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ABSTRACT 
 

Determination of Uncertainty in Reserves Estimate From Analysis of  

Production Decline Data. 

(May 2006) 

Yuhong Wang, B.S., Southwest Petroleum Institute, China 

Co-Chairs of Advisory Committee: Dr. John Lee  
                                                                  Dr. Duane McVay 

 

Analysts increasingly have used probabilistic approaches to evaluate the uncertainty in 

reserves estimates based on a decline curve analysis. This is because the results represent 

statistical analysis of historical data that usually possess significant amounts of noise. 

Probabilistic approaches usually provide a distribution of reserves estimates with three 

confidence levels (P10, P50 and P90) and a corresponding 80% confidence interval. The 

question arises: how reliable is this 80% confidence interval? In other words, in a large 

set of analyses, is the true value of reserves contained within this interval 80% of the 

time? Our investigation indicates that it is common in practice for true values of reserves 

to lie outside the 80% confidence interval much more than 20% of the time using 

traditional statistical analyses. This indicates that uncertainty is being underestimated, 

often significantly. Thus, the challenge in probabilistic reserves estimation using a 

decline curve analysis is not only how to appropriately characterize probabilistic 

properties of complex production data sets, but also how to determine and then improve 

the reliability of the uncertainty quantifications. 

 

This thesis presents an improved methodology for probabilistic quantification of reserves 

estimates using a decline curve analysis and practical application of the methodology to 

actual individual well decline curves. The application of our proposed new method to 100 

oil and gas wells demonstrates that it provides much wider 80% confidence intervals, 

which contain the true values approximately 80% of the time. In addition, the method 

yields more accurate P50 values than previously published methods. Thus, the new 
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methodology provides more reliable probabilistic reserves estimation, which has 

important impacts on economic risk analysis and reservoir management.  
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CHAPTER I 

 
INTRODUCTION  

 
 
Decline curve analysis is the most commonly used method for reserve estimation when 

production data are available. It is traditionally used to provide deterministic estimates 

for future performance and remaining reserves. Often, however, the deterministic 

prediction of future decline is far from the actual future production trend and, thus, the 

single deterministic value of reserves is not close to the true reserves. The “deterministic” 

estimate in fact contains significant uncertainty. Thompson and Wright1 provided 

evidence that estimated reserves using decline curve analysis (DCA) can have significant 

error. Furthermore, they found that the accuracy of predicted remaining reserves 

estimates is not necessarily improved with additional production history, contrary to 

expectations.  

 

Unlike single-point deterministic estimates, probabilistic approaches provide a measure 

of uncertainty in the reserves estimates. They provide a range of estimates within 

prescribed confidence levels and, thus, attempt to bracket the true value. Probabilistic 

reserve estimates are able to fulfill multiple purposes of internal decision-making and 

public reporting. However, many engineers have long had the indelible impression, that 

quantifying uncertainty of estimates is largely subjective.2 This impression has led the 

industry to be reluctant to search for appropriate probabilistic methods for reserves 

estimation and use probabilistic methods to quantify uncertainty of estimates. Existing 

practices for probabilistic estimation of reserves often assume prior knowledge of 

distributions of relevant parameters or reservoir properties. For example, prior 

distributions of drainage area, net pay, porosity, hydrocarbon saturation, formation 

volume factor, and recovery factor are needed to run Monte Carlo simulations when the 

volumetric method is used in probabilistic reserves estimation.3 A variety of distribution  
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types, such as log-normal, triangular or uniform, are often imposed on these parameters 

subjectively. 

 

Another reason for this situation may be that we are not familiar with them.2 Hefner and 

Thompson4 presented probabilistic results of reserve estimates using production data for 

5 oil wells. The probabilistic estimates at confidence levels of P90, P50 and P10 were 

provided by 12 professional evaluators. The majority of the evaluators used the results of 

DCA as the basis for the probabilistic estimates, but their probabilistic estimates were 

highly subjective and based on their personal experiences. None of them applied 

statistical methodologies for their probabilistic estimations.   

 

Analysts have begun to use probabilistic approaches to evaluate the uncertainty in 

reserves estimates based on decline curve analysis. To avoid assuming prior distributions 

of parameters, the Bootstrap method has been used to directly construct probabilistic 

estimates with specified confidence intervals from real data sets. It is a statistical 

approach and is able to assess uncertainty of estimates objectively. To the best of our 

knowledge, Jochen and Spivey5 first applied the bootstrap method to decline curve 

analysis for reserves estimation. They used ordinary bootstrap to resample the original 

production data set so as to generate multiple pseudo data sets for probabilistic analysis. 

The ordinary bootstrap method they used assumes that the original production data are 

independent and identically distributed (IID), so the data will be independent of time. 

However, this assumption is usually improper for time series data, such as production 

data, because the time series data structure often contains correlation between data points. 
  

1.1. Objective of Study 

 

The main objective of this research is to develop an improved probabilistic approach to 

estimate reserves from production decline data. Followings are the basic objectives: 

 

• Investigate challenges in probabilistic reserve estimates from Decline Curve 

Analysis (DCA). 
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• Develop new approaches to improve quantification of reserves estimation 

uncertainty using DCA. 

• Determine reliable confidence intervals associated with probabilistic reserves 

estimates 

• Implementation of this procedure in a VBA program for applying our new 

approaches and showing the improvement results. 

• Compare the results with existing method to examine the accuracy and 

improvements of our new approaches. 
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CHAPTER II 
 

  DECLINE CURVE ANALYSIS AND PROBABILISTIC APPROACHES 
 
 
 
2.1. Overview of Decline Curve Analysis 
 
We use the Arps decline curve equations for hyperbolic decline, 
 

                                                 bbtDqq ii

1

)1( −+= ……………...……………….  (2.1) 
and exponential decline, 

                                                 )exp( Dtqq i −= ……………...….……………..  (2.2) 
 

There are a number of assumptions and restrictions applicable to conventional decline 

curve analysis (DCA) using these equations. Theoretically, DCA is applicable to 

stabilized flow only, for wells producing at constant flowing bottomhole pressure. Thus, 

data from the transient flow period should be excluded from DCA. In addition, use of the 

equation implies that there are no changes in completion or stimulation, no changes in 

operating conditions, and that the well produces from a constant drainage area.  

 

The hyperbolic decline exponent, b, has physical meaning in reservoir engineering, 6 

should be within 0 and 1. We have imposed the constraint of 0≤b≤1 in our work, as well 

as the constraint that Di≥0. 

 

In general, we think of decline exponent, b, as a constant. But for a gas well, b varies 

with time. Chen7 showed that instantaneous b decreases as the reservoir depletes at 

constant BHP condition and can be larger than 1 under some conditions. He also proved 

that the average b over the depletion stage is indeed less than 1.  

  

2.2. Challenges in Probabilistic Reserves Estimation 
 
Since the assumptions and conditions required for rigorous use of the Arps’ decline curve 

equations rarely apply to actual wells over significant time periods, there is potentially 
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much uncertainty in reserves estimates using conventional DCA. With probabilistic 

approaches, confidence intervals can be provided for the reserves estimates. In the 

petroleum industry, reserves values are typically calculated at three confidence levels, 

P90, P50 and P10. There is a 90% probability that the actual reserves are greater than the 

P90 quantile; there is a 50% probability that the actual reserves are greater than the P50 

quantile; and there is a 10% probability that the actual reserves are greater than the P10 

quantile. The interval between P90 and P10 represents an 80% confidence interval. The 

confidence interval is a probabilistic result; i.e., there is an 80% probability that the actual 

value will fall within the range of values specified. What this really means is that, if we 

were to make a large number of independent predictions with 80% confidence intervals 

using similar methodology, we would expect to be right (the true value falls within the 

range) about 80% of the time and wrong (the true value falls outside the range) about 

20% of the time. 

 

For probabilistic reserves estimation, an important question remains that is rarely 

addressed. Do 80% confidence intervals truly correspond to 80% probability, i.e., are 

they reliable? Since confidence intervals are probabilistic results, we cannot determine 

the reliability of a single confidence interval, since the test of the estimate using a 

confidence interval yields only a single result, or sample. After time passes and we 

determine the true value, we can establish that the true value is either within the predicted 

range or it is outside the range. As Capen8 illustrated, it is only by evaluation of many 

predictions (by letting time pass and comparing the true values to the predicted ranges) 

made using similar methodology that we can determine the reliability of our estimations 

of uncertainty and, thus, our methodology for estimating uncertainty. These evaluations 

are difficult in the petroleum industry because of the long times associated with oil and 

gas production. Thus, we seldom verify the reliability of uncertainty estimates in our 

industry. 

 

To illustrate the challenge of calculating reliable confidence intervals using probabilistic 

DCA methods, we analyzed the production data for 100 oil and gas wells obtained from 

public data sources. We selected wells with long production histories and no large 
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anomalies in declines. We analyzed the data using the conventional bootstrap approach 

applied by Jochen and Spivey.5 We analyzed only a portion of the production data for 

each well and calculated probabilistic estimates of “remaining production” between the 

last date of analyzed production and the last date of actual production. These estimates 

were then compared to the true remaining production between the last date of analyzed 

production and the last date of actual production. Table 1 summarizes the statistical 

results from the study. The columns in Table 1 represent results corresponding to 

different lengths of production history used for DCA. For example, “¼ Prod. History” 

means that only one-quarter of the production history was assumed known and used in 

the analysis, while the remaining three-quarters of production were assumed unknown 

and used only for validation of the predictions of remaining production. 

 

Coverage rate is defined as the percentage by which a set of estimated confidence 

intervals with a prescribed level of confidence cover, or bracket, the true values. It is a 

measure of the reliability of the uncertainty quantification. The Realized Coverage Rate 

(RCR) is defined as the percentage by which a set of estimated confidence intervals 

actually cover the true values given a prescribed level of confidence. The Expected 

Coverage Rate (ECR) is defined as the percentage by which a set of estimated confidence 

intervals should cover the true values, and is equal to the probability associated with the 

confidence interval. The third row in Table 1 shows the RCR for cases in which transient 

data were included in the analysis. It can be seen that the RCRs are only 21% to 42%, far 

below the ECR of 80%. This indicates that the conventional bootstrap method 

underestimates the uncertainty in these reserves estimations significantly. 

 

Since DCA is applicable to stabilized flow only, data from the transient flow period 

should be excluded from the analysis. The fourth row shows the results of the RCR 

obtained by excluding transient data identified using Fetkovich type curves.6 Note that it 

can be very difficult to identify the transition point from transient to stabilized flow, 

particularly for wells with short production times. The results excluding transient data 

indicate that the RCR ranges from 22% to 42%. Exclusion of transient data did not 

improve coverage rate significantly, and uncertainty is still being underestimated. These 



 7

results are not inconsistent with those obtained by Hefner and Thompson4 and by 

Huffman and Thompson9 in their probabilistic studies based on individual evaluators’ 

estimates of reserves from analysis of five oil wells. The realized coverage rate in their 

studies ranged from 40% to 60%.  

 

Another question we addressed is whether the coverage rate improves as more production 

data become available. Confidence intervals will typically narrow as more production 

data become available, because the extrapolation is based upon more data. However, this 

does not necessarily imply that the reliability of the confidence intervals will improve 

with more production data. This is demonstrated in Table 2.1, where coverage rate 

decreased as the amount of production data increased. 

 

Table 2.1— Statistics of Coverage Rate from Analysis of 100 Wells Using 
Conventional Bootstrap Method 

 

22%30%42%Realized coverage rate of 80% 
CI, transient data excluded

21%32%41%Realized coverage rate of 80% 
CI, transient data included

80%80%80%Expected coverage rate of 
80% CI

3/4 Prod.
History

2/4 Prod.
History

1/4 Prod.
History

Production data used in 
DCA

22%30%42%Realized coverage rate of 80% 
CI, transient data excluded

21%32%41%Realized coverage rate of 80% 
CI, transient data included

80%80%80%Expected coverage rate of 
80% CI

3/4 Prod.
History

2/4 Prod.
History

1/4 Prod.
History

Production data used in 
DCA

 
 

 

We can explain this result using Figs. 2.1 and 2.2. For illustration purposes, we present a 

single-well example even though, strictly speaking, we cannot fully evaluate reliability of 

confidence intervals with a single sample. With only 2 years of production data available, 

the production forecast (P50) is far from the actual future performance (Fig. 2.1). The 

80% confidence interval is large but not large enough to cover the actual future 

production performance. As 6 years of production data become available, the production 

forecast (P50) moves closer to the actual future performance (Fig. 2.2). In addition, the 
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80% confidence interval for the production estimates becomes much smaller and, as a 

result, the actual future performance still falls outside the confidence interval. Thus, 

while narrowing of confidence intervals with more production data might imply more 

confidence in the reserves estimate, this can be misleading. It does not necessarily mean 

that the new probabilistic forecast is more reliable; it could possibly be less reliable.  

 

Of course, what we desire is a probabilistic method that is consistently reliable. In other 

words, we desire a method that yields a realized coverage rate of 80%, for 80% 

confidence intervals, regardless of the amount of production data available. 
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Fig.2.1—Uncertainty quantification of DCA production forecast of an oil well with a 2-

year production history 
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Fig.2.2—Uncertainty quantification of DCA production forecast of an oil well with a 6-

year production history 
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CHAPTER III 
 

METHODOLOGY   
 

 
 
In this study, we present a new probabilistic approach, which aims to improve 

probabilistic reserves estimation and to generate consistently reliable confidence 

intervals. The major components of this new approach are presented in following 

sections.  

 

3.1. Modified Bootstrap and Block Resampling 

 

The bootstrap method is a statistical method. Direct evaluation of probabilistic 

phenomena is one of its distinct advantages. With it we can acquire statistical knowledge 

of many real problems without prior information on the underlying probability 

distributions for model parameters. Figs. 3.1 and 3.2 show the general sequence of 

conventional bootstrap and modified bootstrap methods respectively. The bootstrap 

method begins by generating a large number of independent bootstrap realizations, or 

synthetic data sets, from the original data set, each with the same size as that of the 

original data set. For a set of n data points, a synthetic data set is obtained by randomly 

sampling n times, with replacement, from the original data set.10 Figs. 3.3-3.5 show the 

original data and two example synthetic data sets for an oil well. Each synthetic data set 

is fit using nonlinear regression to determine decline equation parameters, and then 

extrapolated to estimate future production and reserves. The distribution of reserves is 

then determined objectively from the entire group of synthetic data sets. 
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Fig. 3.1—Conventional bootstrap sequence 
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Fig. 3.2—Modified bootstrap sequence 
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Fig. 3.3—Original data for conventional bootstrap example 
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Fig. 3.4—Synthetic data set 1 from conventional bootstrap resampling 
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Fig. 3.5—Synthetic data set 2 from conventional bootstrap resampling 
 

 

In the conventional bootstrap algorithm, bootstrap realizations are generated from a data 

set in which the points are assumed to be independent and identically distributed. 

However, production data are not independent points, but are a sequence of observations 

arising in succession, i.e., a time series, with an overall decline trend. Previous 

implementations5 of the conventional bootstrap method for DCA attempted to preserve 

the overall decline trend by preserving a “time index” for each data point. However, this 

procedure does not satisfy the requirement for independent and identically distributed 

data.  

 

In our work, we employ a more rigorous model-based bootstrap algorithm to preserve 

data structure. It uses the decline models (hyperbolic or exponential equations) to fit the 

production data and constructs residuals from the fitted model and observed data. Fig. 3.6 

which uses the same production data as Fig. 3.3 illustrates the residuals generating 

process. New series are then generated by incorporating random samples from the 

q,
 S

TB
/D

 

2

t, months 
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residuals into the fitted model. To consider correlation within the residuals and to 

preserve data structure, we use a block resampling approach to generate residual 

realizations. And to determine the size of the blocks, we use the autocorrelation plot of 

residuals which can help to detect the randomness or possible correlations within residual 

data and confidence band which can help to detect significantly non-zero points out of the 

band of a particular confidence level on the autocorrelation plot. Then we can divide the 

residual data into blocks of a particular size. Given measurements, X1, X2, ..., XN at time 

t1, t2, ..., tn, the lag k autocorrelation function is defined as 

                                      
∑

∑

=

−

=
+

−

−−
= N

i
i

kN

i
kii

k

XX

XXXX
R

1

2

1

)(

))((
 …..………………… (3.1) 

  

Although the time variable, t, is not used in the formula for autocorrelation, the 

assumption is that the observations are equi-spaced. Autocorrelation plots are formed by 

Autocorrelation coefficient Rk a-s vertical axis and time lag t (t = 1, 2, 3, ...) as horizontal 

axis. The confidence band is defined as 

                                             
N

z 2/1 α−± ..………..………………………...  (3.2) 

 

where N is the sample size, z is the percent point function of the standard normal 

distribution and α is the significance level. In this case, the confidence bands have fixed 

width that depends on the sample size. 
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Fig. 3.6—Generating residuals from original data and regressed model for modified 
bootstrap example 

 

 

Fig. 3.7 shows the autocorrelation plot of residuals with a 99% confidence band based on 

the residual data generated from Fig. 3.6. Fig. 3.8 is the relevant residual plot constructed 

from Fig. 3.6 and blocked of a particular size determined from Fig. 3.7. Figs. 3.9 and 3.10 

show two example synthetic data series generated using the modified bootstrap method. 

Each of the synthetic data sets is the same size as the original data set. This new 

resampling approach does not require that the original production data be independent 

and identically distributed.  
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Fig. 3.7—Determining block size using confidence band and autocorrelation plot of 
residuals    
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Fig. 3.8—Plot of residuals with blocks 
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Fig. 3.9—Synthetic data set 1 from modified bootstrap resampling 
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Fig. 3.10—Synthetic data set 2 from modified bootstrap resampling 
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3.2. Backward Analysis Scheme 

 

To address problems due to transient flow and/or changing operating conditions and to 

further enhance the reliability of our probabilistic DCA methodology, we applied a 

backward analysis scheme. The approach is illustrated in Fig.3.11, in which we have 10 

years of production history. For scenario 1, we use only the most recent 2 years of data 

for regression and prediction. Similarly, for scenario 2, we use only the most recent 4 

years of data. After working backward in this fashion and generating multiple forecasts 

from the same time, we then combine them to form an overall probabilistic forecast. The 

overall P50 value is determined by averaging the P50 values from the multiple backward 

forecasts. The overall P90 value is determined by taking the minimum of the P90 values 

from the multiple forecasts while, similarly, the overall P10 value is determined by taking 

the maximum of the P10 values from the multiple forecasts. Using this backward analysis 

scheme, we emphasize the most recent production data in forecasting performance, but 

we also allow changes in operating conditions and other fluctuations in the data to 

influence the confidence intervals associated with the reserves estimates.  

 

 

0 2 4 6 8 10 12 14 16 18 20

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5
Forecast

Forecast

Forecast

Forecast

Forecast

Production Time, year

Fitting

Fitting

Fitting

Fitting

Fitting

 
 

Fig. 3.11—Schematic diagram illustrating multiple backward scenarios 
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The backward analysis scheme is examined and compared to the conventional approach 

in Figs. 3.12-3.14, which show results for an oil well with 19 years of production history. 

In our analysis, we assume that we have only 6 years of production data and we forecast 

production for 13 years. Fig. 3.12 shows results of analysis using the conventional 

method in which we include all the historical data in the regression. The dots represent 

the model results fitting the first 6 years of production with DCA, while the three dashed 

lines are the forecasted P90, P50 and P10 production profiles for the remaining 13 years. 

The dotted line displays the actual production history for the entire 19 years of production 

for this well. Note that the true performance of the well is not within the 80% confidence 

interval.  

 

For the same well, Figs. 3.13 and 3.14 shows the results predicted using the backward 

analysis scheme outlined above. Fig. 3.13 shows a backward analysis using the most 

recent 2 years of data, while Fig. 3.14 shows analysis with the most recent 4 years of 

data. The 2-year backward scenario covers the true performance with an 80% confidence 

interval. Even though more production information was included in the analysis, the 4-

year backward confidence interval does not cover the true performance.  
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Fig.3.12—Conventional approach: 6-year production history was used for regression 

with DCA. The actual performance is outside the 80% confidence interval. 
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Fig.3.13—Backward 2-year scenario: 6-year production history is known but only 2 

years of backward data were used for regression with DCA. The actual performance is 
within the 80% confidence interval. 
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Fig. 3.14—Backward 4-year scenario: 6-year production history is known but only 4 

years of backward data were used for regression with DCA. The actual performance is 
outside the 80% confidence interval. 
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For the results of the 100-well analysis that we present in following sections of this 

thesis, we use three backward analyses to obtain the overall probabilistic forecast. These 

analyses consider the most recent 20%, 30% and 50% of the known production data. The 

choice of number and lengths of backward analyses considered is arbitrary, but seems to 

provide reasonable results, as shown later.  

 

3.3. Sample Size and Reproducibility 

 

As a special type of Monte Carlo method, the bootstrap method can only be successfully 

applied with a sample size which is big enough to get reproducible results. We 

investigated distribution of reserve estimates of a gas well using sample size ranging 

from 10 to 1000. Fig. 3.15 shows that the P10, P50 and P90 reserve estimates are fairly 

stable for a sample size greater than 100. In my research, the bootstrap sample size is 

120. 
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Fig. 3.15—Effect of bootstrap sample size on reserves estimation 
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3.4. Coverage Index 

 

Although not an integral part of the methodology, we define a coverage index, I, to help 

assess the coverage of individual confidence intervals. The definition is as follows 

 

                                            )( 5090

50

PP
PPI true

−
−

=       if Ptrue > P50 …...…………………  (3.3) 

                                            )( 1050

50

PP
PPI true

−
−

=       if Ptrue < P50  ……..………………  (3.4) 

 

where Ptrue represents the true value of reserves. When |I| ≤1, the true reserves are within 

the estimated confidence intervals; when |I| >1, the true reserves are outside the estimated 

confidence intervals. A negative value of I indicates that P50 is less than the true reserve, 

and a positive value of I indicates that P50 is higher than the true reserve.  

 

Note that the coverage index takes into account two quantities: first, the distance between 

the P50 and true values and, second, the confidence range between the P50 value and the 

upper or lower bound. Thus, a small coverage index could reflect either that an estimate 

is close to the true value or that the confidence interval is large. Note also that the 

coverage index is a measure associated with a single confidence interval and, thus, is not 

a measure of reliability of the uncertainty estimations. Despite these limitations, we have 

found the coverage index to be useful in the assessment of probabilistic approaches.  

 

3.5. Confidence Interval Corrections 

 

Our intend in investigating confidence interval corrections is to improve the coverage of 

bootstrap confidence intervals. When not specified, the term “confidence interval” 

generally refers to the percentile confidence interval. This type of confidence interval is 

relatively small compared to those calculated by other methods. A two-sided, equal-tailed 

100(1-2) % percentile CI is given by 
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           ],[ **
1 αα θθ −=PBCI ……….……………………….. (3.5) 

 

where CIPB is the percentile bootstrap CI, � represents estimators of reserves or 

production rates from bootstrap realizations, and � equals 0.1 for an 80% confidence 

interval. Fig. 3.16 illustrates the determination of a percentile CI. In decline curve 

analysis, there are many cases where the decline exponent b tends to be larger than 1 

when a constraint of 0≤b≤1 is not imposed. The bootstrap realizations generated from 

resampling the original production data will have a similar tendency. As a result, the 

probabilistic distribution of production and reserves estimates is highly skewed with the 

b≤1 constraint applied in nonlinear regression (as we have done in our work). In these 

cases, coverage accuracy of percentile CIs can be very poor.  
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Fig. 3.16─Percentile 80% confidence interval estimation 

 

We consider three types of two-sided symmetric confidence intervals for confidence 

interval corrections. They are the basic bootstrap CI, the studentized bootstrap CI, and the 

P10=1316.65 
 
P50=1369.85 
 
P90=1379.19 
 
Index=-0.087 
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double basic bootstrap CI. A two-sided symmetric 100(1-2) % basic bootstrap CI is given 

by 

],[
21

*

21

*

αα
θθθθθθ

−−
−+−−=BBCI …..…………….. (3.6) 

 

where CIBB is the basic bootstrap CI and θ is the estimator of reserves or production rates 

from the original sample. Fig. 3.17 illustrates the determination of a basic bootstrap CI.   

 

 
Fig. 3.17─Basic bootstrap 80% confidence interval estimation 

 

A two-sided symmetric 100(1-2) % studentized bootstrap CI is given by 
 

         )](),([
21

*
21

* θσθθσθ
αα −−

+−= ttCISB ……………….... (3.7) 

 
in which the variable t∗ is defined as 
 

            )(/)( **** θσθθ −=t ……………………...….. (3.8) 
 

CISB is the studentized bootstrap CI, σ2 is an estimator of variance of θ, and σ*2 is an 

estimator of variance of θ*. Appendix A gives equations for the variance calculation.  
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For the double bootstrap CI, the realizations are obtained through two steps. First, single 

bootstrap realizations are resampled from the original data set and, second, double 

bootstrap realizations are generated by resampling each of the single bootstrap 

realizations.11 In general, computational cost of the double bootstrap CI is prohibitive. In 

this study, we have developed a simplified algorithm to evaluate the double bootstrap CI 

based on estimators from single bootstrap realizations. Detailed discussion of this 

simplified double bootstrap method is given in Appendix B. 

 

Basic bootstrap, studentized bootstrap and double bootstrap confidence intervals are 

compared to the percentile confidence interval for an example well in Figs. 3.18 to 3.20, 

respectively. The corrected confidence intervals are displayed as solid lines, while the 

percentile CI is also shown in each figure with dashed lines for comparison. In these 

figures, we assume that only 6 years of production history are analyzed, and we used a 3-

year backward analysis for DCA and prediction. The symbols in the figures represent the 

fitting curve, while the dotted line gives the actual 19-year production history for the oil 

well. The figures show that the true performance of the well is covered better by these 

corrected confidence intervals. Fig. 3.21 shows the absolute values of coverage index for 

the different types of confidence intervals illustrated in Figs. 3.18 to 3.20. The percentile 

CI has a coverage index greater than 1, which indicates that the percentile CI does not 

contain the true value. The three corrected confidence intervals all have a coverage index 

less than 1, and the double bootstrap CI has the lowest coverage index. We use the basic 

bootstrap confidence interval in our probabilistic DCA methodology. 
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Fig.3.18─Confidence interval correction ─ basic CI:  6-year production history is known 

but only 3 years of backward data were used for regression with DCA. The actual 
performance is within the 80% confidence interval 
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Fig.3.19─Confidence interval correction ─ studentized CI: 6-year production history is 
known but only 3 years of backward data were used for regression with DCA. The actual 

performance is within the 80% confidence interval 
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Fig.3.20─Confidence interval correction ─ double bootstrap CI: 6-year production 

history is known but only 3 years of backward data were used for regression with DCA. 
The actual performance is within the 80% confidence interval 
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Fig. 3.21—Absolute value of coverage index for different types of confidence intervals. 

Percentile CI does not cover the true value, while the three corrected confidence 
intervals do 
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3.6. Summary of Our Approach 

 

The procedure for our new approach is summarized as follows: 

 

1. Generate multiple synthetic data sets (realizations) using block resampling with 

modified bootstrap. 

2. Conduct a backward analysis using the most recent 20% of production data 

a. Conduct DCA on each synthetic data set and obtain probabilistic predictions of 

production and reserves. 

b. Calculate confidence intervals for production and reserves using the basic 

bootstrap method. 

3. Repeat Step 2 using the most recent 30% and 50% of production data and determine 

overall P90, P50 and P10 values. 
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CHAPTER IV 
 

RESULTS AND APPLICATIONS 

 

 
4.1. Application to Oil and Gas Wells 

 

We first applied the conventional bootstrap approach proposed by Jochen and Spivey,5 in 

which each synthetic data set consists of the original data set with some points omitted 

and some duplicated. We chose 100 oil and gas wells from public resource. For each 

well, we assumed that only half its production history was known and forecasted the 

remaining production between the last date of analyzed production and the last date of 

actual production. We generated the statistical results in Table 4.1. We then compared 

our new approach to the conventional bootstrap approach for the same 100 wells and 

generated the statistical results in Table 4.2 at the same conditions used to generate 

results summarized in Table 4.1. We used our modified block method with multiple 

backward processes to generate those results in Table 4.2. The coverage rates of all six 

cases in Table 4.2 are near the expected value 80%, and the values in Table 4.1 are all 

well below the expected 80%. Thus, our new method appears to predict uncertainty much 

more reliably than the conventional method.  

 

 

Table 4.1—Statistics of Coverage Rate from Analysis of 100 Wells Using 
Conventional Bootstrap Method 

 

22%30%42%Realized coverage rate of 80% 
CI, transient data excluded

21%32%41%Realized coverage rate of 80% 
CI, transient data included

80%80%80%Expected coverage rate of 
80% CI

3/4 Prod.
History

2/4 Prod.
History

1/4 Prod.
History

Production data used in 
DCA

22%30%42%Realized coverage rate of 80% 
CI, transient data excluded

21%32%41%Realized coverage rate of 80% 
CI, transient data included

80%80%80%Expected coverage rate of 
80% CI

3/4 Prod.
History

2/4 Prod.
History

1/4 Prod.
History

Production data used in 
DCA
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Table 4.2—Statistics of Coverage Rate from Analysis of 100 Wells Using 
Modified, Block Bootstrap Method 

 

75%80%83%Realized coverage rate of 80% 
CI, transient data excluded

75%85%85%Realized coverage rate of 80% 
CI, transient data included

80%80%80%Expected coverage rate of 
80% CI

3/4 Prod.
History

2/4 Prod.
History

1/4 Prod.
History

Production data used in 
DCA

75%80%83%Realized coverage rate of 80% 
CI, transient data excluded

75%85%85%Realized coverage rate of 80% 
CI, transient data included

80%80%80%Expected coverage rate of 
80% CI

3/4 Prod.
History

2/4 Prod.
History

1/4 Prod.
History

Production data used in 
DCA

 
 

 

Figs. 4.1-4.8 compare results from the two methods for two oil wells and two gas wells 

from our 100 wells. The symbols in the figures represent the nonlinear regression curve, 

while the dotted line gives the actual production data. Figs. 4.1, 4.3, 4.5 and 4.7 show the 

probabilistic production forecasts using the conventional bootstrap approach overlaying 

the actual remaining production profiles, while Figs. 4.2, 4.4, 4.6 and 4.8 show the same 

for our new modified bootstrap approach. The conventional bootstrap approach produces 

relatively narrow confidence intervals that generally do not bracket the actual production 

profiles. The modified bootstrap approach produces significantly larger confidence 

intervals that bracket most of the production profiles.  
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Fig. 4.1—Gas well 1─production forecast using conventional bootstrap method. The 

actual performance is outside the 80% confidence interval. 
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Fig. 4.2—Gas well 1─production forecast using modified bootstrap method. The actual 

performance is within the 80% confidence interval. 
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    Fig. 4.3—Oil well 1─ production forecast using conventional bootstrap method. The 

actual performance is outside the 80% confidence interval. 
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Fig. 4.4—Oil well 1─production forecast using modified bootstrap method. The actual 
performance is within the 80% confidence interval. 
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Fig. 4.5—Gas well 2─ production forecast using conventional bootstrap method. The 
actual performance is outside the 80% confidence interval. 
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Fig. 4.6—Gas well 2─production forecast using modified bootstrap method. The actual 

performance is within the 80% confidence interval. 
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Fig. 4.7—Oil well 2─production forecast using conventional bootstrap method. The 

actual performance is outside the 80% confidence interval. 
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Fig. 4.8—Oil well 2─production forecast using modified bootstrap method. The actual 

performance is within the 80% confidence 
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Statistics of the analysis results for the set of 100 wells are compared in Table 4.3. First, 

we note that the realized coverage rate for the new method is 85%, very close to the 

expected rate of 80%, while the realized coverage rate for the conventional bootstrap 

approach is only 32%. After we got the confidence interval for remaining production of 

each well, we used Monte Carlo simulation to get the confidence interval for total 

remaining production of those 100 wells under two extreme assumptions: perfect, 

positive correlation between wells and no correlation between wells. The actual 

estimation of the 100-well total remaining recovery should be between those results of 

the above two extreme assumptions.  We can see from Table 4.3 that the new approach 

predicts a much wider 80% confidence interval for total remaining production for the 100 

wells, 1902-7226 MSTBOE, versus a range of 4831-6597 MSTBOE for the conventional 

bootstrap approach assuming perfect, positive correlation between wells; and 3482-5396 

MSTBOE, versus a range of 5393-5924 MSTBOE for the conventional bootstrap 

approach assuming no correlation between wells.  And the confidence intervals for total 

remaining production under two extreme assumptions generated by modified bootstrap 

method can both cover the true remaining recovery of those 100 wells. 

 

As an additional benefit of the new approach, we note that the relative and absolute errors 

in P50 values are significantly smaller for the new approach than for the conventional 

bootstrap approach. This should not be unexpected, as Capen8 pointed out that better 

range can lead to better most-likely estimates.          
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Table 4.3—Comparison of Remaining Production Estimates for 100 Wells 
Using Conventional Bootstrap and Modified, Block Bootstrap Method       

 

50% production data analyzed - transient 
data included

Conventional 
Bootstrap Method 

(Forward analysis - 
percentile CI)

Modified Bootstrap 
Method (Multi-

backward analysis 
(50%, 30%,20%)- 

Basic Bootstrap CI)

Coverage Rate, % 32 85

Percent error                                              
20.43 4.52

Percent error

53.57 37.48

0.5542 1.4118

Sum of P50 Values, MSTBOE 5495.22 4029.45

True Remaining Recovery, MSTBOE 4114.54 4114.54

Pecent Error in Remaining Recovery, % 33.56 -2.07 

80% CI Assuming Perfect, Positive 
Correlation, MSTBOE 4,831-6,597 1,902-7,226

80% CI Assuming No Correlation, 
MSTBOE 5,393-5,924 3,482-5,396

%10050 ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

true

true

R
RPAverage

)..(
50P
ICAverage

%10050 ×⎟⎟
⎠

⎞
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CHAPTER V 
 

  DISCUSSION 

 

 

5.1. Why Does Our Approach Work? 

 

As discussed previously, for a gas well, b is variable. The b-value usually obtained by 

nonlinear regression represents an average value on the fitted period. As a result, this 

value could be far from the b-value of the future period since the instantaneous b is not 

constant. However, with the backward approach, we can capture the latest characteristics 

of b and therefore improve production forecast effectiveness. 

 

There are other factors that influence the behavior of actual decline curves and the results 

of DCA. One of them is transient-period data. Determining the beginning of the 

stabilized flow period is a difficult problem in practice, especially with short-term 

production data. The backward approach helps to overcome this problem by focusing on 

more recent data. The prevailing changing operating conditions during the production life 

of a well often make the application of DCA problematic. Similarly, our approach can 

help mitigate this problem, because the latest features of performance can be captured 

and used for future prediction. 

 

Compared with previous approaches, the approach proposed here has several advantages: 

 

1. No prior distributions of qi, Di, and b are required (with bootstrap algorithm). 

2. No assumption of independent and identically distributed data is required for the 

original data set (with modified bootstrap). 

3. The method effectively preserves the original data time correlation (with block 

resampling). 

4. The method improves the reliability of uncertainty quantification (with backward 

analysis and corrected confidence interval methods). 
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CHAPTER VI 
 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1. Conclusions 

 

 A new probabilistic approach has been developed that can improve the coverage 

rate of confidence intervals and enable more accurate reserves estimation with 

increasing production data availability. The approach is robust and objective in 

that it is purely production data driven. 

 Application to 100 individual oil and gas wells cases demonstrates that this 

approach provides reliable confidence interval estimations. 

 We have compared the results with the conventional method, comparing the 

accuracy of reserves forecast and estimation errors of 100 oil and gas wells.  And 

the results show that our proposed method can significantly improve the coverage 

rate and decrease the estimation errors. 

 

6.2. Recommendations 

 

We developed some VBA programs to fulfill the whole process of reserves and 

production forecast using modified bootstrap method based on production decline data. 

Although we have already edited our code to make the whole process automatically, it 

will be much better if the similar commercial software can be developed to make those 

code more integrated and provide friendly input and output windows, which could help 

managers of petroleum industry make better decisions in buying, selling, and operating 

properties.  
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NOMENCLATURE 
  
 
A  = sensitivity matrix 
b  = hyperbolic decline exponent 
CI = confidence interval  
CIBB = basic bootstrap CI 
CIPB = percentile bootstrap CI  
CISB = Studentized bootstrap CI  
Di  = initial decline rate 
ECR = expected coverage rate 
g = production rate estimate or reserves estimate 
I = coverage index 
J = objective function 
M = number of model parameters 
N = number of data points 
P10 = value at confidence level 90% 
P50 = value at confidence level 50% 
P90 = value at confidence level 10% 
Ptrue = true value 
q  = production rate 
qi  = initial production rate 
RCR = realized coverage rate 
t = production time  
t∗ = t-distribution variable  
Z-1 = inverse of standard normal distribution function 
 
β  = model parameter vector 
ε  = measurement error vector 
θ  = estimators from the original sample 
θ∗ = estimators from bootstrap samples 
σ2 = estimator of variance of θ  
σ∗2 = estimators of variance of θ∗ 
 
Superscripts 
T          = matrix transpose 
 
Subscripts 
cal = calculated 
mea = measured 
t = true  
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APPENDIX A 

 

DERIVATION OF VARIANCE OF BOOTSTRAP ESTIMATES  

IN DECLINE CURVE ANALYSIS   

 
 
For each synthetic data set generated from bootstrap, we can obtain a set of decline curve 

parameter estimates using nonlinear regression.  The hyperbolic decline curve equation is  

 
bbtDqq ii

1

)1( −+= ……………………………………...  (A1) 
 

where qi is initial production rate, Di is initial decline rate, and b is the hyperbolic decline 

exponent.  

 

To quantify the uncertainty of parameter estimates, we use a linearized approximation 

based on the nonlinear regression results 

 
   )()()( tcalcal ββAββ −+= tqq ………………………  (A2) 

 

where β represents the parameter vector and βt are the true, but unknown, parameter 

values. A is the sensitivity matrix. 

 

Thus, the objective function can be approximated as 

 
[ ] [ ]βAββAβ calmeacalmea Δ−−Δ−−= )()( t

T
t qqqqJ ………  (A3) 

 
where )( tqq βcalmea − can be viewed as the production rate measurement errors, and 

tβββ −=Δ  represents the uncertainties of parameter estimates. 

 

The measurement error vector, ε  is 

 
)( tqq βε calmea −= ………………………………  (A4) 
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A necessary condition for a minimum of the objective function is 

 
0=∇J  ………………………………………  (A5) 

or 

( ) 0)(2 =Δ−−=∇ βAβA calmea t
T qqJ ……….…….…..  (A6) 

 
So, we have 

εβA =Δ ….……………………………..….  (A7) 

or  

εAAAβ TT 1)( −=Δ ………………………..  (A8) 

 

We assume that measurement error (ε) follows the multi-variant Gaussian distribution 

with ε ~ N (0, σ2I). σ2 is the variance for each component of measurement error, and I is 

the unit matrix.  

 

An optimal estimation of σ2 can be obtained as 

                                  MN

qq

MN
J

N

j
jcaljmea

−

−
=

−
≈

∑
=1

2
,,

2

))(( *β
σ

…………….  (A9) 

 

where N is the number of data points, and M is the number of model parameters.  

 

As a result, Δβ follows a normal distribution, Δβ ~ N (0, σ2(ATA)-1). ATA can be viewed 

as the approximate Hessian matrix. Hence, the covariance matrix of Δβ is equal to the 

product of σ2 and the inverse of the Hessian matrix. If we express the inverse of the 

Hessian matrix as 
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then the covariance of Δβ can be written as 
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where σjk represents covariance between βj and βk, defined as 
 

1

))((
1

−

−−
=

∑
=

N

N

i
kkijji

jk

ββββ
σ

…….…………….  (A12)                  

i = 1, 2,…, N 

j, k = 1, 2,…M 

 

To evaluate the variance of production rate or reserves estimates, we derive the following 

approximations. Based on the definition of variance of an estimate, we have 

 

( )( )
1

1

2*
,,

2

−

−
=

∑
=

N

gg
N

j
jcaljmea

g

β
σ

…….…......................  (A13) 
                  

where g represents flow rate or reserves and σ is the variance of estimated g. Taking the 

Taylor series expansion and using the first derivative term, we can approximate the 

difference term in the parentheses of Eq. A13 as 
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Substituting Eq. (14) into Eq. (13), we obtain 

 
GCovGT

g )(2 βΔ=σ ……………...……..…….  (A15) 
Here, 
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Eq. A15 can be used to calculate the variances needed in Eqs. 5 and 6 for the studentized 

CI calculation, and is also used in our simplified double bootstrap CI calculation. 
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APPENDIX B 

 

SIMPLIFIED DOUBLE BOOTSTRAP APPROACH   

 
 
Reference 11 proposed a stopping rule to simplify calculation of the double bootstrap CI. 

We simplified this computationally prohibitive operation by resampling the predicted 

estimates (such as production rates at each future time point and reserves), instead of 

resampling each single bootstrap realization to generate double bootstrap realizations. 

With our approach, we can save a great amount of time in the nonlinear regression of 

double bootstrap realizations. For example, if we have 100 single bootstrap realizations 

(generated from the original data set), and if we want the double bootstrap sample size 

also equal to 100 (generated from each of the single bootstrap realizations), then 10,000 

nonlinear regression runs are required since 10,000 synthetic data sets are generated. This 

is very expensive computationally. When we directly resample on the predicted 

production rate or reserves estimates, we need to perform only 100 nonlinear regression 

runs on 100 single bootstrap realizations to calculate the predicted estimates. To resample 

those predicted estimates, a variance of each estimate is needed. We assume each 

estimate follows a Gaussian distribution with mean equal to itself and variance estimated 

by Eq. A15. In this way we can obtain sufficient estimates for the double bootstrap CI 

calculation.  
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