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ABSTRACT 

 

Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale  

Data Assimilation. (May 2007) 

Zhiyong Meng, B.S., Beijing University; 

M.S., Chinese Academy of Meteorological Sciences 

Chair of Advisory Committee: Dr. Fuqing Zhang 
          

 
 
This dissertation examines the performance of an ensemble Kalman filter (EnKF) 

implemented in a mesoscale model in increasingly realistic contexts from under a perfect 

model assumption and in the presence of significant model error with synthetic 

observations to real-world data assimilation in comparison to the three-dimensional 

variational (3DVar) method via both case study and month-long experiments. The EnKF 

is shown to be promising for future application in operational data assimilation practice. 

The EnKF with synthetic observations, which is implemented in the mesoscale 

model MM5, is very effective in keeping the analysis close to the truth under the perfect 

model assumption. The EnKF is most effective in reducing larger-scale errors but less 

effective in reducing errors at smaller, marginally resolvable scales. In the presence of 

significant model errors from physical parameterization schemes, the EnKF performs 

reasonably well though sometimes it can be significantly degraded compared to its 

performance under the perfect model assumption. Using a combination of different 

physical parameterization schemes in the ensemble (the so-called “multi-scheme” 
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ensemble) can significantly improve filter performance due to the resulting better 

background error covariance and a smaller ensemble bias. The EnKF performs 

differently for different flow regimes possibly due to scale- and flow-dependent error 

growth dynamics and predictability.  

Real-data (including soundings, profilers and surface observations) are assimilated 

by directly comparing the EnKF and 3DVar and both are implemented in the Weather 

Research and Forecasting model.  A case study and month-long experiments show that 

the EnKF is efficient in tracking observations in terms of both prior forecast and 

posterior analysis. The EnKF performs consistently better than 3DVar for the time 

period of interest due to the benefit of the EnKF from both using ensemble mean for 

state estimation and using a flow-dependent background error covariance. Proper 

covariance inflation and using a multi-scheme ensemble can significantly improve the 

EnKF performance. Using a multi-scheme ensemble results in larger improvement in 

thermodynamic variables than in other variables. The 3DVar system can benefit 

substantially from using a short-term ensemble mean for state estimate. Noticeable 

improvement is also achieved in 3DVar by including some flow dependence in its 

background error covariance. 

 

 

 

 

 
 



 v

DEDICATION 

 

 

To my beloved husband Shuanzhu 

and 

to our lovely daughter Ruoqi 



 vi

ACKNOWLEDGMENTS 

 

This dissertation is the result of three and half years of work whereby I have been 

supported by many people, without whom I would never have been able to finish it.  

         First of all, I would like to extend my deepest gratitude to the chair of my advisory 

committee, Dr. Fuqing Zhang, for his enthusiastic support during the whole process of 

my doctoral study and his inspiring and encouraging way to guide me toward a deeper 

understanding of not only knowledge, but also how to be a serious scientist. His 

expertise, enthusiasm and integral view on research and his mission for providing 'only 

high-quality work and not less' have made a deep impression on me. I would also like to 

thank Dr. John Nielsen-Gammon, Dr. Courtney Shumacher, Dr. Robert Hetland, and Dr. 

Christopher A. Davis for serving on my advisory committee and giving me valuable 

comments on my research work. 

         My gratitude also goes to other collegues and staffs in Department of Atmospheric 

Sciences of Texas A&M University (TAMU) who have in their own way added to my 

graduate education and life through classroom and personal interaction. I am also very 

grateful to the Mesoscale and Microscale Meteorological Division of the National Center 

for Atmopsheric Reseach (NCAR) for providing me student visitorship and support in 

June 2004, during which I learned lots of knowledge helpful to this research. Special 

thanks go to Dr. Chris Snyder of NCAR for his valuable comments on this work, Ryan 

Torn (University of Washington), Yongrun Guo (NCAR), and Yonghui Weng (China  

Meteorological Administration) for their technical help, Jason Sippel (TAMU) and Dr. 



 vii

Altug Aksoy (NCAR) for their kind and valuable comments on both scientific and paper 

writing aspects.   

         Last but not least, I am greatly indebted to my husband, my daughter and my 

family for their understanding, patience and support during the entire period of my 

study.  

        This research is sponsored by the NSF grant ATM0205599 and by the Office of 

Navy Research under grant N000140410471. 



 viii

TABLE  OF CONTENTS 

   Page 

ABSTRACT……………………………………………………………………….        iii  

DEDICATION…………………………………………………………………….          v 

ACKNOWLEDGMENTS…...…………………………………………………….         vi 

TABLE OF CONTENTS…………………………………………………………        viii 

LIST OF FIGURES……………………………………………………………….          xi 

LIST OF TABLES………………………………………………………………...    xviii 

CHAPTER 

I     INTRODUCTION……………………………………………...............         1 
1.  Motivation and objectives…………………………………………..          1 
2.  Background.………………………………………………………...          2 

a.  Data assimilation……………………………………………......          3 
b.  The Kalman filter……………………………………………….          4 
c.  The ensemble Kalman filter…………………………………….          6 

3.  Methodology………………………………………………………..        15 

II     OBSERVING SYSTEM SIMULATION EXPERIMENTS WITH  
      PERFECT MODEL….…………………………………………………       19 

1.  Introduction.………………………………………………………...       19 
2.  Forecast model and EnKF………………………………………….        21 
3.  The truth simulation and the reference forecast ensemble…………        24 
4.  The control EnKF experiment……………………………………..         30 
5.  Forecast experiments with the EnKF analysis……………………..        38 
6.  Sensitivity experiments……………………………………………         40 

a.  Ensemble size, variance relaxation and localization…..………         40 
b.  Observation quality and availability…………………………...        43 
c.  Different truth simulations……………………………………..        46 

7.  Summary and discussions………………………………………….        46 

III    OBSERVING SYSTEM SIMULATION EXPERIMENTS WITH 
        IMPERFECT MODEL…………………………………………………        49 

1.  Introduction………………………………………………………...        49 
2.  Methodology and experimental design…………………………….        53 
3.  Overview of the event and the control experiment………………...        56 



 ix

CHAPTER                                                                                                                    Page 

a.  Synoptic overview……………………………………………...        56 
b.  The control EnKF experiment………………………………....         57 

4.  Sensitivity to model error in physical parameterizations…………..        61 
a.  Impact of cumulus parameterization under perfect PBL and 
     microphysics schemes……………………………………….....        62 
b.  Impact of cumulus parameterization under imperfect PBL and  
     microphysics schemes……………………………………….....        70 
c.  Comparison of error covariance between single- and  
     multi-scheme ensembles………………………………………..        73 
d.  Other experiments………………………………………...........        79 

5.  Impact of flow-dependent error growth dynamics…………............        79 
a.  Overview of the MCV event and the EnKF configuration..........        80 
b.  The control EnKF experiment for the MCV event…….............         81 
c.  Impact of model error for the MCV event………………..........         85 

6.  Conclusions and discussions……………………………….............        88 

IV    COMPARISON WITH 3DVAR IN A REAL-DATA CASE STUDY...        91 
1.  Introduction………………………………………………………...         91 
2.  Methodology……………………………………………………….         93 

a.  The mesoscale model………………………………………….     93 
b.  WRF-3DVar……………………………………………………      95 
c.  The EnKF………………………………………………………      97 
d.  Ensemble initial and boundary perturbations…..………………     98 

3.  Overview of the MCV event and observations to be assimilated….       99 
a.  The MCV event in BAMEX……………………………………       99 
b.  Observations to be assimilated…………………………………      101 

4.  Comparison between the EnKF and 3DVar………………………..      102 
a.  The reference forecast………………………………………….    102 
b.  Experiments with different types of observations……………..   106 

5.  Sensitivity to background error covariance………………………..      113 
a.  Model error treatments in the EnKF……………………………     114 
b.  Sensitivity to background error covariance in 3DVar………….     117 

6.  Summary and discussions…………………………………………..   123 

V     COMPARISON WITH 3DVAR IN A MONTH-LONG  
        EXPERIMENT………………………………………………………….     126 

1.  Introduction………………………………………………………...      126 
2.  Methodology…………………………………………………….....      128 

a. The model……………………………………………………....     128 
b. The EnKF and 3DVar…………………………………………..      130 
c. Verification metrics…………………………………………….       132 

3.  The reference forecast……………………………………………..       133 



 x

CHAPTER                                                                                                                    Page 

4.  Ensemble consistency of the EnKF………………………………..       135 
5.  Comparison between the EnKF and 3DVar……………………….       141 
6.  Sensitivity to background error covariance………………………..       146 

a. Comparison between multi- and single-scheme ensembles in 
    the EnKF………………..……………………………………....       146 
b. Comparison between cv5 and cv3 in 3DVar……………………      149 
c. Comparison between different initiating times for the EnKF......      149 

7.  Summary and discussion…………………………………………..       152 

VI   SUMMARY AND DISCUSSION……………………………………..       155 

APPENDIX………………………………………………………………………..      160  

REFERENCES…………………………………………………………………….      165  

VITA……………………………………………………………………………….    174  

 

 



 xi

LIST OF FIGURES 

FIGURE                                                                                                                        Page 

2.1    Map of the model domain. Only data in shaded areas are assimilated and  
          analyzed ……………………………………………………………….......        22 

 
2.2   The mean sea-level pressure (MSLP, every 2 hPa) and model-derived 

reflectivity at the 12-, 24-, and 36-h forecast times from the truth 
simulation (panels a-c) and the reference forecast ensemble mean (panels 

          d-f) ………………………………………………………………………….       26 
 

2.3  As in Fig. 2.2 but for the geopotential heights (every 80 m), potential 
vorticity (shaded, every 1 PVU) and vector winds (full barb 5 ms-1) at 

       300 hPa …………………………………………………………………….       27 
  

2.4     Differences of wind vectors (full barbs 5 ms-1) and MSLP (every 0.5 hPa) 
between the truth simulation and the reference forecast ensemble mean at 
(a) 12, (b) 24, and (c) 36 h, and between the truth simulation and the  

       EnKF mean analyses at (d) 12, (e) 24 and (f) 36 h ………………………..        28 
 

2.5     As in Fig. 2.4 but for the difference of 300 hPa potential vorticity (every   
       0.5 PVU) and winds (full barb 5 ms-1) …………………………………...        29 
 

2.6    As in Fig. 2.4 but for the root-mean of column-averaged DTE (RM-DTE; 
       every 2 ms-1) ………………………………………………………………        31 
 

2.7   Vertical distribution of the mean analysis errors of the control EnKF 
experiment (solid) and the mean forecast errors of the reference forecast 
ensemble (dotted) for (a) (horizontally averaged) RM-DTE, (b) p’, (c) w, 
and (d) q valid at 12 h (red), 24 h (blue), and 36 h (black). Errors in the 

       initial ensemble are denoted with dotted green curves ……………………        33 
 

2.8    Evolution of the domain-averaged root-mean-square errors of the EnKF 
analysis (solid black) with respect to the truth simulation for six 
prognostic variables (u, v, T, p’, w, q), the corresponding standard 
deviation (solid gray) of analysis ensemble, and the root-mean-square 
errors of the reference forecast ensemble (dotted black, computed every  

       12 h only) ………………………………………………………………….        36 
 

2.9 Power spectrum analysis of the EnKF analysis errors (solid) and the 
reference forecast ensemble errors (dotted) at 12 h (red), 24 h (blue), and 
36 h (black).for six prognostic variables (u, v, T, p’, w, q). The minimum 
(maximum) wave number of 1 (40) corresponds to a horizontal 



 xii

FIGURE                                                                                                                        Page 

wavelength of 2400 (60) km. Error spectra in the initial ensemble are  
       denoted with dotted green curves ………………………………………….       37 
 

2.10  As in Fig. 2.6 but from ensemble forecasts for (a) EF12H at 24 h, (b)  
       EF12H at 36 h, and (c) EF24H at 36 h ……………………………………        39 
 

2.11  Time evolution of domain-averaged root-mean-square errors from the 
reference forecast ensemble (dotted), EF12H (solid black; from 12 h), 
EF24H (solid black; from 24 h) and the CNTL analysis (gray) for six  

       prognostic variables (u, v, T, p’, w, q) ……………………………………..       40 
 

2.12   Time evolution of the domain-averaged RM-DTE (ms-1, black, thick) and 
standard deviation (ms-1, black, thin) from sensitivity experiments (a) 
CNTL20, (b) NOMIX and (c) IR60DX . RM-DTE and standard deviation 
from the control experiment and the RM-DTE from the reference forecast 
ensemble are also displayed in thick gray, thin gray and  

       dotted curves, respectively ………………………………………………...        41 
 

2.13  Time evolution of the domain-averaged RM-DTE (ms-1, black, thick) 
from sensitivity experiments (a) HALFERR, (b) TWICEERR, (c) 
UONLY, (d) SND450KM, (e) SNDONLY and (f) SFCONLY. RM-DTE 
from experiment CNTL20 and the 20-member reference forecast  

       ensemble are also displayed in gray and dotted curves, respectively ……...       45 
 

3.1    Map of the model domain. Observations are extracted only from the area 
       inside the shaded (solid) box for the snowstorm (MCV) case …………….       55 
 

3.2    The MSLP (every 2 hPa) and simulated reflectivity (shaded) valid at (a) 
12 h and (b) 36 h from the truth simulation for the snowstorm case. (c-d) 
are as (a-b) but for the potential vorticity (every 1 PVU) and wind vectors 

       (full barb 5 m s-1) at 300 hPa  ……………………………………………..       58 
 

3.3    Forecast errors of surface wind vectors (full bard 5 m s-1) and MSLP 
(every 0.5 hPa) at (a) 12 h and (b) 36 h for the snowstorm case. The 
analysis error of the same fields at 36 h is in (c). (d-f) are as (a-c) but for 

       the column-averaged RM-DTE (every 2 m s-1) …………………………...       59 
 

3.4 (a-c) Time evolution of domain-averaged RM-DTE for different 
experiments and (d-f) the vertical distribution of horizontally-averaged 
RM-DTE of the EnKF analysis (solid lines) and corresponding reference 
forecast (dashed lines) for the snowstorm case at 36 h. (a) and (d) are for 
one wrong cumulus parameterization scheme and perfect PBL and 



 xiii

FIGURE                                                                                                                        Page 

microphysics. This includes experiments “KFens” (thin black), 
“KUOens” (thin dark-gray), and “CNTL” (thick dark-gray). The dotted 
line in (a) denotes the standard deviation of the EnKF analysis ensemble 
in “CNTL” in terms of RM-DTE. (b) and (e) are similar to (a) and (d) but 
for multiple cumulus schemes, including “Multi1” (thin gray), “Multi2” 
(thin dark-gray), “KFens” (black), and “CNTL” (thick dark-gray). (c) and 
(f) are similar to (a) and (d) but for varying cumulus and imperfect PBL 
and microphysics including experiments “KF3” (black), “Multi3” (thin 

       dark-gray), “Multi4” (thin gray), and “CNTL” (thick dark-gray) …………       61 
 

3.5    Power spectrum of DTE for (a) the snowstorm at 36 h and (b) the MCV 
event at 48 h. The minimum (maximum) wave number 1 (40) in (a) and 1 
(28) in (b) correspond to a horizontal wavelength of 2400 (60) km in (a)  

       and 1680 (60) km in (b)  …………………………………………………..        62 
 

3.6    Time evolution of (a) the bias (the root-mean-square difference between 
the imperfect-experiments’ reference ensemble mean and the “CNTL” 
reference ensemble mean) in terms of RM-DTE and (b) the 
corresponding reference ensemble spreads (standard deviation or std) of 
RM-DTE for the snowstorm case. (c-d) are as in (a-b) but for the vertical 
distribution at 36 h. The dashed lines denote one-scheme ensembles with 
black for “KFens”, gray for “KUOens”, and dark-gray for “KF3ens”. The 
solid lines represent multi-scheme ensembles including “Multi1” (thick 
black), “Multi2” (thin black), “Multi3” (thin dark-gray), and “Multi4” 

       (thick dark-gray) …………………………………………………………       66 
 

3.7   (a) Relative error reduction and (b) absolute forecast/analysis errors ( 
       m s-1) in terms of domain-averaged RM-DTE at the final analysis time for 

the snowstorm case at 36 h (black bins) and the MCV case at 48 h (white  
       bins). The experiments are labeled on the x-coordinate …………………..       67 
 

3.8    Horizontal distribution of column-averaged RM-DTE (every 2 m s-1) at 36 
h for the snowstorm case for (a) “KFens”, (b) “Multi1”, (c) “Multi2”,  

       (d) “KF3ens”, (e) “Multi3”, and (f) “Multi4”, respectively …………….       70 
 

3.9     Horizontal distribution of the standard deviation of column-averaged RM-
DTE (every 2 m s-1) for (a) “Multi2” and (b) “KFens” at 24 h for the 
snowstorm case. (c-d) are as (a-b) but for the covariance between U and 
T on 300hPa (every 2 K m s-1; negative, dotted). The shading in (c-d) is 

       PV at 300hPa every 1 PVU  ……………………………………………….       75 
 

3.10   The domain-averaged RM-DTE (thick solid lines) and analysis ensemble 



 xiv

FIGURE                                                                                                                        Page 

spread of RM-DTE (thin solid lines) with different weights (α) of prior 
perturbations in the covariance inflation (mixing) method for experiments 
(a) “KFens”, (b) “Multi2”, and (c) “Multi4” for the snowstorm case. The 
black lines are for α=0.7, gray lines for α=0.5. The reference ensemble    

       forecast errors are also plotted in dotted lines …………………………….       78 
   

3.11   The MSLP (every 2 hPa) and simulated reflectivity (shaded) valid at (a) 
12 h, (b) 36 h, and (c) 48 h and the potential vorticity (every 1 PVU) and 
wind vectors (full barb 5 m s-1) at 600 hPa valid at (d) 12 h, (e) 36 h, and 

       (f) 48 h from the truth simulation for the MCV case ……………………...       81 
 

3.12  Forecast errors of surface wind vectors (full bard 5 m s-1) and MSLP 
(every 0.5 hPa) at (a) 12 h and (b) 48 h for the MCV case and (c) analysis 
error of the same fields at 48 h. (d-f) are as (a-c) but for the column- 

       averaged RM-DTE (every 2 m s-1) ………………………………………..       82 
 

3.13   Time evolution of the domain-averaged root-mean-square errors of (a) u, 
(b) v, (c) T, (d) p’, (e) w, and (f) q for the EnKF analysis (solid black) and 
the reference ensemble forecast (dotted black, computed every 12 h) of 
“CNTL” in the MCV case. The gray lines are the standard deviation of  

       analysis ensemble ………………………………………………………….        83 
 

3.14    As in Fig. 3.4 but for the MCV case with (d-f) valid at 48 h .…………….        84 
  

3.15    As in Fig. 3.6 but for the MCV case with (c) and (d) valid at 48 h ………        86 
 

4.1   (a) Map of the model domain and (b) distribution of assimilated  
        observations in domain 2  ………………………………………………...       95 
 

4.2     Observed radar echoes of the MCV event at (a) 1200 UTC June 10, 2003, 
(b) 0000 UTC, (c) 0600 UTC, (d) 1200 UTC, (e) 1800 UTC, June 11,  

       2003, and (f) 0000 UTC June 12, 2003…………………………………    100 
           
4.3   The MSLP (every 2 hPa), 10-m wind vectors (full barb 5 m/s) and 

simulated reflectivity (shaded) valid at 36 h (0000 UTC 12 June) of the 
reference forecast (a) DF and (b) EF, and the prior forecast of (c) 
3DVar_SND, (d) EnKF_SND, (e) EnKF_ALL and (f) EnKF_multi. The 
big X and L respectively denote the simulated and observed MCV centers  

       at surface  ………………………………………………………………….      104 
 

4.4 Horizontal distributions of column-averaged RM-DTE and RMSE of q  
valid at 36 h for the reference forecast (a-b) DF and (c-d) EF, the prior  



 xv

FIGURE                                                                                                                        Page 

 forecast of (e-f) EnKF_SND, and (g-h) 3DVar_SND ………………….      105 
  

4.5     Time evolution of domain-averaged RMSE of (a) u, (b) v, (c) T, and (d) q 
for EnKF_SND (red), 3DVar_SND (green), and EnKF_multi (blue). The 
solid lines denote the prior RMSE and the dot-dashed lines the posterior 
RMSE. Also plotted are the RMSE of the reference forecast DF (green 

       dashed), EF (red dashed), and EF_multi (blue dashed) …………………...      107 
 

4.6     Vertical distributions of horizontally-averaged prior RMSE of (a) u, (b) v, 
(c) T, and (d) q for EnKF_SND (red solid), 3DVar_SND (green solid), 
and EnKF_multi (blue solid). Also plotted are the horizontally-averaged 
prior ensemble spread (STD) of EnKF_SND (red dotted) and 
EnKF_multi (blue dotted) together with the horizontally-averaged RMSE 
of the reference forecast DF (green dashed), EF (red dashed), and 

       EF_multi (blue dashed) ……………………………………………………      109 
 

4.7    A summary of domain-averaged RM-DTE prior/forecast error valid at 36 
       h for all experiments  ……………………………………………………...      110 
 

4.8    Vertical distributions of horizontally-averaged RMSE of (a) u, (b) v, (c) T, 
and (d) q at 36 h for the prior forecast of EnKF_PFL (blue solid), 
3DVar_PFL (green solid), EnKF_SND (red solid), the RMSE of the 

       reference forecast DF (green dashed ) and EF (red dashed) ………………      111 
 

4.9    As in Fig. 4.7 except for EnKF_SFC (blue solid), 3DVar_SFC (green solid 
       ), and EnKF_SND (red solid) .…………………………………………….   113 
 

4.10 As in Fig. 4.7 except for EnKF_ALL (blue solid), 3DVar_ALL (green 
         solid), and EnKF_SND (red solid) …………………………………………      114 

 
4.11   As in Fig. 4.7 except for EnKF_mix0 (green lines), EnKF_SND (red lines  

        ), and EnKF_multi (blue lines) ……………………………………………     117 
 

4.12   Vertical distribution of horizontally-averaged prior RMSE of (a) u, (b) v, 
(c) T, and (d) q at 36 h in Var_nmcB (brown solid), Var_ensB (purple 
solid), and Var_evoB (black solid) in comparison to EnKF_SND (red 
solid). Also plotted are the RMSE of the reference forecast DF (green  

       dashed) and the prior RMSE of 3DVar_SND (green solid) ………………      120 
 

4.13   As in Fig. 4.2 except for (a) Var_ensB, (b) Var_evoB, (c) EnVar_ensB,  
       and (d) EnVar_evoB ……………………………………………………...     121 

 



 xvi

FIGURE                                                                                                                        Page 

4.14 Vertical distribution of horizontally-averaged prior RMSE of (a) u, (b) v, 
(c) T, and (d) q at 36 h in Var_evoB (black solid), EnVar_ensB (green 
solid), and EnVar_evoB (blue solid) in comparison to EnKF_SND (red 
solid). Also plotted are the RMSE of the reference forecast DF (green  

            dashed) and EF (red dashed) ………………………………………………     122 
 

5.1     Map of model domain. The solid circles denote the sounding observations 
to be assimilated. The dashed box is where the verification is done (the 

       same as the inner domain used in the MCV case in Chapter IV) …………..    129 
 

5.2     Time evolution of domain-averaged RMSE of (a) u, (b) v, (c) T, and (d) q  
       for the reference forecasts EF (red) and DF (blue) …………………………    134 
 

5.3     Vertical distribution of month-averaged RMSE (solid) and bias (dashed) 
of (a) u, (b) v, (c) T, and (d) q for reference forecasts EF(red) and DF  

       (blue). Zero line is also plotted in gray solid for reference ………………...     135 
 

5.4   (a) Absolute and (b) relative error reduction with respect to DF of  
       different experiments in terms of RM-DTE ………………………………      136 
 

5.5   Vertical distribution of the month-averaged prior RMSE (red solid), 
predicted prior RMSE (red dot-dashed), RMS observation error (blue 
solid), and RMS prior ensemble spread (red dotted) of (a) u, (b) v, (c) T  

       and (d) q  for EnKF_multi …………………………………………………     138 
 

5.6    Rank histogram for (a) u, (b) v, (c) T, and (d) q of the prior ensemble in 
       EnKF_multi  ……………………………………………………………….     141 
 

5.7     Time evolution of domain-averaged RMSE of the 12 hourly prior forecast 
(solid) and posterior analysis (dot-dashed) of (a) u, (b) v, (c) T, and (d) q 

       for EnKF_multi  (red) and 3DVar_cv5 (blue) ……………………………..     142 
 

5.8 Vertical distribution of the month-averaged prior RMSE (solid) and bias 
(dot-dashed) of (a) u,(b) v, (c) T, and (d) q for EnKF_multi (red), 
3DVar_cv5 (blue), and NCEP_3DVar (green). The RMSE and bias for 
EnKF_multiM are respectively plotted in red dashed and red dotted lines. 
The reference forecast RMSE (blue dashed) and bias (blue dotted) for  
DF are also plotted for comparison. Zero line is plotted in gray solid for  

        reference  ………………………………………………………………….      144 
 

5.9    Time evolution of domain-averaged RMSE of (a) u, (b) v, (c) T, and (d) q 
for the prior forecast of 3DVar_cv5 (blue), the forecast of EnKF_multiM 



 xvii

FIGURE                                                                                                                        Page 

 (red)  and NCEP_3DVar (green solid) ……………………………………..   145 
 

5.10  Vertical distribution of the month-averaged posterior RMSE (solid) and 
bias (dot-dashed) of (a) u, (b) v, (c) T, and (d) q for EnKF_multi (red) 
and 3DVar_cv5 (blue). The prior RMSE (dashed) and their bias (dotted) 
for EnKF_multi (red) and 3DVar_cv5 (blue) are also plotted for  

        comparison. Zero line is plotted in gray solid for reference ………………     147 
 

5.11  Vertical distribution of the month-averaged RMSE (solid), predicted 
RMSE (dot-dashed), and RMS ensemble spread (dotted) of the prior 
forecast for (a) u, (b) v, (c) T, and (d) q in EnKF_multi (red) and 

       EnKF_single (blue) ………………………………………………………...     148 
 

5.12  Vertical distribution of month-averaged RMSE (solid for prior forecast 
and dot-dashed for posterior analysis) and bias (dashed for prior forecast 
and dotted for posterior analysis) of (a) u, (b) v, (c) T, and (d) q for 
EnKF_multi (red) and EnKF_single (blue). The RMSE (green solid) and 
bias (green dashed) for reference forecast EF are also plotted for 

       comparison. Zero line is plotted in gray solid for reference ……………….     149 
 

5.13  Vertical distribution of month-averaged prior RMSE (solid) and bias 
(dashed) of (a) u, (b)v, (c) T, and (d) q for 3DVar_cv5 (red) and 

       3DVar_cv3 (blue). Zero line is plotted in gray solid for reference ………     150 
 

5.14  Time evolution of domain-averaged RMSE of prior forecast (solid) and 
posterior analysis (dot-dashed) of (a) u, (b) v, (c) T, and (d) q for 
EnKF_multi_5days (blue), Mix0.7_multi from the MCV case study  in 

       Chapter IV (green), and EnKF_multi valid in the same time period (red)…     151 
  

5.15   (a) The observed radar echo, the prior forecast of MSLP (every 2 hPa), 
10-m wind vector (full barb 5 m/s) and simulated reflectivity (shaded) 
valid at 0000 UTC June 12, 2003 of  (b) Mix0.7_Multi in Chapter IV, (c)  
EnKF_multi _5days, and (d) EnKF_multi. The big X and L respectively  

       denote the simulated and observed MCV centers at surface ………………     152 



 xviii

LIST OF TABLES 

TABLE                                                                                                                          Page 

3.1   Model configurations of various experiments ……………………………       54 

3.2   Model configuration of experiment “Multi4” ……………………………       54 

3.3  Domain-averaged RM-DTE for one-time data assimilation experiments 
valid at 36 (48) h for the snowstorm (MCV) case which switch 
perturbations between the single scheme “KFens” and the multi-scheme  

      EnKF experiments. EF means the reference ensemble forecast …………       77 

4.1    Vertical distribution of observation error for sounding and profiler ..…….      102 

4.2    Model configuration of the experiment with multi-scheme ensemble  
      Mix0.7_multi ……………………………………………………………..      115 

4.3    Experiment designs on the sensitivity of 3DVar to different BESs ……...      118 



 1

CHAPTER I 

INTRODUCTION 
 

1. Motivation and objectives 

The ensemble Kalman filter (EnKF) data assimilation technique, which estimates 

background error covariance through an ensemble of short-term forecasts, has been 

recently applied to various dynamical systems and realistic situations. Since being 

introduced by Geir Evensen in 1994, the EnKF has drawn increasing attention from the 

data assimilation community and has become one of the leading candidates for future 

operational data assimilation techniques. While the application of the EnKF has become 

quasi-operational for large-scale global models, its use for mesoscale systems has only 

started rather recently. The EnKF has the potential for success in the mesoscale data 

assimilation field because of its use of flow-dependent background error covariances.  

Variational data assimilation, an alternative to the EnKF, often has difficulties in 

capturing detailed structures of mesoscale systems due to its use of isotropic and 

homogeneous background error covariance.  The performance of EnKF implemented in 

large-scale models has been shown better or at least comparable to the performance of 

variational technique with real observations (Houtekamer et al. 2005; Whitaker et al. 

2006). However, the performance of the EnKF implemented in mesoscale models has 

not been compared directly to that of variational method.   

 
____________ 
This dissertation follows the style of Monthly Weather Review. 
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This doctoral study seeks to examine the performance of an EnKF for different 

mesoscale weather systems using perfect model and imperfect-model Observation 

System Simulation Experiments (OSSE) and real data assimilation. The EnKF is directly 

compared to the three dimensional variational method (3DVar) with in-situ observations. 

This work has two main objectives: 

(1) Evaluate the performance of the mesoscale ensemble-based data assimilation 

system with synthetic observations for both perfect and imperfect models (i.e., the 

ensemble members and the truth are propagated with the same or a different model) and 

ensemble scenarios, at different scales and under different flow regimes, and introduce a 

possible model error treatment method.  

(2) Assimilate in-situ observations from the Bow Echo and Mesoscale Convective 

Vortex Experiment (BAMEX); compare the performance of the EnKF to 3DVar.  

 

2. Background 

One goal of atmospheric science is to make weather or climate forecasts as accurate 

as possible. To this end meteorologists have developed different kinds of forecast 

methods, such as persistence, trends, climatology, analogy and numerical weather 

prediction (NWP). Numerical prediction has become increasingly reliable with the 

improvement of computer capabilities, model accuracy, observation availability and data 

assimilation techniques during the past 50 years. However, numerical weather prediction 

can never be error free because of two main reasons. One is model uncertainty due to the 

discretization, parameterization of sub-grid physical processes, or boundary conditions. 
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The other is from the initial condition error due to insufficient observations, 

measurement error and representativeness error. The accuracy of numerical weather 

prediction is very sensitive to initial fields (Thompson 1957); the atmosphere is chaotic, 

and initial small scale errors can evolve into large scale errors (Lorenz 1963). An 

effective way to improve forecast accuracy is to decrease the initial error; this is the goal 

of data assimilation. In fact, several major historical improvements in numerical weather 

prediction skill are the result of better data assimilation. 

 

a. Data assimilation 

Data assimilation can be described as the process through which all the available 

information (including observations and a numerical model) and their associated 

uncertainties are used in order to estimate as accurately as possible the state of the 

atmospheric flow and its associated uncertainties (Talagrand 1997). During the past 15 

years, the data assimilation field has witnessed an explosion of studies, resulting in 

rather different empirical and statistical methods. Successive corrections and nudging are 

two empirical methods that can be useful for small-scale observations when there are no 

available statistics. Other techniques like optimum interpolation (OI), Kalman filter 

(KF), ensemble Kalman filter (EnKF), 3DVar, and 4DVar are based on statistical 

estimation theory. OI, KF, EnKF and 3DVar are carried out sequentially; namely 

whenever a model reaches an instant when an observation is available, the model 

forecast fields are updated by the observation. After that, the updated fields are 

propagated forward in time by the model until the next observation. In these approaches, 
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only past and present observations are assimilated. A different method, 4DVar, 

minimizes a penalty function that measures the distance between the observations and 

the model forecast over a time interval. The model is run forward while first calculating 

the mismatches between the forecast and all measurements in the interval. An adjoint 

model is then run backward, combining all the mismatches in the time interval to update 

the initial field. This procedure is then repeated to minimize the penalty function. 3DVar 

is a simplified form without the time dimension and with all observations valid at the 

same time. 3DVar and 4DVar have advantages such as the ease of assimilating indirect 

observations (not model variables) and assimilating data globally. However, they are 

flawed by ignoring model error, using an isotropic and static background error 

covariance, and not being able to provide the uncertainty of the analysis. In contrast, 

these problems can be easily addressed in the Kalman filter.  

 

b. The Kalman filter 

The Kalman filter is a linear, recursive estimator that produces the minimum 

variance estimate in a least squares sense under the assumption of white and Gaussian 

noise processes. The history of the Kalman filter can be traced back to the 17th century. 

In 1795, 19-year-old Karl F. Gauss invented the least squares method for astronomical 

estimation (Sorenson 1970). 150 years later, in 1941, Kolmogorov (1962) and Wiener 

(1949) independently developed linear minimum mean-square estimation, which is 

actually a probabilistic version of the least-squares method. Ten years later, J.W. Follin 

(1955) suggested a recursive approach for the estimation field. Based on the above 
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works, in 1960, Rudolph E. Kalman published a discrete-time recursive mean-square 

filter and predicted its great potential application in various fields. 

The Kalman filter consists of two steps: the forecast step and the analysis step.  

In the forecast step, the state and the associated uncertainty are propagated forward 

in time through 

b a
t t-1,M=x x                                                                              (1.1) 

b a T
t t-1 ,= +P MP M Q                                                                    (1.2) 

in which M  is the linear dynamic model, M is the tangent linear dynamic model, TM is 

the adjoint of the tangent linear model, Q is model error covariance matrix, a
t-1x and 

a
t-1P are the analysis state vector and its error covariance at time t-1, and b

tx and b
tP are the 

background state vector and its error covariance matrix at time t whenever observations 

are available. 

The analysis step is performed at time t by 

a b o b
t t t( ),H= + −x x K y x                                                              (1.3) 

  
a b T T
t t

b
t

( ) ( )

( ) ,

= − − +

= −

P I KH P I KH KRK

I KH P
                                        (1.4) 

b T b T 1
t t( ) ,−= +K P H HP H R                                                        (1.5) 

where a
tx  is the updated state vector obtained through adding a weighted difference 

between observations 0y  and the background to the background, a
tP is the analysis error 

covariance matrix, K is the Kalman gain, which indicates how much to weight 

observations relative to the background and how to spread their impact to other points 
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and other variables to get a minimum variance analysis (detailed derivation is provided 

in Appendix), H is the observation operator mapping from model space to observation 

space, H is the tangent linear of the observation operator, and R is the observation error 

covariance.  

 

c. The ensemble Kalman filter  

Though the Kalman filter can provide flow-dependent background error covariance, 

it is very difficult to apply to atmospheric data assimilation due to the large dimension 

(106-108) and nonlinearity of atmospheric models. The Kalman filter also requires 

tangent linear and adjoint models, which makes its implementation even harder. To 

circumvent these problems, Evensen invented the ensemble Kalman filter in 1994 by 

approximating bP with a short term ensemble forecast of size N through  

b b b b b T( )( ) ,= − −P x x x x                                                        (1.6) 

in which the overbar indicates an ensemble mean.  

The EnKF is equivalent to the Kalman filter for linear error growth and infinite 

ensemble size. There are several appealing features of the EnKF: (1.1) The background 

error covariance is flow-dependent, which reflects the error of the day; (1.2) The model 

and observation operator can be nonlinear; (1.3) It provides not only the best estimation, 

but also the associated uncertainty; (1.4) There is no need to code a tangent linear or 

adjoint model; (1.5) The ensemble members can be run simultaneously, and it is thus 

easy to parallelize. Evensen’s pioneering work together with his further studies (Evensen 

and van Leeuwen 1996; Evensen 1997) demonstrates that the EnKF can adequately track 
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the true state and shows great potential in larger primitive-equation models.  

Since its first introduction in 1994, the ensemble Kalman filter has drawn increasing  

attention from the data assimilation community and has become one of two leading 

candidates (the other is 4DVar) to be employed in future operational data assimilation 

practice (Evensen 2003; Lorenc 2003; Hamill 2005). 

 

1) ISSUES INVOLVING THE ENKF 

While the EnKF has those appealing features as described above, it has its own 

issues. First, the EnKF tends to systematically underestimate analysis error. The EnKF 

uses the ensemble mean and covariance as the best estimation of the state and its 

associated uncertainty. The ensemble mean is updated by 

a b o b( ),H= + −x x K y x                                                            (1.7) 

The covariance is updated through updating the perturbation of individual members from 

the ensemble mean by 

a b o b

b b

' ' ( ' ' )

' ' ,
i i i

i i

= + −

= −

x x K y Hx

x KHx
                                                      (1.8) 

and the analysis covariance aP  is obtained by 

a

b T

' ( ' )
( ) ( )

a a Tx x=

= − −

P
I KH P I KH

                                                     (1.9) 

Comparing (1.9) with standard Kalman filter analysis covariance (1.4), it is easy to see 

that the second term TKRK in (1.4) is missing. The absence of this positive term will 

cause the EnKF systematically underestimate the analysis uncertainty, thus giving more 
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weight to the background and resulting in filter divergence when the analysis deviates 

from the truth.  

Two main approaches have been introduced to address the covariance 

underestimation problem. One is to treat the observation as a random variable by adding 

random noise consistent with observational error to the observation (Houtekamer and 

Mitchell 1998; Burgers et al. 1998; Anderson 2001). However, Whitaker and Hamill 

(2002) noted that the addition of noise to the observations can reduce the accuracy of the 

analysis error covariance estimate due to an increase of the sampling error. In the 

meantime, the probability of underestimating the analysis-error covariance is also 

increased because of the appearance of forecast-observation covariance due to 

observation perturbation. In this regard, Pham (2001) put forward a method of forcing 

the background-observation error covariance to zero while perturbing the observation. 

However, the computation cost is very large when applying this method to high-degree-

of-freedom systems. Whitaker and Hamill (2002) introduced the ensemble square-root 

filter (EnSRF) as a better way to deal with the underestimation of analysis uncertainty. 

Instead of perturbing observations, they choose to use a different Kalman gain 'K  to 

update the perturbation of individual members  

a b b' ' ' ' .i i i= −x x K Hx                                                              (1.10) 

The value of 'K  is chosen to be consistent with the analysis covariance of the standard 

Kalman filter by letting 

b T b( ' ) ( ' ) ( ' )− − = −I K H P I K H I K H P                                  (1.11) 

If 'K is proportional to K by ' α=K K , then 'K  can be substituted in (1.11) to give 
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b
2

b T 2 1 0.α α− + =
+

HP H
HP H R

                                                   (1.12) 

The solution of this equation forα is 

1

b T1 .α
−

 
= +  + 

R
HP H R

                                                     (1.13) 

It was shown that EnSRF performs better than perturbing the observations (Whitaker 

and Hamill 2002).  

Another issue still under active research is related to determination of optimal 

ensemble size. Theoretically, the ensemble size should be O(300) to get a mean with a 

95% chance of lying in the interval of 0.25 standard deviation from the truth (Leeuwen 

1999). However, in practice, 100 members are sufficient to get reasonable results 

(Evensen 1994; Houtekamer and Mitchell 1998). The ensemble size can be even smaller 

for a smaller scale model. For example, Snyder and Zhang (2003) used only 40 members 

for a cloud model application. 

A finite ensemble size can result in systematic underestimation of analysis error 

covariance; this is related to the so-called “in-breeding” problem (Houtekamer and 

Mitchell 1998; van Leeuwen 1999). The reason for this underestimation is that the 

analysis error covariance is nonlinearly dependent on background error covariance. As a 

result, the decrease of analysis variance associated with large background variance is 

larger than that associated with smaller background variance (Whitaker and Hamill 

2002; van Leeuwen 1999).  

To address this issue, several remedies have been introduced. Houtekamer and 
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Mitchell (1998) run a pair of ensembles in parallel with one ensemble being updated 

with the statistics calculated from the other. Meanwhile, Anderson and Anderson (1999) 

put forward an inflation method by globally multiplying the covariance by a value 

slightly larger than one. Studies show that more inflation is necessary for small ensemble 

sizes than for larger ones (Hamill et al. 2001). The inflation method is problematic in 

data sparse areas because the covariance continuously increases and ultimately results in 

analysis failure. Zhang et al. (2004) put forward a covariance relaxation method in which 

the analysis deviation from the mean is replaced by a weighted average between the 

analysis perturbation and prior forecast perturbation. This approach performs better than 

the standard inflation method (Anderson and Anderson 1999) because the covariance is 

inflated only where updating takes place.  

Houtekamer and Mitchell (1998) noted that a limited ensemble size can result in 

spurious correlation between distant points. In another study (Houtekamer and Mitchell 

2001), they experimented with a covariance localization method using a “Schur 

product”.  Using this method, they multiplied the ensemble-based covariance estimates 

element by element with a distance-dependent correlation function that varied from one 

at the observation point to zero at specific radius of influence. This covariance 

localization significantly improved the analysis result.  

Also in 2001, Hamill et al. provided a statistically based rationale for the covariance 

localization method and examined the contribution of covariance localization in cases of 

different data resolution and different ensemble size. Larger benefit was seen when data 

was sparse and the ensemble size was small. When covariance localization was applied 
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to a small-sized ensemble, analysis error comparable to that obtained with a large 

ensemble but without localization could be attained.  

Another benefit of covariance localization is that it can somewhat alleviate the rank 

deficiency problem associated with the EnKF. This problem arises because the 

calculation of matrix b T +HP H R with an ensemble is singular and cannot be inversed if 

the ensemble size is smaller than observation number. Localization can alleviate the rank 

deficiency issue by decreasing the number of observations to be assimilated. 

Since the corrections to the background field are created totally via statistically 

estimated covariance from an ensemble forecast without a geostrophic balance 

constraint, imbalance could become an issue. Besides, imbalance could also be caused 

by covariance localization.  

 

2) APPLICATION IN LARGE SCALE SYSTEMS 

While many recent studies have shown the EnKF to outperform 3DVar when using 

the perfect model assumption (Hamill and Snyder 2000; Whitaker and Hamill 2002; 

Anderson 2001), this assumption must be dropped in the real world where model errors 

are unavoidable. As mentioned before, model error is typically caused by inadequate 

parameterization of sub-grid physical process, numerical inaccuracy, truncation error or 

other random errors. The presence of model error can often result in large bias of the 

ensemble mean and too little ensemble spread, which can ultimately cause the ensemble 

forecast to fail. Studies show that including model error can lead to more realistic spread 

of the forecast solution (Houtekamer et al. 1996; Houtekamer and Lefaivre 1997). 
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However, model errors, especially those at the mesoscale, are generally hard to identify 

and portray due to the chaotic nature and flow-dependent characteristics of the 

atmosphere and the lack of observations for verification (e.g., Orrell et al. 2001; Orrell 

2002; Simmons and Hollingsworth 2002; Stensrud et al. 2000).  

There have been several different approaches to include model errors in ensemble 

forecasting. One is to use different forecast models (e.g., Evans et al. 2000; Krishnamurti 

et al. 2000) or different physical parameterization schemes (e.g., Stensrud et al. 2000). 

This method is relatively simple to implement though sometimes ad hoc in nature. 

Another way is to apply statistical adjustment to ensemble forecasts (Hamill and 

Whitaker 2005). The use of stochastic forecast models and/or stochastic physical 

parameterizations has also been examined (e.g., Palmer 2001; Grell and Denvenyi 2002).  

Since the EnKF uses ensemble forecasts to estimate background error covariance, 

model error is unavoidable in assimilating real time observations. Many recent studies 

discuss the explicit treatment of model error in the context of ensemble-based data 

assimilation (Mitchell and Houtekamer 2002; Hansen 2002; Keppenne and Rienecker 

2003; Hamill and Whitaker 2005; Houtekamer et al. 2005). The most common of these 

treatments is the covariance inflation method proposed in Anderson and Anderson 

(1999). This method parameterizes model error by expanding the background forecast 

members’ deviation about the ensemble mean. Keppenne and Rienecker (2003) obtained 

encouraging results using an oceanic general circulation model and real data through 

covariance inflation. The inflation method is also used in Whitaker et al. (2004) for the 

reanalysis of the past atmospheric state using a long series of available surface pressure 
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observations; that study demonstrated that the EnKF performs better than the 3DVar 

method. Most recently, the additive error method has also been proposed as alternative to 

covariance inflation (Hamill and Whitaker 2005; Houtekamer et al. 2005). Hamill and 

Whitaker (2005) systematically examined the performance of the perturbation inflation 

and additive error methods in the treatment of model truncation error due to lack of 

interaction with smaller scale motions. Their results demonstrate that the performance of 

certain additive error methods is more satisfactory and might outperform the simulated 

3DVar method (which was implemented similarly to the EnKF except that the 

covariance was stationary). In the meantime, Houtekamer et al. (2005) investigated the 

potential quality of the EnKF in a realistic environment by assimilating a complete set of 

real observations into a medium-resolution primitive-equation model that includes a 

complete set of physical parameterizations. Similar to Hamill and Whitaker (2005), they 

parameterized the model error by adding noise consistent in structure with a 3DVar 

background error covariance model. It was shown that the EnKF performed similarly to 

the 3DVar method implemented in the same forecast system.  

 

3) APPLICATION IN SMALL SCALE SYSTEMS 

In contrast to the extensive studies in the context of global or large scale systems, as 

reviewed above, applications of the EnKF to smaller scales have only recently begun. 

Preliminary results show that a cloud-model-based EnKF with the ensemble size of 50 

can converge the analysis toward the true state through assimilating synthetic radar 

radial velocity (Snyder and Zhang 2003; Zhang et al. 2004) and outperform 4DVar in 
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later cycles (Caya et al. 2005). The efficiency of the EnKF at cloud scale is further 

confirmed with a more complex compressible model (Tong and Xue 2005) through 

assimilating both simulated radial velocity and reflectivity. With the same EnKF system 

as Snyder and Zhang (2003), Dowell et al. (2004) assimilated real radar radial velocity 

and reflectivity for a supercell thunderstorm and accurately determined the locations of 

the main updraft and mesocyclone. They also noted that the EnKF did little to correct the 

errors in the cold pools; this is possibly due to errors in the moist convective 

parameterization of the model or lack of thermal observations.   

 

4) APPLICATIONS IN MESOSCALE SYSTEMS  

Compared to the large-scale applications, there are fewer mesoscale applications of 

the EnKF in literature. One probable reason is the simultaneous and complicated scale 

interaction in mesoscale models. To investigate the possibility of applying the EnKF to a 

mesoscale system, Zhang (2005) examined the dynamics and structure of mesoscale 

error covariance based on a 20-member short term ensemble forecast with the 

Pennsylvania State University-National Center for Atmospheric Research (PSU/NCAR) 

non-hydrostatic mesoscale model MM5. It was found that the initially largely 

uncorrelated, mostly random errors evolve into strong, coherent structures over regions 

of active moist convection. The error covariance is highly anisotropic, flow-dependent 

and ultimately determined by the underlying governing dynamics and the associated 

error growth. This result suggests that the spatial and cross covariance estimated from 

the short-term ensemble forecast has the potential to spread observational information 
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non-uniformly to both observed and unobserved variables.  

Several other studies have shown promising results with the EnKF. For example, an 

EnKF with an ensemble size of 50 using a sea-breeze model (Aksoy et al. 2005) was 

shown to be effective under the perfect model assumption. Lately, the next generation 

Weather Research and Forecasting (WRF) model has shown promise for mesoscale 

prediction, and a WRF-based EnKF with 90 members and simulated observations 

indicates that the flow-dependent filter corrections are accurate in both scale and 

amplitude (Dirren et al. 2006). In another study, simulated surface data is successfully 

assimilated with an EnKF using a planetary boundary layer (PBL) model (Hacker and 

Snyder 2005). The significant improvement in temperature, wind and moisture field in 

the PBL suggests the potential for surface observation assimilation to improve numerical 

simulations and forecasts of convective development and cyclogenesis where PBL 

preconditioning is important. In the same way, Fujita et al (2005) assimilated real hourly 

surface observations into a MM5-based EnKF with the ensemble size of 25. They found 

that when both initial and physical uncertainties are taken into account, the EnKF can 

considerably improve the lower tropospheric structure and the placement and intensity of 

convection.  

 

3. Methodology 

The EnKF employed in this work is an ensemble square root filter following the 

algorithm of Snyder and Zhang (2003), in which the observations are ingested 

sequentially instead of assimilating the observation vector as a whole in one step. The 
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state vector updated with one observation acts as the first guess of the next observation 

under the assumption that observation errors are independent among one another. This 

reduces the Kalman gain matrix to a column vector, thus largely simplifying the 

calculation. The following is a detailed description of this method  

For a single scalar observation yo and ensemble size N, the calculation of Kalman 

gain K  (1.5) is significantly simplified. b TP H  in (1.5) becomes a column vector of 

dimension Nx (the dimension of state vector) denoted byc  

b T

N
b b b b T
n n

n=1

1 ( )( )
N-1

=

= − −∑

c P H

x x Hx Hx
                                        (1.14) 

b T +HP H R  in (1.5) reduced to a scalar, which can be denoted by d as  

b T

N
b b b b T 2
n n

n=1

1 ( )( )
N-1

d

ε

= +

= − − +∑

HP H R

Hx Hx Hx Hx
                         (1.15) 

Then the ensemble mean is updated by 

a b o b( ) /y H d= + −x x c x                                                      (1.16) 

The perturbation of the nth member from the mean is updated by 

[ ]a a b b
n n( / ) ( )dα− = − −x x 1 c H x x                                         (1.17) 

where 
1

21 / dα ε
−

 = +  , which is the coefficient to get the new Kalman gain to update 

the covariance in the EnSRF. By repeating the analysis step for each datum, the updated 

ensemble will be obtained finally. 

 



 17

As described in section 1, this work is planned to achieve two goals. One is to 

implement and evaluate a mesoscale, ensemble based data assimilation technique using 

synthetic surface and sounding observations typical of conventional temporal and spatial 

distribution in different scenarios, scales, and flow regimes. The other is to assimilate 

real-data observation to compare the EnKF to 3DVar. 

To achieve the first goal, extensive experiments are carried out with a MM5-based 

EnKF under the perfect model assumption for the ‘surprise’ snowstorm of 24-26 January 

2000 in Chapter II. Different values for ensemble size, cut-off radius of influence and 

covariance relaxation are used in various experiments. In Chapter III, the EnKF is 

evaluated in the presence of significant model error from parameterization of subscale 

physical processes and with different ensemble generation methods for both the 

snowstorm case and the MCV event. The flow and scale dependence of the EnKF is 

examined, and possible ways to treat model error are put forward.  

To achieve the second goal, the same EnKF is implemented in WRF to assimilate 

BAMEX field observations including radiosondes, surface observations, wind profilers 

for the MCV event in Chapter IV. The performance of the EnKF is compared to WRF-

3DVar. Following the MCV case study, Chapter V presents result of a month-long 

comparison between the performance of the EnKF and 3DVar to make the conclusion 

more general through assimilating 12 hourly sounding observations. Finally, a brief 

summary and discussion are given in Chapter VI. 

Chapters II-V are written in the form of papers for submission to various 

professional journals. They are interconnected and follow a smooth flow though each of 
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the papers stands independently on its own merits.  
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CHAPTER II  

OBSERVING SYSTEM SIMULATION EXPERIMENTS WITH 

PERFECT MODEL*  

 

1. Introduction 

The ensemble-based data assimilation method (ensemble Kalman filter or EnKF; 

Evensen 1994), which uses short-term ensemble forecasts to estimate the flow-

dependent background error covariance, has recently been implemented in various 

atmospheric and oceanic models. These models vary from idealized examples based on 

simplified equation sets to those based on the complete, primitive equations with 

assimilation of real observations (Houtekamer and Mitchell 1998, 2001; Hamill and 

Snyder 2000; Keppenne 2000; Anderson 2001; Mitchell et al. 2002; Keppenne and 

Rienecker 2002; Whitaker and Hamill 2002; Zhang and Anderson 2003; Snyder and 

Zhang 2003; Houtekamer et al. 2004; Whitaker et al. 2004; Dowell et al. 2004; Zhang et 

al. 2004). These experimental studies demonstrated the feasibility and effectiveness of 

the EnKF for different scales and flows of interest and the advantages of using the EnKF 

over existing data assimilation schemes, which assume stationary, isotropic background 

error covariance. This present study seeks to exploit the potential of using the EnKF to  

 
 
_____________ 
* Reprinted with permission from “Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale 
Data Assimilation. Part I: Perfect Model Experiments” by Fuqing Zhang, Zhiyong Meng, and Altug 
Aksoy, 2006, Monthly Weather Review, 134, 722-736, Copyright [2006] by American Meteorological 
Society. 
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assimilate simulated sounding and surface observations for mesoscale numerical weather 

prediction systems, which often include dynamics and interactions among convective, 

meso- and sub-synoptic scales. 

Recently, short-term ensemble forecasts generated with different sets of initial 

perturbations were used to examine the dynamics and structure of mesoscale error 

covariance of the 24-25 January 2000 surprise snowstorm (Zhang 2005). In the ensemble 

forecast initiated with rescaled random perturbations, initial errors grow from smaller-

scale, largely unbalanced and uncorrelated perturbations to larger-scale, quasi-balanced 

disturbances within 12-24 h. Comparable ensemble spread is found in ensemble 

forecasts initialized with balanced random perturbations or with grid-point random 

perturbations. In all ensemble forecasts, the error growth is maximized in the vicinity of 

the strongest mean PV gradient and over the area of active moist convection, consistent 

with the lower predictability in these regions (Zhang et al. 2002; 2003). Consequently, 

the initially largely uncorrelated, mostly random errors evolve into strong coherent 

structures with spatial correlation not only within individual variables (auto-covariance) 

but also between different forecast variables (cross covariance), especially over the 

region of strong cyclogenesis and along the upper-level front. The error covariance is 

highly anisotropic. Dramatic differences in magnitude, structure, and sign are found 

between covariance estimated from the same set of ensemble forecasts but verified at 

different times. The structure of the mesoscale error covariance is ultimately determined 

by the underlying governing dynamics and the associated error growth.  

The spatial and cross covariance estimated from the short-term ensemble forecast 
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has the potential to spread observational information non-uniformly to both observed 

and unobserved variables at different vertical layers (e.g., from the upper troposphere to 

the surface and vice versa) with a horizontal radius of influence potentially greater than 

1000 km. The flow-dependent nature of the error growth dynamics and the covariance 

structure further indicates potential benefit of using anisotropic and flow-dependent 

representations of background error covariance for mesoscale and regional-scale data 

assimilation.  

The current chapter seeks to examine the significance and the effectiveness of the 

error covariance estimated from the short-term ensemble forecasts for mesoscale and 

regional-scale data assimilation for the same event as in Zhang (2005). Section 2 

introduces the forecast model and the formulation and configuration of the EnKF. The 

truth simulation and the reference forecast ensemble are presented in section 3. 

Performance of the control EnKF experiment is examined in section 4. Forecast error 

growth from ensembles with and without the EnKF is discussed in section 5. The 

sensitivity experiments to EnKF configuration, data coverage, frequency and uncertainty 

of observations are presented in section 6. Summary and conclusions are presented in 

section 7. The impacts of model error and ensemble initiation on the filter performance 

will be explored in Chapter III. 

 

2. Forecast model and EnKF 

The study uses the Pennsylvania State University-National Center for Atmospheric 

Research (NCAR) non-hydrostatic mesoscale model MM5 (Dudhia 1993). The model 
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domain has 190x120 horizontal grid points with 30-km grid spacing and covers the 

continental United States (Fig. 2.1). There are 27 layers in the terrain-following vertical 

coordinate with model top at 100 hPa and vertical spacing smallest within the boundary 

layer. The model has a total of 10 prognostic variables including three Cartesian velocity 

components (u, v, w), pressure perturbation (p’), temperature (T), and mixing ratios for 

water vapor (q), cloud water (qc), rainwater (qr), cloud ice (qi) and graupel (qg). The 

physical parameterization schemes used in this study are the Grell cumulus 

parameterization scheme (Grell 1993), the Mellor-Yamada Planetary Boundary Layer 

(PBL) scheme (Mellor and Yamada 1982) and the Reisener microphysics scheme with 

graupel (Reisener et al. 1998). The state dimension of the forecast model is ~107. 

Observations are taken only from the shaded area in Fig. 2.1 and only state vectors in 

this inner box are updated and analyzed.  

 
 

 
FIG. 2.1.  Map of model domain. Only data in shaded areas 
are assimilated and analyzed. 

 
 

 
The EnKF was first proposed for geophysical applications by Evensen (1994). The 
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implementation of the EnKF used in the current study follows closely that of Snyder and 

Zhang (2003). As in standard Kalman filter, 

xa = xf + K (y-Hxf) ,                            (2.1) 

where xf represents the prior estimate or first guess, xa is the posterior estimate or 

analysis, y is the observation vector, H is the observation operator that returns observed 

variables given the state, and K is the so-called Kalman gain matrix defined as: 

K = PfHT (HPfHT+R)-1 ,                           (2.2) 

where Pf and R represent the background and observational error covariance, 

respectively.  In the EnKF, the flow-dependent Pf is estimated through an ensemble of 

short-range forecasts. Observations are taken sequentially with uncorrelated observations 

errors. Further background on the EnKF can be found in Snyder and Zhang (2003) and 

references therein.   

One modification to Snyder and Zhang (2003) is to adopt the covariance relaxation 

method proposed in Zhang et al. (2004) in which a modified analysis deviation a
new( )'x  is 

computed by “relaxing” or weighting f( )'x  and a( )'x : 

a a f
new( )' = (1 - ) ( )' + ( )'α αx x x ,                                  (2.3) 

where deviations from the mean are denoted by primes, andα =0.5 is used in this study. 

The modified analysis deviations are then used as initial conditions for the ensemble 

forecasts to the next assimilation time. Since the analysis (posterior) deviation a( )'x  is 

smaller than the forecast (prior) deviation f( )'x , reflecting the reduction of uncertainty 

after assimilating observations, the use of (2.3) will overestimate (inflate) the uncertainty 
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in the analysis, as an alternative to the covariance inflation used by Anderson (2001). It 

is worth noting that, both the covariance relaxation using Eq. (2.3) and the covariance 

inflation of Anderson (2001) are ad-hoc ways of dealing with the tendency of the spread 

of a small ensemble to underestimate the true error of the ensemble mean. Another 

alternative is to use an EnKF configuration with a pair of ensembles (Houtekamer and 

Mitchell 1998; Houtekamer et al. 2005), which does not require any 'adjustable' inflation 

or relaxation parameters but at the cost of essentially doubling the ensemble size. 

In addition, a covariance localization method using the Gaspari and Cohn (1999) 

compactly supported fifth-order correlation function is performed in the full three-

dimensional physical space. The covariance is set to be zero if the total grid-point 

distance [ 0.5( )x yr r r rσ= + + , where xr , yr  and rσ  are distance in number of grid points in 

the x, y and σ  (or z) directions, respectively] is greater than 30, equivalent to a 

horizontal distance of 900 km.  

 

3. The truth simulation and the reference forecast ensemble  

The truth simulation and the reference forecast ensemble are produced by randomly 

perturbing the reference analysis at 00 UTC 24 January 2000. The reference analysis is 

generated using the NCAR-National Center for Environmental Prediction (NCEP) 

reanalysis. The perturbations used are randomly sampled from the background error 

covariance of the MM5 three-dimensional variational (3DVar) data assimilation system 

(Barker et al. 2004). A set of random control vectors (including streamfuncton, velocity 

potential, unbalanced pressure, and relative humidity) with a normal distribution (zero 
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mean and unit standard deviation) is created and transformed back to model space via an 

empirical orthogonal function (EOF), a recursive filter and geostrophic balance 

constraint (Barker et al. 2003; their page 58-59). The domain-averaged standard 

deviations (STD) of the derived perturbations are approximately 1 ms-1 for wind 

components u and v, 0.5 K for temperature T, 0.4 hPa for pressure perturbation p’ and 

0.2 g/Kg for specific humidity q. Other prognostic variables (vertical wind w, mixing 

ratios of cloud water qc, rain water qr, snow qs and graupel qg) are not perturbed in the 

MM5 3DVar system used here. These perturbations are then added to the reference 

analysis at 0000 UTC 24 January 2000 to generate a 40-member reference forecast 

ensemble that is integrated for 36 h with boundary conditions provided by the NCAR-

NCEP reanalysis updated every 12 h. The use of the 3DVar background error covariance 

to generate the initial ensemble for the EnKF can also be found in Houtekamer et al. 

(2004). 

The truth simulation is generated in the same manner (i.e., the same model and the 

same initial uncertainties) as one of the members of the reference forecast ensemble but 

with a different realization of random perturbations. The truth simulation is used to 

generate observations and is also used as the reference to evaluate the performance of 

the EnKF. Only state vectors and observations in the shaded region of Fig. 2.1, an area of 

2400 by 2400 km, are analyzed and assimilated. Selection of the shaded areas (instead of 

the total model domain) as the analysis domain is to minimize the impact of using the 

same boundary conditions for the integration of both the truth and the reference forecast 

ensemble. Over the 36-h integration, state variables inside the shaded domain have little 
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influence from the model lateral boundary conditions. 

Figure 2.2 shows the mean sea level pressure (MSLP) and model-derived reflectivity 

at the 12-, 24-, and 36-h forecast times from the truth simulation (upper panels) and the 

reference forecast ensemble mean (lower panels). Corresponding geopotential heights, 

potential vorticity (PV) and vector winds at 300 hPa are displayed in Fig. 2.3. The truth 

simulation is chosen from 50 different random realizations to compare most favorably to 

observations of this event in terms of the location and strength of the surface cyclone 

(Figs. 3a,b of Zhang et al. 2002, hereafter also ZSR02) and 300-hPa short-wave trough 

(Fig. 2 of ZSR02) and the onshore precipitation band (Figs. 3c,d of ZSR02). 

 
 

 
FIG. 2.2.   The mean sea-level pressure (MSLP, every 2 hPa) and model-derived reflectivity at the 12-, 
24-, and 36-h forecast times from the truth simulation (panels a-c) and the reference forecast ensemble 
mean (panels d-f). 
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After 12 h of simulation, the reference forecast ensemble mean, which is used as the 

first guess in the following EnKF experiments, has noticeable difference from the truth 

simulation in all fields. In addition to a ~1.5-hPa weaker surface incipient cyclone 

(differences of wind vectors and MSLP are shown in Fig. 2.4a), the incipient inland 

precipitation from the Gulf coast across Georgia to South Carolina in the reference 

forecast ensemble mean is much weaker (Fig. 2.2a vs. Fig. 2.2d). Moreover, the 

reference forecast ensemble mean of the 300-hPa short-wave PV trough is slightly but 

systematically shifted to the east (Figs. 2.3a, d, and 2.5a).  

 
 

 
FIG. 2.3.   As in Fig. 2.2 but for the geopotential heights (every 80 m), potential vorticity (shaded, every 
1 PVU) and vector winds (full barb 5 ms-1) at 300 hPa. 
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FIG. 2.4.   Differences of wind vectors (full barbs 5 ms-1) and MSLP (every 0.5 hPa) between the truth 
simulation and the reference forecast ensemble mean at (a) 12, (b) 24, and (c) 36 h, and between the 
truth simulation and the  EnKF mean analyses at (d) 12, (e) 24 and (f) 36 h. 
 
 
 

At 24 h, the maximum differences of MSLP and winds associated with the surface 

cyclone between the ensemble mean and the truth simulation are as large as 5 hPa and 

12.5 ms-1, respectively (Figs. 2.2b, e, and 2.4b). Moreover, the reference forecast 

ensemble mean (Fig. 2.2e) also misses the strong inland precipitation across the 

Carolinas seen in the reference run (Fig. 2.2b) and radar observations (Fig. 3a of 

ZSR02). Associated with a systematic eastward shift of the upper-level PV trough 

(fronts) in the ensemble mean forecast, the maximum PV and wind differences at 300-

hPa reached an amplitude of 2.5 PVU and 22.5 ms-1, respectively (Figs. 2.3b,e, and 

2.5b). Growth of maximum difference along fronts is consistent with the error evolution 
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in the quasi-geostrophic model examined by Snyder et al. (2003). After 36 h of 

simulation, due to the strong diabatic destruction of the upper-level PV as the cyclone 

reaches its peak intensity, the maximum PV difference at 300 hPa (Fig. 2.5c) is slightly 

smaller than that at 24 h (Fig. 2.5b). Nevertheless, the maximum MSLP difference 

between the truth simulation and ensemble mean is as high as 8.5 hPa in addition to the 

even stronger dislocation of the surface cyclone and precipitation band (Figs. 2.2c, f and 

2.4c). 

 
 

 
FIG. 2.5   As in Fig. 2.4 but for the difference of 300 hPa potential vorticity (every 0.5 PVU) and winds 
(full barb 5 ms-1). 
 
 
 

The evolution of the forecast error growth revealed from the difference between the 

truth simulation and the reference forecast ensemble mean can be best summarized in 
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terms of difference total energy (DTE):  

DTE=0.5( ' '+ ' ' + ' ')u u v v kT T                           (2.4) 

where primes denote difference between any two simulations and k=Cp/Tr (Cp=1004.7 J 

kg-1 K-1 and the reference temperature Tr = 270K). The horizontal distribution of the 

(vertically-averaged) root-mean (RM) of DTE (RM-DTE) at 12, 24, and 36 h are 

displayed in Figs. 2.6a-c. The initial RM-DTE from the random initialization of the 

ensemble forecast using the MM5 3DVar method is ~1.2 ms-1 and is nearly constant 

across the domain (not shown). By 24 and 36 h, it has become greater than 4 ms-1 all 

across the Atlantic Coast with maxima of ~16 ms-1. Consistent with Figs. 2.2-2.5 and 

Zhang (2005), the maximum error growth occurs near the surface cyclone, the upper-

level short-wave trough and associated fronts and moist processes (Figs. 2.2-2.3).  

Throughout the study, the reference forecast ensemble is used as a benchmark for 

the performance of EnKF and the evolution of the analysis error. It is also regarded as 

the worst-case scenario in which no observations are assimilated.  

 

4. The control EnKF experiment 

In the control EnKF experiment with a 40-member ensemble (CNTL), simulated 

sounding and surface wind and temperature observations are taken from the truth 

simulation. Typical of the standard sounding and surface observational network over the 

continental United State, the sounding observations are spaced 300 km apart horizontally 

and at every sigma level; the surface observations are spaced every 60 km apart and are 

available at the lowest model level. We impose independent, Gaussian random 
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observation errors of zero mean and variance of 2.0 ms-1 for u and v, and 1.0 K for T. 

Sounding and surface observations are assimilated every 12 and 3 h, respectively. The 

forecast model is assumed to be perfect; That is, the same numerical model produces the 

forecasts and the truth simulation from which observations are taken. We begin 

assimilating observations at 12 h using the 12-h short-term reference forecast ensemble 

as the first guess and to estimate the background error covariance. 

 
 

 
FIG. 2.6.  As in Fig. 2.4 but for for the root-mean of column-averaged DTE (RM-DTE; every 2 m/s). 
 

 

Differences in MSLP and surface winds between the ensemble mean analysis after 

the EnKF assimilation (EnKF analysis) and the truth simulation at 12-, 24- and 36-h are 

displayed in Figs. 2.4d-f. At 12 h, after the first cycle of assimilating both the surface 
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and sounding observations, there is only marginal overall reduction of MSLP error 

(compared to the reference forecast ensemble) but errors in surface winds are 

significantly reduced (Fig. 2.4d vs. Fig. 2.4a). At 300 hPa, not only the errors in the 

winds are reduced by ~30%, errors in PV (as signature of balanced dynamics) are also 

significantly reduced (Fig. 2.5d vs. Fig. 2.5a). The overall improvement after the EnKF 

assimilation across the domain is clearly seen in the horizontal distribution of the 

(column-averaged) RM-DTE in Fig. 2.6d. Compared to the RM-DTE of the mean 

forecast error of the reference ensemble at this time (Fig. 2.6a), we can see that the 

improvement is more pronounced in the vicinity of the upper-level short-wave trough 

than near the surface low, consistent with Figs. 2.4d and 2.5d.  

At 24 h, after assimilating five sets of surface observations (every 3 h) and two sets 

of sounding observations (every 12 h), the EnKF analyses of the surface winds and 

MSLP and the 300-hPa winds and PV (not shown) approach those in the truth simulation 

(Figs. 2.2b, 2.3b). More specifically, the maximum analysis errors in surface winds and 

MSLP are ~2.5 ms-1 and 1 hPa, respectively (Fig. 2.4e), which represent 60-80% 

reduction of the ensemble mean forecast error without the EnKF (Fig. 2.4b). A similar or 

even larger degree of improvement can also be seen in the analysis error distribution at 

300 hPa (Fig. 2.5e vs. Fig. 2.5b). The two local maxima of RM-DTE associated 

respectively with the upper-level front and the surface low in the forecast (Fig. 2.6b) are 

no longer noticeable in the DTE of the EnKF analysis (Fig. 2.6e). 

Error reduction in both observed and unobserved (or derived) variables continues 

through 36 h, with more surface and sounding observations assimilated (Figs. 2.4f, 2.5f, 
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and 2.6f). Most strikingly, compared to the 8.5-hPa MSLP forecast error without EnKF 

(Fig. 2.4c), the EnKF analysis of MSLP has become nearly indistinguishable from that 

of the truth simulation. There are only a few small areas with the MSLP error greater 

than 1 hPa (Fig. 2.4f). 

 
 

 
FIG. 2.7. Vertical distribution of the (horizontally-averaged) mean analysis errors of the control 
EnKF experiment (solid) and the (horizontally-averaged) mean forecast errors of the reference 
ensemble forecast (dotted) for (a) RM-DTE, (b) p’, (c) w, and (d) q valid at 12 h (red), 24 h 
(blue), and 36 h (black). Errors in the initial ensemble are denoted with dotted green curves. 

 

The vertical distributions of horizontally averaged analysis and forecast errors in 

terms of RM-DTE, root-mean-square errors of p’, w and q at different times are shown 

in Fig. 2.7. The vertical distribution is plotted only up to 200hPa because differences 
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among different lines are not significant in layers near the model top. For the RM-DTE 

(Fig. 2.7a), the forecast error of the reference ensemble gradually grows into a distinct 

double-peak structure over the 36 h forecast, becoming maximum in the upper and lower 

troposphere, respectively. The primary peak in the upper troposphere is consistent with 

the forecast-error statistics of operational ensemble prediction systems (e.g., Molteni et 

al. 1996) as well as in simplified dry systems (Hamill et al. 2002; 2003). The secondary 

peak in the lower troposphere is likely due to the lower-level fronts associated with 

strong moist processes. On the other hand, the analysis error exhibits nearly the same 

amplitude vertically throughout the troposphere, implying that the largest improvement 

occurs where the reference forecast ensemble has the largest forecast errors. 

For the pressure perturbation p’ (Fig. 2.7b), the largest forecast error occurs near the 

surface. Consistently, through continuous analysis and forecast cycles, the most error 

reduction occurs in the lower troposphere. For the vertical velocity field (Fig. 2.7c), the 

reference forecast ensemble mean error peaks at 400-500 hPa layer. Unlike the RM-DTE 

or p’, the forecast error in w follows closely the strength of w in the truth simulation (as 

an index of the intensity of the background cyclogenesis): the strongest forecast error 

occurs at ~24 h when there is strongest vertical motion in the truth simulation (not 

shown); there is an apparent decay of forecast error at 36 h when the surface cyclone has 

matured and begins to decay. Compared to the reference forecast ensemble mean, the 

overall error reduction for w at 36 h is 30-40%. Error reduction comes not only from 

direct EnKF analyses at any given time but also from a better first guess due to the 

improvement in unobserved variables. 
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The ensemble forecast error for the moisture field q peaks at 800-900 hPa in 

association with the abundance of lower-level background moisture as well as moist 

convection (Fig. 2.7d). The peak forecast error is approximately constant in the EnKF 

analysis with an overall error reduction of ~50% compared to the reference forecast 

ensemble. 

The performance of the EnKF in this control experiment is best summarized in Fig. 

2.8, which shows the evolution of the domain-averaged root-mean-square (RMS) errors 

in the EnKF analyses of the six prognostic variables (u, v, T, p’, w, q), the corresponding 

standard deviation (STD) of the analysis ensemble, and the RMS errors of the reference 

forecast ensemble. Compared to the reference forecast ensemble, over the 24-h 

assimilation period, the overall error reduction for the observed variables u, v, T is ~60-

80%. The overall analysis quality of all variables stays fairly constant throughout the 

EnKF, indicating that at later times, the error growth during the short-term (3-h) 

ensemble forecast will be approximately equal to the reduction of analysis error through 

assimilation of new observations. The final domain-averaged RMS error after 24-h 

assimilation is ~1.0-1.5 ms-1 for winds and ~1.0 K for temperature, which is less than or 

at most comparable to the specified observational errors. The unobserved variable p’ has 

the biggest overall improvement with the 36-h analysis error being only one-sixth of the 

forecast error. Nearly 50% overall error reduction is observed in the moisture field. 

Again, there is relatively small (30-40%) overall improvement in the vertical velocity 

field.  
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FIG. 2.8.  Evolution of the domain-averaged root-mean-square errors of the EnKF analysis (solid 
black) with respect to the truth simulation for six prognostic variables (u, v, T, p’, w, q), the 
corresponding standard deviation (gray) of analysis ensemble spread, and the root-mean-square 
errors of the reference ensemble forecast (dotted black, computed every 12 h only). 
 
 
 
The difference in the degree of error reduction among different variables is also 

examined through the comparison of the power spectra of analysis and forecast errors of 

the reference forecast ensemble and CNTL at different times (Fig. 2.9). The vertical 

velocity and moisture fields, for which the EnKF assimilation is the least effective, have 

the most error energy in smaller scales. The pressure field, which has the most power at 

larger scales, in general enjoys the biggest error reduction. As a result of stronger error 

reduction at larger scales, power spectra in all the variables (except for w) become 

increasingly flattened at smaller and smaller wave numbers (“whitening”; Hamill et al. 

2002; Daley and Menard 1993) through the EnKF assimilation (Fig. 2.9). In essence, the 

EnKF is very efficient in reducing errors at larger scales but less effective in reducing 

errors at smaller, marginally resolvable scales. The EnKF analyses of other water 
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substances associated with clouds, which have the strongest smaller-scale variations, do 

not have apparent improvement relative to the reference forecast (not shown), suggesting 

the accurate estimation of clouds with the current EnKF is not yet possible, at least for 

the current filter configuration and model resolution with parameterized moist 

convection.  

 

 
FIG. 2.9. Power spectrum analysis of the EnKF analysis errors (solid) and the reference ensemble 
forecast mean errors (dotted) at 12h (red), 24h (blue) and 36h (black) for six prognostic variables 
(u, v, T, p', w, q). The minimum (maximum) wavenumber of 1 (40) corresponds to a horizontal 
wavelength of 2400 (60) km.  Error spectra in the initial ensemble are denoted with dotted green 
curves. 

 
 
 

In an examination of spectral characteristics of Kalman filter systems, Daley and 

Menard (1993, their Fig. 2) showed that the Kalman filter has a much larger impact on 

the large scales than the smaller scales. Because the uncorrelated observational error is 

projected equally to all scales while the model-error spectrum is red, the observations are 
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considered to be more accurate with respect to the background for the large scales than 

they are for the small scales. As shown in Daley (1991, his Fig. 5.9), this is strictly 

applicable to univariate analysis in which the larger scales have the most error energy.  

The scale-dependent filter performance in the multivariate analysis is much more 

complex (Daley 1991, his Fig. 5.10), probably even more so for those unobserved 

variables using the flow-dependent background error covariance at the mesoscale for the 

current study. Besides the possible mechanisms discussed by Daley (1991, his book 

section 5.4-5.5), the scale- and variable-dependent filter performance may also be due to 

faster error saturation (thus shorter predictability) resulting in poorer estimate of the 

prior guess and background error covariance at the smaller, marginally resolvable scales. 

It could also arise from observations that are too sparse to provide sufficient information 

for analysis at smaller scales while larger scales are influenced (corrected) by 

observations of similar (comparable) horizontal resolutions.  

 

5. Forecast experiments with the EnKF analysis 

To evaluate the performance of short-range ensemble forecasts with improved 

analyses and to examine the forecast error growth dynamics after the EnKF assimilation, 

two 40-member ensemble forecast experiments (“EF12H” and “EF24H”) are performed 

with the analyses from CNTL at 12 and 24 h as initial conditions. The horizontal 

distribution of the (vertically averaged) RM-DTE from the 12- and 24-h integration of 

EF12H and the 12-h integration of EF24H are shown in Fig. 2.10. For EF12H, which 

starts from the EnKF analysis cycle that assimilated only the observations at 12 h, there 
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are noticeably smaller ensemble mean errors in RM-DTE at both 24 and 36 h compared 

to the reference forecast ensemble (Figs. 2.10a-b vs. Figs. 2.6b-c). Even smaller RM-

DTE error is found in the 12-h ensemble forecast by EF24H, which starts with the EnKF 

analysis at 24 h (after a 12-h assimilation period; Fig. 2.10c). Compared to a maximum 

RM-DTE error of ~16 ms-1 just off the Atlantic coast in the reference forecast ensemble 

(Fig. 2.6c), the maximum RM-DTE error for the 12-h forecast of EF24H is merely ~ 6 

ms-1 (Fig. 2.10c).  

 

 
FIG. 2.10. As in Fig. 2.6 but from ensemble forecasts for (a) EF12H at 24 h, (b) EF12H at 36 h, and  
(c) EF24H at 36 h. 

 
 
 

Evolution of the forecast errors of the six prognostic variables from these two 

forecast experiments (EF12H and EF24H) and the reference forecast ensemble as well as 

the analysis errors from CNTL is plotted in Fig. 2.11. Again, compared to the reference 

forecast ensemble, the positive effect of improved initial conditions using the EnKF 

analysis can be seen in both forecasts verified at 36 h in all prognostic variables shown. 

It is also seen that, with a longer assimilation period and thus more data being 

assimilated, the mean forecast error verified at 36 h of EF24H is considerably smaller 

than that of EF12H and the reference forecast ensemble. 
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FIG. 2.11. Time evolution of domain-averaged root-mean-square errors from the reference  
ensemble forecast (dotted), EF12H (solid black; from 12 h), EF24H (solid black; from 24 h) and 
the control EnKF analysis (gray) for six prognostic variables (u, v, T, p’, w, q). 
 
 
 

6. Sensitivity experiments 

a. Ensemble size, covariance relaxation and localization 

Difference in error spectral distribution and error growth dynamics among the 

different state variables will potentially result in inconsistencies between the 

analysis/forecast error and ensemble spread between different variables if the same 

localization or error inflation/relaxation is used for all state variables. For the control 

EnKF experiment (CNTL), the domain-averaged standard deviations (ensemble spread) 

of the ensemble forecast and EnKF analysis (Fig. 2.8) stay very close to the RMS errors 

of the ensemble forecasts and EnKF analyses for all variables. There is no obvious filter 

divergence, which would be indicated by the growth of the ratio of ensemble mean error 

to ensemble spread. The (domain averaged) RM-DTE also agrees reasonably well with 
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the STD of the analyses when an ensemble with a smaller ensemble size of 20 

(“CNTL20”) is used to estimate the background error covariance (Fig. 2.12a). The 

difference of the analysis accuracy (in terms of RM-DTE) between CNTL and CNTL20 

is rather insignificant (~0.1-0.2 ms-1) throughout the assimilation. On the other hand, 

though much less accurate than CNTL and CNTL20, a 10-member ensemble EnKF 

experiment still performs well albeit with a significantly larger ratio of RMS error to 

STD (not shown). 

 

 
 

FIG. 2.12. Time evolution of the domain-averaged RM-DTE (m/s, black, thick) and standard 
deviation (m/s, black, thin) from sensitivity experiments (a) CNTL20, (b) NOMIX and (c) 
IR60DX. RM-DTE and standard deviation from the control experiment and the RM-DTE from the 
reference ensemble forecast are also displayed in thick gray, thin gray and dotted curves, 
respectively. 
 
 
 
We observed that even though the pressure perturbation has the maximum overall 

improvement, the analysis error from CNTL20 after the EnKF assimilation at 12 h is 

greater than the forecast error at this time (not shown). The degradation occurred only in 

the lower troposphere for the first assimilation cycle. To test whether the degradation is 

systematic, we examined three additional experiments: the control experiment with 40 

members, an experiment similar to CNTL20 but with different random realizations, and 

an experiment similar to CNTL20 but with a different truth (discussed in section 6c). In 
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all three experiments, we observed that the degradation of the pressure analysis did not 

occur, suggesting that the covariance between the observed variables and the pressure 

field may be unrepresentative of the true forecast error in pressure perturbations at this 

time when the ensemble has only 20 members. 

The impact of the covariance relaxation can be clearly seen in a 40-member EnKF 

experiment similar to CNTL but without the application of covariance relaxation 

(“NOMIX”) , which has larger overall RM-DTE and poorer agreement between RM-

DTE and STD (Fig. 2.12b). The deficiency in the ensemble spread becomes even more 

severe when a 20-member ensemble is used (not shown). Thus, the application of the 

covariance relaxation from Zhang et al. (2004) helps prevent filter divergence that 

occurs when small ensembles are used. We also tested different implementations of the 

covariance inflation method (e.g., applying the covariance inflation either before or after 

the EnKF analysis) used in Anderson (2001) using 40-member ensembles, with the 

inflation factors from 1.05 to 1.5, either applied before or after the EnKF analysis. None 

of these additional experiments (not shown) exhibited satisfactory performances 

comparable to that from the control experiment. 

The performance of the EnKF assimilation is also very sensitive to covariance 

localization.  Apparent degradation of EnKF performance and the lack of ensemble 

spread compared to analysis error (possible filter divergence) are seen in the EnKF 

experiment (“IR60DX”, Fig. 2.12c) in which the three-dimensional distance used in the 

Schur-product is set to be too large (60 rather than 30 grid points in the CNTL, which is 

equivalent to 1800 km vs. 900 km in terms of purely horizontal distance). When a 450-
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km cut-off radius of influence is used in another EnKF experiment (not shown), the 

overall performance is similar to CNTL but the ensemble spread is bigger than the 

analysis error throughout the assimilation period. Similar sensitivity was also reported in 

the EnKF experiments in Houtekamer and Mitchell (2001, their Fig. 4). Since the best 

value for the radius of influence is not known a priori, the current EnKF configuration 

may unavoidably need to be “tuned” for different weather systems for best performance. 

These sensitivity experiments demonstrate that the ratio of the RMS error of the 

ensemble forecast and EnKF analysis to the STD of ensemble variance, as a common 

index of filter divergence, changes with ensemble size, the cut-off radius of influence, 

and covariance inflation coefficient. Bigger ensemble size, smaller cut-off radius and 

proper covariance relaxation may lead to larger ensemble spread, potentially preventing 

severe filter divergence. 

 

b. Observation quality and availability 

The ensemble Kalman filter combines information from the initial estimate, the 

dynamics of the forecast model and the observations to get the best estimate and the 

associated uncertainty. The quality and availability (coverage, resolution and accuracy) 

of sounding and surface observations is different from case to case which could impact 

the ability to estimate the true state. In this subsection, various possible observational 

scenarios are tested using the EnKF, some of which follow closely those of Zhang et al. 

(2004). We use a 20-member EnKF with the same truth simulation and the same initial 

ensemble as those in CNTL20 for all the sensitivity experiments investigated in this 
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subsection since the difference between CNTL and CNTL20 is rather insignificant (Fig. 

2.12a). 

Experiment “HALFERR” (“TWICEERR”) differs from CNTL20 in that the 

observational errors of the observed variables (u, v and T) are reduced (increased) to half 

(twice) of those used in CNTL20. The RMS of the DTE in HALFERR (TWICEERR), 

albeit slightly (<5%) smaller (larger), shows very similar convergence towards the 

reference solution in comparison to that of CNTL20 (gray curves; Figs. 2.13a-b). These 

two experiments demonstrate that, as long as the observational errors are uncorrelated, 

assimilation with the ensemble filter is rather insensitive to the observational accuracy 

given the typical range of observational errors for sounding and surface observations, 

consistent with those convective scale experiments in Zhang et al. (2004). 

Experiment “UONLY” differs from CNTL20 in that only the zonal wind from the 

sounding observations is assimilated, which is similar to a case if we use radar radial 

velocity instead of sounding observations. Again, the EnKF analysis converges well 

towards the truth simulation over the 24-h assimilation; the RM-DTE at 36 h is only 

~10-20% larger than that in the CNTL20 (Fig. 2.13c). In another experiment similar to 

CNTL20 but with the addition of pressure perturbation and moisture observations in the 

soundings, there is no significant improvement in the EnKF analysis compared to 

CNTL20 for all prognostic variables including p’ and q (not shown). Filter performance 

is also nearly unchanged when the horizontal spacing of the sounding network changed 

from 300 km in CNTL20 to 450 km in the experiment “SND450KM” (Fig. 2.13d). 
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FIG. 2.13. Time evolution of the domain-averaged RM-DTE (m/s, black, thick) from sensitivity     
experiments (a) HALFERR, (b) TWICEERR, (c) UONLY, (d) SND450KM, (e) SNDONLY and 
(f) SFCONLY. RM-DTE from experiment CNTL20 and the 20-member reference ensemble     
forecast are also displayed in gray and dotted curves, respectively. 

 
 
 

Experiments “SNDONLY” and “SFCONLY” differ from CNTL20 in that only either 

sounding or surface observations are assimilated every 3 h. For the first 12-h 

assimilation period of SNDONLY, the analysis follows closely that of the CNTL20 but 

the loss of surface observations cannot be corrected by more frequent sounding 

observations for the final 12-h assimilation period (Fig. 2.13e). Consistent with Whitaker 

et al. (2004), it is very encouraging to notice that the analysis still has significant smaller 

error than the reference forecast when only surface observations are assimilated (Fig. 

2.13f), even though the advantage of sounding observations is clearly seen when 

compared to CNTL20. 
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c. Different truth simulations 

We also performed several additional experiments with the same set of initial 

ensembles as in CNTL20 but using different realizations of the 3DVar perturbations to 

generate the truth simulation. Quantitatively similar performance (to the CNTL20) has 

been achieved in all of these EnKF experiments (not shown). Another experiment with 

the same truth simulation as in CNTL20 but a different set of 20 ensemble members 

behaves in a similar manner (not shown). 

 

7. Summary and discussions 

Through various observing system simulation experiments, this study exploits the 

potential of using the ensemble Kalman filter (EnKF), which estimates error covariances 

through an ensemble of short-term forecasts, for mesoscale and regional-scale data 

assimilation. The EnKF is implemented in a non-hydrostatic, mesoscale model (MM5) 

to assimilate simulated sounding and surface observations derived from truth simulations 

of the “surprise” snowstorm of January 2000. This is an explosive east coast 

cyclogenesis event with strong error growth at all scales as a result of interactions 

between convective-, mesoscale, and subsynoptic-scale dynamics. 

It is found that the EnKF is very effective in keeping the analysis close to the truth 

simulation. In the control experiment (CNTL), a 24-h continuous EnKF assimilation of 

sounding and surface observations with realistic temporal and spatial resolutions can 

have an error reduction of as much as 80% for horizontal winds and temperature, 85% 

for pressure perturbation, and 45% for water vapor mixing ratio in comparison to the 
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reference forecast ensemble.  

Error growth characteristics in the ensemble forecast with and without the EnKF, 

including the scale, structure and evolution of the forecast and analysis errors of different 

variables are also examined. It is found the EnKF is most effective in reducing larger-

scale errors but less effective in reducing errors at smaller, marginally resolvable scales. 

This is consistent with the analysis of spectral characteristics of Kalman filter systems by 

Daley (1991) and Daley and Menard (1993). The scale-dependent error reduction may 

also be due to the faster error saturation (thus shorter predictability) and thus poorer 

quality of the prior estimate and background error covariance at the smaller, marginally 

resolvable scales. It could also arise from observational information that is insufficient to 

allow for a good estimate at smaller scales. There are also apparent improvements in the 

forecast initiated with EnKF analysis. Since error grows at all scales but saturates 

quicker at smaller scales, the overall error growth in the ensemble forecasts may largely 

comes from larger scales. 

Error growth characteristics and the quality of initial estimate and background error 

covariance also differ greatly from variable to variable, resulting in different degrees of 

error reduction for different variables. The EnKF is least effective on the vertical motion 

and moisture fields which have more energy in smaller scales while pressure 

perturbation in general enjoys the biggest error reduction because it has the strongest 

larger-scale component among all variables. Different error growth from different 

variables also results in inconsistency between the analysis error and ensemble spread of 

different variables when the same localization or error inflation/relaxation is used for all 
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variables.  

It is also found that the ratio of the root-mean-square analysis/forecast error to the 

standard deviation of the ensemble, as a common index of filter divergence, changes 

with ensemble size, the cut-off radius of influence (localization), and covariance 

relaxation (inflation) coefficient. Consistent with past studies, it is found that bigger 

ensemble size, smaller cut-off radius and the implementation of the variance relaxation 

method all lead to larger ensemble spread and potentially prevent from filter divergence. 

Various experiments are also performed to test the sensitivity of the EnKF to the 

number of observed variables and the density and accuracy of sounding and surface 

observations. The EnKF is found to be quite resilient in most of the realistic 

observational scenarios tested.  

The above conclusions on the mesoscale data assimilation with the EnKF are drawn 

from observation system simulation experiments under the perfect model assumption. 

Such a strong EnKF performance should not be readily expected in real-world situations 

where the forecast model unavoidably has errors and the initial ensemble statistics may 

be far from perfect (refer to Houtekamer et al. 2005). The EnKF performance under 

various imperfect-model scenarios will be explored in next chapter.  
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CHAPTER III 

OBSERVING SYSTEM SIMULATION EXPERIMENTS WITH 

IMPERFECT MODEL* 

 

1. Introduction 

In the past few years, ensemble-based data assimilation has drawn increasing 

attention from the data assimilation community due to its prevailing advantages such as 

flow-dependent background error covariance, ease of implementation and its use of a 

fully nonlinear model. Since first proposed by Evensen (1994), ensemble-based data 

assimilation has been implemented in various scale numerical models of different 

realistic scenarios (Houtekamer and Mitchell 1998; Hamill and Snyder 2000; Keppenne 

2000; Anderson 2001; Mitchell et al. 2002; Keppenne and Rienecker 2003; Zhang and 

Anderson 2003; Snyder and Zhang 2003; Houtekamer et al. 2005; Whitaker et al. 2004; 

Dowell et al. 2004; Zhang et al. 2004, 2006a; Tong and Xue 2005; Aksoy et al. 2005). 

More background on ensemble-based data assimilation can be found in recent reviews of 

Evensen (2003), Lorenc (2003) and Hamill (2006).  

While Hamill and Snyder (2000), Whitaker and Hamill (2002), and Anderson (2001) 

showed that using an ensemble Kalman filter (EnKF) in the context of a perfect model 

(i.e., both the truth and ensemble propagate with the same model) can significantly 

 
_____________ 
* Reprinted with permission from “Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale 
Data Assimilation. Part II: Imperfect Model Experiments” by Zhiyong Meng, and Fuqing Zhang, 2007, 
Monthly Weather Review, 135, in press, Copyright [2007] by American Meteorological Society. 
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reduce error and outperform competitive data assimilation methods such as 3DVar, the 

perfect model assumption must be dropped in real-world studies where model error is 

caused by inadequate parameterization of subgrid physical processes, numerical 

inaccuracy, truncation error and other random errors. The presence of model error can 

often result in both a large bias of the ensemble mean and too little spread and can 

ultimately cause the ensemble forecast to fail. Fortunately, studies (e.g., Houtekamer et 

al. 1996; Houtekamer and Lefaivre 1997) show that including model error in an 

ensemble can lead to a more realistic spread of the forecast solution. Despite this, model 

error, especially at the mesoscale, is generally hard to identify and to deal with due to the 

chaotic nature of the atmosphere, its flow-dependent characteristics, and the lack of 

sufficiently dense observations for verification (e.g., Orrell et al. 2001; Orrell 2002; 

Simmons and Hollingsworth 2002; Stensrud et al. 2000).  

There have been several different approaches for including model error in ensemble 

forecasts. One popular (yet at hoc) approach involves the use of different forecast 

models (e.g., Evans et al. 2000; Krishnamurti et al. 2000) or different physical 

parameterization schemes (e.g., Stensrud et al. 2000). Other ways to include model error 

are to apply statistical adjustment to ensemble forecasts (Hamill and Whitaker 2005) or 

to use stochastic forecast models and/or stochastic physical parameterizations (e.g., 

Palmer 2001; Grell and Denvenyi 2002).  

Mitchell et al. (2002), Hansen (2002), Keppenne and Rienecker (2003), Hamill and 

Whitaker (2005), and Houtekamer et al. (2005) have all discussed explicit treatment of 

model error in ensemble-based data assimilation. For example, Keppenne and Rienecker 
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(2003) obtained encouraging results using covariance inflation (first proposed in 

Anderson 2001) with an oceanic general circulation model and real data. In a study that 

showed ensemble data assimilation can outperform 3DVar, Whitaker et al. (2004) also 

used the covariance inflation method to reanalyze the past atmospheric state using a long 

series of available surface pressure observations. Despite these successes, covariance 

inflation can cause a model to become unstable due to excessive spread in data-sparse 

regions (Hamill and Whitaker, 2005). The additive error method (Hamill and Whitaker 

2005; Houtekamer et al. 2005) and the covariance relaxation method of Zhang et al. 

(2004) have recently been proposed as alternatives to covariance inflation. The 

performance of certain additive error methods was found to be superior to covariance 

inflation for the treatment of model truncation error caused by lack of interaction with 

smaller scale motions, and additive error methods might outperform a simulated 3DVar 

method (Hamill and Whitaker 2005). Meanwhile, Houtekamer et al. (2005) used a 

medium-resolution, primitive equation model with physical parameterizations and 

similarly parameterized model error by adding noise consistent in structure with 3DVar 

background error covariance. The EnKF performed similarly to the 3DVar method 

implemented in the same forecast system. 

Most of the aforementioned studies that included an explicit treatment of model 

error used global models. To the best of our knowledge, the impacts of model error on 

ensemble data assimilation with a mesoscale model have rarely been addressed in the 

literature. Applications of an EnKF to the mesoscale have only recently begun with 

simulated observations (Snyder and Zhang 2003; Zhang et al. 2004; Tong and Xue 2005; 
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Caya et al. 2005; Aksoy et al. 2005, 2006a, b; Zhang et al. 2006a, hereafter also referred 

to as Chapter II) and with real data (Dowell et al. 2004; Dirren et al. 2006). In Chapter II, 

the authors examined the performance of an EnKF implemented in a mesoscale model 

through various observing system simulation experiments (OSSEs) assuming a perfect 

model. It is found that the EnKF with 40 members works very effectively in keeping the 

analysis close to the truth simulation. The result that most error reduction comes from 

large scales is consistent with Daley and Menard (1993). Furthermore, the EnKF 

performance differs among variables; it is least effective for vertical motion and 

moisture due to their relatively strong smaller scale power, and it is most effective for 

pressure because of its relatively strong larger scale power.  

This chapter examines the performance of the same EnKF as that in Chapter II in the 

presence of significant model error due mainly to physical parameterizations. Past 

studies (e.g., Stensrud et al. 2000) suggested that a considerable part of model error 

comes from parameterization of sub-scale physical processes. The ‘surprise’ snowstorm 

of 24-26 January 2000 that was examined in Chapter II is also examined here.  

In the next section, we describe the methodology, experimental design, and 

ensemble and model configurations. A synoptic overview and the control experiment 

results are described in section 3. Section 4 demonstrates the sensitivity of the EnKF to 

model error due to physical parameterizations. The EnKF performance in another case 

with a distinguishably different flow regime [the long-lived warm-season mesoscale 

convective vortex (MCV) event that occurred on 10-13 June 2003] is then examined in 

section 5 to address the impact of flow-dependent predictability. Finally, section 6 gives 
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our conclusions and discussions.  

 

2. Methodology and experimental design 

Unless otherwise specified, the EnKF system used here is the same as that employed 

in section 2 of Chapter II. It is a square-root EnKF with 40 ensemble members that uses 

covariance relaxation (Zhang et al. 2004, their Eq.5 where α=0.5) to inflate the 

background error covariance. The Gaspari and Cohn (1999) fifth-order correlation 

function with a radius of influence of 30 grid points (i.e., 900 km in horizontal directions 

and 30 sigma levels in vertical domain) is used for covariance localization.  

The third version of the PSU-NCAR mesoscale model MM5 (Dudhia 1993) is used 

herein with 190×120 horizontal grid points and 30-km grid spacing to cover the 

continental United States (Fig. 3.1; a slightly newer update of MM5 version 3 is used 

here than was used in Chapter II). The model setup also includes 27 layers in the terrain-

following vertical coordinate with the model top at 100 hPa, and a smaller vertical 

spacing within the boundary layer. NCAR-NCEP reanalysis data are used to create the 

initial and boundary conditions.  

Various experiments are performed with different model configurations (Table 3.1) 

to explore the sensitivity of the EnKF to the uncertainties in physical parameterizations. 

Serving as a benchmark, the control experiment “CNTL” is performed under the 

assumption of a perfect forecast model in the same manner as in Chapter II (Section 3 of 

Zhang et al. 2006a) and it utilizes the Grell cumulus parameterization scheme, Reisner 

microphysics scheme with graupel and Mellor-Yamada (ETA) planetary boundary layer 
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(PBL) scheme [refer to Grell et al. (1994) and Wang and Seaman (1997) for a 

description of different parameterization schemes]. Aside from the control experiment, 

sensitivity experiments are conducted with different cumulus parameterizations 

(“KFens”, “KF2ens”, “BMens”, “KUOens”, “Multi1”, “Multi2”, “KF3ens”, “Multi3”, 

and “Multi4”) and are described in Table 3.1 and Table 3.2. 

 
 

TABLE 3.1.  Model configurations of various experiments. 
Physical parameterization schemes Experiments 

cumulus parameterization PBL microphysics 
CNTL Grell ETA Graupel（Reisner） 
KFens Kain-Fritsch (KF) ETA Graupel（Reisner） 

KF2ens Kain-Fritsch 2 (KF2) ETA Graupel（Reisner） 
BMens Betts-Miller (BM) ETA Graupel（Reisner） 

KUOens Anthes-KUO (KUO) ETA Graupel（Reisner） 
Multi1 Grell, BM, KUO, KF ETA Graupel（Reisner） 
Multi2 KF2, BM, KUO, KF ETA Graupel（Reisner） 
KF3ens Kain-Fritsch (KF) MRF Graupel（GSFC） 
Multi3 KF2, BM, KUO, KF MRF Graupel（GSFC） 
Multi4 Refer to Table 3.2 

 

 
TABLE 3.2.  Model configuration of experiment “Multi4”. 

No. of ensemble members 
using cumulus scheme  

No. of ensemble members 
Using Cloud microphysics scheme 

No. of ensemble members 
using PBL scheme 

5 Graupel（Reisner） 3 ETA  2 MRF 10 Grell 
5 Graupel（GSFC） 2 ETA  3 MRF   

5 Graupel（Reisner） 3 ETA  2 MRF  10 KUO 
5 Graupel（GSFC） 2 ETA  3 MRF  

5 Graupel（Reisner） 3 ETA  2 MRF  10 KF 
5 Graupel（GSFC） 2 ETA  3 MRF  

5 Graupel（Reisner） 2 ETA  3 MRF  10 BM 
5 Graupel（GSFC） 3 ETA  2 MRF  

 

 

The initial conditions for both the truth simulation and the ensemble are generated 
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with the MM5 3DVar method (Barker et al. 2004; also Chapter II). The perturbation 

standard deviations are approximately 1 m s-1 for wind components u and v, 0.5 K for 

temperature T, 0.4 hPa for pressure perturbation p′ , and 0.2 g/kg for water vapor mixing 

ratio q. Other prognostic variables (vertical velocity w, mixing ratios for cloud water qc, 

rain wate qr, snow qs and graupel qg) are not perturbed. The 3DVar perturbations are 

added to the NCEP reanalysis at 0000 UTC 24 January 2000 to form an initial ensemble 

which is then integrated for 12 h to develop a realistic, flow-dependent error covariance 

structure before the first data is assimilated. A relaxation inflow-outflow boundary 

condition is adopted for both the truth simulation and the ensemble.  

 
 

 
FIG. 3.1. Map of the model domain. Observations are extracted only from 
the  area inside the shaded (solid) box for the snowstorm (MCV) case. 

 
 

As in Chapter II, the tendencies in lateral boundaries are not perturbed. Instead, the 

analysis step of the EnKF is implemented only upon an inner area far from the inflow 

boundary as shown by the shaded box in Fig. 3.1. Since the reference ensemble forecast 

has no apparent decrease of variance in the inner (assimilation) domain, the lack of 
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boundary perturbations is assumed to have minimal effects upon the experiments. Also, 

examination of both the EnKF analyses and subsequent ensemble forecasts reveals no 

apparent inconsistencies at and near the boundaries of the inner (assimilation) domain. 

Simulated soundings and surface observations of u, v, and T are extracted from 

within the assimilation domains of the truth simulations. The soundings are spaced every 

300 km horizontally and sounding observations are taken at every sigma level. Surface 

observations are spaced every 60 km at the lowest model level (approximately 36 m 

above the ground). Assimilation of real surface observations could be more problematic 

due to the representative error, strong gradients and fluxes near the surface. We assume 

that all observations have independent Gaussian errors with zero mean and a standard 

deviation of 2 m s-1 for u and v, and 1 K for T. Sounding and surface observations are 

assimilated every 12 h and 3 h, respectively. Starting from the 12th hour into the 

integration, data assimilation continues for 24 hours. Only the state variables inside the 

shaded box are updated and analyzed.  

 

3. Overview of the event and the control experiment  

a. Synoptic overview 

The case that we investigate is an intense winter storm that occurred during 24-26 

January 2000 off the southeastern coast of the United States and brought heavy snowfall 

from the Carolinas through the Washington D.C. area and into New England. Snow 

associated with this storm fell across North Carolina and the Raleigh-Durham area 

reported a record snowfall total of over 50 cm (Zhang et al. 2002). The system 
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developed as an upper-level short wave embedded in a broad synoptic trough over the 

eastern United States moved southeastward across the southeast states. A 300 hPa low 

formed around 0000 UTC 25 January near the coasts of Georgia and South Carolina and 

moved northward along the coast. The upper level low reached southeastern North 

Carolina by 1200 UTC 25 January (Zhang et al. 2002, Fig. 2), and the storm produced 

the most intense snowfall in this area. The minimum mean sea level pressure (MSLP) 

associated with the surface cyclone rapidly dropped from 1005 hPa at 1200 UTC 24 

January to 983 hPa at 1200 UTC 25 January. The surface low then gradually weakened 

as it followed the northward-moving upper low along the coast.  

 

b. The control EnKF experiment 

The control EnKF experiment (“CNTL”) utilizes the perfect model scenario of 

Chapter II in which the truth and the ensemble are simulated with the same forecast 

model physics configuration. The truth simulation is the ensemble member that most 

accurately simulates the observed location and intensity of the surface and 300-hPa 

cyclones and simulated reflectivity (Fig. 3.2). The reference ensemble forecast, which 

uses the same initial conditions as the ensemble in CNTL but is a pure ensemble forecast 

without any data assimilation, demonstrates rapid error growth in terms of both MSLP 

and surface wind forecast error (Figs. 3.3a-b) and in terms of the square root of column-

averaged (mean) difference total energy (RM-DTE) (Figs. 3.3d-e). The DTE is defined 

as: 

DTE 0.5 k= (u'u' +v'v' + T'T') ,                                    (3.1) 
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FIG. 3.2. The MSLP (every 2 hPa) and simulated reflectivity (shaded) valid at (a) 12 h and 
(b) 36 h from the truth simulation for the snowstorm case. (c-d) are as (a-b) but for the 
potential vorticity (every 1 PVU) and wind vectors (full barb 5 m s-1) at 300 hPa. 

 
 

where the prime denotes the difference between the truth and the ensemble mean or 

between any two realizations, k = Cp/Tr, Cp = 1004.7 J kg-1 K-1 and the reference 

temperature Tr = 270 K. Large increases can be seen in the maximum forecast error of 

different variables from 12 h to 36 h. For example, the error increases from 1.5 hPa to 

8.5 hPa with MSLP (Figs. 3.3a-b, respectively), from 2.5 m s-1 to 12.5 m s-1 with the 

surface wind, and from 1.2 m s-1 to 16 m s-1 for the column-averaged RM-DTE (Figs. 

3.3d-e). Note that large errors generally occur near the surface cyclone, the upper-level 

short-wave trough, and the associated fronts and moist processes. These results are 
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consistent with Chapter II, Zhang et al. (2002, 2003) and Zhang (2005). 

 

  
FIG. 3.3. Forecast errors of surface wind vectors (full bard 5 m s-1) and MSLP (every 0.5 hPa) at (a) 
12 h and (b) 36 h for the snowstorm case. The analysis error of the same fields at 36 h is in (c). (d-f) 
are as (a-c) but for the column-averaged RM-DTE (every 2 m s-1). 

 
 

After 24 hours of assimilation with the EnKF, the analysis error (defined as the 

difference between the posterior ensemble mean and the truth) decreases significantly 

for all variables of interest. The EnKF analysis of MSLP (Fig. 3.3c) and the column-

averaged RM-DTE (Fig. 3.3f) are almost indistinguishable from those of the truth 

simulation.  

Relative error reduction (“RER”, as in Chapter II) will be used to verify the 

performance of the EnKF. RER is defined as 

RER= f a

f

E -E 100%
E

×                                                 (3.2) 
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where fE denotes the root-mean-square error of the reference ensemble forecast of an 

arbitrary variable in an experiment, and aE denotes the root-mean-square error of the 

corresponding analysis of the same variable. As shown in the time evolution of forecast 

and analysis error for different variables including u, v, T, p’, w and q (Fig. 2.8), the 

EnKF reduces the analysis error by as much as 85% for pressure perturbation, 80% for 

horizontal wind and temperature, 45% for water vapor mixing ratio and 30% for vertical 

velocity. The largest improvement is obtained when both sounding and surface 

observations are assimilated (Chapter II). 

The effectiveness of the EnKF in “CNTL” is shown in Figs. 3.4 and 3.5. For 

example, there is no apparent filter divergence because the ensemble spread (dotted line 

in Fig. 3.4a) and analysis errors (solid thick dark-gray line in Fig. 3.4a) are quite close to 

each other. Also, compared to that in the reference ensemble forecast without data 

assimilation (dashed thick dark-gray line in Fig. 3.4a), RM-DTE is reduced by 73% (to 

1.1 m s-1) after the 24-h assimilation period (solid thick dark-gray line in Fig. 3.4a). In 

fact, the RM-DTE value after the assimilation period is less than that of typical 

observation errors. The vertical profile of horizontally-averaged RM-DTE at 36 h (Fig. 

3.4d, thick dark-gray lines) suggests that the largest improvement occurs where the 

reference ensemble forecast has the largest error. Moreover, the power spectrum analysis 

of DTE at 36 h (Fig. 3.5a, solid thick dark-gray line for analysis and dotted line for 

reference forecast) demonstrates that the EnKF is very efficient at decreasing the error at 

larger scales where the covariance is most reliable. The EnKF less effectively reduces 

error at smaller, marginally resolvable scales. This is possibly due to the poor 
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representation of background error covariance, faster error growth at smaller scales, 

and/or insufficient observation information (Chapter II).  

 

 
FIG. 3.4. (a-c) Time evolution of domain-averaged RM-DTE for different experiments and (d-
f) the vertical distribution of horizontally-averaged RM-DTE of the EnKF analysis (solid 
lines) and corresponding reference forecast (dashed lines) for the snowstorm case at 36 h. (a) 
and (d) are for one wrong cumulus parameterization scheme and perfect PBL and 
microphysics. This includes experiments “KFens” (thin black), “KUOens” (thin dark-gray), 
and “CNTL” (thick dark-gray). The dotted line in (a) denotes the standard deviation of the 
EnKF analysis ensemble in “CNTL” in terms of RM-DTE. (b) and (e) are similar to (a) and 
(d) but for multiple cumulus schemes, including “Multi1” (thin gray), “Multi2” (thin dark-
gray), “KFens” (black), and “CNTL” (thick dark-gray). (c) and (f) are similar to (a) and (d) 
but for varying cumulus and imperfect PBL and microphysics including experiments “KF3” 
(black), “Multi3” (thin dark-gray), “Multi4” (thin gray), and “CNTL” (thick dark-gray). 
 

 
4. Sensitivity to model error in physical parameterizations 

As mentioned in the introduction, model error can result in bias of the ensemble 

mean and insufficient ensemble spread due to its smaller projection onto the correct error 

growth direction. In numerical models, those processes that cannot be explicitly resolved 
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have to be approximated through different parameterization schemes that are major 

sources of model error. To test the performance of the EnKF in the presence of model 

error caused by physical parameterization schemes, we assume that the Grell cumulus 

scheme, the ETA PBL and the Reisner microphysics with graupel, which are employed 

to generate the truth simulation, are perfect. The ensemble forecast in the sensitivity 

experiments is then performed with either one or multiple parameterization schemes that 

differ from the truth simulation. 

 

 
FIG. 3.5. Power spectrum of DTE for (a) the snowstorm at 36 h and (b) the MCV event at 
48 h. The minimum (maximum) wave number 1 (40) in (a) and 1 (28) in (b) correspond 
to a horizontal wavelength of 2400 (60) km in (a) and 1680 (60) km in (b). 
 
 

 
a. Impact of cumulus parameterization under perfect PBL and microphysics schemes 

Cumulus parameterization, the problem of formulating the statistical effects of moist 

convection to obtain a closed system for predicting weather and climate (Arakawa 

2004), has greater uncertainty than any other aspect of mesoscale numerical prediction 

(Molinari and Dudek 1992). Cumulus parameterization generally improves precipitation 

forecasts when it is utilized in a global/synoptic-scale model with a grid spacing of about 
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100 km or larger (Molinari and Corsetti 1985). Problems arise when the grid spacing 

reduces to below 50 km and initially irresolvable clouds turn into resolvable mesoscale 

circulations at later times. The lack of a power gap between cloud scale and mesoscale 

renders the conceptual basis of cumulus parameterization ill-posed for smaller grid 

spacings (Cotton and Anthes 1989).  

Cumulus parameterization schemes generally contain convective initiation, a closure 

assumption and a cloud model. Different approaches to these three elements form 

different parameterization schemes. For example, seven cumulus parameterization 

schemes are available with MM5 (refer to Grell et al. 1994 for descriptions of individual 

schemes). Here we choose two convective adjustment methods that do not explicitly 

formulate the convective process [the Anthes-Kuo scheme (“KUO”) and the Betts-Miller 

scheme (“BM”)] and three mass flux methods [the original Kain-Fritch scheme (“KF”), 

the revised Kain-Fritsch scheme with shallow convection (“KF2”), and the Grell 

scheme] that include a cloud model to directly simulate the convective process.  

 

1) THE USE OF A SINGLE BUT WRONG CUMULUS PARAMETERIZATION 

(SINGLE-SCHEME ENSEMBLE) 

Four experiments named “KUOens”, “KFens”, “KF2ens”, and “BMens” are 

executed to evaluate the EnKF performance with the use of a single wrong cumulus 

parameterization scheme in the ensemble forecast (“wrong” implies a difference from 

rather than inferiority to the scheme used for the truth). In these experiments, the truth 

simulation is generated using the Grell scheme (as in “CNTL”), but each ensemble 
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forecast for the EnKF uses one of the four different cumulus parameterization schemes 

[i.e., KUO, KF, KF2, and BM (Table 3.1)]. Because different physical parameterizations 

rely on significantly different underlying assumptions, the use of any scheme in the 

ensemble other than that used to generate the truth simulation will unavoidably incur 

model error if moist convection is present. This is also true when using any single-

scheme ensemble to assimilate real-world observations.  

To simplify subsequent discussions, we define ‘bias’ as the difference between the 

ensemble means of the reference ensemble forecast with the perfect physics and the one 

with imperfect scheme(s) in terms of root-mean difference total energy (RM-DTE, 

defined in Eq. 3.1). The biases of the four ensemble means (Figs. 3.6a and 3.6c) are 

found to be significantly different from each other (the mean sampling error in bias 

estimation is less than 0.1 K for temperature and less than 0.2 m s-1 for U and V). 

“KFens” (dashed black in Fig. 3.6a) and “KUOens” (dashed gray) respectively have the 

smallest and largest biases, while those of “BMens” and “KF2ens” (not shown) are 

between the two extremes. This suggests that the Kain-Fritsch and Grell (truth) schemes, 

which are significantly different from the other two convective adjustment schemes, 

perform similarly to one another in the winter season. Also, the magnitude of their bias is 

different throughout the column with two primary vertical peaks (dashed black and gray 

lines in Fig. 3.6c). These peaks are located at around 850 hPa and 300 hPa and are 

associated with moist convection and upper level fronts, respectively.  

The spectral analysis of bias for the above experiments indicates that the power of 

the bias is higher at large scales and noticeably differences are observed among different 
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schemes (not shown). For example, “BMens” exhibits a similar bias to “KUOens” at  

large scales but has a relatively smaller bias at smaller scales. The bias of “KFens” is 

consistently smaller at all scales than that in “KUOens” and “BMens”. Moreover, 

differences are also observed in the domain-averaged reference ensemble spread at 36 h 

(Fig. 3.6b), with the smallest spread in “KUOens” due to its smaller spread at lower 

levels (dashed gray line in Fig. 3.6d). The aforementioned differences in the error growth 

structure will have significant impacts on the performance of the EnKF.  

Figures 3.7 and 3.4a demonstrate degraded EnKF performance in the single wrong 

cumulus parameterization experiments (their ~50% error reduction is significantly less 

than the 73% error reduction in “CNTL”). The decreased performance is possibly a 

result of the worsened error covariance structure and bias of the ensemble mean. In 

general, the larger the mean bias of the reference forecast (model error) or the smaller 

the ensemble spread, the larger the degradation of the EnKF performance. This is 

demonstrated among the four single-scheme experiments, where “KUOens” shows the 

least improvement (46%), while “KFens”, “KF2ens”, and “BMens” show error 

reductions of 52%, 48% and 55%, respectively (black bins in Fig. 3.7a). Similarly, the 

absolute analysis error measured in terms of the domain-averaged RM-DTE after the 24-

h EnKF assimilation is 2.8, 2.0, 2.1, and 2.3 m s-1 for “KUOens”, “BMens”, “KFens”, 

and “KF2ens” (black bins in Fig. 3.7b), respectively. This analysis error is comparable in 

magnitude to the observational error specified. In addition, most of the error reduction 

comes from larger scales and the maximum error decrease is obtained in the lower 

troposphere (Fig. 3.4d).  
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FIG. 3.6. Time evolution of (a) the bias (the root-mean-square difference between the 
imperfect experiments’reference ensemble mean and the “CNTL” reference ensemble mean) 
in terms of RM-DTE and (b) the corresponding reference ensemble spreads (standard 
deviation or std) of RM-DTE for the snowstorm case. (c-d) are as in (a-b) but for the vertical 
distribution at 36 h. The dashed lines denote one-scheme ensembles with black for “KFens”, 
gray for “KUOens”, and dark-gray for “KF3ens”. The solid lines represent multi-scheme 
ensembles including “Multi1” (thick black), “Multi2” (thin black), “Multi3” (thin dark-
gray), and “Multi4” (thick dark-gray). 
 



 67

  

  

FIG. 3.7. (a) Relative error reduction and (b) absolute forecast/analysis errors (m 
s-1) in terms of domain-averaged RM-DTE at the final analysis time for the 
snowstorm case at 36 h (black bins) and the MCV case at 48 h (white bins). The 
experiments are labeled on the x-coordinate. 
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2) THE USE OF MULTIPLE CUMULUS PARAMETERIZATION SCHEMES 

(MULTI-SCHEME ENSEMBLE) 

In practice, it is hard to determine a priori which cumulus parameterization scheme 

is the most suitable to predict certain kinds of weather systems in different flow regimes. 

For example, the above single-scheme experiments demonstrate that model error due to 

the use of a single wrong cumulus scheme can degrade the EnKF performance to 

different degrees. Also, Wang and Seaman (1997) compared the performance of four 

different cumulus parameterizations (i.e., the KUO, BM, KF and Grell schemes) in 

MM5 and showed that none of them demonstrates consistently better results than others.  

A very natural treatment to account for model error from cumulus parameterization 

is thus to integrate an ensemble using a combination of different cumulus 

parameterization schemes (Stensrud, et al. 2000; Grell and Devenyi 2002). Through the 

use of different closure assumptions, cloud models and convection triggering 

mechanisms, a multi-scheme ensemble may provide a better estimate of the background 

error covariance by including both initial condition and model uncertainties. In this 

context, experiment “Multi1” (Table 3.1) is constructed by adopting four different 

cumulus parameterization schemes including the Grell, KF, BM and KUO schemes in 

the ensemble forecast (which implies that part of the cumulus parameterizations used in 

the multi-scheme ensemble are perfect). These four schemes are each assigned to a 10-

member subset of the 40-member ensemble. Our use of a multi-scheme ensemble was 

motivated by a recent study using real-data EnKF experiments (Fujita et al. 2005). 

The reference ensemble forecast of “Multi1” shown in the solid thick black lines of 
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Fig. 3.6 has significantly smaller bias (solid thick black line in Fig. 3.6a) and bigger 

spread (solid thick black line in Fig. 3.6b) at each level than do any of the single-scheme 

ensembles (Figs. 3.6c-d). As expected, the multi-scheme ensemble contributes to larger 

error reduction than do the single-wrong-scheme ensembles in the EnKF data 

assimilation. The domain-averaged RM-DTE and the vertical distribution of 

horizontally-averaged RM-DTE after the 24-h data assimilation are plotted in Figs. 3.4b 

and 3.4e (thin gray lines). For direct comparison, “KFens” (which has average 

performance) is repeated here to represent the single-wrong-scheme experiments. 

Compared to the 52% improvement in “KFens”, nearly 67% error reduction is achieved 

in “Multi1”. The 1.3 m s-1 RM-DTE in “Multi1” is also smaller than any of the single-

wrong-scheme experiments (Fig. 3.7b). Again, the largest improvement occurs in the 

lower troposphere (Fig. 3.4e).  

Because a quarter of the ensemble members in “Multi1” still use a perfect (the Grell) 

scheme, which is unrealistic, experiment “Multi2” replaces the Grell scheme in “Multi1” 

with the KF2 so that all cumulus schemes used in the ensemble are different from the 

truth (and thus imperfect, see Table 3.1). The reference ensemble forecast bias in 

“Multi2” (solid thin black line in Figs. 3.6a and 3.6c) is systematically larger than that in 

“Multi1” but smaller than the bias in “KFens”. The relative error reduction in “Multi2” 

is about 58% and its absolute RM-DTE is 1.8 m s-1 at 36 h. Though it reduces error less 

than “Multi1”, “Multi2” systematically outperforms any of the single-scheme 

experiments (Fig. 3.7a). Compared to “KFens” (dashed black line in Fig. 3.5a), most of 

the improvement in “Multi2” comes from larger scales (solid thin black line in Fig. 
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3.5a). The horizontal distribution of column-averaged RM-DTE also shows consistent 

improvement over “KFens”, and the greatest error reduction is in the vicinity of the 

surface cyclone (Figs. 3.8a-c).  

 

 FIG. 3.8. Horizontal distribution of column-averaged RM-DTE (every 2 m s-1) at 36 h for the 
snowstorm case for (a) “KFens”, (b) “Multi1”, (c) “Multi2”, (d) “KF3ens”, (e) “Multi3”, and (f) 
“Multi4”, respectively. 
 
 

b. Impact of cumulus parameterization under imperfect PBL and microphysics schemes 

Not only does forecast error come from cumulus parameterization, but it also comes 

from parameterization of other subgrid-scale processes such as microphysics and 

planetary boundary layer (“PBL”) processes. This subsection explores the impact of 

model error from cumulus parameterization with imperfect PBL and microphysics 
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schemes.  

To account for the possibility of error from parameterization of multiple subgrid-

scale processes, the ensemble in experiment “KF3ens” uses all imperfect schemes 

including the KF cumulus scheme, the MRF PBL scheme and the Goddard microphysics 

scheme with Graupel. This ensemble performs significantly worse than any 

aforementioned experiment and exhibits relative error reduction of only 36% and 

absolute analysis error of 3.2 m s-1 (thin black lines in Figs. 3.4c, f and 3.7). With 

additional model error from PBL and cloud microphysics, the reference ensemble of 

“KF3ens” has a large bias but a small spread (the largest bias is in the lower levels 

among all experiments as shown in dashed dark-gray line in Fig. 3.6).  

Experiment “Multi3” expands on “KF3ens” by using the same combination of four 

(imperfect) cumulus parameterization schemes (i.e., KF, KF2, BM and KUO) as 

“Multi2” and the same imperfect PBL and microphysics schemes as “KF3ens” (Table 

3.1). It is found that in the presence of model error from PBL and microphysics 

parameterizations, the use of the multiple-cumulus-scheme ensemble also helps to 

decrease the bias and increase the spread significantly at all levels (solid thin dark-gray 

line in Fig. 3.6) compared to “KF3ens”. Consequently, the EnKF performs better in 

“Multi3” than in “KF3ens” by reducing the relative error by 42% and the absolute 

analysis error to 2.8 m s-1 at 36 h (Figs. 3.7, 3.4c). Also, most of the improvement occurs 

at large scales (solid thin dark-gray line in Fig. 3.5a) and at middle to upper levels (solid 

thin dark-gray line in Fig. 3.4f). 

Experiment “Multi4” accounts for the possibility that some schemes may be nearly 
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perfect under certain flow regimes since all parameterization schemes are developed to 

represent real physical processes. To do this, “Multi4” uses a combination of different 

cumulus, PBL and microphysics schemes, each of which includes some of the same 

schemes as in the truth (Table 3.2). Specifically, each 10-member subset of “Multi1” is 

further divided into four subsets. Among the 10 members of each subset, five use the 

Reisner-graupel microphysics scheme while the other five adopt the GSFC-graupel 

scheme. The five-member subsets using the Reisner-graupel scheme are further divided 

into two groups of 3 and 2 members employing the ETA and MRF PBL schemes, 

respectively. The other five members with the GSFC-graupel scheme are treated 

similarly except that the two PBL schemes are switched between the 3- and 2-member 

groups. This particular configuration is used to make sure that any of the three categories 

of the physical parameterization schemes are evenly distributed among the 40 ensemble 

members.  

The reference ensemble forecast (without the EnKF assimilation) of “Multi4” (solid 

thick dark-gray line in Fig. 3.6) has smaller bias and larger spread than those of both 

“KF3ens” and “Multi3” during the whole integration period. Figure 3.7 also shows that 

“Multi4” performs better than nearly all other imperfect-model experiments (except 

“Multi1”, which also includes the same schemes as in the truth). The relative error 

reduction for “Multi4” is 63%, and absolute analysis error of 1.6 m s-1 is observed in this 

experiment. This reduction is evident in both the domain average (Figs. 3.8d-f) and 

vertical distribution (solid thin gray line in Fig. 3.4f) of RM-DTE. Though they might be 

optimistic, experiments “Multi1” and “Multi4” exemplify a situation when part of the 
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parameterization schemes happens to perfectly describe the real physical process.  

The large differences observed between “KFens” and “KF3ens” and between 

“Multi2” and “Multi3” demonstrate that the use of imperfect PBL and microphysics 

schemes (in addition to imperfect cumulus parameterizations) can significantly degrade 

the EnKF performance (Fig. 3.5a). However, due to the limited availability of 

microphysics and PBL parameterization schemes in MM5, we can not examine the 

impact of using multi-scheme ensembles in which none of the schemes in PBL or 

microphysics parameterizations is perfect (this is partially due to limited choices of 

usable PBL or microphysics schemes in MM5). 

 

c. Comparison of error covariance between single- and multi-scheme ensembles 

This subsection further investigates the reasons why the EnKF performs better with 

a multi-scheme ensemble than with a single-wrong-scheme ensemble. For example, the 

previous subsections showed that while the EnKF is quite effective at reducing the 

analysis error in the presence of significant model uncertainties, the analysis error in the 

imperfect-model experiments is noticeably larger than that of “CNTL”. This indicates 

that the EnKF performance can be degraded to different extents with different physical 

parameterizations (Fig. 3.7). Such difference in the EnKF performance might be due to 

the ensemble mean error (“bias”) and/or insufficient ensemble spread resulting from the 

use of an imperfect model.  

The horizontal distributions in Figs. 3.9a,b show that the reference ensemble 

forecast of “Multi2” has a significantly larger standard deviation of column-averaged          
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RM-DTE than does “KFens” at 24 h. Similar large-scale, balanced features were 

observed evolving from initially uncorrelated, small-scale, unbalanced errors in a period 

of 12-24 h in a previous study of this snowstorm (Zhang 2005). The maximum error 

growth in the disturbances is associated with the upper trough and the surface cyclone 

and is collocated with the strongest PV gradient. The spectral analysis of the ensemble 

spread also shows a much larger difference between “Multi2” and “KFens” at larger 

scales (i.e, wavenumber <10 or wavelength >240 km) than at smaller scales (not shown). 

The differences between balanced disturbances of “Multi2” and “KFens” have 

implications when using the EnKF because the EnKF is most effective at correcting 

errors at larger scales (as shown in Chapter II). 

To further illustrate the differences between the large-scale error structures of 

“KFens” and “Multi2”, the cross-covariance between U and T at 300 hPa at 24 h is also 

examined for each ensemble (Figs. 3.9c, d). While “Multi2” and “KFens” exhibit similar 

covariance structures with increased covariance in the vicinity of strong PV, the 

magnitude of the covariance in “Multi2” is noticeably larger due to its relatively larger 

ensemble spread (Figs. 3.9a, b). When the ensemble spread is significantly smaller than 

the error of the ensemble mean, increase of the ensemble spread could improve the 

performance of the EnKF. A larger spread in the multi-scheme ensembles may increase 

the likelihood of keeping the truth within the uncertainties spanned by the imperfect 

ensemble, and a large covariance has the potential to propagate observational 

information more efficiently between variables. This is consistent with Fujita et al. 

(2005), a recent real-data study that partially motivated the use of multi-scheme 
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ensembles in the current study. 

 
 

 
FIG. 3.9. Horizontal distribution of the standard deviation of column-averaged 
RM-DTE (every 2 m s-1) for (a) “Multi2” and (b) “KFens” at 24 h for the 
snowstorm case. (c-d) are as (a-b) but for the covariance  between U and T on 
300hPa (every 2 K m s-1; negative, dotted). The shading in (c-d) is PV at 
300hPa every 1 PVU. 

 

In order to understand whether or not the covariance structure developed in one of 

the above ensembles (i.e., “KFens” or “Multi2”) is systematically better than the 

covariance structure of the other, four “static” EnKF experiments (“Pmulti2-Mmulti2”, 

“Pkf-Mmulti2”, “Pmulti2-Mkf”, “Pkf-Mkf”) are conducted. These experiments are 

“static” in the sense that observations are assimilated at only one selected time without 

subsequent forecast and analysis cycles. The naming convention is as follows: “M…” 
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refers to the reference ensemble mean, “P…” refers to perturbations/deviations from the 

mean and ‘…’ refers to the experiments in previous subsections. For example, “Pmulti2-

Mmulti2” and “Pkf-Mkf” use the (unaltered) reference ensemble forecast of “Multi2” 

and “KFens”, respectively, to estimate the background error covariance for the EnKF. 

“Pkf-Mmulti2” and “Pmulti2-Mkf” are performed by switching the ensemble means of 

“Multi2” and “KFens” so that the perturbations of “Multi2” are added to the mean of 

“KFens”, and the perturbations of “KFens’ are added to the mean of “Multi2”. Because 

any two experiments formed using the same ensemble mean have the same forecast error 

(e.g., “Pkf-Mkf” and “PMulti2-Mkf”), the quality of the covariance structure associated 

with each ensemble can be ascertained by the differences in error between the same two 

experiments after the assimilation cycle (i.e., the analysis error). 

The results in Table 3.3 show that a systematically smaller analysis error can be 

achieved by using the background error covariance estimated from the multi-scheme 

ensemble (“Multi2”) rather than the single-wrong-scheme ensemble (“KFens”). Similar 

results are also obtained for “KF3ens” and “Multi3” (see Table 3.3) and for different 

reference forecast times (not shown). Using a multi-scheme ensemble is also found to be 

beneficial in a warm-season MCV event for both the continuously evolving and static 

EnKF assimilation experiments (detailed in section 5). 

While “KFens” also has the problem that its ensemble spread (solid thin gray line in 

Fig. 3.10a) is noticeably smaller than its analysis error (solid thick gray line in Fig. 

3.10a), the potential for filter divergence with this ensemble may be alleviated with 

covariance inflation. Experiment “KFens_0.7” is conducted by changing the weighting 
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coefficient α in the relaxation method (Zhang et al. 2004; their Eq. 5) from 0.5 to 0.7 to 

give more weight to prior perturbations. The use of a larger weight for the prior estimate 

as an alternative for covariance inflation (e.g., Anderson 2001) consequently leads to 

systematically larger ensemble spreads (though still insufficient, solid thin black line in 

Fig. 3.10a) and slightly improved the EnKF performance over 24 hours of data 

assimilation (solid thick black line in Fig. 3.10a).  

  

  TABLE 3.3. Domain-averaged RM-DTE for one-time data assimilation experiments valid at 36 (48) h 
for the snowstorm (MCV) case which switch perturbations between the single scheme “KFens” and the 
multi-scheme EnKF experiments. EF means the reference ensemble forecast. 

 
RM-DTE (m s-1) Ensemble mean Experiments 

Snowstorm MCV 

EF of Multi2 4.22 3.66 
Pmulti2-Mmulti2 2.50 2.43 

 
Multi2 

Pkf-Mmulti2 2.64 2.62 

EF of KFens 4.39 4.34 

Pmulti2-Mkf 2.49 2.47 

 
KFens 

Pkf-Mkf 2.79 3.08 

EF of Multi3 4.80 4.47 

Pmulti3-Mmulti3 3.12 2.85 

 
Multi3 

Pkf3-Mmulti3 3.31 3.09 

EF of KFens 5.00 4.61 

Pmulti3-Mkf3 3.10 2.86 

 
KF3ens 

Pkf3-Mkf3 3.44 3.33 
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FIG. 3.10. The domain-averaged RM-DTE (thick solid lines) and analysis ensemble spread of 
RM-DTE (thin solid lines) with different weights (α) of prior perturbations in the covariance 
inflation (mixing) method for experiments (a) “KFens”, (b) “Multi2”, and (c) “Multi4” for the 
snowstorm case. The black lines are for α = 0.7, gray lines for α = 0.5. The reference ensemble 
forecast errors are also plotted in dotted lines. 
 

 

When covariance inflation is applied to other ensembles for which the ensemble 

spread is not too small, the results are worsened somewhat. For example, when the 

relaxation coefficient in “Multi2” is modified from 0.5 to 0.7 in experiment 

“Multi2_0.7”, the analysis ensemble spread (solid thin black line in Fig. 3.10b) quickly 

becomes larger than the analysis error (“over-inflation”) and the EnKF performance 

worsens (solid thick black line in Fig. 3.10b). The ensemble spread eventually gets 

closer to or slightly smaller than the error and draws the analysis error back to that of 

”Multi2” at 36 h. This negative impact of “over-inflation” is more apparent when the 

relaxation coefficient changes from 0.5 to 0.7 in “Multi4” (Fig. 3.10c) because the initial 

spread is already comparable to the error. The larger ensemble spread results in 

consistently larger errors during the whole period. 
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d. Other experiments 

Various experiments using the conventional covariance inflation of Anderson (2001) 

and additive error method of Hamill and Whitaker (2005) are also performed to account 

for model error from physical parameterizations. None of these experiments with 

different covariance inflation factors or different additive error gives acceptable EnKF 

performance (not shown). The traditional inflation leads to spuriously large ensemble 

spread in data sparse areas. For the additive error experiments, the additive error 

covariance sampled from the differences between different cumulus parameterization 

schemes (at different times) fails to increase the ensemble spread in desired regions 

where there is active parameterized convection at analysis times. This result is in strong 

contrast to the success of using similar additive error methods to account for model 

truncation error (Hamill and Whitaker 2005) that is likely to be less flow-dependent.  

 

5. Impact of flow-dependent error growth dynamics 

In this section, we investigate the performance of the EnKF for a vastly different 

flow regime than in previous sections. Since weather systems under different flow 

regimes may have different error growth dynamics and mesoscale predictability, and the 

EnKF performance is significantly scale- and dynamic-dependent (Chapter II), the EnKF 

is likely to behave differently in different regimes. The particular case examined is a 

long-lived warm-season MCV event that occurred on 10-13 June 2003. A recent study 

(Hawblitzel, et al. 2006) shows that the predictability of this MCV event is very limited 

due to its extreme sensitivity to convection. This result is not surprising given that past 
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studies (e.g., Wang and Seaman 1997; Zhang et al. 2006b) suggest that model error, 

especially that from cumulus parameterization, can be more detrimental to warm-season 

forecasts than to winter events. 

 

a. Overview of the MCV event and the EnKF configuration 

This MCV event occurred during an intense observation period (IOP8) of the Bow 

Echo and Mesoscale Convective Vortex Experiment (BAMEX) conducted from 18 May 

to 7 July 2003 over the central United States. At 0000 UTC 10 June, a disturbance 

embedded in the subtropical jet triggered convection over eastern New Mexico and 

western Texas. An MCV developed from the remnants of this convection over central 

Okalahoma at 0600 UTC 11 June, and matured by 1800 UTC 11 June as it traveled 

northeastward to Missouri and Arkansas. The MCV transitioned into an extratropical 

baroclinic system after 0000 UTC 12 June.  

The EnKF configuration is the same as for the winter snowstorm event except that a 

15-point (450-km) radius of influence is used here due to the relatively smaller scale of 

the weather system. The assimilated data and the updated grid points are constrained to 

lie within the solid box of Fig. 3.1. Because of the longevity of the MCV, a 36-h data 

assimilation is performed from 1200 UTC 10 June to 0000 UTC 12 June. The 

assimilation follows a 12-h ensemble forecast that starts at 0000 UTC 10 June. 

Employing the same method used for the winter case, synthetic soundings are 

assimilated at 12-h intervals and synthetic surface observations are assimilated every 3 

hours. The ensemble member with the 48-h forecast being closest to the observed MCV 
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is adopted as the truth from which the observations are extracted (Fig. 3.11).  

 
 

FIG. 3.11. The MSLP (every 2 hPa) and simulated reflectivity (shaded) valid at (a) 12 h, (b) 36 h, and 
(c) 48 h and the potential vorticity (every 1 PVU) and wind vectors (full barb 5 m s-1) at 600 hPa valid 
at (d) 12 h, (e) 36 h, and (f) 48 h from the truth simulation for the MCV case. 
 

b. The control EnKF experiment for the MCV event 

The control experiment for this MCV event, which is also conducted under a 

perfect model assumption using the Grell scheme (as in the snowstorm simulation), 

reveals that the largest errors are strongly associated with the MCV dynamics. The 

reference ensemble forecast error in terms of both the MSLP and the surface wind at 

12 and 48 h and the column-averaged RM-DTE are shown in Fig. 3.12. Comparison 

of Fig. 3.12 with Fig. 3.3 reveals that the overall error amplitude in this MCV event at 

36 h (as well as 48 h) is significantly smaller than that in the snowstorm event. 

Spectral analysis of the reference ensemble forecast error shows that the MCV event 

has smaller error at all scales, especially at large scale (dotted line in Fig. 3.5b) 

compared to the snowstorm event (dotted line in Fig. 3.5a). The smaller-scale error in 
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the MCV event initially grows faster and quickly saturates while the larger-scale error 

grows slowly.  

 

 

FIG. 3.12. Forecast errors of surface wind vectors (full bard 5 m s-1) and MSLP (every 0.5 hPa) at 
(a) 12 h and (b) 48 h for the MCV case and (c) analysis error of the same fields at 48 h. (d-f) are as 
(a-c) but for the column-averaged RM-DTE (every 2 m s-1). 

 

Despite the apparent difference in error, spectral composition, and growth rate 

between the MCV event and the snowstorm event, the control EnKF (“CNTL”) performs 

reasonably well for the MCV event. After the 36-h data assimilation in “CNTL”, the 

maximum MSLP error is reduced from 4 to 1 hPa while the area of error larger than 0.5 

hPa also decreases significantly (Fig. 3.12c). Error reduction in the surface wind field is 

also apparent as the maximum error value reduces from approximately 7.5 to 5 m s-1 

(Fig. 3.12c). Significant error reduction is also exhibited in column-averaged RM-DTE 

for the entire assimilation domain, especially where the MCV is located. Furthermore, 

the maximum RM-DTE value decreases from 8 to 2 m s-1 (Fig. 3.12f). At 600 hPa, the 
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maximum PV error reduces from 2.5 to 1 PVU and the maximum velocity error 

decreases from 10 to 2.5 m s-1 in the vicinity of the MCV (not shown).  

Figure 3.13 shows that the evolution of domain-averaged root-mean-square 

analysis and forecast error and the analysis ensemble spread for u, v, T, p’, w, q for the 

“CNTL” of the MCV event are similar to those of the snowstorm case (see Fig. 2.8). As 

with the winter case, the ratio of the analysis error to the ensemble spread is very close 

to 1.0 (except for p’ and w), suggesting no apparent filter divergence for the warm-

season event. After the 36-h data assimilation, the relative error reduction of the 

observed variables u, v, and T is about 40-60%. Pressure perturbation (p’) still has the  

 

 

FIG. 3.13. Time evolution of the domain-averaged root-mean-square errors of (a) u, (b) v, (c) T, (d) 
p’, (e) w, and (f) q for the EnKF analysis (solid black) and the reference ensemble forecast (dotted 
black, computed every 12 h) of “CNTL” in the MCV case. The gray lines are the standard deviation 
of analysis ensemble. 
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largest error reduction of about 60%, but its reduction is still less than that with the  

snowstorm event. Also, about 40% improvement is obtained in the moisture field. Again,

 the least improvement (about 37%) is observed with vertical velocity. In terms of 

column-averaged RM-DTE, the overall error reduction at 48 h is about 51% (Fig. 3.7a 

and thick dark-gray lines in Fig. 3.14a). As with the snowstorm case, most of the error 

reduction comes from larger scales (solid thick dark-gray line in Fig. 3.5b) and is 

maximized at lower levels (thick dark-gray lines in Fig. 3.14d). Both the analysis error  

 

 
 

FIG. 3.14. As in Fig. 3.4 but for the MCV case with (d-f) valid at 48 h. 
 

after the control EnKF assimilation (solid thick dark-gray line in Fig. 3.5b) and the 

reference ensemble forecast error has a flatter spectrum than does the snowstorm event 

error (solid thick dark-gray line in Fig. 3.5a). Since the EnKF is less effective for small, 
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marginally resolvable scales (Chapter II), the overall relative error reduction for the 

MCV event is smaller than that for the snowstorm event. 

 

c. Impact of model error for the MCV event 

The difference between the forecast ensemble mean in the control experiment and 

various sensitivity experiments using different physical parameterization schemes 

(“bias”) in this warm season case evolves differently from that in the winter case (Fig. 

3.15 vs. Fig. 3.6). The multiple-cumulus-scheme ensemble biases are much closer to 

each other than are those in the snowstorm case. The largest bias after 48 hours of 

integration is observed in “KF2ens” (not shown) and the smallest bias is observed with 

“KUOens” (dashed gray in Fig. 3.15). The biases of  “KFens” (dashed black in Fig. 

3.15) and “BMens” (not shown) fall between the two extremes. The ensemble spreads of 

these experiments are also quite close to each other (dashed lines in Fig. 3.15b). The 

vertical profiles of the biases (dashed lines in Fig. 3.15c) and spreads (dashed lines in 

Fig. 3.15d) exhibit a two-peak pattern similar to the winter case. The higher upper peaks 

in the MCV case than that in winter case are due to the higher tropopause and upper-

level fronts in the summer. The 950 hPa bias peaks in the MCV case are at a slightly 

lower altitude and are stronger in magnitude than the ~900 hPa bias peaks of the 

snowstorm case (Fig. 3.15b). However, the lower peaks of the ensemble spread of the 

MCV case are at similar altitudes to those in the snowstorm case (around 900hPa, 

dashed black and gray lines in Fig. 3.15d and Fig. 3.6d).  

When the EnKF is used with the above ensembles, the error reduction is smaller 
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than with the snowstorm case and the filter performance is very similar among the 

experiments “KFens”, “BMens”, “KF2ens” and “KUOens” (Figs. 3.7 and 3.14a, d). 

These similarities are not surprising given the similarity between reference ensembles. 

One possible culprit for the roughly similar results is the observed fast error saturation. 

 
 

 
 

FIG. 3.15. As in Fig. 3.6 but for the MCV case with (c) and (d) valid at 48 h. 
 

As with the snowstorm event, experiments using multi-scheme ensembles for this 

MCV event show improvement over those using single-scheme ensembles. “Multi1” and 

“Multi2”, the perfect PBL and microphysics multi-scheme experiments, have smaller 
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bias and larger spread than “KFens” (Figs. 3.15a, b); this result is similar to that of the 

snowstorm case. A systematically larger bias is observed for all experiments in the MCV 

case than in the winter case, and this suggests a larger impact of physical 

parameterizations for the warm-season event. The covariance between U and T at 600 

hPa after a 36-h integration is larger in “Multi2” than in “KFens”, but it is weaker in 

both experiments when compared to the covariance in the winter case. One possible 

reason for this is the low predictability of smaller-scale convective activity. After 36-h 

data assimilation, the relative error reduction for “KFens”,”Multi2” and “Multi1” is 

33%, 38% and 41%, respectively, and the absolute error is respectively 3.0, 2.3 and 1.9 

m s-1 (Figs. 3.14b and 3.7). There is thus consistent improvement when a multi-scheme 

ensemble is adopted. Power spectrum analysis also shows that the improvement of 

“Multi2” over “KFens” comes mainly from the large scales (Fig. 3.5b). 

Similar improvement in multi-scheme ensembles over single-wrong-scheme 

ensembles is also observed under imperfect PBL and microphysics parameterizations in 

“KF3ens”, “Multi3” and “Multi4”. Vertical distribution of the ensemble spread shows 

that the lower peaks of the spreads of these three experiments are at slightly lower levels 

and are larger than the corresponding peaks in the snowstorm case. This indicates that 

PBL processes may have a larger impact on error growth in the MCV than the 

snowstorm case (Fig. 3.15d vs. Fig. 3.6d). The EnKF result shows significant 

improvement of “Multi3” over “KF3ens” (Fig. 3.14c) at large scales (Fig. 3.5b) and on 

each level (Fig. 3.14f), suggesting the multi-cumulus-ensemble can decrease PBL error 

more than the winter case where very small differences are seen at lower levels between 
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‘KF3ens” and “Multi3”. Similarly, “Multi4” consistently reduces error during the whole 

period at all levels (gray line in Figs. 3.14c and f). 

Experiments in this MCV event further demonstrate that a multi-scheme ensemble is 

capable of providing better estimation of the background error covariance than a single-

wrong-scheme ensemble. The significance of improving error covariance by using a 

multi-scheme ensemble is also demonstrated through static EnKF experiments by 

switching the means of the reference ensemble forecast for “KFens” and “Multi2” and 

for “KF3ens” and “Multi3” (Table 3.3) in a similar way to that discussed in section 4c 

for the snowstorm event.  

 

6. Conclusions and discussions 

Through various observing system simulation experiments, the performance of an 

ensemble Kalman filter is explored in the presence of significant model error caused by 

physical parameterization. The EnKF is implemented in the mesoscale model MM5 to 

assimilate synthetic sounding and surface data derived from the truth simulations at 

typical temporal and spatial resolutions for the cold-season snowstorm event that 

occurred on 24-26 January 2000 and the warm-season MCV event that occurred on 10-

13 June 2003.  

Results show that although the performance of the EnKF is degraded by different 

degrees when a perfect model is not used, the EnKF can work fairly well in different 

kinds of imperfect scenario experiments. A 36-67% overall relative error reduction 

(improvement over the reference ensemble forecast) is found in each imperfect scenario 
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for the snowstorm event. In both the perfect and imperfect scenarios, most of the error 

reduction comes from larger scales and it is maximized in the lower troposphere.  

The performance of the EnKF was tested and found to be very sensitive to model 

error introduced by different cumulus parameterizations. Sensitivity experiments herein 

used ensembles with either single or multiple imperfect cumulus parameterizations with 

and without model error from PBL and microphysics. The results demonstrate that using 

a combination of different cumulus parameterization schemes can significantly improve 

the EnKF performance over experiments using a single inaccurate parameterization 

scheme. Our results suggest that the improvement comes from a smaller bias and from a 

better background error covariance structure developed from the multi-scheme 

ensemble. This is consistent with a recent real-data EnKF study of Fujita et al. (2005). 

Model uncertainties from PBL and microphysics processes also have significant impacts 

on the EnKF performance. 

The EnKF performance depends strongly on the scales and dynamics of the flow of 

interest. Comparison of the EnKF performance in the two events with distinguishably 

different flow regimes exemplifies the impacts of flow-dependent predictability. It is 

found that the EnKF behaves consistently in corresponding experiments examining the 

two events, but the relative error reduction over the reference ensemble forecast is 10-

15% smaller in the warm season event. The growth of reference ensemble forecast error 

is much slower in the MCV event than in the snowstorm case. Slower error growth and 

the relatively smaller scale of the MCV circulation may be responsible for a smaller 

error reduction and also for less bias when using different cumulus parameterization 
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schemes in the ensemble forecast (Fig. 3.7). Impact of PBL and microphysics processes 

seems to be more significant for the warm-season case than for the winter case.  

As a pretest for assimilating real data, this study is aimed at examining the impact of 

model error on an ensemble-based mesoscale data assimilation system. Apart from the 

errors explored here, there are other sources of uncertainty such as those from ensemble 

initialization, truncation error, lateral boundary and surface processes. In real data 

assimilation, model error could potentially be more detrimental than considered in this 

study. We not only need to understand the impact of various model errors on the EnKF, 

but we also need to design effective ways to treat them such as with parameterization of 

model error (e.g., Hamill and Whitaker 2005) and simultaneous estimation of parametric 

model error (e.g., Aksoy et al. 2006a,b).  
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CHAPTER IV 
 

COMPARISON WITH 3DVAR IN A REAL-DATA CASE STUDY  

 

1. Introduction 

Since the first application of an ensemble Kalman filter (EnKF) (Evensen 1994) in 

the atmospheric sciences field (Houtekamer and Mitchell 1998), the EnKF has been 

widely examined with different models at different scales and to different realistic 

extents (Houtekamer and Mitchell 1998; Hamill and Snyder 2000; Anderson 2001; 

Whitaker and Hamill 2002; Mitchell et al. 2002; Snyder and Zhang 2003; Zhang and 

Anderson 2003; Zhang et al. 2004; Aksoy et al. 2005; Houtekamer et al. 2005; Tong and 

Xue 2005; Aksoy et al. 2006 a, b; Zhang et al. 2006a; Dirren et al. 2006; Meng and 

Zhang 2006; Whitaker et al. 2006). See Evensen (2003), Lorenc (2003) and Hamill 

(2006) for recent reviews. Studies with simulated observations demonstrate its success at 

decreasing forecast error and its better performance relative to variational data 

assimilation methods such as 3DVar in a large scale model (Hamill and Whitaker 2005) 

and 4DVar in a convective scale model (Caya et al. 2005).  

One of the difficulties in real-world application of ensemble-based data assimilation 

techniques is the proper representation of model error (Zhang and Snyder 2006). Recent 

progress has been made to account for model error by using additive or multiplicative 

covariance inflation (Hamill and Whitaker 2005; Houtekamer et al. 2005; Barker 2005). 

For example, encouraging results in real-data applications have been obtained in an 

ocean general circulation model (Keppenne and Rienecker 2002), and in global 
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(Whitaker et al. 2004; Houtekamer et al. 2005; Whitaker et al. 2006) and limited-area 

atmospheric models (Dowell et al. 2004; Barker 2005; Fujita et al. 2005). The 

performance of the EnKF implemented in global models with real data has been shown 

to be better than (Whitaker et al. 2004, 2006) or at least comparable to (Houtekamer et 

al. 2005) the 3DVar method. However, direct comparison between an EnKF and 3DVar 

in limited-area models (which will a focus of this chapter) has not been seen in the 

literature. 

In Chapter II, the performance of an EnKF implemented in the NCAR/Penn State 

mesoscale model MM5 was examined with the perfect-model assumption by 

assimilating synthetic sounding and surface observations with typical temporal and 

spatial resolutions (Zhang et al. 2006a; hereafter referred to as Chapter II). It was found 

that the EnKF with 40 members works very effectively in keeping the analysis close to 

the truth simulation. Most error reduction comes from the large scale, which is consistent 

with Daley and Menard (1993) (though different mechanisms are involved in their 

study). Furthermore, the EnKF performs differently for different variables; it is the least 

effective for vertical motion and moisture due to their relatively strong smaller-scale 

components, but it is the most effective in reducing the error in pressure (and also very 

effective, but to a lesser degree, for horizontal winds and temperature) because of its 

relatively strong larger scale error energy (Chapter II).  

Subsequently in Chapter III, the performance of the EnKF was investigated in the 

presence of model error due to imperfect sub-grid physical parameterization schemes 

(Meng and Zhang 2006; hereafter referred to as Chapter III). The result shows that the 
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EnKF still performs reasonably well, though its performance can sometimes be 

significantly degraded by the presence of model error. It was found that using different 

combinations of different physical parameterization schemes in different ensemble 

members can significantly improve filter performance due to the resulting better 

background error covariance and mean estimation. Different performance of this EnKF 

system was also observed for different flow regimes (Chapter III).  

As a natural extension of these two observing system simulation experiment (OSSE) 

studies under both perfect and imperfect model assumptions, the current chapter 

implements the same EnKF in the Weather Research and Forecasting model (WRF) for 

real-world data assimilation. Its performance is directly compared with the WRF-3DVar 

data assimilation system, complementary to similar comparisons performed with global 

models (Houtekamer et al. 2005; Whitaker et al. 2006). In the next section, a brief 

introduction is given on the methodology, including the model, the EnKF and the 3DVar 

method. The synoptic overview of the MCV event and the observations to be assimilated 

are described in section 3. Section 4 compares the performance of the EnKF and the 

3DVar method. Sensitivities of both methods to the background error covariance are 

examined in section 5. A brief summary and discussion are given in section 6.  

 

2. Methodology  

a. The mesoscale model  

The Advanced Research WRF (ARW) (instead of MM5) is used in this chapter 

considering that WRF is the next-generation mesoscale numerical weather prediction 
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system designed to serve both operational forecasting and atmospheric research needs. 

WRF has been used to provide real-time forecasts to aid the planning of the Bow Echo 

and MCV EXperiment (BAMEX) in summer of 2003, during which the MCV case 

examined in this chapter occurred. The ability of WRF to correctly capture the timing, 

location and mode of mesoscale convective systems in the majority of cases suggests its 

potential utility in this study (Done et al. 2003).  

WRF is a fully compressible, nonhydrostatic mesoscale model (Skamarock et al. 

2005). The vertical coordinate follows the terrain using hydrostatic pressure, and the 

model uses an Arakawa-C grid. Prognostic variables are column mass of dry air (µ), 

velocity (u, v, and w), potential temperature (θ ) and geopotential height (ø).  

In this work, two domains with one-way nesting are used. The coarse domain covers 

the contiguous United States with 64x45 grid points and a grid spacing of 90 km, and the 

inner domain covers the central United States with 76x61 grid points and a grid spacing 

of 30 km (Fig. 4.1a). Both model domains have 27 vertical layers, and the model top is 

set at 100 hPa. Unless otherwise specified, the physical parameterization schemes 

include the Grell-Devenyi cumulus scheme, WSM 6-class microphysics with graupel, 

and the YSU scheme for planetary boundary layer (PBL) processes [see Skamarock et al. 

(2005) for references to different schemes]. NCEP global final (FNL) analyses are used 

to create initial and boundary conditions. Data assimilation and verification are only 

performed in inner domain.  
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FIG. 4.1. (a) Map of the model domain and (b) distribution of assimilated 
observations in domain 2. 

 

b. WRF-3DVar  

The WRF-3DVar method used here was developed primarily at NCAR, and it is now 

operational at the Air Force Weather Agency (Barker et al. 2004). Its configuration is 

based on an incremental formulation, producing a multivariate analysis in the model 
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space. Its incremental cost function is minimized in a preconditioned control variable 

space where the errors of different control variables are largely uncorrelated.  

WRF-3DVar has several background error statistic (BES) options for control 

variables (“cv”). The control variables for commonly used “cv3” and “cv5” are       

streamfuntion, unbalanced velocity potential, unbalanced surface pressure, unbalanced 

temperature, and “pseudo” relative humidity. The WRF-3DVar background error 

covariance can be estimated via the so-called “NMC” (an acronym of National 

Meteorological Center) method (Parrish and Derber 1992), which uses the statistics of 

differences between at least one month of 24- and 12-h forecasts valid at the same time. 

The “cv3” option is created with NMC method based on NCEP/GFS (Global Forecast 

System) forecast differences. Its vertical covariance is formulated in grid-space. The 

“cv5” option is created via NMC method based on regional model forecasts and its 

vertical covariance is formulated in eigenvector-space (Skamarock et al. 2005). 

Alternatively deviations of individual members from the mean of a short-term ensemble 

can be used, which may improve the representation of smaller-scale features (Lee and 

Barker 2005). Sensitivity of the performance of 3DVar to different representations of 

background error statistics will be examined in section 5.  

After minimization in control space, the control vector is then transformed back to 

model space via an empirical orthogonal function (EOF) transform and a recursive filter. 

Wind increments are then calculated from the streamfunction and velocity potential. 

Balanced mass increments are obtained through linearized geostrophic and cyclostrophic 

mass-wind balance equations (Barker et al. 2004). 
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c. The EnKF  

The EnKF is the same as that in Chapter II and Chapter III except for being 

implemented in the WRF model. It uses covariance relaxation (Zhang et al. 2004, their 

Eq.5) to inflate the background error covariance. Different from the standard inflation 

method (Anderson 2001) in which all points in the prior field are inflated, this relaxation 

method only inflates the covariance at updated points via a weighted average between 

the prior perturbation (denoted by superscript f) and the posterior perturbation (denoted 

by superscript a) as follows: 

               (xnew
a )' = (1− α)(xa )' + α(x f )'                                                (4.1) 

The weighting coefficient, α, is set to 0.5 in the OSSE studies of Chapter II and Chapter 

III. Considering that prior error in real-data application may be larger due to the 

unavoidable imperfectness of the forecast model, a value of 0.7 is used here unless 

otherwise specified. The Gaspari and Cohn (1999) fifth-order correlation function with a 

radius of influence of 30 (10) grid points [i.e., 900 km (300km)] for soundings and 

profilers (surface observations) in horizontal directions and 15 sigma levels in vertical 

directions is used for covariance localization. Although the optimum ensemble size to 

estimate the forecast uncertainty is still under active research, 40 members are used 

herein. This is both affordable and reasonable based on previous studies (e.g., 

Houtekamer and Mitchell 2001; Anderson 2001; Snyder and Zhang 2003; Zhang 2005; 

Chapters II&III).  
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d. Ensemble initial and boundary perturbations  

The initial ensemble is generated with the WRF-3DVar (Barker et al. 2004) using 

the BES of option cv3. To create a largely balanced perturbation, we first generate a set 

of random control vectors with a normal distribution (zero mean and unit standard 

deviation). Then the control increment vector is transformed back to model space via an 

EOF transform and a recursive filter. The balances, scales and correlations of the 

resulting model-space horizontal wind components, potential temperature, and mixing 

ratio for water vapor are defined via the climatological background error covariance cv3. 

Other prognostic variables such as vertical velocity (w) and mixing ratios for cloud water 

(qc), rain water (qr), snow (qs) and graupel (qg) are not perturbed. The perturbation 

standard deviations thus generated are approximately 2 m s-1 for horizontal wind 

components (u and v), 1 K for potential temperature (T), 1 hPa for pressure perturbation 

( ′ p ), and 0.5 g/kg for water vapor mixing ratio (q). The 3DVar perturbations are added 

to the NCEP reanalysis to form an initial ensemble, which is then integrated for 12 h to 

develop an approximately realistic, flow-dependent background error covariance 

structure before the first observation is assimilated. Similar methods, using 3DVar to 

generate the initial ensemble for the EnKF, are also employed in Houtekamer et al. 

(2005) and Barker (2005).  

The most natural way to perturb lateral boundary conditions for a limited area model 

is to use a global ensemble forecast with a correct size and resolution (which is usually 

unavailable) (Chessa et al. 2004). Torn et al. (2006) examined several alternative 

boundary perturbation methods and concluded that the error originating from using 
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different methods is limited to near the edges of the domain. In this chapter, the 

boundary is perturbed in the same manner as with the initial ensemble. Specifically, 6-

hourly FNL analyses during the entire integration time-window are perturbed by 

randomly sampling the cv3 background error covariance of WRF-3DVar. Then each 

perturbed FNL analysis is used to generate a perturbed boundary condition for individual 

member of the initial ensemble.    

    

3. Overview of the MCV event and observations to be assimilated 

a. The MCV event in BAMEX 

The case of interest is an MCV event that occurred during an intense observation 

period (IOP8) of the Bow Echo and Mesoscale Convective Vortex Experiment 

(BAMEX) conducted from 18 May to 7 July 2003 over the central United States (Davis 

et al. 2004). This event exhibited typical environmental features common to long-lived 

MCVs such as weak shear and moderate environmental instability (Hawblitzel et al. 

2006; Davis and Trier 2006; Trier and Davis 2006; Trier et al. 2006). At 0000 UTC 10 

June 2003, a disturbance embedded in the subtropical jet triggered convection over 

eastern New Mexico and western Texas. An MCV developed from the remnants of this 

convection over central Okalahoma at 0600 UTC 11 June 2003 and matured by 1800 

UTC 11 June (with a bow echo occurring at western Tennessee) as it traveled 

northeastward to Missouri and Arkansas (Fig. 4.2). Its circulation was about 400 km 

wide and possessed a well-defined PV maximum around 600 hPa with a cold anomaly 

below the circulation and a warm anomaly above it. This MCV seemed to help initiate 
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widespread convection on its downshear side at 1600 UTC and on the north side of the 

circulation at 2200 UTC. Most convection died by 0000 UTC 12 June, and the MCV 

then transitioned into an extratropical baroclinic system (Hawbliztel et al. 2006).  

 
 

 
FIG. 4.2. Observed radar echoes of the MCV event at (a) 1200 UTC June 10, 2003, (b) 0000 UTC, 
(c) 0600 UTC, (d) 1200 UTC, (e) 1800 UTC, June 11, 2003, and (f) 0000 UTC June 12, 2003. 
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b. Observations to be assimilated  

The observations to be assimilated in this chapter include sounding, surface, and 

wind profiler observations located in domain 2 (Fig. 4.1b). Wind profilers (denoted by 

filled squares) are distributed mainly in central United States to fill the gap between 

radiosondes. They have previously proven to be effective in improving short-range (3-

12h) forecasts (Benjamin et al. 2004). Data thinning is performed here on the profiler 

observations so that the vertical resolution is similar to that of typical soundings.  

Here we use a quality control method similar to a procedure in Barker (2005) that 

guarantees that 3DVar and the EnKF assimilate exactly the same observations. First, the 

final analyses (“FNL”) of global forecast system of National Centers for Environmental 

Prediction are interpolated to the model grid at 6-h intervals. Then the model is 

integrated for 6 hours starting from the 6-hourly initial condition. The interpolated 6-

hourly FNL analyses together with WRF forecasts in between are used as the first guess 

for a pre-run of WRF-3DVar to assimilate observations generated by the observation 

preprocessor of WRF-3DVar. The data processed at hourly intervals that have been 

ingested by this pre-run will then be assimilated by the following 3DVar and EnKF 

experiments. The output file containing the ingested observations transforms the original 

wind speed, wind direction and relative humidity into horizontal wind components (u 

and v) and mixing ratio of water vapor (q). Consequently, the assimilated variables 

become horizontal wind components (u and v), temperature (T), and mixing ratio of 

water vapor (q) for soundings, surface pressure (ps), u, v, T, and q for surface data, and u 
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and v for wind profiler data. In this way, the observations first go through basic quality 

control such as range, domain, persistency, extreme-value and horizontal consistency 

checks. Then in the 3DVar pre-run, an “errormax” quality control is performed by 

dropping the observations whose absolute difference from the first guess is more than 

five times larger than the corresponding observation error.  

The observation error of sounding and wind profiler is what is defaulted in officially 

issued WRF-3DVar system (Table 4.1). The observation error of surface data is 2 K for 

temperature, 10% for relative humidity, and 100 Pa for surface pressure (default in the 

formally-released WRF-3DVar system version 2.1).  

 
TABLE 4.1. Vertical distribution of observation error for sounding and profiler observations. 

 
Pressure (hPa) 100 150 200 250 300 400 500 700 850 1000 

sounding 2.7 3.0 3.3 3.3 3.3 2.8 2.3 1.4 1.1 1.1 Wind 
(m/s) profiler 2.8 2.8 3.0 3.1 3.2 3.0 2.8 2.2 2.2 2.2 

Temperature (K) 1 1 1 1 1 1 1 1 1 1 

RH (%) 10 10 10 10 10 10 10 10 10 15 
 

All the results in this study including both prior (forecast before data assimilation) 

and posterior (analysis after data assimilation) are verified against soundings that have 

passed our quality control procedure at nine standard pressure levels, i.e., 925, 850, 700, 

500, 400, 300, 250, 200 and 150 hPa. 

 

4. Comparison between the EnKF and 3DVar  

a. The reference forecasts 

With the initial and boundary conditions interpolated from the FNL analysis, a 36-h 



 103

reference deterministic forecast (“DF”) is conducted starting from 1200 UTC 10 June 

2003 without assimilating any observations. As shown in Fig. 4.3a, the simulated MCV 

(denoted by X) moves much faster than the observed one (denoted by L), resulting in a 

position error of about 400 km. The simulated radar reflectivity is more localized and not 

well organized compared to the observed radar echoes (Fig. 4.2f).   

To assess the benefit of the EnKF from both the data assimilation algorithm itself 

and the utilization of the ensemble forecast for state estimate, a 36-h reference ensemble 

forecast is also performed with the same model configuration for all members as that in 

the DF but with the addition of initial and boundary perturbations described in section 2d 

(hereafter also referred to as “EF”). Relative to the DF, the mean of EF shows slightly 

smaller error in the 36-h surface location of the simulated MCV (Fig. 4.3b). The 

magnitude of its simulated reflectivity is lower due to the ensemble averaging. 

The error of the reference EF is smaller than that of DF in terms of column-averaged 

RM-DTE and root-mean square (RMS) error (RMSE) of q verified against sounding 

observations (Figs. 4.4 a-d). The DTE is defined as in Zhang (2005): 

DTE 0.5 k= (u'u' +v'v' + T'T') ,                                       (4.2) 

where the prime denotes the difference between the observations and the verified fields, 

k = Cp/Tr, Cp = 1004.7 J kg-1 K-1 and the reference temperature Tr = 290 K. Fig. 4.4 also 

shows that the largest errors in both reference forecasts occur around the MCV.  
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FIG. 4.3. The MSLP (every 2 hPa), 10-m wind vectors (full barb 5 m/s) and simulated reflectivity 
(shaded) valid at 36 h (0000 UTC 12 June) of the reference forecast (a) DF and (b) EF, and the 
prior forecast of (c) 3DVar_SND, (d) EnKF_SND, (e) EnKF_ALL and (f) EnKF_multi. The big X 
and L respectively denote the simulated and observed MCV centers at surface. 
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FIG. 4.4. Horizontal distributions of column-averaged RM-DTE and RMSE of q valid at 36 h for the 
reference forecast (a-b) DF and (c-d) EF, the prior forecast of (e-f) EnKF_SND, and (g-h) 
3DVar_SND. 

 



 106

b. Experiments with different types of observations 

Three types of observations including sounding, surface and wind profiler data are 

assimilated separately via both the EnKF and 3DVar in this section. The experiments are  

named “EnKF_SND” and “3DVar_SND” for sounding assimilation, “EnKF_SFC” and 

“3DVar_SFC” for surface assimilation, and “EnKF_PFL” and “3DVar_PFL” for profiler 

assimilation.  

 

1) SOUNDING DATA  

The time-evolutions of domain-averaged RMSE of u, v, T, q are shown in Fig. 4.5. The 

red (green) dashed line is the error of reference ensemble (deterministic) forecast; the red 

(green) solid line is the prior error of EnKF_SND (3DVar_SND). The dotted-dashed 

lines are corresponding posterior error. Blue lines denote the result of another 

experiment to be described in section 5, in which model error from physical 

parameterization is accounted for using multiple physical parameterization schemes in 

the ensemble. The results show that the EnKF very efficiently draws the analysis (red 

dotted-dashed line) close to observations for the 30 sounding sites within the inner 

(assimilation and verification) domain where u, v, T, q and ps are assimilated every 12 h. 

At each data assimilation time, the posterior RMSE (red dotted-dashed line) is smaller 

than the prior RMSE (red solid line) by up to 50%. However, since the verification of the 

analysis (posterior) uses the same sounding observations as those assimilated, it is more 

appropriate to judge the performance of the data assimilation via the short-term forecast 

(prior estimate) initialized with the posterior analysis from the previous 



 107

 

FIG. 4.5. Time evolution of domain-averaged RMSE of (a) u, (b) v, (c) T, and (d) q for 
EnKF_SND (red), 3DVar_SND (green), and EnKF_multi (blue). The solid lines denote the 
prior RMSE and the dot-dashed lines the posterior RMSE. Also plotted are the RMSE of the 
reference forecast DF (green dashed), EF (red dashed), and EF_multi (blue dashed). 

 

assimilation cycle. The EnKF prior estimate (red solid line) at 36 h also tracks the 

observations better than both the reference DF (green dashed line) and EF (red dashed 

line). Similar to the result obtained in OSSE studies (Chapters II&III), larger 

improvements are observed in variables with higher power at large scales such as u, v 

and T. After two cycles at 36 h, the prior RMSEs of u, v, and T are respectively 3.3 m/s, 

4.0 m/s, and 1.8 K. The RMSE of q grows faster than other variables during the 

subsequent integrations, likely due to its higher spectral power in smaller scales (Chapter 

II).  

In comparison to EnKF_SND, apparently worse performance is seen in 
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3DVar_SND. Though its prior RMSE at 36 h (green solid line) is smaller than that of the 

reference DF (green dashed line), it is much larger than that of EnKF_SND and even 

slightly larger than the RMSE of the reference EF for all u, v, T, and q. The posterior 

errors (green dot-dashed line) of u and v at 36h are also noticeably larger than those of 

EnKF_SND (The reason for the smaller posterior error of 3DVar_SND in q than that of 

EnKF_SND is under examination). The errors grow much faster in the 3DVar than in the 

EnKF during the 12-h forecasts initiated from the posterior analyses. This result is 

consistent with another work showing a better performance of a global model based 

EnKF relative to 3DVar by assimilating the NCEP operational observation network 

except for satellite data (Whitaker et al. 2006).  

The better performance of the EnKF relative to 3DVar can also be seen in the 

vertical distribution of domain-averaged prior RMSEs of u, v, T and q at 36 h (Fig. 4.6). 

The errors of 3DVar (green solid line) are generally larger than those of the EnKF (red 

solid line) in each layer with local maxima near the tropopause and the surface. Most of 

the error reduction of the EnKF relative to the reference EF (red dashed lines) comes 

from the lower troposphere. Examination of the horizontal distribution of the column-

averaged prior error shows that the EnKF performs significantly better than 3DVar over 

the MCV area although errors in southern portion of domain persist (Figs. 4.4e-h).   

EnKF_SND also draws the simulated MCV closer to the observed location (Fig. 

4.3d) than the reference forecasts and 3DVar (Figs. 4.3a-c). The simulated reflectivity is 

slightly stronger and better organized (especially to the south of the surface center) than 

that in the reference EF. Compared to the reference DF (Fig. 4.3a), 3DVar_SND (Fig. 
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4.3c) also better simulates the position of the MCV and associated reflectivity.  

 

 

FIG. 4.6. Vertical distributions of horizontally-averaged prior RMSE of (a) u, (b) v, (c) T, and 
(d) q for EnKF_SND (red solid), 3DVar_SND (green solid), and EnKF_multi (blue solid). 
Also plotted are the horizontally-averaged prior ensemble spread (STD) of EnKF_SND (red 
dotted) and EnKF_multi (blue dotted) together with the horizontally-averaged RMSE of the 
reference forecast DF (green dashed), EF (red dashed), and EF_multi (blue dashed). 

 

The domain-averaged RM-DTE of forecasts and analyses of all experiments at 36 h 

(Fig. 4.7) clearly shows that EnKF_SND performs better than 3DVar_SND. Also shown 

is that EnKF_SND forecasts perform better than reference EF and DF, while 

3DVar_SND forecasts perform better than reference DF but worse than reference EF. 

The RM-DTE of EnKF_SND is 4.38 m/s while that of 3DVar_SND is 5.19 m/s. Results 

from other experiments also shown in Fig. 4.7 will be discussed in subsequent sections. 
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FIG. 4.7. A summary of domain-averaged RM-DTE prior forecast error valid at 36 h for all 
experiments. 
 
 
 

2) WIND PROFILER  

While the 28 profilers in the inner domain with u and v observations take 

observations as frequent as every six minutes (Fig. 4.1b), profiler data assimilation was 

only performed every 3 h. Testing showed no benefit (in terms of analysis error) in 

assimilating profiler data more often than every three hours. 

Compared to EnKF_SND, EnKF_PFL has a slightly smaller prior RM-DTE at 36 h 

(4.25 m/s vs. 4.38 m/s in Fig. 4.7), likely because the previous assimilation cycle was 

only 3 h prior in EnKF_PFL (whereas it was 12 h prior in EnKF_SND). The posterior 

error is almost the same as the prior error, but it is significantly larger than that of 
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EnKF_SND since the same sounding observations (assimilated in EnKF_SND) are used 

to verify the results in all cases. There is apparently larger improvement in v (Fig. 4.8b). 

It is worth noting that though temperature is not an observed variable, it is also improved 

relative to the reference EF below about 500 hPa through the flow-dependent 

background error covariance of the EnKF (blue solid line in Fig. 4.8c).  

 
 

 
FIG. 4.8. Vertical distributions of horizontally-averaged RMSE of (a) u, (b) v, (c) T, and (d) q at 
36 h for the prior forecast of EnKF_PFL (blue solid), 3DVar_PFL (green solid), EnKF_SND (red 
solid), the RMSE of the reference forecast DF (green dashed ) and EF (red dashed).  

 

Figure 4.8 shows that 3DVar_PFL (green solid line) shows a generally larger prior 

error than EnKF_PFL (blue solid line). It performs worse than EnKF_PFL at every layer 

for u, v and q and lower layers for T. The prior RM-DTE of 3DVar_PFL at 36 h is 1.75 

m/s larger than that of EnKF_PFL (Fig. 4.7).   
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3) SURFACE DATA 

Compared to the sounding and profiler data assimilation results, even though there 

are many more surface stations in the inner domain, much less improvement is seen 

when only surface data is assimilated every 6 h in experiments EnKF_SFC and 

3DVar_SFC (Fig. 4.9). Only a small error reduction is seen in terms of the prior RM-

DTE in EnKF_SFC relative to the reference EF (Fig. 4.7). As expected, error reduction 

in EnKF_SFC (blue solid line in Fig. 4.9) versus EF is mainly in the lower troposphere. 

Though less improvement is obtained in this case, EnKF_SFC still outperforms 

3DVar_SFC (green solid line in Fig. 4.9). The prior RM-DTE of EnKF_SFC at 36 h is 

1.94 m/s less than that of the 3DVar_SFC.  

 

4) SOUNDING, PROFILER AND SURFACE DATA 

The results of experiments “EnKF_ALL” and “3DVar_ALL”, which assimilate all 

three types observations at the aforementioned frequencies, show that utilization of all 

data types results in generally better performance than assimilating any individual source 

of observations (in terms of the prior error at 36 h; see Fig. 4.10 and Fig. 4.7). The RM-

DTE in EnKF-All at 36 h is 4.25 m/s, which is 0.58 m/s less than that of the reference 

EF (Fig. 4.7). The most significant improvement comes from the middle troposphere 

esp. in v (Fig. 4.10). The position of the MCV and its associated reflectivity are also 

noticeably improved (Fig. 4.3e). Again, the EnKF outperforms 3DVar for all u, v, T and 

q (Fig. 4.8). The prior RM-DTE of 3DVar_ALL at 36 h is 4.74 m/s, which is 0.49 m/s 
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larger than that of EnKF_ALL but the difference is smaller than that between 

EnKF_SND and 3DVar_SND when less data are assimilated (Fig. 4.7). 

 

 

FIG. 4.9. As in Fig. 4.7 except for EnKF_SFC (blue solid), 3DVar_SFC (green solid), and 
EnKF_SND (red solid). 
 

5. Sensitivity to background error covariance  

Background error covariance, which determines how and where to spread the 

observed information to other points and other variables, plays a very important role in 

the performance of any data assimilation method. This section investigates the sensitivity 

of both the EnKF and 3DVar to different treatments of background error covariance; for 

simplicity, only soundings are assimilated every 12 h using EnKF_SND and 

3DVar_SND as benchmarks for comparison.    
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FIG. 4.10 As in Fig. 4.7 except for EnKF_ALL (blue solid), 3DVar_ALL (green solid), and 
EnKF_SND (red solid). 
 
 

 

a. Model error treatments in the EnKF 

1) MULTI-SCHEME ENSEMBLE  

 The impact of using a multi-scheme ensemble is investigated here to test the OSSE 

result of Chapter III that the EnKF performance can be improved through the use of 

different physical parameterization schemes in different ensemble members to account 

for model physics uncertainty. Experiment “EnKF_multi” uses a combination of three 

cumulus schemes (Kain-Fritch, Betts-Miller, Grell-Devenyi), three PBL schemes (YSU, 

ETA, and MRF), and three cloud-physics schemes (Lin et al., Thompson et al., and 

WSM 6-class graupel) which are distributed among nearly the same number of ensemble 
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members (Table 4.2). A reference to different parameterization schemes can be found in 

Skamarock et al. (2005). To differentiate the benefit of using the multi-scheme ensemble 

for better background error covariance from better prior estimate (or ensemble mean), 

another reference forecast “EF_multi” is performed with the same multi-scheme 

configuration as that in EnKF_multi but without assimilating any observations.  

 
 

TABLE 4.2.  Model configuration of the experiment with multi-scheme ensemble Mix0.7_multi. 
Number of members 

using cumulus scheme 
Number of members 

using microphysics scheme 
Number of members 

using PBL scheme 

4  Lin et al. 1 YSU 2 ETA 1 MRF 
4  Thompson et al. 1 YSU 2 ETA 1 MRF 

 
    13  Kain-Fritsch 

5  WSM 6-class graupel 2 YSU 2 ETA 1 MRF 

4  Lin et al. 1 YSU 2 ETA 1 MRF 
4  Thompson et al. 1 YSU 2 ETA 1 MRF 

 
    13  Betts-Miller 

5  WSM 6-class graupel 2 YSU 2 ETA 1 MRF 

4  Lin et al. 1 YSU 2 ETA 1 MRF 
5  Thompson et al. 2 YSU 2 ETA 1 MRF 

 
    14  Grell-Devenyi  

5  WSM 6-class graupel 2 YSU 2 ETA 1 MRF 

 
  

The result shows that both the prior and posterior errors at 36 h of v, T and q in 

EnKF_multi are decreased more than those in EnKF_SND (Fig. 4.5). The error 

reduction of 0.16 m/s comes from both the prior estimate using the multi-scheme 

ensemble forecast (blue dashed line in Fig. 4.5) and the EnKF with better background 

error covariance (blue solid in Fig. 4.5). The largest improvement is observed in T, 

which should be more closely related to the uncertainty in the physical parameterization 

schemes. EnKF_multi has apparently larger ensemble spread for all variables shown 

(blue dotted line in Fig. 4.6) compared to that of EnKF_SND (red dotted line in Fig. 



 116

4.6). At the surface (Fig. 4.3f), the simulated position is similar to that of EnKF_SND 

(Fig. 4.3d). The associated simulated reflectivity (Fig. 4.3f) expands farther to the 

southeast and northeast and gets closer to the observed radar echo (Fig. 4.2f) in area but 

weaker in intensity.   

  

2) COVARIANCE INFLATION 

Due to sampling and model error, the EnKF may underestimate the analysis 

uncertainty, which could lead to filter divergence if untreated. Two common ways to 

cope with this problem are the multiplicative covariance inflation method (Anderson 

2001) and the additive covariance inflation method (Hamill and Whitaker 2005; 

Houtekamer et al. 2005). However, both inflation methods may lead to excessive 

ensemble spread in data-sparse regions (Zhang et al. 2004). 

As in Zhang et al. (2004) and described in section 2c, this chapter uses the 

covariance relaxation method (Eq. 4.1) to inflate the background error covariance but 

avoid excessive spread. Three experiments with α of 0., 0.5 and 0.7, referred to as 

EnKF_mix0, EnKF_mix0.5, and EnKF_SND, respectively, are performed to test the 

EnKF sensitivity to the relaxation coefficient. Result shows the relaxation (mixing) 

between the prior and posterior perturbations can draw the subsequent prior estimate 

closer to observations, and a larger relaxation coefficient is necessary for this real-data 

application than the value of 0.5 used in the OSSEs (Chapters II&III). Overall, 

EnKF_SND (red solid line in Fig. 4.11) results in slightly smaller prior RMSE than 

EnKF_mix0.5 (not shown). They both outperform EnKF_mix0 with no relaxation (green 
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solid line in Fig. 4.11).  

Figure 4.11 also shows a consistent improvement from EnKF_mix0 to EnKF_SND 

and then to EnKF_multi (solid lines) possibly due to the correspondingly increasing 

ensemble spread as shown in dotted lines. This result indicates that proper covariance 

inflation or relaxation may improve the performance of the EnKF.  

 

 
 
FIG. 4.11. As in Fig. 4.7 except for EnKF_mix0 (green lines), EnKF_SND (red lines), and 
EnKF_multi (blue lines). 
 

 
 

b. Sensitivity to background error covariance in 3DVar  

As introduced in section 2b, the WRF-3DVar default background error covariance 

(the cv3 option) is calculated using a month-long GFS global model forecast via the 
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“NMC” method. This could potentially be problematic due to error statistics calculated 

from a different model and a different grid size. In this section, sensitivity of the 3DVar 

to different background errors are examined in two ways (Table 4.3): one is the 

standard3DVar system using a newly generated BES but a single forecast for the prior 

estimate; the other is ensemble-based 3DVar, in which a short-term ensemble forecast is 

utilized to derive the prior estimate while the BES is either fixed or estimated with the 

same short-term ensemble (and thus has some flow dependency).   

 
 

TABLE 4.3. Experiment designs on the sensitivity of 3DVar to different BESs. 
Groups Experiment BES employed (the cv5 option) Prior and posterior estimate 

Var_nmcB Fixed BES via the “NMC” method Standard 3DVar 

Var_ensB Fixed BES via the first 12-h ensemble 
forecast (i.e., first 12h of EF) 

Standard 3DVar 

 
 

Standard 
3DVar 

Var_evoB Evolving BES via preceding 12-h 
ensemble forecast 

Standard 3DVar 

EnVar_ensB Fixed BES as in Var_ensB; standard 
3DVar analysis for each member  

Ensemble mean of the forecast 
and analysis ensemble 

 
Ensemble 

-based 
3DVar EnVar_evoB Evolving BES via preceding 12-h 

ensemble forecast; standard 3DVar 
analysis for each member 

Ensemble mean of the forecast 
and analysis ensemble 

 

 

1) STANDARD 3DVAR EXPERIMENTS 

Using the cv5 option in WRF 3DVar and the “NMC” method, experiment 

“Var_nmcB” generates the BES from 60 pairs of month-long (May 2003) 24-h and 12-h 

forecast differences valid at the same time (every 12 h) with the WRF model configured 

in the same manner as with the reference DF. This method is expected to provide more 
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reasonable BES for scale, balance and correlation structures than the one interpolated 

from the defaulted BES that was derived from a coarse-resolution global model (Lee and 

Barker 2005). However, in this case, the results of 3DVar_SND and Var_nmcB are 

nearly indistinguishable in terms of the prior error at 36 h (Figs. 4.7 and 4.12).  

Another way to generate the BES is to use a short-term ensemble forecast (Lorenc 

2003; Lee and Barker 2006). Experiment “Var_ensB” utilizes a 40-member 12-h 

ensemble forecast valid at 0000 UTC June 11 to generate a BES that is fixed for 

subsequent assimilation cycles. In this case, the prior RM-DTE at 36 h is slightly smaller 

than that of 3DVar_SND, which is consistent with other studies (e.g., Lee and Barker 

2006). Vertical distributions of the prior RMSE show the improvement comes mainly 

from u and v (purple solid line in Fig. 4.12). The simulated reflectivity (Fig. 4.13 a) is 

similar to that of 3DVar_SND (Fig. 4.3c).  

Experiment “Var_evoB” utilizes a 40-member 12-h ensemble to generate a different 

BES at every assimilation time (instead of fixed as in Var_ensB). This BES has some 

flow-dependency but is still isotropic and mostly homogeneous. Its difference from the 

fixed BES lies in the time-variant correlation length scale and variance. Relative to 

3DVar_ensB, including some flow-dependency in the BES results in only slight further 

improvement in terms of the prior error at 36 h (Figs. 4.7 and 4.12). Again, the surface 

structure of the MCV is similar to that in the previous standard 3DVar experiments (Fig. 

4.13b). 
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FIG. 4.12. Vertical distribution of horizontally-averaged prior RMSE of (a) u, (b) v, (c) T, and (d) 
q at 36 h in Var_nmcB (brown solid), Var_ensB (purple solid), and Var_evoB (black solid) in 
comparison to EnKF_SND (red solid). Also plotted are the RMSE of the reference forecast DF 
(green dashed) and the prior RMSE of 3DVar_SND (green solid). 
 

 
2) ENSEMBLE-BASED 3DVAR EXPERIMENTS 

Two ensemble-based 3DVar experiments, namely “EnVar_ensB” and “EnVar_evoB” 

(Table 4.3), are performed in this section to further examine the impacts of flow-

dependent BES and using an ensemble forecast mean to perform prior estimate. 

EnVar_ensB uses the mean of an ensemble initiated by 3DVar with the cv3 BES option 

to perform the state estimation. Each member goes through the forecast and analysis 

cycling independently with the same fixed BES as that in Var_ensB. The prior and 

posterior estimate at each assimilation time are just the ensemble mean of the forecast 

and analysis ensembles. In EnVar_evoB, BES is generated from the forecast ensemble at 
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each assimilation time and it is thus time-variant with some flow dependency involved. 

 

 
FIG. 4.13. As in Fig. 4.2 except for (a) Var_ensB, (b) Var_evoB, (c) EnVar_ensB, and (d) EnVar_evoB. 

 

The result shows that the prior error of EnVar_ensB at 36 h (Figs. 4.7 and 4.14) is 

comparable to that of EnKF_SND, and it is significantly smaller than that of the standard 

3DVar experiments. The surface location of the MCV and associated reflectivity pattern 

also apparently improve (Fig. 4.13c), becoming similar to that in EnKF_SND (Fig. 

4.3d). This result suggests that the use of an ensemble mean can significantly improve 

the prior estimate and thus subsequent analyses. The improvement of EnVar_ensB over 

Var_ensB (0.5 m/s) is apparently larger than that of Var_evoB over Var_ensB (0.08 m/s), 
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which indicates that using an ensemble mean to estimate the prior estimate and/or the 

posterior analysis is an important benefit of the EnKF. 

 
 

 
FIG. 4.14. Vertical distribution of horizontally-averaged prior RMSE of (a) u, (b) v, (c) T, and (d) 
q at 36 h in Var_evoB (black solid), EnVar_ensB (green solid), and EnVar_evoB (blue solid) in 
comparison to EnKF_SND (red solid). Also plotted are the RMSE of the reference forecast DF 
(green dashed) and EF (red dashed). 
 

In EnVar_evoB there is only slight further improvement in v (blue solid in Fig. 4.14) 

relative to EnVar_ensB. The overall prior RM-DTE at 36 h in these two ensemble-based 

3DVar experiments is very similar. The intensity of simulated reflectivity associated with 

the MCV is slightly improved (Fig. 4.13d). Similar to the comparison of Var_ensB and 

Var_evoB, the utilization of a time-variant BES in EnVar_evoB does not result in 

significant improvement over EnVar_ensB. Finally, the prior RM-DTE at 36 h of 

EnVar_evoB (4.47 m/s) is smaller than that of Var_evoB (4.9 m/s) (Fig. 4.7). This 
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further confirms the benefit of using an ensemble to perform state estimation in 

ensemble-based data assimilation methods.  

 
 
6. Summary and discussions  

Through assimilating conventional observations including sounding, wind profiler 

and surface data, the performance of a WRF-based EnKF is examined in comparison to 

WRF-3DVar for the MCV event of 10-12 June 2003. Results show that the EnKF 

generally outperforms 3DVar for this particular MCV case (in terms of the forecast 

RMSE initialized with the posterior analysis from the previous assimilation cycle).   

The impact of different data types on the performance of both data assimilation 

methods varies. The prior RM-DTE is respectively 4.38, 4.25, and 4.71 m/s for 

sounding, profiler, and surface data assimilation experiments. This is smaller than the 

RM-DTE of the reference forecasts (which is 5.96 m/s for the reference deterministic 

forecast and 4.83 m/s for the reference ensemble forecast). Similar to the OSSEs 

(Chapters II&III), larger improvements are seen in u, v and T than in q. In each 

experiment with a single observation source, the EnKF shows consistently better results 

than 3DVar. The prior RM-DTE at 36 h of the EnKF is about 0.5-1.5 m/s smaller than 

that of 3DVar. The error growth rate of the forecast initiated from the 3DVar analysis 

appears to be significantly larger than that from the EnKF analysis, possibly because of 

inappropriate error correction by the 3DVar at smaller scales where error usually grows 

faster. Both the EnKF and 3DVar perform generally better when sounding, profiler and 

surface observations are assimilated together than separately. The EnKF again performs 
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better than 3DVar though the difference becomes smaller than assimilating only 

sounding observations, suggesting that further reduction of the difference between the 

two methods may be expected when more observations, such as those from satellite 

remote sensing, are assimilated.  

A series of experiments are implemented to examine the sensitivity of both the 

EnKF and 3DVar to different background error covariance via sounding data 

assimilation. Examination of the impact of weighting coefficients in the covariance 

relaxation procedure of the EnKF shows that a value between 0.5 and 0.7 gives 

apparently better results than without relaxation. Similar to the OSSE experiments 

(Chapter III), using different combinations of physical parameterization schemes in 

different ensemble members can significantly improve the EnKF performance, 

especially for the thermodynamic variables.  

The sensitivity of 3DVar to various background error covariance methods is 

examined. Methods examined include the default cv3 BES option, option cv5 generated 

with a month-long 24- and 12-h WRF forecast differences of May 2003, and option cv5 

generated with a 40-member 12-h forecast ensemble. Result shows that there are no 

significant performance differences among the different standard 3DVar experiments. 

Slight improvement is observed when the background error statistics are generated at 

each data assimilation time with a 12-h forecast ensemble relative to the experiments 

with fixed background error statistics.  

To examine the role of state estimation with an ensemble mean, two ensemble-based 

3DVar experiments with fixed and time-variant background error statistics are 
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conducted. The two experiments perform similarly to each other but apparently better 

than the standard 3DVar experiments. Their performance is comparable to that of the 

EnKF, likely due to a better prior estimate via the use of an ensemble mean. Results also 

demonstrate that the utilization of an ensemble rather than a deterministic forecast 

results in larger improvement than that obtained when one chooses a time-variant 

background error covariance over a fixed one. This suggests that the EnKF outperforms 

3DVar through not only its flow-dependent background error covariance but also its 

ensemble-based state estimation.   

    To make a more general comparison between the EnKF and 3DVar, month-long 

experiments are performed in June 2003 and will be presented in Chapter V.  
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CHAPTER V 
 

COMPARISON WITH 3DVAR IN A MONTH-LONG EXPERIMENT 

 

1. Introduction 

The Ensemble Kalman filter (EnKF) (Evensen 1994), which estimates the 

background error covariance with a short-term ensemble forecast, is drawing increasing 

attention in data assimilation community (Evensen 2003; Lorenc 2003; and Hamill 

2006). Progress is being made lately toward implementing the ensemble-based data 

assimilation into weather prediction models with real observations (Dowell et al. 2004, 

Fujita et al. 2005; Hacker and Snyder 2005; Hakim and Torn 2006; Houtekamer et al. 

2005; Whitaker et al. 2004, 2006).  

Application of the EnKF in real-world data assimilation with large-scale models has 

made large progresses. Houtekamer et al. (2005) implemented the EnKF into a large-

scale model that includes a standard operational set of physical parameterization by 

assimilating real observations from a fairly complete observational network. The 6-

hourly data assimilation cycles were conducted for about half month with the model 

error treated by additive random perturbations sampled from the background error 

statistics of the three dimensional variational data assimilation method (3DVar). The 

performance of the EnKF is shown comparable to that of the 3DVar system. Whitaker et 

al. (2004) and Compo et al. (2006) demonstrated that the EnKF is well suited to 

historical reanalysis problems and outperforms 3DVar. Whitaker et al. (2006) 

implemented the EnKF in a reduced-resolution version of the Global Forecast System 
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(GFS) at the National Centers for Environmental Prediction (NCEP) with all of the real-

time observations used by the operational data assimilation system of NCEP except 

satellite radiance. Their 40-day 6-hourly data assimilation experiments show that the 

EnKF works better than the operational 3DVar system configured in the same way. The 

48-h forecast from the ensemble data assimilation system was as accurate as the 24-h 

forecast from the 3DVar system. They also compared three different model error 

treatment methods of covariance inflation via additive (Hamill and Whitaker 2005; 

Houtekamer et al. 2006), multiplicative (Anderson 2001) and relaxation to the prior 

covariance (Zhang et al. 2004) techniques. Their result demonstrated that the additive 

covariance inflation method works the best for the GFS model during the time period 

chosen.  

Real-data application of the EnKF has also been performed recently with mesoscale 

models. Barker (2005) implemented the EnKF in a polar numerical weather prediction 

model: the Antarctic Mesoscale Prediction System (AMPS, which is based on the fifth-

generation Pennsylvania State University-National Center for Atmospheric Research 

(PSU-NCAR) Mesoscale Model (MM5)). Model error was accounted for with a 

multiplicative covariance inflation method. A two-week long 12-hourly cycling 

EnKF/AMPS assimilation/forecast system was carried out using real conventional 

observations from the surface, rawinsondes and satellite retrievals. The system worked 

reasonably well; however, the performance of the EnKF was not compared to other data 

assimilation methods.   

In previous chapters, a mesoscale ensemble-based data assimilation system has been 
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shown promising in increasingly realistic environments from using simulated 

observations under a perfect model assumption (Zhang et al. 2006a, hereafter referred to 

as Chapter II) and in the presence of significant model error (Meng and Zhang 2006a, 

hereafter referred to as Chapter III) to a mesoscale convective vortex (MCV) case study 

of real-world data assimilation in Chapter IV. As a natural extension of the case study of 

real-world data assimilation with the EnKF implemented in WRF (Weather Research 

and Forecasting model), a month-long sounding data assimilation experiment is 

performed in this chapter to examine the behavior of the EnKF in more general manner 

in comparison to the WRF-3DVar. Model error is treated using the “multi-scheme” 

ensemble and relaxation method for covariance inflation (Zhang et al. 2004).  

The rest of this chapter is presented as follows. The methodology is briefly 

introduced in section 2. Section 3 shows the result of reference forecasts without doing 

data assimilation. The consistency of the EnKF is examined in section 4. Section 5 

compares the performance of the EnKF with 3DVar. Then the benefit of using the multi-

scheme ensemble is demonstrated in section 6 via comparing the result of the multi-

scheme to a single-scheme experiment. The impact of using different background error 

statistics in the 3DVar is also examined in the same section. Finally, the conclusion and 

discussion is given in section 7. 

 

2. Methodology  

a. The model  

The same version of the Advanced Research WRF (ARW) (Skamarock et al. 2005) 
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with two domains and one-way nesting is used in this study as in Chapter IV. The coarse 

domain covers the contiguous United States with 45 × 64 grid points and a grid spacing 

of 90 km (Fig. 5.1), which is the same as that in Chapter IV. The inner domain is 

extended from covering only the central United States in Chapter IV (the dashed box in 

Fig.5.1) to encompassing most of the mainland U.S. with 115 × 82 grid points and a grid 

spacing of 30 km (solid box in Fig. 5.1). Both model domains have 27 vertical layers, and 

the model top is set at 100 hPa. The physical parameterization schemes include Grell-

Devenyi cumulus scheme, WSM 6-class microphysics with graupel, and YSU scheme for 

planetary boundary layer process [see Skamarock et al. (2005) for references to different 

schemes]. NCEP FNL analysis data are used to create the initial and boundary conditions.  

 

 

FIG. 5.1. Map of model domain. The solid circles denote the sounding 
observations to be assimilated. The dashed box is where the verification is done 
(the same as the inner domain used in the MCV case in Chapter IV). 
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b. The EnKF and 3DVar 

The EnKF and the 3DVar method used in this study are the same as that in Chapter 

IV (Whitaker and Hamill 2002; Snyder and Zhang 2003; Chapter II; Chapter III; Barker 

et al. 2004). A detailed description can be found in sections 2b and 2c of Chapter IV. The 

EnKF uses an ensemble size of 40 and the covariance relaxation method (Zhang et al. 

2004, their Eq.5) to inflate the background error covariance with a relaxation coefficient 

of 0.7. The standard 3DVar method with the background error statistics (BES) of option 

cv3 is compared to the EnKF in this chapter. Data assimilation is performed only in 

domain 2. 

 

1) DATA TO BE ASSIMILATED 

For this month-long application, only sounding observations are assimilated at a 12-

h cycling because soundings work generally best compared to assimilating other data 

sources based on results of Chapter IV. The Gaspari and Cohn (1999) fifth-order 

correlation function with a radius of influence of 30 grid points (i.e., 900 km) in the 

horizontal direction and 15 sigma levels in the vertical direction are used for covariance 

localization.  

The sounding observations of June 2003 go through similar quality control 

procedure as described in Chapter IV. The quality control contains two steps including 

basic quality control through the 3DVar preprocessor and so-called “errormax” checking 

through the prerun of 3DVar to guarantee 3DVar and the EnKF use exactly the same 

observations. First, 12-hourly sounding observations are processed by the observation 
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preprocessor of the WRF-3DVar for basic quality control such as range, domain, 

persistency, extreme-value, and buddy (horizontal consistency) checks. Then the FNL 

analysis fields at 12-h intervals are interpolated to the WRF model grid and used as the 

first guess in a pre-run of the WRF-3DVar to assimilate the observations that has gone 

through the basic quality control procedure. In the prerun, an “errormax” quality control 

is performed by dropping the observations whose absolute differences from the first 

guess are more than 5 times larger than the corresponding observation errors. The 

observations that pass the second quality control procedure will then be assimilated in 

the following 3DVar and EnKF experiments. In the output file containing the ingested 

observations, the original wind speed, wind direction and relative humidity are 

transformed into wind components u, v and mixing ratio of water vapor q. Consequently, 

the assimilated variables become wind components u, v, temperature T, and mixing ratio 

of water vapor q from soundings. The assumed observation error of soundings is given 

in Table 4.1. There are 53 soundings being assimilated within the inner domain; they are 

shown as solid circles in Fig. 5.1. 

  

2) ENSEMBLE INITIAL AND BOUNDARY CONDITIONS  

The initial ensemble is generated with the WRF-3DVar as described in section 2b of 

Chapter IV (Barker et al. 2004; Barker 2005) at 0000 UTC, 01 June 2003. The initial 

ensemble is integrated for 12 h to develop an approximately realistic, flow-dependent 

error covariance structure before the first data is assimilated. The boundary condition for 

each member is created with the perturbed initial condition and a perturbed FNL analysis 
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12 h after the initial time.  

To provide a reasonably perturbed boundary condition for the inner domain in this 

month-long data assimilation and forecast cycling, the model is run in the following way. 

At the initial time, both the coarse and inner domains are interpolated from FNL 

analysis. After 12-h of the integration, sounding observations are assimilated to update 

the prior ensemble of inner domain. For the subsequent 12-h forecast, the initial and 

boundary conditions of coarse domain are regenerated via the 3DVar method based on 

the FNL reanalysis data at that time, while the initial condition of inner domain are just 

the analysis created by data assimilation. This procedure is cycled untill the end of the 

month. This method approximately provides a global ensemble forecast in a model 

configuration consistent with the inner domain. It can also prevent the model from 

drifting from the real atmosphere.   

    

c. Verification metrics  

Verification metrics used in this study are similar to that in Houtekamer et al. (2005) 

and Whitaker et al. (2006). All experiments are verified against soundings that have 

passed the quality control procedure, at nine standard pressure levels: 925, 850, 700, 

500, 400, 300, 250, 200 and 150 hPa. To simplify the description, the root-mean-squared 

(RMS) fit of the verified field to sounding observations is referred to as RMSE, and the 

root-mean-squared ensemble standard deviation as RMS ensemble spread. The “mean” 

denotes an average over all verifying observations. In addition to RMSE of individual 

variables, RM-DTE, which combines errors of u, v and T, is also used for verification. 
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The DTE is defined as: 

DTE 0.5 k= (u'u' +v'v' + T'T') ,                                     (5.1) 

where the prime denotes the difference between the observations and the verified fields, 

k = Cp/Tr, Cp = 1004.7 J kg-1 K-1 and the reference temperature Tr = 290 K.   

Another metric is bias, which is defined here as the mean of the innovation over all 

observations. Innovation at an observation location is the difference between the 

observation and the prior forecast interpolated to the observation location. To be 

consistent with Chapter IV, all the experiments are verified in the BAMEX field 

experiment domain (dashed box in Fig. 5.1, same as the inner domain in Chapter IV). 

Beside the absolute RMSE and RM-DTE, we also use relative error reduction to 

describe the relative performance of data assimilation for different variables and 

different experiments. The relative improvement of A over B is defined as:   

( RMSEB - RMSEA ) / RMSEB  × 100% .                                (5.2) 

 

3. The reference forecast 

Reference forecasts are performed in both ensemble and deterministic modes, which 

are referred to as “EF” and “DF” respectively. The Grell-Devenyi cumulus scheme, 

WSM 6-class microphysics with graupel, and YSU scheme for planetary boundary layer 

process are used in the EF and DF runs. The time window is from 0000 UTC 01 June 

2003 to 1200 UTC 30 June 2003. 

The time evolution of 12-hourly forecast RMSE of EF and DF (Fig. 5.2) 

demonstrates that the model remains stable, showing no continuous error growth 
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throughout the month, likely due to the way we provide the boundary conditions for 

inner domain through updating the coarse domain with FNL analysis field every 12 

hours. During the whole month, there are four apparent error peaks around 3, 12, 23, and 

29 June. The horizontal distribution of RMSE of DF shows that these error peaks are in 

part associated with outbreaks of major convections (Davis et al. 2004, their Table 2). 

 

 
FIG. 5.2. Time evolution of domain-averaged RMSE of (a) u, (b) v, (c) T, and (d) q for the 
reference forecasts EF (red) and DF (blue). 

 
 
 
 

It is surprising that the EF does not show consistently better forecast than DF during 

the month (Fig. 5.2). The EF only apparently outperforms DF during 11-16 June. 

However, the month-averaged error (Fig. 5.3 and Fig. 5.4) of EF is slightly smaller than 
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that of DF. As expected, the bias of DF is somewhat smaller than that of EF (dashed 

lines in Fig. 5.3).  

 

4. Ensemble consistency of the EnKF 

Due to the better performance of utilizing a multi-scheme ensemble relative to a 

single-scheme one as shown in Chapter IV, the control EnKF experiment for this month-

long test is performed with a multi-scheme ensemble (hereafter also referred to as 

“EnKF_multi”). The configuration of the multi-scheme ensemble is the same as that 

described in Table 4.3. 

 

 
FIG. 5.3. Vertical distribution of month-averaged RMSE (solid) and bias (dashed) of (a) u, (b) 
v, (c) T, and (d) q for reference forecasts EF(red) and DF (blue). Zero line is also plotted in 
gray solid for reference. 
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FIG. 5.4. (a) Absolute and (b) relative error reduction with respect to DF of different 
experiments in terms of RM-DTE. 
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The time window of EnKF_multi is the same as EF, from 0000 UTC 01 June 2003 

untill 1200 UTC 30 June 2003. The first observation is assimilated 12 h into the 

integration at 1200 UTC 01 June 2003. The 12-hourly data assimilation and forecast 

cycle is conducted untill 1200 UTC 30 June 2003.  

A common criterion to assess the optimality of an ensemble is a reasonable 

agreement between the innovation covariance and the sum of the background error 

covariance and observation error covariance assuming the observation error is 

independent of forecast error (Dee 1995; Houtekamer et al. 2005; Whitaker et al. 2006):  

   (y0 − Hx b )(y0 − Hx b )T = HPbHT + R                                   (5.3) 

Similar to Houtekamer et al. (2005) and Whitaker et al. (2006), here only the diagonals 

of both sides of equation (5.3) are considered. In this case, if the innovation variance, 

which is actually the prior RMSE, is similar to the sum of background and observation 

error variance, which is named the “predicted RMSE” (Houtekamer et al. 2005), the 

prior ensemble can be regarded as consistent with the verifying observation. The 

discrepancy between the left and right hand sides are usually attributed to deficiency in 

model error parameterization (Whitaker et al. 2006).   

In this experiment, the month-averaged predicted RMSE (red dot-dashed lines in 

Fig. 5.5) is generally larger than the observed RMSE (red solid lines in Fig. 5.5), 

especially below 300 hPa. The maximum difference between the observed and predicted 

RMSE is 1 m/s for u and v and 0.4 K for T. Smaller predicted RMSE is observed above 

300hPa in T with a maximum magnitude of about 0.8 K. 
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FIG. 5.5. Vertical distribution of the month-averaged prior RMSE (red solid), predicted prior 
RMSE (red dot-dashed), RMS observation error (blue solid), and RMS prior ensemble spread 
(red dotted) of (a) u, (b) v, (c) T and (d) q for EnKF_multi. 

 

This result is comparable to other large-scale studies (Houtekamer et al. 2005; 

Whitaker et al. 2006). Houtekamer et al. (2005) demonstrates a closer match between 

both sides of Eq. 5.2 especially in the lower troposphere probably because they used the 

tuned 3DVar covariance to represent the model error. In Whitaker et al. (2006), larger 

deficiencies in the ensemble spread are observed at upper and lower levels. The 

deficiency at upper levels in our study is similar in magnitude to that observed in 

Whitaker et al. (2006). The relatively larger predicted RMSE in this study could be 

caused by slight overestimation of both the prior ensemble spread and the observation 

error, the latter being what is default in the formally released WRF-3DVar system. 

Another way to assess the realism of an ensemble is by rank histograms (Hamill 
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2001; Hou et al. 2001). A rank histogram describes the extent to which an ensemble 

encompasses the verifying data by ranking the verifying data in the sorted ensemble. It 

describes the relative frequency of verifying observation falling into categories formed 

by a sorted ensemble. Suppose we have a forecast ensemble with the ensemble size of N 

for an observation, we first need to sort the N members by their values from the smallest 

to the largest. If the verifying data is smaller than the smallest value, it falls in category 

1. If the observation is larger than the largest value, it falls in category N+1. If the 

observation is equal to or larger than the nth value and smaller than the (n+1)th value, it 

falls in category n+1. The Nth category includes the situation when the observation is 

equal to the Nth value. The times that an observation falls in each category is then 

accumulated for all observations. Dividing the accumulated times of each category by 

the total number of the observations gives the relative frequency distribution, which is 

the so-called rank histogram.  

The reliability of an ensemble can be diagnosed by the shape of its rank histogram. 

A flat shape implies that the observation could be just like a random member of the 

ensemble, and consequently the ensemble is reliable. A U shape suggests the ensemble 

spread is insufficient while a reversed U shape indicates an overestimated ensemble 

spread. According to Hou et al. (2001), a histogram can be regarded as fairly flat if the 

adjusted missing-rate is lower than 10%. The missing-rate is the sum of the relative 

frequencies of the two extreme (the first and last) categories. The adjusted missing-rate 

is defined by Zhu et al. (1996) by subtracting the expected missing-rate [2/(N+1), N is 

the ensemble size] from the missing-rate to give a generalized metric for the realism of 
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an ensemble with different sizes. The histogram can also be used to examine the bias of 

an ensemble. If an ensemble has a positive (negative) bias, the relative frequency of the 

verifying observation will be shifted toward higher (lower) categories.  

The histogram created with all of the observations within the verifying domain 

during the month (Fig. 5.6) shows the prior ensemble of EnKF_multi is generally 

reliable. The rank histogram of q is based on the observations lower than 300 hPa 

because the mixing ratio of water vapor beyond 300 hPa is very small and the ensemble 

spread is so small that the rank histogram there could be meaningless. It is clear that u 

and v have reasonable ensemble spread, while T and q are slightly insufficient in their 

ensemble spread (Fig. 5.6), which is consistent with the smaller ensemble spread (red 

dotted lines in Fig. 5.5) relative to the corresponding RMSE. The expected missing-rate 

is 5% for an ensemble size of 40. The adjusted missing-rates are thus less than 10% for  

all u, v, T and q. Consequently, it is safe to say that the forecast ensemble in our study is 

generally reasonable. Note that even though the predicated RMSE is larger than the 

observed RMSE, there is still ensemble-spread deficiency in T and q. This result 

suggests that a matching between predicted and observed RMSE does not necessarily 

imply the optimality of the forecast ensemble in real-world data assimilation. This 

hypothesis will be further confirmed by the comparison between EnKF_multi and an 

EnKF experiment with single-scheme ensemble (same as that with reference EF) in 

section 6a. 
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5. Comparison between the EnKF and 3DVar 

In comparison to EnKF_multi, one standard 3DVar (using one model instead of an 

ensemble) is performed using newly generated background error statistics of cv5 

(hereafter also referred to as “3DVar_cv5”) via the “NMC” method (Parrish and Derber 

1992) which estimates the background error covariance using the statistics of differences 

between at least one month-long 24- and 12-h WRF-based forecast valid at the same 

time. 3DVar_cv5 is started from the same time as EnKF_multi. The first data are also 

assimilated after 12 h of integration.  

 
 

 
FIG. 5.6. Rank histogram for (a) u, (b) v, (c) T, and (d) q of the prior ensemble in EnKF_multi. 
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Time evolution of prior (solid lines in Fig. 5.7) and posterior (dot-dashed lines in 

Fig. 5.7) RMSE for EnKF_multi (red lines in Fig. 5.7) and 3DVar_cv5 (blue lines in Fig. 

5.7) shows that both methods can decrease the prior error significantly. A striking feature 

is EnKF_multi performs generally better than 3DVar_cv5 in terms of the RMSE of both 

prior forecast and posterior analysis except for the comparable posterior RMSE in q. 

Similar to what was observed in previous chapters, the improvement in analysis is larger 

in u, v, and T than that in q.  

 

 
FIG. 5.7. Time evolution of domain-averaged RMSE of the 12 hourly prior forecast (solid) and 
posterior analysis (dot-dashed) of (a) u, (b) v, (c) T, and (d) q for EnKF_multi (red) and 
3DVar_cv5 (blue). 

 

The better performance of EnKF_multi over 3DVar_cv5 can be clearly seen on the 

month-averaged prior RMSE (solid lines in Fig. 5.8). EnKF_multi (red solid lines in Fig. 
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5.8) consistently outperforms 3DVar_cv5 (blue solid lines in Fig. 5.8) for all variables in 

each layer. The prior RM-DTE of EnKF_multi and 3DVar_cv5 are 4.29 m/s and 4.72 

m/s respectively, which are both significantly smaller than the 5.7 m/s of EF and 5.77 

m/s of DF (Fig. 5.4a). The improvement of EnKF_multi (3DVar_cv5) over DF is 25.7% 

(18.3%) (Fig. 5.4b). EnKF_multi outperforms 3DVar_cv5 by 9% in terms of prior RM-

DTE. The improvements are different in different variables. The domain-averaged prior 

RMSE of EnKF_multi for u, v, T and q are 8%, 10%, 8% and 16% smaller than that of 

3DVar_cv5 (Fig. 5.8). Larger improvements in q than u, v and T are likely due to 

reasonable correction in previous posterior estimates of q by the flow-dependent 

background covariance of the EnKF.  

To differentiate the benefit of the EnKF from prior estimates with an ensemble mean 

and the flow-dependent background error covariance, “EnKF_multiM” is performed by 

running a one-model 12-h forecast (instead of a 12-h ensemble forecast) initiated from 

the mean of each posterior analysis ensemble of EnKF_multi. It is found that its forecast 

RMSE is between that of EnKF_multi and 3DVar_cv5 but noticeably closer to the latter 

(Fig. 5.4, red dashed line in Fig. 5.8, and Fig. 5.9). This result further confirms that 

improvement of the EnKF over 3DVar comes from both the prior estimate with an 

ensemble mean and the flow-dependent background error covariance but largely from 

the former.  

The performance of EnKF_multiM and 3DVar_cv5 are also compared to that of 

NCEP/GFS data assimilation system (which is actually a 3DVar method) in 

“NCEP_3DVar”. 12 hourly FNL analysis data are used as the initial field to perform 12-
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h one-model forecast with the same configuration as that in EnKF_MultiM. Result 

shows NCEP_3DVar and EnKF_multiM have similar performance and both outperform 

3DVar_cv5 (Fig. 5.9). As shown in month-averaged forecast RMSE (Fig. 5.4 and green 

solid in Fig. 5.8), NCEP_3DVar has generally larger error than EnKF_multi, slightly 

larger than EnKF_multiM and generally smaller than 3DVar_cv5.  

 
 

 
FIG. 5.8. Vertical distribution of the month-averaged prior RMSE (solid) and bias (dot-
dashed) of (a) u,(b) v, (c) T, and (d) q for EnKF_multi (red), 3DVar_cv5 (blue), and 
NCEP_3DVar (green). The RMSE and bias for EnKF_multiM are respectively plotted in 
red dashed and red dotted lines. The reference forecast RMSE (blue dashed) and bias (blue 
dotted) for DF are also plotted for comparison. Zero line is plotted in gray solid for 
reference. 

 

The bias of prior forecast (dot-dashed lines in Fig. 5.8) is significantly smaller than 

corresponding RMSE for both EnKF_multi and 3DVar_cv5. U has consistently positive 
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bias, which is also inferred by the slight shifting of the verifying observation toward 

higher categories (Fig. 5.6a). V has negative bias (Fig. 5.8b), which is consistent with the 

slight shift of the verifying observation toward lower categories (Fig. 5.6b). T has 

negative (positive) bias above (below) 800 hPa with the maximum bias around 200 hPa. 

The negative bias of T in most part of the troposphere is also reflected in the slight shift 

of verifying observation toward lower categories in Fig. 5.6c. For q, 3DVar_cv5 shows 

mixing results while EnKF_multi shows positive bias below 300 hPa which is also 

reflected from the rank histogram (Fig. 5.6d) from the slight shift of the verifying 

observation towards higher categories. 

 

 
 
FIG. 5.9. Time evolution of domain-averaged RMSE of (a) u, (b) v, (c) T, and (d) q for the prior 
forecast of 3DVar_cv5 (blue), the forecast of EnKF_multiM (red) and NCEP_3DVar (green 
solid). 
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The existence of bias could affect the performance of the EnKF. Bias is usually 

caused by the deficiency in model error parameterization (Whitaker et al. 2006). 

Consequently, underestimation of the ensemble spread can be partially explained by its 

bias. For example, large bias in T (red dot-dashed in Fig. 5.8c) around the tropopause is 

likely associated with its smaller predicted RMSE (red dot-dashed in Fig. 5.5c) relative 

to the observed one. The existence of bias could partially interpret the reasonable 

behavior of an ensemble with an overestimated predicted RMSE.   

The posterior RM-DTE of EnKF_multi is apparently smaller than that of 3DVar_cv5 

and NCEP_3DVar (Fig. 5.4a), the latter two are similar to each other. EnKF_multi 

outperforms 3DVar_cv5 in u (Fig. 5.10a) and v (Fig. 5.10b) by about 25%. This might be 

caused by the larger ensemble spread relative to the observation error shown in Figs. 

5.5a and 5.5b. The improvement in T is about 9%. The two methods perform similarly in 

q probably due to the insufficient ensemble spread of EnKF_multi (Figs. 5.5d, and 5.6d). 

The posterior bias (dot-dashed in Fig. 5.10) is apparently smaller than that of the prior 

(dotted in Fig. 5.10) for both methods. The posterior bias of EnKF_multi is consistently 

smaller than that of 3DVar_cv5. 

 
6. Sensitivity to background error covariance  

a. Comparison between multi- and single-scheme ensembles in the EnKF 

“EnKF_single” is performed in this section with the same physical schemes as that 

in the EF to compare with EnKF_multi. EnKF_single shows a larger RMSE (blue vs. red 

solid lines in Fig. 5.11), smaller RMS ensemble spread (dotted lines in Fig. 5.11) and 
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consequently smaller predicted RMSE (dot-dashed lines in Fig. 5.11) for all u, v, T and q 

in each layer than EnKF_multi. This result further confirms that the closer distance 

between the observed and predicted RMSE as shown in EnKF_single does not 

necessarily imply a smaller prior RMSE as indicated in section 4c for this month-long 

experiment. The relatively larger predicted RMSE partially contributed by the larger 

RMS ensemble spread could help to decrease the prior RMSE.  

 

 
FIG. 5.10. Vertical distribution of the month-averaged posterior RMSE (solid) and bias 
(dot-dashed) of (a) u, (b) v, (c) T, and (d) q for EnKF_multi (red) and 3DVar_cv5 (blue). 
The prior RMSE (dashed) and their bias (dotted) for EnKF_multi (red) and 3DVar_cv5 
(blue) are also plotted for comparison. Zero line is  plotted in gray solid for reference. 
 

EnKF_single increases the prior RM-DTE by 0.2 m/s (Fig. 5.4) relative to 

EnKF_multi. It works generally worse for all variables especially for T and q (blue vs. 

red solid lines in Fig. 5.12). The prior RMSEs of EnKF_multi are respectively 3%, 3%, 
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8% and 6% smaller than those of EnKF_single for u, v, T and q. The larger improvement 

of EnKF_multi in T and q could be partially explained by the consistent decrease of bias 

from EF, to EnKF_single and then to EnKF_multi (dashed lines in Figs. 5.12c and 

5.12d). The prior bias of u and v are comparable among the three experiments. Better 

performance due to the multi-scheme ensemble relative to the single-scheme ensemble 

can also be seen in terms of the posterior RMSE (dot-dashed lines in Fig. 5.12) and the 

corresponding bias (dotted lines in Fig. 5.12). Similar to what is seen in prior error, there 

are also larger improvement in T (12%) and q (10%) than in u (6%) and v (6%) in terms 

of posterior analysis of EnKF_multi relative to EnKF_single.  

 
 

 
 
FIG. 5.11. Vertical distribution of the month-averaged RMSE (solid), predicted RMSE (dot-
dashed), and RMS ensemble spread (dotted) of the prior forecast for (a) u, (b) v, (c) T, and (d) 
q in EnKF_multi (red) and EnKF_single (blue). 
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b. Comparison between cv5 and cv3 in 3DVar  

Similar to what is seen in Chapter IV, 3DVar_cv5 performs similarly to that with 

default BES option of cv3 (hereafter referred to also as “3DVar_cv3”) (red vs. blue in 

Fig. 5.13). 3DVar_cv5 works slightly better than 3DVar_cv3 in terms of overall prior 

RM-DTE (Fig. 5.4). The biases of these two 3DVar experiments (dashed lines in Fig. 

5.13) are also similar to each other.    

 
 

 
FIG. 5.12. Vertical distribution of month-averaged RMSE (solid for prior forecast and dot-
dashed for posterior analysis) and bias (dashed for prior forecast and dotted for posterior 
analysis ) of (a) u, (b) v, (c) T, and (d) q for EnKF_multi (red) and EnKF_single (blue). The 
RMSE (green solid) and bias (green dashed) for reference forecast EF are also plotted for 
comparison. Zero line is plotted in gray solid for reference. 

 

c. Comparison between different initiating times for the EnKF 

To further investigate the stability of the EnKF system, a five-day experiment 
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“EnKF_multi_5days” is performed starting from 1200 UTC 10 June to 0000 UTC 15 

June with the same multi-scheme configuration as in EnKF_multi. The result shows that 

the experiments starting from different times are generally comparable to each other  

(blue vs. red lines in Fig. 5.14). Both experiments are similar to the MCV case study  

(green lines in Fig. 5.14) in terms of prior RMSE, while the posterior RMSE of the MCV 

case study are noticeably larger.  

 
 

 
FIG. 5.13. Vertical distribution of month-averaged prior RMSE (solid) and bias (dashed) 
of (a)u, (b)v, (c) T, and (d) q for 3DVar_cv5 (red) and 3DVar_cv3 (blue). Zero line is 
plotted in gray solid for reference. 
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FIG. 5.14. Time evolution of domain-averaged RMSE of prior forecast (solid) and posterior 
analysis (dot-dashed) of (a) u, (b) v, (c) T, and (d) q for EnKF_multi_5days (blue), 
Mix0.7_multi from the MCV case study in Chapter IV (green), and EnKF_multi valid in the 
same time period (red). 

 

Similar performance between EnKF_multi and EnKF_multi_5days is also 

demonstrated in the horizontal distribution of 10-m wind vector, mean sea level pressure 

and simulated radar reflectivity at 0000 UTC 12 June 2003 (Figs. 5.15d and 5.15c). The 

pattern of the simulated radar reflectivity of these two experiments are slightly better 

than that of Mix0.7_multi in Chapter IV (Fig. 5.15b) and fairly close to the observed 

radar echo (Fig. 5.15a). This is likely due to the updating of initial fields for the coarse 

domain every 12 hours in the experiments of this chapter, while in the Mix0.7_multi, 

only the boundary condition of the coarse domain is updated at 12-h interval. Result of 

this section also indicates that 12-h pre-run is long enough to provide a reasonable 
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background error covariance structure. 

 
 

 
FIG. 5.15. (a) The observed radar echo, the prior forecast of MSLP (every 2 hPa), 10-m wind vector 
(full barb 5 m/s) and simulated reflectivity (shaded) valid at 0000 UTC June 12, 2003 of (b) 
Mix0.7_Multi in Chapter IV, (c) EnKF_multi_5days, and (d) EnKF_multi. The big X and L 
respectively denote the simulated and observed MCV centers at surface. 

 

7. Summary and discussion  

Month-long performance of a WRF-based EnKF is examined in comparison to  

WRF-3DVar by conducting 12 hourly in-situ sounding data in June 2003. Multi-scheme 

ensemble is utilized to account for model error in the EnKF. 3DVar uses a newly 

generated background error statistics via “NMC” method.  



 153

Stable performance of both the EnKF and 3DVar are achieved by providing an 

approximate global ensemble forecast for the data assimilation domain. Specifically, a 

new initial ensemble is created for the coarse domain in 12-h interval based on the GFS 

analysis field, while the inner domain is continuously updated by the observational data 

through forecast and data assimilation cycling.  

The result shows that the prior ensemble of the EnKF is generally reasonable. In our 

case, the sum of RMS ensemble spread and observation error does not have to be 

comparable to the observed RMSE to achieve a smaller forecast error.    

It is found that the EnKF works efficiently in drawing both the forecast and analysis 

close to the observations. Relative to the reference forecast without data assimilation, 

26% (64%) error reduction is achieved in the prior forecast (posterior analysis). The 

EnKF works apparently better than 3DVar for all variables in each layer of the 

troposphere for this particular time period. The EnKF outperforms 3DVar by about 9% 

(25%) in terms of prior forecast (posterior analysis) RM-DTE. Larger improvements are 

observed in q than in u, v and T. Compared to the prior RMSE, the corresponding bias is 

fairly small in magnitude. It is also found that the EnKF seems to benefit more from the 

ensemble-based prior estimate than from using a flow-dependent background error 

covariance. 

The benefit of using multi-scheme ensemble is demonstrated clearly due to a 

resulting reasonable inflation of prior ensemble spread. Apparent smaller prior errors are 

observed relative to the single-scheme ensemble in all variables in each layer, especially 

for T and q. The better performance in T and q could also be partially explained by their 



 154

smaller bias resulted from using multi-schemes. Similar to Chapter IV, the performance 

of the 3DVar with background error covariance of cv3 and cv5 are similar to each other. 

Similar error statistics and MCV structures are observed for a particular period of 

time between experiments starting at different times. This result further confirms the 

stability of the EnKF system, suggesting that long-term experiment is not very sensitive 

to the initial condition and 12-h pre run is long enough to provide a reasonable 

background error covariance structure.  
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CHAPTER VI 

SUMMARY AND DISCUSSION 

 

This doctoral study demonstrates the feasibility of a mesocale ensemble Kalman 

filter (EnKF) with both simulated and real-world observations.  

Through observing system simulation experiments (OSSEs), the performance of the 

EnKF under the perfect model assumption in which the truth simulation is produced with 

the same model and same initial uncertainties as those of the ensemble is examined 

(Zhang et al. 2006a). The EnKF is implemented in a non-hydrostatic, mesoscale model 

(MM5) to assimilate simulated sounding and surface observations derived from 

simulations of the “surprise” snowstorm of January 2000. It is found that the EnKF is 

very effective in keeping the analysis close to the truth simulation under the perfect 

model assumption.  

Power spectrum analyses of OSSEs show that the EnKF is most effective in 

reducing larger-scale errors but less effective in reducing errors at smaller, marginally 

resolvable scales. A 24-h continuous EnKF assimilation of sounding and surface 

observations of typical temporal and spatial resolutions is found to reduce the error by as 

much as 80% (compared to a 24-h forecast without data assimilation) for both observed 

and unobserved variables including zonal and meridional winds, temperature, and 

pressure. However, it is observed to be relatively less efficient in correcting errors in the 

vertical velocity and moisture fields that have larger power at smaller-scales. The 

analysis domain-averaged root-mean-square error after 24-h assimilation is ~1.0-1.5 ms-1 
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for winds and ~1.0 K for temperature, which is comparable to or less than specified 

observational errors. Various sensitivity experiments demonstrated that the EnKF is quite 

successful in all realistic observational scenarios tested.  

The performance of the EnKF is also examined in the presence of significant model 

errors from using imperfect physical parameterizations by assimilating synthetic 

sounding and surface observations with typical temporal and spatial resolutions for the 

snowstorm case of January 2000 and a mesoscale convective vortex (MCV) event of 10-

12 June 2003 (Meng and Zhang 2006a).  

The significance of model error in both warm- and cold-season events is 

demonstrated when the use of different cumulus parameterization schemes within 

different ensembles results in significantly different forecasts in terms of both ensemble 

mean and spread. Nevertheless, the EnKF performed reasonably well in most 

experiments with the imperfect model assumption (though its performance can 

sometimes be significantly degraded). Similar to what is observed under perfect model 

assumption, most analysis error reduction comes from larger scales. Results show that 

using a combination of different physical parameterization schemes in the ensemble 

forecast (so called “multi-scheme ensemble”) can significantly improve filter 

performance. A multi-scheme ensemble has the potential to provide better background 

error covariance estimation and a smaller ensemble bias. 

There are noticeable differences in the performance of the EnKF for different flow 

regimes. In the imperfect scenarios considered, the improvement over the reference 

ensembles (pure ensemble forecasts without data assimilation) after 24 hours of 
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assimilation for the winter snowstorm event ranges from 36% to 67%. This is higher 

than the 26% to 45% improvement noted after 36 hours of assimilation for the warm-

season MCV event. Scale- and flow-dependent error growth dynamics and predictability 

are possible causes for the differences in improvement. Compared to the power spectrum 

analyses for the snowstorm, it is found that forecast errors and ensemble spreads in the 

warm-season MCV event have relatively smaller power at larger scales and an overall 

smaller growth rate. 

As a natural extension of previous OSSE studies, the performance of the EnKF is 

investigated then by assimilating real-data observations for the MCV event of 10-12 

June 2003 (Meng and Zhang 2006b). Direct comparison between the EnKF and a three-

dimensional variational (3DVar) data assimilation system, both implemented in the 

Weather Research and Forecasting model (WRF), is carried out.  

It is found that the EnKF performs consistently better than the 3DVar method when 

assimilating either individual or multiple data sources (i.e., sounding, surface and wind 

profiler) for this MCV event. The EnKF outperforms 3DVar likely due to both using an 

ensemble mean for state estimates and using a flow-dependent background error 

covariance. Background error covariance plays an important role in the performance of 

both the EnKF and the 3DVar system. Proper covariance inflation and using different 

combinations of physical parameterization schemes in different ensemble members (the 

so-called “multi-scheme” ensemble) can significantly improve the EnKF performance 

for this particular MCV case. The 3DVar system can benefit substantially from using 

short-term ensembles to improve the prior estimate (with the ensemble mean). 
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Noticeable improvement is also achieved by including some flow dependence in the 

background error covariance of 3DVar. 

To make more general comparison between the EnKF and 3DVar, a month-long test 

is performed in June 2003. It is found that the EnKF generally outperforms the 3DVar 

method for the time period of interest. Relative to the reference forecast without data 

assimilation, 26% (64%) error reduction can be achieved in the prior forecast (posterior 

analysis) of the EnKF. The prior forecast error of the EnKF is smaller than that of 3DVar 

by 9%. Utilization of a multi-scheme ensemble can apparently decrease the error 

especially in temperature and moisture. Similar error features are observed for a 

particular period of time with different lead times, which indicates that the 12-h pre-

forecast is long enough to develop a reasonable background error covariance structure.  

Result of this study demonstrates great potential of the EnKF for future use in 

operational data assimilation practice. On the other hand, though the EnKF has been 

shown promising in different realistic scenarios, there are many open questions 

remaining to answer (Zhang et al. 2006). Above all, model error is the most difficult 

issue to deal with. In this study, despite we account for the model error with a multi-

scheme ensemble, background error covariance inflation and localization, there is still 

noticeable deficiency in ensemble spread as shown by the U shape of rank histogram of 

the forecast ensemble. Another issue is observation error. What we use in this study is 

based on climatological statistics and somewhat simple. The representative part of 

observation error, which is model-dependent, is not considered. Besides, only synoptic, 

sounding and profiler observations are assimilated in this work. Problems could occur in 
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the assimilation of high-resolution remote-sensed data such as radar and satellite 

radiance. In those cases, the higher spatial resolution may invalidate the assumption of 

independent observation error and make the EnKF ill posed in principle. Though the 

EnKF is regarded as one of the candidates (the other is four dimensional variational data 

assimilation method (4DDA)) for future operational data assimilation method, 

considering various issues involved in the EnKF algorithm, a better solution could be 

coupling the EnKF with the variational method to accomplish the best possible weather 

forecast. 
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APPENDIX 

DERIVATION OF THE KALMAN FILTER IN  

LEAST SQUARES SENSE 

 

Notations needed to do this derivation are as follows: 

M : dynamic model 

M : tangent linear of the dynamic model 

y : observation vector 

bx : background state vector 

ax : analysis state vector 

tx : truth 

H : observation operator 

H : tangent linear of observation operator mapping from model space to 

observation space 

η : model error t t
t-1 t( )M −x x  

ε : observation error t( )H−y x  

δ : background error b t−x x  

µ : analysis error a t−x x  

R : observation error covariance matrix Tεε  

( <> means expectation, superscript T denotes transpose) 
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bP : background error covariance matrix Tδδ  

aP : analysis error covariance matrix Tµµ  

Q : model error covariance matrix Tηη  

Kalman filter has following basic assumptions: 

(1) Linearized model, namely the variations of model prediction in the vicinity 

of the forecast state is linear, which can be expressed as t-1 t t-1( ) ( ) ( )M M− = −tx x M x x . 

(2) Linearized observation operator, namely the variations of observation 

operator in the vicinity of the background state is linear, which can be expressed as 

b b( ) ( ) ( )H H− = −x x H x x . 

(3) Model error is white and has Gaussian distribution with zero mean. 

(4) Observation error is white and has Gaussian distribution with zero mean. 

(5) Background error has Gaussian distribution with zero mean. 

(6) Model error, observation error and background error are mutually 

independent. 

(7)Q , R and bP are positive definite.  

Kalman filter contains two steps: the forecast step and the analysis step. 

In the forecast step, suppose we have the analysis a
t-1x  and its associated error 

covariance a
t-1P , the subscript indicates time step of t-1, we propagate both with the 

dynamic model M to time step t.  

b a
t t-1( ).M=x x                                                                           (A.1) 
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The truth at time t can be expressed as  

t t
t t-1( ) .M= −x x η                                                                      (A.2) 

Then the background error can be calculated by  

b t
t t t

a t
t-1 t-1
a t
t-1 t-1

t-1

( ) ( )

( )
( ) .

M M

M

= −

= − +

= − +

= +

δ x x

x x η

x x η
M µ η

                                                      (A.3) 

The background error covariance is then given by  

b T
t t t

T
t-1 t-1

T T T T T T
t-1 t-1 t-1 t-1

T T T
t-1 t-1

b T
t-1

( ][ ]

.

=

= + +

= + + +

= +

= +

P δ δ

Mµ η Mµ η

Mµ µ M Mµ η ηµ M ηη

M µ µ M ηη

MP M Q

                    (A.4) 

With b
tx and b

tP in hand, we can then perform analysis with observation ty by 

seeking the analysis at time t through a linear combination of b
tx and ty as 

a b
t 1 t t .= +x K x Ky                                                                    (A.5) 

Since the observation and background state vector are assumed unbiased, so the analysis 

is consequently unbiased, which means t 0=µ .  
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a t
t t t

b t
1 t t

t t t
1 t t t

t
1 t 1 t

t
1 t

t
1 t

( ) ( ( ) )

( )

( )

( )

0,

t

t H

H

H

H

= −

= + −

= + + + −

= + − + +

= + −

= + −

=

µ x x

K x Ky x

K x δ K x ε x

K K I x K δ Kε

K K I x

K K I x

                               (A.7) 

which indicates 1 0H+ − =K K I , or 1 H= −K I K . Substitute 1K to (A.5) we get the 

expression of analysis as 

a b b
t t t t[ ( )].H= + −x x K y x                                                       (A.8) 

Then, using the independent relation between observation error and model error, the 

analysis covariance can be calculated as 

a T
t t t

a t a t T
t t t t

b b t b b t T
t t t t t t t t

b t t t b t t t T
t t t t t t t t t t

t t t t T
t t t t t t t t

P

( )( )

{ [ ( )] }{ [ ( )] }

{ [ ( ) ] ( )]}{ [ ( ) ] ( )]}

{ [ ( ) ( )] }{ [ ( ) ( )] }

H H

H H H H

H H H H

=

= − −

= + − − + − −

= − + + − + − + + − +

= − + − + − + − +

=

µ µ

x x x x

x K y x x x K y x x

x x K x ε K x δ x x K x ε K x δ

δ K x δ x Kε δ K x δ x Kε
T

t t t t

T
t t

T T T T
t t

T T T T
t t

b T T
t

{ }{ }

[( ) ][( ) ]

( ) ( )

( ) ( )

( ) ( ) .

− + − +

= − + − +

= − − +

= − − +

= − − +

δ KHδ Kε δ KHδ Kε

I KH δ Kε I KH δ Kε

I KH δ δ I KH Kεε K

I KH δ δ I KH K εε K

I KH P I KH KRK

 

Then we need to find a K that minimizes the variance of the analysis by letting 

(A.9) 
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a b T T
t t( ) [( ) ( ) ] 0.trace trace∂ ∂

= − − + =
∂ ∂

P I KH P I KH KRK
K K

                     (A.10) 

b T T
t{ [( ) ( ) ]} ( ) { ( )} 0.

( )
trace trace∂ − − ∂ − ∂

+ =
∂ − ∂ ∂

I KH P I KH I KH KRK
I KH K K

             (A.11) 

By doing matrix differentiation, we will end up with 

b T
t2( ) 2 0.− − + =I KH P H KR                                                 (A.12) 

The solution for K is then given by 

b T b T 1
t t( ) .−= +K P H HP H R                                                     (A.13) 

By plugging K into (A.8) and (A.9), we can get the analysis and the associated error 

covariance at time t. By repeating the whole procedure forward in time, observations can 

be assimilated sequentially to attain an improved evolution of the system.  
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