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ABSTRACT

Infinite Dimensional Discrimination and Classification. (May 2006)

Hyejin Shin, B.S., Chonnam National University;

M.S., Seoul National University

Co-Chairs of Advisory Committee: Dr. Randall L. Eubank
Dr. Emanuel Parzen

Modern data collection methods are now frequently returning observations that should

be viewed as the result of digitized recording or sampling from stochastic processes rather

than vectors of finite length. In spite of great demands, only a few classification methodolo-

gies for such data have been suggested and supporting theory is quite limited. The focus of

this dissertation is on discrimination and classification in this infinite dimensional setting.

The methodology and theory we develop are based on the abstract canonical correlation

concept of Eubank and Hsing (2005), and motivated by the fact that Fisher’s discriminant

analysis method is intimately tied to canonical correlation analysis. Specifically, we have

developed a theoretical framework for discrimination and classification of sample paths

from stochastic processes through use of the Loève-Parzen isomorphism that connects a

second order process to the reproducing kernel Hilbert space generated by its covariance

kernel. This approach provides a seamless transition between the finite and infinite dimen-

sional settings and lends itself well to computation via smoothing and regularization. In

addition, we have developed a new computational procedure and illustrated it with simu-

lated data and Canadian weather data.
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CHAPTER I

INTRODUCTION

Discrimination methods for data classification are one of the most widely used statisti-

cal tools in various fields. Traditional statistical methods for solving discrimination prob-

lems include linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),

multiple logistic regression, nearest neighbor methods, nonparametric function estimation

methods, classification trees and neural network classifiers. In recent years, several tech-

niques have been proposed for analyzing observations with more complex structure (e.g.,

see Hastie et al., 2001).

In many real-life situations, observed data are continuous functions sampled at discrete

points. In that case, we should view the observations as the result of digitized recording

or sampling from a stochastic process rather than vectors of finite length. However, most

current classification methods ignore the inherent nature of functional type data and simply

treat it as readings on a high dimensional multivariate vector.

Recent work that actually treats functional data from a random curve perspective in-

cludes Hall, Poskitt, and Presnell (2001). They studied signal discrimination using finite-

dimensional basis representations and then employ classical discrimination methods like

nonparametric kernel methods, LDA and QDA on the basis coefficients. In a similar vein,

James and Hastie (2001) proposed likelihood-based functional linear discriminant analysis

treating the observations as samples from underlying smoothed curves.

The focus of this dissertation will be on the formulation of a reliable discrimination

The format and style follow that ofBiometrics.
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method specially developed from the idea of Fisher’s discrimination approach for classi-

fying functions. Our motivation arises from the fact that Fisher’s discriminant analysis

method is intimately tied to canonical correlation analysis.

Most of the methodologies for functional data parallel those in multivariate data anal-

ysis. Accordingly, in Chapter II we will start with the concepts of classical multivariate

canonical correlation analysis and discriminant analysis. The ideas that underly discrim-

inant analysis detailed in Chapter VI have their roots in discriminant analysis where co-

variance matrices are less than full rank. So, we will first investigate theory of canonical

correlation analysis and discriminant analysis in the finite dimensional, less than full rank,

scenario in Chapter III.

The formulation of canonical correlation analysis and discriminant analysis in the in-

finite dimensional setting requires a background in functional analysis and the theory of

reproducing kernel Hilbert space. We therefore briefly summarize the mathematical pre-

liminaries that are needed for Chapters V–VI in Chapter IV. As we emphasized before,

this research is motivated by the fact that Fisher’s discriminant analysis and canonical cor-

relation are connected with each other. Thus, we study the abstract canonical correlation

concept in Eubank and Hsing (2005) in Chapter V. We will then solve the Fisher’s discrim-

inant problem in the infinite dimensional setting and develop the computational algorithm

for its application to simulated data and real data in Chapter VI. Chapter VII provides a

summary of the results in this dissertation. Some remaining questions are also posed for

future research.
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CHAPTER II

REVIEW OF SELECTED LITERATURE

We begin with this chapter with an overview of the classical multivariate canonical corre-

lation analysis and discriminant analysis. Then some more current developments in canon-

ical correlation analysis and discriminant analysis for functional data that are germane for

subsequent developments are considered.

2.1 Finite Dimensional Canonical Correlation Analysis

Canonical correlation analysis (CCA, hereafter) is a classical multivariate method that is

employed for situations where each subject in a sample is measured on two sets of random

variables. The goal of this methodology is to provide an understanding of the relationships

between the two sets of variables.

CCA was initially developed by Hotelling (1936) as the answer to a problem of finding

the linear combination of a set of variables which is most highly correlated with any linear

combination of another set of variables. Several generalizations of canonical correlation

analysis tok > 2 sets of random variables were proposed by Kettenring (1971). Extensions

of CCA to time series were developed by Jewell and Bloomfield (1983), Tsay and Tiao

(1985) and Tiao and Tsay (1989). Also, Leurgans, Moyeed, and Silverman (1993), Ramsay

and Silverman (1997), and He, M̈uller, and Wang (2002) extended CCA to functional data

analysis. A general and unified notion of CCA has been developed by Eubank and Hsing

(2005) whose work will be reviewed in Chapter V.
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2.1.1 Population Canonical Correlations and Canonical Variables

In this section we provide a discussion of the classical multivariate canonical correlation

analysis concept. In what follows bold letters will be used for matrices and column vectors.

Let X be ap-dimensional random vector and letY be aq-dimensional random vector

with Var(X) = KX , Var(Y) = KY , and Cov(X,Y) = KXY = KT
Y X . Assume that both

KX andKY are positive definite.

Now, givena ∈ Rp andb ∈ Rq consider the linear combinationsaTX andbTY. The

squared correlation between these two random variables is

ρ2(a,b) =
Cov2

(
aTX,bTY

)
Var(aTX) Var(bTY)

=
(aTKXY b)2

(aTKXa)(bTKY b)
(2.1)

provided thata 6= 0 andb 6= 0. Then we may ask what values ofa andb maximize (2.1).

Equivalently we can solve the problem

max
a 6=0,b6=0

Cov2(aTX,bTY) (2.2)

subject to

Var(aTX) = Var(bTY) = 1. (2.3)

Now define the first canonical correlationρ1 and the associated weight vectorsa1,b1

as

ρ2
1 = Cov2

(
aT

1 X,bT
1 Y
)

= max
a 6=0,b6=0

Cov2
(
aTX,bTY

)
, (2.4)

wherea,b are subject to (2.3). Similarly, fori > 1, the ith canonical correlationρi and

associated weight vectorsai,bi are defined by

ρ2
i = Cov2

(
aT

i X,bT
i Y
)

= max
a 6=0,b6=0

Cov2
(
aTX,bTY

)
, (2.5)

wherea,b are subject to (2.3) and

Cov
(
aTX, aT

j Y
)

= Cov
(
bTX,bT

j Y
)

= 0, j < i. (2.6)
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Explicit formulae for the canonical correlations and variables can be obtained as fol-

lows. Let

u = K
1/2
X a

and set

v = K
1/2
Y b.

Then, solving problem (2.2) and (2.3) is equivalent to solving the problem

max
u 6=0,v 6=0

||u||Rp=||v||Rq =1

(uTK
−1/2
X KXY K

−1/2
Y v)2, (2.7)

where‖ · ‖Rp is the standard Euclidean norm. But, using the singular value decomposition

(SVD) of a matrix,K−1/2
X KXY K

−1/2
Y can be written in the form

K
−1/2
X KXY K

−1/2
Y =

min(p,q)∑
i=1

ρiuiv
T
i ,

whereui andvi are the eigenvectors of

K
−1/2
X KXY K−1

Y KY XK
−1/2
X and K

−1/2
Y KY XK−1

X KXY K
−1/2
Y ,

respectively, corresponding to the eigenvaluesρ2
1, . . ., ρ

2
min(p,q).

Suppose thatρ2
1 ≥ · · · ≥ ρ2

min(p,q) > 0. Then,ai = K
−1/2
X ui andbi = K

−1/2
Y vi solve

problem (2.5) subject to (2.3) and (2.6) with corresponding canonical correlationρi. Note

thatai andbi can be obtained directly from

K−1
X KXY K−1

Y KY Xai = ρ2
i ai, (2.8)

and

K−1
Y KY XK−1

X KXY bi = ρ2
i bi. (2.9)
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2.1.2 Sample Canonical Correlations and Canonical Variables

Suppose that we observeN iid copies(X1,Y1), . . ., (XN ,YN) of (X,Y). We now con-

sider the sample-based counterpart of the developments in the previous section. For this

purpose, we estimate the population variances and covariances by their corresponding sam-

ple moments producing the matrices

K̂X =
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)T and K̂Y =
1

N

N∑
i=1

(Yi − Ȳ)(Yi − Ȳ)T (2.10)

and

K̂XY =
1

N

N∑
i=1

(Xi − X̄)(Yi − Ȳ)T , (2.11)

whereX̄ = 1
N

∑N
i=1 Xi andȲ = 1

N

∑N
i=1 Yi.

Similar to the definitions in the population setting of the previous section, we now take

theith sample canonical variables to be

âT
i X and b̂T

i Y

with âi = K̂
−1/2
X ûi andb̂i = K̂

−1/2
Y v̂i for ûi andv̂i the eigenvectors of

K̂
−1/2
X K̂XY K̂−1

Y K̂Y XK̂
−1/2
X

and

K̂
−1/2
Y K̂Y XK̂−1

X K̂XY K̂
−1/2
Y

corresponding to the eigenvaluesρ̂2
1 ≥ · · · ≥ ρ̂2

min(p,q) > 0. The corresponding estimated

ith canonical correlation iŝρi.

2.2 Finite Dimensional Discriminant Analysis

The focus of this dissertation is on classification via discriminant analysis. The two stan-

dard multivariate methods for discrimination are the Bayesian approach and Fisher’s linear

discriminant analysis. The latter method is intimately tied to canonical correlation analysis.
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In this section we provide a review of multivariate discriminant analysis methods.

In particular, we will detail the relationship between Fisher’s approach and the canonical

correlation analysis technique for discrimination.

Let us now consider a discrimination problem withJ classes or populations. We

observe(X, G), whereX ∈ Rp is a predictor vector andG ∈ {1, . . ., J} is a categorical

response variable representing the class memberships. We are interested in predicting the

class membershipG based on thep variables in the vector of predictorsX. This is an

important practical problem with applications in many fields.

Suppose that classj has the densityfj with the class meanµj, covariance matrixKj

and associated class probabilityπj. That is,

E[X|G = j] = µj,

Var(X|G = j) = E[(X− µj)(X− µj)
T |G = j] = Kj

andP (G = j) = πj. Under this formulation there are two basic approaches to the devel-

opment of discrimination methods: a Bayesian classifier and Fisher’s method. We discuss

each of these methods, in turn, below.

2.2.1 Bayes Procedure: Linear Discriminant Analysis

Assume that the density of classj is normal with meanµj and a common within class

covariance matrixKW : i.e.,Kj = KW for j = 1, . . ., J . Also, assume thatKW is positive

definite.

A Bayesian classifier assigns an observation to the group with the largest posterior

probability. Then, the Bayes linear discriminant rule allocates an observationx to the class

for which

dj(x) = µT
j K−1

W x− 1

2
µT

j K−1
W µj + log πj (2.12)
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is maximized. In the case where we have equal class probabilities, an observation is classi-

fied to the class with the smallest squared Mahalanobis distance

(x− µj)
TK−1

W (x− µj).

2.2.2 Bayes Procedure: Quadratic Discriminant Analysis

The linear discriminant functions in (2.12) create linear boundaries which lead to a simple

and easily implementable classification rule. However, these discriminant functions can

perform badly when the assumption of a common covariance matrix is not true and often

linear decision boundaries do not adequately separate the classes.

Thus, let us allow for different covariance matricesK1, . . .,KJ for each class withKj

being positive definite for eachj = 1, . . ., J . Then, the Bayes quadratic discriminant rule

allocates an observationx to the class which minimizes

dQ
j (x) = (x− µj)

TK−1
j (x− µj) + log |Kj| − 2 log πj.

Quadratic discriminant analysis (QDA) provides more complex decision boundaries and

often leads to a classification rule that performs better than the discriminant functions ob-

tained from a linear classifier.

2.2.3 Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant analysis is a popular data analytic tool for studying the re-

lationship between a set of predictors and a categorical response as well as a prevalent

dimensional reduction tool. The primary purpose of Fisher’s discriminant analysis is to

separate classes. So we now use this perspective to formulate discriminant functions and

to build a corresponding rule for predicting class membership of new observations.

Fisher’s approach employs only second order properties of the random variables.

Thus, unlike the Bayesian development, it is not necessary to assume any particular para-
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metric form for the distribution of theJ classes. However, we do assume that, as for LDA,

the classes have a common (within-class) covariance matrixKW .

2.2.3.1 Fisher’s linear discriminant function

Fisher’s linear discriminant function is defined to be the linear functionlTX which maxi-

mizes the ratio of the between-class variance to the within-class variance. Specifically, let

KB be the between-class covariance matrix defined by

KB = VarG(E[X|G]) =
J∑

j=1

πj(µj − µ)(µj − µ)T

for

µ = E[X] = EG[E(X|G)] =
J∑

j=1

πjµj,

and similarly let

EG[Var(X|G)] =
J∑

j=1

πjKj = KW .

Then, the between to within class variance ratio is given by

VarG(E[lTX|G])

EG[Var(lTX|G)]
=

lTKBl

lTKW l
(2.13)

with l = (l1, . . ., lp)
T 6= 0.

If l1 is the vector which maximizes (2.13) we call the corresponding linear function

lT1 X, Fisher’s linear discriminant function or the first canonical variate. Note that the vector

l1 in Fisher’s linear discriminant function is obtained by solving

max
l 6=0

lTKBl, (2.14)

wherel is subject to

lTKW l = 1. (2.15)

Thus,l1 is the eigenvector ofK−1
W KB corresponding to its largest eigenvalue. In general,

K−1
W KB hasmin(p, J − 1) non-zero eigenvalues. The corresponding eigenvectors define
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the second, third, and subsequent linear discriminant functions and we denote these vectors

by l2, . . ., lmin(p,J−1) in what follows.

Fisher’s discriminant analysis is well known as a dimension reduction tool. So, we

now consider the case ofs ≤ min(p, J − 1). Then, Fisher’s discrimination rule based

on the discriminant function subsetlT1 X, . . ., lTs X assigns an observationx to the class for

which the squared Mahalanobis distance

s∑
k=1

(lTk x− lTk µj)
2

is minimized overj = 1, . . ., J .

2.2.3.2 Fisher’s discriminant function via canonical correlation analysis

In this section we will demonstrate that Fisher’s LDA is a special case of canonical cor-

relation. To establish this we will takeX to be ap × 1 random vector representing an

observation from one of theJ classes as before. To represent the class membership corre-

sponding toX, we then define the dummy variablesYj, j = 1, . . ., J − 1, as

Yj =

 1, if G = j,

0, otherwise.

Let Y = (Y1, . . ., YJ−1)
T be the resulting(J − 1)× 1 indicator response vector.

We are interested in predicting the class membership of an item based on the predictors

X. That is, we wish to predict the vectorY from X and then use the predicted value to

assign the individual to one of theJ classes. CCA provides one possible approach to this

problem since it generalizes regression methodology.

We now give a result that relates Fisher’s linear discriminant analysis to CCA.

Theorem II.1 . Let KB,KW be the between-class covariance matrix and a common

within-class covariance matrix, respectively, defined in Section 2.2.3.1. Letai, i = 1,
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. . .,min(p, J − 1), be the coefficient vectors of the canonical variables of theX space.

Then, the canonical vectorsai are the eigenvectors ofK−1
W KB.

Proof. Set Var(X) = KX ,Var(Y) = KY and Cov(X,Y) = KXY = KT
Y X . Then, we

know that the vectorsai of the canonical variables forX are obtained from

K−1
X KXY K−1

Y KY Xai = ρ2
i ai. (2.16)

We now show that an application of this result to the present setting gives

KX = Var(X) = KB + KW , (2.17)

KY = Var(Y) = diag(π1, . . ., πJ−1)− πAπT
A, (2.18)

and

KXY = Cov(X,Y) = (π1(µ1 − µ), . . ., πJ−1(µJ−1 − µ)), (2.19)

whereπA = (π1, . . ., πJ−1)
T .

To verify (2.18) and (2.19), first let us create aJ × 1 vectorYA = YA(G) from

the categorical responseG, such thatYA = ej if G = j for j = 1, . . ., J , with ej an

elementary vector consisting of all 0’s except for a 1 in itsjth entry. Then,YA has a

multinomial distribution with cell probabilitiesπ = (π1, . . ., πJ)T from which we see that

E[YA] = π, Var(YA) = diag(π1, . . ., πJ)− ππT .

BecauseY = AYA with A the(J − 1)× J matrix [IJ−1 : 0] for IJ−1 a (J − 1)× (J − 1)

identity matrix,

E[Y] = AE[YA] = Aπ = πA,

and

Var(Y) = AVar(YA)AT = diag(π1, . . ., πJ−1)− πAπT
A.
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Also, we can show that

E[XYT ] = EG[E(XYA
T |G)]AT =

{ J∑
j=1

E[X|G = j]P (G = j)YT
A(G = j)

}
AT

=
{ J∑

j=1

πjµje
T
j

}
AT = (π1µ1, . . ., πJµJ)AT

= (π1µ1, . . ., πJ−1µJ−1).

So we now see that

KXY = E[XYT ]− E[X]E[Y]T = (π1(µ1 − µ), . . ., πJ−1(µJ−1 − µ)).

Now observe that

KX = Var(X) = VarG(E[X|G]) + EG[Var(X|G)] = KB + KW (2.20)

as before, and that

KXY K−1
Y KY X =

J∑
j=1

πj(µj − µ)(µj − µ)T = KB (2.21)

sinceK−1
Y = diag

(
π−1

1 , . . ., π−1
J−1

)
+ π−1

J 11T . Therefore, (2.16) is equivalent to

K−1
X KBai = ρ2

i ai.

as was to be shown and the desired result

K−1
W KBai =

ρ2
i

1− ρ2
i

ai

is implied by the fact thatKX = KB + KW .

�

Theorem II.1 tells us that the canonical variables of theX space are proportionally the

same as Fisher’s linear discriminant functions in Section 2.2.3.1. The two sets of vectors
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differ by a proportionality factor because they are subject to different normalization: i.e.,

the vectorsli in Fisher’s approach satisfy

lTi KW li = 1, lTi KW lk 6= 0 for j 6= i, i, k = 1, . . .,min(p, J − 1)

while the vectorsai in the canonical variables of theX space are normalized via the con-

ditions

aT
i KXai = 1, aT

i KXak 6= 0 for k 6= i, i, k = 1, . . .,min(p, J − 1).

2.2.4 Sample Linear Discriminant Functions

Let (X1, G1), . . ., (XN , GN) be iid copies of(X, G). Also, for i = 1, . . ., N, j = 1, . . ., J ,

let pj =
Nj

N
andXij = XiI(Gi = j), whereI(Gi = j) is 1 if Gi = j and otherwise

is 0. Then,X̄j = 1
Nj

∑N
i=1 Xij andX̄ =

∑J
j=1 pjX̄j with Nj =

∑N
i=1 I(Gi = j) and

N =
∑J

j=1Nj.

As in canonical correlation analysis, we will use

K̂W =
1

N

J∑
j=1

Nj∑
i=1

(Xij − X̄j)(Xij − X̄j)
T , K̂B =

J∑
j=1

pj(X̄j − X̄)(X̄j − X̄)T

andK̂X =
1

N

N∑
i=1

(Xi − X̄)(Xi − X̄)T = K̂B + K̂W . The sample linear discriminant

function based on Bayes’ classifier is then

d̂j(x) = X̄T
j K̂−1

W x− 1

2
X̄T

j K̂−1
W X̄j + log pj

and the resulting Bayes linear discriminant rule assignsx to the population wherêdj(x) is

largest.

The optimal coefficient vectors in the sample Fisher’s discriminant functions are the

eigenvector of

K̂−1
W K̂B.
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If l̂1, . . ., l̂s are the eigenvectors of̂K−1
W K̂B corresponding to the firsts largest eigenvalues,

thenx is classified into the population whose index minimizes

s∑
k=1

(̂l
T

k x− l̂
T

k X̄j)
2.

2.2.5 Discrimination and Multivariate Analysis of Variance

Discriminant analysis and multivariate analysis of variance (MANOVA) are closely re-

lated concepts that, in a sense, represent different sides of the same coin. While dis-

criminant analysis tries to find linear functions that can separate the population mean vec-

tors, MANOVA asks the question of whether discrimination is even feasible. In this sec-

tion we will discuss some of the connections between Fisher’s discriminant analysis and

MANOVA.

Consider the situation where we are discriminating betweenJ normal populations

with the same covariance matrix. If all the means are equal, that is,µ1 = · · · = µJ ,

then it is meaningless to even attempt to discriminate between the populations. So, to

check whether or not discriminant analysis is worthwhile, we are interested in testing the

hypothesisµ1 = · · · = µJ given a common within class covariance matrixKj = KW , j =

1, . . ., J . This is the problem addressed by the one-way multivariate analysis of variance.

Let (X1, G1), . . ., (XN , GN) be a random sample as in Section 2.2.4. Then the log

likelihood is

l(µ1, . . .,µJ ,KW ) = −N
2

log |2πKW |−
N

2
tr(K−1

W K̂W )−1

2

J∑
j=1

Nj(X̄j−µj)
TK−1

W (X̄j−µj).

So, the maximum likelihood estimates (m.l.e.) ofµj andKW arex̄j andK̂W , respectively.

Thus, the maximized log likelihood is

l1 = −N
2

log |2πK̂W | −
Np

2
.
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The log likelihood under the null hypothesis is

l(µ,KW ) = −N
2

log |2πKW | −
N

2
tr(K−1

W K̂X)− N

2
(X̄− µ)TK−1

W (X̄− µ)

and hence the m.l.e’s ofµ andKW areX̄ andK̂X , respectively. Thus, the maximized log

likelihood under the null hypothesis is

l0 = −N
2

log |2πK̂X | −
Np

2
.

Combiningl0 andl1 we obtain the likelihood ratio given by

(|K̂W |/|K̂X |)−N/2.

The corresponding test statistic is referred to as Wilk’sΛ. Note that the statistic is

|K̂W |/|K̂X | = |I + K̂−1
W K̂B|−1 =

min(p,J−1)∏
i=1

(1 + γ̂i)
−1,

whereγ̂1, . . . , γ̂min(p,J−1) are the eigenvalues of̂K−1
W K̂B. In fact theΛ statistic is based

on
∏

i(1 − ρ̂2
i ) due toγ̂i = ρ̂2

i /(1 − ρ̂2
i ), whereρ̂2

1, . . . , ρ̂
2
min(p,J−1) are the eigenvalues of

K̂−1
X K̂B. Thus, rejection ofH0 will occur when the estimated canonical correlations are

large.

2.3 Functional Canonical Correlation Analysis

In this section we discuss how canonical correlation analysis is implemented when the data

are random curves or can be viewed as deriving from random curves. Data of this type

arise in many real-life situations, where the observed data represents continuous functions

sampled at discrete points.

Smoothed functional canonical correlations have been proposed by Leurgans et al.

(1993), who demonstrated the need for regularization in functional canonical correlation
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analysis. They assume that the observed curves{Xi(t), Yi(t), i = 1, . . ., N} are inde-

pendent realizations of a bivariate second-order stochastic process with zero mean func-

tions and covariance functionsKX(s, t) = E[X(s)X(t)], KY (s, t) = E[Y (s)Y (t)] and

KXY (s, t) = E[X(s)Y (t)]. Suppose that sample covariance functions are given as

K̂X(s, t) =
1

N

N∑
i=1

Xi(s)Xi(t), K̂Y (s, t) =
1

N

N∑
i=1

Yi(s)Yi(t),

andK̂XY (s, t) =
1

N

N∑
i=1

Xi(s)Yi(t).

LetL2[0, 1] be the Hilbert space of square integrable functions on[0, 1] with associated

inner product

〈f, g〉L2[0,1] =

∫ 1

0

f(s)g(s)ds.

Also, letTX , TY andTXY be the covariance operators defined by

(TXf)(·) =

∫ 1

0

KX(·, t)f(t)dt, (TY g)(·) =

∫ 1

0

KY (·, t)g(t)dt,

and(TXY g)(·) =

∫ 1

0

KXY (·, t)g(t)dt, respectively. Then, canonical correlation analysis

finds〈f,X〉L2[0,1] and〈g, Y 〉L2[0,1] with f, g ∈ L2[0, 1] maximizing

〈f, TXY g〉2L2[0,1]

〈f, TXf〉L2[0,1]〈g, TY g〉L2[0,1]

.

Now define the operatorsVX , VY andVXY by writing VXf for the function

(VXf)(·) =

∫ 1

0

K̂X(·, t)f(t)dt,

and correspondingly forVY , VXY . Then, Leurgans et al. (1993) find〈f,X〉L2[0,1] and

〈g, Y 〉L2[0,1] that maximize the penalized sample squared correlation defined by

〈f, VXY g〉2L2[0,1]{
〈f, VXf〉L2[0,1] + ϑ1‖f ′′‖2

L2[0,1]

}{
〈g, VY g〉L2[0,1] + ϑ2‖g′′‖2

L2[0,1]

} , (2.22)
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whereϑ1 and ϑ2 are positive smoothing parameters. This procedure is referred to as

smoothed canonical correlation analysis (SCCA). They implemented regularization in the

criterion (2.22) via cubic smoothing splines and demonstrated their technique with an ap-

plication to the study of human gait movement data. The effect of the roughness penalty in

the denominator of the squared correlation is that both variances and roughness of canoni-

cal variables are considered.

He et al. (2002) developed canonical correlation analysis methodology for functional

data using a direct parallel of the finite dimensional multivariate analysis technique applied

to covariance operators. For their approach, the auto and cross covariance functions of

the processes are assumed to be square integrable. This allows them to define covariance

operators onL2[0, 1] as

TX =
∑

i

λiφi ⊗L2[0,1] φi, TY =
∑

j

νjθj ⊗L2[0,1] θj and TXY =
∑
i,j

γijφi ⊗L2[0,1] θj,

where{φi} and{θj} are orthonormal bases for two Hilbert spaces of square integrable

functions on[0, 1] and the tensor operator is defined by(φ ⊗L2[0,1] θ)h = 〈φ, h〉L2[0,1]θ.

Then, under certain restrictions they obtain canonical correlations as singular values of

C = T
−1/2
X TXY T

−1/2
Y =

∑
i

ρiφi ⊗L2[0,1] θi.

The difficulty with this development is that the covariance operatorsTX andTY are not

invertible inL2[0, 1]. To circumvent this problem they restrict attention to the setsFXX and

FY Y that represent orthogonal complements of their null spaces inL2[0, 1]. For example,

they define

FXX = {f ∈ L2[0, 1] :
∞∑
i=1

λ−1
i |〈f, φi〉L2[0,1]|

2 <∞, f ⊥ Ker(TX)}

with Ker(TX) = {h ∈ L2[0, 1] : TXh = 0}.
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2.4 Functional Discriminant Analysis

Hall et al. (2001) treated signal discrimination by finding a finite dimensional representa-

tion via the Karhunen-Lòeve basis expansion and employing nonparametric kernel methods

on the basis coefficients. LetX be a zero-mean, second-order stochastic process. Provided

that the covariance function is continuous on[0, 1]× [0, 1], the Karhunen-L̀oeve expansion

gives

X(·) =
∞∑

j=1

λjφj(·),

whereλj = 〈φj, X〉L2[0,1] and{φj} are the eigenvalues and eigenvector sequence of the

covariance operator corresponding to the covariance function of theX process. Theλj ’s

andφj ’s are referred to as the principal component scores and principal component basis

functions.

Given a random sampleX1, . . ., XN of the processX, the scoresλij = 〈φj, Xi〉L2[0,1],

j ≥ 1, serve as surrogates for the observationXi, for purpose of density estimation and

classification. Takingm principal component scores, they observe data

X
(m)
i = (λi1, . . ., λim)T , i = 1, . . ., N.

A kernel estimator of the density ofX(m)
i atx(m) = (ξ1, . . ., ξm) with ξj = 〈φj, x〉L2[0,1] is

given by

f̂m(x(m)) =
1

N

N∑
i=1

K(h−1‖x(m) −X
(m)
i ‖R2),

where‖x(m) −X
(m)
i ‖2

R2 =
∑m

j=1(λij − ξj)
2, h is a bandwidth, andK is a compactly sup-

ported univariate kernel function. Given training data, they estimate the true class densities

by the proposed kernel estimator and classify a new signalx to the class with the largest

kernel density estimate onx(m).

James and Hastie (2001) proposed a functional linear discriminant analysis method

derived from treating the longitudinal observations as samples from underlying smoothed
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curves. They used natural cubic spline functions to model these curves in a similar way

as in Rice and Wu (2001). Also, such curves and measurement errors are assumed to be

Gaussian for the standard LDA (Bayes’ classifier). Then, for theith curve from thejth

class, their proposed model is

Yij = Sij(µj + γij) + εij, j = 1, . . ., J, i = 1, . . ., Nj,

εij ∼ Nnij
(0, σ2I), γij ∼ Nq(0,Γ),

whereYij andεij are the corresponding vectors of observations and measurement errors at

timestij1, . . ., tijnij
, Sij = (s(tij1), . . ., s(tijnij

))T with s(·) a spline function from a spline

basis with dimensionq, J is the number of classes andNj is the number of individuals in

thejth class.

In particular, James and Hastie (2001) develop a reduced rank model for sparsely

sampled curves via use of Fisher’s discriminant analysis method. The reduced rank model

has the form

Yij = Sij(λ0 + Λαj + γij) + εij, j = 1, . . ., J, i = 1, . . ., Nj,

εij ∼ Nnij
(0, σ2I), γij ∼ Nq(0,Γ),

whereλ0 and αj are q- and r-dimensional vectors andΛ is a q × r matrix with r ≤

min(q, J − 1) satisfying the restrictionsΛTST
ij(σ

2I + SijΓST
ij)

−1SijΛ = I,
∑

j αj = 0.

The fixed-effect termSij(λ0 +Λαj) models the class mean curves and the random-effects

termSijγij allows for individual variation within each class. They fit this model using the

EM algorithm and then classify a new observation to the class with the largest posterior

probability as in the ordinary multivariate analysis case.
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CHAPTER III

CANONICAL CORRELATION ANALYSIS AND DISCRIMINANT ANALYSIS

We present an overview of the foundation of multivariate canonical correlation analysis and

discriminant analysis in this chapter. Our treatment of this topic differs somewhat from the

classical approach in that we explicitly treat the less than full rank scenario. This opens

the door to transactions in infinite dimensions through the reproducing kernel Hilbert space

perspective of the next chapters.

3.1 Canonical Correlation Analysis with Less Than Full Rank Covariance Matrices

For am×n matrixA, we denote its rank byr(A), define its null space as Ker(A) = {x ∈

Rn : Ax = 0} and indicate its range by Im(A) = {y ∈ Rm : y = Ax, x ∈ Rn}. The

notation⊥ indicates orthogonal complement.

3.1.1 Population Canonical Correlations and Canonical Variables

Suppose thatX is ap-dimensional random vector and thatY is a q-dimensional random

vector with Var(X) = KX , Var(Y) = KY , and Cov(X,Y) = KXY = KT
Y X . In what

follows bothKX andKY may have less than full rank.

Now, we wish to findaTX andbTY with a = (a1, . . ., ap)
T andb = (b1, . . ., bq)

T

having the largest possible correlation with one another. For this purpose, let us write the

squared correlation between two linear combinations as

ρ2(a,b) =
Cov2

(
aTX,bTY

)
Var(aTX) Var(bTY)

=
(aTKXY b)2

(aTKXa)(bTKY b)

whenKXa 6= 0 andKY b 6= 0.

Proposition III.1 . If l ∈ Ker(KX) then KY Xl = 0 and if m ∈ Ker(KY ) then

KXY m = 0.
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Proof. Suppose thatl ∈ Ker(KX). Then, by the Cauchy-Schwartz inequality,

(eT
j KY Xl)2 = Cov2(lTX, eT

j Y) ≤ Var(lTX)Var(eT
j Y) = 0

for ej a q × 1 elementary vector consisting of all 0’s except for a 1 in itsjth entry. Thus,

eT
j KY Xl = 0 for everyej. So,KY Xl = 0 for l ∈ Ker(KX). Similarly, if m ∈ Ker(KY )

thenKXY m = 0.

�

For a ∈ Rp andb ∈ Rq, observe thata = a∗ + a0 with a∗ ∈ Ker(KX)⊥, a0 ∈

Ker(KX) andb = b∗ + b0 with b∗ ∈ Ker(KY )⊥,b0 ∈ Ker(KY ). We now observe from

Proposition III.1 thataTKXY b = (a∗ + a0)
TKXY (b∗ + b0) = aT

∗KXY b∗, aTKXa =

aT
∗KXa∗ andbTKY b = bT

∗KY b∗. So, maximizingρ2(a,b) with KXa 6= 0 andKY b 6= 0

is equivalent to maximizingρ2(a∗,b∗) with a∗ ∈ Ker(KX)⊥ andb∗ ∈ Ker(KX)⊥. Thus,

equivalently, we may finda andb by maximizing

(aTKXY b)2

(aTKXa) (bTKY b)

overa ∈ Ker(KX)⊥ andb ∈ Ker(KY )⊥. Consequently finding the linear combinations

of X andY that are most highly correlated is equivalent to findinga ∈ Ker(KX)⊥ and

b ∈ Ker(KY )⊥ to maximize

Cov2
(
aTX,bTY

)
(3.1)

subject to

Var
(
aTX

)
= Var

(
bTY

)
= 1. (3.2)

Let

KX =

rX∑
i=1

λXieXie
T
Xi,

whererX = r(KX) ≤ p and (λX1, eX1), . . ., (λXrX
, eXrX

) are the nonzero eigenvalues

and associated eigenvectors ofKX . Define the matrices

K
1/2
X =

rX∑
i=1

λ
1/2
Xi eXie

T
Xi,
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K
−1/2
X =

rX∑
i=1

λ
−1/2
Xi eXie

T
Xi

and

K−
X =

rX∑
i=1

λ−1
XieXie

T
Xi.

Also, defineKY ,K
1/2
Y ,K

−1/2
Y andK−

Y similarly.

Proposition III.2 . K−
X andK

−1/2
X are the Moore-Penrose generalized inverses ofKX

and K
1/2
X , respectively. Also,(i) Ker(KX) = Ker(K1/2

X ), (ii) Im(KX) = Ker(KX)⊥,

(iii) Ker(K−
X)⊥ = Ker(KX)⊥. Thus, the matrixK−

X is a one-to-one linear mapping from

Im(KX) ontoKer(KX)⊥ andK
−1/2
X is a one-to-one linear mapping fromIm(K

1/2
X ) onto

Ker(K1/2
X )⊥.

Proof. Let ΛX = diag(λX1, . . ., λXrX
) andPX = [eX1, . . ., eXrX

]. ThenPT
XPX = IrX

andKX = PXΛXPT
X . Then, we can see that

KXK−
XKX = (PXΛXPT

X)(PXΛ−1
X PT

X)(PXΛXPT
X) = PXΛXPT

X = KX

and, similarly,K−
XKXK−

X = PXΛ−1
X PT

X = K−
X . Also, KXK−

X andK−
XKX are sym-

metric which follows fromKXK−
X = K−

XKX = PXPT
X . So,K−

X is the Moore-Penrose

generalized inverse ofKX .

Now observe thatKXl = 0 if and only if eT
Xil = 0 for all i = 1, . . ., rX because the

vectors{eX1, . . ., eXrX
} are linearly independent. Also,eT

Xil = 0 for all i if and only if

K
1/2
X l = 0. Thus, Ker(KX) = Ker(K1/2

X ).

Suppose thatl ∈ Ker(KX) and z ∈ Im(KX). Then, z = PXc for c ∈ RrX

because Im(KX) is the space spanned by{eX1, . . ., eXrX
}. So, lT z = lTPXc = 0

sincel ∈ Ker(KX) has the consequence thateT
Xil = 0 for all i. Hencel ∈ Im(KX)⊥

and so Ker(KX) ⊂ Im(KX)⊥. Conversely, ifh ∈ Im(KX)⊥ then0 = hT (KXh) =

(K
1/2
X h)T (K

1/2
X h) and soK

1/2
X h = 0: i.e., h ∈ Ker(K1/2

X ) = Ker(KX). Therefore,

Ker(KX) = Im(KX)⊥ and Ker(KX)⊥ = (Im(KX)⊥)⊥ = Im(KX). Since both Im(KX)
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and Im(K−
X) are spanned byeX1, . . ., eXrX

, Im(KX) = Im(K−
X) and so Ker(KX)⊥ =

Im(KX) = Im(K−
X) = Ker(K−

X)⊥.

Forz ∈ Im(KX), observe thatz = PXc and thatK−
Xz = 0 if and only if PT

Xz = 0.

Thus,K−
Xz = 0 implies that

0 = PT
Xz = PT

XPXc = c

and we conclude thatK−
Xz = 0 if and only if z = 0. Moreover, we have Im(K−

X) =

Ker(KX)⊥. Therefore,K−
X is a one-to-one linear mapping from Im(KX) onto Ker(KX)⊥.

Similarly, it can be shown thatK−1/2
X is the Moore-Penrose generalized inverse ofK

1/2
X

and it is a one-to-one linear mapping from Im(K
1/2
X ) onto Ker(K1/2

X )⊥.

�

To solve problem (3.1) and (3.2), letu = K
1/2
X a andv = K

1/2
Y b. Then, fora ∈

Ker(KX)⊥ andb ∈ Ker(KY )⊥, we see thatu ∈ Ker(K1/2
X )⊥ and, also,u ∈ Ker(KX)⊥

because Ker(K1/2
X )⊥ = Ker(KX)⊥. Similarly,v ∈ Ker(KY )⊥. It now becomes clear that

(aTKXY b)2

(aTKXa)(bTKY b)
=

(uTK
−1/2
X KXY K

−1/2
Y v)2

(uTu)(vTv)

for a ∈ Ker(KX)⊥ andb ∈ Ker(KX)⊥ becauseu = K
1/2
X a becomesa = K

−1/2
X u when

a ∈ Ker(KX)⊥ = Ker(K1/2
X )⊥. Thus, in turn, solving problem (3.1) and (3.2) is equivalent

to solving the problem

max
u∈Ker(KX )⊥,v∈Ker(KY )⊥

||u||Rp=||v||Rq =1

(uTK
−1/2
X KXY K

−1/2
Y v)2. (3.3)

The formulation in (3.3) has the important implication that the optimalu andv can be

obtained from the singular value decomposition (SVD) of the matrixK
−1/2
X KXY K

−1/2
Y to

produce the weight vectors

a = K
−1/2
X u and b = K

−1/2
Y v.
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We can now define the first canonical correlationρ1 and the associated weight vectors

a1,b1 as

ρ2
1 = Cov2

(
aT

1 X,bT
1 Y
)

= max
a∈Ker(KX)⊥,b∈Ker(KY )⊥

Cov2
(
aTX,bTY

)
, (3.4)

wherea,b are subject to (3.2). Fori > 1, theith canonical correlationρi and the associated

weight vectorsai,bi can be defined similarly as

ρ2
i = Cov2

(
aT

i X,bT
i Y
)

= max
a∈Ker(KX)⊥,b∈Ker(KY )⊥

Cov2
(
aTX,bTY

)
(3.5)

wherea,b are subject to (3.2) and

Cov
(
aTX, aT

j Y
)

= Cov
(
bTX,bT

j Y
)

= 0, j < i. (3.6)

When a solution exists to problem (3.4),ρ1 is called the first canonical correlation and

aT
1 X,bT

1 Y are referred to as the first canonical variables of theX andY spaces, respec-

tively. Similarly,ρi in (3.5) is termed theith canonical correlation with associated canonical

variables of theX andY spaces given byaT
i X andbT

i Y.

Suppose thatK−1/2
X KXY K

−1/2
Y has rankr ≤ min(rX , rY ) with rY = r(KY ). Then

the singular value decomposition forK
−1/2
X KXY K

−1/2
Y is

K
−1/2
X KXY K

−1/2
Y = U

 Dr×r Or×(q−r)

O(p−r)×r O(p−r)×(q−r)

VT , (3.7)

whereOk1×k2 is ak1×k2 matrix of all zeros,U is ap×p orthogonal matrix of eigenvectors

corresponding to the eigenvaluesρ2
1, . . ., ρ

2
r of

K
−1/2
X KXY K−

Y KY XK
−1/2
X

and V is a q × q orthogonal matrix of eigenvectors corresponding to the eigenvalues

ρ2
1, . . ., ρ

2
r of

K
−1/2
Y KY XK−

XKXY K
−1/2
Y

andD = diag(ρ1, . . ., ρr).
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Theorem III.1 . Let ρ2
1 ≥ · · · ≥ ρ2

r > 0 and letui,vi be the columns ofU andV that

correspond toρi. Then,ai = K
−1/2
X ui and bi = K

−1/2
Y vi solve problems (3.4) – (3.5)

subject to (3.2) and (3.6) with corresponding canonical correlationρi.

Proof. From (3.7), we have

K
−1/2
X KXY K

−1/2
Y =

r∑
i=1

ρiuiv
T
i .

Then, observe that

(uTK
−1/2
X KXY K

−1/2
Y v)2 ≤ ρ2

1

(
r∑

i=1

(uTui)(v
Tvi)

)2

≤ ρ2
1

r∑
i=1

(uTui)
2

r∑
i=1

(vTvi)
2.

by the Cauchy-Schwarz inequality. Since{u1, . . .,ur} are orthonormal vectors in Ker(KX)⊥

and{v1, . . .,vr} are orthonormal vectors in Ker(KY )⊥, we obtain from Bessel’s inequality

that

(uTK
−1/2
X KXY K

−1/2
Y v)2 ≤ ρ2

1

r∑
i=1

(uTui)
2

r∑
i=1

(vTvi)
2 ≤ ρ2

1(u
Tu)(vTv),

where equality holds if and only ifu = u1 andv = v1. For the general case we have

u ⊥ ui andv ⊥ vi for 1 ≤ i ≤ j − 1 and

Cov2(aTX,bTY) = (uTK
−1/2
X KXY K

−1/2
Y v)2 ≤ ρ2

j(u
Tu)(vTv),

with equality if and only ifu = uj andv = vj.

�

It now follows thatai andbi can be obtained via solution of the eigenvalue problems

K−
XKXY K−

Y KY Xai = ρ2
i ai, (3.8)

and

K−
Y KY XK−

XKXY bi = ρ2
i bi. (3.9)
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Also, the relationship between the coefficient vectorsai andbi can be derived from (3.7).

Specifically, upon premultiplying byUT and postmultiplying byK−1/2
Y we obtain

K−
Y KY Xai = ρibi, i = 1, . . ., r, (3.10)

and, similarly,

K−
XKXY bi = ρiai, i = 1, . . ., r. (3.11)

3.1.2 Canonical Correlation Analysis and Regression

CCA can be viewed as an essential technique for carrying out regression of one vector on

another vector. To see the connection to ordinary linear regression with one independent

variable, suppose that we observe(X, Y ), whereX is ap-variate predictor vector andY is

a scalar response. In this situation, we may be interested in finding the linear combination

aTX which is most highly correlated withY . For this purpose, we can first think of the

regression ofY onX.

Set E[X] = µX ,E[Y ] = µY ,Var(X) = KX ,Cov(X, Y ) = KXY and assume that

Var(Y ) = σ2. When we minimize

E|Y −m(X)|2

over all functionsm this provides us with an approximation toY . More precisely,Y is ac-

tually a function on a probability space(Ω,B, P ) and the best least-squares approximation

to Y (ω), ω ∈ Ω, under certain restrictions, is

g(ω) = E[Y |X(ω)], ω ∈ Ω.

Now, for linear regression we restrict the optimization of

E[Y −m(X)]2
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to functions of the form

m∗(ω) = (m ◦X)(ω) = α+ βTX(ω)

with X(ω) the value of the random vectorX for outcomeω ∈ Ω andβ ∈ Ker(KX)⊥. The

population linear regression plane is the result of this optimization. Specifically, the best

least-squares approximation ofY is

(
µY −KY XK−

XµX

)
+ KY XK−

XX. (3.12)

So,α̃+β̃
T
X(ω) with α̃ = µY −KY XK−

XµX andβ̃ = KY XK−
X approximates the function

Y (ω) onΩ.

Observe that̃β can also be obtained as the solution of

min
β∈Ker(KX)⊥

{
σ2 − 2βTKXY + βTKXβ

}
. (3.13)

Then, solving (3.13) is equivalent to solving

max
a∈Ker(KX)⊥

Cov2
(
aTX, Y

)
(3.14)

subject to Var
(
aTX

)
= 1.

The weight vectora in (3.14) and the coefficient vector̃β are related by

β̃ = σρa.

This follows from observing thata is the solution of the problemσ−2K−
XKXY KY Xa =

ρ2a. Soσ−1aTKXY = Corr(aTX, Y ) = ρ and moreover we know̃β = K−
XKXY .

3.1.3 Sample Canonical Correlations and Canonical Variables

Suppose now that we observeN iid copies(X1,Y1), . . ., (XN ,YN) of (X,Y). In this

section we will discuss how such data can be used to produce consistent estimators of the

canonical correlations and variables.
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A parallel of the development in the previous section can be followed for the analysis

of sample data. All that is needed is thatKX ,KY ,KXY are replaced by their estimators.

Specifically, we estimate the population variance and covariances by their corresponding

sample moments in (2.10) and (2.11) as in Section 2.1.2.

As in the population setting, we define

ρ̂2
1 = max

a∈Ker(K̂X)⊥,b∈Ker(K̂Y )⊥
ρ̂2(a,b) (3.15)

with ρ̂ the sample correlation betweenaTX andbTY. That is,

ρ̂(a,b) =

∑N
i=1 aTXib

TYi − 1
N

∑N
i=1 aTXi

∑N
i=1 bTYi

(SSaT XSSbT Y)1/2

with

SSaT X =
N∑

i=1

(aTXi)
2 − 1

N

(
N∑

i=1

aTXi

)2

, SSbT Y =
N∑

i=1

(bTYi)
2 − 1

N

(
N∑

i=1

bTYi

)2

.

We can then go through exactly the same arguments as for the population case to findaTX

andbTY with a ∈ Ker(K̂X)⊥, b ∈ Ker(K̂Y )⊥, for K̂X andK̂Y defined in (2.10), such

that

ρ̂2(a,b) =
(aT K̂XY b)2

(aT K̂Xa)(bT K̂Y b)

is maximized. As before, sucha ∈ Ker(K̂X)⊥ andb ∈ Ker(K̂Y )⊥ can be obtained by

solving

max
a∈Ker(K̂X)⊥,b∈Ker(K̂Y )⊥

(aT K̂XY b)2 (3.16)

subject to

aT K̂Xa = bT K̂Y b = 1. (3.17)

Let

K̂X =

r(K̂X)∑
i=1

λ̂XiêXiê
T
Xi,
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where(λ̂Xi, êXi), i = 1, . . ., r(K̂X), are the nonzero eigenvalues and associated vectors of

K̂X . Just like in the population setting, define

K̂
1/2
X =

r(K̂X)∑
i=1

λ̂
1/2
Xi êXiê

T
Xi, K̂

−1/2
X =

r(K̂X)∑
i=1

λ̂
−1/2
Xi êXiê

T
Xi

and

K̂−
X =

r(K̂X)∑
i=1

λ̂−1
XiêXiê

T
Xi.

Then, we can easily see thatK̂−
X andK̂

−1/2
X are the Moore-Penrose generalized inverses of

K̂X andK̂
−1/2
X , respectively. Now, lettingu = K̂

1/2
X a andv = K̂

1/2
Y b makes solving the

problem (3.16) and (3.17) equivalent to solving

max
u∈Ker(K̂X)⊥,v∈Ker(K̂Y )⊥

(uT K̂
−1/2
X K̂XY K̂

−1/2
Y v)2

subject touTu = vTv = 1. Suchu andv are obtained from the SVD of̂K−1/2
X K̂XY K̂

−1/2
Y .

Define the first sample canonical correlationρ̂1 and the associated weight vectors

â1, b̂1 as

ρ̂2
1 = (âT

1 K̂XY b̂1)
2 = max

a∈Ker(K̂X),b∈Ker(K̂Y )
(aT K̂XY b)2, (3.18)

wherea,b are subject to (3.17). Fori > 1, define theith sample canonical correlation̂ρi

and the associated weight vectorsâi, b̂i as

ρ̂2
i = (âT

i K̂XY b̂i)
2 = max

a∈Ker(K̂X),b∈Ker(K̂Y )
(aT K̂XY b)2, (3.19)

wherea,b are subject to (3.17) and

aT K̂X âj = bT K̂Y b̂j = 0, j < i. (3.20)

Let r = r(K̂
−1/2
X K̂XY K̂

−1/2
Y ) ≤ min(r(K̂X), r(K̂Y )). Then the SVD of the matrix

K̂
−1/2
X K̂XY K̂

−1/2
Y gives

K̂
−1/2
X K̂XY K̂

−1/2
Y =

r∑
i=1

ρ̂2
i ûiv̂

T
i ,
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whereû1, . . ., ûs are the eigenvectors corresponding to the eigenvaluesρ̂2
1, . . ., ρ̂

2
s of

K̂
−1/2
X K̂XY K̂−

Y K̂Y XK̂
−1/2
X

andv̂1, . . ., v̂s are the eigenvectors corresponding to the eigenvaluesρ̂2
1, . . ., ρ̂

2
s of

K̂
−1/2
Y K̂Y XK̂−

XK̂XY K̂
−1/2
Y .

Suppose that̂ρ2
1 ≥ · · · ≥ ρ̂2

s > 0. Then, âi = K̂
−1/2
X ûi and b̂i = K̂

−1/2
Y v̂i solve the

problem (3.16) subject to (3.17) and (3.20) with corresponding canonical correlationρ̂i.

The estimated canonical variablesâT
i X, b̂T

i Y have maximum sample correlation with one

another.

3.2 Discriminant Analysis with Less Than Full Rank Covariance Matrices

Let us now return toJ population discriminant analysis problem of Section 2.2. In this

setting we observe(X, G), whereX ∈ Rp is a predictor vector andG ∈ {1, . . ., J} is a

categorical response variable representing the class memberships. Recall that classj has

densityfj with class meanµj, covariance matrixKj and associated class probabilityπj.

3.2.1 Bayes Procedure: Linear Discriminant Analysis

Assume that the density of classj is normal with meanµj and a common within class

covariance matrixKW : i.e.,Kj = KW for j = 1, . . ., J . We will allow KW to have less

than full rank. This means thatrW = r(KW ) ≤ p.

Let P be an orthogonal matrix such that

KW = P

 D OrW×(p−rW )

O(p−rW )×rW
O(p−rW )×(p−rW )

PT

with D = diag(λW1, . . ., λWrW
). ThenP = [P1,P2] with P1 = [eW1, . . ., eWrW

] ap× rW

matrix consisting of eigenvectors corresponding toλW1 ≥ · · · ≥ λWrW
> 0 andPT

1 P2 =
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OrW×(p−rW ), PT
2 P2 = Ip−rW

. Let Z = PT
1 X for an observation vectorX from classj.

Then, a Bayes discrimination paradigm can be developed by assuming that

Z|G = j ∼ NrW
(υj,D)

with υj = PT
1 µj.

Let K−
W be the Moore-Penrose generalized inverse ofKW defined by

K−
W =

rW∑
i=1

λ−1
WieWie

T
Wi = P1D

−1PT
1 .

Since a Bayesian classifier assigns a new observation to the group with the largest posterior

probability, we classify a new observationx to populationi if

P (G = i|z) = max
j
P (G = j|z), (3.21)

where

P (G = j|z) ∝ exp

[
−1

2
(z − υj)

TD−1(z − υj) + log πj

]
∝ exp

[
−1

2
(x− µj)

TP1D
−1PT

1 (x− µj) + log πj

]
∝ exp

[
−1

2
(x− µj)

TK−
W (x− µj) + log πj

]
∝ exp

[
µT

j K−
Wx− 1

2
µT

j K−
W µj + log πj

]
.

Alternatively, we can define the discriminant function for classj to be

dj(x) = µT
j K−

Wx− 1

2
µT

j K−
W µj + log πj. (3.22)

Then, an equivalent rule to (3.21) is to classifyx to the class for whichdj(x) is largest. Note

that this has the consequence that, in the case where we have equal class probabilities, a

new observation is classified to the class with the closest centroid or mean vector using the

squared generalized Mahalanobis distance

Dj(x) = (x− µj)
TK−

W (x− µj). (3.23)
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3.2.2 Bayes Procedure: Quadratic Discriminant Analysis

We now allow for different covariance matricesK1, . . .,KJ for each class withKj having

rank rj = r(Kj) ≤ p. Let P1j be ap × rj matrix such thatPT
1jP1j = Irj

andKj =

P1jDjP
T
1j with Dj a diagonal matrix whose elements are therj positive eigenvalues of

Kj. Now letZj = PT
1jX. Then, if

Zj|G = j ∼ Nrj
(υj,Dj)

with υj = PT
1jµj, the corresponding Bayesian classification rule follows from (3.21).

We know that forzj = PT
1jx

P (G = j|zj) ∝ exp

[
−1

2
(zj − υj)

TD−1
j (zj − υj)−

1

2
log |Dj|+ log πj

]
∝ exp

[
−1

2
(x− µj)

TK−
j (x− µj)−

1

2
log |Dj|+ log πj

]
with K−

j the Moore-Penrose generalized inverses ofKj. Hence, we classifyx to classi if

dQ
i (x) = min

j
dQ

j (x), (3.24)

where the quadratic discriminant function is

dQ
j (x) = (x− µj)

TK−
j (x− µj) + log |Dj| − 2 log πj. (3.25)

3.2.3 Fisher’s Linear Discriminant Analysis

The next steps in our development involve the extension of our less than full rank de-

velopments to discriminant analysis via Fisher’s method and, eventually, with canonical

correlation analysis. We begin with how to formulate Fisher’s linear discriminant function

in the case thatKW has less than full rank.

3.2.3.1 Population linear discriminant function

Let KB be the between-class covariance matrix as defined in Section 2.2.3.1. Recall that

KB = VarG(E[X|G]) =
J∑

j=1

πj(µj − µ)(µj − µ)T
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for

µ = E[X] =
J∑

j=1

πjµj.

Then, Fisher’s linear discriminant function is defined to be the linear functionlTX which

maximizes the ratio of the between-class variance to the within-class variance given by

VarG(E[lTX|G])

EG[Var(lTX|G)]
=

lTKBl

lTKW l
(3.26)

provided thatKW l 6= 0.

Assume thatµj ∈ Ker(KW )⊥ for all j. Then, the columns and rows ofKB belong

to Ker(KW )⊥ and hence, forl = l∗ + l0 with l∗ ∈ Ker(KW )⊥ andl0 ∈ Ker(KW ), (3.26)

becomes
lT∗KBl∗

lT∗KW l∗

as in Section 3.1.1. Thus, we now wish to findl = (l1, . . ., lp)
T satisfying

max
l∈Ker(KW )⊥

lTKBl, (3.27)

wherel is subject to

lTKW l = 1. (3.28)

This is equivalent to solving

max
u∈Ker(KW )⊥
||u||Rp=1

uTK
−1/2
W KBK

−1/2
W u,

whereK−1/2
W is defined as

K
−1/2
W =

rW∑
j=1

λ
−1/2
Wi eWie

T
Wi

with rW = r(KW ) ≤ p and(λWi, eWi) the pairs of positive eigenvalues and associated

eigenvectors forKW .

The optimalu can be obtained from the spectral decomposition of the matrix

K
−1/2
W KBK

−1/2
W ,
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which produces the optimall vector

l = K
−1/2
W u.

Alternativelyl may be characterized directly as the solution of

K−
WKBl = γl (3.29)

subject to condition (3.28).

Let r be the rank ofK−
WKB. Then, r = r(K−

WKB) ≤ min(r(KW ), r(KB)) =

min(rW , J − 1). Also, let li, i = 1, . . ., r, be the solutions to (3.29) corresponding to the

eigenvaluesγ1 ≥ · · · ≥ γr > 0. We will refer to lTi X as discriminators or discriminant

functions.

Take the firsts (≤ r) discriminators corresponding to the firsts largest eigenvalues of

K−
WKB. Then the classification rule based on a subsetlT1 X, . . ., lTs X of the discriminant

functions is to classify an observationx to classi if

Distsi (x) = min
j
Distsj(x), (3.30)

where the squared Mahalanobis distanceDistsj is given by

Distsj(x) =
s∑

k=1

(lTk x− lTk µj)
2. (3.31)

The assumptionµj ∈ Ker(KW )⊥ for all j implies that

Ker(KW )⊥ = Ker(KX)⊥.

We can easily see that Ker(KX) ⊂ Ker(KW ) and, hence, Ker(KW )⊥ ⊂ Ker(KX)⊥. Con-

versely, we observe that forc ∈ Rp,

KXc = KBc + KWc =
J∑

j=1

{πj(µj − µ)Tc}µj + KWc ∈ Ker(KW )⊥
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and so Ker(KX)⊥ ⊂ Ker(KW )⊥.

We now introduce another formulation of Fisher’s discrimination method. Let us recall

thatKX is the covariance matrix representing total variability and

KX = Var(X) = VarG(E[X|G]) + EG[Var(X|G)] = KB + KW .

Thus, let us consider optimization with respect tol of the ratio

lTKBl/lTKXl (3.32)

whenKXl 6= 0. In this regards we claim that maximizing (3.26) overl ∈ Ker(KW )⊥ is

equivalent to maximizing (3.32) overl ∈ Ker(KX)⊥. The validity of this contention is

established by first noting that since Ker(KW )⊥ = Ker(KX)⊥, (3.26) becomes

lTKBl

lTKW l
=

lTKBl/lTKXl

1− lTKBl/lTKXl

and then recognizing thath(x) = x
1−x

is an increasing function for0 ≤ x < 1.

As in the Fisher’s discriminant problem in (3.26), the optimall can be characterized

as the solution of

K−
XKBl = λl (3.33)

andl must satisfylTKXl = 1. Now (3.33) is equivalent to

KBl = λKXl = λ(KB + KW )l (3.34)

or

K−
WKBl =

λ

1− λ
l, (3.35)

becausel ∈ Ker(KX)⊥ = Ker(KW )⊥. So, the solutions in (3.29) and (3.35) are the same

apart from a normalizing factor. Since the solutions of (3.35) satisfylTKXl = 1, we have

lTKXl = lTKW l + lTKBl = 1
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so that

lTKW l = 1− lTKBl = 1− λlTKXl = 1− λ.

Let lFisher andl be the solutions of (3.29) and (3.35), respectively. Then,lFisher is related to

l in that

lFisher =
l

(lTKW l)1/2
= (1− λ)−1/2l.

Thus, if l1, . . ., lr are solutions of (3.33) or (3.35) corresponding to eigenvaluesλ1, . . ., λr

then givens ≤ r,

Distsj(x) =
s∑

k=1

1

1− λk

(
lTk x− lTk µj

)2
. (3.36)

We have shown that the vectors that maximize

lTKBl/lTKW l

and

lTKBl/lTKXl

are identical apart from scaling factors. We also have shown that the vector that maximize

(3.32) in Ker(KW )⊥ is identical to the vector that maximize (3.32) in Ker(KX)⊥. We

further viewlTKBl/lTKXl as more interpretable of the two criteria since it is similar in

nature to a coefficient of determination. So, we now name the optimization problem in

(3.32) a generalized Fisher’s linear discriminant analysis.

The condition thatµj ∈ Ker(KW )⊥ for all j is connected to “estimability” of linear

functionalslT µj for l ∈ Ker(KW )T . Indeed, forl ∈ Ker(KW )⊥,

E[lTX|G = j] = lT µj

is unique if and only ifµj ∈ Ker(KW )⊥. To see this, suppose that for someµ
(1)
j ,µ

(2)
j in

Ker(KW )⊥ with µ
(1)
j 6= µ

(2)
j we hadlT µ

(1)
j = lT µ

(2)
j for l ∈ Ker(KW )⊥. Then, this would

produce the contradiction thatµ
(1)
j −µ

(2)
j ∈ Ker(KW ). But,µ(1)

j −µ
(2)
j ∈ Ker(KW )⊥ and

soµ
(1)
j = µ

(2)
j .
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3.2.3.2 Sample linear discriminant analysis

Let (X1, G1), . . ., (XN , GN) be iid copies of(X, G). Much like our approach for canonical

correlation analysis, sample discriminant functions can be obtained from estimators ofKW

andKB. For this purpose we will usêKW , K̂B andK̂X as defined in Section 2.2.4.

The sample linear discriminant function based on the Bayes’ classifier is

d̂j(x) = x̄T
j K̂−

Wx− 1

2
x̄T

j K̂−
W x̄j + log pj.

One then classifiesx to the population wherêdj(x) is largest.

For Fisher’s discriminant functions we use the solutions of

K̂−
W K̂Bl = γl

subject tolT K̂W l = 1. If (γ̂i, l̂i), i = 1, . . ., s, are the solutions corresponding to the firsts

largest eigenvalues, thenx is classified into populationi if

D̂ist
s

i (x) = min
j
D̂ist

s

j(x)

for

D̂ist
s

j(x) =
s∑

k=1

(̂l
T

k x− l̂
T

k X̄j)
2.

3.2.4 Fisher’s LDA and Bayes Procedures

SupposeJ = 2 and the class probabilities are equal. Assume, also, thatµ1 andµ2 are in

Ker(KW )⊥. Then, the Bayesian classification rule in (3.21) is equivalent to classifyingx

to class 1 if

d1(x)− d2(x) > 0.

Otherwise, it is classified to class 2. Since

d1(x)− d2(x) = (µ1 − µ2)
TK−

Wx− 1

2
(µ1 − µ2)

TK−
W (µ1 + µ2),
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the classification rule is equivalent to classifyingx to class 1 if

(µ1 − µ2)
TK−

W (x− µ) > 0,

with µ = 1
2
(µ1 + µ2) and to class 2 otherwise.

ForJ = 2, µ = π1µ1 +π2µ2 so thatKB =
∑2

j=1 πj(µj−µ)(µj−µ)T = π1π2(µ1−

µ2)(µ1 − µ2)
T . Thus, Fisher’s linear discriminant function is obtained by maximizing{

lT (µ1 − µ2)
}2

lTKW l

over l in Ker(KW )⊥. An application of the Cauchy-Schwarz inequality reveals that the

maximum of the above ratio is(µ1 − µ2)
TK−

W (µ1 − µ2) and the maximum is attained at

l = K−
W (µ1−µ2). Thus, Fisher’s linear discriminant function is(µ1−µ2)

TK−
WX. In this

instance, the classification rule is to classifyx to class 1 if

∣∣(µ1 − µ2)
TK−

Wx− (µ1 − µ2)
TK−

W µ1

∣∣ < ∣∣(µ1 − µ2)
TK−

Wx− (µ1 − µ2)
TK−

W µ2

∣∣,
which is exactly the same as the rule obtained from the Bayes procedure.

Similarly, the generalized Fisher’s linear discriminant function is obtained by solving

max
l∈Ker(KX)⊥

{
lT (µ1 − µ2)

}2

lTKXl
.

So, the generalized Fisher’s linear discriminant function is(µ1 − µ2)
TK−

XX.

Now let us recall that under the assumptionµ1,µ2 ∈ Ker(KW )⊥, Ker(KX)⊥ =

Ker(KW )⊥. Let l = K−
X(µ1 − µ2). Then, we have

KXl = µ1 − µ2

and hence

KW l = µ1 − µ2 −KBl = (1− 0.25(µ1 − µ2)
T l)(µ1 − µ2),
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which implies

KW l ∝ µ1 − µ2.

Since in this case Ker(KX)⊥ = Ker(KW )⊥, we see that

l ∝ K−
W (µ1 − µ2).

Then, the corresponding classification rule for generalized Fisher’s discrimination is to

classifyx to class 1 if

∣∣(µ1 − µ2)
TK−

X(x− µ1)
∣∣ < ∣∣(µ1 − µ2)

TK−
X(x− µ2)

∣∣.
Thus, the result is that classification via generalized Fisher’s discriminant analysis is exactly

the same as that by the Bayes classifier becausel ∝ K−
W (µ1 − µ2).

3.2.5 Fisher’s Discriminant Function via Regression

Let us recall the generalized Fisher’s linear discriminant function,(µ1−µ2)
TK−

XX, in the

case ofJ = 2 with π1 = π2 = 0.5 from Section 3.2.4. Also, recall the form of linear

regression for a binary responseY coded as 1 for class 1 and 0 for class 2 on a vector

X ∈ Rp. Specifically, we have the following regression line:

KY XK−
XX + (µY −KY XK−

XµX).

Then, we can observe that

KXY = E[XY ]− E[X]E[Y ] = π1µ1 − µπ1 = π1(µ1 − µ) = π1π2(µ1 − µ2)

sinceY is a Bernoulli random variable withP (Y = 1) = P (G = 1) = π1. So the slope of

the regression line is proportional toK−
X(µ1 −µ2) and this quantity is exactly the same as

the generalized Fisher’s linear discriminant function in the case of two classes.

Suppose that the classification rule is defined to allocatex to class 1 if

KY XK−
Xx + (µY −KY XK−

Xµ) > .5
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and to class 2 otherwise. Then, in the case thatπ1 = π2, this rule becomes exactly the

same as the rule from generalized Fisher’s discriminant analysis. Finally, by assuming

µ1,µ2 ∈ Ker(KW )⊥, this leads to the result that the rule obtained from linear regression is

also the same as the rule from Fisher’s discriminant analysis or from the Bayes classifier.

3.2.6 Fisher’s Approach via Canonical Correlation Analysis

As in Section 2.2.3.2, we will demonstrate the connection between Fisher’s LDA and

canonical correlation analysis under the less than full rank scenario in this section. For

this purpose, letY = (Y1, . . ., YJ)T with Yj = I(G = j) being indicator response vari-

ables. Then, we will prove the following result.

Theorem III.2 . Let KB,KW be the between-class covariance matrix and a common

within-class covariance matrix, respectively, defined in Section 2.2.3.1. Letai, i = 1, . . ., r,

be the coefficient vectors of the canonical variables of theX space. Then, the canonical

vectorsai are the eigenvectors ofK−
WKB and the canonical correlationsρi are precisely

square roots of the eigenvalues obtained from (3.33).

Proof. Set Var(X) = KX ,Var(Y) = KY and Cov(X,Y) = KXY = KT
Y X . Since

Y = Y(G) from the categorical response variableG is such thatY = ej if G = j for

j = 1, . . ., J , with ej an elementary vector consisting of all 0’s except for a 1 in itsjth entry,

Y has a multinomial distribution with cell probabilitiesπ = (π1, . . ., πJ)T . Consequently,

E[Y] = π, KY = diag(π1, . . ., πJ)− ππT .

Also, we can show that

E[XYT ] = EG[E(XYT |G)] =
J∑

j=1

E[X|G = j]Y(G = j)TP (G = j)

=
J∑

j=1

πjµje
T
j = [π1µ1, . . ., πJµJ ]
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and hence we have

KXY = E[XYT ]− E[X]E[Y]T = [π1(µ1 − µ), . . ., πJ(µJ − µ)].

Now, the canonical correlation problem is to finda ∈ Ker(KX)⊥ andb ∈ Ker(KY )⊥

that maximize

(aTKXY b)2

(aTKXa)(bTKY b)
=

{
aT [π1(µ1 − µ), . . ., πJ(µJ − µ)]b

}2

(aTKXa)(bTKY b)
. (3.37)

To accomplish this setc = diag(π1/2
1 , . . ., π

1/2
J )b = (π

1/2
1 b1, . . ., π

1/2
J bJ)T and observe that

bTKY b = cT (I− ddT )c

with d = (π
1/2
1 , . . ., π

1/2
J )T . So, (3.37) becomes{

aT
[
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

]
c
}2

(aTKXa)(cT (I− ddT )c)
.

Sinceb ∈ Ker(KY )⊥ is equivalent toc ∈ Ker(I− ddT )⊥ andd ∈ Ker(I− ddT ),

dTc = 0. (3.38)

Thus, in words, findinga andb such thata ∈ Ker(KX)⊥, b ∈ Ker(KY )⊥ maximize (3.37)

is equivalent to findinga andc such that{
aT
[
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

]
c
}2

(aTKXa)(cTc)
. (3.39)

is maximized overa ∈ Ker(KX)⊥, c ∈ Ker(I−ddT )⊥. As in Section 2.1.1, the coefficient

vectorsa1, . . ., ar of the canonical variables of theX space are then obtained from

K−
X

[
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

] [
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

]T
a = ρ2a.

(3.40)

SinceKB =
∑J

j=1 πj(µj − µ)(µj − µ)T , (3.40) simplifies to

K−
XKBa = ρ2a
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or

K−
WKBa =

ρ2

1− ρ2
a

as was to be shown.

�

We also can findc such thatdTc = 0 to maximize (3.39). The correspondingc’s are

obtained from

[
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

]T
K−

X

[
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

]
c = ρ2c.

(3.41)

The moral of this is that the canonical variables of theY space look likebTY with

b = (π
−1/2
1 c1, . . ., π

−1/2
J cJ)T

for c = (c1, . . ., cJ)T such that
∑J

j=1 π
1/2
j cj = 0 andcTc = 1. Also, becauseπTb =

dTc = 0, we can see that

[π1(µ1 − µ), . . ., πJ(µJ − µ)]b =
J∑

j=1

πjbjµj − µ
J∑

J=1

πjbj =
J∑

j=1

πjbjµj,

which is a contrast among the population means. So, the numerator in (3.37) is simplified

to

aT [π1(µ1 − µ), . . ., πJ(µJ − µ)]b =
J∑

j=1

πjbja
T µj,

which is a contrast among transformed meansmj = aT µj. Moreover, fromπTb = 0, we

see that

bTKY b = bT
(
diag(π1, . . ., πJ)− ππT

)
b = bT diag(π1, . . ., πJ)b = cTc = 1.

Now, premultiplying (3.41) byK−
X

[
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

]
reveals that

K−
XKB(K−

Xz) = ρ2(K−
Xz)
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with z =
[
π

1/2
1 (µ1 − µ), . . ., π

1/2
J (µJ − µ)

]T
c = [π1(µ1 − µ), . . ., πJ(µJ − µ)]b which

is a contrast among the population mean vectors. Thus,

a ∝ K−
Xz

and so the discriminant function(K−
Xz)TX is exactly the same as (apart from a constant of

proportionality)aTX obtained earlier by Fisher’s approach.

Let aT
1 X andbT

1 Y be the first canonical variables of theX andY space. Then,a1

andb1 solve the problem of finding the linear contrast of transformed means that is largest

in magnitude. That is,a1 andb1 are maximizing∣∣∣ J∑
j=1

πjbja
T µj

∣∣∣
subject toaTKXa = 1,

∑J
j=1 πjbj = 0 and

∑J
j=1 πjb

2
j = 1.

Thebj ’s measure the importance of the transformed meanmj = aT µj in the contrast.

So, if bj is small,mj does not contribute much to the contrast and conversely. But the

bj ’s are all the coefficients for theYj = I(G = j). These provide information about how

importantYj is to the random variablebTY. Clearly, if bj = 0 thenYj does not contribute.

Also, when the class probabilities are equal, thebj are the coefficients of the contrast among

the transformed means.

Now aT
1 X andbT

1 Y are the transformed variables with the most correlation. Thus, we

are usingaT
1 X to predictbT

1 Y. However,bT
1 Y is discrete with

bT
1 Y = b1j

with probabilityπj.

Our ability to predictbT
1 Y is clearly related to how theb1j fall. If, for example,b1i 6=

b1j for all i, j = 1, . . ., J , then there are distinct scores associated with each population and

we can expectaT
1 X to be able to distinguish between each of theJ populations. However,
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if b11 = b12 for examples, theaT
1 X will not be able to tell populations 1 and 2 apart. So,

aT
1 X should only be useful in predicting membership in population whoseb1j ’s are large

and distinct.

In practice, we will need to estimatea1 andb1 to obtainâT
1 X andb̂T

1 Y. The first thing

one should do at that point is to look atb̂1. The coefficients here will tell the populations

for which âT
1 X will be able to serve as a discriminator. Ifb̂1 has some small or almost

equal coefficients, then another discriminator is needed. So, we go toâT
2 X, b̂T

2 Y and hope

thatâT
2 X will help with the populations that̂aT

1 X could not separate. This process can then

be repeated, etc.

3.2.7 Classification

Our goal in this section is to formulate the classification rules based on the canonical vari-

ables of theX andY spaces. Prior to achieving this aim, we know the fact that, in CCA, if

X is interpreted as causingY, thenaTX may be called the best predictor ofY andbTY

the most predictable criterion and vice versa.

Let η = aTX andξ = bTY = bTY(G) be a pair of the canonical variables of the

X andY spaces corresponding to the canonical correlationρ. Since we know thatη is the

best predictor ofξ from CCA, we can predictξ via η using the regression ofξ onη. Then,

the predicted score is given by

E[ξ] +
Cov(ξ, η)

Var(η)
(η − E[η]) = E[ξ] + ρ(η − E[η])

= ρ(aTX− aT µ)

as E[ξ] = bT π =
∑J

j=1 πjbj = 0 and Var(η) = Var(aTX) = 1.

We first can think of using a distance measure to compare the predicted scores of the

first s canonicalX variables to the class centroid of those scores. For this purpose, set
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ξ̃i = ξ̃i(x) = ρia
T
i x− ρia

T
i µ. Then, givens ≤ min(p, J − 1), define

s∑
k=1

1

ρ2
k(1− ρ2

k)
(ξ̃k(x)− ¯̃ξkj)

2 (3.42)

with ¯̃ξkj = E[θk(x)|G = j].

We can also can consider a distance measure which compares the predicted scores of

the firsts canonicalX variables to representative points forJ classes rather than the class

centroids. Natural points to use for this purpose are provided by the canonicalY variable

since the canonicalY variable corresponding to the populationj has the valuebj. So, we

could use the following distance measure for classification:

s∑
k=1

1

1− ρ2
k

(ξ̃k(x)− bkj)
2 −

s∑
k=1

b2kj. (3.43)

Yet, another option is to consider a distance measure which compares the canonical

X scores to the predicted scores of the canonicalX variable via the canonicalY variable.

We can predict the scores to be assigned to theJ classes using the regression ofη on ξ. To

predictη via ξ we use

E[η] +
Cov(η, ξ)

Var(ξ)
(ξ − E[ξ]) = aT µ + ρbTY

since E[ξ] = 0 and Var(ξ) = 1. Setη̃kj = aT
k µ + ρkbkj. This leads to a distance such as

s∑
k=1

1

1− ρ2
k

(aT
k x− η̃kj)

2. (3.44)

We have now introduced several distances: namely, (3.31), (3.42), (3.43) and (3.44).

The relationship between these distances is the subject of the next theorem.

Theorem III.3 . The distances in (3.31), (3.42) and (3.44) are the same.

Proof. We have seen that the distances in (3.31) and (3.36) are identical from the relation-

ship between the vectors that maximizes (3.26) and (3.32) in Section 2.2.3.1. We can easily

see from Theorem 4 that the distance in (3.42) is the same as in (3.36) sinceλk = ρ2
k.
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Now we start with

Distsj(x) =
s∑

k=1

1

1− ρ2
k

(aT
k x− aT

k µj)
2 =

s∑
k=1

1

1− ρ2
k

(aT
k x− aT

k µ + aT
k µ− aT

k µj)
2.

Since

KXY = [π1(µ1 − µ), . . . , πJ(µJ − µ)] = [µ1, . . . ,µJ ]KY ,

premultiplication byKY in (3.10) produces

KY Xak = ρkKY bk.

This is equivalent to

diag(π1, . . . , πJ)[µ1 − µ, . . . ,µJ − µ]Tak = ρkdiag(π1, . . . , πJ)bk

sinceKY bk = diag(π1, . . . , πJ)bk which follows fromπTbk = 0. So, we have

[µ1 − µ, . . . ,µJ − µ]Tak = ρkbk

and henceaT
k (µj − µ) = ρkbkj for j = 1, . . . , J . Thus, the distance in (3.36) becomes

(3.44).

�

The distances in (3.31), (3.42) and (3.43) are known to be equivalent in case thatKX

andKY are invertible (Hastie et al., 1995). We now look for the relationship between the

distances in (3.42) and (3.43) in the case of singularity forKX . Note thatKY is always

singular in our setting.

Corollary III.1 . The distance in (3.42) is equivalent to the distance measure in (3.43)

in the sense of classification.
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Proof. As in the proof of Theorem III.3, we begin with

Distsj(x) =
s∑

k=1

1

1− ρ2
k

(aT
k x− aT

k µj)
2

=
s∑

k=1

1

1− ρ2
k

(aT
k x− aT

k µ)2 − 2
s∑

k=1

1

1− ρ2
k

(aT
k x− aT

k µ)(aT
k µj − aT

k µ)

+
s∑

k=1

1

1− ρ2
k

(aT
k µj − aT

k µ)2.

We have seen thataT
k (µj − µ) = ρkbkj for j = 1, . . . , J . We then observe that

aT
k x− aT

k µ = ρ−1
k ξ̃k(x).

Thus, the distance above becomes

s∑
k=1

1

ρ2
k(1− ρ2

k)
ξ̃k(x)2 − 2

s∑
k=1

1

1− ρ2
k

ξ̃k(x)bkj +
s∑

k=1

ρ2
k

1− ρ2
k

b2kj

=
s∑

k=1

(
1

ρ2
k(1− ρ2

k)
− 1

1− ρ2
k

)
ξ̃k(x)2 +

s∑
k=1

1

1− ρ2
k

(ξ̃k(x)− bkj)
2

+
s∑

k=1

(
ρ2

k

1− ρ2
k

− 1

1− ρ2
k

)
b2kj

=
s∑

k=1

ρ−2
k ξ̃k(x)2 +

s∑
k=1

1

1− ρ2
k

(ξ̃k(x)− bkj)
2 −

s∑
k=1

b2kj.

Since the term
∑s

k=1 ρ
−2
k ξ̃k(x)2 does not depend on the class membership, the class that

minimizes (3.42) is identical to the class that minimizes (3.43).

�

Suppose thats = r = min(p, J − 1) = J − 1. Then, the distance measure in (3.43) is

equivalent to the distance measure

J−1∑
k=1

1

1− ρ2
k

(ξ̃k(x)− bkj)
2 − π−1

j . (3.45)

This distance measure cannot be used in a dimension-reduction mode since it counts on the

presence ofJ−1 discriminant coordinates. To establish equivalence, letB = [b1, . . . ,bJ−1]
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andB̃ = [B,1]. ThenB̃ is square and nonsingular with

B̃T diag(π1, . . . , πJ)B̃ =

 BT diag(π1, . . . , πJ)B BT diag(π1, . . . , πJ)1

1T diag(π1, . . . , πJ)B 1T diag(π1, . . . , πJ)1

 = IJ

sinceBT diag(π1, . . . , πJ)B = BTKY B = IJ−1, BT diag(π1, . . . , πJ)1 = BT π = 0 and

1T diag(π1, . . . , πJ)1 = 1T π = 1. which follow from bT
i KY bi = 1,bT

i KY bk = 0 and

πTbi = 0 for i, k = 1, . . . , J − 1, i 6= k. SinceB̃ is nonsingular, we havẽBB̃T =

diag(π−1
1 , . . . , π−1

J ), or
∑J−1

k=1 b
2
kj + 1 = π−1

j for j = 1, . . . , J .

3.2.7.1 Example: Fisher’s Irises Data

In this section we exemplify some of the previous discussions using Fisher’s classic Iris

data set. The iris data published by Fisher (1936) have been widely used for examples in

discriminant analysis and cluster analysis. For this data, four measurements (sepal length

and width, and petal length and width) were taken on each of fifty specimens of three

different Iris types: namely, setosa, versicolor, and verginica.

The estimated canonical correlations are

ρ̂1 = 0.985, ρ̂2 = 0.471.

The corresponding canonical variables of theX space are

−.145X1 − .269X2 + .386X3 + .493X4

and

−.021X1 − 1.928X2 + .83X3 − 2.529X3

forX1 the sepal length,X2 the sepal width,X3 the petal length andX4 the petal width. The

estimated coefficient vectors of the first two canonical variables of theY space are given

by

b̂1 = (−1.354, 0.324, 1.029) and b̂2 = (−0.407, 1.376,−0.969).
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(a) (b)

Figure 1: Plots of (a) the first canonicalX scores (b) the second canonicalX scores for
150 irises and the predicted canonical scores (horizontal lines) superimposed: black points
for Sertosa, red points for Versicolor and green points for Verginica.Each point represents
a score for an iris.

Table 1: Confusion matrix of classification of the Iris data

Sertosa Versicolor Verginica
Sertosa 50 0 0 50

Versicolor 0 48 2 50
Verginica 0 0 50 50

In accordance with our discussion of the role of the coefficient vector for the canonical

Y variables in Section 3.2.6, we might expect the first discriminator or the first canonical

variable of theX space to be able to distinguish Sertosa from the other species and the

second discriminator to be able to distinguish Versicolor from the others. Figure 1 reveals

that this is, indeed, the case. However, we also see that the discrimination power of the

second discriminator is quite limited relative to the first. So, we will only use the first

discriminators which results in a misclassification rate is 1.33%. Table 1 shows the result

of classification using the CCA approach using the classification rule based on the distance

in (3.44) withs = 1.
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CHAPTER IV

MATHEMATICAL PRELIMINARIES

In this chapter, we collect a number of results and definitions that provide the mathematical

prerequisite for the developments in subsequent chapters. We begin with a discussion of

inner product spaces.

4.1 Hilbert Spaces

The concept of a Hilbert space occupies a fundamental role throughout this dissertation. In

this section we lay out some of the basic facts about Hilbert spaces that will be used in the

sequel.

Hilbert spaces are normed vector spaces whose norms stem from a bilinear function

referred to as an inner product. The concepts of norms and inner products can be developed

formally as follows.

Definition IV.1. LetV be a vector space overR. A norm onV is a function‖·‖ : V → R

such that for allu, v ∈ V andα ∈ R,

(a) ‖u‖ > 0 if and only if u 6= 0,

(b) ‖αu‖ = |α|‖u‖,

(c) ‖u+ v‖ ≤ ‖u‖+ ‖v‖.

A vector spaceV with a norm is called a normed (vector) space.

Definition IV.2. Let V be a vector space overR. An inner product onV is a function

〈·, ·〉 onV × V → R such that for allu, v, w ∈ V andα, β ∈ R,

(a) 〈u, u〉 > 0 if and only if u 6= 0,
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(b) 〈u, v〉 = 〈v, u〉,

(c) 〈αu+ βv, w〉 = α〈u,w〉+ β〈v, w〉.

A real vector spaceV with an inner product is called an inner product space. The function

‖ · ‖ : V → R defined by‖u‖ = 〈u, u〉1/2, u ∈ V is a norm onV and hence an inner

product space is a normed space.

Definition IV.3. Let V be an inner product space and letA be a subset ofV . The

orthogonal complement ofA is the set

A⊥ = {u ∈ V : 〈u, a〉 = 0 for all a ∈ A}.

The triangle inequality (i.e., the relation‖u−v‖ ≤ ‖u−w‖+‖w−v‖ for all u, v, w ∈

V ) immediately implies that if a sequence{un} in V converges, then it is necessarily a

Cauchy sequence. But the converse of this statement is not true. So, to avoid questions

concerning the existence of the limit of a sequence inV , our interest is in a complete space.

Definition IV.4. V is complete if for any Cauchy sequence{un} with un ∈ V there

existsu ∈ V such that‖un − u‖ → 0 asn→∞ for all n.

Definition IV.5. An inner product space which is complete under the norm induced by

the inner product is called a Hilbert space.

Although every inner product space does not have the completeness property, any inner

product space can be completed to create a Hilbert space.

A matrix is a linear transformation in a finite-dimensional vector space and it has

played an important role in the developments of our theory. Matrices are actually lin-

ear transformation which preserves the linear structure of the vector spaces. The matri-

ces treated in the previous chapter were linear transformation between finite-dimensional

real vector spaces and, as such, they are automatically bounded and compact. However,

when the spaces being transformed are infinite-dimensional, conditions of boundedness
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and compactness do not hold automatically. So, we now summarize some important con-

cepts involving the properties of linear transformations or linear operators between linear

spaces.

Definition IV.6. Let V,W be real vector spaces. A mappingT : V → W is said to be a

linear transformation if for allα ∈ R andu, v ∈ V ,

(a) T (u+ v) = T (u) + T (v),

(b) T (αu) = αT (u).

If W = R thenT is said to be a linear functional.

Definition IV.7. If T is a linear transformation fromV toW , the range and null space

of T are defined by

Im(T ) = {w ∈ W : w = Tu for someu ∈ V }

and

Ker(T ) = {u ∈ V : Tu = 0},

respectively. Also, the rank ofT denoted byr(T ) is the dimension of Im(T ).

Definition IV.8. Suppose thatV andW are normed spaces with norms‖·‖V and‖·‖W ,

respectively. LetT be a linear transformation fromV toW .

(a) T is said to be bounded if there exists a finiteM such that‖Tu‖W ≤M‖u‖V for all

u ∈ V .

(b) T is compact if for any bounded sequence{un} in V the sequence{Tun} in W

contains a convergent subsequence.

(c) T is called an isometry if‖Tu‖W = ‖u‖V for u ∈ V .

(d) A one-to-one linear transformationT from V ontoW is said to be an isomorphism.



53

Let H1 andH2 be real Hilbert spaces. The set of all bounded linear transformations

fromH1 toH2 is denoted byB(H1,H2). Elements ofB(H1,H2) are also called bounded

linear operators.

Definition IV.9. Let T ∈ B(H1,H2). A transformationT ∗ ∈ B(H2,H1) such that

〈Tu, v〉H2
= 〈u, T ∗v〉H1

for u ∈ H1, v ∈ H2 is said to be the adjoint of the operatorT .

Now letH be a real Hilbert space andT ∈ B(H,H) := B(H).

(a) T is said to be self-adjoint ifT ∗ = T .

(b) T is positive if it is self-adjoint and〈Tu, u〉H ≥ 0 for u ∈ H.

(c) T is said to be a projection ifT 2 = T .

(d) T is normal ifTT ∗ = T ∗T .

A Banach space is a complete normed vector space.

Theorem IV.1. (Open mapping theorem)Let V andW be Banach spaces andT ∈

B(V,W ) mapV ontoW . If T is one-to-one then there existS ∈ B(W,V ) such that

S ◦ T = IV andT ◦ S = IW .

To provide solutions to the optimization problems posed in Chapters V and VI, we

will need the concepts of eigenvalue and eigenvector of the linear operator that arises from

the spectral decomposition of a bounded linear self-adjoint operator and also the concept

of polar representation of a bounded linear operator. We collect some essential information

about these notions in the remainder of this section.

Definition IV.10. The spectrumσ(T ) of an operatorT ∈ B(H) is the set of all scalars

λ for whichT − λI is not invertible.

Definition IV.11. Let V be a vector space andT be a linear transformation fromV to

V . A scalarλ is an eigenvalue ofT if Tv = λv has a non-zero solutionv ∈ V , and any



54

such non-zero solution is an eigenvector. The subspace Ker(T − λI) in V is called the

eigenspace corresponding toλ and the multiplicity ofλ is the dimension of Ker(T − λI).

Now for any eigenvalue ofT we may find elementsv1 6= v2 such that(T − λI)v1 =

(T −λI)v2. Thus,(T −λI)(v1−v2) = 0 whichT −λI is not one-to-one. But, ifT −λI is

not one-to-one it is not invertible and consequently, any eigenvalue ofT must be inσ(T ).

The spectrumσ(T ) of T ∈ B(H) can be divided into three disjoint subsets. The

subset ofσ(T ) consisting of all eigenvalues ofT is called the point spectrum ofT . The set

of λ’s for whichT − λI is a one-to-one mapping ofH onto a dense proper subspace ofH

is called the continuous spectrum forT . Finally, the set consisting of all otherλ ∈ σ(T ) is

called the residual spectrum forT .

Theorem IV.2. LetH be a real Hilbert space andT ∈ B(H).

(a) σ(T ) is a closed set.

(b) A normal operator has empty residual spectrum.

Since a self-adjoint operator is normal, we observe from (b) that the spectrumσ(T ) of a

self-adjoint operator can be decomposed into the point spectrum and the continuous spec-

trum.

Definition IV.12. LetA be aσ-field in a setΩ and letH be a real Hilbert space. In this

setting, a resolution of the identity onA is a mapping

E : A → B(H)

with the following properties:

(a) E(∅) = 0, E(Ω) = 1.

(b) EachE(ω) is a self-adjoint projection forω ∈ A.

(c) E(ω1 ∩ ω2) = E(ω1)E(ω2).
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(d) E(ω1 ∪ ω2) = E(ω1) + E(ω2) for ω1 ∩ ω2 = ∅.

(e) For everyx ∈ H andy ∈ H, the set functionEx,y defined by

Ex,y(ω) = 〈E(ω)x, y〉H

is a measure onA.

Theorem IV.3. LetT be a normal operator on a real Hilbert spaceH. Then there exists

a unique resolution of the identityE on the Borel subsets ofσ(T ) which satisfies

T =

∫
σ(T )

γdE(γ). (4.1)

Since ifT ∈ B(H) is self-adjoint then it is normal, Theorem IV.3 is true for self-adjoint

operator.

If H is a finite-dimensional Hilbert space andT ∈ B(H) then the spectrum ofT

consists solely of eigenvalues ofT . However, there are operators on infinite-dimensional

spaces which have no eigenvalues at all. IfT ∈ B(H) is compact then the zero eigenvalue

belongs to the spectrumσ(T ) and the set of non-zero eigenvalues ofT consists of countable

set of eigenvalues with finite multiplicity.

Suppose thatT is compact. Let us define the operatorf ⊗ g fromH1 toH2 as

(f ⊗ g)h = 〈g, h〉H1f

for f ∈ H2, g, h ∈ H1. Then,r(T ) represents the cardinality ofσ(T ) and (4.1) becomes

T =

r(T )∑
j=1

γjej ⊗ ej, (4.2)

whereγ1, γ2, . . ., γr(T ) are non-zero distinct eigenvalues ofT with associated eigenvectors

ej.
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The polar representation for a bounded but non-self adjoint linear operator can be

combined with our discussion of the spectral decomposition of a positive and self-adjoint

linear operator (Naimark, 1960 and Rudin, 1973) to obtain a decomposition for operators

between two Hilbert spaces. The specific result is that ifT ∈ B(H1,H2) then

T = W (T ∗T )1/2 = W

∫
σ(T ∗T )

λ1/2dE(λ), (4.3)

whereW is a unique partial isometry (i.e., a norm preserving mapping from Ker(T )⊥ to

Im(T ) ), σ(T ∗T ) = {λ ∈ R : T ∗T − λI is not invertible} is a closed subset of[0,∞) and

{E(λ) : λ ∈ σ(T ∗T )} is the unique resolution of the identity corresponding toT ∗T .

Thus, ifT ∗T ∈ B(H1) is compact we have

(T ∗T )1/2 =

r(T )∑
j=1

λ
1/2
j βj ⊗ βj,

sincer(T ) = r(T ∗T ), and (4.3) becomes

T =

r(T )∑
j=1

λ
1/2
j αj ⊗ βj, (4.4)

whereλ1 ≥ λ2 ≥ . . .≥ λr(T ) > 0 are the eigenvalues ofT ∗T with associated eigenvectors

βj, j = 1, . . ., r(T ) and

αj = Wβj = λ
−1/2
j W (T ∗T )1/2βj = λ

−1/2
j Tβj

which follows from(T ∗T )1/2βj = λ
1/2
j βj.

4.2 Reproducing Kernel Hilbert Spaces and Stochastic Processes

Reproducing kernel Hilbert spaces (RKHS’s) provide a fundamental tool for inference con-

cerning second order stochastic process. This stems from the congruence between the

Hilbert space spanned by a stochastic process and the RKHS generated by its covariance
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kernel. The link between reproducing kernels and stochastic processes was initially estab-

lished by Lòeve (1948) and was developed fully by Parzen in a series of articles (e.g., see

Parzen, 1967).

Now we will review some basic facts about RKHS’s. More details can be found in

Aronszajn (1950), Parzen (1961) and Weinert (1982). We begin with the definition of

positive definite functions.

Definition IV.13. A symmetric, real-valued bivariate functionK onT ×T is said to be

positive definite if, for any reala1, . . ., an, andt1, . . ., tn ∈ T ,
n∑

i=1

n∑
j=1

aiajK(ti, tj) ≥ 0,

and strictly positive definite if “>” holds.

Definition IV.14. Let H be a Hilbert space of functions on some setT and denote by

〈·, ·〉H the inner product inH. A bivariate function onT × T is said to be a reproducing

kernel (r.k.) forH if for every t ∈ T andf ∈ H,

(a) K(·, t) ∈ H,

(b) f(t) = 〈f,K(·, t)〉H.

When (a) and (b) hold,H is said to be a reproducing kernel Hilbert space with r.k.K.

The property (b) is termed the reproducing property ofK. It can easily be shown that

K is the unique r.k. andK is a symmetric and positive definite function. The reproducing

property leads us to the following theorem.

Theorem IV.4. (Moore-Aronszajn-Lòeve)Given a positive definite functionsK onT ×

T , one can construct a unique RKHSH(K) of real-valued functions onE with K as its

r.k.. The spaceH(K) is given by the closure of the linear span of{K(·, t), t ∈ T }, i.e.,

H(K) = span{K(·, t), t ∈ T }. (4.5)
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Let H be the linear manifold spanned by{K(·, t), t ∈ T }: i.e., the set of all finite

linear combinations of the form
n∑

i=1

aiK(·, ti)

for a1, . . ., an ∈ R, t1, . . ., tn ∈ T andn = 1, 2, . . .with the inner product

〈
n∑

i=1

aiK(·, ti),
m∑

j=1

bjK(·, sj)〉H =
n∑

i=1

m∑
j=1

aibjK(ti, sj)

for arbitrary pointst1, . . ., tn, s1, . . . , sm in T . Then,H is an incomplete inner product

space with r.k.K. But it can be completed by adjoining all limits of Cauchy sequences of

the functions inH. LetH(K) be the completion ofH and define a norm onH(K) by

‖f‖2
H(K) = lim

n→∞
‖fn‖2

H

with a Cauchy sequence{fn} in H converging pointwise tof . Then,H is dense inH(K).

We now review Parzen’s representation theory concerning various concrete function

spaces that are congruent to the Hilbert space spanned by a second order stochastic process

(Parzen, 1961). A fundamental tool in this development is the following result.

Theorem IV.5. (Basic Congruence Theorem)Let H1 andH2 be two abstract Hilbert

spaces equipped with the inner products〈·, ·〉H1
and〈·, ·〉H2

. Let{u(t), t ∈ T } be a family

of vectors which spansH1 and{v(t), t ∈ T } be a family of vectors which spansH2. If for

everys andt in T

〈u(s), u(t)〉H1
= 〈v(s), v(t)〉H2

then the spacesH1 andH2 are congruent and there exists an isometric isomorphism (one-

to-one and onto inner product preserving linear mapping)ψ fromH1 toH2 satisfying

ψ(u(t)) = v(t), t ∈ T .
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Let (Q,B, ν) be a measure space and letL2(ν) be the Hilbert space of allB-measurable

real valued functions defined onQ that are square integrable with respect toν with inner

product

〈f1, f2〉L2(ν) =

∫
Q

f1(q)f2(q)dν(q)

for f1, f2 ∈ L2(ν). The next theorem provides an explicit formula that can frequently be

used to obtain the inner product for a RKHSH(K) generated byK.

Theorem IV.6. Suppose that there is a set of functions{φ(t, ·), t ∈ T } in L2(ν) such

that

K(s, t) = 〈φ(s, ·), φ(t, ·)〉L2(ν) (4.6)

for all s, t ∈ T . Then the RKHSH(K) corresponding toK consists of all functions of the

form

f(t) = 〈g(·), φ(t, ·)〉L2(ν) (4.7)

for some unique functiong in span{φ(t, ·), t ∈ T } ∩ L2(ν), with inner product given by

〈f1, f2〉H(K) = 〈g1, g2〉L2(ν) (4.8)

for f1, f2 ∈ H(K) corresponding tog1, g2 ∈ span{φ(t, ·), t ∈ T }.

We finish out this section with discussion of i) the basic congruence relation between

the Hilbert space of random variables spanned by a second-order stochastic process and the

RKHS determined by its second moment function, ii) the one-to-one correspondence be-

tween the Hilbert space of random variables spanned by a second-order stochastic process

and the RKHS determined by its covariance function and iii) some examples of RKHS’s.

Let {X(t), t ∈ T } be a second order stochastic process with the mean function

µ(t) = E[X(t)]

and covariance function

K(s, t) = Cov(X(s), X(t))
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for s, t ∈ T . We denote byR the second moment function

R(s, t) = E[X(s)X(t)].

Note that

R(s, t) = K(s, t) + µ(s)µ(t).

Now let (Ω,B, P ) be the probability space corresponding to the stochastic processX(·)

(e.g., see Doob, 1953). IfL2(P ) denotes the set of all square integrable functions on

(Ω,B, P ), we are interested in the subset ofL2(P ) obtained as the completion (inL2(P ))

of the set of all random variables of the form

n∑
i=1

aiX(ti)

for some integern, some constantsa1, . . ., an ∈ R, and some pointst1, . . ., tn ∈ T . We

denote this space byL2
X and observe that it is a Hilbert space with inner product

〈U, V 〉L2
X

= E[UV ] for U, V ∈ L2
X .

SinceR is symmetric and positive definite, it generates a RKHSH(R) as in (4.5) from

Theorem IV.4. Then, by the reproducing property,

〈R(·, s), R(·, t)〉H(R) = R(s, t) = E[X(s)X(t)].

Hence, by Theorem IV.5, there is an isometryψ fromH(R) ontoL2
X satisfying

ψ(R(·, t)) = X(t)

andH(R) andL2
X are congruent. So, every random variableU in L2

X can be written

U = ψ(f)

for some uniquef in H(R). Also,ψ satisfies

E[ψ(f)ψ(g)] = 〈f, g〉H(R)
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for anyf, g ∈ H(R). Additional properties are

E[ψ(f)] = 〈f, µ〉H(R)

and

E[ψ(f)X(t)] = f(t)

for anyf ∈ H(R).

A case where a complete characterization ofψ is possible corresponds to processes of

the form

X(t) =

∫
Q

φ(t, q)dZ(q), t ∈ T , (4.9)

where{Z(B), B ∈ B} is a family of random variables onQ with uncorrelated increments

andφ(t, ·) ∈ L2(ν) for dν(q) = E|dZ(q)|2. In this instance (4.6) and (4.7) hold and we

have

ψ(f) =

∫
Q

g(q)dZ(q). (4.10)

The covariance functionK of theX process also generates a RKHSH(K) as in (4.5)

sinceK is symmetric and positive. We may want to useH(K) to build a representation for

a random functionX. The Hilbert spaceL2
X may not be the same for all values ofµ since

its inner product depends onµ. However with the additional assumption thatµ belongs to

a subsetM of H(K), then according to Parzen (1961), the Hilbert spaceL2
X is the same

for all µ and the set of elements inH(K) is equal to the set of elements inH(R) although

the two spaces are equipped with different norms.

Proposition IV.1. Assume thatµ ∈ M withM a subset ofH(K). Then there exists an

isomorphismΨ fromH(K) toL2
X defined by

Ψ(K(·, t)) = X(t)

for everyt in T with the properties

E[Ψ(f)] = 〈f, µ〉H(K) (4.11)
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and

Cov(Ψ(f),Ψ(g)) = 〈f, g〉H(K) (4.12)

for f, g in H(K).

Proof. Recall our definition for the linear span of{K(·, t), t ∈ T } which we denoted by

H. Then, any functionf in H is of the form

f(·) =
n∑

i=1

aiK(·, ti)

for some integern, real constanta1, . . . , an and pointst1, . . . , tn in T . For a functionf in

H, define

Ψ(f) =
n∑

i=1

aiX(ti).

Then, we observe that for any functionsf, g in H,

E[Ψ(f)] =
n∑

i=1

aiµ(ti) = 〈µ(·),
n∑

i=1

aiK(·, ti)〉H(K) = 〈µ, f〉H(K),

and

Cov(Ψ(f),Ψ(g)) =
n∑

i=1

m∑
j=1

aibjK(ti, sj) = 〈
n∑

i=1

aiK(·, ti),
m∑

j=1

bjK(·, sj)〉H(K)

= 〈f, g〉H(K)

by the reproducing property ofK.

To prove that the mappingΨ is well defined, it suffices to show that

Ψ(f) =
n∑

i=1

aiX(ti) = 0 if and only if f(·) =
n∑

i=1

aiK(·, ti) = 0

which follows from the fact that

E|Ψ(f)|2 = Var(Ψ(f)) + {E[Ψ(f)]}2 = ‖f‖2
H(K) + | 〈µ, f〉H(K)|

2.

So, we see thatΨ is a one-to-one linear mapping fromH onto the linear manifold spanned

by the random function{X(t), t ∈ T }.
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From the above relations observe that for any sequence{fn} in H

E|Ψ(fn)−Ψ(fm)|2 = ‖fn − fm‖2
H(K) + | 〈µ, fn − fm〉H(K)|

2

for somen,m. Consequently, for any sequence{fn} in H, that{fn} will be a Cauchy

sequence inH(K) if and only if {Ψ(fn)} is a Cauchy sequence inL2
X . Now any function

f in H(K) may be represented as the limit of a sequence{fn} in H. For a converging

sequence{fn} in H, the corresponding random variables{Ψ(fn)} are a Cauchy sequence

and have a limit denoted byΨ(f). Thus, the linear transformationΨ fromH(K) to L2
X is

one-to-one, onto and satisfies (4.11) and (4.12).

�

The following property is a consequence of (4.12). By replacingg in (4.12) byK(·, t),

we have

Cov(Ψ(f), X(t)) = f(t). (4.13)

Define the process

X̃(t) = X(t)− µ(t), t ∈ T ,

which is a stochastic process with zero mean and covariance functionK. Since E[X̃(s)X̃(t)] =

K(s, t) = 〈K(·, s), K(·, t)〉H(K) for everys, t ∈ T , there is an isometric isomorphismψX̃

between the Hilbert space spanned by theX̃ process,L2
X̃

, andH(K) satisfying

ψX̃(K(·, t)) = X̃(t).

The isomorphismΨ and the isometric isomorphismψX̃ are related in the following way

Ψ(K(·, t)) = X(t)

= X̃(t) + µ(t)

= ψX̃(K(·, t)) + 〈µ,K(·, t)〉H(K).

So, we have

Ψ(f) = ψX̃(f) + 〈µ, f〉H(K) (4.14)
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for f ∈ H(K) (which also belongs toH(R)). Consequently, we see that every random

variable inL2
X has the form

U = 〈µ, f〉H(K) + ψX̃(f)

for f = ψ−1

X̃
(V ) with V ∈ L2

X̃
.

Example 1. Let {X(t), t ∈ T } be a second-order stochastic process with covariance

functionK. Let the index setT be finite dimensional, sayT = {t1, . . ., tp}. ThenX =

(X(t1), . . ., X(tp))
T with µ = E[X] and

Var(X) = {K(ti, tj)}p
i,j=1 = K.

LetH(K) be the linear manifold of all vectors of the form

f = Ka for a ∈ Ker(K)⊥

with inner product

〈f1, f2〉H(K) = fT
1 K−f2, (4.15)

for fk = (fk(t1), . . ., fk(tp))
T , k = 1, 2, with fk(·) =

∑p
i=1 akiK(·, ti). Note that the inner

product〈·, ·〉H(K) is well-defined.

First observe that iff = Ka thena = K−f sincea ∈ Ker(K)⊥ and hencefT
1 K−f2 =

aT
1 Ka2 =

∑p
i=1

∑p
j=1 a1ia2jK(ti, tj). So it is obvious that〈f , f〉H(K) = fTK−f =

aTKa ≥ 0 for f ∈ H(K) sinceK is positive definite. Also, we can easily show sym-

metry and linearity. So we now focus on the property that if〈f , f〉H(KX) = 0 thenf = 0.

First observe thatK(·, ti) = (K(t1, ti), . . ., K(tp, ti))
T = Kei ∈ H(K) for anyti ∈ T

with ei an elementary vector of all zeros except for 1 in itsith component. Then,

〈f ,K(·, tj)〉H(K) = fTK−K(·, tj) = aTKK−Kej = aTK(·, tj) = f(tj) (4.16)
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for anyf ∈ H(K) andtj ∈ T . Now, observe from the Cauchy-Schwarz inequality that

f 2(tj) = 〈f ,K(·, tj)〉2H(K) ≤ 〈f , f〉H(K)K(tj, tj)

which implies that if〈f , f〉H(K) = 0 thenf(tj) = 0 for all j or f = 0. Result (4.16) has

the consequence thatH(K) is an inner product space with r.k.K. SinceH(K) is finite

dimensional it is also a Hilbert space. Thus,H(K) is an RKHS with r.k.K.

LetL2
X be the set of all random variables of the form

p∑
i=1

aiX(ti)

for a = (a1, . . ., ap)
T ∈ Ker(K)⊥ with the inner product

E
[(

aT
1 X
) (

aT
2 X
)]

= aT
1 Ka2 +

(
aT

1 µ
) (

aT
2 µ
)
.

Then,

Ψ(f) = fTK−X

is an isomorphism fromH(K) toL2
X and it satisfies

Var(Ψ(f)) = fTK−KK−f = ‖f‖2
H(K).

So, if we start withH(K) and translate back via the isomorphismΨ thenK−f = a is

always in Ker(K)⊥. Thus, by working in the RKHS we automatically avoid the annoying

condition that we needa ∈ Ker(KX)⊥ andb ∈ Ker(KY )⊥ that were imposed in Chapter

III.

Example 2. Let {X(t), t ∈ T } be a second-order stochastic process with mean function

E[X(t)] = µ(t) and covariance functionK. LetT = [0, 1] and assume thatK is continuous

onT × T . Then, Mercer’s theorem (e.g., see Riesz and Sz.-Nagy, 1955) insures that

K(s, t) =
∞∑

q=1

λqφq(s)φq(t) (4.17)
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with λ1, λ2, . . . nonnegative eigenvalues andφ1, φ2, . . . in L2[0, 1] continuous eigenfunc-

tions of the integral operator ∫ 1

0

K(s, t)φ(t)dt = λφ(s).

Theorem IV.6 is now seen to be applicable withQ = {1, 2, . . .}, ν(B) =
∑

q∈B λq for

B ∈ B andφ(t, q) = φq(t). So, the RKHS corresponding toK is

H(K) = {f(·) =
∞∑

q=1

λqgqφq(·) :
∞∑

q=1

λqg
2
q <∞}.

Forfi(·) =
∑∞

q=1 λqgiqφq(·), i = 1, 2, inH(K) the inner product is given by

〈f1, f2〉H(K) =
∞∑

q=1

λqg1qg2q =
∞∑

q=1

λ−1
q 〈f1, φq〉L2[0,1]〈f2, φq〉L2[0,1].

Now define a linear mappingΓ from span{φq}∞q=1 in L2[0, 1] toH(K) by

Γ(f) =
∞∑

q=1

λ1/2
q fqφq

for f =
∑∞

q=1 fqφq in span{φq}∞q=1. SinceΓ(f) =
∑∞

q=1 λq(λ
−1/2
q fq)φq,

‖Γ(f)‖2
H(K) =

∞∑
q=1

f 2
q = ‖f‖2

L2[0,1].

Consequently,Γ is an isometric isomorphism, andspan{φq}∞q=1 andH(K) are congruent.

From the Karhunen-Lòeve representation, for̃X(t) = X(t)− µ(t), we have

X̃(t) =
∞∑

q=1

〈X̃, φq〉L2[0,1]φq(t), t ∈ [0, 1].

Then, we havedZ(q) = 〈X̃, φq〉L2[0,1], which are uncorrelated andλq = E[dZ(q)]2 =

dν(q). Thus, (4.10) and (4.14) have the consequence that

Ψ(f) =
∞∑

q=1

gq〈X̃, φq〉L2[0,1] + 〈µ, f〉H(K) =
∞∑

q=1

gq〈X,φq〉L2[0,1]
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for any functionf(·) =
∑∞

q=1 λqgqφq(·) with
∑∞

q=1 λqg
2
q <∞ because we observe〈µ, f〉H(K) =∑∞

q=1 gq〈µ, φq〉L2[0,1]. In the special case that
∑∞

q=1 g
2
q < ∞ the function

∑∞
q=1 gqφq is a

member ofL2[0, 1] and this produces

Ψ(f) = 〈X,
∞∑

q=1

gqφq〉L2[0,1]. (4.18)

Since{f ∈ H(K) :
∑∞

q=1 g
2
q <∞} is not dense inH(K), (4.18) is generally only a partial

characterization ofΨ.
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CHAPTER V

CANONICAL CORRELATIONS FOR STOCHASTIC PROCESSES

In this chapter, we introduce a general formulation of canonical correlation analysis devel-

oped by Eubank and Hsing (2005). Let{X(t), t ∈ T } and{Y (s), s ∈ S} be second order

stochastic processes with

E[X(t)] = E[Y (s)] = 0

for all t ∈ T , s ∈ S and auto and cross covariance functions

KX(t1, t2) = E[X(t1)X(t2)], t1, t2 ∈ T ,

KY (s1, s2) = E[Y (s1)Y (s2)], s1, s2 ∈ S,

and

KXY (t, s) = E[X(t)Y (s)], t ∈ T , s ∈ S.

We are interested in developing a technique for decomposition of the covariance structure

of the processesX andY that is similar in spirit to the canonical correlation approach

described in Chapter II.

5.1 Canonical Correlation Analysis

First, recall the classical canonical correlation problem in Chapter II. Let〈·, ·〉Rp be the

standard Euclidean inner product onRp. Our interest was in finding the random variables

η = 〈a,X〉Rp andξ = 〈b,Y〉Rq with a ∈ Ker(KX)⊥ andb ∈ Ker(KY )⊥ having the largest

possible correlation with each other. The goal is to extend this idea to canonical correlation

problems in infinite dimensional spaces.
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LetL2
X andL2

Y be the Hilbert spaces spanned by the processesX andY , respectively,

as defined in Section 4.2. The associated inner products are

〈U1, U2〉L2
X

= E[U1U2], for U1, U2 ∈ L2
X

and

〈V1, V2〉L2
Y

= E[V1V2], for V1, V2 ∈ L2
Y ,

respectively.

In general, the goal of canonical correlation analysis is to find random variablesη ∈

L2
X , ξ ∈ L2

Y such thatη andξ are most strongly correlated with each other. In other words,

we wish to find random variablesη ∈ L2
X andξ ∈ L2

Y maximizing

ρ2(η, ξ) =
Cov2(η, ξ)

Var(η)Var(ξ)
. (5.1)

Provided the above optimization problem can be solved, we define the first canonical cor-

relationρ1 and the associated canonical variablesη1, ξ1 by

ρ2
1 = Cov2(η1, ξ1) = sup

η∈L2
X ,ξ∈L2

Y

Cov2(η, ξ), (5.2)

whereη, ξ are subject to

Var(η) = Var(ξ) = 1. (5.3)

For i > 1, theith canonical correlationρi and the associated canonical variablesηi, ξi are

defined by

ρ2
i = Cov2(ηi, ξi) = sup

η∈L2
X ,ξ∈L2

Y

Cov2(η, ξ), (5.4)

whereη, ξ are subject to (5.3) and

Cov(η, ηj) = Cov(ξ, ξj) = 0, j < i. (5.5)

If η1 andξ1 are well defined in (5.2), then there are sequencesη1m =
∑m

i=1 aimX(tim)

andξ1n =
∑n

i=1 binY (sin) such thatρ2
1 = limn,m→∞ Corr2(η1m, ξ1n) sinceη1 ∈ L2

X and
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ξ1 ∈ L2
Y . Consequently, the infinite dimensional definition of canonical variables is actually

built up from the finite dimensional multivariate case.

To see whether the canonical correlations are well defined, we will show that the

optimization problems in (5.2)–(5.5) can be solved. For this purpose, we will use the fact

that the Hilbert spacesL2
X andL2

Y and the reproducing kernel Hilbert spaces (RKHS)

corresponding to theX andY auto-covariance functions are congruent (or isometrically

isomorphic). (e.g., see Parzen, 1961)

Before doing this in general we will first work with the case where bothT andS

are finite dimensional. This serves two purposes: it provides a motivational framework

for understanding the general case and it provides a useful setting for the development of

data analytic tools. Thus, first suppose thatT = {t1, . . ., tp}, S = {s1, . . ., sq}, X =

(X(t1), . . ., X(tp))
T andY = (Y (s1), . . ., Y (sq))

T with X andY thep-dimensional and

q-dimensional random vectors that represent theX andY processes in this case. Define

Var(X) = {KX(ti, tj)}p
i,j=1 = KX , Var(Y) = {KY (si, sj)}q

i,j=1 = KY ,

and

Cov(X,Y) = {KXY (ti, sj)}p,q
i,j=1 = KXY .

As in Chapter III, we allowKX andKY to have less than full rank: i.e.,rX = r(KX) ≤ p

andrY = r(KY ) ≤ q. The resulting Hilbert spaces spanned by the processesX andY are

then given by

L2
X =

{
aTX : a ∈ Ker(KX)⊥

}
and

L2
Y =

{
bTY : b ∈ Ker(KY )⊥

}
with associated squared norms‖U‖2

L2
X

= aTKXa and‖V ‖2
L2

Y
= bTKY b for U = aTX ∈

L2
X andV = bTY ∈ L2

Y .
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As defined in Section 4.2,H(KX) is the linear manifold of all vectors of the form

f = KXa

with inner product

〈f1, f2〉H(KX) = fT
1 K−

Xf2, (5.6)

for fk = (fk(t1), . . ., fk(tp))
T , k = 1, 2, with fk(·) =

∑p
i=1 akiKX(·, ti) and K−

X the

Moore-Penrose generalized inverse ofKX . Also, H(KY ) is the linear manifold of all

vectors of the form

g = KY b

with inner product

〈g1,g2〉H(KY ) = gT
1 K−

Y g2,

for gk = (gk(s1), . . ., gk(sq))
T , k = 1, 2, with gk(·) =

∑q
i=1 bkiKY (·, si), k = 1, 2, andK−

Y

the Moore-Penrose generalized inverse ofKY . Then, as explained in Example 1 in Section

4.2,H(KX) andH(KY ) are the RKHS’s with r.k.’sKX andKY , respectively. Note also

thatH(KX) = Ker(KX)⊥ andH(KY ) = Ker(KY )⊥.

We now provide some results which allow us to relate the problem of maximizing

(5.1) to an equivalent optimization problem in the RKHS. The mappingψX fromH(KX)

toL2
X and the mappingψY fromH(KY ) toL2

Y defined by

ψX(f) = fTK−
XX for f ∈ H(KX),

and

ψY (g) = gTK−
Y Y for g ∈ H(KY )

are the isometric isomorphisms fromH(KX) to L2
X and fromH(KY ) to L2

Y , respectively.

So,H(KX) andL2
X are congruent andH(KY ) andL2

Y are congruent.
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As a result of the isometries we can write

Corr2(η, ξ) =
(aTKXY b)2

(aTKXa)(bTKY b)
=

(fTK−
XKXY K−

Y g)2

(fTK−
Xf)(gTK−

Y g)
=

Cov2(ψX(f), ψY (g))

Var(ψX(f))Var(ψY (g))

for η = aTX andξ = bTY with a ∈ Ker(KX)⊥ andb ∈ Ker(KY )⊥. Moreover, observe

thatfTK−
XKXY K−

Y g = 〈f ,KXY K−
Y g〉H(KX). Hence

Corr2(η, ξ) =
〈f ,Tg〉2H(KX)

‖f‖2
H(KX)‖g‖2

H(KY )

, (5.7)

where

(Tg)(t) = KXY (t, ·)K−
Y g = 〈KXY (t, ·),g〉H(KY ), t ∈ T

with KXY (ti, ·) theith row vector ofKXY . Also,

fTK−
XKXY K−

Y g = 〈T∗f ,g〉H(KY ),

where(T∗f)(s) = KY X(s, ·)K−
Xf = 〈KXY (·, s), f〉H(KX), s ∈ S with KXY (·, sj) thejth

column vector ofKXY . So,T is a linear operator fromH(KY ) intoH(KX) with adjoint

T∗.

Now, the CCA problem in the finite dimensional case becomes

sup
f∈H(KX ), g∈H(KY )

‖f‖H(KX )=‖g‖H(KY )=1

〈f ,Tg〉2H(KX).

Thus, CCA development in theH(KX) andH(KY ) setting proceeds via the singular value

decomposition of the operatorT. To do this we find the eigenvalues and eigenvectors of

T∗T andTT∗. That is, the eigenvectors and eigenvalues are obtained from

T∗Tg = ρ2g

and

TT∗f = ρ2f
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which are

KY XK−
XKXY K−

Y g = ρ2g

and

KXY K−
Y KY XK−

Xf = ρ2f .

Premultiplying byK−
Y andK−

X and employing the isometric isomorphismsψX andψY

then returns us to the original CCA solutions detailed in Chapter III.

It has been seen that finding the canonical correlation and variables for theX and

Y processes on finite dimensional index setsT andS are equivalent to optimization in

RKHS’s generated by theX andY auto covariance matrices. The next step is to extend

this idea directly to the infinite dimensional case. For this purpose, we will define the no-

tion of canonical correlation in this setting by directly generalizing the notion of canonical

correlations in the finite dimensional case.

First letH(KX) andH(KY ) be the RKHS’s with r.k.’sKX andKY as defined in

(4.5) in Theorem IV.4 with associated norms and inner products‖ · ‖H(KX), 〈·, ·〉H(KX) and

‖ · ‖H(KY ), 〈·, ·〉H(KY ). As explained in Section 4.2,H(KX) andL2
X are congruent and

H(KY ) andL2
Y are congruent. So, letψX andψY be the isometric isomorphismsψX from

H(KX) toL2
X and fromH(KY ) toL2

Y , respectively, that satisfy

ψX :
∑

i

aiKX(·, ti) →
∑

i

aiX(ti)

and

ψY :
∑

j

bjKY (·, sj) →
∑

j

bjY (sj).

Now every random variablesη ∈ L2
X andξ ∈ L2

Y can be written as

η = ψX(f) and ξ = ψY (g)

for some unique functionsf in H(KX) andg in H(KY ).
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Since two spaces that are isometrically isomorphic are algebraically and topologically

identical, solving the optimization problems inL2
X andL2

Y is equivalent to solving the

optimization problems which are formulated in the RKHS’sH(KX) andH(KY ). We now

can restate (5.2)-(5.5) in terms of optimization inH(KX) andH(KY ) as follows: Define

the first canonical correlationρ1 and the associated RKHS vectorsf1, g1 by

ρ2
1 = Cov2(ψX(f1), ψY (g1)) = sup

f∈H(KX),g∈H(KY )

Cov2(ψX(f), ψY (g)), (5.8)

wheref andg are subject to

‖f‖2
H(KX) = Var(ψX(f)) = 1 = Var(ψY (g)) = ‖g‖2

H(KY ). (5.9)

For i > 1, define theith canonical correlationsρi and the associated RKHS vectorsfi, gi

by

ρ2
i = Cov2(ψX(fi), ψY (gi)) = sup

f∈H(KX),g∈H(KY )

Cov2(ψX(f), ψY (g)), (5.10)

wheref andg are subject to (5.9) and

Cov(ψX(f), ψX(fj)) = Cov(ψY (g), ψY (gj)) = 0, j < i. (5.11)

For η ∈ L2
X , ξ ∈ L2

Y , there exist sequencesηm =
∑m

i=1 aimX(tim) and ξn =∑n
j=1 bjnY (sjn) such that Cov(ψX(f), ψY (g)) = Cov(η, ξ) = limn,m→∞ Cov(ηm, ξn).

Hence

Cov(η, ξ) = lim
m,n→∞

m∑
i=1

n∑
j=1

aimbjnKXY (tim, sjn)

= lim
m,n→∞

m∑
i=1

n∑
j=1

aimbjn〈KXY (tim, ·), KY (·, sjn)〉H(KY )

= lim
m,n→∞

m∑
i=1

n∑
j=1

aimbjn〈KX(tim, ∗), 〈KXY (∗, ·), KY (·, sjn)〉H(KY )〉H(KX)

= lim
m,n→∞

〈
m∑

i=1

aimKX(tim, ∗), 〈KXY (∗, ·),
n∑

j=1

bjnKY (·, sjn)〉H(KY )〉H(KX)
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by the reproducing properties ofKX andKY . Then, forfm(·) =
∑m

i=1 aimKX(·, tim) and

gn(·) =
∑n

j=1 bjnKY (·, sjn), we have

Cov(ψX(f), ψY (g)) = lim
m,n→∞

〈fm(∗), 〈KXY (∗, ·), gn(·)〉H(KY )〉H(KX)

= 〈f(∗), 〈KXY (∗, ·), g(·)〉H(KY )〉H(KX)

with f = ψ−1
X (η) ∈ H(KX), g = ψ−1

Y (ξ) ∈ H(KY ) the limits of the sequencesfm andgn.

Now define the operatorT fromH(KY ) toH(KX) by

(Tg)(t) = 〈KXY (t, ·), g(·)〉H(KY ). (5.12)

As a result of the above arguments

Cov(ψX(f), ψY (g)) = 〈f, Tg〉H(KX)

for anyf ∈ H(KX) andg ∈ H(KY ). We then observe that

〈f, Tg〉H(KX) = Cov(ψX(f), ψY (g))

≤ Var(ψX(f))1/2Var(ψY (g))1/2

= ‖f‖H(KX)‖g‖H(KY )

from the Cauchy-Schwarz inequality. Thus, whenf = Tg we have‖Tg‖H(KX) ≤ ‖g‖H(KY )

and it follows thatT is a bounded linear operator with operator norm at most 1. Also, from

our previous development

〈fm, 〈KXY (·, ∗), gn〉H(KY )〉H(KX) = 〈〈fm, KXY (·, ∗)〉H(KX), gn〉H(KY )

by the reproducing property. Taking limits asn,m→∞ then shows that

〈f, Tg〉H(KX) = 〈〈f,KXY (·, ∗)〉H(KX), g〉H(KY );

i.e., the adjoint ofT ∈ B(H(KY ),H(KX)) is given by

(T ∗f)(s) = 〈f,KXY (·, s)〉H(KX) (5.13)
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for f ∈ H(KX).

We have now seen that Cov(ψX(f), ψY (g)) = 〈f, Tg〉H(KX). So, analogous to the

finite dimensional case, the polar representation of the bounded linear operatorT in (4.3)

should provide the solutions for the canonical problems (5.8)-(5.11) in the RKHS setting.

Suppose that the the largest value in the spectrum ofT ∗T , λ1, is an eigenvalue of finite

multiplicity with an associated eigenfunctiong1. That is,

λ1 = sup
‖g‖H(KY )=1

〈T ∗Tg, g〉H(KY ) = sup
‖g‖H(KY )=1

∫
σ(T ∗T )

λdEg,g(λ)

with σ(T ∗T ) necessarily being a closed subset of[0, 1]. Then, f1 = Wg1 and η1 =

ψX(f1), ξ1 = ψY (g1), ρ1 = λ
1/2
1 . Continuing in this manner, if the second largest point

in the spectrum is an eigenvalue of finite multiplicity, we havef2 = Wg2 and η2 =

ΨX(f2), ξ2 = ψY (g2), ρ2 = λ
1/2
2 , etc. However, in general,T ∗T may not have any point

spectra. In that case the canonical correlations and variables apparently cannot be defined.

An important special case of the previous development is the case whereT is compact.

As explained in Section 4.1, the spectrumσ(T ∗T ) is known to consist of a countable set of

non-zero eigenvalues with finite multiplicities and the polar representation ofT is given by

T =

r(T )∑
j=1

λ
1/2
j αj ⊗ βj,

where1 ≥ λ1 ≥ λ2 ≥ . . . ≥ λr(T ) > 0 are the eigenvalues ofT ∗T with associated

eigenvectorsβj, j = 1, . . ., r(T ), andαj = Wβj = Tβj/λ
1/2
j . Then, the Cauchy-Schwarz

and Bessel’s inequalities ensure thatρi, fi, gi in (5.8) and (5.11) are given byρi = λ
1/2
i , fi =

αi, gi = βi. Consequently, the canonical variables of theX space andY space are

ηi = ψX(fi) and ξi = ψY (gi),

wherefi, gi are the eigenfunctions ofTT ∗ andT ∗T corresponding to their eigenvaluesρ2
i ,

respectively, andfi, gi satisfy

‖fi‖H(KX) = ‖gi‖H(KY ) = 1.
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Finally, let us mention the relationship between the RKHS vectorsfi andgi. For the

polar representation of the compact operatorT above, we have seen that

fi = Tgi/ρi,

or

Tgi = ρifi. (5.14)

Applying the operatorT ∗ to both sides of (5.14) gives

T ∗fi = ρigi (5.15)

sinceT ∗Tgi = ρ2
i gi.

Now, suppose that theX andY processes have non-zero mean functionsµX(t) =

E[X(t)] andµY (s) = E[Y (s)] for all t ∈ T , s ∈ S. We see from Proposition IV.1 that if

µX ∈ H(KX) andµY ∈ H(KY ) then there exist linear mappingsΨX fromH(KX) to L2
X

andΨY fromH(KY ) toL2
Y . The linear mappingΨX satisfies

ΨX(KX(·, t)) = X(t), t ∈ T ,

E[ΨX(f)] = 〈f, µX〉H(KX),

and

Cov(ΨX(f (1)),ΨY (f (2))) = 〈f (1), f (2)〉H(KX).

The linear mappingΨY has similar properties. Thus, in this instance, (5.2)-(5.5) can be for-

mulated exactly as before provided we use the linear mappingψX , ψY in lieu of isometries

betweenL2
X , L2

Y andH(RX),H(RY ).

5.2 Canonical Correlation Analysis and Regression

As we have shown in Section 3.1.2, linear regression can be viewed as a special case of

CCA. In this section, we will demonstrate this remains true in the infinite dimensional

setting.
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Let Y be a random variable with zero mean and finite second moment. Let{X(t), t ∈

T } be a zero-mean, second order stochastic process with covariance kernelKX(s, t) for

s, t ∈ T . We observe the predictor function{X(t), t ∈ T } and the response variableY .

Assume without lose of generality that Var(Y ) = 1.

For a linear regression problem we seek that random variable inL2
X whose mean

square distance fromY is smallest. That is, we want to find a functionalm satisfying

inf
m∈L2

X

E|Y −m|2. (5.16)

The solution to this optimization problem was provided by Parzen (1961).

Recall now the RKHSH(KX) determined by the covariance functionKX and the

isometric isomorphismψX betweenL2
X andH(KX). Let v(t) = E[Y X(t)] = KXY (t).

The resulting best least-squares linear approximation ofY is then

m∗(ω) = ψX(v)

with mean square error of prediction given by

E|Y −m∗|2 = E|Y |2 − ‖v‖2
H(KX) = 1− ‖v‖2

H(KX).

Now, the canonical correlation problem involving a zero-mean, second-order stochas-

tic processX and a random variableY with finite second moment can be defined as finding

η ∈ L2
X to maximizes

Corr(η, Y ) =
Cov(η, Y )

[Var(η)]1/2
.

As in Section 5.1, the correlation betweenη andY is written as

〈KXY (·), f(·)〉H(KX)

‖f‖H(KX)

.

Hence the canonical variable of theX space is

η = ψX(f),
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wheref is the eigenvector ofTT ∗f = ρ2f with the operatorT ∗ fromH(KX) to R defined

as

T ∗f = 〈KXY (·), f(·)〉H(KX), f ∈ H(KX).

Also, from the fact that〈T ∗f, g〉R = 〈f, Tg〉H(KX), the operatorT from R to H(KX) is

defined as

(Tg)(·) = KXY (·)g, g ∈ R.

To demonstrate the connection between regression and CCA as in Section 3.1.2, we

first observe thatf can be obtained from

KXY (·)〈KXY , f〉H(KX) = ρ2f(·).

So,ρ2 = ‖KXY ‖2
H(KX) and we have only one canonicalX variableη = ψX(f) satisfying

〈KXY , f〉H(KX) = ρ.

Thus,

f(·) =
KXY (·)

‖KXY ‖H(KX)

.

Sincev(·) = KXY (·), the relationship betweenv ∈ H(KX) andf ∈ H(KX) are obtained

by

v(·) = ρf(·)

which is an exact parallel of what transpires for the finite dimensional setting.
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CHAPTER VI

DISCRIMINANT ANALYSIS FOR STOCHASTIC PROCESSES

In this chapter we plan to extend the results from Chapter III concerning discriminant anal-

ysis to encompass stochastic processes. For this purpose, let{X(t), t ∈ T } be a second

order stochastic process with mean function

µ(t) = E[X(t)]

and covariance functionKX(s, t) = Cov(X(s), X(t)) for s, t ∈ T . Also letG represent

the class membership of the process from the populations numbered 1 toJ . We define

πj = P (G = j)

and

µj(·) = E[X(·)|G = j].

We assume that

Kj(s, t) = E[(X(s)− µj(s))(X(t)− µj(t))|G = j], s, t ∈ T

for j = 1, . . ., J have a common form that we denote byKW . That is,K1 = · · · = KJ =

KW .

6.1 Discriminant Analysis

LetL2
X be the Hilbert space spanned by theX process with inner product

〈U1, U2〉L2
X

= E[U1U2] for U1, U2 ∈ L2
X .
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6.1.1 Fisher’s Linear Discriminant Analysis

Let us begin by developing an infinite dimensional extension of Fisher’s method. In that

respect, we are interested in finding a random variable` ∈ L2
X maximizing

VarG(E[`|G])/EG[Var(`|G)] (6.1)

which represents the ratio of between-class variability to within-class variability as in the

finite dimensional case.

Define the kernel function

KB(s, t) =
J∑

j=1

πj(µj(s)− µ(s))(µj(t)− µ(t)), s, t ∈ T (6.2)

with

µ(·) =
J∑

j=1

πjµj(·)

and letH(KX) be the RKHS with the r.k.KX as in Chapter IV. Also, denote the

RKHS’s generated byKW andKB byH(KW ) andH(KB), respectively; i.e., letH(KW ) =

span{KW (·, t), t ∈ T } andH(KB) = span{KB(·, t), t ∈ T }. Then, observe that

n∑
i=1

ciKB(s, ti) =
J∑

j=1

πjbj(µj(s)− µ(s)) =
J∑

j=1

πjbjµj(s)

with bj =
∑n

i=1 ci(µj(ti)−µ(ti)) since
∑J

j=1 πjbj =
∑n

i=1 ci
∑J

j=1 πj(µj(ti)−µ(ti)) = 0.

Consequently, we have shown

H(KB) =
{ J∑

j=1

c∗jµj(·) :
J∑

j=1

c∗j = 0
}

which consists of contrast among the class mean functions.

Now assume thatµj ∈ H(KW ). Clearly,KB(·, t) ∈ H(KW ). We then see that the

set of elements inH(KX) is equal to the set of elements forH(KW ); but, the two spaces

are equipped with different norms. To see thatH(KX) = H(KW ), for positive definite
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functionsK1(s, t) andK(s, t), let us first writeK1 � K if K(s, t) − K1(s, t) is also

a positive definite function. Then, we know thatH(KW ) ⊂ H(KX) and‖h‖H(KX) ≤

‖h‖H(KW ) for h ∈ H(KW ) sinceKW � KX as a result of Theorem I in Aronszajn (1950).

Now define a linear operatorL fromH(KX) toH(KW ) satisfying

L(KX(·, t)) = KW (·, t), t ∈ T . (6.3)

Then,L is a one-to-one and onto linear mapping since

‖
n∑

i=1

aiKX(·, ti)‖2
H(KX) =

n∑
i=1

n∑
k=1

aiakKX(ti, tk)

=
n∑

i=1

n∑
k=1

aiakKW (ti, tk) +
n∑

i=1

n∑
k=1

aiakKB(ti, tk)

= ‖
n∑

i=1

aiKW (·, ti)‖2
H(KW )

+
J∑

j=1

πj

∣∣〈µj − µ,
n∑

i=1

aiKW (·, ti)〉H(KW )

∣∣2.
Also, we observe that, forh ∈ H(KW ) andf ∈ H(KX),

〈h, f〉H(KX) = 〈h, Lf〉H(KW ) (6.4)

which follows from the fact that

〈h,KX(·, t)〉H(KX) = h(t) = 〈h,KW (·, t)〉H(KW ) = 〈h, L(KX(·, t))〉H(KW ).

The operatorL is bounded with operator norm at most one because

〈Lf, f〉H(KX) = 〈Lf, Lf〉H(KW ) = ‖Lf‖2
H(KW ) ≥ ‖Lf‖2

H(KX).

Hence,‖Lf‖2
H(KX) ≤ 〈Lf, f〉H(KX) ≤ ‖Lf‖H(KX)‖f‖H(KX) and‖Lf‖H(KX) ≤ ‖f‖H(KX).

Further,L ∈ B(H(KX),H(KW )) is positive because〈Lf, f〉H(KX) = ‖Lf‖2
H(KW ) ≥ 0.
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Forf ∈ H(KX), observe that

f(t) = 〈KX(·, t), f〉H(KX)

= 〈KB(·, t), f〉H(KX) + 〈KW (·, t), f〉H(KX)

= 〈KB(·, t), Lf〉H(KW ) + 〈KW (·, t), Lf〉H(KW ).

Thus, let us now define the operatorTB fromH(KW ) toH(KW ) by

(TBh)(t) = 〈KB(t, ·), h(·)〉H(KW ) (6.5)

for h ∈ H(KW ). Then,f(t) = (TBLf)(t) + (Lf)(t) ∈ H(KW ) and henceH(KX) ⊂

H(KW ). Therefore,H(KX) = H(KW ).

As in Section 5.1, let us first consider the problem of maximizing (6.1) in the finite

dimensional case. Suppose thatT = {t1, . . ., tp} and letX = (X(t1), . . ., X(tp))
T with

KX = {KX(tk, tl)}p
k,l=1. SetKW = {KW (tk, tl)}p

k,l=1 and KB = {KB(tk, tl)}p
k,l=1.

Then, the linear discriminant functions in the finite dimensional case are obtained from the

classical multivariate setting as in Section 3.2.3.1. To see this first note that in this instance

we hadL2
X = {aTX : a ∈ Ker(KX)⊥} with squared norm

E[(aTX)2] = aTKXa + (aT µ)2

for a = (a1, . . ., ap)
T . The corresponding RKHS is

H(KX) = {f = KXa : a ∈ Ker(KX)⊥}

with associated inner product

〈f1, f2〉H(KX) = fT
1 K−

Xf2.

Assume thatµj ∈ Ker(KW )⊥ for all j. Then, Ker(KX)⊥ = Ker(KW )⊥ and

L2
X = {aTX : a ∈ Ker(KW )⊥}.
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Also, the RKHS determined byKW , which is equal set-wise toH(KX), is

H(KW ) = {h = KWa : a ∈ Ker(KW )⊥}

with associated inner product〈·, ·〉H(KW ) producing the squared norm

‖h‖2
H(KW ) = hTK−

Wh.

Just as in Section 5.1, with finite dimensions, an isomorphism (one-to-one and onto linear

mapping)ΨW fromH(KW ) toL2
X is given by

ΨW (h) = hTK−
WX, h ∈ H(KW ).

Then, we observe that

EG[Var(ΨW (h)|G)] = hTK−
WKWK−

Wh = ‖h‖2
H(KW ).

Corollary VI.1. LetL2
X be the Hilbert space spanned by the process{X(t), t ∈ T }

with T = {t1, . . ., tp} and letH(KW ) be the RKHS generated by the within-class covari-

ance functionKW . Then, maximizing (6.1) over` ∈ L2
X is equivalent to maximizing

〈h,TBh〉H(KW ) (6.6)

overh ∈ H(KW ) subject to‖h‖2
H(KW ) = 1, where

(TBh)(t) = KB(t, ·)K−
Wh = 〈KB(t, ·),h〉H(KW )

with KB(ti, ·) theith row vector ofKB.

Proof. In the finite dimensional case,` = aTX and (6.1) becomes

aTKBa

aTKWa
=

hTK−
WKBK−

Wh

hTK−
Wh

(6.7)

sinceh = KWa with a = (a1, . . ., ap)
T . Now observe that

KB(t, ·)K−
Wh = 〈KB(t, ·),h〉H(KW ).
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So, (6.7) becomes
〈h,KBK−

Wh〉H(KW )

‖h‖2
H(KW )

=
〈h,TBh〉H(KW )

‖h‖2
H(KW )

(6.8)

and the result follows.

�

The solution to the optimization problem in (6.6) can be obtained from the eigenvalue

decomposition of the finite dimensional operatorTB. If we start with the eigenvalue de-

composition of the operatorTB onB(H(KW )) then the eigenvalues and eigenvectors are

obtained from

TBh = γh

which is

KBK−
Wh = γh.

Premultiplying byK−
W and using the isomorphismΨW returns us to the matrix case in

(3.29).

Now we wish to extend this idea to the problem of finding linear discriminant functions

in the infinite dimensional setting. To do this, we first establish the following result.

Proposition VI.1. Assume thatµj ∈ H(KW ) for all j = 1, . . ., J . Then, there exists a

one-to-one linear mappingΨW betweenH(KW ) andL2
X defined by

ΨW (KW (·, t)) = X(t)

for everyt in T with the properties

E[ΨW (h)] = 〈h, µ〉H(KW ), (6.9)

E[ΨW (h)|G = j] = 〈h, µj〉H(KW ), (6.10)

EG[Var(ΨW (h)|G)] = ‖h‖2
H(KW ) (6.11)
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for h ∈ H(KW ) and

Cov(ΨW (h(1)),ΨW (h(2))) = 〈h(1), h(2)〉H(KW ) + 〈h(1), TBh
(2)〉H(KW ) (6.12)

for h(1), h(2) ∈ H(KW ) andTB defined in (6.5).

Proof. For any function of the formh(·) =
∑n

k=1 akKW (·, tk) define

ΨW (h) =
n∑

k=1

akX(tk).

Then,ΨW (h) is well defined as a member ofL2
X since

E
∣∣∣ n∑
k=1

akX(tk)
∣∣∣2 =

n∑
k=1

n∑
l=1

akal[KX(tk, tl) + µ(tk)µ(tl)]

=
n∑

k=1

n∑
l=1

akal

[
KW (tk, tl)

+
J∑

j=1

πj(µj(tk)− µ(tk))(µj(tl)− µ(tj)) + µ(tk)µ(tl)
]

=
n∑

k=1

n∑
l=1

akalKW (tk, tl) +
J∑

j=1

πj

n∑
k=1

n∑
l=1

akalµj(tk)µj(tl)

=
∥∥∥ n∑

k=1

akKW (·, tk)
∥∥∥2

H(KW )
+

J∑
j=1

πj

∣∣∣〈µj,
n∑

k=1

akKW (·, tk)〉H(KW )

∣∣∣2
by the reproducing property ofKW . So,

ΨW (h) =
n∑

k=1

akX(tk) = 0 if and only if h(·) =
n∑

k=1

akKW (·, tk) = 0.

It is now clear thatΨW defines a one-to-one linear mapping from the linear manifold

spanned by{KW (·, t), t ∈ T } onto the linear manifold spanned by theX process with

the properties

E[ΨW (h)] =
n∑

k=1

akµ(tk) = 〈
n∑

k=1

akKW (·, tk), µ(·)〉H(KW ) = 〈h, µ〉H(KW ),

E[ΨW (h)|G = j] =
n∑

k=1

akµj(tk) = 〈
n∑

k=1

akKW (·, tk), µj(·)〉H(KW ) = 〈h, µj〉H(KW ),
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EG[Var(ΨW (h)|G)] =
n∑

k=1

n∑
l=1

akalKW (tk, tl)

= 〈
n∑

k=1

akKW (·, tk),
n∑

l=1

alKW (·, tl)〉H(KW )

= ‖
n∑

k=1

akKW (·, tk)〉2H(KW ) = ‖h‖2
H(KW ),

and

Cov(ΨW (h(1)),ΨW (h(2))) =
n∑

k=1

m∑
l=1

akblKX(tk, sl)

=
n∑

k=1

m∑
l=1

akblKW (tk, sl) +
n∑

k=1

m∑
l=1

akblKB(tk, sl)

= 〈
n∑

k=1

akKW (·, tk),
m∑

l=1

blKW (·, sl)〉H(KW )

+ 〈
n∑

k=1

akKW (·, tk), 〈KB(·, ∗),
n∑

l=1

blKW (∗, sl)〉H(KW )

= 〈h(1), h(2)〉H(KW ) + 〈h(1)(·), 〈KB(·, ∗), h(2)(∗)〉H(KW )〉H(KW ).

Moreover, Cauchy sequences inL2
X correspond to Cauchy sequences inH(KW ) and con-

versely as a result of the identity

E|ΨW (hn)−ΨW (hm)|2 = ‖hn − hm‖2
H(KW ) +

J∑
j=1

πj|〈µj, hn − hm〉H(KW )|
2.

Thus, the result follows.

�

For any` ∈ L2
X , there exists a sequence`n =

∑
t∈Tn

atX(t) with Tn beingn dimen-

sional subsets ofT such that

lim
n→∞

E[`n − `]2 = 0.

Then, VarG(E[`n − `|G]) ≤ Var(`n − `) ≤ E[`n − `]2 which has the consequence that

limn→∞ CovG(E[`n|G],E[`|G]) = VarG(E[`|G]) as a result oflimn→∞ CovG(E[`n|G] −

E[`|G],E[`|G]) = 0 and the Cauchy-Schwarz inequality. So, we see that VarG(E[`|G]) =
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limn→∞ VarG(E[`n|G]) or

VarG(E[`|G]) = lim
n→∞

∑
s∈Tn

∑
t∈Tn

asatKB(s, t)

= lim
n→∞

∑
s∈Tn

∑
t∈Tn

asat〈KB(s, ·), KW (·, t)〉H(KW )

= lim
n→∞

∑
s∈Tn

∑
t∈Tn

asat〈KW (s, ∗), 〈KB(∗, ·), KW (·, t)〉H(KW )〉H(KW )

= lim
n→∞

〈
∑
s∈Tn

asKW (s, ∗), 〈KB(∗, ·),
∑
t∈Tn

atKW (·, t)〉H(KW )〉H(KW )

by the reproducing property ofKW . Hence, for any sequencehn =
∑

t∈Tn
atKW (·, t)

converging toh in the norm ofH(KW ), we have

VarG(E[`|G]) = lim
n→∞

〈hn(∗), 〈KB(∗, ·), hn(·)〉H(KW )〉H(KW )

= 〈h(∗), 〈KB(∗, ·), h(·)〉H(KW )〉H(KW ).

Then, using the isomorphismΨW reveals that

VarG[E(`|G)] = VarG[E(ΨX(h)|G)] = 〈h, TBh〉H(KW ).

Theorem VI.1. The operatorTB from H(KW ) to H(KW ) in (6.5) is bounded, self-

adjoint, positive and compact.

Proof. We observe from (6.12) that

∣∣〈h(1), TBh
(2)〉H(KW )

∣∣ =
J∑

j=1

πj〈h(1), µj − µ〉H(KW )〈µj − µ, h(2)〉H(KW )

≤ ‖h(1)‖H(KW )‖h(2)‖H(KW )

J∑
j=1

πj‖µj − µ‖2
H(KW )

= M‖h(1)‖H(KW )‖h(2)‖H(KW )

with M =
∑J

j=1 πj‖µj − µ‖2
H(KW ) < ∞ sinceµj − µ ∈ H(KW ) for all j. Replacing

h(1) by TBh
(2) entails that‖TBh

(2)‖H(KW ) ≤M‖h(2)‖H(KW ) and soTB is a bounded linear

operator.
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The operatorTB in B(H(KW )) clearly has finite rank since

(TBh)(t) =
J∑

j=1

πj(µj(t)− µ(t))〈µj − µ, h〉H(KW )

and so Im(TB) = span{µj − µ, j = 1, . . . , J :
∑J

j=1 πj(µj(·) − µ(·)) = 0}. Thus,

r(TB) ≤ J − 1, which means thatTB is compact. Also, observe that

〈h(1), TBh
(2)〉H(KW ) =

J∑
j=1

πj〈h(1), µj−µ〉H(KW )〈µj−µ, h(2)〉H(KW ) = 〈TBh
(1), h(2)〉H(KW )

and that

〈TBf, f〉H(KW ) =
J∑

j=1

πj〈µj − µ, f〉2H(KW ) ≥ 0.

So,TB ∈ B(H(KW )) is a self-adjoint, compact and positive operator.

�

We now can restate the discrimination problem (6.1) in the RKHSH(KX) as follows:

The RKHS variatef can be obtained by solving

sup
h∈H(KW )

VarG(E[ΨW (h)|G]) (6.13)

subject to

EG[Var(ΨW (h)|G)] = ‖h‖2
H(KW ) = 1. (6.14)

It is seen that VarG(E[ΨW (h)|G]) = 〈h, TBh〉H(KW ) and hence characterization of the so-

lutions to problem (6.13) can be achieved by the study of the operatorTB.

Analogous to the finite dimensional case, the spectral decomposition ofTB will pro-

vide the solutions to the optimization in (6.1). Thus, as in (4.1), writeTB as

TB =
J−1∑
i=1

γiαi ⊗ αi, (6.15)

whereγ1 ≥ . . . ≥ γJ−1 > 0 are eigenvalues ofTB andαi, i = 1, . . ., J − 1, are the

associated eigenfunctions. Note that{αi, i = 1, . . ., J − 1} in H(KW ) are an orthonormal

basis forIm(TB) = Im(TB).
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Theorem VI.2. Suppose thatTB has the spectral decomposition in (6.15). Then, thehi

satisfying (6.13) and (6.14) are given byhi = αi and the corresponding linear discriminant

variables of theX space arè i = ΨW (fi).

Proof. We have

VarG(E[ΨW (h)|G]) = 〈h, TBh〉H(KW ) =
J−1∑
i=1

γi〈αi, h〉2H(KW ).

Since the{αj} are orthonormal inH(KX),

VarG(E[ΨW (h)|G]) ≤ γ1

J−1∑
i=1

〈αi, h〉2H(KW ) ≤ γ1‖h‖2
H(KW )

by Bessel’s inequality. Then, the equality holds if and only ifh = α1. For the general case

we haveh ⊥ αi, 1 ≤ i ≤ k − 1 and VarG(E[ΨW (h)|G]) ≤ γk‖h‖2
H(KW ), with inequality if

and only ifh = αk.

�

We now see that the linear discriminant functions are given by

`i = ΨW (hi), i = 1, . . ., J − 1, (6.16)

where thehi are the eigenvectors ofTB corresponding to its positive eigenvalueγi. Thehi

satisfy the constraints

‖hi‖H(KW ) = 1

and

〈hi, hk〉H(KW ) = 0, k 6= i.

With x(·) = X(·, ω0) for ω0 ∈ Ω

`(ω0) = ΨW (h)(ω0) := ΨW,x(h).

Let us now adopt the notatioǹ(x) = ΨW,x(h) instead of` to explicitly emphasize the

dependency onx. The classification rule is then to classify a new curvex to classi if

Distsi (x) = min
j
Distsj(x),
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where the squared Mahalanobis distanceDistsj confined to the subspace defined by the first

s (≤ J − 1) linear discriminant functions is given by

Distsj(x) =
s∑

k=1

(
`k(x)− E[`k|G = j]

)2
=

s∑
k=1

(
ΨW,x(hk)− 〈hk, µj〉H(KW )

)2
. (6.17)

6.1.2 Generalized Fisher’s Linear Discriminant Analysis

We now wish to formulate the general version of Fisher’s discrimination method in this

section with respect to optimization overH(KX). In this regard, maximizing (6.1) over

` ∈ L2
X is equivalent to maximizing

VarG(E[`|G])/Var(`) (6.18)

over` ∈ L2
X since Var(`) = VarG(E[`|G]) + EG[Var(`|G)] implies that (6.18) equals

VarG(E[`|G])/EG[Var(`|G)]

1 + VarG(E[`|G])/EG[Var(`|G)]

and x
1+x

is an increasing function inx ≥ 0.

We have seen from Proposition IV.1 that givenµj ∈ H(KW ) a linear mappingΨX

betweenH(KX) andL2
X defined by

ΨX(KX(·, t)) = X(t), t ∈ T

is an isomorphism with the properties

E[ΨX(f)] = 〈f, µ〉H(KX) (6.19)

and

Cov(ΨX(f (1)),ΨX(f (2))) = 〈f (1), f (2)〉H(KX). (6.20)

In addition,ΨX has the following property

E[ΨX(f)|G = j] = 〈f, µj〉H(KX). (6.21)
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As in Section 6.1.1, observe that

VarG(E[`|G]) = VarG(E[ΨX(f)|G]) = 〈f(∗), 〈KB(∗, ·), f(·)〉H(KX)〉H(KX)

and

Var(`) = Var(ΨX(f)) = ‖f‖2
H(KX).

We now define the operatorCB fromH(KX) toH(KX) by

(CBf)(t) = 〈KB(t, ·), f(·)〉H(KX) (6.22)

for f ∈ H(KX). Consequently, we now can restate the general discrimination problem

(6.18) in the RKHSH(KX) as findingf ∗ ∈ H(KX) such that

〈f ∗, CBf
∗〉H(KX) = sup

f∈H(KX)

〈f, CBf〉H(KX) (6.23)

subject to

‖f‖2
H(KX) = 1.

Thus, characterization of the solutions to problem (6.23) is achieved through study of the

operatorCB.

Theorem VI.3. The operatorCB in (6.22) is a bounded linear operator fromH(KX) to

H(KX) with operator norm at most 1.

Proof. We see that

CovG

(
E[ΨX(f (1))|G],E[ΨX(f (2))|G]

)
= 〈f (1), CBf

(2)〉H(KX)

for any functionsf (1) andf (2) inH(KX). Now observe from the Cauchy-Schwarz inequal-

ity that∣∣〈f (1), CBf
(2)〉H(KX)

∣∣ =
∣∣CovG

(
E[ΨX(f (1))|G],E[ΨX(f (2))|G]

) ∣∣
≤ VarG(E[ΨX(f (1))|G])1/2VarG(E[ΨX(f (2))|G])1/2

≤ Var(ΨX(f (1)))1/2Var(ΨX(f (2)))1/2 = ‖f (1)‖H(KX)‖f (2)‖H(KX).
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Replacingf (1) by CBf
(2) entails that‖CBf

(2)‖H(KX) ≤ ‖f (2)‖H(KX) and completes the

proof.

�

We can easily see thatCB is self-adjoint, compact and positive in a similar way to

the operatorTB. So,CB has the spectral decomposition as in (6.15). Letλi, βi be the

eigenvalues and the corresponding eigenvectors of the operatorCB, respectively. Note that

1 ≥ λ1 ≥ · · · ≥ λr(CB) > 0. Then, the solutions to problem (6.23) subject to‖f‖2
H(KX) = 1

are given byfi = βi with βi the eigenvectors of the operatorCB and the corresponding

linear discriminant variables of theX space arèi = ΨX(fi).

We may be interested in the relationship between the operatorsTB ∈ B(H(KW )) and

CB ∈ B(H(KX)) and the relationship between the isomorphismsΨW andΨX . These

links are addressed by the following results.

Lemma VI.1. LetTB andCB be the operators defined as in (6.5) and (6.22), respectively.

Also, letL be the linear transformation defined in (6.3). Then, the operatorsCB is related

to TB in the following way:

CB = TB ◦ L.

Also,ΨX(f) = ΨW (Lf) = ΨW (f)−ΨW (CBf) for f ∈ H(KX).

Proof. We observe from (6.4) that

(TBLf)(t) = 〈KB(·, t), Lf〉H(KW ) = 〈KB(·), f〉H(KX) = (CBf)(t).

for f ∈ H(KX). Also, the isomorphismsΨX fromH(KX) to L2
X andΨW fromH(KW )

toL2
X are related in that

ΨX(f) = ΨW (Lf), f ∈ H(KX)

which follows from

ΨX(KX(·, t)) = X(t) = ΨW (KW (·, t)) = ΨW (L(KX(·, t)).



94

Fromf(t) = (Lf)(t) + (TBLf)(t) = (Lf)(t) + (CBf)(t), we then have

(CBf)(t) = ((I − L)f)(t).

That is,L = I − CB.

�

Since the linear transformationL ∈ B(H(KX),H(KW )) is one-to-one and onto, we

observe from the open mapping theorem and the relationship betweenTB andCB that

TB = CB ◦ L−1

with L−1 ∈ B(H(KW ),H(KX)) satisfyingL ◦ L−1 = IH(KW ) andL−1 ◦ L = IH(KX). So,

the compactness ofTB is a consequence of the compactness ofCB and the boundedness of

L−1.

Now Fisher’s linear discriminant function was originally obtained by solving

sup
`∈L2

X

VarG(E[`|G]) = sup
f∈H(KW )

〈f, TBf〉H(KW )

subject to

EG[Var(`|G)] = 1.

If we let `Fisher,i be the solutions to problem in (6.1), we then get

`Fisher,i =
`i(

EG[Var(`i|G)]
)1/2

with `i the solutions to the problem (6.18). But we can observe that

EG[Var(`i|G)] = 〈fi(·), 〈KW (·, ∗), fi(∗)〉H(KX)〉H(KX)

= ‖fi‖2
H(KX) − 〈fi, CBfi〉H(KX) = 1− λi.

Thus, we have

`Fisher,i = (1− λi)
−1/2ΨX(fi)
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with fi the eigenvectors of the operatorCB. So, the squared Mahalanobis distanceDistsj

in (6.17) becomes

Distsj(x) =
s∑

k=1

1

1− λk

(
`k(x)−E[`k|G = j]

)2
=

s∑
k=1

1

1− λk

(
ΨX,x(fk)−〈fk, µj〉H(KX)

)2
.

(6.24)

6.1.3 Bayes Procedure: Linear Discriminant Analysis

In this section, we wish to consider the classification of a Gaussian process{X(t), t ∈ T }

under the assumption of a common within-class covariance function. This problem dates

back to Parzen (1962, 1963) who developed a unified approach to the extraction of signal

in noise problems based on RKHS theory.

Let us consider the stochastic model

X(t) =
J∑

j=1

µj(t)Y (j) + e(t) (6.25)

with E[e(t)] = 0 and Cov(e(s), e(t)) = KW (s, t). Then, our interest is in prediction of the

membership ofX corresponding to the population indexed byY (·).

Let Ω be the space of all real-valued functions onT . For j = 1, . . ., J , let P0 andPj

be the probability measures defined on the measurable subsetsB of Ω by

P0(B) = P [{e(t), t ∈ T } ∈ B]

and

Pj(B) = P
[{ J∑

j=1

µj(t)Y (j) + e(t), t ∈ T
}
∈ B

∣∣∣G = j
]
.

Let pj(X(t), t ∈ T ) denote the probability density of the process{µj(t)+e(t), t ∈ T }

with respect to the process{e(t), t ∈ T }. Recalling our definitions of the RKHSH(KW )

and the isomorphismΨW betweenH(KW ) andL2
X , we see that ifµj ∈ H(KW ) ande(t)
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is a normal process, then the probability density functional ofPj with respect toP0 is

pj(X(t), t ∈ T ) =
dPj

dP0

= exp

{
ΨW (µj)−

1

2
‖µj‖2

H(KW )

}
= exp

{
ΨW (µj)−

1

2

(
E[ΨW (µj)|G = j]

)2
}

from (6.10).

The Bayes classifier classifies a new observation to the class which maximizes the

posterior probability

P (G = j|X(t), t ∈ T ) =
πjpj(X(t), t ∈ T )∑J

k=1 πkpk(X(t), t ∈ T )
.

However,

P (G = j|X(t), t ∈ T ) ∝ exp

{
ΨW (µj)−

1

2
‖µj‖2

H(KW ) + log πj

}
since E[ΨW (µj)|G = j] = ‖µj‖2

H(KW ). So, we can define the discriminant function for

classj to be

dj(x) = ΨW,x(µj)−
1

2
‖µj‖2

H(KW ) + log πj

and we classifyx to the class for whichdj(x) is largest.

6.2 Fisher’s Linear Discrimination and Bayes Procedure

SupposeJ = 2 andπ1 = π2. Assume thatµ1 andµ2 belong toH(KW ). In this instance,

the Bayes classification becomes

classifyx to class 1 ifd1(x)− d2(x) = ΨW,x(µ1 − µ2)− 〈µ1 − µ2, µ〉H(KW ) > 0

with µ = (µ1 + µ2)/2.

In contrast, Fisher’s linear discriminant function is obtained by maximizing∣∣〈µ1 − µ2, h〉H(KW )

∣∣2
‖h‖2

H(KW )
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over h ∈ H(KW ). This ratio has maximum‖µ1 − µ2‖2
H(KW ) which is attained when

h = µ1 − µ2. Hence, Fisher’s linear discriminant function is` = ΨW (µ1 − µ2). The

corresponding classification rule to (6.17) is then to classifyingx to class 1 if

∣∣ΨW,x(µ1 − µ2)− 〈µ1 − µ2, µ1〉H(KW )

∣∣ < ∣∣ΨW,x(µ1 − µ2)− 〈µ1 − µ2, µ2〉H(KW )

∣∣,
which provides exactly the same rule as in the Bayes procedure.

6.3 Fisher’s Linear Discrimination and Canonical Correlation Analysis

It was seen that Fisher’s linear discriminant functions can be derived from canonical corre-

lation analysis in the finite dimensional case in Section 3.2.6. Our goal is now to generalize

that result to the infinite dimensional setting.

Let {Y (j), j = 1, . . ., J} be a family of indicator variables for a collection of mutually

exclusive and exhaustive populations numbered 1 toJ . We defineπj = P (G = j) =

P (Y (j) = 1). Then auto and cross covariance functions for theX andY processes are

given by

KX(s, t) = Cov(X(s), X(t)), KY (i, j) = Cov(Y (i), Y (j))

and

KXY (s, j) = Cov(X(s), Y (j))

for s, t ∈ T andi, j ∈ {1, . . ., J} and recall that

KY = {KY (i, j)}J
i,j=1 = diag(π1, . . ., πJ)− ππT .

Now letH(KX),H(KY ) be the RKHS’s with r.k.’sKX , KY , respectively. In particu-

lar,H(KY ) is the linear manifold of functions on{1, . . ., J} of the form

J∑
j=1

bjKY (·, j)
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for b = (b1, . . ., bJ)T ∈ Ker(KY )⊥. The associated inner product is

〈g(1), g(2)〉H(KY ) = bT
1 KY b2 (6.26)

for g(1), g(2) ∈ H(KY ) andb1,b2 ∈ Ker(KY )⊥. SinceπTb1 = πTb2 = 0 as in Section

3.2.6, (6.26) becomes

〈g(1), g(2)〉H(KY ) = bT
1 diag(π1, . . ., πJ)b2.

Let g = (g(1), . . ., g(J))T = KY b. Then1 ∈ Ker(KY ) and premultiplying by1T pro-

duces
J∑

j=1

g(j) = 0.

Further, fromg = KY b = diag(π1, . . ., πJ)b it follows that

b = diag(π−1
1 , . . ., π−1

J )g =

(
g(1)

π1

, . . .,
g(J)

πJ

)
.

Thus, the associated inner product inH(KY ) is

〈g(1), g(2)〉H(KY ) =
J∑

j=1

g(1)(j)g(2)(j)

πj

. (6.27)

As explained in Section 5.1, the canonical variables of theX space andY space in

this setting are

ηi = ΨX(fi) and bT
i Y = ΨY (gi) =

J∑
j=1

gi(j)Y (j)

πj

,

whereY = (Y (1), . . ., Y (J))T andfi, gi are the singular functions of the operatorT given

by

(Tg)(t) = 〈KXY (t, ·), g〉H(KY ) =
J∑

j=1

KXY (t, j)g(j)

πj

for t ∈ T andg ∈ H(KY ) andfi, gi satisfying

‖fi‖2
H(KX) = 1 and 〈fi, fl〉H(KX) = 0, (6.28)
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and
J∑

j=1

gi(j) = 0,
J∑

j=1

g2
i (j)

πj

= 1 and
J∑

j=1

gi(j)gl(j)

πj

= 0 (6.29)

for i 6= l andi, l = 1, . . ., J . Note that the operatorT from H(KY ) to H(KX) is clearly

bounded and compact sincedim(H(KY )) is finite.

We now provide a general result that links Fisher’s discriminant functions and canon-

ical correlation analysis.

Theorem VI.4. For i = 1, . . ., J − 1, the canonical variables of theX space,ηi, are

identical to the linear discriminant functions,`i apart from scaling factors and the canoni-

cal correlationsρi are precisely square roots of the eigenvalues obtained from the spectral

decomposition of the operatorCB.

Proof. Let us first observe that

ΨX(f) = ΨW (f)−ΨW (CBf), f ∈ H(KX) (6.30)

and

〈Lf (1), Lf (2)〉H(KW ) = 〈Lf (1), f (2)〉H(KX) = 〈(I − CB)f (1), f (2)〉H(KX)

= 〈f (1), f (2)〉H(KX) − 〈CBf
(1), f (2)〉H(KX)

for f (1), f (2) in H(KX). The canonical variables forX are then given byηi = ΨX(fi), i =

1, . . ., J − 1, wherefi ∈ H(KX) are obtained from

TT ∗fi = ρ2
i fi (6.31)

and Fisher’s discriminant functions are given by`i = ΨW (hi), i = 1, . . ., J − 1, where

hi ∈ H(KW ) are obtained from

TBhi = γihi. (6.32)

We can see that, forf ∈ H(KX),

(TT ∗f)(t) = 〈KXY (t, ·), (T ∗f)(·)〉H(KY )

= 〈TKXY (t, ·), f(·)〉H(KX).
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However,

TKXY (t, ·) = 〈KXY (·, ∗), KXY (t, ∗)〉H(KY ) =
J∑

j=1

KXY (·, j)KXY (t, j)

πj

and, fori = 1, . . ., J ,

KXY (·, i) = Cov(X(·), Y (i)) = E[X(·)Y (i)]−E[X(·)]E[Y (i)] = πi(µi(·)−µ(·)) (6.33)

since

E[X(·)Y (i)] = EG[E(X(·)Y (i)|G)] =
J∑

j=1

πjE[X(·)|G = j]δij = πiµi(·)

with δij = 1 if i = j, δij = 0 otherwise, E[X(·)] = µ(·), and E[Y (i)] = πi. So,

TKXY (t, ·) =
J∑

j=1

πj(µj(·)− µ(·))(µj(t)− µ(t)) = KB(t, ·),

(TT ∗f)(t) = 〈TKXY (t, ·), f(·)〉H(KX) = 〈KB(t, ·), f(·)〉H(KX) (6.34)

and (6.34) becomes

(TT ∗f)(t) = (CBf)(t).

Now use the fact thatCBf = TBLf andf = Lf + TBLf for f ∈ H(KX) to rewrite

(6.31) as

(TBLfi)(t) = ρ2
i [(Lfi)(t) + (TBLfi)(t)];

i.e.,

(TBLfi)(t) =
ρ2

i

1− ρ2
i

(Lfi)(t).

Since thefi satisfy‖fi‖2
H(KX) = 1,

‖Lfi‖2
H(KW ) = ‖fi‖2

H(KX) − 〈CBfi, fi〉H(KX) = 1− ρ2
i .

Moreover, thehi inH(KW ) corresponding to Fisher’s discriminant functions`i = ΨW (hi)

satisfy‖hi‖2
H(KW ) = 1 andLfi = (1 − ρ2

i )fi from fi = Lfi + CBfi = Lfi + ρ2
i fi. Thus,
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thehi are related to thefi via

hi =
Lfi

‖Lfi‖H(KW )

=
Lfi

(1− ρ2
i )

1/2
= (1− ρ2

i )
1/2fi. (6.35)

Also, from the relationship between the isomorphismsΨX from H(KX) to L2
X andΨW

fromH(KW ) toL2
X

ηi = ΨX(fi) = ΨW (Lfi) = (1− ρ2
i )ΨW (fi) = (1− ρ2

i )
1/2ΨW (hi) = (1− ρ2

i )
1/2`i.

Therefore, Fisher’s discriminant functions`i are related to the canonicalX variablesηi in

`i =
ηi

(1− ρ2
i )

1/2
. (6.36)

This result is the exact parallels of what transpires in the finite dimensional setting.

�

Note that the eigenvalues ofTB andTT ∗ are related as

γi =
ρ2

i

1− ρ2
i

. (6.37)

Also, the canonicalX variables and the generalized Fisher’s discriminant functions in Sec-

tion 6.1.2 are identical sinceTT ∗f = CBf .

Now we wish to interpret the canonical variables of theY space from canonical cor-

relation analysis in Chapter IV. The canonical variables of theY space are obtained from

T ∗Tg = λg.

Then we have

(T ∗Tg)(l) = 〈KXY (·, l), (Tg)(·)〉H(KX).

Now observe that

(Tg)(·) =
J∑

j=1

KXY (·, j)g(j)
πj

=
J∑

j=1

(µj(·)− µ(·))g(j) =
J∑

j=1

g(j)µj(·)
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because
∑J

j=1 g(j) = 0. So, the operatorT from H(KY ) to H(KX) provides a contrast

among the population mean functions. Hence

(T ∗Tg)(l) = πl

J∑
j=1

g(j)〈µl(·)− µ(·), µj(·)− µ(·)〉H(KX).

Also,

〈f, Tg〉H(KX) =
J∑

j=1

g(j)〈f, µj〉H(KX),

which is the contrast among the transformed mean functionsmj = 〈f, µj〉H(KX).

Let ΨX(f1) andΨY (g1) be the first canonical variables of theX andY processes.

Then,f1 andg1 are obtained by maximizing∣∣∣ J∑
j=1

g(j)〈f, µj〉H(KX)

∣∣∣,
subject to‖f‖H(KX) = 1,

∑J
j=1 g(j) = 0 and

∑J
j=1

g2(j)
πj

= 1. Thus, we have exactly

the same interpretation as in the finite dimensions. The functionsg provide the coefficient

of a contrast in transformed means and so it measures the importance of the transformed

meansmj = 〈f, µj〉H(KX) in the contrast. Also, it plays an important role in classification

analogous to the finite dimensions.

From (5.14), we have

fi ∝ Tgi

and we have seen thatTgi, i = 1, . . ., J − 1 are the orthogonal contrasts among class

means. Thus,Tgi, i = 1, . . . , J−1 are exactly the same as the RKHS vectorsfi apart from

a constant of proportionality.

6.4 Classification

A goal of discriminant analysis is in construction of classification rule. In this section,

the classification rule based on the canonical variables of theX andY processes will be

formulated as in Section 3.2.7.
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Let η = ΨX(f) andξ = bTY =
∑J

j=1
g(j)Y (j)

πj
be a pair of canonical variables for the

X andY processes corresponding to the canonical correlationρ. Sinceη is the best linear

predictors ofξ, ξ can be predicted fromη. The predicted score is given by

E[ξ] +
Cov(ξ, η)

Var(η)
(η − E[η]) = ρ(η − E[η])

because E[ξ] =
∑J

j=1 g(j) = 0 and Var(η) = 1.

Now we provide the classification rule in the subspace defined by the predicted scores

of the firsts (≤ J−1) canonical variables of theX space. Let̃ξ(ω0) := ξ̃i(x) = ρi(ηi(x)−

E[ηi]), i = 1, . . ., J − 1, with x(·) = X(·, ω0). Then, the squared Mahalanobis distance is

s∑
k=1

1

ρ2
k(1− ρ2

k)
(ξ̃k(x)− ¯̃ξkj)

2 (6.38)

with ¯̃ξkj = E[ξ̃k|G = j] = ρk〈fk, µj − µ〉H(KX). We can easily see from this that the dis-

tances in (6.17), (6.24) and (6.38) are the same. However, these distances are expressed in

terms of either〈fk, µj〉H(KW ) or 〈fk, µj〉H(KX) which pose practical problems for estimation

from data.

Our goal is now to find new classification rule which is free of inner products and is

equivalent to the distances (6.17), (6.24) and (6.38). Now our goal is to find the equivalent

classification rule to the distances (6.17), (6.24) and (6.38) through CCA. As in Section

3.2.7, we can introduce distance measures constructed from the CCA approach as follows:

for a sample pathx,
s∑

k=1

1

1− ρ2
k

(ξ̃k(x)− bkj)
2 −

s∑
k=1

b2kj (6.39)

and
s∑

k=1

1

1− ρ2
k

(ΨX,x(fk)− η̃kj)
2 (6.40)

with η̃kj = 〈fk, µ〉H(KX) + ρkbkj the predicted score ofηk via ξk for the classj. The

proposed classification rule is to classifying a sample pathx to the class whose index min-

imizes (6.40).
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Theorem VI.5. The distances in (6.17), (6.24),(6.38) and (6.40) are the same.

Proof. We can easily see that (6.17) and (6.24) are identical from the fact that

ΨW (hi) = (1− ρ2
i )
−1/2ΨX(fi)

and

〈fi, µj〉H(KX) = 〈Lfi, µj〉H(KW ) = (1− ρ2
i )

1/2〈hi, µj〉H(KW ),

wherehi are the eigenvectors ofTB andfi are the eigenvectors ofTT ∗ associated with its

eigenvaluesρ2
i .

We start with (6.24). We see from Theorem 14 that (6.24) becomes

Distsj(x) =
s∑

k=1

1

1− ρ2
k

(ηk(x)− 〈fk, µj〉H(KX
)2.

Then, observe that

Distsj(x) =
s∑

k=1

1

1− ρ2
k

(
ηk(x)− E[ηk] + E[ηk]− 〈fk, µj〉H(KX)

)2

.

From (5.15) and (6.33), we have

(T ∗fk)(j) = 〈fk, KXY (·, j)〉H(KX) = πj〈fk, µj − µ〉H(KX) = ρkgk(j).

Hence we have〈fk, µj − µ〉H(KX) = ρkπ
−1
j gk(j) = ρkbkj for j = 1, . . ., J . So,

〈fk, µj〉H(KX) − E[ηk] = 〈fk, µj − µ〉H(KX).

Thus, the result follows.

�

Corollary VI.2. The distance measure in (6.39) is equivalent to the distances in (6.17),

(6.24),(6.38) and (6.40) in the sense of classification.

Proof. We begin with (6.24) since (6.24) and (6.38) are identical. Then, observe that

Distsj(x) =
s∑

k=1

1

1− ρ2
k

(ηk(X)− E[ηk])
2 +

s∑
k=1

1

1− ρ2
k

(〈fk, µj〉H(KX) − E[ηk])
2

− 2
s∑

k=1

1

1− ρ2
k

(ηk(x)− E[ηk])(〈fk, µj〉H(KX) − E[ηk]).
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We first see that

ηk(x)− E[ηk] = ρ−1
k ξ̃k(x).

Also, we have seen that

〈fk, µj〉H(KX) − E[ηk] = ρkbkj

for j = 1, . . ., J . Thus,Distsj can be simplified to

s∑
k=1

1

ρ2
k(1− ρ2

k)
ξ̃k(x)

2 +
s∑

k=1

ρ2
k

1− ρ2
k

b2kj − 2
s∑

k=1

1

1− ρ2
k

ξ̃k(x)bkj

=
s∑

k=1

ρ−2
k ξ̃k(x)

2 +
s∑

k=1

1

1− ρ2
k

(ξ̃k(x)− bkj)
2 −

s∑
k=1

b2kj

and the desired result is obtained.

�

6.5 Computation

Let X1, . . ., XN be iid copies of a random continuous curveX. Let Xij be theith curve

randomly drawn from thejth class. Also letµj be the true mean curve of an individual

from thejth class andeij be the random noise processes with mean zero and covariance

kernelKW . We will focus on the case ofT = [0, 1] and smooth covariance functionKX

of theX process. Then,

Xij(t) = µj(t) + eij(t), i = 1, . . ., Nj, j = 1, . . ., J, t ∈ [0, 1].

In practiceXij is observed at a discrete set of finitely many pointst1, . . ., tm. LetXijk be

the value for theith curve attk from thejth class. Observe that

Xijk = Xij(tk) + υijk, k = 1, . . .,m,

whereυijk’s are the uncorrelated measurement errors with zero mean and constant variance

σ2. We now have

Xijk = µj(tk) + εijk, k = 1, . . .,m,
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whereεijk = eij(tk) + υijk satisfy

Cov(εijk, εi′jk′) = KW (tk, tk) + σ2, i = i′ andk = k′

= KW (tk, tk′), i = i′ andk 6= k′

= 0, i 6= i′.

DefiningX̄jk = 1
Nj

∑Nj

i=1Xijk, we have

X̄jk = µj(tk) + ε̄jk, (6.41)

where

ε̄jk =
1

Nj

Nj∑
i=1

εijk

and

Cov(ε̄jk, ε̄jk′) =
1

Nj

{
KW (tk, tk) + σ2

}
, k = k′

=
1

Nj

KW (tk, tk′), k 6= k′.

We first propose to estimate the between-class covariance kernelKB(·, ·) defined in

(6.2). For this purpose, we will estimateµj andµ. One natural approach is to use nonpara-

metric function estimation. Then, in general, the estimate ofµj has the following form

µ̂j(t) =
m∑

k=1

wk(t, λ)X̄jk,

wherewk(t, λ) is a weight function att depending on a smoothing parameter,λ. Now let

us assume that theµj ’s are smooth and use a smoothing spline to estimateµj andµ. (e.g.,

see Eubank, 1999). Specifically, cubic spline smoothing will be used in where we estimate

µj by the minimizer̂µj of

1

mNj

(X̄jk − µj)
TW−1(X̄jk − µj) + λ

∫ 1

0

{
µ

(2)
j (t)

}2

dt,

whereX̄jk = (X̄j1, . . . , X̄jm)T , µj = (µj(t1), . . . , µj(tm))T andW = KW + σ2I with

KW = {KW (tk, tk′)}m
k,k′=1. Then,µ can be estimated bŷµ(t) =

∑m
k=1 pjµ̂j(t) with pj =
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Nj

N
. Combining these estimators produces

K̂B(s, t) =
J∑

j=1

pj(µ̂j(s)− µ̂(s))(µ̂j(t)− µ̂(t)), s, t ∈ T

and

K̂B =
{
K̂B(tk, tk′)

}m

k,k′=1
,

where{t1, . . ., tm} is a finite dimensional subset ofT .

Now to estimateKW (·, ·) let K̃W (m) = 1
N

∑J
j=1

∑Nj

i=1(Xij−X̄j)(Xij−X̄j)
T , where

Xij = (Xij(t1), . . ., Xij(tm))T andX̄j = 1
Nj

∑Nj

i=1 Xij. We now adopt the approach dis-

cussed in Silverman (1996). Compute the eigenvalues and eigenvectors of the generalized

eigen equation

K̃W (m)e = λ(I + ϑΩ)e, (6.42)

whereϑ is a smoothing parameter andΩ is such thateTΩe =
∫

(e′′)2 for the cubic smooth-

ing spline.

LetMϑ be the number of the nonzero eigenvalues of the eigen equation

K̃W (m)[−i]e = λ(I + ϑΩ)e,

whereK̃W (m)[−i] is the sample pooled covariance matrix computed with theith obser-

vation Xi = (Xi(t1), . . ., Xi(tm))T left out. Also, lete[−i]
l (ϑ), l = 1, . . .,Mϑ be the

eigenvectors corresponding to the nonzero eigenvalues of the above eigen equation. For

l = 1, . . .,Mϑ, letΠ[−i]
l (ϑ) be the projection onto the linear space spanned bye

[−i]
1 (ϑ), . . . ,

e
[−i]
Mϑ

(ϑ). Then, the smoothing parameterϑ is chosen by minimizing

CV (ϑ) =

Mϑ∑
l=1

N∑
i=1

∥∥∥(I−Π
[−i]
l (ϑ))Xi

∥∥∥2

R2
.

From the linear system (6.42) retainq ≤ m smoothed principal component vectors for

use in subsequent analysis. Ifλi, ei denote the resulting eigenvalues and smoothed principal

components we then estimateKW (s, t) on [0, 1]× [0, 1] by K̂W (s, t) =
∑q

i=1 λiei(s)ei(t).
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DefineK̂W = {K̂W (tk, tk′)}m
k,k′=1 and perform an eigenvalue decomposition on

K̂
−1/2
W K̂BK̂

−1/2
W

to obtain eigenvalueŝγi with the associated eigenvectorsûi. Let l̂i = K̂
−1/2
W ûi. Then, the

squared correlations are

ρ̂2
i =

γ̂i

1 + γ̂i

and the canonical vectorŝai are

âi = (1− ρ̂2
i )

1/2l̂i

which produce the estimated RKHS function

f̂i = (1− ρ̂2
i )
−1/2ĥi

with ĥi(·) =
∑m

k=1 l̂ikK̂W (·, tk) and corresponding estimated canonical variate

η̂i =
m∑

k=1

âikX(tk).

Now compute

b̂i = ρ̂−1
i [µ̂1 − ˆ̄µ, . . ., µ̂J − ˆ̄µ]T âi

with µ̂j = {µ̂j(tk)}m
k=1 and ˆ̄µ = { ˆ̄µ(tk)}m

k=1. Then, we have

η̂ir =
m∑

k=1

âikXr(tk) and ξ̂ir =
J∑

k=1

b̂ikYr(k)

for r = 1, . . ., N . So, for any fixedi our transformed data is

(η̂ir, ξ̂ir), r = 1, . . ., N.

Now, regress thêξir’s on η̂ir’s to get the predicted canonicalX scores

ˆ̃ηi = bi0 + b1iξ̂i
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with

b1i =

∑N
r=1(ξ̂ir −

¯̂
ξi)(η̂ir − ¯̂ηi)∑N

r=1(ξ̂ir −
¯̂
ξi)2

,

b0i = ¯̂ηi − b1i
¯̂
ξi

and ¯̂ηi = 1
N

∑N
r=1 η̂ir,

¯̂
ξi = 1

N

∑N
r=1 ξ̂ir. Thus, given a sample pathx, we assignx to the

class whose index minimizes

s∑
i=1

1

1− ρ̂2
i

(η̂i(x)− ˆ̃ηij)
2

with η̂i(x) =
∑m

k=1 âikx(tk).

Example 1. To illustrate the use of our estimation method, takeT = [0, 1] and consider

the case where  Y (1)

Y (2)

 ∼Multinomial(1; π1, π2)

with π1 = π2 = .5. Let

X(t) = µ1(t)Y (1) + µ2(t)Y (2) +
20∑
i=1

i−1/2Ui

√
2 cos(iπt) for t ∈ T , (6.43)

and theUi being i.i.d. standard normal random variables and

µ1(t) = 3
√

2 cos(πt) +
√

2 cos(2πt),

µ2(t) =
√

2 cos(2πt).

A typical data set consisting of 50 sample paths of process (6.43) is shown in Figure 2

and the true mean functions of two different classes is shown in Figure 3. In this instance,

KB(s, t) = π1π2(µ1(s)− µ2(s))(µ1(t)− µ2(t)) =
18

4
cos(πs) cos(πt),

KW (s, t) =
20∑
i=1

2

i
cos(iπs) cos(iπt).
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Figure 2: Sample paths of 50 curves from 2 different classes: 23 for class 1 and 27 for class
2. The red curves are from class 1 and the blue curves are from class 2.

We see thatµ1 andµ2 belong toH(KW ). The integral representation Theorem then has the

consequence thatH(KW ) consists of functions of the form

h(t) =
20∑
i=1

νiκi

√
2 cos(iπt)

for real coefficientsκi = ν−1
i 〈h(·),

√
2 cos(iπ·)〉L2[0,1] andνi = i−1, i = 1, . . ., 20. The

associated inner product is

〈h1, h2〉H(KW ) =
20∑
i=1

νiκ1iκ2i =
20∑
i=1

ν−1
i 〈h1(·),

√
2 cos(iπ·)〉L2[0,1]〈h2(·),

√
2 cos(iπ·)〉L2[0,1].
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Figure 3: True mean functionsµ1 andµ2.

Direct calculations then lead us to

(TBh)(t) =
9

4

√
2 cos(πt)〈

√
2 cos(π·), h(·)〉H(KW )

=
9

4

√
2 cos(πt)

×
20∑
i=1

ν−1
i 〈

√
2 cos(π·),

√
2 cos(iπ·)〉L2[0,1]〈

20∑
k=1

νkκk

√
2 cos(kπ·),

√
2 cos(iπ·)〉L2[0,1]

=
9

4
κ1

√
2 cos(πt).

Thus,(TBh)(t) = γh(t) entails that there is only one nonzero eigenvalueγ1 = 9/4.

Now observe thath1(t) =
√

2 cos(πt)/κ1 which follows fromKB(s, t) = (TBh1)(s)h1(t).

Moreover,

‖h1‖2
H(KW ) = κ−2

1

20∑
i=1

ν−1
i 〈

√
2 cos(π·),

√
2 cos(iπ·)〉2L2[0,1] = κ−2

1 ν−1
1 = κ−2

1 .
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So, the corresponding eigenfunction is

h1(t) =
√

2 cos(πt).

For e(t) = X(t)− µ1(t)Y (1)− µ2(t)Y (2) =
∑20

i=1 i
−1/2Ui

√
2 cos(iπt), we then have

ψe(h1) = κ1U1 = U1

from (4.10). Therefore, from (4.14),

`1 = ΨW (h1) = ψe(h1) + 〈h1, µ1Y (1) + µ2Y (2)〉H(KW )

= U1 + 〈
√

2 cos(π·), 3Y (1)
√

2 cos(π·) +
√

2 cos(2π·)〉H(KW ) = 3Y (1) + U1.

From (6.35), (6.37), and (6.36), we find that the first canonical correlation, RKHS

variate, and canonical variable of theX process are

ρ2
1 =

γ1

1 + γ1

=
9

13

(i.e.,ρ1 = 3/
√

13 ≈ .83),

f1(t) = (1− ρ2
1)

1/2h1(t) =
√

13 cos(πt)/
√

2,

and

η1 = (1− ρ2
1)

1/2`1 =
2√
13

(3Y (1) + U1).

Consequently,

(b11, b12)
T = (1,−1)T

and

(η̃11, η̃12)
T = (1.664, 0)T .

The data in Figure 2 were analyzed via our estimation algorithm. We initially took

m = 100 equally spaced points on[0, 1] andq = 20. The smoothing parameter for cubic

spline smoothing was chosen by generalized cross validation (GCV) for estimation of the



113

between-class covariance kernelKB while the smoothing parameter atϑ = .0008 was used

for estimation of the within-class covariance kernelKW . The true and estimated between

and within class covariance functions are shown in Figure 5. The estimated first canonical

correlation in this case was found to beρ̂1 = .831 with

(b̂11, b̂12)
T = (1.083,−.923)T

and

(ˆ̃η11, ˆ̃η12)
T = (1.264,−.407)T .

Figure 4 (a) and (b) provide the plots of the estimated and true eigenfunctions of

TB andT ∗T corresponding tôγ1 and ρ̂1, respectively, and Figure 6 shows the estimated

versus true first canonical scores of theX space. Figure 7 is a plot of canonicalX scores

superimposed on the predicted canonicalX scores assigned to the classes. From Table 2,

the misclassification rate was 1 out of 50 or 2%.

(a) (b)

Figure 4: Estimated and true RKHS functions inH(KW ) = H(KX): (a)h1 (green curve)
andĥ1 (black curve); (a)f1 (green curve) and̂f1 (black curve).
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(a) (b)

(c) (d)

Figure 5: True and estimated between class covariance functions: (a)KB(·, ·) and (b)
K̂B(·, ·); True and estimated within class covariance functions: (c)KW (·, ·) and (d)
K̂W (·, ·).
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Figure 6: Estimated versus true canonicalX scores:̂η1 versusη1.

Figure 7: Each point represents the canonicalX score for a sample path and the horizontal
lines provide the values of̃η1j. The sample curve corresponding to the point marked with
black circle was misclassified.
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Table 2: Confusion matrix of classification for the simulated data set

Class 1 Class 2
Class 1 23 0 23
Class 2 1 26 27

Example 2. (Canadian Weather Data) Monthly temperatures for 35 weather stations dis-

tributed across Canada were measured. Canada can be divided into Atlantic, Continental,

Pacific and Arctic meteorological zones and 14 stations are in the Atlantic zone, 5 stations

in the Pacific, 13 stations in the Continental and 3 stations in the Arctic zones. Ramsay

and Silverman (1997) used these data to conduct functional principal components analysis

and functional analysis of variance. Figure 8 (a) and (b) show the monthly temperatures

of 35 weather stations and mean monthly temperatures for the Canadian weather stations,

respectively.

(a) (b)

Figure 8: (a) Monthly temperatures for Canadian weather stations; (b) Mean monthly tem-
peratures for the Canadian weather stations.

Let us analyze these data by our estimation algorithm. The estimated canonical corre-
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lations are

ρ̂1 = .931, ρ̂2 = .910, ρ̂3 = .823

and the estimated coefficient vectors of the canonical variables of theY space are

b̂1 = (−.040,−.938,−.316, 3.123)T ,

b̂2 = (−1.148, .067, 1.106, .450)T ,

b̂3 = (.425,−2.261, .606,−.841)T .

Figure 9 shows the estimated eigenfunctions ofT ∗T corresponding tôρ1, ρ̂2 andρ̂3.

Figure 9: Estimated RKHS functions:̂f1 (black curve),f̂2 (red curve) and̂f3 (green curve)

As we investigated in Section 3.2.6, we can expect the first discriminator or canonical

X variable to distinguish the Arctic zone from the others by looking atb̂1. Similarly, we

can expect the second discriminator to distinguish the Atlantic zone from the other zones

and expect the third discriminator to distinguish the Pacific zone from the Atlantic and

Continental zones. Since the three discriminators play different roles, they all contribute
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Figure 10: Plot of the canonicalX scores of 35 weather stations. Each point represents
score for a sample path.

to discrimination and the estimated canonical correlations are all large. As a result, we

use all three discriminators for discrimination purposes. Table 3 is a confusion matrix of

classification for the Canadian weather data. Figure 10 provides the canonicalX scores

for 35 temperature profiles with different angles. Separation is very clear and there is no

misclassification.

Table 3: Confusion matrix of classification for Canadian monthly temperature data

Atlantic Pacific Continental Arctic
Atlantic 14 0 0 0 14
Pacific 0 5 0 0 5

Continental 0 0 13 0 13
Arctic 0 0 0 3 3
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CHAPTER VII

SUMMARY AND FUTURE RESEARCH

7.1 Summary

Multivariate analysis under the less than full rank scenario plays an important role as a

beginning step for the development of infinite dimensional statistical methods. We have

investigated multivariate canonical correlation analysis and discriminant analysis including

Bayes’ classifier and Fisher’s discriminant method under the less than full rank scenario in

Chapter III. Under this condition, we have shown the well-known connection between

canonical correlation analysis and Fisher’s discriminant method. Also, we have introduced

some distance measures for classification and have shown the equivalence of those distance

measures in a sense that parallels work by Hastie et al. (1995).

In this dissertation, discrimination and classification in infinite dimensional settings is

motivated by the connection between Fisher’s discriminant analysis method and canonical

correlation analysis that is well known for the finite dimensional case. We have shown that

this connection extends to infinite dimensions using the abstract canonical correlation con-

cept developed by Eubank and Hsing (2005). A key part of this dissertation involved using

this approach to develop a theoretical framework for discrimination and classification of

sample paths from stochastic processes through use of the Loève-Parzen isomorphism that

connects a second order process to the reproducing kernel Hilbert space generated by its

covariance kernel. This paradigm provides a seamless transition between finite and infinite

dimensional settings and lends itself well to computation via smoothing and regulariza-

tion. In addition, we have developed and illustrated a new computational procedure with

simulated data and Canadian weather data.
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7.2 Future Research

One of the goals of this dissertation work was to develop a general methodological paradigm

that simultaneously includes classical multivariate analysis, functional data analysis, etc.

Statistical methods for analyzing functional data will ultimately parallel those for multivari-

ate analysis. Among many possible extensions, a future research area concerns the infinite-

dimensional extensions of Bayes’ classifier method from multivariate analysis. Further, dis-

criminant analysis and multivariate analysis of variance are closely related concepts that,

in a sense, represent different sides of the same coin. As a result, this dissertation work

also provides a theoretical structure from which one can extend ANOVA and MANOVA

to the infinite dimensional setting. So, the next research area to consider is the develop-

ment of high dimensional ANOVA techniques that can be applied to, e.g. the FDA context.

Among other applications, the methodology developed in this dissertation can be applied

to discriminant analysis for FDA bioinformatics data. Subsequent studies will pursue the

development of large sample theory for the tests and estimators.

We conclude by mentioning a few other remaining problems that will be focused of

future investigations. First, we have roughly shown that MANOVA under the less than

full rank scenario parallels to the classical developments. This should be proved more

precisely and connected to the general theory of multivariate linear models. Secondly, the

computation algorithm in Section 6.5 needs to be refined for more complex data structure

such as the data with noise, surfaces, etc. Finally, one can generalize the case of

KB(s, t) =
∞∑

j=1

πj(µj(s)− µ̄(s))(µj(t)− µ̄(t)) (7.1)

to situations

KB(s, t) =

∫
Q

(µ(s, q)− µ̄(s))(µ(t, q)− µ̄(t))dP (q) (7.2)

with P a Stieltjes measure onQ. This provides a collection of useful extensions of previous
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developments that includes framework for the development of abstract regression concepts.

We plan to explore this topic in some detail.
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