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2).^2; 
Vzp = -Vi.*(Rpi.^2-Rmi.^2)./((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^2); 
  
r1 = abs(Vzp).*sqrt(1+((Rpi-Rpf)./Lpi).^2);                                           
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Gammamf.m 

function r2=Gammamf(z) 
%============================================ 
%  Function Gammamf is called from DblIntg.m   
%  to evaluate the value of functional 
%  for a particular 'z' at limit of integral  
%  Gammamf 
%============================================ 
 
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r2 = sqrt((z-Lof)*Rmf^2/(Lmf-Lof)); 
 

Gammami.m 

function r2=Gammami(z) 
%============================================ 
%  Function Gammami is called from DblIntg.m   
%  to evaluate the value of functional 
%  for a particular 'z' at limit of integral  
%  Gammami 
%============================================ 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r2 = sqrt((z-Loi)*Rmi^2/(Lmi-Loi)); 
 

Gammapf.m 

function r2=Gammapf(z) 
%============================================ 
%  Function Gammapf is called from DblIntg.m   
%  to evaluate the value of functional 
%  for a particular 'z' at limit of integral  
%  Gammapf 
%============================================ 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r2 = Rpf + (Rmf-Rpf)*z/Lmf; 
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Gammapi.m 

function r2=Gammapi(z) 
%============================================ 
%  Function Gammapi is called from DblIntg.m   
%  to evaluate the value of functional 
%  for a particular 'z' at limit of integral  
%  Gammapi 
%============================================ 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
 
r2 = ((Rmi*Lpi-Rpi*Lmi)+(Rpi-Rmi)*z)/(Lpi-Lmi); 
 

Rm.m  
 
function r1=Rm(z) 
%============================================ 
%  Function Rm is called from DblIntg.m   
%  to evaluate the value of functional 
%  for a particular 'z' at limit of integral  
%  Rm 
%============================================ 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
r1 = Rmf + (Rmi-Rmf)*z/(Lmi-Lmf); 
 

Rp.m 

function r2=Rp(z) 
%============================================ 
%  Function Rp is called from DblIntg.m   
%  to evaluate the value of functional 
%  for a particular 'z' at limit of integral  
%  Rp 
%============================================ 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
r2 = Rpf + (Rpi-Rpf)*z/Lpi; 
 

Wim.m 

function f = Wim(r,z) 
%============================================== 
%  Function Wim is called from DblIntg.m   
%  which eventually is called from fun.m 
%  to evaluate the functional for calculating 
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%  power for internal deformation in metal 
%============================================== 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
f = (1./2.*(12.*Vi.^2.*Rmi.^4.*(Rmi-Rmf).^2./(Lmi-Lmf).^2./(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^6+9.*Vi.^2.*Rmi.^4.*r.^2.*(Rmi-Rmf).^4./(Lmi-
Lmf).^4./(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).^8).^(1./2)).*r; 
 

Wip.m 

function f = Wip(r,z) 
%============================================== 
%  Function Wip is called from DblIntg.m   
%  which eventually is called from fun.m 
%  to evaluate the functional for calculating 
%  power for internal deformation in metal 
%============================================== 
  
global Vi Rpi Rpf Rmi Lpf Lpi Loi Lof Lmi Lmf Rmf; 
f = (1./2.*(2.*Vi.^2.*(Rpi.^2-Rmi.^2).^2.*((Rpf+(Rpi-
Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi.*(1+(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2./r.^2)-(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).*(Rmi-Rmf)./(Lmi-
Lmf).*(1+(Rpf+(Rpi-Rpf).*z./Lpi).^2./r.^2)).^2./((Rpf+(Rpi-
Rpf).*z./Lpi).^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2).^4+8.*Vi.^2.*(Rpi.^2-Rmi.^2).^2.*((Rpf+(Rpi-
Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi-(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).*(Rmi-
Rmf)./(Lmi-Lmf)).^2./((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^2).^4+2.*Vi.^2.*(Rpi.^2-Rmi.^2).^2.*((Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).*(Rmi-Rmf)./(Lmi-Lmf).*((Rpf+(Rpi-
Rpf).*z./Lpi).^2./r.^2-1)+(Rpf+(Rpi-Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi.*(1-
(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).^2./r.^2)).^2./((Rpf+(Rpi-
Rpf).*z./Lpi).^2-(Rmf+(Rmi-Rmf).*z./(Lmi-Lmf)).^2).^4+4.*(-Vi.*(Rpi.^2-
Rmi.^2).*((Rmi-Rmf).^2./(Lmi-Lmf).^2.*((Rpf+(Rpi-Rpf).*z./Lpi).^2-
r.^2)+(Rpi-Rpf).^2./Lpi.^2.*(r.^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2))./((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).^2).^2+(4.*(Rpf+(Rpi-Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi-4.*(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).*(Rmi-Rmf)./(Lmi-Lmf)).*((Rmf+(Rmi-Rmf).*z./(Lmi-
Lmf)).*(Rmi-Rmf)./(Lmi-Lmf).*((Rpf+(Rpi-Rpf).*z./Lpi).^2-
r.^2)+(Rpf+(Rpi-Rpf).*z./Lpi).*(Rpi-Rpf)./Lpi.*(r.^2-(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^2))./((Rpf+(Rpi-Rpf).*z./Lpi).^2-(Rmf+(Rmi-
Rmf).*z./(Lmi-Lmf)).^2).^3).^2).^(1./2)).*r; 
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APPENDIX II 

 

A simplex is a geometrical figure formed by set of points (n+1) in n-dimensional space. 

Thus the simplest example of simplex is a triangle in two dimensional space. The initial 

guess is vector Xi and assigning it to first vertex X1 and the other two vertices are 

determined by X2 = Xi+λi and X3 = Xi+λj. Hence a triangular simplex with its vertices 

being X1, X2 and X3 as the initial simplex is constructed for optimizing the objective 

functional f. The objective function is evaluated at these three vertices of simplex and the 

algorithm replaces one of the vertex at each iteration in the direction of decreasing f. The 

flow chart of algorithm is given in Figure 26 and it follows following steps: 

• If the objective function has highest value at vertex Xh then the point Xr can be 

found by reflecting the triangular simplex in the opposite direction. The new 

simplex is made by including X1, X2 and Xr and this process is reflection. 

• Reflection is done along a line from Xh through the midpoint of the opposite face 

of the triangle Xo. If the functional at reflected point Xr founds a lower value 

algorithm tries a larger move along the same direction and is called as expansion. 

Expansion coefficient is given by γ. If the functional is not lower a new Xh has 

been found and new reflection can be carried out. Repeating the process of 

finding a new Xh and reflecting goes on until the simplex reaches the optimum.  

• If reflection process gives a Xr such that f(Xr) > f(Xi) for all i except i=h and 

f(Xr) < f(Xh) then Xh is replaced by Xr and simplex is contracted towards lowest 

point and reflection process is resumed. Contraction coefficient is given by β. 
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APPENDIX III 
 

Since ABAQUS does not provides any parametric study through it’s built in interactive 

session or through any control card hence a python script was generated to conduct 

parametric study. Given below is a file with extension ‘.psf’ which is the python script.  

 
test1-0724_coated_extrusion_para.psf 
 
# 
####################################################################### 
#  THIS SCRIPT RUNS A SEQUENCE OF PARAMETRIZED INPUT FILES TO  
#  STUDY THE EFFECT OF DIFFERENT DIE ANGLES FOR A GIVEN  
#  REDUCTION RATIO ON REACTION FORCE/EXTRUSION PRESSURE  
#  REQUIRED. 
####################################################################### 
# 
study = ParStudy(par=('x_coord_1', 'y_coord_1'), name='test1-
0724_coated_extrusion_para') 
 
#  DEFINE THE PARAMETERS 
 
study.define (DISCRETE, par='y_coord_1', domain=(-0.06430052, -
0.00671282, 0.01267949, 0.02252523, 0.02855493, 0.03267949, 0.03571852, 
0.03808246, 0.04000000)) 
study.define(DISCRETE, par='x_coord_1', domain=(0.09)) 
 
#  SAMPLE THE PARAMETERS - INPUT THE APPROPRIATE VALUES 
 
study.sample(INTERVAL, par='y_coord_1', interval=-2) 
study.sample(INTERVAL, par='x_coord_1', interval=-2) 
 
#  COMBINE THE SAMPLES INTO ANALYSES 
 
study.combine(MESH, name='dset90') 
 
#  GENERATE INPUT DECKS AND EXECUTION SCRIPT 
#  FOR VARIOUS TEMPLATES 
 
study.generate(template='test1-0724_coated_extrusion_para') 
 
#  EXECUTE RUNS SEQUENTIALLY 
 
study.execute(ALL) 
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The corresponding ABAQUS input file i.e. file with extension ‘.inp’ for the above given 

python script is given below. Note the nodes and elements details is missing and only 

control elements and parametric geometry details are given below -   

 
test1-0724_coated_extrusion_para.inp 
 
*Heading 
** Job name: test2-0718_coated_extrusion Model name: Model-2 
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
** 
** PARTS 
** 
*Part, name=Coating 
*End Part 
*Part, name=Die 
*End Part 
*Part, name=Rod 
*End Part 
** 
** ASSEMBLY 
** 
*Assembly, name=Assembly 
**   
*Instance, name=Die-1, part=Die 
** Region: (Section-2:Picked) 
*Element, type=MASS, elset=_PickedSet3_MASS_ 
1, 1 
*Mass, elset=_PickedSet3_MASS_ 
1e+10, 
** 
** Parametric Input Reduction Ratio fixed and angle is varying 
** 
*Parameter 
x_coord_1 = 0.05 
y_coord_1 = -0.01 
x_coord_2 = x_coord_1 
y_coord_2 = y_coord_1 - 0.025 
x_coord_3 = x_coord_2 + 0.025 
y_coord_3 = y_coord_2 
x_coord_4 = x_coord_3 
*Node 
      1,          0.3,         -0.2,           0. 
*Nset, nset=Die-1-RefPt_, internal 
1,  
*Surface, type=SEGMENTS, name=RigidSurface_, internal, FILLET=0.075 
START,          0.3,         -0.2 
 LINE,      <x_coord_4>,     -0.2 
 LINE,      <x_coord_3>,     <y_coord_3> 
 LINE,      <x_coord_2>,     <y_coord_2> 
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 LINE,      <x_coord_1>,     <y_coord_1> 
 LINE, 0.0999999999999998, 0.0599720518009124 
 LINE,          0.1,          0.4 
 LINE,          0.3,          0.4 
 LINE,          0.3,         -0.2 
*Rigid Body, ref node=Die-1-RefPt_, analytical surface=RigidSurface_ 
*End Instance 
** 
 
 
 
**  
** ELEMENT CONTROLS 
**  
*Section Controls, name=EC-1, hourglass=ENHANCED 
1., 1., 1. 
*Section Controls, name=EC-2, hourglass=ENHANCED 
1., 1., 1. 
**  
** MATERIALS 
**  
*Material, name="Metal - Rod" 
*Density 
2700., 
*Elastic 
 6.9e+10, 0.33 
*Plastic 
    6e+07,    0. 
    9e+07, 0.125 
 1.13e+08,  0.25 
 1.24e+08, 0.375 
 1.33e+08,   0.5 
 1.65e+08,    1. 
 1.66e+08,    2. 
*Material, name=Plastic-Coating 
*Density 
1400., 
*Elastic 
 8.9e+09, 0.33 
*Plastic 
 8e+07,    0. 
 8e+07, 0.125 
 8e+07,  0.25 
 8e+07, 0.375 
 8e+07,   0.5 
 8e+07,    1. 
 8e+07,    2. 
**  
** INTERACTION PROPERTIES 
**  
*Surface Interaction, name=friction 
*Friction, shear traction slope=0.5 
 0.1, 
** ---------------------------------------------------------------- 
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**  
** STEP: Step-1 
**  
*Step, name=Step-1 
Extrusion 
*Dynamic, Explicit 
, 20. 
*Bulk Viscosity 
0.06, 1.2 
** Mass Scaling: Semi-Automatic 
**               Whole Model 
*Fixed Mass Scaling, factor=1000000. 
**  
** BOUNDARY CONDITIONS 
**  
** Name: Top Velocity Type: Velocity/Angular velocity 
*Boundary, type=VELOCITY 
_PickedSet40, 2, 2, -0.01 
** Name: axis Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet11, XSYMM 
** Name: fixed Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
_PickedSet61, ENCASTRE 
*Adaptive Mesh Controls, name=Adaptive-1 
1., 0., 0. 
*Adaptive Mesh, elset=Combined_Rod+Coating, controls=Adaptive-1, 
frequency=25, initial mesh sweeps=100, mesh sweeps=10, op=NEW 
**  
** INTERACTIONS 
**  
** Interaction: Int-2 
*Contact Pair, interaction=friction, mechanical constraint=KINEMATIC, 
cpset=Int-2 
Die-1.RigidSurface_, _PickedSurf55 
** Interaction: Interaction-1 
*Contact Pair, interaction=friction, mechanical constraint=KINEMATIC, 
cpset=Interaction-1 
Die-1.RigidSurface_, _PickedSurf52 
*Contact Controls, cpset=Interaction-1 
**  
** OUTPUT REQUESTS 
**  
*Restart, write, number interval=1, time marks=NO 
**  
** FIELD OUTPUT: F-Output-1 
**  
*Output, field, variable=PRESELECT 
**  
** HISTORY OUTPUT: H-Output-1 
**  
*Output, history, variable=PRESELECT 
*End Step 
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