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ABSTRACT

Pulsatile Flow of a Chemically-Reacting Non-Linear Fluid. (May 2007)

Ronald Craig Bridges, II, B.S., Texas A&M University

Chair of Advisory Committee: Dr. K.R. Rajagopal

Many complex biological systems, such as blood and polymeric materials,

can be approximated as single constituent homogeneous fluids whose properties

can change because of the chemical reactions that take place. For instance, the

viscosity of such fluids could change because of the chemical reactions and the

flow. Here, I investigate the pulsatile flow of a chemically-reacting fluid whose

viscosity depends on the concentration of a species (constituent) that is governed

by a convection-reaction-diffusion equation and the velocity gradient, which can

thicken or thin the fluid. I study the competition between the chemical reaction

and the kinematics in determining the response of the fluid.

The solutions to the equations governing the steady flow of a chemically-

reacting, shear-thinning fluid are obtained analytically. The solution for the veloc-

ity exhibits a parabolic-type profile reminiscent of the Newtonian fluid profile, if

the fluids are subject to the same boundary conditions. The full equations associ-

ated with the fluid undergoing a pulsatile flow are studied numerically. A compar-

ison of the shear-thinning/chemical-thinning fluid to the shear-thinning/chemical-

thickening fluid using a new non-dimensional parameter–the competition number

(CN) shows that both the shear-thinning effects and the chemical-thinning/thickening

effects play a vital role in determining the response of the fluid. For the parameter

values chosen, the effects of chemical-thinning/thickening dominate the majority

of the domain, while the effects due to shear-thinning are dominant only in a small

region near the boundary.
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CHAPTER I

INTRODUCTION∗

There are many important technological problems that concern the flow of

chemically-reacting fluid mixtures. Many biological fluid systems are examples of

such mixtures. For example, blood is a complex mixture of plasma, proteins, cells,

and a variety of other chemicals that is modeled usually in a homogenized sense as

a single constituent fluid. Blood is maintained in a delicate balance by a variety of

chemical reactions, some that aid its coagulation and others its dissolution. Com-

plicated models have been proposed to describe the biochemical reactions and the

complex interplay between the rheology and biochemistry of flowing blood (see

Kuharsky and Fogelson [1], Anand et al. [2]). The more recent models entail

dozens of convection-reaction-diffusion equations coupled to the equations for the

balance of mass and the balance of linear momentum. Unfortunately, such sys-

tems are far too complicated to be amenable to either mathematical or numerical

analysis. A simplification, albeit rather drastic, that can provide useful insight into

the problem is to approximate systems such as blood by coupling the balance of

mass and the balance of linear momentum for a single component fluid to a sin-

gle convection-reaction-diffusion equation, the viscosity of the fluid depending on

the concentration of another species that is governed by the convection-reaction-

diffusion equation. Within the context of a full mixture theory that allows for the

interconversion between the various constituents one can account systematically

for all the interactions that take place and also enforce the balance laws for each

∗Reprinted with permission from “Pulsatile Flow of a Chemically-Reacting
Non-Linear Fluid”, by Craig Bridges, 2006. Computers and Mathematics with
Applications, 52, 1131-1144. Copyright 2006 by Elsevier Ltd.

The journal model is Computers and Mathematics with Applications.
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of the constituents (see Truesdell [3], [4], Samohyl [5], Rajagopal and Tao [6]),

but such an approach has its own attendant problems such as the increased level

of complexity and an inherent difficulty in specifying appropriate boundary and

initial conditions.

Here, we allow for the viscosity of the fluid to vary in virtue of the changes

in the concentration of the second species that co-exists with the fluid of interest.

We interpret the change in the concentration of this species as leading to a change

in the viscosity of the fluid. We shall, however, require the fluid to undergo only

isochoric motions, i.e., the flows meet div(v) = 0. In a single component fluid,

the above condition is a consequence of the balance of mass and incompressibility,

and in a homogenous fluid this implies that the density is a constant. However,

in an inhomogeneous fluid it means that the density of a specific material point

is a constant. We, on the other hand, have a situation wherein the fluid under

consideration can be viewed as being incompressible in that its own density is a

constant. It is assumed to co-exist with another constituent whose concentration

(defined as the ratio of the density of the reactant to the sum of the density of the

fluid and the reactant) changes, and this in turn changes the viscosity of the fluid.

We shall, however, not concern ourselves with the balance laws for the reactant, or

the fact that its density is changing. This is akin to problems such as flow through

porus media wherein the equations for the porous solid matrix are ignored while

those for the fluid are taken cognizance of. One could also view the problem as

the flow of a fluid wherein the effect of a chemical reaction can be captured by

an internal variable that is governed by a convection-reaction-diffusion equation.

Thus, the quantity considered to be the concentration can be viewed as an internal

variable.
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CHAPTER II

KINEMATICS∗

Let κo(β) denote the reference configuration of the body β. By a motion, we mean

a sequence of placers, parameterized by time, that assigns to a particle at a point X

∈ κo(β) a point x in the current configuration κt(β). This implies the existence of

a one-to-one mapping χκo
for each instant of time t ∈ R such that

x = χκo
(X, t). (2.1)

We shall assume the mapping χκo
to be sufficiently smooth. For the purpose of

this work we shall require the definition of some kinematical tensors, namely the

Rivlin-Ericksen tensors (see Rivlin and Ericksen [7]). The first Rivlin-Ericksen

tensor is defined as:

A1 =

[
∂v

∂x
+

(
∂v

∂x

)T
]

= 2D, (2.2)

where

v =
∂χκo

∂t
, (2.3)

and D is the symmetric part of the velocity gradient. The higher order Rivlin-

Ericksen tensors are defined through the recurrence relationship:

Ai =
dAi−1

dt
+ Ai−1

∂v

∂x
+

(
∂v

∂x

)T

Ai−1, i ≥ 2. (2.4)

As stated in the introduction, we wish to study the behavior of a fluid that

thickens or thins due to chemical reactions, and thus the viscosity changes with

the concentration as well as the shear-rate. Here we define the concentration in the

∗Reprinted with permission from “Pulsatile Flow of a Chemically-Reacting
Non-Linear Fluid”, by Craig Bridges, 2006. Computers and Mathematics with
Applications, 52, 1131-1144. Copyright 2006 by Elsevier Ltd.
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following manner:

c =
ρr

ρr + ρ
. (2.5)

The quantities ρ and ρr denote the densities of the fluid and the co-existing reacting

fluid, respectively. On the other hand, as mentioned in the introduction, ‘c’ could

denote an internal variable on which the viscosity depends. Since the fluid is as-

sumed to be incompressible we are interested in studying only isochoric motions.
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CHAPTER III

GOVERNING EQUATIONS∗

We shall study the behavior of isotropic fluids of the differential type. For such

fluids, the Cauchy stress has the following representation (see Truesdell and Noll

[8]):

T = f(A1,A2, ...,Ai, ρ). (3.1)

Fluids that can be represented by this model are often referred to as a Rivlin-

Ericksen fluids of complexity i, and such fluids are frame-indifferent as the tensors

Ai are frame-indifferent. It follows from standard representation theorems for an

isotropic tensor-valued function that the Cauchy stress in a Rivlin-Ericksen fluid

of complexity 1 has the form:

T = α01 + α1A1 + α2A2
1, (3.2)

where α0, α1 and α2 are all functions of trA1, trA2
1 and trA3

1. Here we wish to

study a special sub-class of (3.2) that is often referred to as an incompressible,

generalized Newtonian fluid. For such a fluid, equation (3.2) reduces to:

T = −π1 + µa(A1)A1, (3.3a)

where −π1 denotes the indeterminate part of the stress due to the constraint of in-

compressibility. Fluids belonging to the sub-class (3.3a) with an apparent viscosity

µa of the form:

µa(A1) = µ

[
1 + αtr(A2

1)

]n

(3.3b)

∗Reprinted with permission from “Pulsatile Flow of a Chemically-Reacting
Non-Linear Fluid”, by Craig Bridges, 2006. Computers and Mathematics with
Applications, 52, 1131-1144. Copyright 2006 by Elsevier Ltd.
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have been used in modelling the flows of polymeric liquids [9]. The main charac-

teristic of this non-linear model is that it captures the ability of a fluid to shear-thin

or shear-thicken in shear flows through the material parameters n and α. If the

shear-index n < 0 this model characterizes the behavior of a shear-thinning fluid

while if n > 0 it characterizes the behavior of a shear-thickening fluid. If n = 0

this model reduces to the linearly viscous fluid model. The quantity µ is called the

zero shear-rate viscosity and is defined as:

µ = lim
κ→0

µa(κ), (3.4)

where κ is the shear-rate. The mathematical properties pertaining to existence and

uniqueness of the equations governing the flows of a fluid characterized by (3.3)

have been studied in great detail (see Malek et al. [10]), and the stability of such

flows has been studied by Malek, Rajagopal and Ruzicka [11]. The Lagrange

multiplier π is, in general, a function of r, θ, z and t, and since trA1 = 2div(v) =

0, π is equal to the mean hydrostatic pressure. This is not the case with most

(incompressible) non-linear models as the trace of the ‘extra stress’ is non-zero.

The fluid is assumed to be thermally uniform and is assumed to undergo isothermal

processes. Consequently, the rate of dissipation ξ reduces to:

ξ = T · D, (3.5)

where the scalar product between the Cauchy stress and the symmetric part of the

velocity gradient is often referred to as the stress-power. The 2nd law of thermo-

dynamics requires the rate of dissipation, and in this case the stress-power, to be

non-negative. If the stress power is to be non-negative for all n, then we conclude

that α= 0. We note that such a model can also be developed as a trivial case within

the framework recently proposed by Rajagopal and Srinivasa [12].
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We are interested in the viscosity depending on the concentration ‘c’, and thus

the model that we shall consider has the representation:

T = −π1 + µ(c,A1)A1, (3.6a)

where

µ(c,A1) = µ?(c)

[
1 + αtr(A2

1)

]n

. (3.6b)

Henceforth, we shall drop the star for convenience.

As the fluid is incompressible, it can undergo only isochoric motions and thus:

div(v) = 0. (3.7)

On substituting the constitutive relation (3.6) into the balance of linear momentum:

div(T) + ρb = ρ
dv

dt
, (3.8)

we obtain:

−
∂π

∂x
+ A1

∂

∂x

[
µ(c,A1)

]
+ µ(c,A1)∆v = ρ

dv

dt
, (3.9)

on using (3.7) and on neglecting the body force ρb. The governing relationship for

the concentration is the convection-reaction-diffusion equation:

∂c

∂t
+ div(cv) = f. (3.10)

We shall assume f to be of the special form:

f = −div(p), (3.11)

where p is a flux vector that is related to the reactions that take place within the

fluid. We assume the flux vector p is given by a constitutive relation that is similar
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to that used in Fick’s assumption, i.e.,

p = −K
∂c

∂x
, (3.12)

where K is a scalar-valued function of the first Rivlin-Ericksen tensor. Therefore,

the reaction-convection-diffusion equation reduces to:

∂c

∂t
+ div(cv) = div

[
K(A1)

∂c

∂x

]
. (3.13)

Thus, in general, the balance of mass (3.7), the balance of linear momentum (3.9)

and the convection-reaction-diffusion equation (3.13) are coupled, and one must

solve them together for the velocity ‘v’ and the concentration ‘c’.
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CHAPTER IV

THE BOUNDARY VALUE PROBLEM∗

Let us consider the pulsating flow of a reacting fluid in the domain Ω: 0 5 r 5 Ri,

0 5 θ < 2π and −∞ < z < ∞, where (r, θ, z) is a cylindrical-polar coordinate

system that is placed such that r = Ri is the inner wall of the tube, and r = 0 is the

axis of symmetry. We shall employ a semi-inverse approach and seek a velocity

field of the form:

v = vz(r, t)ez, (4.1)

where ez denotes the base vector in the z coordinate direction. On substituting

(4.1) into (3.9), expressed in a cylindrical-polar coordinate system in view of the

specific boundary value problem under consideration, yields:

−
∂π

∂r
= 0, (4.2a)

−
1

r

∂π

∂θ
= 0, (4.2b)

and

1

r

∂

∂r

{
rµ(c)

[
1 + 2α

(
∂vz

∂r

)2
]n

∂vz

∂r

}
−
∂π

∂z
= ρ

∂vz

∂t
. (4.2c)

Equation (4.2a) implies the pressure is independent of r. Similarly, equation (4.2b)

reveals the pressure is not a function of θ. It would then be natural to assume, since

we shall consider a fully-developed, pulsating flow, an axial pressure gradient of

the form:

∂π

∂z
= −[Ao +Bosin(ωt)], (4.3)

∗Reprinted with permission from “Pulsatile Flow of a Chemically-Reacting
Non-Linear Fluid”, by Craig Bridges, 2006. Computers and Mathematics with
Applications, 52, 1131-1144. Copyright 2006 by Elsevier Ltd.
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whereAo andBo are constants, and ω is the frequency of the pulsation. Combining

(4.2c) and (4.3) we obtain:

1

r

∂

∂r

{
rµ(c)

[
1 + 2α

(
∂vz

∂r

)2
]n

∂vz

∂r

}
+ Ao +Bosin(ωt) = ρ

∂vz

∂t
. (4.4)

The solution to equation (4.4) depends on the particular choice for µ, namely how

it depends on the concentration ‘c’.

Due to the structure of the domain Ω and the pulsatility of the flow, the con-

centration is assumed to have the form:

c = ĉ(r, t). (4.5)

On appealing to equation (3.7) and the assumption (4.5), equation (3.13) reduces

to:

∂ĉ

∂t
=

1

r

∂

∂r

[
rK(A1)

∂ĉ

∂r

]
. (4.6)

We shall assume the diffusivity to be of the special form:

K (A1) = η‖A1‖
2 = ψ

(
∂vz

∂r

)2

, (4.7)

where η and ψ are constants and ‖ · ‖ denotes the trace-norm.

We now proceed to non-dimensionalize the governing equations by introduc-

ing the mapping (r, t) � (ε, τ) and parameters:

ε =
r

Ri

, τ =
vt

Ri

, λ =
vz

v
,

γ =
AoRi

ρv2 , β =
BoRi

ρv2 , ω =
Riw

v
, c = ĉ(r, t) = ς(ε, τ), (4.8)

δ = 2α
v2

R2
i

, φ = ψ
v

R3
i

, µ̃ =
µ[ĉ(r, t)]

ρvRi

=
µ[ς(ε, τ)]

ρvRi

,



11

where v is a representative velocity. Thus, the non-dimensional forms of the gov-

erning equations (4.4) and (4.6) are:

∂λ

∂τ
= γ + βsin(ωτ) +

1

ε

∂

∂ε

{
εµ̃

[
1 + δ

(
∂λ

∂ε

)2
]n

∂λ

∂ε

}
, 0 < ε < 1, τ > 0,

(4.9)

and

∂ς

∂τ
=
φ

ε

∂

∂ε

[
ε

(
∂λ

∂ε

)2
∂ς

∂ε

]
, 0 < ε < 1, τ > 0, (4.10)

respectively.

A. The Zero Shear-Rate Viscosity

As stated earlier, we wish to study both chemical-thickening and thinning, and the

zero shear-rate viscosity should either be a monotonically increasing or monoton-

ically decreasing function, respectively, of the concentration. For simplicity, we

choose the quadratic function:

µ(ς) = k1ς
2 + k2, (4.11)

where k1 and k2 are constants.

To describe chemical-thickening, we require the following conditions to be

satisfied:

µ(0) = 100µ̂ and µ(1) = 500µ̂, (4.12)

where µ̂ is a constant. ς = 0 corresponds to the fluid prior to any reaction while

ς = 1 corresponds to a state in which the fluid is thicker and more viscous due to

the chemical reactions. Application of these conditions to equation (4.11) yields:

µ(ς) = µ̂g1(ς) = 100µ̂(4ς2 + 1). (4.13)
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In the case of a fluid that thins due to the reactions we assume that:

µ(0) = 500µ̂ and µ(1) = 100µ̂. (4.14)

In this case, ς = 1 implies the fluid has completely transformed to a thinner, less

viscous fluid. The conditions in (4.14) require:

µ(ς) = µ̂g2(ς) = 100µ̂(5 − 4ς2). (4.15)

B. Final Equations

Since µ(ς) is known in terms of the concentration, equation (4.9) is now stated in

the more convenient form:

∂λ

∂τ
= γ + βsin(ωτ) +

1

(Re)ε

∂

∂ε

{
εgj(ς)

[
1 + δ

(
∂λ

∂ε

)2
]n

∂λ

∂ε

}
, (4.16)

where Re is the Reynolds number defined through:

Re =
ρvRi

µ̂
. (4.17)

When j = 1 equation (4.16) is the governing relationship for a chemical-thickening

fluid while if j = 2 it is the governing equation for a fluid that chemically thins.

We shall see that the flow-rate is an appropriate parameter for studying the

thickening and thinning phenomena in these chemically-reacting fluids. We define

the non-dimensional flow-rate through:

Q(τ) = 2π

∫ 1

0

λ(ε, τ)εdε (4.18)

with respect to a cylindrical-polar coordinate system. From this point on, when

physical quantities are mentioned it is with an understanding that they are non-

dimensional.
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CHAPTER V

SOLUTIONS∗

Equations (4.10) and (4.16) constitute a non-linear system of partial differential

equations that must be solved subject to initial conditions and boundary conditions,

for both the velocity and the concentration, and we solve the system for a variety of

physically interesting situations. Once the parameters and solution method are es-

tablished, we solve the problem of a shear-thinning fluid that chemically thickens.

Next, we study a fluid that has both shear-thinning and chemical-thinning charac-

teristics. In each case, we compare the results to those obtained for a non-reacting

Newtonian fluid.

A. Boundary and Initial Conditions

For fluids such as water flowing under normal conditions, it is customary to enforce

the ‘no-slip’ boundary condition‡. Here, we shall enforce the no-slip boundary

condition at the solid surface. We also need to prescribe a boundary condition for

the concentration. For our problem, we shall require that no species enter or leave

through the boundary. These two conditions can be stated as the following:

λ(1, τ) = 0 and
∂ς

∂ε
(1, τ) = 0, τ = 0. (5.1)

∗Reprinted with permission from “Pulsatile Flow of a Chemically-Reacting
Non-Linear Fluid”, by Craig Bridges, 2006. Computers and Mathematics with
Applications, 52, 1131-1144. Copyright 2006 by Elsevier Ltd.

‡While the condition is supposed to have had the backing of Stokes, he was
far from unequivocal about it. (see Stokes [14]). He advocated the condition for
sufficiently slow flows.
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Also, since the domain is axisymmetric, we require the following conditions at the

center-line ε = 0:

∂λ

∂ε
(0, τ) = 0 and

∂ς

∂ε
(0, τ) = 0, τ = 0. (5.2)

Since the problem is unsteady, initial conditions must also be specified. This

is always problematic when solving equations computationally since one does not

know, especially in practical situations, the initial profile of the state variables, and

these initial conditions can ultimately affect the solutions even once the transients

have ‘died-out’. However, the standard procedure is to prescribe a parabolic profile

for the initial velocity. The initial profile for the concentration, congruent with the

boundary conditions, is given by:

ς(ε, 0) = ε2(3 − 2ε), 0 5 ε 5 1. (5.3)

This profile shows the initial concentration along the center-line is much less than

that at the wall, and thus the reaction will begin very rapidly at the wall. However,

it is possible that the rate of reaction will decrease, and this will ultimately depend

on the solutions to the governing equations.

B. Parameter Values

There are a total of 7 non-dimensional parameters and the functions gj in equations

(4.10) and (4.16). Since we are interested in studying the interaction between the

shear-thinning effects (n) and chemical-thinning/thickening effects (gj) we assign

typical values to the other non-dimensional parameters:

γ = 10, β = 10, ω = 1, Re = 100, δ = 0.1, and φ = 0.005. (5.4)
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When studying the shear-thinning and Newtonian models, we assume n = -0.5 and

0, respectively. Also, when using the Newtonian model we set µ = 300µ̂. The

function
g

j

Re
was chosen in such a way that it never attains a value less than one.

This is because we wish to compare the shear-thinning effects to the chemical-

thinning/thickening effects. To this end, let us define the competition number (CN)

as the following:

CN =

g
j
(ς)

Re[
1 + δ

(
∂λ
∂ε

)2
]−n . (5.5)

The numerator represents the chemical-thickening/thinning effects while the shear-

thinning effects are shown in the denominator. This ratio will prove useful in

analyzing the results.
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C. Solution Method

We were unable to obtain exact solutions to the equations (4.10) and (4.16), in

general, and therefore they were solved numerically. Since numerical methods

are employed one might expect errors, especially near ε = 0, due to the singular-

ities in the governing equations. Fortunately, a finite element algorithm has been

developed [13] to handle such difficulties. We use this finite element method to

reduce the system of partial differential equations to a system of ordinary differ-

ential equations in time at discrete spatial locations. More specifically, the method

uses a piecewise non-linear Petrov-Galerkin method that is second-order accurate

to discretize the space variable. The finite element method utilized differs from the

regular Galerkin method since the shape functions for the trial solution are logarith-

mic and not equal to the weight functions. Once the system of ordinary differential

equations is obtained, a variable order solver that uses difference formulas for the

derivatives is used to reduce the system of ordinary differential equations to a sys-

tem of algebraic equations. The algebraic equations are then solved using standard

methods.

Accuracy in the spatial derivatives of the velocity are of particular importance

since they appear in both the stress and the competition number. Cubic splines are

used to approximate the velocity by interpolating between the discrete points at

each time τ . Once the splines are calculated, the first derivatives are then easily

obtained.
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CHAPTER VI

RESULTS AND CONCLUSIONS∗

If we restrict ourselves to steady flows we can find exact solutions to equations

(4.10) and (4.16) by direct integration. These analytical solutions will help deter-

mine how the material parameters affect the state variables, and they will also aid

in checking the qualitative behavior of the numerical solutions.

Let us assume that λ(ε), ς(ε) ∈ C2[0, 1]. We shall begin with the governing

equation for the concentration since we can integrate it once and then apply the

neumann conditions to find the concentration directly:

1

ε

d

dε

[
ε

(
dλ

dε

)2
dς

dε

]
= 0, (6.1)

ε

(
dλ

dε

)2
dς

dε
= constant = k3. (6.2)

Application of the second condition in equation (5.2) yields:

ς(ε) = constant = k4 (6.3)

where 0 5 k4 5 1. The governing equation for the (steady) velocity is:

1

ε

d

dε




εgj(ς)

[
1 + δ

(
dλ

dε

)2
]− 1

2

dλ

dε




 = −γRe. (6.4)

Direct integration results in the following equation:

[
1 + δ

(
dλ

dε

)2
]− 1

2

dλ

dε
= −

γRe

2gj(ς)
ε+

k5

gj(ς)ε
. (6.5)

∗Reprinted with permission from “Pulsatile Flow of a Chemically-Reacting
Non-Linear Fluid”, by Craig Bridges, 2006. Computers and Mathematics with
Applications, 52, 1131-1144. Copyright 2006 by Elsevier Ltd.
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Utilizing the above assumption of smoothness we can apply the first condition in

equation (5.2) and after some algebra we arrive at the equation:

dλ

dε
= −

γReε
[
4g2

j(ς) − δγ2Re2ε2
] 1

2

. (6.6)

Again, we can directly integrate this equation to obtain:

λ(ε) =
1

γReδ

[
4g2

j (ς) − δγ2Re2ε2
] 1

2 + k6. (6.7)

Finally, we apply the first boundary condition in equation (5.1) to obtain the par-

ticular solution:

λ(ε) =
1

γReδ

{[
4g2

j (ς) − δγ2Re2ε2
] 1

2 −
[
4g2

j(ς) − δγ2Re2
] 1

2

}
. (6.8)
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A. Shear-Thinning, Chemical-Thinning Fluid
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Fig. 1. Velocity profiles at different times in the cycle for a shear-thinning, chemi-

cal-thinning fluid and a Newtonian fluid (N).
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Fig. 2. Concentration profiles at different times in the cycle for a shear-thinning,

chemical-thinning fluid.
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Fig. 3. Maximum velocity as a function of time for a shear-thinning, chemical-thin-

ning fluid and a Newtonian fluid.
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Fig. 4. Flow-rate as a function of time for a shear-thinning, chemical-thinning fluid

and a Newtonian fluid.
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Fig. 5. Competition number at different times in the cycle for a shear-thinning,

chemical-thinning fluid.
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Fig. 6. Illustration of the shear stress at the wall for a shear-thinning, chemical-thin-

ning fluid and a Newtonian fluid.
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B. Shear-Thinning, Chemical-Thickening Fluid
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Fig. 7. Velocity profiles at different times in the cycle for a shear-thinning, chemi-

cal-thickening fluid and a Newtonian fluid (N).
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Fig. 8. Concentration profiles at different times in the cycle for a shear-thinning,

chemical-thickening fluid.
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Fig. 9. Maximum velocity as a function of time for a shear-thinning, chemi-

cal-thickening fluid and a Newtonian fluid.
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Fig. 10. Flow-rate as a function of time for a shear-thinning, chemical-thickening

fluid and a Newtonian fluid.
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Fig. 11. Competition number at different times in the cycle for a shear-thinning,

chemical-thickening fluid.
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Fig. 12. Illustration of the shear stress at the wall for a shear-thinning, chemi-

cal-thickening fluid and a Newtonian fluid.
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C. Discussion of Results

Equations (6.3) and (6.8) represent steady solutions to the system of partial dif-

ferential equations (4.10) and (4.16), respectively. The solution (6.8) exhibits a

‘parabolic-type’ profile reminiscent of the Newtonian profile, however, note that

4g2
j(ς) = γ2Re2δ must be satisfied for all ς or else a real solution is not possible.

If this is the case, one must conclude that solution does not exist. However, for

the functions gj(ς) and parameter values chosen the solution (6.8) is valid. As

stated previously, it is possible that other C2 solutions or even solutions with less

smoothness exist. One should expect the result (6.3) as the boundary and symmetry

conditions for the concentration are both Neumann.

Let us now analyze the results for the shear-thinning, chemical-thinning fluid.

In this case, both the shear-index and the function g2(ς) contribute to the thinning.

Figure 2 shows the concentration of the reactant increases, as time increases, in

a region about 0.4 units from the the center-line while the concentration of the

reactant contained in the remaining portion of the cross-section is approximately

constant. Since the fluid chemically-thins, this causes the viscosity of the fluid

to decrease. Therefore, the center-line velocity decreases to a lower-bound as

depicted in figures 1 and 3. At first, this might seem strange that a decrease in

viscosity leads to a decrease in maximum velocity. However, a careful consider-

ation of the situation convinces one that the result is not counter-intuitive, rather

what one should expect. For example, consider the flow of an incompressible

fluid in a diverging pipe. Balance of mass requires that the center-line velocity

downstream be smaller than the center-line velocity upstream. This is just the case

we have here, except in our case there is no notion of a geographic upstream or

downstream. For us, the ‘downstream’ is the increase in concentration, as time
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increases, which in turn causes the fluid to thin (as time increases). Note that after

35 cycles the concentration approaches a constant value just as the steady solu-

tion (6.3) predicts. The chemical-thinning of the fluid also causes the flow-rate to

decrease, as shown in figure 4, which seems unusual since one would expect the

flow-rate of the chemical-thinning fluid to increase. This anomaly is contributed

to the aforementioned behavior of the velocity of the fluid. A plot of the profiles

for the competition number (CN) in figure 5 reveals that the chemical-thinning ef-

fects are dominant except for a small layer approximately 0.1 unit thick near the

wall. Here, the effects due to shear-thinning are the most important, but become

less important as time increases. Naturally, one would question what effect this

has on the wall shear-stress. In figure 6 we plot the wall shear-stress for both the

shear-thinning fluid and the Newtonian fluid. The wall shear-stress associated with

the shear-thinning fluid is approximately 5 times that of the Newtonian fluid.

We shall now analyze the numerical results from the shear-thinning, chemical-

thickening fluid. The results for the velocity, in this case, are similar to those for

an incompressible fluid flowing in a converging pipe. As the pipe converges, there

is less space through which the fluid can flow, and consequently the center-line

velocity increases. Once again, the concentration of the fluid near the center-line

increases as depicted in figure 8. However, in this case, the fluid is chemically-

thickening, and therefore the viscosity increases in this region. This causes the

center-line (maximum) velocity to increase just as in the case of the converging

pipe. This is shown in the plots of the velocity in figures 7 and 9. Note that the

velocity for the shear-thinning fluid is approximately twice that for the Newtonian

fluid, and yet again, the velocity appears to have a limiting value except in this

case it is an upper-bound. This phenomenon is also illustrated by plotting the flow-

rate in figure 10. The CN profiles for the chemical-thickening fluid, depicted in
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figure 11, show that the shear-thinning effects are still dominant near the bound-

ary. We again plot the wall shear stress in figure 12. As stated previously, the

CN for the chemical-thinning fluid shows the shear-thinning effects become less

important as time increases, and therefore the wall shear-stress decreases. For the

chemical-thickening fluid, however, the CN shows that the shear-thinning effects

become more and more dominant, as time increases, at the wall and hence the wall

shear-stress increases. Also note that the velocity and concentration, in the case

of the chemical-thickening fluid, reach a steady state value more quickly than the

velocity and concentration from the chemical-thinning fluid. This suggests that

the chemical-thickening process takes less time. This seems contradictory since

one would expect the interplay between the thickening and thinning to take longer

as they are opposing effects. Note the center-line CN for the chemical-thinning

fluid, depicted in figure 5, is initially 5, while the initial, center-line CN for the

chemical-thickening fluid is approximately 1.5, and the CN for both the chemical-

thinning and chemical-thickening fluid tends to a steady-state value of 3 along the

center-line. Thus, the chemical-thinning process takes longer since the initial con-

ditions, which determine the initial CN, are closer to the steady-state values for the

chemical-thickening fluid.
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