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ABSTRACT

Novel Optical Devices for Information Processing.

(May 2006)

Zhijie Deng, B. Eng., Tsinghua University, Beijing, China

Chair of Advisory Committee: Dr. Philip R. Hemmer

Optics has the inherent advantages of parallelism and wide bandwidths in processing

information. However, the need to interface with electronics creates a bottleneck

that eliminates many of these advantages. The proposed research explores novel

optical devices and techniques to overcome some of these bottlenecks. To address

parallelism issues we take a specific example of a content-addressable memory that can

recognize images. Image recognition is an important task that in principle can be done

rapidly using the natural parallelism of optics. However in practice, when presented

with incomplete or erroneous information, image recognition often fails to give the

correct answer. To address this problem we examine a scheme based on free-space

interconnects implemented with diffractive optics. For bandwidth issues, we study

possible ways to eliminate the electronic conversion bottleneck by exploring all-optical

buffer memories and all-optical processing elements. For buffer memories we examine

the specific example of slow light delay lines. Although this is currently a popular

research topic, there are fundamental issues of the delay-time-bandwidth product

that must be solved before slow light delay lines can find practical applications. For

all-optical processing we examine the feasibility of constructing circuit elements that

operate directly at optical frequencies to perform simple processing tasks. Here we

concentrate on the simplest element, a sub-wavelength optical wire, along with a

grating coupler to interface with conventional optical elements such as lenses and

fibers. Even such a simple element as a wire has numerous potential applications.
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In conclusion, information processing by all-optical devices are demonstrated with

an associative memory using diffractive optics, an all-optical delay line using room

temperature slow light in photorefractive crystals, and a subwavelength optical circuit

by surface plasmon effects.



v

To my parents

and

beloved late grandfather

Shenghua Chen.



vi

ACKNOWLEDGMENTS

Any creations are products of cooperations. This dissertation would not be possible

without my family, mentors, colleagues, friends or even strangers I barely know. The

list is too long for a complete acknowledgement here. I would take this opportunity

to give special thanks to my advisor, Dr. Philip Hemmer, for his support, guidance,

encouragement and patience. In addtion, I want to thank my committee members,

Dr. Henry Taylor, Dr. Kai Chang and Dr. Richard Arnowitt, for their tutelage and

instructions. It was a pleasure to work with Dr. M. Suhail Zubairy on the associative

memory and slow light projects. I have also learned a lot from my colleagues HoNam

Yum, Chang-Seok Shin, Mughees Khan, Dr. De-Kui Qing, Dr. Elizabeth Trajkov,

Huiliang Zhang and Raheel Zubairy. Dr. Winfried Teizer and Arlene Ford have been

tremendous help on the electron beam lithography. Yulia Vasilyeva and Shyamashree

Chatterjee were always ready to deliver assistance in the experiments at the TAMU

Materials Characterization Facility (MCF). Robert Atkins has contributed to our lab

in many ways. Dr. Andreas Holzenburg, Dr. Mike Pendleton and Tom Stephens gave

me quite some advice on my experiments at the TAMU Microscopy and Imaging

Center (MIC). Dr. Andreas Kronenberg was very generous in helping us on the

measurements at the Department of Geology & Geophysics, TAMU. I would also

like to thank Dr. Konrad Bussman at the Naval Research Laboratory, Dr. Robert

Armstrong at New Mexico State University, Dr. Mikhail Lukin and Darrick Chang

at Harvard University, for their helpful discussions during my visits. And last, I want

to thank my parents for their unconditional love and support all these years of long

term separation.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

B. Associative memory by diffractive optics . . . . . . . . . . 4

C. Delay-time-bandwidth problem in room temperature

slow Light . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

D. Subwavelength surface plasmon waveguides and couplers . 11

E. Outline of contents . . . . . . . . . . . . . . . . . . . . . . 16

II ASSOCIATIVE MEMORY IMPLEMENTED WITH COMPUTER-

GENERATED-HOLOGRAMS . . . . . . . . . . . . . . . . . . . 18

A. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

B. The Rizvi-Zubairy model of associative memory . . . . . . 19

C. Optical implementation with computer-generated-holograms 22

D. Experimental results . . . . . . . . . . . . . . . . . . . . . 29

E. Summary of the associative memory . . . . . . . . . . . . . 32

III DELAY-TIME-BANDWIDTH PROBLEM IN ROOM TEM-

PERATURE ULTRASLOW LIGHT . . . . . . . . . . . . . . . . 33

A. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

B. Augmented delay-time-bandwidth product by artificial

inhomogeneous broadening . . . . . . . . . . . . . . . . . . 34

C. Photorefractive two-wave mixing . . . . . . . . . . . . . . . 36

D. Photorefractive demonstration of artificial inhomoge-

neous broadening . . . . . . . . . . . . . . . . . . . . . . . 41

E. Summary of the slow light delay-time-bandwidth product . 46

IV SURFACE PLASMONIC NANO WAVEGUIDES AND COU-

PLING ANTENNAS . . . . . . . . . . . . . . . . . . . . . . . . 51

A. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B. Design of the surface plasmon waveguide and couplers . . . 55

1. FDTD simulations of a rectangular SP waveguide

and grating antennas . . . . . . . . . . . . . . . . . . 59

2. Galerkin analysis of rectangular SP waveguides . . . . 61



viii

Page

a. H-field formulation of the mapped Galerkin method 63

b. Numerical results . . . . . . . . . . . . . . . . . . 69

C. Fabrication and testing of the surface plasmon devices . . . 75

D. Enhanced atomic decay rates by a surface plasmon waveguide 88

E. Summary of the SP waveguide and grating couplers . . . . 91

V CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



ix

LIST OF TABLES

TABLE Page

I The square aperture sizes on the computer-generated-holograms. . . 29

II Predictions of the group velocity, the delay time, the 3dB band-

width and the delay-time-bandwidth product for the slow light

experiment using the Ce:BaTiO3 crystal, based on preliminary

measurements of τ = 3.5s and Γ0 = 6.2cm−1. . . . . . . . . . . . . . 44

III Summary of recent research on surface plasmon waveguides. . . . . . 52



x

LIST OF FIGURES

FIGURE Page

1 Operations in the Hopfield model. . . . . . . . . . . . . . . . . . . . . 5

2 Proposed architecture for the associative memory. . . . . . . . . . . . 7

3 Proposed architecture to address pulse distortions in ultraslow light. 10

4 Illustration of the Rizvi-Zubairy model. . . . . . . . . . . . . . . . . 20

5 Associative memory experimental setup. . . . . . . . . . . . . . . . . 23

6 Normalized transmittances between 0 and 1 for the computer-

generated-holograms. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Computer-generated-holograms fabricated by the laser writer tech-

nique for making photomasks. . . . . . . . . . . . . . . . . . . . . . . 27

8 Histogram of the transmittances in the computer-generated-holograms. 28

9 Experimental tests of the memory recall function. . . . . . . . . . . . 30

10 Experimental tests of the memory recover function. . . . . . . . . . . 31

11 Slow light bank to achieve artificial inhomogeneous broadening. . . . 36

12 Photo-electron model of photorefractive crystals. . . . . . . . . . . . 37

13 Two-wave mixing in photorefractive crystals. . . . . . . . . . . . . . 38

14 Characteristic performances of the photorefractive two-wave mixing. 40

15 The experiment layout of slow light in photorefractives. . . . . . . . . 43

16 Experimental demonstration of artificial inhomogeneous broaden-

ing in ultraslow light. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

17 Simulated improvement of the pulse distortion in ultraslow light. . . 48



xi

FIGURE Page

18 (a) Optics setup for the ultraslow light demonstration. (b) Close-

up of the Ce:BaTiO3 photorefractive crystal mounted on a rota-

tion stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

19 Electronics in the ultraslow experiment for light modulation and

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

20 Schematic of the SP waveguide in FDTD simulation: (a) top view;

(b) back view of the 100nm× 50nm cross-section. . . . . . . . . . . . 59

21 SP wave propagation along the Ag wire in the top view. . . . . . . . 60

22 Radiation far field of the grating coupler. . . . . . . . . . . . . . . . . 61

23 Transforming the rectangular cross-section of the SP waveguide

in the mapped Galerkin method: (i) in the original (x, y) domain;

(ii) in the transformed (ξ, η) domain. . . . . . . . . . . . . . . . . . . 64

24 Calibration of the H-field mapped Galerkin method. . . . . . . . . . 70

25 Amplitudes of the matrix elements produced by the Galerkin method. 71

26 Dispersion curve and losses of the SP waveguide. . . . . . . . . . . . 72

27 The SP waveguide mode computed by the H-field mapped Galerkin

method: (a) |Ex|; (b)|Ey|; (c) |Ez|; (d)|Hx|; (e) |Hy|; (f)|Hz|. . . . . . 73

28 The SP waveguide mode computed by the FDTD package: (a)

|Ex|; (b)|Ey|; (c) |Ez|; (d)|Hx|; (e) |Hy|; (f)|Hz|. . . . . . . . . . . . . 74

29 Devices laid out in GDSII format. . . . . . . . . . . . . . . . . . . . . 75

30 Procedures of electron beam lithography. . . . . . . . . . . . . . . . . 76

31 EBL facility at CNST, TAMU. . . . . . . . . . . . . . . . . . . . . . 77

32 SEM micrographs of developed patterns: (a) wire arrays of 50

nm linewidths; (b) a 100 nm wire running for more than 10µm;

(c) grating couplers with the smallest dimension of 100 nm; (d)

zoom-in of (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

33 Optical setup to characterize the fabricated surface plasmon devices. 79



xii

FIGURE Page

34 Laser alignment and inspection of the SP devices. . . . . . . . . . . . 80

35 Laser alignment for the devices under test: (a) the input and

output grating couplers connected by the designed waveguide; (b)

the control pattern with the waveguide missing. . . . . . . . . . . . . 81

36 Light transmission test of the SP waveguides: (a) complete de-

vices; (b) control patterns without the wires. . . . . . . . . . . . . . . 82

37 Attenuation measurements of the SP waveguides. . . . . . . . . . . . 83

38 Attenuations of the output signals by waveguides of different lengths. 84

39 The polarization property of the SP devices. . . . . . . . . . . . . . . 85

40 Coupling efficiency enhancement by the gratings. . . . . . . . . . . . 87

41 Map of emission enhancement sites over the waveguide cross-section. 91

42 (a) Optics setup for testing the SP devices; (b) Close-up of the

oil-immersion objective and the sample mounting stage in the setup. 93

43 Electronics for testing the SP devices. . . . . . . . . . . . . . . . . . 94



1

CHAPTER I

INTRODUCTION

A. Overview

Optics has been reshaping the landscape of information processing with its inherent

parallelism and wide bandwidths. Optical fibers and dense wavelength division mul-

tiplexing (DWDM) are the corner stones of the information world we are living in.

Active research in optical devices is underway to address the information processing

bottlenecks. One example is the optical interconnects between microprocessors. The

computation power of modern processors has been growing exponentially, until re-

cently, following the famous Moore’s law. But the data input/output (I/O) interface

cannot keep up with it. It is projected that the computing power growth over a

decade will be three times of the I/O capacity growth in the same period [1]. In the

near-term, inter-chip communication will become the computer performance bottle-

neck. People are turning to optical fibers when electrical wires cannot handle the

communication task. Agilent Technologies demonstrated a multiple-fiber, multiple-

wavelength prototype that has a 10 Gbps (giga bits per second) capacity applicable

to inter-chip data exchange in servers [2]. More aggressive research has been reported

by Intel Corporation, with the final goal to integrate the whole photonic interconnect

system onto silicon substrates [3–5]. Another example is the optical wireless local area

network (LAN), where free space optical links may replace the radio frequency (RF)

links in the Wi-Fi (wireless fidelity) LAN under specific environments. A data rate

of 155 Mbps was reported in 2001 [6], which is almost three times of the aggregate

The journal model is IEEE Transactions on Automatic Control.
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bandwidth (54 Mbps) in the current Wi-Fi standard—IEEE 802.11g. Texas Instru-

ments (TI) demonstrated the multiple-link Optical Wireless SolutionsTM, where each

dedicated connection has a capacity of 100 Mbps, with more than 10 Gbps bandwidth

in aggregate. In comparison, the next generation Wi-Fi standard IEEE 802.11n will

feature a bandwidth of 600 Mbps shared among multiple connections.

Above are examples of largely serial optical networking in communications, which

is a well developed part of information processing. It is also known that optics is well

suited to parallel processing, especially for tasks involving images such as feature

recognition or extraction. However, in real world situations feature recognition has

often proved unreliable due to its emphasis on precise pattern matching. Any devi-

ation in the input due to incomplete or distorted information rapidly degrades the

selectivity of pattern matching. To address this problem we examine technologies

that are far from fully developed—artificial intelligence (AI). Among the many AI al-

gorithms, neural networks (NN) are perhaps the best known ones. In neural networks

models, information is decomposed into pieces, i.e., neurons, which are linked to each

other by some weights. The weights specify the strengths by which the information

pieces relate to each other. In case some pieces are missing or unclear, they are hoped

to be recovered from the remaining ones through the links. It is immediately seen that

the weighted links can be implemented by properly designed optical interconnects. A

diffractive optical element (DOE) can make such interconnections in free space. Since

the interconnections can be established in parallel, it becomes a great advantage over

software implementations in conventional computers, where two-dimensional input

data must be converted and handled serially by each central processing unit (CPU).

The neural networks can be regarded as memory that associate fractions of in-

formation with each others. Memories, or buffers are also desired in controlling infor-

mation flow over the optical communication networks. One example is the congestion
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control. Since data is transmitted in the form of optical pulses over fiber optic net-

works, problems arise when several pulse trains simultaneously request right of the

same route. Certain mechanisms will be helpful if they can save the pulse trains of low

priorities to yield for the high priority one. Currently, no good optical buffer memo-

ries exist to deal with this need, and so the optical signal must first be converted to

an electronic signal, which severely limits the overall network speed. In 1999, Hau et

al. reported that the group velocity of light was slowed down to the unusual 17 m/s

in an ultra cold atomic gas [7]. This has spurred ultraslow light research for applica-

tions in optical buffers, delay lines and quantum information storage. For the sake of

commercial competitiveness, ultraslow light has to be realized at room temperature

by solid-state devices. However, there is an inherent conflict between the delay time

and bandwidth, which limits the device capacities to an unacceptable value. The

capacity limit is represented by the delay-time-bandwidth product which is related to

the length of an optical pulse stream that can be buffered by this technique. Here, we

will study the problem of delay-time-bandwidth product in slow light and a discuss

a possible solution.

Ultraslow light is of interest because it can greatly reduce the dimensions and

latency time of optical buffers based on fiber optic delay lines. Otherwise, a delay

line for 1 ms can easily take hundreds of kilometers (km) of optical fibers. Apply-

ing this approach to optical processing elements, more ambitious miniaturizations

will eventually shrink photonic component sizes below the corresponding wavelength.

By confining light in subwavelength space, not only can we pack more information

processing power, but also discover novel photonic devices where light interacts with

materials in an unprecedentedly strong manner. These novel devices may serve as key

components, such as light sources and detectors, in the information infrastructures

tomorrow. One fundamental element of such infrastructures will be the subwave-
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length waveguide, or optical wire. Accordingly, we will investigate the properties of

subwavelength waveguides that utilize the surface plasmon effect.

The three examples discussed above will be elaborated in the following sections.

B. Associative memory by diffractive optics

Content-addressable associative memory find broad applications such as image recog-

nitions for counterfeit and access control purposes. The most efficient machines are

human brains up to now, which can associate partial information with its original

version stored previously. In 1982, Hopfield presented a neural networks model that

emulates the operations of biological intelligence [8]. Digitized information is repre-

sented by a group of neurons. They are binarized memory cells, which are close to

the bits in a computer. The basic operations in the algorithm are weighted intercon-

nections and thresholding (see Fig. 1). The input neurons are first interlinked to form

“intermediate neurons”, which refer to the interconnect outputs hereafter. The inter-

connections are weighted by predefined values to emulate the association strengths

between the biological neurons in human brains. Non-binary numbers are thus stored

in the intermediate neurons. They are then converted into the binary output neurons

by comparison to a threshold value. Fig. 1 illustrates the process, where {V in} are the

input neurons, {V s} are the intermediate neurons, {V out} are the output neurons,

{W} are the interconnection weights and T stands for the thresholding operation.

The output neurons can be fed back into the input for further iterations if necessary.

The interconnection operation is described in mathematics as a multiplication

of a matrix (with elements {W}) to a vector (formed by {V in}). The CPU in a

conventional computer is designed to take care of scaler multiplications rather than

matrix multiplications. It can only make one interconnection in each computation
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Fig. 1. Operations in the Hopfield model. {V in}: input neurons; {V s}: intermediate

neurons; {V out}: output neurons; {W}: interconnection weights; T : thresh-

olding operation.

cycle. The interconnection time grows by the square power of the number of neurons.

Consequently, conventional computers become extremely inefficient for high volume

associative memory, as in the general case of image recognition. The sluggishness

caused by the serial processing within CPUs can be overcome with the parallelism

of optics in establishing multiple interconnections [9–13]. The parallelism is inher-

ent in free space optical interconnects. Photorefractive holograms [10,12] and lenslet

arrays [11, 13] have been used for this purpose, but they are relatively expensive

components. It will be desirable to replace them with components that can be mass

produced with mainstream technologies to lower the cost. Diffractive optical elements

fall into this category. They have been demonstrated for inter-chip optical intercon-
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nects, for instance, as reported by Fey et al. [14]. Computer-generated-holograms

(CGHs) are one sort of DOEs, with a history traced back to the 1960s [15, 16]. The

Lohmann type CGHs can be fabricated by coating metals on a glass substrate and

then opening apertures in the metal with lithography and etching. These procedures

are commonplace in the semiconductor industry. Once the apertures to open are

designed with Fourier optics simulations, CGHs can be massively produced by flat

panel display foundries without much difficulties. CGHs manufactured this way will

greatly reduce the system price of the associative memory.

Complexities and costs of the system can also come from the thresholding part

in the associative memory. Hopfield’s original model utilizes negative interconnection

weights. Despite the advantage of a constant threshold, it introduces subtractions that

are much harder to implement in optics than additions. Psaltis et al. addressed this

issue by space multiplexing, which doubles the required interconnections [9]. Gao et

al. followed similar strategy with time-multiplexed interconnections, which doubles

the required processing time [13]. The multiplexing overheads can be eliminated

by adding an offset to Hopfield’s interconnection weights, so that they are all non-

negative to avoid subtractions [12, 17]. In the proposed associative memory system,

we will choose the model modified in this way by Rizvi and Zubairy [17].

A problem remains that the Rizvi-Zubairy-like models create input dependent

thresholds rather than a constant one. Song et al. handled this problem by incorpo-

rating additional detectors to measure the threshold. To complete the thresholding, a

comparison is necessary between outputs from the intermediate-neuron-measurement

system and the output from the threshold-measurement system. Such comparisons

will become more difficult if there are discrepancies in dynamic ranges and linearities

of the two systems. It is noted that plenty of detectors are available on a charge-

couple-device (CCD) array in a camera. Therefore, we propose a proper design of the
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optics, so that the optical interconnect outputs will fall on one part of the CCD array

while the other part can be reserved for measuring the threshold. This will further

streamline the system and lower the cost. The thresholding is also expected to be

more accurate, since pixel performances are more uniform on the same CCD chip.

Fig. 2. Proposed architecture for the associative memory.

Briefly summarized, work is proposed to implement the Rizvi-Zubairy associative

memory model with computer-generated-holograms, which is economical for mass

production. A thresholding scheme is proposed to streamline the system and further

reduce the cost, by merging the detection systems for the interconnect outputs and

the threshold. Fig. 2 shows the architecture to test the associative memory.
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C. Delay-time-bandwidth problem in room temperature slow Light

The group velocity slowdown of light has been known to people for quite some time,

for example, the pulse delay in optical waveguides due to their dispersions. But

the delay was too small for realistic optical buffers and delay lines [18]. In 1999,

the interests were renewed with Hau’s report on the ultra slow group velocity of 17

m/s [7]. It is attributed to the ultra narrow transmission bandwidth for the light going

through the cold atoms. According to the Kramers-Kronig theory, it is accompanied

by an extremely strong dispersion in the refractive index, which greatly delays light

pulses in the medium. Ultraslow light opens opportunities for potential applications

in optical communications (all optical buffers, ultra-sensitive switches), radar beam-

steering (true time delay), and quantum information storage.

A major challenge to current slow light technologies is the substantial distortion

or short delay times of the pulses. It is a dilemma inherent in the Kramers-Kronig

analysis, where the narrow bandwidth of a system implies a large group delay and the

loss of high frequency components simultaneously. This problem is often characterized

by the delay-time-bandwidth product. There may be illusions that stopped light can

solve the problem. For example, in photorefractive crystals, stopped light has been

demonstrated [19] and theoretically can have a storage time up to months, but only

one pulse can be saved in the crystal. A figure of merit would be the number of pulses

that can be slowed (or stopped) in the material simultaneously, which is equal to the

delay-time-bandwidth product in ultraslow light. The delay-time-bandwidth product

indicates the capacity or word length of optical buffers and delay lines.

Key applications generally require delay-time-bandwidth products of 100-1000 or

more. The best result so far is about five in lead vapor [20], that is to say, the delay

time is five times of the pulse width. Electromagnetic induced transparency (EIT) [7]
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can overcome this limit in principle with a highly absorptive material and applying

enough pump laser power to saturate the EIT transition. It is possible in vapors,

because the transmission window is very narrow, and the material can withstand

a high laser power. This scheme is also applicable to EIT in certain solids under

cryogenic conditions, such as Pr:YSO [21]. However, in room temperature solids,

which are strongly preferred for commercially competitive applications, the windows

are significantly broadened by phonons or other mechanisms. The saturation requires

a higher pump power, which would easily exceed the damage threshold of the material

well before 100 pulses could be slowed. This analysis applies to most if not all slow

light and stopped light techniques demonstrated so far.

To increase the delay-time-bandwidth, the pulse distortions can be suppressed

by simultaneously slowing down all the input harmonic components. It can be done

by piecing together multiple neighboring slow-light transmission windows into a big

one, while maintaining the dispersion characteristics within each narrow window.

This can improve the line shapes of the homogeneously broadened windows in room

temperature ultraslow light, which typically assume the Lorentzian profile otherwise.

It is as if an inhomogeneously broadened window had been created.

Fig. 3 illustrates the general system proposed for increasing the delay-time-

bandwidth. The input pulses are decomposed into different spectral components

(sub-pulses or wavelets), which can be done with a prism or grating as in femtosec-

ond pulse shaping. The sub-pulses have slightly different central frequencies from

each other, so that adequate number of harmonics can be covered. The duration of

every sub-pulse is matched to the inverse of the slow-light element bandwidth, which

guarantees minimum distortion that will be imposed on it. The transmission peak of

each slow-light element is tuned to the center frequency of the respective sub-pulse,

so that all sub-pulses receive the same delay. The delayed sub-pulses are then recom-
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bined with another prism or grating to produce the output pulses in good fidelity.

Fig. 3. Proposed architecture to address pulse distortions in ultraslow light.

Since each slow-light element handles a more manageable signal than when it

works alone, sharper pulses can be delivered through their cooperations. Suppose

an individual array element has a delay-time-bandwidth product of one, the overall

system will have a delay-time-bandwidth product equal to the number of channels.

A theoretical analysis of inhomogeneous broadening in EIT systems has also been

carried out recently [22] and shows improved pulse fidelity.

The proposed approach is suitable in general for any slow light material that

has a narrow-band frequency-adjustable gain or transmittance, such as EIT, optical

resonators [23], optical spectral hole burning [24], resonance Raman [21], coherent
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population oscillation [25], photorefractive two-wave mixing [19,26,27], narrow-band

fibers and vertical cavity surface-emitting laser amplifier [28]. Due to the available

budget, a proof-of-principle experiment will be demonstrated with photorefractive

two-wave mixing in Ce:BaTiO3. The crystal has a narrow-band gain of two-wave

mixing effect [29]. It also acts as a holographic beam combiner, which can eliminate

the lens and prism at the output end in Fig. 3. Hence the channels are spatially over-

lapped inside the crystal at different angles. Ideally, the channels should be spatially

separated to avoid cross-talks (mutual interferences). In this case, the cross-talks are

suppressed by the angular Bragg selectivity of the thick holograms in the crystal [30].

The demonstration system will have three channels. Although it is far from a com-

plete one for practical applications, efforts will be made to show the basic concepts

of simultaneous slowdown of multiple spectral components and their recombination.

There are two ways to manifest the delay-time-bandwidth enhancement, by improving

the shape of a highly distorted output pulse at the same delay time, or by increasing

the delay time of an originally clean output pulse. The first strategy will be adopted

here.

In summary, a general architecture is proposed to make ultraslow light more

realistic for solid-state optical buffers and delay lines working at room temperature.

The experiment will be based on photorefractive two-wave mixing in Ce:BaTiO3. The

delay-time-bandwidth enhancement will be demonstrated with shape improvements

in a highly distorted delayed pulse.

D. Subwavelength surface plasmon waveguides and couplers

The surface plasmon wave is the coupled oscillation of electrons and electromagnetic

(EM) wave at the interface between metal and dielectrics. Its quantization is called
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surface plasmon (SP). SP waves can be excited by electron beams impinging into

metallic thin films [31]. Incident light can also induce such oscillations. Some liter-

atures refer to the latter case as surface plasmon polariton (SPP) oscillation. This

differentiation is not strictly followed, as the term “surface plasmon” refers to the

optically excited case in most publications. For convenience of discussion, surface

plasmon is presumed to be generated by incident photons hereafter without further

distinctions.

The SP wave in the microwave regime is more commonly known to engineers as

surface waves. It has received more interests in the optical society, probably due to

its strong localization of light below the corresponding wavelength. The tight focus

of the electromagnetic field can be down to 100 nanometers and below in the visible

spectrum, which enables strong interactions with substances of interests. To make

things more intriguing, the interactions can be further enhanced by the SP resonance.

Such features present surface plasmon as a competitive candidate for subwavelength

optics, ultra-sensitive detectors and novel optical sources.

Research on surface plasmon can be traced back to the light scattered by small

particles of noble metals in the cluster form, which are signified by the vibrant colors

unknown with their bulk counterparts. In 1908, Mie analytically solved the Maxwell

equations where a plane wave is scattered by a sphere of arbitrary radius and dielectric

constant. For an extremely small sphere in terms of the wavelength, Mie’s solution

leads to the condition for the resonant maximum scattering. It states that the sphere

dielectric constant must be twice and opposite to the ambient, which is satisfied by

metals across the visible spectrum. The scattering cross sections can be an order

higher than their physical cross sections at resonance. The distinctive colors stem

from the dispersiveness of scattering capabilities around the resonance. A closer study

found that these phenomena are related to the surface waves on the spheres [32].



13

Around the same time as Mie’s dissertation, Wood discovered in 1902 that at

a particular angle, a minimum showed up in the light intensity diffracted by metal-

coated gratings. It was later dubbed “Wood’s anomaly”. The disappearance of the

optical energy can be attributed to its conversion into SP waves propagating on the

coating surface.

Mechanisms similar to Wood’s anomaly can explain the so-called fluorescence

“quenching” for dye molecules adsorbed on a smooth metal film. The SP wave

supported by the film is evanescent in the sense that the field strength decays ex-

ponentially in the surface normal direction. Thus it is tightly bound to the surface.

And the field magnitude is remarkably high at the metal-dielectric interface, which

introduces a strong electrical coupling to the adsorbed molecules according to Fermi’s

golden rule [33]. Consequently, the excited molecules relax dominantly into SP waves

traveling within the plane, which is gradually converted into loss in the metal due

to its finite conductivity. The failure to observe fluorescent light going out of the

plane appears as if the molecular fluorescence has been suppressed or quenched by

the metal.

The SP-molecule interaction is actually much stronger than that between a

molecule and a free space photon (spontaneous emission/fluorescence is the photon

radiation into free space during the decay of an excited atom/molecule). Enhanced

fluorescent signals are anticipated if the SP wave can be extracted out of the surface.

Ritchie et al. were able to do so with a rough metallic surface instead of a smooth

one [34]. The SP wave was scattered out of the plane by irregularities on the evap-

orated semi-continuous film. The fluorescence was amplified by almost an order of

magnitude.

The metal islands on the semi-continuous thin films can be treated as small

particles, which comes back to the case of metal clusters in two dimensions (2D).
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Numerous literatures have reported magnifying the fluorescence or Raman scattering

signals by attaching target molecules to noble metal particles, which were tuned to

their SP resonance. For instance, Nie et al. successfully detected surface enhanced

Raman scattering (SERS) signals from single molecules [35]. Furthermore, if the SP-

molecule interaction is viewed as a first stage amplifier of light emissions, a second

stage can be added by coupling the SP into a resonator, which is well known for

augmenting the spontaneous emission rate by the Purcell factor [36]. A gigantic mul-

tiplicative enhancement (109 ∼ 1011) was estimated by Kim et al. in an experiment,

where metal clusters were adhered to the inner wall of a quartz micro-cylinder (a

whisper gallery mode resonator) [37].

The extensive research on SP reveals its potential for subwavelength optics and

novel optoelectronic devices, by exploiting the strong field localization and enhanced

interactions with substances [38, 39]. The subwavelength concentration of SP makes

its behavior highly dependent on structure sizes of the same order. As a result,

performance control of prospective SP devices will not be possible without precise

fabrication and design methodologies. Locations of the SP maxima (hot-spots) are

unpredictable both in the metal clusters prepared with chemical methods, and in the

semi-continuous films prepared with evaporation. Recently, people began fabricating

SP devices with tools in semiconductor research in pursuit of more engineerable de-

vices. For instance, extraordinary transmissions have been observed in hole arrays

punched on metal thin films with focused ion beams (FIBs) [40]. Gain improvement

was reported by combining a metal layer with photonic crystal structures in quantum

cascaded lasers [41]. Superlens with sub-diffraction limit resolution was demonstrated

using tools like FIB, evaporator, spincoator and atomic force microscope (AFM) [42].

Our interests are mainly on SP waveguides and couplers. Optical dielectric

waveguides have bounded mode sizes on the order of the wavelength or above. In
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contrast, SP waveguides allow significantly smaller modes sizes. They are potential

building blocks of the highly integrated photonic chips in the future (see [39] and

references therein). Here the major concerns are the guiding mode size which is their

main advantage over the dielectric counterparts, and the loss, which determines their

usefulness in various scenarios. A general observation is that these two are contra-

dictory. Insights will be gained by the proposed research on these issues.

Another issue stands out when connecting the SP waveguide to the outside world.

Their subwavelength mode sizes are mismatched to the characteristic dimensions of

both guided and free space optical links, which are on the order of the wavelength or

above. Couplers must be designed to bring in a smooth mode size transition as well

as a momentum match between the SP and the incoming/outgoing photons. Prisms

were widely used in previous SP experiments as couplers, where the total internal

reflection (TIR) generates evanescent waves that can be readily converted into SP

waves [31]. Since planar fabrications are preferred for the waveguide, grating coupler

concepts from integrated optics are favored over the prism scheme. It is an area yet

to be explored by the science society.

At last, the devices have to be simulated before they are made, otherwise the

accuracy provided by the advanced fabrication techniques will be offset by the unpre-

dictability in design. It is a task as challenging as making them. Finite difference in

time domain (FDTD) is a well tested method in simulating electromagnetic problems.

It is a rigorous simulation of the Maxwell equations. Moreover, it is versatile to han-

dle arbitrary geometries and substances, as long as the material model is available.

Metal dielectric constants can be described by the Drude model, which is safe to use

for features greater than 20 nm. When the size is below that, the dielectric constant

will be dependent on the geometry due to quantum effects [43]. Because the device

sizes are not expected to be smaller than 20 nm, the Drude model will suffice in our
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case. To save the development time, a commercial FDTD package, CST Microwave

Studio R© combined with the Drude model, is selected to simulate the waveguide and

couplers. The software has been used to simulate the focus of superlens by Liu et

al. [44]. An optional choice of solving the waveguide problem is the eigenmode analy-

sis based on the mapped Galerkin method (MGM). It has been applied to the analysis

on dielectric optical waveguides [45] and may be extended to the SP case. But the

MGM can only manage waveguides, not the couplers.

In regard to the discussions above, SP waveguides and couplers working in the

visible spectrum are proposed as the third and last topic for the Ph.D. dissertation.

Silver will be the chosen metal considering its relatively low loss in the visible. Sim-

ulations will be carried out with a FDTD software along with the Drude model.

Attempts may also be made to extend the MGM to the SP waveguide analysis. The

device will be fabricated with electron beam lithography (EBL), where the planar

pattern is generated by exposing the “photoresist” to a directed electron beam in

a scanning electron microscope (SEM). It is a mature technology in making planner

features on the sub 100 nanometer scale with proven precisions [46]. The exposed pat-

terns will be transferred to silver by the lift-off technique [47]. Because of their small

sizes, an oil immersion microscope will be built to characterize the optical responses

of the SP devices.

E. Outline of contents

In chapter II, we will discuss the CGHs implementation of the Rizvi-Zubairy model for

associative memory. In chapter III, the delay-time-bandwidth problem in slow light

will be addressed with a solution of artificial inhomogeneous broadening. Chapter

IV will present the research on nano waveguides and coupling antennas by surface
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plasmon effects. Chapter V concludes this dissertation.
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CHAPTER II

ASSOCIATIVE MEMORY IMPLEMENTED WITH

COMPUTER-GENERATED-HOLOGRAMS∗

A. Overview

Rizvi and Zubariy proposed a variation of the Hopfield model for associative memory

of binary images [17]. Every stored image is an array of binary neurons assuming

0s and 1s. The memory is supposed to retrieve a stored image closest to the input.

The operations consist of the multiple interconnections between neurons and the

subsequent thresholding of the interconnection outputs.

In mathematics, a binary image can be represented by a vector with elements of 0s

and 1s. The interconnection is then a matrix operator applied to the input vector. The

product vector of the multiplication is binarized into 0 and 1 elements again according

to an input-dependent threshold. Rizvi and Zubairy derived the matrix operator and

the threshold value in an intuitive manner. Since conventional computers are not

efficient in doing matrix multiplications, they suggested parallel interconnections by

diffractive optical elements (DOEs) for experimental demonstrations instead.

In the optical realization, the binary input image is a simple transmission mask

modulating an illumination beam with opaque and transparent pixels. It will be

transformed into an output image by a DOE, which is a computer-generated-hologram

(CGH). By properly designing the CGH, its optical transformation can perform the

∗Part of the data reported in this chapter is reprinted with permission from
“Implementation of optical associative memory by a computer-generated hologram
with a novel thresholding scheme” by Z. J. Deng, D.-K. Qing, P. R. Hemmer, and M.
S. Zubairy, 2005. Optics Letters, vol. 30, pp. 1944-1946. c©2005 Optical Society of
America.
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interconnection matrix multiplication to the input image. A CCD camera detects the

multiplication product as well as the threshold. The captured image is then binarized

to generate the associative memory output.

In section B, we will briefly review how Rizvi et al. arrived at their associative

memory model. The mathematical formulation will also be introduced. In section C,

we will discuss the optical architecture to implement the model and the design details

of the CGH. In section D, experimental results will be presented and compared to

simulations. Section E will summarize our work on the associative memory.

B. The Rizvi-Zubairy model of associative memory

The philosophy of the Rizvi-Zubairy model is simple and straight forward [17]. An

image is composed of “on” and “off” pixels. Each “on” pixel in an input image

recalls for once all the stored images that has the same pixel “on”. This procedure is

repeated for every “on” pixels in the input image. All the recalled images are added

up to get a grayscale image, where the grayscale reading counts the time a pixel has

been recalled. The higher the grayscale reading, the stronger this pixel is related

to the input image. An arbitrator mechanism is required here to determine to what

extend this relation is strong enough to keep the pixel in the final output. This can be

completed by binarizing the grayscale pixels. An intuitive threshold value will be the

total number of “on” pixels in the input image, because it is equal to the frequency

of the recall operation. If the grayscale reading is higher or equal to this number, it

implies on average the corresponding pixel has been requested at least once in each

recall operation, which is a sign of strong correlation to the input image.

Fig. 4 illustrates it with a simple example, which is a memory of three binary

images “+”, “T” and “X”. Each image has nine pixels. The “on”(transparent) pixel
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is 1 and the “off”(opaque) pixel is 0. The three “on” pixels in the input image of “-”

recalls “+” three times, “T” and “X” once each. They are summed up as a grayscale

image, which is binarized by the threshold value “3” into an output image of “+”. It

is the closest one to the “-” among the three stored images.

Fig. 4. Illustration of the Rizvi-Zubairy model. It handles binary images. The trans-

parent pixel is 1 and the opaque pixel is 0. The example has a memory of three

images. Each image has nine pixels. The output is the closest one to the input

among the three stored images.

As evident from the operations described above, the memory associating process

boils down to the correlation of the input image to the stored ones. Thus the Rizvi-

Zubairy model can be interpreted in an equivalent perspective of correlations. The

grayscale image is obtained by combining the stored images, where the contribution

from each image is weighted by its correlation with the input image. The correlation

will be minimum if the two images are orthogonal, i.e., the contribution turns out to

be zero. If the two images are identical, the correlation will be maximum, which is
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equal to the number of “on” pixels in the input. When a set of orthogonal images

are stored in the memory and one of them is presented at the input, a reasonable

threshold value should allow it to reproduce itself. In that case, the threshold value

should be the autocorrelation of the input image, which is the total number of “on”

pixels in the input.

The correlation interpretation is convenient in deriving the mathematical formu-

lation. Assume that there are M images stored in the memory, each image having

N × N pixels (neurons). The mth image is represented by a two-dimensional (2-

D) array {V m
ij , 1 ≤ i ≤ N, 1 ≤ j ≤ N}, where Vij is either 0 or 1. Suppose the

input image is a 2-D array {Vhl
in, 1 ≤ h ≤ N, 1 ≤ l ≤ N}, the grayscale image

{V s
ij, 1 ≤ i ≤ N, 1 ≤ j ≤ N} is

V s
ij =

M∑
m=1

V m
ij

N∑

h=1

N∑

l=1

V in
hl V m

hl , (2.1)

where
∑N

h=1

∑N
l=1 V in

hl V m
hl is the combining weight for the mth stored image determined

by correlation. The order of summations in (2.1) can be changed

V s
ij =

N∑

h=1

N∑

l=1

V in
hl

M∑
m=1

V m
ij V m

hl =
N∑

h=1

N∑

l=1

V in
hl W hl

ij , (2.2)

where

W hl
ij =

M∑
m=1

V m
ij V m

hl . (2.3)

The 2-D input array can be treated as a N2 × 1 column vector

V in =
[
V in

11 , V in
12 , . . . , V in

1N , . . . , V in
N1, . . . , V

in
NN

]T
. (2.4)

Similarly, the grayscale image is rearranged into a N2 × 1 column vector

V s = [V s
11, V

s
12, . . . , V

s
1N , . . . , V s

N1, . . . , V
s
NN ]T . (2.5)
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A N2 ×N2 matrix W can be filled as

W =




W 11
11 W 12

11 . . . W 1N
11 . . . WN1

11 . . . WNN
11

W 11
12 W 12

12 . . . W 1N
12 . . . WN1

12 . . . WNN
12

...
...

...
...

...
...

...
...

W 11
1N W 12

1N . . . W 1N
1N . . . WN1

1N . . . WNN
1N

...
...

...
...

...
...

...
...

W 11
N1 W 12

N1 . . . W 1N
1N . . . WN1

N1 . . . WNN
N1

...
...

...
...

...
...

...
...

W 11
NN W 12

NN . . . W 1N
NN . . . WN1

NN . . . WNN
NN




. (2.6)

Now the grayscale image is available by a simple multiplication of a matrix to a vector

V s = WV in. (2.7)

The N2 × 1 binary output vector (image)

V out =
[
V out

11 , V out
12 , . . . , V out

1N , . . . , V out
N1 , . . . , V out

NN

]T
, (2.8)

is obtained after the thresholding operation

V out
ij =





1 ifV s
ij ≥

∑N
h=1

∑N
l=1 V in

hl

0 otherwise
(2.9)

C. Optical implementation with computer-generated-holograms

As suggested by (2.2), each input neuron (pixel) V in
hl contributes to the N × N in-

termediate neurons {V s
ij} through the N ×N weights {W hl

ij , 1 ≤ i ≤ N, 1 ≤ j ≤ N}.
The accumulated contributions are binarized according to (2.9). Fig. 5(a) shows the

optical implementation using CGHs. The ten numbers in Fig. 5(b) are used to demon-

strate the memory with the proposed optical architecture. Every stored image has
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(a)

(b)

Fig. 5. Associative memory experimental setup.
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12× 12 pixels that are either opaque or transparent, corresponding to 0 and 1. The

pixel size is 0.675mm×0.675mm. Input images should be in the same format accord-

ingly. They are introduced by the input masks (IMs), the pixels of which either block

or transmit the incoming laser light. The memory is encoded in the 12×12 CGHs on

the memory mask (MM), where the size of each CGH is also 0.675mm × 0.675mm,

same as a pixel. Each input pixel is always lined up with a CGH on the optical path,

which is monitored through the telescope T and camera CCD1. Therefore, the CGHs

also form a 12×12 array on the MM. Since the input pixels and CGHs are assembled

in arrays of the same dimensions, we can use h as the row index and l as the column

index in both arrays. If an input pixel V in
hl is opaque, it turns off the corresponding

CGH behind it and has no effects to the final output. If V in
hl is transparent, it turns

on the CGH indexed by h and l in the array, which creates diffraction spots at 12×12

fixed locations on the detection plane of the camera CCD2. The diffraction intensities

are proportional to the weights {W hl
ij , 1 ≤ i ≤ 12, 1 ≤ j ≤ 12}, where i and j indexes

the spots on the camera plane. We will discuss the CGHs design later on. As every

transparent input pixel cast its own set of diffraction beams onto the fixed locations,

their contributions to the light intensities at the fixed spots are accumulated due to

the superposition of optical waves. The parallel interconnections in (2.2) are com-

pleted. The intermediate neurons {V s
ij} are obtained through the CCD readings at

the diffraction locations.

The threshold in (2.9) is equal to the total number of transparent input pixels.

Utilizing this fact, we propose a simple binarizing scheme where the total light inten-

sity transmitted through IM serve as the threshold light intensity Ith. In Fig. 5, the

lens L collects Ith and focuses it onto a pixel of CCD2 for measurement. This measur-

ing pixel on CCD2 is spatially separated from the detection spots of the intermediate

neurons. A calibration in necessary to compensate for the different attenuations along
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the two optical paths through lens L and FL. A test image was first chosen as the

input in the calibration, which by the Rizvi-Zubairy model is known to generate some

intermediate neurons equal to the threshold intensity. By adjusting neutral density

attenuators ND1 and ND2, the Ith was set equal to these neuron intensities. Once cal-

ibrated, ND1 and ND2 remain unchanged in experiments thereafter. In the memory

association process, a computer program compares the detected intensities of {V s
ij}

individually with Ith. The binarized pixel (neuron) will be 1 if the former is greater

or equal to the latter, otherwise it will be 0. Such a thresholding method cancels

out the detection problems caused by non-linearity and limited dynamic ranges of

the sensors, since such effects are identical to the threshold measurement and the

intermediate neuron measurements using the same CCD chip.

A key issue remains in designing the aforementioned CGHs that can diffract

light beams with intensities {W hl
ij }. In Fig. 5(a), the lens FL right behind MM is the

Fourier transform lens whose focal plane is the same as the detection plane of CCD2.

Consequently, the transmittance {Hhl
pq, 1 ≤ p ≤ N, 1 ≤ q ≤ N} of a CGH is linked

to the diffraction beam intensities {W hl
ij } through the well-known Fourier transform

property of a lens [48]

W hl(iδ, jδ) =
A exp

[
j̃ π

λf
(i2δ2 + j2δ2)

]

j̃λf

N∑
p=1

N∑
q=1

Hhl(p∆, q∆) exp

[
−j̃

2π∆δ

λf
(pi + qj)

]
.

(2.10)

Here, h and l indexes the CGH on the MM, {W hl
ij } is given by (2.3), j̃ is used to

represent the square root of −1 because the conventional symbol for this purpose j

has been assigned already, A is an insignificant constant, λ is the wavelength of light

(532nm in our case), f is the focal length of the lens (75mm for FL in Fig. 5(a)),

δ is a constant dimension of 591µm on the CCD2 plane, and ∆ is a constant di-

mension of 27µm on the MM plane. In (2.10), terms before the double summations
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Fig. 6. Normalized transmittances between 0 and 1 for the computer-generated-holo-

grams. The white pixels represent transmittance of 1 and the black pixels stand

for 0 transmittance. Gray pixels have transmittances in between.
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introduce an additional optical phase distributions on the CCD2 plane. They can

be ignored since the camera only detects magnitudes. Now the CGH transmittances

are available by doing a inverse fast Fourier transform (IFFT) of the interconnection

weights {W hl
ij }. Nevertheless, complex transmittances requires the more challenging

optical phase modulations in addition to the amplitude modulations. To ensure real

transmittances, {W hl
ij } are duplicated and extended into four quadrants in an origin-

symmetric manner before doing the IFFT. The duplication introduces redundancy in

the final CGH, but it relaxes the design and fabrication requirements.

Fig. 7. Computer-generated-holograms fabricated by the laser writer technique for

making photomasks. It was inspected with a Olympus BH2 microscope. The

bright areas are open apertures, the sizes of which determine the transmissions

of the holograms.

The computed transmittances were normalized to the range [0, 1]. They are con-

tinuous numbers rather than binary ones. Fig. 6 shows the transmittance distribution

over the MM plane, where the brightest spot represent transmittance of 1 and the
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Fig. 8. Histogram of the transmittances in the computer-generated-holograms. Most

of the transmittance values fall in the region of [0.2,0.5].

darkest spot stands for 0 transmittance. It is clear that multiple levels of transmis-

sion attenuations are demanded on the MM. The MM is produced by opening square

apertures of various sizes on an otherwise opaque Chromium-coated glass substrate.

The CGH is basically Lohmann type [15, 16]. However, the centers of the apertures

are now fixed to a square lattice with a 27µm spacings, because there is no need

to do phase modulations. The design scheme was verified with FFT and IFFT in

Matlab simulations. The memory mask design was laid out in GDSII format and fab-

ricated with the laser writing technique in photolithography mask production. Fig. 7

is the memory mask inspected by an optical microscope in epi-illumination (reflec-

tion) mode. The dark regions in the figure are the apertures. They have ten different
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sizes as shown in Tab. I. The mapping of the transmittance to the aperture sizes

Table I. The square aperture sizes on the computer-generated-holograms. The sizes

encode the transmittances {Hhl
pq} as calculated by the IFFT.

Hhl
pq [0, [0.23, [0.26, [0.29, [0.32, [0.35, [0.38, [0.41, [0.44, [0.47,

0.23) 0.26) 0.29) 0.32) 0.35) 0.38) 0.41) 0.44) 0.47) 1]

µm2 0 9 16 25 36 49 56.25 64 72.25 81

is linear in the region 0.2 ≤ Hhl
pq ≤ 0.5, where most of the transmittance values are

concentrated according to their histogram in Fig 8.

D. Experimental results

As a test of the system, we tried to retrieve the numeric number “4” from the mem-

ory. When an input image as in Fig. 9(a) showed up, the intermediate neuron in-

tensities were detected by CCD2 as in Fig. 9(c), which agrees with the FFT simula-

tion (Fig. 9(e)). Fig 9(g) shows the binarized output image, indicating a successful

retrieval. Similarly, Fig. 9(b,d,f,h) demonstrate a successful recall of the numeric

number “9”.

Moreover, the Rizvi-Zubairy model can also recall images from partial inputs.

Fig. 10(a) is a partially blocked input image of numerical number “9”. Fig. 10(b)

is the interconnection outputs, which is binarized into Fig. 10(c). The above results

show that the associative memory based on Rizvi-Zubairy model and the proposed

thresholding scheme are effective in pattern recognition and data retrieval.
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(a) (c) (e) (g)

(b) (d) (f) (h)

Fig. 9. Experimental tests of the memory recall function. Images of (a)(b) input

images captured by CCD1, (c)(d) intermediate neuron intensities and threshold

intensities (the bright spots on the right edge) detected by CCD2, (e)(f) FFT

simulation of the intermediate neuron intensities, and (g)(h) binarized outputs.
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(a)

(b) (c)

Fig. 10. Experimental tests of the memory recover function. Images of (a) partial

inputs for “9”, (b) the intermediate neuron intensities and (c) the binarized

output.
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E. Summary of the associative memory

In summary, the Rizvi-Zubairy asscociative memory model is very suitable for opti-

cal implementation due to the absence of subtractions. A simple real-time thresh-

olding scheme streamlines the system and suppresses noise. An experiment with

computer-generated-holograms was demonstrated. The stored images were success-

fully retrieved complete or partial inputs through the content-addressable mechanism.
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CHAPTER III

DELAY-TIME-BANDWIDTH PROBLEM IN ROOM TEMPERATURE

ULTRASLOW LIGHT∗

A. Overview

In 1999, ultraslow light was first reported in the ultra-cold atomic gas, which can be

explained by the extremely narrow frequency window for light to transmit through

the gas. The narrow transmission band implies a sharp dip in the imaginary part of

the complex refractive index

N(ω) = n(ω) + ik(ω), (3.1)

where ω is the angular frequency of light. The real part and the imaginary part are

linked to each other by the Kramers-Kronig relations

n(ω) = 1 +
2

π
P

∫ ∞

0

Ωk(Ω)

Ω2 − ω2
dΩ, (3.2)

k(ω) =
−2ω

π
P

∫ ∞

0

n(Ω)

Ω2 − ω2
dΩ, (3.3)

where P is a constant [32]. The sharp dip in k(ω) leads to a strong dispersion of

n(ω) around the pass-band, as evident from (3.2). The large dn(ω)/dω creates an

∗Part of the data reported in this chapter is reprinted with permission from:
“Time-bandwidth problem in room temperature slow light” by Z. J. Deng, D.-K. Qing,
P. R. Hemmer, M. O. Scully, C. H. R. Ooi, and M. S. Zubairy, 2006, Physical Review
Letters, vol. 96, pp. 023602, c©2006 The American Physical Society; “Investigation
of room-temperature slow light in photorefractives for optical buffer applications” by
Z. J. Deng and P. R. Hemmer, 2004, Proceedings of SPIE, vol. 5362, pp. 81-89,
c©2004 SPIE.
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ultraslow group velocity vg as given by

vg =
c

n(ω) + ω[dn(ω)/dω]
. (3.4)

Consequently, an optical pulse was slowed down to 17 m/s by the ultra-cold atomic

gas [7]. The first ultraslow light in solid state material was reported in 2002 [21]. One

year later, ultraslow light was realized in room temperature solid [25]. The explosion

in ultraslow light research is driven by the prospects of optical delay lines, optical

buffers and quantum information storage.

The rapid progress gives a delusion that the commercialization is just around

the corner. But an obstacle remains that the narrow pass-band introduce strong

distortions to the pulse shapes at high data rates. It seems the long delay time and

wide bandwidth of slow light devices are incompatible with each other, otherwise the

Kramers-Kronig relations will be violated. This problem can be characterized by the

delay-time-bandwidth product of the slowlight device. It describes the capacity or

word length of the optical delay line or buffers, which is the number of bits (pulses)

that can be slowed down simultaneously. The best delay-time-bandwidth product

observed so far is five in lead vapors [20].

To increase the delay-time-bandwidth product, a general architecture will be

introduced in section B. A proof-of-principle experiment will be presented in section

D. Section E will conclude this chapter.

B. Augmented delay-time-bandwidth product by artificial inhomogeneous broaden-

ing

The basic idea of increasing the delay-time-bandwidth is illustrated in Fig. 11. As

shown in the left box, a single ultraslow light element has a narrow transmission
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window, where the absorption component k(ω) in the complex refractive index is

small. Instead of passing light through a single slow light element, the optical signal is

simultaneously fed to an array of slow light elements, the central frequencies of which

are slightly separated from each other. Outputs from the array are then combined

to produce the final signal. In effect, the transmission window of the system is

artificially broadened, while the dispersiveness of n(ω) is preserved. The widened

transmission window allows higher data rate or less distortions in the pulse shape.

The corresponding optical architecture can be found in Fig. 3 in Chapter I.

The broadening of a single dip into a wide window is similar to that from the

Lorentzian lineshape in homogeneous optical absorption to the Gaussian lineshape in

inhomogeneous optical absorption by solid state materials [33]. However, the broad-

ening proposed here is created artificially and can be controlled with more freedom

and accuracy. Interestingly, the structure in Fig. 11 also resembles the subband filter

banks in signal processing research.

The general architecture can be implemented with devices that have narrow-

band frequency-adjustable gain or transmittance, such as EIT, optical resonators [23],

optical spectral hole burning [24], resonance Raman [21], coherent population oscilla-

tion [25], photorefractive two-wave mixing [19,26,27], narrow-band fibers and vertical

cavity surface-emitting laser amplifier [28]. A proof-of-principle experiment will be

presented next with photorefractive two-wave mixing in Ce:BaTiO3. This material

has a very narrow band in the two-wave mixing gain and is ideal for demonstrat-

ing room temperature ultraslow light. Meanwhile, it is a thick holographic material,

which can provide multiple two-wave mixing channels by angular multiplexing, and

also serve as a beam combiner for outputs from different channels. The Bragg selec-

tivity of thick holograms [30] guarantees the inter-channels isolations are acceptable

for demonstration purpose. Although in the real-world applications a dedicated solid
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Fig. 11. Slow light bank to achieve artificial inhomogeneous broadening. The slow

light elements have center frequencies offset incrementally. The effective com-

plex refractive index features a wider transmission window and keeps the

strong dispersiveness.

state device will be desirable for each channel to achieve more superior performance,

the all-in-one characteristics of Ce:BaTiO3 makes it a economical choice for demon-

strations.

C. Photorefractive two-wave mixing

Photorefractive materials feature refractive indexes that can be changed by illumi-

nation. The electron states in photorefractive crystals are depicted in Fig. 12 [49].
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They are composed of a valance band where it is hard for electrons to move around

and a conduction band where electrons are mobile. Dopants in the crystal also create

donor centers and acceptor centers at discrete sites across the crystal. Electrons at

donor centers have energies higher than the valence band electrons, and thus are more

ready to be excited by an incident photon into the conduction band. The photoelec-

trons may wander around and run into the acceptor centers, where the energy level is

lower than the conduction band. This energy trap makes it difficult for the captured

electrons to go back to the conduction band to regain their mobility.

Fig. 12. Photo-electron model of photorefractive crystals. Incident photons to pho-

torefractives can excite electrons from the donor level to the conduction band,

where they are possible to move and fall into acceptor traps.

Now consider the two-wave mixing case in Fig. 13, where two coherent laser

beams, with very close angular frequencies ωp and ωs, interfere inside a photorefrac-

tive crystal. In the dark stripes of the interference pattern, exciting light intensity

is weaker than in the bright stripes. Hence, more photoelectrons are excited in the

bright region. This spatial density differential causes diffusion of the photoelectrons

to the dark regions. In the steady state of the diffusion process, more photoelectrons
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migrate to and get trapped in the dark regions, which creates an electric field (space

charge field) to balance the diffusion potential. The space charge field changes the

refractive index through the electrooptic effect [50]. A holographic grating of modu-

lated refractive index is recorded in the crystal. At proper incident angles, the grating

transfers energy from one beam (the pump) into the other (the probe).

Fig. 13. Two-wave mixing in photorefractive crystals. Photoeclectrons concentrate

in the dark stripes (shaded region in the figure) of the interference pattern,

creating a space charge field to modify refractive index. The refractive grating

diffract pump light into the probe output.

If the pump beam is much stronger than the probe, the amplified probe field is

given by [19,51]

As(ωs, d) = As(ωs, 0) exp

[
i(

2πn

λ
)d

]
exp

[
Γ(∆ω)d

2

]
exp

[
i(

2πQ(∆ω)

λ
)d

]
, (3.5)

where As(ωs, 0) is the probe field at the entrance into the crystal, d is the path

length of probe beam inside the crystal, n is the refractive index of the material, λ
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is laser wavelength, and ∆ω is the frequency detune between the pump and probe

∆ω = ωs − ωp. Γ(∆ω) is the two-wave mixing gain coefficient

Γ(∆ω) =
Γ0

1 + ∆ω2τ 2
, (3.6)

with Γ0 as a constant and τ as the rising time of the space charge field. Q(∆ω) is a

unit length phase shift

Q(∆ω) =
Γ0λ

4π

[
∆ωτ

1 + ∆ω2τ 2

]
. (3.7)

For light propagating in a medium of thickness d and with a complex refractive

index n(ω) + ik(ω), the emerging signal is given by [32]

A(ω, d) = A(ωs, 0) exp

[−2πk(ω)d

λ

]
exp

[
i(

2πn(ω)

λ
)d

]
. (3.8)

Similarity is immediately observed between (3.5) and (3.8), where the photorefrac-

tive gain coefficient Γ(∆ω) corresponds to −k(ω) and the unit length phase shift

Q(∆ω) corresponds to n(ω). Therefore, the previous discussions on ultraslow light

also apply to the photorefractive two-wave mixing case. Compared to other ultraslow

light demonstrations, the only difference in the photorefractive implementation is the

delayed signal is amplified rather than attenuated. Following the same procedures

in [27], the group velocity of the probe beam in photorefractives is derived

vg(∆ω) =
c

n + c dQ/dωs

≈ 2[1 + ∆ω2τ 2]2

Γ0τ [1−∆ω2τ 2]
. (3.9)

Fig. 14 shows the normalized gain coefficient, the unit length phase shift and the

group velocity of the probe beam as functions of ∆ω.

A small group velocity is evident in Fig. 14 for the probe beam within the pass-

band of the two-wave mixing gain. It can be estimated at the zero frequency detune
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Fig. 14. Characteristic performances of the photorefractive two-wave mixing. Nor-

malized group velocity, unit length phase shift, and two-wave mixing gain

coefficient of the probe beam as functions of its frequency detune from the

pump beam.

in (3.9)

vg(0) =
2

Γ0τ
, (3.10)

which gives the delay-time Td of the probe beam through the crystal

Td ≈ d

vg(0)
=

Γ0τd

2
. (3.11)

The signal gain G is available through (3.5) and (3.6)

G(∆ω) ∝ exp

[
Γ0d

1 + ∆ω2τ 2

]
, (3.12)
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the 3dB bandwidth of which is

BW =
1

πτ

√
ln 2

Γ0d− ln 2
(Hz). (3.13)

Equations (3.11) and (3.13) predict the delay-time-bandwidth product is indeed a

constant in the slow light effects by photorefractive two-wave mixing

TdBW =
Γ0d

2π

√
ln 2

Γ0d− ln 2
. (3.14)

It once again confirms that there is a physical limit for the capacity (number of

pulses to be handled) of all optical delay lines and buffers. High data rates and long

delay time cannot be achieved simultaneously. A fast-changing signal forced through

such devices will experience severe distortions at the output. A deceptive solution

may be posed by (3.13) to increase the delay-time-bandwidth product by increas-

ing Γ0d. But it would destroy the slow light device before there are any significant

changes in the delay-time-bandwidth product, since the optical power grows exponen-

tially according to Γ0d. The limitations in a single slow light element incite us to look

into solutions by multiple slow light elements. In the next section, the proposed ar-

chitecture of artificial inhomogeneous broadening will be applied to a photorefractive

crystal to improve the distorted output, i.e., the delay-time-bandwidth product.

D. Photorefractive demonstration of artificial inhomogeneous broadening

For photorefractive crystals, the pulse-delay effect is well known and has been applied

to optical delay lines [52]. Recently, room temperature slow light were also demon-

strated by photorefractive two-wave mixing [19, 26, 27]. However, no solutions were

attempted to address the pulse distortion problems (limited delay-time-bandwidth

product). In our experiment, Ce:BaTiO3 [29] was used to demonstrate the pulse
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delay and moreover the proposed scheme of artificial inhomogeneous broadening to

correct the pulse distortions. The concept will be illustrated with two channel and

three channel systems respectively.

Fig. 15 shows the experimental setup of a two channel system. A collimated 532

nm Nd:YAG laser (Compass 315M-100, Coherent Co.) was split into a probe beam

(S) and two pump beams (P1 and P2). The beams intersected in a Ce:BaTiO3 crystal

(7.73 x 7.04 x 4.8 mm, Photox Opt. Sys.) with an angle about 40◦ between S and

P2, 15◦ between P2 and P1, 30◦ between P1 and the C-axis of the crystal, respectively.

The photorefractive crystal also worked as a holographic beam combiner. Hence,

a single outgoing beam was formed by joining the two-wave mixing output from S

and P1, and an independent one from S and P2. The independence between these

two processes are guaranteed by the Bragg selectivity due to the angular separation

between P1 and P2 [30]. A photodiode (PDA400, Thorlab Inc.) was used to detect the

output signal, and the time domain waveforms were recorded by a digital oscilloscope

(TDS640A, Tektronix). Photos of the apparatus are shown at the end of this chapter.

All the incident waves were p-polarized (polarizations parallel to the optical ta-

ble). The typical beam intensity were about 6.5mW/cm2 for the S beam, 637mW/cm2

for the P2 beam, and 716mW/cm2 for the P1 beam, respectively. Under this condi-

tions, preliminary measurements gave the rising time τ = 3.5s and Γ0 = 6.2cm−1.

These two measurements allowed theoretical calculations of the group velocity by

(3.10), the delay time by (3.11), the 3dB bandwidth by (3.13) and the delay-time-

bandwidth product by (3.14). They are listed in Tab. II. It is interesting to note that

the predicted delay-time-bandwidth product is only 0.261, much less than 1. That

means any number of delayed pulses, even if just a single delayed pulse, would suffer

from significant distortions. It made the crystal an ideal candidate for demonstrating
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Fig. 15. The experiment layout of slow light in photorefractives. P1 ∼ Pn are pump

beams. Each one of them will involve in a two-wave mixing with the signal

beam respectively. The multiple two-wave mixing processes serve as the multi-

ple slow light channels as proposed in the artificial inhomogeneous broadening

architecture.

the pulse distortion problems in slow light.

In the experiment, the S beam was gated by an acoustic-optics-modulator (AOM,

1206C, Isomet Co.) to generate a rectangular pulse with 1 second duration and a

0.025 Hz repetition rate. The optical frequency detunes ∆f1 and ∆f2 from the S

beam carrier, are introduced respectively by the other two AOMs in the paths of P1

and P2 beams.

First of all, the ultraslow light was demonstrated by applying the S beam and

P2 beam only, with ∆f2 = 0. The top trace of Fig. 16(a) shows the output signal has

a peak about 3 seconds lagging behind the input. The group velocity is estimated to

be around 1.6 mm/s, which is in agreement with the predicted ballpark number in

Tab. II. The delayed signal is badly distorted, as predicted by the small delay-time-
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Table II. Predictions of the group velocity, the delay time, the 3dB bandwidth and

the delay-time-bandwidth product for the slow light experiment using the

Ce:BaTiO3 crystal, based on preliminary measurements of τ = 3.5s and

Γ0 = 6.2cm−1.

Group velocity Delay time 3dB bandwidth Delay-time-bandwidth

(mm/s) (s) (Hz) product

0.992 5.208 0.0501 0.261

bandwidth product in Tab. II.

Next, we show the simultaneous slow down of two frequency components in the

input. This was done by applying the s, P1 and P2 beams simultaneously, where

∆f1 ≡ 0 and ∆f2 was varied among 0.19 Hz, 0.3 Hz, 0.54 Hz, 0.66 Hz and 0.78 Hz.

Now two accentuated harmonics were recovered in the delayed output. A beating

between them was supposed to follow. This was indeed observed in experiment, as

shown by the traces below the top one in Fig. 16(a). The beating frequencies matched

the aforementioned ∆f2, as expected.

If more harmonics are recovered in the delayed output, the pulse shape can

be furthered improved. This was demonstrated by adding a third pump beam P3

with frequency detune ∆f3 in the setup. The frequency detunes were ∆f1 = 0,

∆f2 = 0.4Hz, and ∆f3 = 0.54Hz. The pump beams P1, P2 and P3 were adjusted

to come in 54◦, 49◦, and 42◦ in regard to the c-axis, respectively. The experimental

results are presented in Fig. 16(b). The top three traces are the output signals

when any two of the three pump beams were on, and are similar to the beating

delayed outputs in Fig. 16(a), except that the signal to noise is degraded because

each available pump power was further diluted by introducing P3. The next trace

below is the output signal when all three pumps were on. It has a peak delayed by
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almost the same time, and is beginning to show a sharper peak. In comparison, the

bottom trace with circles shows the theoretically predicated output I123s(t) for the

three-pump-beam case, which is synthesized by

I123s(t) = I12s(t) + I23s(t) + I13s(t)− I1s(t)− I2s(t)− I3s(t). (3.15)

Here the subscripts identify by which beams the output was produced, for example,

I12s(t) is the output intensity when the S, P1 and P2 beams are present. I123s(t) can

be computed, once all the terms on the right hand side of (3.15) are measured with

procedures described previously. As Fig. 16(b) shows, the calculated waveform is in

approximate agreement with the experimental one.

Fig. 16 shows experimental results from two-channel and three-channel systems

of artificial inhomogeneous broadening to correct the pulse distortion. It suggests

that the output pulse shape can be improved further if more detuned pump beams of

adequate powers are available. Unfortunately, we are unable to demonstrate that in

experiments due to limited budgets. A simulation of six-pump-beam case is presented

in Fig. 17 to support our argument. The calculation is similar to (3.15). This is

done by noting that the beating terms I12s(t), I23s(t) and I13s(t) in (3.15), rather

than measured directly, can be calculated from I1s(t), I2s(t) and I3s(t) by translation

operations and summations in the Fourier transform domain. Thus, I123s(t) can

be calculated solely from I1s(t), I2s(t) and I3s(t). This procedure can be extended

to the six-pump-beam case, where I1s(t) ∼ I6s(t) were obtained at ∆f1 = 0Hz,

∆f2 = 0.19Hz, ∆f3 = 0.3Hz, ∆f4 = 0.54Hz, ∆f5 = 0.66Hz and ∆f6 = 0.78Hz,

respectively. The simulated output in Fig. 17 has a pulse width about 1 s and a

delay time about 4 seconds. The improved pulse shape implies a system bandwidth

of at least 2 Hz, which is a significant improvement over the 0.05 Hz in Tab. II. The

delay-time-bandwidth product also increases from 0.26 to around 8.
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E. Summary of the slow light delay-time-bandwidth product

In conclusion, we have proposed a general technique to solve the delay-time-bandwidth

limitation in solid-state room-temperature slow light. To demonstrate proof of prin-

ciple, we have performed an experiment in a Ce:BaTiO3 crystal (photos of the setup

in Fig. 18 and Fig. 19), wherein two to three spectral components of an input optical

pulse were simultaneously slowed. A theoretical projection for multiple pump beams

shows that the effective delay-time-bandwidth product can be significantly extended

with this approach.
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(a) (b)

Fig. 16. Experimental demonstration of artificial inhomogeneous broadening in ultra-

slow light. Demonstrated is the simultaneous slowing of up to three Fourier

components of signal beam S, which is a rectangle pulse with a duration of

1 second and a repetition time of 40 seconds. (a) Output pulses when two

pump frequencies are used. From top to bottom, P2 is detuned away from

P1 by 0, 0.19, 0.3, 0.54, 0.66 and 0.78 Hz, respectively. (b) Detailed analysis

of the case when three pump beams are used. P2 and P3 are detuned away

from P1 by 0.4 Hz and 0.54 Hz, respectively. The top three curves are the

output pulses when two of the three pump beams are applied, respectively.

The next trace is the output when all the three pump beams are turned on.

The bottom trace, with circles, is a theoretical prediction corresponding to

the three frequency data.



48

Fig. 17. Simulated improvement of the pulse distortion in ultraslow light. The simu-

lation is based on six repeated measurements of two-wave mixing between a

single probe and a single pump. The frequency detunes of the pump beams

in these six measurements are ∆f1 = 0Hz, ∆f2 = 0.19Hz, ∆f3 = 0.3Hz,

∆f4 = 0.54Hz, ∆f5 = 0.66Hz and ∆f6 = 0.78Hz, respectively.
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(a)

(b)

Fig. 18. (a) Optics setup for the ultraslow light demonstration. (b) Close-up of the

Ce:BaTiO3 photorefractive crystal mounted on a rotation stage.
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Fig. 19. Electronics in the ultraslow experiment for light modulation and detection.
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CHAPTER IV

SURFACE PLASMONIC NANO WAVEGUIDES AND COUPLING ANTENNAS∗

A. Overview

Surface plasmon (SP) wave is the coupled oscillation of electrons and electromagnetic

waves that are tightly bound to metal surfaces. The tight focus of the field introduces

many novel optical phenomena which promises applications for the information age

to come [38,39]. For example, superlens has been demonstrated using SP effect that

could resolve details below the diffraction limit [42], which may be used for near-

field nano-lithography as well as microscopy. SP structures have also been used to

enhanced light emission efficiencies in light emitting diodes (LEDs) by 32-fold [53],

organic LEDs (OLEDs) [54] and lasers [41], which may serve as superior light sources

for displays, communications and remote sensing. Highly directional beam forming

has also been reported by utilizing the SP waves in hole arrays [55], which can boost

the performance of optical sources and detectors.

One fundamental device of special interests is the SP waveguide. Their geome-

tries may be simple, but they will be the building blocks of the future SP subwave-

length circuits. Active research have been going on to understand their operations

and identify potential applications. For example, Takahara et al. proposed SP guides

based on circular metal fibers of nano scale (around 100 nm or below) diameters [56].

Such wires were suggested for making single photon sources [57].

Major concerns for SP waveguide performances are the mode size and propaga-

∗Part of the data reported in this chapter is reprinted with permission from
“Plasmon-atom coupling for suppression of spontaneous emission” by Z. J. Deng,
C.-S. Shin, and P. R. Hemmer, 2005, Proceedings of SPIE, vol. 5842, pp. 277-281,
c©2005 SPIE.
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tion loss. SP waveguides can achieve mode sizes well below the wavelength, which

are probably the most significant advantage over their dielectric counterparts. How-

ever, SP waveguides suffer more from the propagation attenuation, because metals

are lossier than dielectrics. These two qualities are hard to optimize simultaneously.

To make things worse, it is still a challenging task to characterize the mode sizes and

losses for nano SP waveguides, which are important for many applications that have

been proposed. This is attributed to the difficulties in the designing, fabricating and

testing of such tiny waveguides. The design problems are due to the lack of mature

computation methods for arbitrary SP structures that are accurate, fast and easy to

implement. It is another problem to fabricate devices at the nano scale in a precise

and repeatable manner. Testing of a single nano device is also in question due to the

weak signal, which is in turn caused by the coupling issue of the small device to the

much larger outside world. Tab. III compiles the recent progress on SP waveguides.

Table III. Summary of recent research on surface plasmon waveguides. ?: depending

on metals and exact dimensions; ∗: depending on coupling alignments; †:
experimental; ‡: theoretical.

Ref. Size Range λ Notes

(µm) (µm) (nm)

[58–60] ∼ 8× 0.02 ∼ 1000? 1.55 Simulated by the method of lines.

Made by photolithography. End-fire

coupled to fibers. Poor localization.

[61,62] ∼ 1× 0.07 < 10 0.633 No rigorous calculation. Asymmetric

cladding. Made by photolithography

or EBL. Prism coupled.

[63,64] 0.09× 0.03 0.2 0.633 Simulation by FDTD.
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Table III. (continued)

Ref. Size Range λ Notes

(µm) (µm) (nm)

×0.03 Asymmetric cladding. Made by EBL.

chain Excited by NSOM.

[65,66] 0.2× 0.05 2.5 0.800 No rigorous calculation. Asymmetric

cladding. Made by EBL. Prism

coupled to a tapered strip.

[67] 0.6× 1 90 ∼ 250∗ ∼ 1.5 Calculation by effective index method.

V groove No cladding. Made by focused ion

beam. End-fire coupled to fibers.

[68] 0.73× 1 1.5† 0.633 Simulation by FDTD.

wedge 2.25‡ No cladding. Made by focused ion

beam. Coupled to in-plane apertures.

[69,70] 6.2× 0.3 50† ∼ 1.6 Simulation by FDTD. Si/Au/air.

320‡ Made by lithography. Excited as a

whole by a tapered fiber in parallel.

[71] 0.23× 0.12 4.0 0.785 Simulation by FDTD. Made by

dot focused ion beam. Excited at

chain the focus of a SP condenser.

[72] 0.25× 0.05 2.0 0.532 Calculation with dipole models. Made

by focused ion beam. Excited at

the focus of a SP condenser.

[73] 0.02 N/A 0.532 No rigorous calculation. Made
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Table III. (continued)

Ref. Size Range λ Notes

(µm) (µm) (nm)

0.820 by template-directed electrosynthesis.

Excited by a total internal

reflection objective.

If a tightly bound mode is supported by a SP waveguide, a general observation

is that the propagation loss will increase as the cross-section shrinks. As shown

in Tab. III, the reported propagation lengths do not exceed two microns so far for

subwavelength waveguides in the visible spectrum [72]. The waveguide width was 250

nm, about half of the wavelength. However, the propagation length is much longer in

the infrared (IR) region. It is due to the fact that the optical properties of metals are

highly dispersive across visible and IR domain. As the wavelength goes up, the field

is more displaced into the low-loss dielectric cladding rather than the lossy metal.

Extremely long travel range was reported with a strip that has a width five times of

the telecommunication wavelength in the test [60].

For applications in detectors and light sources, it is desirable to have a field

concentration as high as possible. We will look into a nano SP waveguide working in

the visible with critical dimensions in the 100 nm regime or bellow, where few attempts

have ever been made. Its propagation loss will be characterized, as the importance has

been emphasized already. This is possible by introducing a novel coupling mechanism

between the nano waveguide and the conventional diffraction-limited optics. Tab. III

evidently shows the commonplace end-fire coupling with fibers is challenged by its

large mode size mismatch to the ever decreasing SP waveguides [67]. Special coupling
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techniques have been used, such as hole/dot array condensors [71, 72] and apertures

[68]. We will apply the grating coupler concept to design the couplers.

Since the field is strongly focused in SP devices in general, variations in the struc-

ture dimensions can affect the performance significantly. Accurate simulations and

precise fabrications are required to guarantee predictable optical responses. Numeri-

cal techniques are widely used to analyze the devices, such as the finite difference in

time domain (FDTD) method. Tools in semiconductor research are strongly favored

for making them, such as electron beam lithography (EBL) and focused-ion-beam

(FIB) milling. They are mature technologies for making nano devices, and more im-

portantly, prototypes fabricated this way can be easily transferred to manufacturing

processes in integrated circuit (IC) industry. In regard of these issues, we will use

FDTD and the Galerkin method to design the devices, and use EBL to fabricate

them.

Here is the organization of this chapter. In section B, theories of surface plasmon

will be reviewed. In section C, experiment details will be covered. Discussions on the

measurement results will also be presented. In section D, a study will be presented

on the interaction between an atom and the SP waveguide. The last section will

conclude this chapter.

B. Design of the surface plasmon waveguide and couplers

The dielectric constants of metals can be explained classically by the Drude model of

free electron dipolar oscillations under an external field

ε = ε′ + iε′′ = 1− ωp

ω2 + iΓω
, (4.1)
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where ω is the angular frequency of the external field, ωp is the plasma frequency rep-

resenting the ensemble inertia of the free electron gas, and Γ is the collision frequency

representing the loss caused by the inter-electron collisions [74]. Experimentally mea-

sured values approximately follow (4.1). But there are noticeable deviations in the

visible region for copper and gold. Quantum mechanically, it is due to the interband

absorptions by these metals, which give the reddish and golden colors [43]. Silver is

believed to be the best metal for surface plasmon experiments in the visible spectrum,

not only because it fits the Drude model to a high degree, but also because it has the

lowest loss among metals in this wavelength range. For geometries bigger than 20 nm,

the Drude model packages the optical properties of metals in the convenient form of

dielectric constants. Quantum effects become prominent for smaller structures, where

the dielectric constant becomes case dependent [43]. In our research, the device size

will be bigger than 20 nm. The Drude model is still a convenient and good choice

for the design purpose. At the target wavelength of 632 nm, the measured dielectric

constants of silver are not consistent in literatures [75, 76]. We will use -15.78+1.07i

in the calculations [75]. The plasmas frequency 1.2175× 1016 rad/s and collision fre-

quency 1.8869× 1014 Hz were inferred to fit the Ag permittivity at the wavelength of

632nm.

The simplest SP waveguide is probably the interface between a semi-infinite di-

electric medium and a semi-infinite bulk metal, along which the SP wave propagates.

A straightforward treatment with Maxwell equations reveals the field decays expo-

nentially in both directions that are perpendicular to the interface [31]. Thus the field

is highly concentrated around the surface. The propagation constant of the surface

wave is

k = k′ + ik′′ =
ω

c

√
εmεd

εm + εd

≈ ω

c

√
ε′mεd

ε′m + εd

+ i
ω

2c

(
ε′mεd

ε′m + εd

)3/2
ε′′m

(ε′m)2
, (4.2)
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where εm = ε′m + iε′′m is the dielectric constant of the metal, and εd is the dielectric

constant of the surrounding medium. In the visible and IR, ε′m < ε′m + εd < 0 in

general. Therefore,

k′ >
ω
√

εd

c
, (4.3)

where the right hand side is the propagation constant of plane waves in the dielectric

medium. The momentum mismatch in (4.3) prevents the SP from radiative loss into

the open space. The propagation length, as given by the inverse of k′′, not only

depends on the loss property of the metal, but also on the permittivity contrast

between the metal and the dielectric. Moreover, it can qualitatively explain the

pronounced growth of traveling range in IR. Metal permittivities are generally highly

dispersive across visible and IR, where |ε′m| and |ε′′m| both increase rapidly as the

wavelength grows. Accordingly, the k′′ drops hard due to the nonlinearly diminishing

term ε′′m/(ε′m)2 in (4.2). In the physical picture, the rapid increase in |ε′m| and |ε′′m|
leads to a field more displaced to the loss free dielectric side rather than the lossy

metal, reducing the dissipations. Although we arrive at the above conclusions in

a very simple SP waveguide, they repeat themselves in more complicated guiding

structures.

Among the planar circuits that can be fabricated by EBL, the most simple SP

waveguide is probably a rectangular silver wire embedded in a dielectric medium.

Although it sounds simple, no demonstration has been made for such nano waveguides

working in the visible spectrum. It is the goal of our project to accomplish that. To

couple the waveguide to conventional diffraction-limited optics such as a microscope

objective, a tapering structure is first designed at both ends of the wire to enable

a smooth transition from the subwavelength waveguide mode size to the focus size

of an objective that is on the order of the wavelength. The tapering structures are



58

then connected to grating couplers (antennas), which convert the SP wave into out-

of-plane optical waves that can be collected by the objective, and vise verse. In order

to do this, the grating period Λ has to be matched to the the SP wavelength λsp

Λ = λsp . (4.4)

Detailed designs and performance optimizations of the device relies on solving the

Maxwell equations.

Unfortunately, the close form solutions of the Maxwell equations are only avail-

able in rare cases. The mathematical solutions are usually too complicated to handle

without the help of computers. Previously when SP research was more focused on no-

ble metal particles and their clusters, the transfer matrix method [32] and the discrete

dipole approximation method [77] were two popular algorithms for simulations . Now

our interests move from particles to waveguide and couplers. It makes more sense to

follow the paths of integrated optics and microwave simulations, where similar devices

are well-studied [78, 79]. Promising numerical techniques are the finite difference in

time domain (FDTD) method and the Galerkin method. The FDTD method is a

very popular technique which is a direct discrete emulation of the Maxwell equations

in the time domain. It is computational intensive, but versatile to address almost any

problems including waveguides and grating couplers. The Galerkin method was de-

signed to analyze optical dielectric waveguides in the harmonics domain by expanding

the field into Fourier series and reducing it to a standard matrix eigenvalue problem.

It is fast and simple in handling waveguides. A comparison of these two methods will

give more insights into the simulations of SP devices. The next two subsections will

describe the waveguide and couplers design with FDTD and the Galerkin method,

respectively.
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(a) (b)

Fig. 20. Schematic of the SP waveguide in FDTD simulation: (a) top view; (b) back

view of the 100nm × 50nm cross-section. The 6.3µm long silver core is em-

bedded in MgF2.

1. FDTD simulations of a rectangular SP waveguide and grating antennas

Finite difference in time domain method was first proposed by Yee in 1966 to directly

emulate the evolution of the electromagnetic field in a leap-frog manner. It can

simulate almost any geometries as long as the material model is provided. FDTD has

been applied to electromagnetic problems in microwave and photonics [80]. A popular

commercial tool in the microwave society is CST Microwave Studio, which implements

FDTD in three dimensional (3D) space. The Drude model was incorporated in the

simulator recently. It is a widely used model for metallic structures greater than 20

nm. Therefore, it is chosen to simulate the waveguide and grating couplers. Fig. 20

shows the waveguide in simulation. The rectangular cross-section is 100nm× 50nm.

In the simulation, the strip length is 6.3µm. The surrounding medium is MgF2, which

has a refractive index of 1.38, or a dielectric constant of 1.9044 [75].

The resulting lowest loss mode is dominantly polarized in the plane and perpen-



60

Fig. 21. SP wave propagation along the Ag wire in the top view. Only the dominant

polarization is shown here. The electric field is primarily in the plane and

perpendicular to the axis.

dicular to the axis. Fig. 21 shows the SP wave propagation along the axial direction

in the top view. The attenuation is clearly seen due to the metallic loss. It is deter-

mined to be 1.8dB/µm. Fig. 22 shows the grating that couples the SP wave to free

space radiations. The SP wave is first spread out by coupling to neighboring strips

(with a spacing of 200 nm) parallel to the waveguide. It is then fed to a grating

area to be converted into outgoing waves in the direction normal to the plane. The

grating vector must be equal to the SP propagation vector to do this, which means

the periodicity of the grating in the axial direction is equal to the SP wavelength

of 436 nm in the simulated mode. Thus the wavelet scattered by each island in the

gratings area will add up constructively in the surface normal direction. Fig. 22(c)(d)

shows polarization sensitiveness of the grating radiation. There is a main lobe along

the out-of-plane direction in the radiation pattern of the dominant polarization, while
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the cross polarization is suppressed in radiation. It implies the grating coupler may

function as a polarizing mode-selector.

(a) (b)

(c) (d)

Fig. 22. Radiation far field of the grating coupler. (a) perspective overview of the

grating coupler; (b) propagation of the dominant polarization in the grating

area, top view; (c) the radiating far field of dominant polarization in the

perspective overview; (d) the radiating far field of the component cross to the

dominant polarization in the perspective overview.

2. Galerkin analysis of rectangular SP waveguides

Although FDTD is versatile and able to obtain simulation results at different fre-

quencies simultaneously, it has well-known drawbacks of huge memory demands and

slow computation speed, especially when the simulation domain is large in terms of

wavelength. Unfortunately, the waveguide simulation, which is a long strip running
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multiple wavelengths, falls into one of such worst categories. The problem will be

aggravated when more than one modes have to be calculated. It would be desirable

to look into some other simulation tools that have advantages on waveguide prob-

lems. Comparison would also be beneficial to clarify uncertainties about the CST

Microwave Studio, as it has not been extensively tested for SP simulations. Among

the many algorithms targeting waveguides, the mapped Galerkin method is attractive

due to the relative simplicity in implementation and fast computation speed. It is

also capable of solving multiple modes in a single run.

Henry and Verbeek proposed the scalar wave solutions for dielectric waveguides

in 1989 using the Galerkin method. The scalar wave assumption will be violated if the

permittivity contrast is high between the core and the cladding. Marcuse addressed

this problem by deriving the vectorial form of the method [81]. In both the scalar and

vector scenarios, the field is decomposed by Fourier basis functions and the Maxwell

equations are subject to projections onto each basis. The projections lead to a matrix

eigenvalue problem, where the eigenvector to be solved contains the decomposition

coefficients and the unknown eigenvalue will give out the propagation constant of the

guided mode. The aforementioned projections were calculated by integrals over a large

but limited domain as suggested by Marcuse, which is at odds with the open space

that surrounds the waveguide in reality. This question was answered by Hewlett and

Ladouceur, though in the scalar case only. The open space including the waveguide

is first mapped to a unit square in a transformed domain. The Galerkin method is

then applied to solve the problem in the mapped domain [82]. Recently, Xiao et al.

extended the mapped Galerkin method to the vectorial case using an electric (E)

field formulation, to analyze guided modes in optical dielectric waveguides including

rectangular ones [45].

The SP waveguide has a dielectric constant with a different sign from that of the
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cladding. It seems Xiao’s formulation is closest to what we need. A caveat has to

be pointed out here, that the E field component normal to the waveguide/cladding

interface will change sign across it, as enforced by Gauss’s law. Such a disruptive

change will result in a slow convergence of the Fourier series decomposition, which

has not been encountered in the previous research on dielectric waveguides. Therefore,

we will derive our own vectorial formulation of the mapped Galerkin method based on

the magnetic (H) field, which is continuous across the waveguide/cladding interface.

a. H-field formulation of the mapped Galerkin method

Fig. 23(i) shows the cross-section of the rectangular SP waveguide. The metal core

size is 2a0 × 2b0 and has a permittivity of εm. The surrounding dielectric medium

has a permittivity of εd. The time harmonic (assuming exp−jωt) form of Maxwell

equations are

∇× E = jωµH , (4.5)

∇×H = −jωεE , (4.6)

where µ is the permeability, and

ε = ε(x, y) =





εm −a0 ≤ x ≤ a0 and − b0 ≤ y ≤ b0

εd otherwise
(4.7)

is the spatial distribution of the permittivity that is axial independent.

Equations (4.5) and (4.6) can be combined to yield

∇2H + ω2µεH− jω∇ε× E = 0 . (4.8)
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Fig. 23. Transforming the rectangular cross-section of the SP waveguide in

the mapped Galerkin method: (i) in the original (x, y) domain;

(ii) in the transformed (ξ, η) domain. The waveguide core region

{−a0 ≤ x ≤ a0,−b0 ≤ y ≤ b0} is metal with a permittivity of εm. It

is embedded in a dielectric medium of permittivity εd. The transformation

mapped {−∞ ≤ x ≤ ∞,−∞ ≤ y ≤ ∞} to {0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}, and

{−a0 ≤ x ≤ a0,−b0 ≤ y ≤ b0} to {ξ1 ≤ ξ ≤ ξ2, η1 ≤ η ≤ η2}.

Note that the guided mode of the waveguide assumes the general form of

E = U(x, y) expjγz , (4.9)

H = V(x, y) expjγz , (4.10)

where γ = α + jβ is the propagation constant.

It can be shown that any two of the six components in U and V can derive the
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other four, for example,

Ux =
γ

ωε
Vy − 1

ωεγ

(
∂2Vx

∂x∂y
+

∂2Vy

∂y2

)
, (4.11)

Uy = − γ

ωε
Vx +

1

ωεγ

(
∂2Vx

∂x2
+

∂2Vy

∂x∂y

)
, (4.12)

Uz =
−j

ωε

(
∂Vx

∂y
− ∂Vy

∂x

)
, (4.13)

Vz =
j

γ

(
∂Vx

∂x
+

∂Vy

∂y

)
. (4.14)

Thus (4.8) becomes

∂2Vx

∂x2
+

∂2Vx

∂y2
+ (ω2µε− γ2)Vx − 1

ε

∂ε

∂y

(
∂Vx

∂y
− ∂Vy

∂x

)
= 0 , (4.15)

∂2Vy

∂x2
+

∂2Vy

∂y2
+ (ω2µε− γ2)Vy +

1

ε

∂ε

∂x

(
∂Vx

∂y
− ∂Vy

∂x

)
= 0 . (4.16)

Next the infinite x− y plane is mapped to a unit square {0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1}
on the ξ − η plane by the following transformation

x = a tan[π(ξ − 1/2)] , (4.17)

y = b tan[π(η − 1/2)] , (4.18)

where a and b are mapping parameters that can affect the convergence of the solution

and will be discussed later. The rectangular metal core preserves its shape on the

ξ − η plane as shown in Fig. 23(ii), where

ξ1 =
1

2
− 1

π
tan−1 a0

a
, (4.19)

ξ2 =
1

2
+

1

π
tan−1 a0

a
, (4.20)

η1 =
1

2
− 1

π
tan−1 b0

b
, (4.21)

η2 =
1

2
+

1

π
tan−1 b0

b
. (4.22)
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The mapping also changes (4.15) and (4.16) into

∂2Vx

∂ξ2

(
dξ

dx

)2

+
∂Vx

∂ξ

d2ξ

d2x
+

∂2Vx

∂η2

(
dη

dy

)2

+
∂Vx

∂η

d2η

d2y

+(ω2µε− γ2)Vx − 1

ε

∂ε

∂η

dη

dy

(
∂Vx

∂η

dη

dy
− ∂Vy

∂ξ

dξ

dx

)
= 0 , (4.23)

∂2Vy

∂ξ2

(
dξ

dx

)2

+
∂Vy

∂ξ

d2ξ

d2x
+

∂2Vy

∂η2

(
dη

dy

)2

+
∂Vy

∂η

d2η

d2y

+(ω2µε− γ2)Vy +
1

ε

∂ε

∂ξ

dξ

dx

(
∂Vx

∂η

dη

dy
− ∂Vy

∂ξ

dξ

dx

)
= 0 , (4.24)

where

dξ

dx
=

1

2πa
[1− cos(2πξ)] , (4.25)

d2ξ

dx2
=

1

2πa2
sin(2πξ) [1− cos(2πξ)] , (4.26)

dη

dy
=

1

2πb
[1− cos(2πη)] , (4.27)

d2η

dy2
=

1

2πb2
sin(2πη) [1− cos(2πη)] . (4.28)

If a vector V is defined

V = [Vx, Vy]
T , (4.29)

(4.23) and (4.24) can be rearranged into

ΦV = γ2V , (4.30)
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where

Φ =



A B
C D


 , (4.31)

A =

(
dξ

dx

)2
∂2

∂ξ2
+

d2ξ

d2x

∂

∂ξ
+

(
dη

dy

)2
∂2

∂η2
+

d2η

d2y

∂

∂η

+ω2µε− 1

ε

∂ε

∂η

dη

dy

dη

dy

∂

∂η
, (4.32)

B =
1

ε

∂ε

∂η

dη

dy

dξ

dx

∂

∂ξ
, (4.33)

C =

(
dξ

dx

)2
∂2

∂ξ2
+

d2ξ

d2x

∂

∂ξ
+

(
dη

dy

)2
∂2

∂η2
+

d2η

d2y

∂

∂η

+ω2µε− 1

ε

∂ε

∂ξ

dξ

dx

dη

dy

∂

∂η
, (4.34)

D = −1

ε

∂ε

∂ξ

dξ

dx

dξ

dx

∂

∂ξ
. (4.35)

The guided mode solutions in the transformed domain are available by solving

(4.30) with the boundary condition that V must be zero at the edges of the outer

square in Fig. 23(ii), which implies the guided modes must be bounded and be zero

at infinity in the original domain.

The unknown Vx and Vy can be represented by a series of orthonomal sinusoidal

functions

Vx =
M∑

m=1

L∑

l=1

2 sin(mπξ) sin(lπη)cx
ml , (4.36)

Vy =
P∑

p=1

Q∑
q=1

2 sin(pπξ) sin(qπη)cy
pq . (4.37)

All the sinusoidal basis functions satisfy the boundary condition of being zero at the

perimeter of the outer square in Fig. 23(ii). Thus a solution to (4.30) in the form of

(4.36) and (4.37) is implicitly guaranteed to be a guided mode. For convenience in
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formulation, (4.29), (4.36) and (4.37) are combined in the matrix form

V =




Vx

Vy


 =



F 0

0 G







Cx

Cy


 = ΨC , (4.38)

where

F = [f11, f12, . . . , f1L, . . . , fml, . . . , fM1, fM2, . . . , fML] , (4.39)

fml = 2 sin(mπξ) sin(lπη) , (4.40)

G = [g11, g12, . . . , g1Q, . . . , gpq, . . . , gP1, gP2, . . . , gPQ] , (4.41)

gpq = 2 sin(pπξ) sin(qπη) , (4.42)

Cx = [cx
11, c

x
12, . . . , c

x
1L, . . . , cx

ml, . . . , c
x
M1, c

x
M2, . . . , c

x
ML]T , (4.43)

Cy =
[
cy
11, c

y
12, . . . , c

y
1Q, . . . , cy

pq, . . . , c
y
P1, c

y
P2, . . . , c

y
PQ

]T
, (4.44)

Ψ =



F 0

0 G


 , (4.45)

C = [Cx, Cy]T . (4.46)

Next, the sinusoidal expansion of the magnetic field V (4.38) is applied to the

field equation (4.30), so that

ΦΨC = γ2ΨC . (4.47)

Ψ actually forms a series of extended basis functions for vector V . Based on these

extended basis functions, a projection operator can be defined as
∫ 1

0
dξ

∫ 1

0
dηΨT . It

can be shown that the projection operator and the extended basis Ψ still satisfy the

orthonormal condition ∫ 1

0

dξ

∫ 1

0

dηΨT Ψ = I , (4.48)

where I is an identity matrix of dimension (ML + PQ)× (ML + PQ). Applying the
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projection operator to both sides of (4.47), we obtain

ΘC = γ2C , (4.49)

where

Θ =

∫ 1

0

dξ

∫ 1

0

dηΨT ΦΨ (4.50)

is a matrix of dimension (ML + PQ)× (ML + PQ).

Equation (4.49) is a standard eigenvalue problem of matrix Θ, where the eigen-

value γ2 is the square of the propagation constant, and the eigenvector C is the

expansion coefficients of the unknown magnetic field Vx(ξ, η) and Vy(ξ, η) in the trans-

formed domain. Before the eigenvalue problem can be solved, the matrix Θ must be

evaluated first using (4.31)∼(4.35), (4.39)∼(4.42) and (4.45). This can be done nu-

merically, but it turns to be too time consuming. Since the rectangular waveguide has

a simple shape, the evaluation of Θ can also be completed analytically. The process

is straightforward but too tedious to list here. After Θ is evaluated, the eigenvalue

problem can be solved with a routine in Matlab. Once Vx(ξ, η) and Vy(ξ, η) are avail-

able, the other four components of the field can be computed with (4.11)∼(4.14),

(4.25) and (4.27).

b. Numerical results

The H-field mapped Galerkin method was first calibrated with the E-field mapped

Galerkin method which Xiao et al. used to analyze rectangular dielectric waveguides.

The example in Fig. 2 of [45] is considered, where a0 = 2µm, b0 = 1µm, εm = 2.25ε0

in the waveguide core, εd = 2.1025ε0 in the cladding region, and λ = 1.15µm. Here

ε0 is the permittivity of vacuum. It is a bench mark example for several numerical

methods (e.g. [83]). The effective index neff (= γλ/2π) is inferred from [45] to be
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Fig. 24. Calibration of the H-field mapped Galerkin method. Field components of the

fundamental mode are calculated for a dielectric waveguide: (a) x polarization;

(b) y polarization. They match the results in Fig. 2 in [45].

1.4757 for the fundamental mode polarized along the long edge. The H-field mapped

Galerkin method was coded in Matlab to solve the same problem. It should be

noted here that the transformation constant a in (4.17) and b in (4.18) will affect the

convergence. Optimal values by rule of thumb are a = a0 and b = b0 for rectangular

dielectric waveguides. The expansion includes 800 terms of harmonics, i.e., M = L =

P = Q = 20. The computed effective index is 1.4832 with the H-field formulation.

The calculated mode is shown in Fig. 24, which matches Fig. 2(a)(b) in [45].

The tested program is now ready to be applied to the SP waveguide problem.

Because the SP waveguide has more confined mode profiles than the dielectric waveg-

uide, the transformation constants have to be tuned specifically to achieve conver-

gence. They were found to be a = 0.6a0 and b = 1.2b0 in our case. The matrix Φ has

dominant diagonal elements as shown in Fig. 25, which allows eigenvalue solutions by

fast iterative methods like the Arnoldi algorithm. An extra advantage of these algo-

rithms is that multiple eigenvalues (modes) can be computed in a single run. Thus
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Fig. 25. Amplitudes of the matrix elements produced by the Galerkin method. The x

and y axis indexes the row and column of an element in the matrix Φ produced

by the Galerkin method. Amplitude of the element is encoded by color. It

is a diagonal dominant matrix, which allows fast iterative algorithms to solve

the eigenvalue problem.

the lowest loss mode can be identified.

The dispersion curve and attenuation of the computed mode are shown in Fig. 26.

They were obtained with 1800 terms of harmonics, which means M = L = P =

Q = 30. With an exciting laser of 632 nm wavelength, the SP wavelength of the

guiding mode is 431nm, slightly different from the 436nm obtained by FDTD. The

propagation loss is 0.46dB/µm at this wavelength (see Fig. 26(b)) as compared to the

1.8dB/µm given by the FDTD. The computation time is shorter with the mapped
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Fig. 26. Dispersion curve and losses of the SP waveguide. (a) Dispersion curve of the

SP waveguide mode as computed by the mapped H-field Galerkin method.

It was calculated at 620 nm,625 nm, 630 nm, 632 nm, 635 nm, 640 nm, 645

nm, and 650 nm. The blue trace is the light line in MgF2. (b) The waveguide

attenuation vs. the optical wavelength.

Galerkin method, probably due to its semi-analytical nature. It took 212 seconds, in

contrast to the 42 minutes by the FDTD package. Fig. 26(a) shows the waveguide is

operating in a moderately dispersive region. The group velocity is inferred to be 0.78

of the light speed in vacuum.

Fig. 27 shows the fields of the SP waveguide mode simulated with the H-field

mapped Galerkin method. The SP waveguide mode obtained by FDTD is also plottd

in Fig. 28 for comparison. Both methods give out electric fields polarized in the x-

direction. The distribution of |Ex|, |Ey|, |Ez|, |Hx| and |Hy| in the FDTD solution are

somehow compressed or stretched in the Galerkin solution. The dominant field Ex is

more loosely bound to the metal core in the Galerkin case, probably accounting for its

lower attenuation as mentioned. A significant difference arises in the Hz component,

where additional sidebands are present away from the core.
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(a) (b)

(c) (d)

(e) (f)

Fig. 27. The SP waveguide mode computed by the H-field mapped Galerkin method:

(a) |Ex|; (b)|Ey|; (c) |Ez|; (d)|Hx|; (e) |Hy|; (f)|Hz|.
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(a) (b)

(c) (d)

(e) (f)

Fig. 28. The SP waveguide mode computed by the FDTD package: (a) |Ex|; (b)|Ey|;
(c) |Ez|; (d)|Hx|; (e) |Hy|; (f)|Hz|.
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Fig. 29. Devices laid out in GDSII format.

C. Fabrication and testing of the surface plasmon devices

The designed devices were laid out in GDSII format, as shown in Fig. 29. Electron

beam lithography was used to fabricate them. It is a well developed plannar fabri-

cation technique for making features below 100 nm [84]. Structures as small as 20

nm are possible with state-of-the-art EBL facilities [46]. Fig. 30 illustrates the EBL

process. The MgF2 substrate (MTI Corp.) was spin-coated with a thin (∼150 nm)

layer of EBL resist Polymethylmethacrylate (PMMA, 950K molecular weight, 3% in

monochlorobenzene from Brewer Science). Patterns were written on the PMMA in

the scanning electron microscope (SEM) with a 30 keV focused electron beam. They
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Fig. 30. Procedures of electron beam lithography.

were then developed in MIBK:IPA (methyl isobutyl ketone:isopropyl alcohol). Since

the PMMA is a positive tone resist, the exposed regions were removed. Next, silver

was deposited on the sample by thermal evaporation. To get rid of the undesired

PMMA capped by Ag, a lift-off step was introduced by immersing the sample in or-

ganic solvents, which dissolved the PMMA and washed it away from the substrate.

At last, 500 nm MgF2 was overcoated by thermal evaporations.

Fig. 31 is a picture of a JSM-6460 SEM from JEOL (Japan Electron Optics

Laboratory). It is the model at the Center for Nano Science and Technology (CNST),

Texas A&M University. Fig. 32 shows the patterns developed by the EBL process on

campus. Features as small as 50 nm were successfully made.

Fig. 33 shows the test setup to characterize the optical performance of the grating
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Fig. 31. EBL facility at CNST, TAMU. It is a JSM-6460 SEM from JEOL, controlled

by NPGS.

couplers and the waveguide. An s-polarized HeNe laser beam (632 nm) was passed

through a quarter wave plate to become circularly polarized. A polarization cube

was used to select the desired linear polarization. The beam was then collimated by

a telescope. A lens of 75 cm focal length was used to focus the collimated beam at

the back focal plane of an oil-immersion microscope objective (numerical aperture

1.4, Olympus), which finally delivered a tiny laser spot (∼ 1.5µm) on the sample

surface. The small laser spot selectively excited one of the grating couplers connected

to the waveguide. At this moment, illumination of the sample surface by the halogen

light would help in aligning the laser spot with the target gratings. Once aligned,

the halogen light was shut off. The incident laser was converted to SP wave by the
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(a) (b)

(c) (d)

Fig. 32. SEM micrographs of developed patterns: (a) wire arrays of 50 nm linewidths;

(b) a 100 nm wire running for more than 10µm; (c) grating couplers with the

smallest dimension of 100 nm; (d) zoom-in of (c).

gratings, which would be transmitted along the wire and re-emitted by the grating

coupler on the other end. The same objective collected the re-emitted light to cast

an image at the CCD camera (SXV-H9, Starlight Xpress Ltd.) through the beam

splitter cube and the relay lens (f = 50.2 mm). Photos of the test apparatus are

shown at the end of this chapter.

Fig. 34 shows the focus size of the exciting laser with a power around 245µW .

The spot size was about 1.5µm, to have a good size match with the grating coupler.
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Fig. 33. Optical setup to characterize the fabricated surface plasmon devices. BS:

beam splitter; ND: neutral density attenuator; NA: numerical aperture.

Fig. 34 also shows satisfactory device fabrications by the EBL and lift-off process.

Fig. 35 illustrates the laser alignment process with the illumination from the halogen

light. Fig. 35(b) shows a control device where the waveguide is missing. It was used

to determine the scattered background light when calculating the waveguide loss, as

will be discussed later.

Fig. 36(a) demonstrates the light transmission through the device. The white

arrow in the figure designates the polarization of the laser incident on the left grating

coupler. The incident laser light was converted into SP wave propagating along the

wire. The output light became visible again when the SP wave hit the right grating.

The dark region in between implies that light is tightly-bounded to the wire rather

than scattered out of the plane. Scattered light was present in the wire region of the

center image, which was caused by the waveguide roughness in that particular device.

The waveguide lengths are 5µm, 10µm and 15µm from top to bottom. The incident

light might also be scattered by the left gratings directly onto the right gratings

without going through the wire, accounting for an in-plane wireless transmission. It
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(a)

(b)

Fig. 34. Laser alignment and inspection of the SP devices. (a) The fabricated devices

were inspected with the halogen light illumination. The EBL and lift-off

quality is satisfactory. The HeNe laser spot has a diameter about 1.5µm. The

camera integration time is 100 ms. (b) The laser focus with the halogen light

off. Almost no stray light from the laser hit the neighboring device. The

camera integration time is 300 ms. The scale bar is 5µm.

would affect our characterization of the waveguide loss. To find out their contributions

in the output, control patterns were used where the wire is missing. Fig 36(b) shows

the “wireless transmission” effect. It is clear that it becomes negligible at the 15µm

range. The output in the bottom image of Fig. 36(a) is mainly due to the “wired

transmission”. The images were captured with an integration time of 300 ms. The

waveguide loss characterization is illustrated in Fig. 37. Light intensities coming

out of the output grating region (indicated with the white box) were integrated in
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(a)

(b)

Fig. 35. Laser alignment for the devices under test: (a) the input and output grating

couplers connected by the designed waveguide; (b) the control pattern with

the waveguide missing. The pictures were taken under the illumination of the

halogen light. It helps aligning the focuses of the exciting HeNe laser with

the input grating couplers, which are on the left. The bright regions over the

input couplers were due to the reflected laser light by the gratings. The wire

is 15µm long. The scale bar is 5µm.

both the wired and wireless cases. After subtracting the wireless contribution, the

attenuations by waveguides of different lengths are shown by the “2” in Fig. 38.

They are all normalized to the 5µm wire case. An attenuation curve was fitted out

of these data points, as shown by the red trace in Fig. 38. The same procedures were

repeated with the maximum light intensity in the output region. It shows similar

trends, as described by the blue trace in Fig. 38. The waveguide loss is estimated to

be 0.4 ∼ 0.5dB/µm. It is close to the 0.46dB/µm predicted by the Galerkin method,
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(a)

(b)

Fig. 36. Light transmission test of the SP waveguides: (a) complete devices; (b)

control patterns without the wires. The exciting laser was focused on the left

gratings. Light came out of the gratings on the right. The output light in (a)

is stronger than the counterpart in (b), with the difference coming from the

light transmitted by the wires. The scale bar is 5µm.
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(a)

(b)

Fig. 37. Attenuation measurements of the SP waveguides. The white boxes in the

pictures define the output region of interests, where the light intensities were

processed for (a) complete devices, and (b) control pattterns without the

wires. The processed data were used to calculate the propagation loss pre-

sented in Fig. 38. The scale bar is 5µm.
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but different from the 1.8dB/µm in the FDTD simulation. The propagation length

Lp can be calculated from the attenuation dB/µm

Lp =
10 log e

dB/µm
(µm) . (4.51)

That means a measured attenuation of 0.5dB/µm corresponds to a traveling range

of 8.7µm on our waveguide of 100nm× 50nm cross-section. In terms of the wire size

and traveling range, the closest result in the visible spectrum is 2µm traveling range

with a 250nm × 50nm waveguide ( [72],see Tab. III also), which translates to a loss

of 2.17dB/µm.
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Fig. 38. Attenuations of the output signals by waveguides of different lengths. All

data are normalized to values at 5µm. 2: total intensity of the output; .:

maximum intensity of the output. The red trace is the curve fitting of the

total intensity. The blue trace is the curve fitting of the maximum intensity.

Fig. 22(c)(d) implies the polarization sensitive behaviors of the grating couplers.
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This is confirmed by an experiment as presented in Fig. 39, where the white arrows

designate the two perpendicular polarizations in respective cases. Light was seen

coming out in Fig. 39(a) with the s-polarization, while the p-polarization failed to

produce the same output in Fig. 39(b). This supports the simulations by FDTD. The

images were captured with an integration time of 300 ms.

(a)

(b)

Fig. 39. The polarization property of the SP devices. (a) S-polarized light at 632 nm

was coupled to the gratings and transmitted by a 15µm wire. (b) Almost

no light comes out when the polarization is rotated by 90◦. The camera

integration time is 300 ms in both cases. The polarizing property match

simulation predictions. The scale bar is 5µm.

The grating couplers were designed to work with normal incident/outgoing waves,

as shown in Fig. 22(c)(d). In reality, it was found that they work best with incident

wave eight degrees from the surface normal direction. To further understand func-

tions of the grating couplers, it is also desirable to estimate its coupling efficiency.

It can be done with Fig. 34(a) and Fig. 37. The integrated light intensity in the

region (6.8µm × 6.6µm) around the focus spot is 321701 arbitrary units (AUs) in
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Fig. 34(a) after subtracting the background. Since it was caused by the reflection at

the MgF2/oil interface, the total incident intensity is inferred to be 1.3804× 108 AUs

after compensating for the reflection coefficient [74]

R =

(
nMgF2 − noil

nMgF2 − noil

)2

, (4.52)

where nMgF2 = 1.38 and noil = 1.52 are the refractive indexes for the MgF2 and

the immersion oil, respectively. After subtracting the background, the integrated

output intensity is 11385 within the white box in Fig. 37 for the 15µm long device.

By taking into account of the three times difference in integration times and the

0.42dB/µm × 15µm attenuation by the waveguide, the combined transmission is

1.214×10−4 through the input and output grating couplers. The coupling efficiency of

a single grating is approximated as
√

1.214× 10−4 ≈ 1.1%. The linear compensations

in the above estimations are valid because no saturations occur in the integration

regions in either image.

The 1.1% coupling efficiency is comparable to the best efficiency (1.6%) reported

so far for near-field scanning optical microscope (NSOM) [85]. It is achieved in our

case with an objective in the far field (> 100µm from the device surface), whereas the

NSOM delivers similar efficiencies with a taper fiber in the near-field (< 100nm to the

device surface). The enhanced coupling efficiency by the grating is also demonstrated

with Fig. 40, where image (a) shows the alignment of the laser spot with a bare

waveguide of 15µm long under the halogen illumination. Image (b) shows little light

comes out of the other end of the wire when only the laser was present. Image (c),

which is the same picture in Fig. 36(a), shows more light was emitted from the output

grating compared to the bare wire case.
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(a)

(b)

(c)

Fig. 40. Coupling efficiency enhancement by the gratings. (a) The HeNe laser spot

is aligned with one end of a 15µm wire. The camera integration time is 100

ms. (b) Almost no light comes out of the other end of the wire. The camera

integration time is 300 ms. (c) Stronger light was recorded when the wire is

connected to an input and an output gratings at both ends. The coupling

efficiency is enhanced with the grating couplers. The scale bar is 5µm.
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D. Enhanced atomic decay rates by a surface plasmon waveguide

The FDTD and mapped Galerkin solutions both confirm strong field focusing effects

by the described SP waveguide. Theoretical research also suggest strong dispersive-

ness are possible in SP waveguides, which stands for high densities of guiding modes.

According to Fermic’s Golden Rule, these two factors will both enhance the emission

rate of an atom nearby. It may found important applications in LEDs, OLEDs, quan-

tum information systems [57], and micro-lasers [86]. A plasmonic-waveguide-coupled-

atom system will be analyzed next. Enhanced emission rate will be compared with

the spontaneous emission rate in vacuum. Insights may be gained by examining the

special case of an atom coupled to the rectangular SP waveguide mode discussed

previously.

Suppose an atom is in the neighborhood of a single mode waveguide oriented

along the z-axis. The atom in the excited state |a〉 decays to the ground state |b〉
by emitting a surface plasmon of energy h̄ωab into the waveguide mode. The photon

emission rate can be estimated with Fermi’s Golden Rule [33]

Γwgd = 2π
|Dab · Ẽ(ratm)|2

h̄2 ρ(ωab) . (4.53)

Here, Dab = e〈a|r′|b〉 is the vectorial electric dipole moment of the transition and

is calculated under the nucleus-centered coordinates r
′
, ρ(ωab) is the density of SP

waveguide modes at the frequency of interests, and Ẽ(ratm) is the normalized electric

field of the waveguide mode at the atom.

We will examine the waveguide mode density first. For the time being, the

waveguide mode is approximated as lossless. The loss free assumption allows us to

follow the similar procedures in deriving the vacuum mode density [87], except that a

simpler case of one dimensional space is considered instead of the three dimensional
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one. For the SP wave traveling along a wire of a virtual length L, the propagation

vector γ

γ =
πnz

L
, (4.54)

where nz is an integer (0,±1,±2, . . . ) identifying the mode. The number of modes in

the γ space is given by

N =
L

π

∫
dγ . (4.55)

Note that dγ is related to the group velocity by

dγ =
1

vg(ω)
dω (4.56)

where vg(ω) is derived from the effective refractive index neff (ω) = cγ/ω for the

guided wave (c is the light speed in vacuum)

vg(ω) =
c

[neff (ω) + ωn
′
eff (ω)]

. (4.57)

Therefore, (4.55) is transformed into

N =
L

π

∫
1

vg(ω)
dω , (4.58)

which gives out the mode density by

ρ(ω) =
dN

dω
=

L

πvg(ω)
. (4.59)

Next, the field normalization will be undertaken. Suppose the field distribution

{E(x, y),H(x, y)} is available by solving Maxwell equations in the SP waveguide

problem, the normalization factor χ satisfies

h̄ωab =
1

2

∫
ε(r)|χE(r)|2 + µ(r)|χH(r)|2d3r

=
χ2L

2

∫ ∫
ε(x, y)|E(x,y)|2 + µ|H(x, y)|2dxdy , (4.60)
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where the axial independence of the waveguide has been utilized. Thus the normal-

ization factor χ is

χ =

√
h̄ωab

LI
, (4.61)

where

I =
1

2

∫ ∫
ε(x, y)|E(x, y)|2 + µ(x, y)|H(x, y)|2dxdy . (4.62)

Without loss of generality, the electric dipole moment is assumed to be aligned

with the local electric field at the atom. By applying the SP mode density (4.59) and

the normalizing factor (4.61), the emission rate (4.53) becomes

Γwgd =
2ωab|Dab|2

h̄vg

|E(ratm)|2
I

. (4.63)

Recall that the emission rate to vacuum modes is [87]

Γvac =
ω3

ab|Dab|2
3πh̄ε0c3

, (4.64)

the emission enhancement factor is

Γwgd

Γvac

=
3

2π

c

vg

ε0|E(ratm)|2
I/λ2

0

, (4.65)

where λ0 = 2πc/ωab is the corresponding wavelength in vacuum. By applying solu-

tions from the FDTD method, the emission enhancement is plotted in Fig. 41 for

locations across the waveguide cross-section. The maximum enhancement factor is

59 around the four corners. The figure also tells how well confined the waveguide

mode is. It suggests the propagating power is mainly confined in two regions of

100nm× 100nm on both sides of the waveguide.



91

Fig. 41. Map of emission enhancement sites over the waveguide cross-section. The

pixel color indicates the emission enhancement factor by the SP waveguide

for an atom at the site.

E. Summary of the SP waveguide and grating couplers

In summary, a surface plasmon waveguide was simulated with FDTD. A grating cou-

pler was also designed with the same software package to couple the nano wire to

the diffraction-limited optics,without which the mode size mismatch would otherwise

forbid efficient excitation and collections. A vectorial H-field formulation was derived

for the mapped Galerkin method for the first time. It was applied to analyze surface

plasmon waveguides. The mapping constants were found for the special case of SP

rectangular waveguides. Due to the diagonal-dominant nature of the resulting ma-

trix, the subsequent eigenvalue problem can be solved with a fast iterative method.

Speedup by a factor of ten was observed for the waveguide analysis by using the H-
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field mapped Galerkin method instead of FDTD. Discrepancies were present in the

simulation results obtained by the two methods. The designed devices were laid out in

GDSII format, and fabricated with electron beam lithography. Feature sizes as small

as 100 nm or below were successfully fabricated. An oil-immersion microscope (refer

to Fig. 42 and Fig. 43 for the photos) was built to characterize the optical performance

of the device. With this microscope, we were able to observe the conversion of optical

wave into SP wave by the grating antennas, or vice verse. Also observed was the SP

wave transmission by the nano wire with a cross-section of 100nm× 50nm. The SP

waveguide loss was measured to be 0.4 ∼ 0.5dB/µm, as compared to the predicted

values of 1.8dB/µm by the FDTD method and 0.46dB/µm by the Galerkin method.

That corresponds to a traveling range greater than 8.7µm. It is four times longer, and

on a wire a half narrower, than the best result reported so far in the visible spectrum.

The polarization selectiveness of the coupler was both confirmed in simulation and

experiment. The grating coupler achieved an estimated efficiency of 1%, comparable

to the best efficiency 1.6% by NSOM, but with a much longer distance between the

source and the device. The waveguide can potentially enhance the emission rate 59

folds for an atom.
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(a)

(b)

Fig. 42. (a) Optics setup for testing the SP devices; (b) Close-up of the oil-immersion

objective and the sample mounting stage in the setup.
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Fig. 43. Electronics for testing the SP devices. The device under test is displayed on

both the computer and TV monitors.
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CHAPTER V

CONCLUSIONS

In conclusion, novel optical devices for information processing have been studied in

this dissertation. First, computer-generated-holograms were proven for parallelism in

making multiple free space interconnects, which enabled the optical implementation

of the Rizvi-Zubairy associative memory model. Recalls of complete images were

demonstrated as well as recoveries from the incomplete inputs. Second, the delay-

time-bandwidth product was analyzed in room temperature slow light, which must

be solved to make all-optical delay lines and buffers applicable in reality. Optical

pulses were slowed down to 1 mm/s inside a Ce:BaTiO3 crystal using photorefractive

two-wave mixing. The pulse distortion was improved by the proposed architecture

of artificial inhomogeneous broadening. Finally, a surface plasmon waveguide was

realized with a nano silver wire working in the visible spectrum. The wire had a cross

section comparable to the smallest reported. Its guiding loss was measured to be the

lowest, only one fourth of the best reported so far. The designed antennas achieved

an efficiency comparable to the state of the art, with a distinct advantage of much

greater working distance.
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