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ABSTRACT

Infinite Dimensional Discrimination and Classification. (May 2006)
Hyejin Shin, B.S., Chonnam National University;
M.S., Seoul National University

Co-Chairs of Advisory Committee: Dr. Randall L. Eubank
Dr. Emanuel Parzen

Modern data collection methods are now frequently returning observations that should
be viewed as the result of digitized recording or sampling from stochastic processes rather
than vectors of finite length. In spite of great demands, only a few classification methodolo-
gies for such data have been suggested and supporting theory is quite limited. The focus of
this dissertation is on discrimination and classification in this infinite dimensional setting.
The methodology and theory we develop are based on the abstract canonical correlation
concept of Eubank and Hsing (2005), and motivated by the fact that Fisher’s discriminant
analysis method is intimately tied to canonical correlation analysis. Specifically, we have
developed a theoretical framework for discrimination and classification of sample paths
from stochastic processes through use of thevesParzen isomorphism that connects a
second order process to the reproducing kernel Hilbert space generated by its covariance
kernel. This approach provides a seamless transition between the finite and infinite dimen-
sional settings and lends itself well to computation via smoothing and regularization. In
addition, we have developed a new computational procedure and illustrated it with simu-

lated data and Canadian weather data.
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CHAPTER |

INTRODUCTION

Discrimination methods for data classification are one of the most widely used statisti-
cal tools in various fields. Traditional statistical methods for solving discrimination prob-
lems include linear discriminant analysis (LDA), quadratic discriminant analysis (QDA),
multiple logistic regression, nearest neighbor methods, nonparametric function estimation
methods, classification trees and neural network classifiers. In recent years, several tech-
niques have been proposed for analyzing observations with more complex structure (e.g.,
see Hastie et al., 2001).

In many real-life situations, observed data are continuous functions sampled at discrete
points. In that case, we should view the observations as the result of digitized recording
or sampling from a stochastic process rather than vectors of finite length. However, most
current classification methods ignore the inherent nature of functional type data and simply
treat it as readings on a high dimensional multivariate vector.

Recent work that actually treats functional data from a random curve perspective in-
cludes Hall, Poskitt, and Presnell (2001). They studied signal discrimination using finite-
dimensional basis representations and then employ classical discrimination methods like
nonparametric kernel methods, LDA and QDA on the basis coefficients. In a similar vein,
James and Hastie (2001) proposed likelihood-based functional linear discriminant analysis
treating the observations as samples from underlying smoothed curves.

The focus of this dissertation will be on the formulation of a reliable discrimination

The format and style follow that diometrics



method specially developed from the idea of Fisher’s discrimination approach for classi-
fying functions. Our motivation arises from the fact that Fisher’s discriminant analysis
method is intimately tied to canonical correlation analysis.

Most of the methodologies for functional data parallel those in multivariate data anal-
ysis. Accordingly, in Chapter Il we will start with the concepts of classical multivariate
canonical correlation analysis and discriminant analysis. The ideas that underly discrim-
inant analysis detailed in Chapter VI have their roots in discriminant analysis where co-
variance matrices are less than full rank. So, we will first investigate theory of canonical
correlation analysis and discriminant analysis in the finite dimensional, less than full rank,
scenario in Chapter lIl.

The formulation of canonical correlation analysis and discriminant analysis in the in-
finite dimensional setting requires a background in functional analysis and the theory of
reproducing kernel Hilbert space. We therefore briefly summarize the mathematical pre-
liminaries that are needed for Chapters V=VI in Chapter IV. As we emphasized before,
this research is motivated by the fact that Fisher’s discriminant analysis and canonical cor-
relation are connected with each other. Thus, we study the abstract canonical correlation
concept in Eubank and Hsing (2005) in Chapter V. We will then solve the Fisher’s discrim-
inant problem in the infinite dimensional setting and develop the computational algorithm
for its application to simulated data and real data in Chapter VI. Chapter VII provides a
summary of the results in this dissertation. Some remaining questions are also posed for

future research.



CHAPTER I

REVIEW OF SELECTED LITERATURE

We begin with this chapter with an overview of the classical multivariate canonical corre-
lation analysis and discriminant analysis. Then some more current developments in canon-
ical correlation analysis and discriminant analysis for functional data that are germane for

subsequent developments are considered.

2.1 Finite Dimensional Canonical Correlation Analysis

Canonical correlation analysis (CCA, hereatfter) is a classical multivariate method that is
employed for situations where each subject in a sample is measured on two sets of random
variables. The goal of this methodology is to provide an understanding of the relationships
between the two sets of variables.

CCA was initially developed by Hotelling (1936) as the answer to a problem of finding
the linear combination of a set of variables which is most highly correlated with any linear
combination of another set of variables. Several generalizations of canonical correlation
analysis td: > 2 sets of random variables were proposed by Kettenring (1971). Extensions
of CCA to time series were developed by Jewell and Bloomfield (1983), Tsay and Tiao
(1985) and Tiao and Tsay (1989). Also, Leurgans, Moyeed, and Silverman (1993), Ramsay
and Silverman (1997), and He,Mer, and Wang (2002) extended CCA to functional data
analysis. A general and unified notion of CCA has been developed by Eubank and Hsing

(2005) whose work will be reviewed in Chapter V.



2.1.1 Population Canonical Correlations and Canonical Variables

In this section we provide a discussion of the classical multivariate canonical correlation

analysis concept. In what follows bold letters will be used for matrices and column vectors.

Let X be ap-dimensional random vector and létbe ag-dimensional random vector
with Var(X) = Kx, Var(Y) = Ky, and Co¥X,Y) = Kyxy = Kl . Assume that both
K andKy are positive definite.

Now, givena € R? andb € R? consider the linear combinatioa$ X andb”Y. The

squared correlation between these two random variables is

Cov’ (a”X,b"Y)  (a’Kxyb)?

p'lab) = Var (a’X) Var (b7Y) _ (a’Kya)(b"Kyb) 2.1)

provided thatr # 0 andb # 0. Then we may ask what values@fandb maximize (2.1).

Equivalently we can solve the problem

max CoVv’(a’X,b"Y) (2.2)
a#£0,b£0
subject to
Var(a’X) = Var(b”Y) = 1. (2.3)

Now define the first canonical correlatipn and the associated weight vectarsb,
as

p} =CoV (af X,b]Y) = Jnax Cov (a’X,b"Y), (2.4)

wherea, b are subject to (2.3). Similarly, far > 1, the:th canonical correlatiop; and

associated weight vectoss, b; are defined by

p; =CoV (a/X,b]Y) = Jnax Cov’ (a"X,b"Y), (2.5)

wherea, b are subject to (2.3) and

Cov(a’X,alY) =Cov(b"X,blY) =0, j<i. (2.6)



Explicit formulae for the canonical correlations and variables can be obtained as fol-

lows. Let

u= K1/2a
and set

vV = Ki,/zb.

Then, solving problem (2.2) and (2.3) is equivalent to solving the problem

max - (u'K Ky Ky )2 2.7)
lullgp =l viiga =1

where|| - ||r» is the standard Euclidean norm. But, using the singular value decomposition
(SVD) of a matrix, K '"/*K vy K;'/? can be written in the form

min(p,q)

K, 1/ZKXYK 12 _ Z pil; Vl,
whereu; andv; are the eigenvectors of
K, "KxyK;'KyxK;"? and K, ’Ky K Kxy K, /2,

respectively, corresponding to the eigenvalpgs. ., ,ofnin(p 2"
Suppose that? > -+ > p2. > 0. Then,a; = K/?u; andb; = K;"/?v; solve
problem (2.5) subject to (2.3) and (2.6) with corresponding canonical correjatiddote

thata, andb, can be obtained directly from
K KxyKy'Kyxa; = pia;, (2.8)

and

K, 'Ky xK;'Kxyb; = plb;. (2.9)



2.1.2 Sample Canonical Correlations and Canonical Variables

Suppose that we observé iid copies(X,Y:),..., (X, Yy) of (X,Y). We now con-
sider the sample-based counterpart of the developments in the previous section. For this
purpose, we estimate the population variances and covariances by their corresponding sam-

ple moments producing the matrices

N N
Ky = %Z@ ~X)(X; - X)" and Ky = (Y, -Y)(Y,-Y)" (2.10)

1
N

and

Ry = 1 3 (X~ X)(Y; - Y7, (2.11)

whereX = L3V X;andY = £ SV Y,
Similar to the definitions in the population setting of the previous section, we now take

theith sample canonical variables to be
a’X and blY
with a; = K'/*1; andb; = K,'/*, for &, andv; the eigenvectors of
K"Ky Ky'Ky K
and
K, Ky x K Ky K,

corresponding to the eigenvalugs > --- > ﬁfmn( > 0. The corresponding estimated

P,q)

ith canonical correlation ig;.

2.2 Finite Dimensional Discriminant Analysis

The focus of this dissertation is on classification via discriminant analysis. The two stan-
dard multivariate methods for discrimination are the Bayesian approach and Fisher’s linear

discriminant analysis. The latter method is intimately tied to canonical correlation analysis.



In this section we provide a review of multivariate discriminant analysis methods.

In particular, we will detail the relationship between Fisher’s approach and the canonical
correlation analysis technique for discrimination.

Let us now consider a discrimination problem wifhclasses or populations. We
observe(X, G), whereX € RP? is a predictor vector and' € {1,...,J} is a categorical
response variable representing the class memberships. We are interested in predicting the
class membership/ based on the variables in the vector of predictols. This is an
important practical problem with applications in many fields.

Suppose that clagshas the density; with the class meap;, covariance matri¥;

and associated class probability That is,
EX|G = j] = u,.

Var(X|G = j) = E[(X — p,)(X — p))"|G = j] = K;

and P(G = j) = m;. Under this formulation there are two basic approaches to the devel-
opment of discrimination methods: a Bayesian classifier and Fisher's method. We discuss

each of these methods, in turn, below.
2.2.1 Bayes Procedure: Linear Discriminant Analysis

Assume that the density of clagds normal with meanu; and a common within class
covariance matriXy: i.e., K, = Ky forj =1,..., J. Also, assume thdyy is positive
definite.

A Bayesian classifier assigns an observation to the group with the largest posterior
probability. Then, the Bayes linear discriminant rule allocates an observsatmthe class
for which

1
dij(x) = /J,]TK;I}X — §,u,]TK‘7V1uj + log 7; (2.12)



Is maximized. In the case where we have equal class probabilities, an observation is classi-

fied to the class with the smallest squared Mahalanobis distance

(x — :uj)TK;Vl(X - ).
2.2.2 Bayes Procedure: Quadratic Discriminant Analysis

The linear discriminant functions in (2.12) create linear boundaries which lead to a simple
and easily implementable classification rule. However, these discriminant functions can
perform badly when the assumption of a common covariance matrix is not true and often
linear decision boundaries do not adequately separate the classes.

Thus, let us allow for different covariance matride€s, . . ., K ; for each class witli
being positive definite for each= 1, ..., J. Then, the Bayes quadratic discriminant rule

allocates an observationto the class which minimizes

d9(x) = (x — ;Lj)TKj’l(x — ;) +log |K;| — 2log ;.

J

Quadratic discriminant analysis (QDA) provides more complex decision boundaries and
often leads to a classification rule that performs better than the discriminant functions ob-

tained from a linear classifier.
2.2.3 Fisher’s Linear Discriminant Analysis

Fisher’s linear discriminant analysis is a popular data analytic tool for studying the re-
lationship between a set of predictors and a categorical response as well as a prevalent
dimensional reduction tool. The primary purpose of Fisher’s discriminant analysis is to
separate classes. So we now use this perspective to formulate discriminant functions and
to build a corresponding rule for predicting class membership of new observations.

Fisher's approach employs only second order properties of the random variables.

Thus, unlike the Bayesian development, it is not necessary to assume any particular para-



metric form for the distribution of thd classes. However, we do assume that, as for LDA,

the classes have a common (within-class) covariance nistgix
2.2.3.1 Fisher’'s linear discriminant function

Fisher’s linear discriminant function is defined to be the linear fundtid® which maxi-
mizes the ratio of the between-class variance to the within-class variance. Specifically, let

K be the between-class covariance matrix defined by
K = Varg(E[X|G]) Z@ — )T
for
p = EX] = E¢[E(X|@)] Zw,

and similarly let

Eq[Var(X|G)] ZWJK Ky

Then, the between to within class variance ratio is given by

Varg(El"X|G])  U"Kjpl
Ec[Var(l"X|G)]  1"Kyl

(2.13)

withl = (ly,...,1,)T #0.
If 1, is the vector which maximizes (2.13) we call the corresponding linear function
ITX, Fisher’s linear discriminant function or the first canonical variate. Note that the vector

1, in Fisher’s linear discriminant function is obtained by solving

max 7K pl, (2.14)
1#0

wherel is subject to
Kyl =1. (2.15)

Thus,, is the eigenvector oK,/ Kz corresponding to its largest eigenvalue. In general,

K,/ K3 hasmin(p,.J — 1) non-zero eigenvalues. The corresponding eigenvectors define



10

the second, third, and subsequent linear discriminant functions and we denote these vectors
by ls, . . ., lningp,s—1) in What follows.

Fisher’s discriminant analysis is well known as a dimension reduction tool. So, we
now consider the case of < min(p,J — 1). Then, Fisher’s discrimination rule based
on the discriminant function subsgtX, . . ., I X assigns an observationto the class for

which the squared Mahalanobis distance

S

Z(lfx - l;{l’/ﬂz

k=1

is minimized overj =1, ..., J.
2.2.3.2 Fisher’s discriminant function via canonical correlation analysis

In this section we will demonstrate that Fisher’'s LDA is a special case of canonical cor-
relation. To establish this we will tak¥ to be ap x 1 random vector representing an
observation from one of thé classes as before. To represent the class membership corre-
sponding taX, we then define the dummy variablEs j =1,...,J — 1, as

1, ifG=j
Y, = /

J
0, otherwise

LetY = (V4,...,Y;1)T be the resultingJ — 1) x 1 indicator response vector.

We are interested in predicting the class membership of an item based on the predictors
X. That is, we wish to predict the vectdf from X and then use the predicted value to
assign the individual to one of theclasses. CCA provides one possible approach to this
problem since it generalizes regression methodology.

We now give a result that relates Fisher’s linear discriminant analysis to CCA.
THEOREM Il.1. Let K, Ky be the between-class covariance matrix and a common

within-class covariance matrix, respectively, defined in Section 2.2.3.1.a;let= 1,
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...,min(p, J — 1), be the coefficient vectors of the canonical variables ofXhepace.
Then, the canonical vectoss are the eigenvectors d{;[}KB.
Proof. Set VafX) = K, Var(Y) = Ky and CoyX,Y) = Kxy = K. Then, we

know that the vectors; of the canonical variables faX are obtained from
K;(lKXyK;lKYXai = pfal (216)

We now show that an application of this result to the present setting gives

Ky = Var(X) =Kg+ Kw, (217)
Ky = Var(Y) = diag(ry, ..., mj_1) — waTh, (2.18)

and
Kxy =CovX,Y) = (mi(py — p), - my-1(pyog — 1), (2.19)

wherem s = (mq,...,m5_1)T.

To verify (2.18) and (2.19), first let us create/ax 1 vectorY, = Y 4(G) from
the categorical responge, such thatY, = e; if G = jforj = 1,...,J, with e; an
elementary vector consisting of all O’'s except for a 1 injits entry. Then,Y 4, has a

multinomial distribution with cell probabilities = (71, ..., 7;) from which we see that
E[Ya] =7, Var(Y,)=diagm,...,m))—nn’.

Becaus€Y = AY 4 with A the(J —1) x J matrix[I;,_; : 0] forI,_;a(J—1) x (J —1)
identity matrix,

E[Y| = AE[Y 4] = A =74,

and

Var(Y) = AVar(Y.)A" = diag(ry,..., 75 1) — wamh.
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Also, we can show that

EIXY"] = Eg[E(XYA"|G)A" = { > EX|G = j]P(G = j)Y4(G = j)}A"

J=1

J
= {> mipel AT = (g, ) AT
j=1

= (T1fyy -y Ty—1 by q)-

So we now see that
Kxy = EIXY?] - EXIE[Y)" = (mi(py — ), ..y myoi(pey  — ).
Now observe that
Kx = Var(X) = Varg(E[X|G]) + Eg[Var(X|G)] = K + Ky (2.20)
as before, and that

J
KoKy Kyx =) il — p)(py — )" = Kp (2.21)

j=1

sinceKy' = diag(m',...,7;) + ,;'117. Therefore, (2.16) is equivalent to
K)_(IKBai = pZQaZ

as was to be shown and the desired result

is implied by the fact thaK x = K + Ky .
O
Theorem Il.1 tells us that the canonical variables ofXhgpace are proportionally the

same as Fisher’s linear discriminant functions in Section 2.2.3.1. The two sets of vectors
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differ by a proportionality factor because they are subject to different normalization: i.e.,

the vectord; in Fisher’s approach satisfy
UKyl =1, UKyl #0 forj#i, 4,k=1,...,min(p,J — 1)

while the vectors; in the canonical variables of th€ space are normalized via the con-

ditions
a’Kya; =1, a'Kxa, #0 fork #4, i,k=1,...,min(p,J — 1).
2.2.4 Sample Linear Discriminant Functions

Let (X4, G), ..., (Xy,Gy) beiid copies of X, GG). Also, fori =1,...,N,j =1,...,J,
letp; = % andX;; = X,;I(G; = j), wherel(G; = j)is 1if G; = j and otherwise

N =3 ,N.

As in canonical correlation analysis, we will use

J Nj J
N 1 _ _ N _ _ _
Ky =+ > ) (X - X)Xy =X)L K=Y pi(X; = X)(X; - X)”
j=1 i=1 j=1

N

1 _ _ ~ ~ , C
Z(Xi — X)(X; - X)' = Kp + Ky. The sample linear discriminant

N
=1
function based on Bayes’ classifier is then

andKX =

~ o~ 1mn o
dj(x) = XTKy'x — §XJT Ky X, + log p;
and the resulting Bayes linear discriminant rule assigtsthe population Whergj (x)is
largest.

The optimal coefficient vectors in the sample Fisher’s discriminant functions are the
eigenvector of

K;;'Kp.
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If il, ...l arethe eigenvectors tﬁg}f{B corresponding to the firstlargest eigenvalues,

thenx is classified into the population whose index minimizes

S

~T AT _
Z(lkx -1 Xj)g-

k=1

2.2.5 Discrimination and Multivariate Analysis of Variance

Discriminant analysis and multivariate analysis of variance (MANOVA) are closely re-
lated concepts that, in a sense, represent different sides of the same coin. While dis-
criminant analysis tries to find linear functions that can separate the population mean vec-
tors, MANOVA asks the question of whether discrimination is even feasible. In this sec-
tion we will discuss some of the connections between Fisher’s discriminant analysis and
MANOVA.
Consider the situation where we are discriminating betwéerormal populations
with the same covariance matrix. If all the means are equal, that,isz --- = u,
then it is meaningless to even attempt to discriminate between the populations. So, to
check whether or not discriminant analysis is worthwhile, we are interested in testing the
hypothesiqu, = - - - = p; given a common within class covariance malix = Ky, j =
1,...,J. This is the problem addressed by the one-way multivariate analysis of variance.
Let (X4,Gh),...,(Xn,Gy) be a random sample as in Section 2.2.4. Then the log

likelihood is

J
N N s 1 _ o
ey, ...,y Ky) = —Elog |27TKW|—Etr(KW1KW)—§ § N;(Xj— ) K (X — ).

j=1
So, the maximum likelihood estimates (m.l.e.yofandKyy arex; andKyy, respectively.

Thus, the maximized log likelihood is

N N
= —5 log [27Kyy | - TP'
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The log likelihood under the null hypothesis is

N N N
U, Ky) = =5 log [2nKuw| = (K Ky) = (X = ) Ky (X — )

and hence the m.l.e’s gf andKy, areX andK y, respectively. Thus, the maximized log

likelihood under the null hypothesis is

Np

N
ZOZ——IOg|27TKx| 2

Combiningl, and/; we obtain the likelihood ratio given by
([Kw /[ Kx]) 2.

The corresponding test statistic is referred to as Witk’Note that the statistic is
K|/ /K| = [T+ KKyl = H s

whered,, ..., Ymm(ps_1) are the eigenvalues d€;,'Kp. In fact theA statistic is based
on[[;(1 — p7) due to%; = p7/(1 — p7), whereps, ..., o2, 1) are the eigenvalues of
IA{;}IA{B. Thus, rejection off{, will occur when the estimated canonical correlations are

large.

2.3 Functional Canonical Correlation Analysis

In this section we discuss how canonical correlation analysis is implemented when the data
are random curves or can be viewed as deriving from random curves. Data of this type
arise in many real-life situations, where the observed data represents continuous functions
sampled at discrete points.

Smoothed functional canonical correlations have been proposed by Leurgans et al.

(1993), who demonstrated the need for regularization in functional canonical correlation
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analysis. They assume that the observed cufést),Y;(t),i = 1,...,N} are inde-
pendent realizations of a bivariate second-order stochastic process with zero mean func-
tions and covariance functionsx (s,t) = E[X(s)X(t)], Ky(s,t) = E[Y(s)Y (¢)] and

Kxy(s,t) = E[X(s)Y (t)]. Suppose that sample covariance functions are given as
N N
1 1
NN P

andKXy 8 t ZX

Let L]0, 1] be the Hilbert space of square integrable functiong)ph with associated

) o) = / F(s)g(s)ds

Also, letTx, Ty andTxy be the covariance operators defined by

inner product

(Tx f)(: /KX f)yde, (Tvg)(: /KY

and (Txyg)(- / Kxvy( t)dt, respectively. Then, canonical correlation analysis

finds (f, X) 20, and(g, >L2[071] with f, g € L*[0, 1] maximizing

(f, Txvg)s [0,1]
(f, TXf>L2[0,1] (g, TY9>L2[071]

Now define the operatofsy, V4 andVyy by writing Vx f for the function

(Vx ) / KX

and correspondingly fofy, Vxy. Then, Leurgans et al. (1993) fidd,X)Lg[m] and

(g, Y>L2[0’1} that maximize the penalized sample squared correlation defined by

{f, VXYQ)%Z[OJ]

, (2.22)
{<f7 VXf>L2[0 iyt Ol HL?[O 1]} {<g> VY9>L2[071] + 192”9””%2[071]}
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where; and v, are positive smoothing parameters. This procedure is referred to as
smoothed canonical correlation analysis (SCCA). They implemented regularization in the
criterion (2.22) via cubic smoothing splines and demonstrated their technique with an ap-
plication to the study of human gait movement data. The effect of the roughness penalty in
the denominator of the squared correlation is that both variances and roughness of canoni-
cal variables are considered.

He et al. (2002) developed canonical correlation analysis methodology for functional
data using a direct parallel of the finite dimensional multivariate analysis technique applied
to covariance operators. For their approach, the auto and cross covariance functions of
the processes are assumed to be square integrable. This allows them to define covariance
operators or?[0, 1] as

Tx = Z Ai®i ®r2i01) iy Ty = Z Vi @201 0; and T'yy = Z YijPi @r2p0,1) 05
i j i\j
where{¢;} and{6;} are orthonormal bases for two Hilbert spaces of square integrable
functions on[0, 1] and the tensor operator is defined @y®r201) )k = (¢, h) 2 4)0-

Then, under certain restrictions they obtain canonical correlations as singular values of
C= T;/QTXYT;W = Z Pi®i @r2(0,1) b;-

The difficulty with this development is that the covariance operdlarsand 7y are not
invertible in L2[0, 1]. To circumvent this problem they restrict attention to the $&tg and
Fyy that represent orthogonal complements of their null spacés[in 1]. For example,
they define
Fxx ={f € L[0,1] : D N (f,00) ool < o0, f L Ker(Tx)}
=1

with Ker(Tx) = {h € L?[0,1] : Txh = 0}.
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2.4 Functional Discriminant Analysis

Hall et al. (2001) treated signal discrimination by finding a finite dimensional representa-
tion via the Karhunen-Léve basis expansion and employing nonparametric kernel methods
on the basis coefficients. L&t be a zero-mean, second-order stochastic process. Provided
that the covariance function is continuous|ont] x [0, 1], the Karhunen-beve expansion
gives
X() =Y Ao,
j=1

where); = (¢;, X) 20, and{¢;} are the eigenvalues and eigenvector sequence of the
covariance operator corresponding to the covariance function oftpeocess. The\;’s
and¢,’s are referred to as the principal component scores and principal component basis
functions.

Given a random sampl¥;, ..., Xy of the processX, the scores\;; = (¢;, Xi) 2 1)
j > 1, serve as surrogates for the observation for purpose of density estimation and

classification. Takingn principal component scores, they observe data
X,Sm) == ()\7;1, ceey )\im)T, ’L = 1, c ey N

A kernel estimator of the density &€\™ atx(™ = (¢,,...,&,,) with &; = (97, ) 20,1 1S
given by
N

Jn(x™) = 23 K (™ = X o),
where[x(™ — X{™|[2, = 27 (A — &)?, h is a bandwidth, and is a compactly sup-
ported univariate kernel function. Given training data, they estimate the true class densities
by the proposed kernel estimator and classify a new sigrialthe class with the largest
kernel density estimate od™.

James and Hastie (2001) proposed a functional linear discriminant analysis method

derived from treating the longitudinal observations as samples from underlying smoothed
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curves. They used natural cubic spline functions to model these curves in a similar way
as in Rice and Wu (2001). Also, such curves and measurement errors are assumed to be
Gaussian for the standard LDA (Bayes’ classifier). Then, forithecurve from thejth

class, their proposed model is

Yij =Siy(p; +vy) Teg, j=1,...,J,i=1,..,Nj,

€; ~ Ny, (0, o’l), Yij ~ N,(0,T),
whereY;; ande;; are the corresponding vectors of observations and measurement errors at
timestji, - - -, tijn,;» Sij = ((tij1), - - - s(timj))T with s(-) a spline function from a spline
basis with dimension, J is the number of classes aig is the number of individuals in
the jth class.

In particular, James and Hastie (2001) develop a reduced rank model for sparsely

sampled curves via use of Fisher’s discriminant analysis method. The reduced rank model

has the form

Yij =Sij(Ao+Aej +) ey, j=1,...,J,i=1,.. Ny

€ij ~ Ny, (0, o’l), Yij ~ Ny(0,T),
where A, and «; are ¢- and r-dimensional vectors and is a¢ x r matrix with » <
min(q, J — 1) satisfying the restrictiond”S? (o*I + S;;T'S]))"'S;;A = L}, a; = 0.
The fixed-effect tern,; (Ao + Aa;) models the class mean curves and the random-effects
termS,;;~,; allows for individual variation within each class. They fit this model using the

EM algorithm and then classify a new observation to the class with the largest posterior

probability as in the ordinary multivariate analysis case.
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CHAPTER IlI

CANONICAL CORRELATION ANALYSIS AND DISCRIMINANT ANALYSIS

We present an overview of the foundation of multivariate canonical correlation analysis and
discriminant analysis in this chapter. Our treatment of this topic differs somewhat from the
classical approach in that we explicitly treat the less than full rank scenario. This opens
the door to transactions in infinite dimensions through the reproducing kernel Hilbert space

perspective of the next chapters.

3.1 Canonical Correlation Analysis with Less Than Full Rank Covariance Matrices

For am x n matrix A, we denote its rank by(A), define its null space as Kgk) = {x €
R" : Ax = 0} and indicate its range by IfA) = {y € R™ : y = Ax, x € R"}. The

notation_L indicates orthogonal complement.
3.1.1 Population Canonical Correlations and Canonical Variables

Suppose thaK is ap-dimensional random vector and th¥tis a ¢g-dimensional random
vector with VaiX) = Ky, Var(Y) = Ky, and CovX,Y) = Kxy = K. In what
follows bothK x andKy may have less than full rank.

Now, we wish to finda”X andb”Y with a = (ai,...,a,)" andb = (by,...,b,)"
having the largest possible correlation with one another. For this purpose, let us write the
squared correlation between two linear combinations as

o b — CoV (aTX,bTY) - (a’Kxyb)?
p(a,b) = Var (aTX) Var (b7Y)  (a’Kxa)(b”Kyb)

whenK ya # 0 andKyb # 0.
ProposiTioN .1, If I € Ker(Ky) thenKyxl = 0 and if m € Ker(Ky) then

KXym =0.
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Proof. Suppose that € Ker(K x). Then, by the Cauchy-Schwartz inequality,
(efKyxl)”> = Cov(I"X,e]Y) < Var(I"X)Var(e] Y) = 0

for e; ag x 1 elementary vector consisting of all 0's except for a 1 injtts entry. Thus,
e]TKYXl = 0 for everye;. S0,Kyxl = 0forl € Ker(Kx). Similarly, if m € Ker(Ky)
thenK xym = 0.
O

Fora € R? andb € R?, observe thah = a, + a, with a, € Ker(Ky)!t,ay €
Ker(Kx) andb = b, + by with b, € Ker(Ky )+, b, € Ker(Ky). We now observe from
Proposition I11.1 thata?’ Kxyb = (a, + ag)’Kxy (b, + by) = alKxyb,, alKya =
alKxa, andb”Kyb = bTKyb,. So, maximizing?(a, b) with Kya # 0 andKyb # 0
is equivalent to maximizing?(a., b.) with a, € Ker(Kx)* andb,. € Ker(Kx)*. Thus,

equivalently, we may find andb by maximizing

(letECJ(}/l))2
(aT’Kya) (b"Kyb)

overa € Ker(Kx)* andb € Ker(Ky)*. Consequently finding the linear combinations
of X andY that are most highly correlated is equivalent to finding Ker(K)* and

b € Ker(Ky)* to maximize

Cov (a’X,b"Y) (3.1)
subject to
Var (a"X) = Var (b"Y) = 1. (3.2)
Let
rX
Kx = Z )\XieXie§i7
=1
wherery = r(Kx) < p and(Axi1,ex1),-.., (Axry,€xry) are the nonzero eigenvalues

and associated eigenvectorslof.. Define the matrices

1/2 1/2
E :A)(z€{X1e)(w
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_1/2 Z AS 1/2€Xie§‘
and
Ky = Z Ayiexiey;.

Also, defineKy, K;/? K, '/* andK; similarly.

ProposITION 1Il.2 . Ky andK'/”

are the Moore-Penrose generalized inverse¥af
and KY/?, respectively. Also(i) Ker(Ky) = Ker(KY?), (i) Im(Ky) = Ker(Ky)*,
(iii) Ker (K )* = Ker(Kx)+. Thus, the matri¥K is a one-to-one linear mapping from
Im(Ky) ontoKer(Kx)* andK3'/? is a one-to-one linear mapping from(K%?*) onto
Ker(K1/2) :

Proof. Let Ay = diag\xy,..., Axry) @NdPx = [ex1,...,ex,]. ThenPiPx =1,

X

andK x = PxAxP%. Then, we can see that
KxKi Ky = (PxAxPL)(PxAY'PY)(PxAxPY) = PxAxPL = Ky

and, similarly, K;KxK; = PxAL'PY = K. Also, KxK; and K, Ky are sym-
metric which follows fromK v Ky = K Kx = PxP%. So,K5 is the Moore-Penrose
generalized inverse & .

Now observe thaK xI = 0 if and only if e’ ,l = 0 foralli = 1,...,rx because the
vectors{exi, ..., ex,, | are linearly independent. Alsek,l = 0 for all i if and only if
K}/’ = 0. Thus, KefK y) = Ker(K3/?).

Suppose that € Ker(Kx) andz € Im(Kx). Then,z = Pxc for ¢ € R'x
because IrfKx) is the space spanned Hgx1,...,ex, . S0,172 = I"Pxec = 0
sincel € Ker(Kx) has the consequence thd},l = 0 for all i. Hencel € Im(Kx)*
and so KefKx) c Im(Kx)*. Conversely, ifth ¢ Im(Kx)* then0 = h' (Kxh) =
(KY2h)T(KY?h) and soKY?h = 0: i.e., h € Ker(KY/?) = Ker(Ky). Therefore,
Ker(Kx) = Im(Kx)* and Ke(Kx)* = (Im(Kx)*)* = Im(Ky). Since both IniK x)
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and ImK) are spanned bgx,...,ex,, IM(Ky) = Im(K%) and so KefKx)* =
IMKx) = Im(Ky) = Ker(Ky)*.
Forz € Im(Kx), observe that = Pyc and thatk,z = 0 if and only if P% 2 = 0.

Thus,K z = 0 implies that
0= Pﬁz = P§PXC: c

and we conclude thd&z = 0 if and only if z = 0. Moreover, we have Ky ) =
Ker(Kx)*. Therefore Ky is a one-to-one linear mapping from (&) onto KefK x)=.

"2 is the Moore-Penrose generalized inversakdf’

Similarly, it can be shown thdK
and it is a one-to-one linear mapping from(IKﬁ(/Q) onto Ker(K;/Q)L.

U

To solve problem (3.1) and (3.2), let = K\/*a andv = K{/’b. Then, fora ¢

Ker(Ky)* andb € Ker(Ky)*, we see thati € Ker(KY?)* and, alsou € Ker(Ky)*

because KK /*)+ = Ker(Kx ). Similarly, v € Ker(Ky ). It now becomes clear that

(aTnyb)z _ (UTK)_(l/QKX}/K;l/QV)Z

(aTKxa)(bT"Kyb) (uTu)(vTv)

/244 when

for a € Ker(Kx)* andb € Ker(Ky)!* becausar = K%Qa becomesa = K
ac Ker(Ky)t = Ker(Ki(/Q)L. Thus, in turn, solving problem (3.1) and (3.2) is equivalent
to solving the problem

max (WK PK iy Ky 2v)2 (3.3)

ueKer(k y )+ ,veKer(ky )+
HUHRP:HVHerzl

The formulation in (3.3) has the important implication that the optimandv can be
obtained from the singular value decomposition (SVD) of the m&FiR°K <y K, '/* to

produce the weight vectors

a=K;’u and b=K;"%.



24

We can now define the first canonical correlatigrand the associated weight vectors

al,bl as

pi =CoV (ajX,b]Y) = max Cov (a"X,b"Y),  (3.4)

acKer(K x )+, beKer(Ky )+
wherea, b are subject to (3.2). Far> 1, theith canonical correlatiop; and the associated

weight vectorsy;, b; can be defined similarly as

p; = CoV (a; X,b]Y) = max Cov (a’X,b"Y) (3.5)

acKer(K x )+, beKer(Ky )+

wherea, b are subject to (3.2) and
Cov(a’X,a] Y) =Cov(b"X,b]Y) =0, j<i. (3.6)

When a solution exists to problem (3.4), is called the first canonical correlation and
al’X,b?Y are referred to as the first canonical variables ofXhandY spaces, respec-
tively. Similarly, p; in (3.5) is termed théh canonical correlation with associated canonical
variables of theX andY spaces given by! X andb!Y.

Suppose thaK ;'’K yyK;'/? has rank- < min(ry, ry) with ry = r(Ky). Then

the singular value decomposition i, *K vy K,/ is

Drxr Orx(qfr)

K, "KxyK;'?=U VT, (3.7)

Op-rxr O@p-r)x(g-r)
whereOy, «x, is ak; x ko matrix of all zerosU is ap x p orthogonal matrix of eigenvectors

corresponding to the eigenvalugs . . ., p? of
K"Ky Ky Ky xKy'/?

andV is a g x ¢ orthogonal matrix of eigenvectors corresponding to the eigenvalues

P2, ..., p2of
K, "Ky xK;Kxy Ky '/

andD = diagpi, . . ., pr).
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THEOREM lIL.1. Letp? > --- > p? > 0 and letu;, v; be the columns d& and V that
correspond top;. Then,a; = K3/*u; andb; = K;/*v, solve problems (3.4) — (3.5)
subject to (3.2) and (3.6) with corresponding canonical correlapgon

Proof. From (3.7), we have
K;(1/2KXYK;1/2 _ Z piuiVZT-
=1

Then, observe that

T 2 T T
(WK PK Ky )2 < o2 <Z(uTui)(VTvi)> <pp > (') (vivi)?
i=1 i=1 i=1
by the Cauchy-Schwarz inequality. Sine,, . . ., u, } are orthonormal vectors in K&K x )+
and{vy,...,v,} are orthonormal vectors in KE&y )+, we obtain from Bessel's inequality

that

(KK Ky )P < 0} Y () Y J(vIve? < gl w)(vv),
i=1 i=1

where equality holds if and only i = u; andv = v;. For the general case we have

ul uwandv L v;for1 <i<j—1and
Cov(a”X,bTY) = (WK *KxyK;*v)? < p2(uTu)(vTv),

with equality if and only ifu = u; andv = v;.
U

It now follows thata; andb; can be obtained via solution of the eigenvalue problems
K KyyKyKyxa; = pia;, (3.8)

and

K, Ky xKyKxyb; = pib;. (3.9)
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Also, the relationship between the coefficient vectgrandb,; can be derived from (3.7).

Specifically, upon premultiplying b¥J” and postmultiplying b)K;l/2 we obtain
K;nya,- = pibia 1= 1, PN N (310)
and, similarly,
K;(KXybi = p;a;, 1= 1,...77“. (311)

3.1.2 Canonical Correlation Analysis and Regression

CCA can be viewed as an essential technique for carrying out regression of one vector on
another vector. To see the connection to ordinary linear regression with one independent
variable, suppose that we obsef€, V'), whereX is ap-variate predictor vector and is
a scalar response. In this situation, we may be interested in finding the linear combination
a”X which is most highly correlated witl'. For this purpose, we can first think of the
regression ot” on X.

Set BX| = py,E[Y] = uy,Var(X) = Kx,Cov(X,Y) = Kxy and assume that

Var(Y') = o2. When we minimize
E[Y —m(X)[*

over all functionsn this provides us with an approximation¥a More preciselyy is ac-
tually a function on a probability spa¢e, B, P) and the best least-squares approximation

to Y (w),w € Q, under certain restrictions, is
g(w) = EY[X(w)], w € Q.
Now, for linear regression we restrict the optimization of

E[Y —m(X))*
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to functions of the form
m*(w) = (moX)(w) =a-+ ,BTX<W)

with X (w) the value of the random vectdt for outcomew € Q and3 € Ker(Kx)*. The

population linear regression plane is the result of this optimization. Specifically, the best

least-squares approximation Yfis
(ny — KyxKypy) + Ky xKiX. (3.12)

So,&+BTX(w) with o = uy —KyxKipy andfi = Ky xK7 approximates the function
Y (w) on.

Observe thaﬁ can also be obtained as the solution of

min {0 —28"Kxy + B'KxB}. (3.13)

BeKer(Kx)+

Then, solving (3.13) is equivalent to solving

max CoV’ (a’X,Y) (3.14)

acKer(Kx )+
subject to Va(a’X) = 1.
The weight vecton in (3.14) and the coefficient vectgrare related by

B = opa.

This follows from observing thad is the solution of the problem K KxyKyxa =

p*a. Soocla’Kxy = Corrla’ X, Y) = p and moreover we knoy8 = K Kxy.
3.1.3 Sample Canonical Correlations and Canonical Variables

Suppose now that we observé iid copies(X;,Y1),...,(Xxn, Yy) of (X,Y). In this

section we will discuss how such data can be used to produce consistent estimators of the

canonical correlations and variables.
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A parallel of the development in the previous section can be followed for the analysis
of sample data. All that is needed is thealk, Ky, Kxy are replaced by their estimators.
Specifically, we estimate the population variance and covariances by their corresponding
sample moments in (2.10) and (2.11) as in Section 2.1.2.

As in the population setting, we define

pr = ~max _ p*(a,b) (3.15)
acKer(K x) - beKer(Ky )
with 5 the sample correlation betweahX andb?Y. That is,
SN aTXbTY - £ aTX TN bTY,
(SSarxSSury)"/?

pla,b) =

with

N N

N 2 N 2
SSarx = Y _(a'X;)* - % (Z aTXi) , SSyry = »_(b"Y;)? - % (Z bTY,) :
=1 =1

=1 =1 =
We can then go through exactly the same arguments as for the population caseatdind
andb”Y with a € Ker(IA{X)l, b e Ker(IA{y)L, for Ky andKy defined in (2.10), such

that
(aTnyb)Q
(aTK ya)(b"Kyb)

P(a.b) =

is maximized. As before, such € Ker(Ky)* andb € Ker(Ky)* can be obtained by

solving
max (aTKXYb)2 (3.16)
acKer(K x)+,beKer(Ky )+
subject to
Let _
r(Kx)

> I A AT
Kx = E Axi€xi€x;,

i=1
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where(Ay;, éx;), i = 1,...,7(Kx), are the nonzero eigenvalues and associated vectors of

K . Just like in the population setting, define

(Kx)
1 2 1/2 A ~T >—1/2 1/2 A ~T
/ Z >\X/z €xiCxys KX/ = Z )\Xz/ €xi€x;
=1
and

KX = E )‘XzeXleXz

Then, we can easily see tHat; andK;(l/2

are the Moore-Penrose generalized inverses of
Ky andK'/?, respectively. Now, lettingt = K/*a andv = K}/’b makes solving the
problem (3.16) and (3.17) equivalent to solving
_ max (uTﬁgl/zﬁxyﬁ;l/zvf
uecKer(K x )+, veKer(Ky )+
subject tou’u = v7v = 1. Suchu andv are obtained from the SVD & '*K xyK; "/*.
Define the first sample canonical correlatipnand the associated weight vectors
a;, by as

Pt = (a]Kyyby)? = max (a’Kxyb)?, (3.18)

acKer(K x ),beKer(Ky)

wherea, b are subject to (3.17). Far> 1, define theith sample canonical correlatign

and the associated weight vectégsf)i as
ﬁ? = (éfﬁxyBl)Q = Amax N (aTK)(yb)Q, (319)
acKer(Kx),beKer(Ky)
wherea, b are subject to (3.17) and
a"Kxa; = b"Kyb, =0, j <. (3.20)
Let r = r(Ky’KxyK;"?) < min(r(Kx),7(Ky)). Then the SVD of the matrix

KKy K, gives

KKKy = Zﬁ?ﬁxz ,
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whereuy, . . ., 4, are the eigenvectors corresponding to the eigenvailes., p? of

A~

R VR oy Ko Ry (R

andvy, ..., v, are the eigenvectors corresponding to the eigenvaies., p? of

RV Ry R Ry KoV2
Suppose thap? > --- > 2 > 0. Then,a, = K,"?a, andb; = K;'"*%; solve the
problem (3.16) subject to (3.17) and (3.20) with corresponding canonical correfation
The estimated canonical variab&SX, b?'Y have maximum sample correlation with one

another.

3.2 Discriminant Analysis with Less Than Full Rank Covariance Matrices

Let us now return to/ population discriminant analysis problem of Section 2.2. In this
setting we observéX, GG), whereX € RP? is a predictor vector and € {1,...,J} is a
categorical response variable representing the class memberships. Recall thahesss

density f; with class meam;, covariance matri¥X; and associated class probability.
3.2.1 Bayes Procedure: Linear Discriminant Analysis

Assume that the density of clagds normal with meanu; and a common within class
covariance matriXy,: i.e., K, = Ky for j = 1,...,J. We will allow Ky to have less
than full rank. This means thafy = r(Ky/) < p.

Let P be an orthogonal matrix such that

K, — P D Ory x(p—rw) pT
Op—rw)xrw  O@p—ruw)x(p—rw)

with D = diagAw1, . . ., Awry ). ThenP = [Py, Po] with Py = ey, ..., ew,, ] @p X rw

matrix consisting of eigenvectors corresponding\fg, > --- > Ay, > 0 @andPIP, =
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O,y x(p—rw): P3P2 =1,,,. Let Z = P{X for an observation vectdX from class;.

Then, a Bayes discrimination paradigm can be developed by assuming that
Z|G=j~ N,y (v;,D)

with v; = P{ ;.
LetK;,, be the Moore-Penrose generalized inversKgf defined by

W
Ky =Y A\jewely, =P D 'P].

=1
Since a Bayesian classifier assigns a new observation to the group with the largest posterior

probability, we classify a new observatiarto populatior if

P(G =ilz) = m]aXP(G = j|z), (3.21)
where i
P(G = j|z) x exp —%(z —v;)"'D (2 — v;) + log 79}
X exp :—%(x — ;)" P1D7'P] (x — ;) + log 7'(']}
X exp :—%(X — ,u,j)TK;V(X — ;) +log 7@-1

[ 1
X exp ;LJTK;VX — é,u;erﬁ,uj + log 7@} .

Alternatively, we can define the discriminant function for class be
d =pu'K;, ! K, 1 3.22
j(X) = /J’j wX — 5[1,] Wpl:j + ogm;. ( . )

Then, an equivalent rule to (3.21) is to classifto the class for whicl; (x) is largest. Note
that this has the consequence that, in the case where we have equal class probabilities, a
new observation is classified to the class with the closest centroid or mean vector using the

squared generalized Mahalanobis distance

Dj(x) = (x — Nj)TK;V(X — 1) (3.23)
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3.2.2 Bayes Procedure: Quadratic Discriminant Analysis

We now allow for different covariance matricks, . . ., K ; for each class witlK; having
rankr; = r(K;) < p. Let Py; be ap x r; matrix such thalP{,P,; = I,, andK; =
P,,D,;P{; with D; a diagonal matrix whose elements are thepositive eigenvalues of

K;. Now letZ; = P{,X. Then, if
Z;|G = j ~ Ny, (v;,Dj)

with v; = P, 1, the corresponding Bayesian classification rule follows from (3.21).

We know that forz; = P{;x

i 1 _ 1
P(G = jlzj) < exp [—5(%' —v;)'D; ! (z; —v;) — 5 log |D;| + log Wj]

1 _ 1
X exp {_§(X - I'l'j)TKj (x —py) — 2 log [D;| + 10gﬁj}

with K’ the Moore-Penrose generalized inverseKof Hence, we classifx to classi if

d? (x) = mindf (x), (3.24)

J

where the quadratic discriminant function is

d?(x) = (x — p;)"K; (x — p;) + log |D;| — 2log 7;. (3.25)

J

3.2.3 Fisher’s Linear Discriminant Analysis

The next steps in our development involve the extension of our less than full rank de-
velopments to discriminant analysis via Fisher's method and, eventually, with canonical
correlation analysis. We begin with how to formulate Fisher’s linear discriminant function

in the case thaK;; has less than full rank.
3.2.3.1 Population linear discriminant function

Let K5 be the between-class covariance matrix as defined in Section 2.2.3.1. Recall that

Kp = VarG (E[X|G]) = 3 (1, — p)(1; — )"
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for
J
X]=) mu,
j=1
Then, Fisher’s linear discriminant function is defined to be the linear funétidhwhich

maximizes the ratio of the between-class variance to the within-class variance given by

Varg(E[lI"X|G])  1"Kpl
Eq[Vari'X|G)]  1"Kyl

(3.26)

provided thatKy, 1 # 0.
Assume thaps; € Ker(Ky)* for all j. Then, the columns and rows & 5 belong
to Ker(Ky, )+ and hence, fot = 1, + I, with I, € Ker(Ky, )+ andl, € Ker(Kyy), (3.26)

becomes
I"Kpl,
'Ky,
as in Section 3.1.1. Thus, we now wish to fihe (I, ..., 1,)" satisfying

max 1TKjpl, (3.27)
leKer(Ky )+
wherel is subject to
UKyl =1. (3.28)

This is equivalent to solving

1/2 1/2,,

max TK /K K, /
ueKer(ky, )+
[|u]|pp=1

1/2

whereK,,’~ is defined as

1/2 Z)\ 11/29erwz

with ryy = r(Kyw) < p and (Awy, ew:) the pairs of positive eigenvalues and associated
eigenvectors foKy .

The optimahi can be obtained from the spectral decomposition of the matrix

K, "KpK,"*,
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which produces the optimélvector
l = K;Vl/zu.
Alternativelyl may be characterized directly as the solution of
K, Kpl =l (3.29)

subject to condition (3.28).

Let » be the rank ofK,, Kz. Then,r = r(K;,Kg) < min(r(Kw),r(Kg)) =
min(ry,J — 1). Also, letl;,i = 1,...,r, be the solutions to (3.29) corresponding to the
eigenvaluesy; > --- > v, > 0. We will refer toliTX as discriminators or discriminant
functions.

Take the firsts (< r) discriminators corresponding to the fisslargest eigenvalues of
K, K5. Then the classification rule based on a subsat, . . .,le of the discriminant
functions is to classify an observatiarto classi if

Dist;(x) = min Dist}(x), (3.30)

J

where the squared Mahalanobis distantet? is given by

S

Distj(x) = Y _(Iix —Ijp;)”. (3.31)
k=1

The assumptiop; € Ker(Ky)* for all j implies that
Ker(Ky )™ = Ker(Kx)*.

We can easily see that K& x) C Ker(Kyy) and, hence, KéKy )+ c Ker(Kx)+. Con-

versely, we observe that fere R?,

J
Kxc=Kgc+ Kyc= Z{?Tj([,l,j — [,L)TC}[J/]- + Kyc € Ker(KW)l

j=1
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and so KefK x)* c Ker(Kyy)*.
We now introduce another formulation of Fisher’s discrimination method. Let us recall

thatK y is the covariance matrix representing total variability and
Kx = Var(X) = Varg(E[X|G]) + Eg[Var(X|G)] = K + K.
Thus, let us consider optimization with respect tof the ratio
U"Kpl/1"Kxl (3.32)

whenKxl # 0. In this regards we claim that maximizing (3.26) over Ker(Ky )" is
equivalent to maximizing (3.32) ovére Ker(Ky)*. The validity of this contention is
established by first noting that since K&r, )+ = Ker(Kx)*, (3.26) becomes

UKpl  U"Kpl/l"Kxl
'Kyl 1-1"Kgl/1"Kxl

and then recognizing tha{x) = ;= is an increasing function far < z < 1.
As in the Fisher’s discriminant problem in (3.26), the optirthahn be characterized
as the solution of

K Kzl =\ (3.33)

andl must satisfl’ K 1 = 1. Now (3.33) is equivalent to
Kgpl = MKxl = A\(Kp + Ky)l (3.34)

or

B A
Ky Kpl = 1. (3.35)

becausé € Ker(Kx)* = Ker(Ky)*. So, the solutions in (3.29) and (3.35) are the same

apart from a normalizing factor. Since the solutions of (3.35) satiSK/x1 = 1, we have

UKyl ="Kyl +U"Kgl =1
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so that

UKpyl=1-U"Kgl=1-\N"Kxl=1- )\

Let lrisherandl be the solutions of (3.29) and (3.35), respectively. Thgg,is related to

lin that
l

(ITKyl)1/2
Thus, ifly, ..., 1, are solutions of (3.33) or (3.35) corresponding to eigenvaljes ., \,

= (1- )"

lFisher -

then givens < r,

S

s 1 2
Distj(x) = Y - (ix—lp,)". (3.36)
k=1
We have shown that the vectors that maximize

Kpl/I"Kyl

and

"Kpl/1"Kxl

are identical apart from scaling factors. We also have shown that the vector that maximize
(3.32) in KefKy, )+ is identical to the vector that maximize (3.32) in Kiry ). We
further viewl” K 51 /1" K x1 as more interpretable of the two criteria since it is similar in
nature to a coefficient of determination. So, we now name the optimization problem in
(3.32) a generalized Fisher’s linear discriminant analysis.

The condition thaj; € Ker(Ky )" for all j is connected to “estimability” of linear

functionalsl” u; for I € Ker(Ky)”. Indeed, forl € Ker(Kyy)*,
El"X|G=j]=1"p,

is unique if and only ifu; € Ker(Ky)*. To see this, suppose that for sopa@’, 11" in
Ker(Kyw)* with u'" # p'? we had” (! = 1" u?) for I € Ker(Kyy)*. Then, this would
produce the contradiction thﬂﬁl) — M§~2) € Ker(Ky ). But, u§~1) — ,u,§-2) € Ker(Ky,)* and

sopl = p®.
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3.2.3.2 Sample linear discriminant analysis

Let (X, Gh),. .., (XN, G) beiid copies of X, G). Much like our approach for canonical
correlation analysis, sample discriminant functions can be obtained from estimakdys of
andK 3. For this purpose we will usﬁw, KB andﬁx as defined in Section 2.2.4.

The sample linear discriminant function based on the Bayes’ classifier is

-~ ~

T l e
di(x) = XJTKWX - §X]TKWXJ~ + log p;.

One then classifies to the population Whergj(x) Is largest.

For Fisher’s discriminant functions we use the solutions of
K;, Kzl =1

subject tole{Wl = 1. If (4, ii),z’ =1,...,s, are the solutions corresponding to the first

largest eigenvalues, thenis classified into populationif

Dist; (x) = min Dist,(x)
J

for

—— s 5 ~T ~T —
Dist;(x) = Z(lkx -1, X;)%

k=1

3.2.4 Fisher’s LDA and Bayes Procedures

Suppose/ = 2 and the class probabilities are equal. Assume, alsogthand ., are in
Ker(Ky )*. Then, the Bayesian classification rule in (3.21) is equivalent to classifying
toclass 1 if

di(x) — da(x) > 0.

Otherwise, it is classified to class 2. Since

() (o) = (1 — o) K = 3 oy — ) K + i),
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the classification rule is equivalent to classifyixgo class 1 if

(b1 — 1) Ky (x — ) > 0,

with g = 1(p, + p,) and to class 2 otherwise.
ForJ =2, p = mipay +mapy SO thatiKp = 377 (g — ) (p; — )" = mima(py —

o) (g — o)™, Thus, Fisher’s linear discriminant function is obtained by maximizing

{17 (1 — o)}
Kyl

overl in Ker(Ky,)*. An application of the Cauchy-Schwarz inequality reveals that the
maximum of the above ratio igt; — p,)" Ky (1, — p,) and the maximum is attained at
l = Ky, (p — po). Thus, Fisher's linear discriminant function(ig, — p,)  K;;,X. In this

instance, the classification rule is to classifjo class 1 if

{(l’l'l - ILQ)TKQ/X — (1 — H2)TK17VN1| < ‘(l"’l - NQ)TKQ/X — (1 — N?)TKa/M’Q

)

which is exactly the same as the rule obtained from the Bayes procedure.
Similarly, the generalized Fisher’s linear discriminant function is obtained by solving

2
{U (g — o) }
leKer(K x )+ ITK 1 '

So, the generalized Fisher’s linear discriminant functiofuis — p,)" K X.
Now let us recall that under the assumptipp, u, € Ker(Ky )+, Ker(Kx)* =

Ker(Ky)*. Letl = K5 (u; — p,). Then, we have

Kxl = py — py

and hence

Kl = py — pp — Kl = (1 - 0.25(py — po) 1) (py — o),
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which implies
Kwl oc poy — po.
Since in this case K€K )+ = Ker(Ky )+, we see that
Lo Ky (g — 1)

Then, the corresponding classification rule for generalized Fisher’s discrimination is to

classifyx to class 1 if

’(IJ’l - Hz)TK)_((X - N1)| < ‘(IJ’l - .Uz)TK)_((X - Nz)‘-

Thus, the result is that classification via generalized Fisher’s discriminant analysis is exactly

the same as that by the Bayes classifier bechus&;, (1t; — p,).
3.2.5 Fisher’s Discriminant Function via Regression

Let us recall the generalized Fisher’s linear discriminant funcipn— p,) KX, in the
case ofJ = 2 with m; = m = 0.5 from Section 3.2.4. Also, recall the form of linear
regression for a binary respon¥ecoded as 1 for class 1 and O for class 2 on a vector

X € Rr. Specifically, we have the following regression line:
Ky xKi X+ (py — Ky xKipy).
Then, we can observe that
Kxy = EXY] - EX|E[Y] = mipy — pmy = mi(py — p) = mima(py — Ky)

sinceY is a Bernoulli random variable witk(Y = 1) = P(G = 1) = m;. So the slope of
the regression line is proportional Ky (11, — i) and this quantity is exactly the same as
the generalized Fisher’s linear discriminant function in the case of two classes.

Suppose that the classification rule is defined to allogadteclass 1 if

nyK;(X + (,UY — KYXK;([,L) > .5
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and to class 2 otherwise. Then, in the case that m,, this rule becomes exactly the
same as the rule from generalized Fisher’s discriminant analysis. Finally, by assuming
1y, 1y € Ker(Kyy)+, this leads to the result that the rule obtained from linear regression is

also the same as the rule from Fisher’s discriminant analysis or from the Bayes classifier.
3.2.6 Fisher’'s Approach via Canonical Correlation Analysis

As in Section 2.2.3.2, we will demonstrate the connection between Fisher's LDA and
canonical correlation analysis under the less than full rank scenario in this section. For
this purpose, lelY = (Yi,...,Y;)" with Y; = I(G = j) being indicator response vari-
ables. Then, we will prove the following result.

THEOREM III.2 . Let Kg, Ky be the between-class covariance matrix and a common
within-class covariance matrix, respectively, defined in Section 2.2.3.4; liet 1, ..., r,

be the coefficient vectors of the canonical variables ofXhspace. Then, the canonical
vectorsa; are the eigenvectors d€;, Kz and the canonical correlations; are precisely
square roots of the eigenvalues obtained from (3.33).

Proof. Set VaX) = Ky,Var(Y) = Ky and CoyX,Y) = Kyy = K¥,. Since

Y = Y(G) from the categorical response varialifeis such thatY = e; if G = j for
j=1,...,J,withe; an elementary vector consisting of all 0’s except for a 1 igititsentry,

Y has a multinomial distribution with cell probabilities= (71, ..., 7;)". Consequently,
E[Y] ==, Ky =dagm,...,7;)—nwn’.
Also, we can show that

EXY'] = E¢[E(XYT|G)] ZEX!G-] Y (G = j)TP(G =j)

J
Z Wl“la"'aﬂju’.]]
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and hence we have
Kxy = EXY"] — EX]IE[Y]" = [mi (g — p), ., s (g — ).

Now, the canonical correlation problem is to fiadt Ker(Ky)* andb € Ker(Ky )+

that maximize

(@ Kxyb)2  {al[mi(py — p), ..., ws(py — )] b}’
(aTKxa)(b"Kyb) (aTKXa)(bTKYi;) : (3.37)

To accomplish this set = diag(r’*, ..., 7/*)b = (m%by, .. ., 7/*b,)" and observe that

b"Kyb = ¢’ (I - dd’)c
with d = ("%, ..., 7%/*)T. So, (3.37) becomes

{aT [Wi/z(ul — ),y — u)} C}
(aTKxa)(c'(I —dd”)c)

2

Sinceb € Ker(Ky)* is equivalent ta: € Ker(I — dd”)* andd € Ker(I — dd”),
d’c = 0. (3.38)

Thus, in words, finding andb such that € Ker(Kx )+, b € Ker(Ky )* maximize (3.37)

is equivalent to finding. andc such that

{aT [Wiﬂ(ul — ),y - u)} C}

(aTK xa)(cTc)

2

(3.39)

is maximized ovea € Ker(Kx)*, ¢ € Ker(I-dd”)*. Asin Section 2.1.1, the coefficient
vectorsay, .. ., a, of the canonical variables of ti¢ space are then obtained from

T
K [l = ),y = )] [ = ), m Py = )] 2= pa

(3.40)
SinceKp = 7, mi(p; — p)(p; — )7, (3.40) simplifies to

K Kpa = pla
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or

as was to be shown.
[
We also can fina such thaid”c = 0 to maximize (3.39). The correspondinig are

obtained from

T
(g — ),y (g — u)} Ky [ﬁ/2(u1 — ),y (g — u)] c=p’c.
(3.41)

1/2
™

The moral of this is that the canonical variables of #hepace look likeb”Y with

~1/2 ~1/2\T
b= (m "Ce,..m,  Tey)

for ¢ = (c1,...,c;)" such thaty)/_ }/*c; = 0 andc¢’c = 1. Also, becauser”™b =

d”c = 0, we can see that
J J J
[Ty — ), mr(py — )b = Zﬂjbj“'j - Nzﬁjbj = Zﬂjbgﬂj,
=1 J=1 j=1

which is a contrast among the population means. So, the numerator in (3.37) is simplified

to

J
a” [mi(py — ),y — )b => mba’p,
j=1

which is a contrast among transformed mears= aTuj. Moreover, fromr’b = 0, we

see that
b'Kyb = b’ (diag(m, cenTg) — 71'71'T) b = b'diag(my,...,7;)b =c’c = 1.
Now, premultiplying (3.41) byK [wi/z(ul — ), ..., 7 (uy — p)| reveals that

K Kp(Kxz) = p*(Ky2)
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, 1/2 1/2 T :
with z = w1/ (py = 1), 7y (s = )| e = [mi (= ), o7y — )] b which

is a contrast among the population mean vectors. Thus,
ax Kz

and so the discriminant functidiK ;, z)” X is exactly the same as (apart from a constant of
proportionality)a” X obtained earlier by Fisher’s approach.

Let al X andb?Y be the first canonical variables of tBe andY space. Theng,
andb; solve the problem of finding the linear contrast of transformed means that is largest

in magnitude. That i;3; andb; are maximizing

J

T
’E mibja ,uj‘
J=1

subjecttoa”Kya =1, Y7 m;b; = 0andy_;_, m;b? = 1.

Theb,’s measure the importance of the transformed mear- a’ 11, in the contrast.
So, if b; is small,m; does not contribute much to the contrast and conversely. But the
b;'s are all the coefficients for thg; = I(G' = j). These provide information about how
importantY; is to the random variable”Y. Clearly, ifb; = 0 thenY; does not contribute.
Also, when the class probabilities are equal,ithare the coefficients of the contrast among
the transformed means.

Now al X andb?Y are the transformed variables with the most correlation. Thus, we

are usinga? X to predictb? Y. Howeverb?Y is discrete with
bY = by

with probability 7.
Our ability to predictb? Y is clearly related to how thi ; fall. If, for example,b; #
by forallz,j =1,...,J, then there are distinct scores associated with each population and

we can expech’! X to be able to distinguish between each of theopulations. However,
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if b, = by, for examples, thea? X will not be able to tell populations 1 and 2 apart. So,
al X should only be useful in predicting membership in population wliese are large
and distinct.

In practice, we will need to estimate andb; to obtainal X andB{Y. The first thing
one should do at that point is to looklat. The coefficients here will tell the populations
for which aZ’X will be able to serve as a discriminator. B has some small or almost
equal coefficients, then another discriminator is needed. So, weigdtoblY and hope
thataZ X will help with the populations that? X could not separate. This process can then

be repeated, etc.
3.2.7 Classification

Our goal in this section is to formulate the classification rules based on the canonical vari-
ables of theX andY spaces. Prior to achieving this aim, we know the fact that, in CCA, if
X is interpreted as causing, thena” X may be called the best predictor ¥fandb”Y
the most predictable criterion and vice versa.

Letn = a’X and¢ = bTY = bTY(G) be a pair of the canonical variables of the
X andY spaces corresponding to the canonical correlatiddince we know thap is the
best predictor of from CCA, we can predicf vian using the regression gfon. Then,

the predicted score is given by

Cov(§, n)

Var(y) (n — E[n]) = E[] + p(n — E[n])

El¢] +
=p(@a’X —a'p)
as B¢ =b’m =37 mb; = 0 and Vakn) = Var(a’X) = 1.
We first can think of using a distance measure to compare the predicted scores of the

first s canonicalX variables to the class centroid of those scores. For this purpose, set
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& = &(x) = p;alx — p;al’ . Then, givers < min(p, J — 1), define

1 a F )2
D =y G0 — &) (3.42)

with &,; = E[0,(x)|G = j].

We can also can consider a distance measure which compares the predicted scores of
the firsts canonicalX variables to representative points forclasses rather than the class
centroids. Natural points to use for this purpose are provided by the candhicaiiable
since the canonicaf” variable corresponding to the populatipihas the valué;. So, we

could use the following distance measure for classification:

s

Zl_ (sk — biy)? Zb (3.43)

k=1

Yet, another option is to consider a distance measure which compares the canonical
X scores to the predicted scores of the canonxcahriable via the canonic& variable.
We can predict the scores to be assigned to/tblasses using the regressiomain . To

predictn via ¢ we use

Cov(n,§)

] + W(f —E[¢))=a"pu+pb"Y

since B¢] = 0 and VaK¢) = 1. Setij,; = al pu + piby;. This leads to a distance such as
S 1 )
Z | ~(a)x — 7j)°. (3.44)
- P
k=1

We have now introduced several distances: namely, (3.31), (3.42), (3.43) and (3.44).
The relationship between these distances is the subject of the next theorem.
THEOREM 1.3 . The distances in (3.31), (3.42) and (3.44) are the same.
Proof. We have seen that the distances in (3.31) and (3.36) are identical from the relation-

ship between the vectors that maximizes (3.26) and (3.32) in Section 2.2.3.1. We can easily

see from Theorem 4 that the distance in (3.42) is the same as in (3.36)\siAce;.
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Now we start with

S

. 1
Dist}(x) = T (ax—agp) = —
k=1 Pk k=1 Pk

1
(apx —app +agp — ajgpy)”.

—_

Since
Kxy = [mi(py —p), ..., 7w5(py — @) = [y, .., 1y ]Ky,

premultiplication byKy- in (3.10) produces
Kyxa, = prKyby.

This is equivalent to

T

diagmy, ..., 7)) [y — B, ...,y — pl" a = ppdiag(my, ..., 7;)by

sinceKyb, = diag(n, . .., 7;)b, which follows fromz b, = 0. So, we have

[l’l’l — M.y — H]Tak = Pkbk

and hencei}f(uj — p) = ppby; for 5 = 1,...,J. Thus, the distance in (3.36) becomes
(3.44).
U

The distances in (3.31), (3.42) and (3.43) are known to be equivalent in ca3€ that
andK, are invertible (Hastie et al., 1995). We now look for the relationship between the
distances in (3.42) and (3.43) in the case of singularityifgr. Note thatK, is always
singular in our setting.
CoRrROLLARY .1 . The distance in (3.42) is equivalent to the distance measure in (3.43)

in the sense of classification.
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Proof. As in the proof of Theorem II1.3, we begin with

S

L 1
Distj(x) = Z W(a{x —ag p;)’

1 L1
(afx —agp)? —2) W(afx —afp)(afp; — aj )

— 2 —
k=1 1= pi k=1 k
byt (aj p; — ag p)?
2 J
k=1 L= ni
We have seen thaf (u; — ) = piby; for j = ,J. We then observe that

ajfx —ajp = p;'&(x).

Thus, the distance above becomes

S s

1
k=1 k=1
-> ( i )gk(X)QJFi : (5k(X) = biy)?
—\pp(L=p}) 1-pf —~1-—p} ’
S p% 1
+;(1—pi 1—p2)b’2“
s ~ s 1 ~
=Y 0 7(x)* + (&k (%) — bry)” Z Ui,

Since the termd _;_, p,fék(x)? does not depend on the class membership, the class that
minimizes (3.42) is identical to the class that minimizes (3.43).
U
Suppose that = r = min(p, J — 1) = J — 1. Then, the distance measure in (3.43) is

equivalent to the distance measure

<

1 1 .

T2 (Er(x%) = biy)? —m; " (3.45)

=
Il

This distance measure cannot be used in a dimension-reduction mode since it counts on the

presence of —1 discriminant coordinates. To establish equivalencélet [b,, ..., b, ]



48

andB = B, 1]. ThenB is square and nonsingular with

~ ~ B'diag7,...,7;)B BTdiag(my,...,ms)1
B'diag(ry,...,m;)B = am ) 9m 7) —1,

17diag(my, ..., 7;)B 17diag(ry,..., 7)1
sinceBTdiag(ry,...,7;)B = BTKyB = I, ,, BTdiag(ry,...,7;)1 = BTw = 0 and
17diag(my, ..., 7)1 = 17w = 1. which follow fromb?Kyb; = 1,b!Kyb, = 0 and
aTb; = 0fori,k = 1,...,J — 1,i # k. SinceB is nonsingular, we hav8B? =

diag(m*,..., 7y h), or S b+ L =m tforj=1,..., J.
3.2.7.1 Example: Fisher’s Irises Data

In this section we exemplify some of the previous discussions using Fisher’s classic Iris
data set. The iris data published by Fisher (1936) have been widely used for examples in
discriminant analysis and cluster analysis. For this data, four measurements (sepal length
and width, and petal length and width) were taken on each of fifty specimens of three
different Iris types: namely, setosa, versicolor, and verginica.

The estimated canonical correlations are
pr=0.985, po=0.471.
The corresponding canonical variables of Xispace are
—.145X; — 269X, + .386 X3 + 493Xy

and

—.021X; — 1.928X, + .83X3 — 2.529.X;

for X; the sepal lengthX, the sepal widthX; the petal length and’, the petal width. The
estimated coefficient vectors of the first two canonical variables olttspace are given

by
b, = (—1.354,0.324,1.029) and b, = (—0.407,1.376, —0.969).
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Figure 1. Plots of (a) the first canonicXl scores (b) the second canonicélscores for

150 irises and the predicted canonical scores (horizontal lines) superimposed: black points
for Sertosa, red points for Versicolor and green points for Vergirieah point represents

a score for an iris.

Table 1: Confusion matrix of classification of the Iris data

Sertosa Versicolor Verginica
Sertosa 50 0 0 50
Versicolor 0 48 2 50
Verginica 0 0 50 50

In accordance with our discussion of the role of the coefficient vector for the canonical
Y variables in Section 3.2.6, we might expect the first discriminator or the first canonical
variable of theX space to be able to distinguish Sertosa from the other species and the
second discriminator to be able to distinguish Versicolor from the others. Figure 1 reveals
that this is, indeed, the case. However, we also see that the discrimination power of the
second discriminator is quite limited relative to the first. So, we will only use the first
discriminators which results in a misclassification rate is 1.33%. Table 1 shows the result
of classification using the CCA approach using the classification rule based on the distance

in (3.44) withs = 1.
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CHAPTER IV

MATHEMATICAL PRELIMINARIES

In this chapter, we collect a number of results and definitions that provide the mathematical
prerequisite for the developments in subsequent chapters. We begin with a discussion of

inner product spaces.

4.1 Hilbert Spaces

The concept of a Hilbert space occupies a fundamental role throughout this dissertation. In
this section we lay out some of the basic facts about Hilbert spaces that will be used in the
sequel.

Hilbert spaces are normed vector spaces whose norms stem from a bilinear function
referred to as an inner product. The concepts of norms and inner products can be developed
formally as follows.

DErINITION IV.1. LetV be avector space ovB: AnormonV is afunction||-|| : VV— R

such that for alk., v € V anda € R,
(@) |lu|| > 0ifand only if u # 0,
(b) flaull = laflful],

(©) llu+ ol < full + [|vf].

A vector spacé’ with a norm is called a normed (vector) space.
DEFINITION IV.2. Let V' be a vector space ov&. An inner product orl/ is a function

(-,yonV x V — R such that for all;, v, w € V anda, 8 € R,

(@) (u,u) > 0ifand only if u # 0,
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(b) (u,v) = (v, u),
©) (au+ fv,w) = alu,w) + F{v, w).

A real vector spac& with an inner product is called an inner product space. The function
||| : V — R defined by|[u|| = (u,u)"* u € V is a norm onV and hence an inner
product space is a normed space.

DEerFINITION IV.3. Let V' be an inner product space and letbe a subset oi/. The

orthogonal complement of is the set

At ={u eV :(ua)=0forallac A}.

The triangle inequality (i.e., the relatidin — v|| < ||u—w||+||w—v|| for all u, v, w €
V) immediately implies that if a sequende,, } in V' converges, then it is necessarily a
Cauchy sequence. But the converse of this statement is not true. So, to avoid questions
concerning the existence of the limit of a sequencg jour interest is in a complete space.
DEerFINITION IV.4. V is complete if for any Cauchy sequenfe,} with u,, € V there
existsu € V such that|u,, — u|| — 0 asn — oo for all n.

DEeFINITION IV.5. Aninner product space which is complete under the norm induced by
the inner product is called a Hilbert space.

Although every inner product space does not have the completeness property, any inner
product space can be completed to create a Hilbert space.

A matrix is a linear transformation in a finite-dimensional vector space and it has
played an important role in the developments of our theory. Matrices are actually lin-
ear transformation which preserves the linear structure of the vector spaces. The matri-
ces treated in the previous chapter were linear transformation between finite-dimensional
real vector spaces and, as such, they are automatically bounded and compact. However,

when the spaces being transformed are infinite-dimensional, conditions of boundedness
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and compactness do not hold automatically. So, we now summarize some important con-
cepts involving the properties of linear transformations or linear operators between linear
spaces.

DEeFINITION IV.6. LetV, W be real vector spaces. A mappihg V' — W is said to be a

linear transformation if for all € R andu,v € V,
@ T(u+v)=T(u) + T(v),
(b) T(au) = aT(u).

If W = R thenT is said to be a linear functional.
DerINITION IV.7. If T is a linear transformation frofr to 17/, the range and null space

of T" are defined by
Im(T) = {w € W : w = Tu for someu € V}

and

Ker(T) ={u eV : Tu = 0},

respectively. Also, the rank @ denoted by-(T') is the dimension of Inil").
DEFINITION IV.8. Suppose that” andiW are normed spaces with normhs|y and|| - ||w,

respectively. Lefl" be a linear transformation from to V.

(a) T is said to be bounded if there exists a finitesuch that|Tu||y, < M||ul|y for all

ueV.

(b) T is compact if for any bounded sequenge,} in V' the sequencéTu,} in W

contains a convergent subsequence.
(c) T is called an isometry if Tu||w = ||u||v foru € V.

(d) A one-to-one linear transformatidnfrom V' onto IV is said to be an isomorphism.
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Let H; andH, be real Hilbert spaces. The set of all bounded linear transformations
from H; to H, is denoted byB(H, H-). Elements ofB(H;, H,) are also called bounded
linear operators.

DerFINITION IV.9. LetT € B(Hi,Hz). A transformation™ € B(Hs, H;) such that
(Tu,v)y, = (u,T*v),, foru € Hi,v € H, is said to be the adjoint of the operatbr

Now let’H be a real Hilbert space alfde B(H,H) := B(H).
(a) T is said to be self-adjointif™ =T
(b) T'is positive if it is self-adjoint andT'u, u),, > 0 for u € H.
(c) T is said to be a projection if? = T.
(d) Tis normal if T'T* = T*T.

A Banach space is a complete normed vector space.

THEOREM IV.1. (Open mapping theorendet V' and W be Banach spaces arll €
B(V,W) mapV onto W. If T'is one-to-one then there exiSt € B(W, V) such that
SoT =1IyandT o S = Iy.

To provide solutions to the optimization problems posed in Chapters V and VI, we
will need the concepts of eigenvalue and eigenvector of the linear operator that arises from
the spectral decomposition of a bounded linear self-adjoint operator and also the concept
of polar representation of a bounded linear operator. We collect some essential information
about these notions in the remainder of this section.

DEerINITION IV.10. The spectruna(7") of an operatofl’ € B(H) is the set of all scalars
A for which T — AT is not invertible.
DEerFINITION IV.11. Let V' be a vector space aridbe a linear transformation frowi to

V. A scalar) is an eigenvalue df’ if Tv = Av has a non-zero solutiom € V, and any
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such non-zero solution is an eigenvector. The subspacgker\/) in V' is called the
eigenspace correspondingt@nd the multiplicity of\ is the dimension of Kéfl" — \T).
Now for any eigenvalue of’ we may find elements; # v, such that{7 — A\l )v; =
(T'— A )vy. Thus,(T'— AI)(v1 —ve) = 0 whichT — A\ is not one-to-one. But, it — A/ is
not one-to-one it is not invertible and consequently, any eigenvalifenafist be ino (7).
The spectrumv(7') of T' € B('H) can be divided into three disjoint subsets. The
subset ot (T") consisting of all eigenvalues @f is called the point spectrum @f. The set
of \'s for which'T" — \I is a one-to-one mapping &f onto a dense proper subspacébf
is called the continuous spectrum fBr Finally, the set consisting of all othare ¢(T') is
called the residual spectrum for.

THEOREM IV.2. Let’H be areal Hilbert space an@ € B(H).
(@) o(T) is a closed set.
(b) A normal operator has empty residual spectrum.

Since a self-adjoint operator is normal, we observe from (b) that the speetfTimof a
self-adjoint operator can be decomposed into the point spectrum and the continuous spec-
trum.

DEFINITION IV.12. Let A be ac-field in a set2 and letH be a real Hilbert space. In this

setting, a resolution of the identity o4 is a mapping
E:A— B(H)
with the following properties:
(@ E)=0,E(Q)=1.
(b) EachE(w) is a self-adjoint projection fav € A.

(€) E(wi Nwsy) = E(wy)E(ws).
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(d) E(w1 UWQ) = E(wl) + E(u}g) for w1 Nwy = 0.

(e) Foreveryr € H andy € H, the set functiort, , defined by

Er,y(w) = <E<w)xvy>’){
is a measure oM.

TueOREM IV.3. LetT be a normal operator on a real Hilbert spa&é. Then there exists

a unique resolution of the identiy on the Borel subsets of(7") which satisfies

T = /U(T) ~YAE(7). (4.2)

Since ifT" € B(H) is self-adjoint then it is normal, Theorem IV.3 is true for self-adjoint
operator.

If H is a finite-dimensional Hilbert space afitl € B(H) then the spectrum df’
consists solely of eigenvalues ©f However, there are operators on infinite-dimensional
spaces which have no eigenvalues at all” ¥ B(H) is compact then the zero eigenvalue
belongs to the spectrua{T") and the set of non-zero eigenvalue§afonsists of countable
set of eigenvalues with finite multiplicity.

Suppose thdl’ is compact. Let us define the operafor ¢ from H; to H, as

(f@g)h =g, f

for f € Ha, g, h € Hy. Then,r(T) represents the cardinality ef7") and (4.1) becomes

r(T)
T = Z/yjej ® ej, (42)

j=1
wherey,, 2, . . ., v-(r) are non-zero distinct eigenvaluesiofwvith associated eigenvectors

ej.
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The polar representation for a bounded but non-self adjoint linear operator can be
combined with our discussion of the spectral decomposition of a positive and self-adjoint
linear operator (Naimark, 1960 and Rudin, 1973) to obtain a decomposition for operators

between two Hilbert spaces. The specific result is thatd B(H,, H,) then
T=W(TT)?=Ww / M2AE(N), (4.3)
o(T*T)

whereWW is a unique partial isometry (i.e., a norm preserving mapping fronf’Rer to
Im(T") ), o(T*T) = {X € R: T*T — X is not invertiblg is a closed subset ¢, co) and
{E(X\) : A € o(T*T)} is the unique resolution of the identity corresponding'td’.

Thus, ifT*T € B(H,) is compact we have
r(T)
(T*T)* =3 N80 6,
j=1

sincer(T) = r(T*T), and (4.3) becomes

r(T)
T = Z )\]1-/2Oéj X ﬂj, (4.4)

j=1
where\; > A\, > ...> Ay > 0 are the eigenvalues @f*7" with associated eigenvectors

B, j=1,...,r(T)and

oy = WBj = X\, PW(T"T)23; = AT
which follows from(T*T)"/?8; = A}/?g;.
4.2 Reproducing Kernel Hilbert Spaces and Stochastic Processes

Reproducing kernel Hilbert spaces (RKHS’s) provide a fundamental tool for inference con-
cerning second order stochastic process. This stems from the congruence between the

Hilbert space spanned by a stochastic process and the RKHS generated by its covariance
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kernel. The link between reproducing kernels and stochastic processes was initially estab-
lished by Lave (1948) and was developed fully by Parzen in a series of articles (e.g., see
Parzen, 1967).

Now we will review some basic facts about RKHS’s. More details can be found in
Aronszajn (1950), Parzen (1961) and Weinert (1982). We begin with the definition of
positive definite functions.

DEFINITION IV.13. A symmetric, real-valued bivariate functidgtion7 x 7 is said to be
positive definite if, for any real, .. ., a,, andtq, .. ..t, € 7,

i i Clﬂle(lfi, tj) Z O,

i=1 j=1

and strictly positive definite if =" holds.
DerINITION IV.14. Let H be a Hilbert space of functions on some $eand denote by
(-,-)4 the inner product irt{. A bivariate function oril’ x 7 is said to be a reproducing

kernel (r.k.) forH if for everyt € 7 andf € H,

(@) K(-,t) eH,

(b) f(t) = (f, K(- 1))y
When (a) and (b) holdi is said to be a reproducing kernel Hilbert space with Kk.
The property (b) is termed the reproducing propertysofit can easily be shown that
K is the unique r.k. and is a symmetric and positive definite function. The reproducing
property leads us to the following theorem.
THEOREM IV.4. (Moore-Aronszajn-Leve)Given a positive definite functiord§ on7 x
7, one can construct a unique RKHE K) of real-valued functions o’ with K as its

rk.. The spacé{(K) is given by the closure of the linear span{df (-,¢),t € 7}, i.e.,

H(K) =span{K(-,t),t € T}. (4.5)
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Let H be the linear manifold spanned R¥(-,t),t € 7}: i.e., the set of all finite
linear combinations of the form
Z aiK('7 tz)
=1

foray,...,a, € R, ty,...,t, € T andn = 1,2,...with the inner product
(Y aK (1), ) K (s =D > aibiK(ti,s;)
=1 j=1 i=1 j=1
for arbitrary pointst,...,t,,s1,...,5, In 7. Then, H is an incomplete inner product
space with r.k.K. But it can be completed by adjoining all limits of Cauchy sequences of

the functions irnH. Let H(K') be the completion off and define a norm oH/(K) by

||f||$—{(K) = 7}13)10 1l 3

with a Cauchy sequendg,,} in H converging pointwise tg. Then,H is dense ir{(K).

We now review Parzen’s representation theory concerning various concrete function
spaces that are congruent to the Hilbert space spanned by a second order stochastic process
(Parzen, 1961). A fundamental tool in this development is the following result.

THEOREM IV.5. (Basic Congruence Theorerhgt H; and H, be two abstract Hilbert
spaces equipped with the inner produgts) ,; and(,-),. . Let{u(t),t € 7} be a family
of vectors which spang; and{v(t),t € 7'} be a family of vectors which spat,. If for

everys andt in 7

then the space#; and H, are congruent and there exists an isometric isomorphism (one-

to-one and onto inner product preserving linear mappindyom H; to H, satisfying

Dlu) = v(t), t € T.
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Let(Q, B, v) be a measure space andlléfv) be the Hilbert space of ai-measurable
real valued functions defined @p that are square integrable with respecttaith inner

,}1’ 2 12 v ;1 q 2 q dV Q

for f1, f, € L?(v). The next theorem provides an explicit formula that can frequently be
used to obtain the inner product for a RKH& ') generated byx.
THEOREM IV.6. Suppose that there is a set of functidngt,-),t € 7} in L?(v) such

that
K(S, t) = <¢($7 ')7 ¢(t7 ')>L2(y) (46)
forall s, € 7. Then the RKH${(K') corresponding tds<" consists of all functions of the

form
F(@&) ={g(), &(t, ) 12, (4.7)

for some unique functiogin span{¢(t,-), ¢t € 7} N L*(v), with inner product given by

<f1,f2>H(K) = <91,92>L2(V) (4.8)

for f1, fo € H(K) corresponding tay, go € span{o(t,-),t € T }.

We finish out this section with discussion of i) the basic congruence relation between
the Hilbert space of random variables spanned by a second-order stochastic process and the
RKHS determined by its second moment function, ii) the one-to-one correspondence be-
tween the Hilbert space of random variables spanned by a second-order stochastic process
and the RKHS determined by its covariance function and iii) some examples of RKHS's.

Let{X(t),t € T} be a second order stochastic process with the mean function

and covariance function
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for s,t € 7. We denote by the second moment function
R(s,t) = E[X(s)X(t)].
Note that
R(s,t) = K(s,t) + p(s)u(t).
Now let (2, B, P) be the probability space corresponding to the stochastic procégs
(e.g., see Doob, 1953). If%(P) denotes the set of all square integrable functions on

(Q, B, P), we are interested in the subset/&f( P) obtained as the completion (it¥( P))

of the set of all random variables of the form

n

i=1

for some integer, some constants, ...,a,, € R, and some points,,...,t, € 7. We

denote this space bi’% and observe that it is a Hilbert space with inner product
(U, V) =E[UV] forU,V € L.

SinceR is symmetric and positive definite, it generates a RKIAR) as in (4.5) from

Theorem IV.4. Then, by the reproducing property,
<R(7 8)7 R(a t)>H(R) = R<S7 t) = E[X<S)X(t)]

Hence, by Theorem IV.5, there is an isometrjrom H(R) onto L% satisfying

andH(R) and L% are congruent. So, every random varialilen L% can be written

U=1v(f)

for some uniquef in H(R). Also, ¢ satisfies

ElY(N)v(9)] = (f: 9)rym)
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for any f, g € H(R). Additional properties are

ElY(N)] = (f, hrymy

and

forany f € H(R).
A case where a complete characterization @$ possible corresponds to processes of

the form
X0 = [ ott.qazi). te T, (4.9)
Q
where{Z(B), B € B} is a family of random variables o with uncorrelated increments

ando(t,-) € L*(v) for dv(q) = E|dZ(q)|*. In this instance (4.6) and (4.7) hold and we

have
B(f) = / 9(@)dZ(q). (4.10)
Q

The covariance functiok” of the X process also generates a RKHSK) as in (4.5)
sinceK is symmetric and positive. We may want to #gek’) to build a representation for
a random functionX. The Hilbert spacé.% may not be the same for all valuesofince
its inner product depends gen However with the additional assumption thabelongs to
a subset\/ of H(K), then according to Parzen (1961), the Hilbert spageis the same
for all 1 and the set of elements #i( K) is equal to the set of elementsHy( R) although
the two spaces are equipped with different norms.

ProposITION IV.1. Assume that € M with M a subset of{(K’). Then there exists an

isomorphisml from H(K) to L3 defined by

for everyt in 7 with the properties

E[W(f)] = (f, ,U>H(K) (4.11)
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and
Cov(¥(f), ¥(g)) = (/, 9>H(K) (4.12)

for f,gin H(K).
Proof. Recall our definition for the linear span ¢ (-,t),t € 7} which we denoted by

H. Then, any functiory in H is of the form

n

fO) =) ak(t)

=1
for some integen, real constant, ..., a, and pointsy, ..., t, in 7. For a functionf in

H, define
=1

Then, we observe that for any functiofisy in H,

n n

EUCA] = S anlts) = (n(). 32 K (o)) = (b Pl

=1 =1

and

n

Cov( ialeK (ti,5;) = Zaz Lt -),iij
=1 j=1 j=1

= (/, 9>H(K)
by the reproducing property df .

To prove that the mapping is well defined, it suffices to show that

n

Zaz t;)=0 ifandonlyif f(-)=> aK(t)=0

=1

which follows from the fact that

2

ENW(f)[* = Var(T(f)) + {EW (NI = [ F) + 1 (s Pago )

So, we see that is a one-to-one linear mapping frofh onto the linear manifold spanned

by the random functiof X (¢),t € 7 }.
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From the above relations observe that for any sequéficein H

E[U(fa) = U(f) P = I1fa = finlliuaey + | (s o = Findpaaoy

for somen, m. Consequently, for any sequenfg,} in H, that{f,} will be a Cauchy
sequence il (K) if and only if {¥(f,)} is a Cauchy sequence it¥,. Now any function
f in H(K) may be represented as the limit of a sequefitg in H. For a converging
sequence f,,} in H, the corresponding random variablgB( f,,)} are a Cauchy sequence
and have a limit denoted by (f). Thus, the linear transformatioh from H(K) to L% is
one-to-one, onto and satisfies (4.11) and (4.12).
OJ
The following property is a consequence of (4.12). By replagiimg(4.12) by K (-, t),
we have
Cov(¥(f), X(t)) = f(t). (4.13)
Define the process

X(t) = X(t) - pult), te T,

which is a stochastic process with zero mean and covariance futctiSince BX (s)X (¢)] =
K(s,t) = (K(-,s), K(-,1))5x for everys,t € T, there is an isometric isomorphisiry

between the Hilbert space spanned byihprocessL}, andH(K) satisfying

g (K(1) = X(1).

The isomorphismi and the isometric isomorphistn; are related in the following way

So, we have

V() =¥z (f) + (b Py (4.14)



64

for f € H(K) (which also belongs t6{(R)). Consequently, we see that every random

variable inL3 has the form

U = (i ey + 5 (f)

for f =2 (V) with V e L%.

ExampLE 1. Let {X(t),t € T} be a second-order stochastic process with covariance
function K. Let the index sef be finite dimensional, say = {¢;,...,¢,}. ThenX =

(X(t), ..., X(t,))" with g = E[X] and

i,j=1 —
Let H(K) be the linear manifold of all vectors of the form
f = Ka for a € Ker(K)*

with inner product

(1, £2) pyxe) = FTK B, (4.15)

for £, = (fe(t1), ..., fu(tp)" k= 1,2, with fi(-) = D7 a K (-, t;). Note that the inner
product(-, -),,, is well-defined.

First observe that if = Ka thena = K~f sincea € Ker(K)* and hencd/ K~ f, =
ajKay = Y7 27" aiayK(ti,t;). So it is obvious thatf, f)nx) = 'K f =
alKa > 0 for f € H(K) sinceK is positive definite. Also, we can easily show sym-
metry and linearity. So we now focus on the property thaf if),,x ) = 0 thenf = 0.

Firstobserve tha (-, ¢;) = (K (t1,t:), ..., K(t,,t:))" = Ke; € H(K)foranyt; € T

with e; an elementary vector of all zeros except for 1 initscomponent. Then,

(£, K(,t)nw) = 'K K(-,t;) =a’ KK Ke; = a’K(-,t;) = f(t;) (4.16)
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forany f € H(K) andt; € 7. Now, observe from the Cauchy-Schwarz inequality that

fz(tj) = (£, K(, Zfj)ﬁ-{(K) < (f, f>H(K)K(tJ'7 tj)

which implies that if(f, f);, k) = 0 then f(¢;) = 0 for all j or f = 0. Result (4.16) has
the consequence thai(K) is an inner product space with r.{{. SinceH(K) is finite
dimensional it is also a Hilbert space. Th#gK) is an RKHS with r.k.K.

Let L3 be the set of all random variables of the form

=1

fora= (ai,...,a,)" € Ker(K)* with the inner product
E [(a{X) (agX)} = alKa, + (aipu) (agu) .
Then,
U(f) =f"K X

is an isomorphism frort{(K) to L3 and it satisfies
Var(¥(f)) = 'K KK f = [|f[[7,x).

So, if we start withH(K) and translate back via the isomorphignthenK—f = ais
always in KefK)=*. Thus, by working in the RKHS we automatically avoid the annoying
condition that we need € Ker(Kx)* andb € Ker(Ky)! that were imposed in Chapter
1.

EXAMPLE 2. Let{X(t),t € T} be a second-order stochastic process with mean function
E[X(¢)] = p(t) and covariance functiof’. Let7 = [0, 1] and assume thdt is continuous

on7 x 7. Then, Mercer’s theorem (e.g., see Riesz and Sz.-Nagy, 1955) insures that

K(s,t) =) Aog(s)g(t) (4.17)
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with A1, \o, ... nonnegative eigenvalues amgl, ¢, ... in L?[0, 1] continuous eigenfunc-

tions of the integral operator

/0 K(s,)p(t)dt = \o(s).

Theorem IV.6 is now seen to be applicable wih= {1,2,...},v(B) = >_ 5 A, for
B € Bando(t, q) = ¢4(t). So, the RKHS corresponding 0 is

H(K Z)\ng¢q Z)\ng < oo}
For fi(-) = D021 AGig®q(+), i = 1,2, in H(K) the inner product is given by
(f1, f2)3 Z)\qgquQq Z)\ (J1,0q) L2[01]<f2>¢q>L201
Now define a linear mapping from spar{ ¢, }o2, in L*[0, 1] to H(K) by

L(f) =Y A/t

q=1

for f =320, fué, inSPAH G, )52, Sincel' (f) = 3200, A(Ag 2 f,) b
ITCA e ZF 1£ 1172001

Consequenthyl” is an isometric isomorphism, asgar ¢, 52, andH (k) are congruent.

From the Karhunen-Léve representation, foX (t) = X (t) — u(t), we have
Z (X, ) 120011 Pq(t), t € [0, 1].
q=1

Then, we havelZ(q) = <X7¢Q>L2[0,1]’ which are uncorrelated and, = E[dZ(q)]* =
dv(q). Thus, (4.10) and (4.14) have the consequence that

Z%Xﬁbg L2[01]+<Nf quX¢q 12[0,1]
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forany functionf(-) = 3°°2, Agg,0,(-) with 37 | \,g2 < oo because we obseryg, Py =
> ae1 9a{ts Gq) 1204+ 1N the special case thal 2| g7 < oo the function}"~, g,0, is a

member ofZ?[0, 1] and this produces
U(f) = (X, 9a%a) 20, (4.18)
q=1

Since{f € H(K): Y, g; < oo} isnotdense irt{(K), (4.18) is generally only a partial

characterization o?.
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CHAPTER V

CANONICAL CORRELATIONS FOR STOCHASTIC PROCESSES

In this chapter, we introduce a general formulation of canonical correlation analysis devel-
oped by Eubank and Hsing (2005). leX (¢),t € 7} and{Y (s),s € S} be second order

stochastic processes with

forallt € 7, s € S and auto and cross covariance functions
Kx<t1, tg) - E[X(t1>X<t2)], tl, tz € T,

Ky (s1,82) = E[Y(s1)Y(s2)], 51,82 € S,

and

Kxy(t,s) =E[X(1)Y(s)], t€ T,s € S.

We are interested in developing a technique for decomposition of the covariance structure
of the processeX andY that is similar in spirit to the canonical correlation approach

described in Chapter II.

5.1 Canonical Correlation Analysis

First, recall the classical canonical correlation problem in Chapter Il.(Lét,, be the
standard Euclidean inner product BA. Our interest was in finding the random variables

n = {(a, X)g, andé = (b, YY)y, with a € Ker(Kx)* andb € Ker(Ky )+ having the largest
possible correlation with each other. The goal is to extend this idea to canonical correlation

problems in infinite dimensional spaces.
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Let L3 andL? be the Hilbert spaces spanned by the proce&sardY’, respectively,

as defined in Section 4.2. The associated inner products are
<U1, U2>L§( = E[UlUQL for Ul, U2 € L_2X

and

respectively.
In general, the goal of canonical correlation analysis is to find random variakdes
L%, ¢ € L% such that) and¢ are most strongly correlated with each other. In other words,

we wish to find random variablese L3 and¢ € L3 maximizing

Cov?(1,€)
2 _ 9
Provided the above optimization problem can be solved, we define the first canonical cor-

relationp; and the associated canonical variabjeg; by

P2 =CoV¥(n, &)= sup CoV(n,¢), (5.2)

nel? ¢el?
wheren, £ are subject to

Var(n) = Var(§) = 1. (5.3)

Fori > 1, theith canonical correlatiop; and the associated canonical variabjes; are
defined by
p; =Cov(ni,&) = sup  Cov(n,¢), (5.4)

nel? ¢eLl?

wherer, ¢ are subject to (5.3) and
Cov(n,n;) = Cov(, &) =0, j<i. (5.5)

If n, and¢; are well defined in (5.2), then there are sequenggs= > | aimX (tim)

and&;, = >0 binY (si,) such thatp? = lim,, ;oo COMP (11, &1,,) Sincen, € L% and
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¢, € L%.. Consequently, the infinite dimensional definition of canonical variables is actually
built up from the finite dimensional multivariate case.

To see whether the canonical correlations are well defined, we will show that the
optimization problems in (5.2)—(5.5) can be solved. For this purpose, we will use the fact
that the Hilbert spaceé? and L? and the reproducing kernel Hilbert spaces (RKHS)
corresponding to th& andY auto-covariance functions are congruent (or isometrically
isomorphic). (e.g., see Parzen, 1961)

Before doing this in general we will first work with the case where bbtland S
are finite dimensional. This serves two purposes: it provides a motivational framework
for understanding the general case and it provides a useful setting for the development of
data analytic tools. Thus, first suppose that= {t1,...,%,}, S = {s1,...,5,}, X =
(X(t1),...,X(t,))" andY = (Y (s1),...,Y(s,))" with X andY the p-dimensional and

g-dimensional random vectors that representthandY” processes in this case. Define

Var(X) = {Kx(ti,t]‘)}p = Kx, Var(Y) = {Ky(Si, Sj)}g,jzl = Ky,

ij=17"

and

COV(X, Y) = {KXY (tu Sj)}p,q Kxy.

ig=1 —
As in Chapter IIl, we allowK x andKy to have less than full rank: i.e:y = r(Kx) <p
andry = r(Ky) < ¢. The resulting Hilbert spaces spanned by the processasdY are
then given by
L% ={a"X:a€Ker(Ky)"}

and

L} = {b"Y : b € Ker(Ky)"}

with associated squared norffi§||2, = a’Kyaand|[V|7, = b"KybforU =a’X ¢
X Y

L% andV =blY € L},
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As defined in Section 4.2{ (K x) is the linear manifold of all vectors of the form
f= KXa

with inner product

(F1, )50 = T K, (5.6)
(Kx)

for £, = (fu(t1),.... futp)' k = 1,2, with f,(-) = > aKx(-,¢;) and Ky the
Moore-Penrose generalized inverseKf. Also, H(Ky) is the linear manifold of all
vectors of the form

g:Kyb

with inner product
(81 82) 1y ) = 81 Ky 82,
forgr = (gr(s1), .- gr(se)) k= 1,2, with g,(-) = Y0 b Ky (-, s4), k = 1,2, andK,
the Moore-Penrose generalized invers&gf. Then, as explained in Example 1 in Section
4.2, H(Kx) andH(Ky) are the RKHS's with r.k’9<x and Ky, respectively. Note also
thatH(Ky) = Ker(Kx)* andH(Ky) = Ker(Ky)*.
We now provide some results which allow us to relate the problem of maximizing
(5.1) to an equivalent optimization problem in the RKHS. The mappindgrom H (K x)
to L3 and the mappingy from H(Ky ) to L3 defined by

Vx(f) = fTK X forf € H(Kx),

and

vy (g) =g"KyY forg e H(Ky)

are the isometric isomorphisms from( Kx) to L% and fromH (Ky ) to L%, respectively.

So,H(Kx) and L% are congruent an#{( Ky ) andL?. are congruent.
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As a result of the isometries we can write

B (alK xyb)?  (fTKyKxyKyg)?  Cov(yx(f), vy (g))
Corr(n8) = K ya)(bTKy D) ~ (7K, F)(g7K, 8 _ Varix (F))Var(vy (8))

forn = a’X and¢ = b?Y with a € Ker(Kx)* andb € Ker(Ky ). Moreover, observe

thatf’ K KxyKy, g = (f, KxvKy )k, HENce

Cor'2(77>f) = = ’
Hf|’31(KX) HgH?{(Ky)

(5.7)

where
(Tg)(t) = KXY(t> )K;g = <KXY(t> ‘)a g)H(KY)a teT

with K xy (¢, -) theith row vector ofK yy. Also,

fTK;(KXYK;/g = <T*f7 g)H(KY)7

Where(T*f>(8) = ny(S, )K)_(f = <ny(', 8), f>H(KX)7 s € S with ny(', Sj) the]th
column vector ofK xy. So,T is a linear operator fror ( Ky ) into H(K x) with adjoint
T*.

Now, the CCA problem in the finite dimensional case becomes

2
sup (£, T8)(rey)-
feH(Kx), g€EH(Ky)
HfHH(KX)=HgHH(KY)=1

Thus, CCA development in tHe (K x) andH (Ky) setting proceeds via the singular value
decomposition of the operat@. To do this we find the eigenvalues and eigenvectors of

T*T andTT*. That is, the eigenvectors and eigenvalues are obtained from
T*Tg = p’g

and

TT*f = p°f
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which are

Ky xK KxyKyg = p’g

and

nyK}_/nyK)_(f = p2f

Premultiplying byK, and K and employing the isometric isomorphisms and
then returns us to the original CCA solutions detailed in Chapter 1.

It has been seen that finding the canonical correlation and variables fof #ed
Y processes on finite dimensional index sétand S are equivalent to optimization in
RKHS’s generated by th& andY auto covariance matrices. The next step is to extend
this idea directly to the infinite dimensional case. For this purpose, we will define the no-
tion of canonical correlation in this setting by directly generalizing the notion of canonical
correlations in the finite dimensional case.

First let H(Kx) and H(Ky) be the RKHS's with r.k'sKx and Ky as defined in

(4.5) in Theorem IV.4 with associated norms and inner produets,x ,), (-, -) , and

H(Kx

|- 7y )y G5 )y AS €Xplained in Section 4.2{(Kx) and L% are congruent and
H(Ky) andL? are congruent. So, lety and«y be the isometric isomorphism's, from

H(Kx) to L% and fromH(Ky) to L3, respectively, that satisfy

Vx ZaiKX(‘7ti) — ZaiX<ti)
and
’pr . ijKy(‘,Sj> — ZbJY(SJ>
j j
Now every random variablese L% and¢ € L can be written as
n=1vx(f) and §=1yv(g)

for some unique functiong in H(Kx) andg in H(Ky ).
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Since two spaces that are isometrically isomorphic are algebraically and topologically
identical, solving the optimization problems it% and L? is equivalent to solving the
optimization problems which are formulated in the RKHE$K x ) andH (Ky ). We now
can restate (5.2)-(5.5) in terms of optimizationHf{ K y) andH(Ky ) as follows: Define

the first canonical correlatiom and the associated RKHS vectdisg;, by
P% = COVZWX(fl)a Yy (91)) = sup COVQWX(f)a Uy (9)), (5.8)
FER(Kx),9€H(Ky)

where f andg are subject to

11y = Var(x (f)) = 1 = Var(y(9)) = llgllF e, - (5.9)

Fori > 1, define theith canonical correlationg; and the associated RKHS vectgfisg;

by
p; = CoV*(Ux(fi), vy (gi)) = sup CoV(¢x(f), ¥y (9)), (5.10)
FEH(K x),9€H(Ky)

where f andg are subject to (5.9) and

Cov(vx (f), vx(f;)) = Cov(¥y (g), ¥y (g;) =0, j <i. (5.11)

Forn € L%, € L3, there exist sequences, = > ", ainX (tim) and &, =

> i—1 binY (sjn) such that Cox (f), ¥y (g)) = Cov(n, &) = limp,m oo COM1n, &n)-

Hence

COV(U? 5) = ml’rlzriloo Z Z aimbjnKXY (tzm7 Sjn)

iljl

= mlﬁmzzazm in{ By (tims ), Ky (- $in))ay iy )

1—1]1

= mlériloozzazm n KX imy )7 <KXY(*7')’KY('aSjn>>H(KY)>H(KX)
=1 j=1

- hm <ZaimKX(tima KXY Zb]nKY S]n )>H(KX)

m,n—oo 4
=1
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by the reproducing properties éfx andKy. Then, forf,,,(-) = > aim K x (-, tin) and

gn() = Z?:1 bjnKY<', Sjn), we have
Cov(tx (f) v (g)) = lm (fin(), (Kxv(x, ')’gn(.)>'H(Ky)>H(KX)

m,n—00

= (f(x), (Kxv (%, ')79(')>H(KY)>H(KX)
with f = ¢ (n) € H(Kx), g = ¥y (€) € H(Ky) the limits of the sequence, andg,.
Now define the operatdf from H(Ky) to H(Kx) by

(Tg)(t) = (Kxy (t:-), 9(-))mrcy): (5.12)

As a result of the above arguments

Cov(vx (f), v (g)) = (f, Tg)?—{(KX)
forany f € H(Kx) andg € H(Ky). We then observe that

<fv Tg>H(KX) = COV(wX(f)> @DY(Q))
< Var(yx(f))"*Var(yy(g))"/?

= [ f I 191y
from the Cauchy-Schwarz inequality. Thus, whea T'g we have||Tg |1k ) < ||9ll1cky)
and it follows thatl" is a bounded linear operator with operator norm at most 1. Also, from

our previous development

<fm7 <KXY('7 *)7gn>H(Ky)>H(KX) = <<fma KXY('? *)>H(Kx)7gn>H(Ky)

by the reproducing property. Taking limits asm — oo then shows that

<f7 Tg)H(KX) = <<f7 KXY('a *)>H(Kx)’ 9>H(Ky)§

i.e., the adjoint ofl" € B(H(Ky), H(Kx)) is given by

(T71)(s) = (s Kxv (5 8))ayrey) (5.13)



76

for f € H(Kx).

We have now seen that Cavx (f), ¥v(9)) = (f,T9)y,)- S0, analogous to the
finite dimensional case, the polar representation of the bounded linear ogénat{4.3)
should provide the solutions for the canonical problems (5.8)-(5.11) in the RKHS setting.

Suppose that the the largest value in the spectrufitdf )\, is an eigenvalue of finite

multiplicity with an associated eigenfunctigip. That is,

Al = sup <T*T9>9>H(KY) = sup /( )/\dEg,g()‘)
o(T*T

lgll#(reyy=1 lgll#(reyy=1

with o(7*T") necessarily being a closed subset/@fl]. Then, f; = Wg¢, andn, =

Ux(f1),& = Uy(g1), p1 = /\}/2. Continuing in this manner, if the second largest point

in the spectrum is an eigenvalue of finite multiplicity, we hgée= Wg, andn, =

Uy (fa), & = by (g2), po = A2, etc. However, in general;*T may not have any point

spectra. In that case the canonical correlations and variables apparently cannot be defined.
An important special case of the previous development is the case Wiro®mpact.

As explained in Section 4.1, the spectrutf?™*7") is known to consist of a countable set of

non-zero eigenvalues with finite multiplicities and the polar representatidnogiven by

r(T)
T=3 )"a®p,

j=1

wherel > A\ > Xy > ... > Ay > 0 are the eigenvalues df*T" with associated
eigenvectorsy;, j = 1,...,r(T), anda; = Wp3; = T3;/A;/*. Then, the Cauchy-Schwarz
and Bessel's inequalities ensure thatf;, g; in (5.8) and (5.11) are given by = \/?, f; =

«;, g; = ;. Consequently, the canonical variables of Hhepace and” space are

ni=¥x(fi) and & =y (g),

wheref;, g; are the eigenfunctions afT* andT™*T corresponding to their eigenvalugs

respectively, and;, g; satisfy

| fillexxy = llgillrcrey) = 1.
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Finally, let us mention the relationship between the RKHS vecfpandg;. For the

polar representation of the compact operdt@bove, we have seen that

fi= Tgi//)m
or
Tgi = pifi. (5.14)

Applying the operatoi™ to both sides of (5.14) gives
T fi = pigs (5.15)

sinceT*Tg; = p?g;.

Now, suppose that th& andY processes have non-zero mean functioRs$t) =
E[X(¢)] anduy(s) = E[Y(s)] forallt € T,s € S. We see from Proposition V.1 that if
pux € H(Kx) anduy € H(Ky) then there exist linear mappings, from H(Kx) to L%

and¥y from H(Ky) to L2.. The linear mapping’ x satisfies
Ux(Kx(-t)=X(t), teT,

E[Wx ()] = (fs x)prc )
and
Cov(Wx (fM), Wy (f) = (fY, F®) iy
The linear mappin@’, has similar properties. Thus, in this instance, (5.2)-(5.5) can be for-

mulated exactly as before provided we use the linear mappingy in lieu of isometries

betweenl%, L? andH(Rx), H(Ry).
5.2 Canonical Correlation Analysis and Regression
As we have shown in Section 3.1.2, linear regression can be viewed as a special case of

CCA. In this section, we will demonstrate this remains true in the infinite dimensional

setting.
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LetY be a random variable with zero mean and finite second momen{. L@, ¢ €
7'} be a zero-mean, second order stochastic process with covariance Kertwek) for
s,t € T. We observe the predictor functidX (¢),¢ € 7'} and the response variabié
Assume without lose of generality that Var) = 1.

For a linear regression problem we seek that random variabl&;inhose mean

square distance frofyi is smallest. That is, we want to find a functiomalsatisfying

inf E|Y —m|>. (5.16)

meL
The solution to this optimization problem was provided by Parzen (1961).
Recall now the RKHSH (K x) determined by the covariance functidfiy and the
isometric isomorphism)x betweenZ? andH(Ky). Letv(t) = E[Y X(t)] = Kxy(t).

The resulting best least-squares linear approximatian isfthen
m*(w) = ¥x(v)
with mean square error of prediction given by
EY —m'| = EY] — vl = 1 = [0ly)-

Now, the canonical correlation problem involving a zero-mean, second-order stochas-
tic processX and a random variablg with finite second moment can be defined as finding

n € L% to maximizes
B Cov(n,Y)

Corr(n,Y) = ————+=.
)= Narty)
As in Section 5.1, the correlation betwegandY is written as

(Kxy (4) f( D) e
1 f 17 x) '

Hence the canonical variable of thespace is

77:¢X(f)7
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wheref is the eigenvector of T f = p® f with the operatofl™* from H (K x) to R defined

as
"f = <KXY<'>:f<'>>H(KX)7 f € H(Kx).
Also, from the fact thatT* f, g)p = (f.T9)3 k) the operatofl” from R to H(Kx) is
defined as
(T9)(-) = Kxv()g, g€R
To demonstrate the connection between regression and CCA as in Section 3.1.2, we

first observe thaf can be obtained from

Kxy (- )(Kxy, f>H(KX) =" f().

So,p? = HKXYH%(KX) and we have only one canonicslvariablen = ¢ x(f) satisfying

(Kxy, f)H(KX) =P

Thus,
K .
£ =
| K xy |7k

Sincev(-) = Kxy(+), the relationship betweene H(Kx) andf € H(K x) are obtained
by
v(-) = pf()

which is an exact parallel of what transpires for the finite dimensional setting.
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CHAPTER VI

DISCRIMINANT ANALYSIS FOR STOCHASTIC PROCESSES

In this chapter we plan to extend the results from Chapter Il concerning discriminant anal-
ysis to encompass stochastic processes. For this purpoge (6t¢ € 7} be a second

order stochastic process with mean function

and covariance functiok’x (s,t) = Cov(X(s), X (t)) for s,t € 7. Also letG represent

the class membership of the process from the populations numberetl e define

and

We assume that
K;(s,t) = E[(X () — i (s)) (X (1) — ()G = 3], s, t €T

forj = 1,...,J have a common form that we denote Ry,. Thatis,K; =--- = K; =

K.
6.1 Discriminant Analysis
Let L3 be the Hilbert space spanned by tkigorocess with inner product

<U1, U2>L§( = E[UlUQ] for U,Uy € Li(
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6.1.1 Fisher’s Linear Discriminant Analysis

Let us begin by developing an infinite dimensional extension of Fisher's method. In that

respect, we are interested in finding a random variatde.% maximizing
Varg (E[(|G]) /Ec Var((|G)] (6.1)

which represents the ratio of between-class variability to within-class variability as in the
finite dimensional case.

Define the kernel function

Z% (115(s) = () (i (1) = p(t)), s,t € T 6.2)

with
J
= ()
j=1
and letH(Kx) be the RKHS with the r.k. Kx as in Chapter IV. Also, denote the
RKHS’s generated b¥y, andK 5 by H(Kyw ) andH (K ), respectively; i.e., let ( Ky ) =

spaq Ky (-,t),t € T} andH(Kg) = Spaq{ K(-,t),t € 7}. Then, observe that

n

> clp(s,t) ij (ki (s) — u(s)) = Zﬂjbj/ij(S)

i=1

with b; = S0 ¢ (t) — i) sinced" T by = S0 e S (s (k) — (k) = 0.

Consequently, we have shown

{Zc (- ch—()}

which consists of contrast among the class mean functions.
Now assume that; € H(Ky ). Clearly, K5(-,t) € H(Kw). We then see that the
set of elements ift{ (K x) is equal to the set of elements fbf{ Ky ); but, the two spaces

are equipped with different norms. To see th&tx) = H(Kyw ), for positive definite
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functions K (s,t) and K (s,t), let us first write K, < K if K(s,t) — Ky(s,t) is also
a positive definite function. Then, we know tHE{( Ky ) C H(Kx) and||hllxxy) <
||| 35y TOr b € H(Kw) sinceKy < Kx as aresult of Theorem | in Aronszajn (1950).

Now define a linear operatdr from H (K x) to H(Ky ) satisfying
L(KX(at)) = KW('at)a teT. (63)

Then, L is a one-to-one and onto linear mapping since

n

| Za,KX Do) = ZzazakKX(tutk)

=1 k=1

= Z Z a;ap Kw (t;, t) + Z Z aiapKp(t;, ty)

i=1 k=1 i=1 k=1

= ||Za Kw(, HH (Kw)

n

+ Z 7Tj‘<ﬂj - K Z aiKW('a ti))H(KW)|2‘
j=1

=1
Also, we observe that, fdr € H(Kw) andf € H(Kx),
<hv f)H(KX) = <h, Lf)H(KW) (6.4)

which follows from the fact that

<h7 KX('vt»H(KX) = h(t) = <h7 KW("t»H(KW) = <h’L(KX("t))>H(KW)'

The operatol. is bounded with operator norm at most one because

(Lf, Py = LF L ey = WEF iy = WL 1)

S AL Py S WL o L oy @ndlLLf ey < L e
Further,L € B(H(Kx), H(Kw)) is positive becauseL f, f) k) = ||Lf]|${(KW) > 0.
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For f € H(Kx), observe that

F@) = (Kx (1), Py
= (Kp( 1), Mgy T Bw (50, Py
= (KB ), L gy + (Bw (5 0)s L Dagrc-
Thus, let us now define the operafs from H(Kyw ) to H(Kyw ) by

(Teh)(t) = (Kp(t; ), h(-))rry (6.5)

for h € H(Kw). Then,f(t) = (IsLf)(t) + (Lf)(t) € H(Kw) and hence{(Kx) C
H(Kw). ThereforeH(Kx) = H(Kw).

As in Section 5.1, let us first consider the problem of maximizing (6.1) in the finite
dimensional case. Suppose that= {t1,...,t,} and letX = (X (t1),..., X (¢,))" with
Kx = {Kx(tr t)}r—1- SetKw = {Kw(te,t)}r,—; andKp = {Kp(te, 1)} -1
Then, the linear discriminant functions in the finite dimensional case are obtained from the
classical multivariate setting as in Section 3.2.3.1. To see this first note that in this instance

we hadlL% = {a”X : a € Ker(Kx)!} with squared norm
E[(a’X)?] = a’Kxa + (a’ u)?
fora = (ay,...,a,)". The corresponding RKHS is
H(Kx) = {f =Kya:acKer(Kx)"}
with associated inner product
(f1. £2)syrey) = £ Kxo
Assume thaj; € Ker(Ky, )" for all j. Then, KefK )" = Ker(Ky)* and

L% = {a’X :a € Ker(Ky)*}.
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Also, the RKHS determined bi(y,, which is equal set-wise tH (K x), is
H(Kw) = {h=Kya:acKer(Ky)"}
with associated inner produgt ->H(KW) producing the squared norm
01y ey = h" K, h.

Just as in Section 5.1, with finite dimensions, an isomorphism (one-to-one and onto linear

mapping)¥y, from H(Ky ) to L% is given by
Uy (h) = WK, X, h € H(Ky).
Then, we observe that
Ec[Var(y (h)|G)] = h' Ky K Kih = B, .

CoroLLARY VI.1. Let L% be the Hilbert space spanned by the procg&st),t € 7}
with 7 = {t4,...,t,} and letH (K ) be the RKHS generated by the within-class covari-

ance functionky,. Then, maximizing (6.1) ovére L% is equivalent to maximizing
(h, Tph),, . ) (6.6)
overh € H(Kw) subject to||h[3, . , = 1, where
(TBh) (t) = KB(tv )K;Vh = <KB(t> ')a h>H(KW)

with K(t;, -) theith row vector ofK 5.

Proof. In the finite dimensional casé= a’ X and (6.1) becomes

a’Kpa h'K; KzK;h 6.7)
aTKwa hTK;h '

sinceh = Kyya with a = (a4, .. .,a,)”. Now observe that

Kp(t, ) Kyh = (Kp(t, ), h)gy g, -
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So, (6.7) becomes
(h, KBKI;/h>H(KW) (h, TBh)H(KW)
5 = 5 (6.8)
017, ) 012, )

and the result follows.
U
The solution to the optimization problem in (6.6) can be obtained from the eigenvalue
decomposition of the finite dimensional operditg. If we start with the eigenvalue de-
composition of the operat@ 5z on B(H (K )) then the eigenvalues and eigenvectors are
obtained from

TBh = ’}/h

which is

K;K;;h = ~h.

Premultiplying byK;,, and using the isomorphisniy; returns us to the matrix case in
(3.29).

Now we wish to extend this idea to the problem of finding linear discriminant functions
in the infinite dimensional setting. To do this, we first establish the following result.
ProproSITION VI.1. Assume that; € H(Kyw) forall j =1,...,J. Then, there exists a

one-to-one linear mappindg ;- betweert(Kyy,) and L% defined by
Uy (Kw(-t) = X(1)
for everyt in 7 with the properties
ElWw (M)] = (h 13456,y (6.9)

E[Vw (h)|G = j] = (h, Mj)H(KW)v (6.10)

Ec[Var(Vyw (h)|G)] = 175 (6.11)
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for h € H(Kw) and
Cov(Wyy (A1), Wiy (1)) = (B h®)y e+ (WY Tph®) (6.12)

for bV, h® € H(Ky ) andTp defined in (6.5).

Proof. For any function of the form(-) = >, a, Kw (-, t) define

h) =Y aX(t).

Then, Uy, (h) is well defined as a member &g, since

E‘Z ap X (tx ‘ = Zzakal Kx (te, ty) + plte) ()]

k=1 I=1

= Z Z aay [Kw(tk, tr)

k=1 I=1

3 mn () — ) rsth) = () + plt)(t)|

3

n

J n
akalKW teotr) + Zﬂg Zakalug te) ()
=1

k=1 I=1 k=1 I=1
n J n 9
S akx K (-t ‘
Ittt 25l ki
by the reproducing property df,. So,
Uy ZakX t) =0 ifandonlyif h( ZakKW ,te) = 0.

k=1

It is now clear thatVy, defines a one-to-one linear mapping from the linear manifold
spanned by, Ky, (-,t),t € T} onto the linear manifold spanned by the process with

the properties

Za’“” ty) = ZakKW k) ) 0y = (s i)

E[Uy (h)|G = j] Zakuj tr) ZakKW st 15 C D raciny = (s i aaicn )
=1
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n n

EcVar(Uyw (h)|G)] = > Y ara Ky (ti, 1)
k=1 I=1
ZakKW k), ZCLZKW )y H(Kw)
k=1 =
= || ZakKW w) = ||h||$i(Kw)7
k=1

and

COV(\Ifw(h(l)), \Ifw(h@))) = zn: f: akble(tk, Sl)

k=1 l=1

Z arbi Kw (tk, s1) + Z Z axbi Kg(tk, s1)

k=1 I=1 k=1 l=1

— (S aKw (-, 1), szKw (3 1) pe(c)

k=1 =1
n

Z arKw (-, (%), ZblKW(*7sl)>H(Kw)
k=1

=1

3

3

<h(1)’ h(2)> H(Kw) + <h(1)( ) <KB(" *)7 h(2)(*)>H(KW)>H(KW)'
Moreover, Cauchy sequenceslif correspond to Cauchy sequence&i(y,) and con-

versely as a result of the identity

J
E[ Uy (ha) = O (hn) > = o = Bl iy + D T3l 0o Fen = Ry -

j=1
Thus, the result follows.
U
For any/ € L%, there exists a sequentg=>_,., a,X(t) with 7, beingn dimen-
sional subsets df such that

lim E[(, — {]* = 0.

n—oo

Then, Vay(E[¢, — ¢|G]) < Var(¢, — ¢) < E[(, — ¢]* which has the consequence that
lim,, .., Covg(E[(,|G], E[(|G]) = Varg(E[¢|G]) as a result ofim,, ., Covg(E[(,|G] —
E[¢|G], E[¢|G]) = 0 and the Cauchy-Schwarz inequality. So, we see that(&f|G]|) =
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lim,, ., Varg(E[¢,|G]) or

Varg(E[(|G]) = lim » > a.aKp(s,1)

s€T, teT,

— nlg]go Z Z asar(Kp(s, ), Kw (1)) 3(r)

s€T, teT,

= nh_{{)lo Z Z asa(Kw (s, %), (Kp(*, ), Kw(-, t)>H(KW)>H(KW)
s€T, teT,

= lim ( Z as K (s, %), (Kp(* Z“tKW D) r( ) ()
s€Ty, teT,

by the reproducing property oky,. Hence, for any sequende, = >, ., a:Kw(-,1)

converging ta: in the norm ofH( Ky ), we have

Varg(E[¢|G]) = lim <hn<*),<KB<*>')ahn('>>H(Kw)>H(KW)

n—oo

= (h(x), (Kp(x,-), h('))H(Kw)>H(Kw)'

Then, using the isomorphisty, reveals that

VarG[E((|G)] = Varg[E(Wx()[G)] = (b, Tah)prc,

THEOREM VI.1. The operatorls from H(Ky ) to H(Kw) in (6.5) is bounded, self-
adjoint, positive and compact.

Proof. We observe from (6.12) that

J
(RO, Teh®) gy = Db s = ihgsey (5 = 1 R )y

J

< B e 1B ey Y millits = illgacon)
Jj=1

= MIE i 1P e
with M = Z}]:1 |l — M||31(KW) < oo sincep; — p € H(Kw) for all j. Replacing
Y by Tph® entails thal| T2 || 3wy < M||BP|34(x) @nd sal’s is @ bounded linear

operator.
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The operatofl s in B(H (K )) clearly has finite rank since

TBh Zﬂ-j M] >><luj - My h>H(KW)

and so InfTy) = spar{jy; — pj = L....J :+ X m(us() — u(-)) = 0} Thus,

r(Tg) < J — 1, which means thdf’s is compact. Also, observe that

(R, TBh(Q) Zﬂj ) — ) pe () (B — s h(2)>7—((KW) = (Tph, h(2)>H(Kw)

and that

J
(Tsf, [rrw) = Z%‘Wj = 1 Py 2 0.
j=1

So,Ts € B(H(Kw)) is a self-adjoint, compact and positive operator.
U
We now can restate the discrimination problem (6.1) in the REH®& x ) as follows:

The RKHS variatef can be obtained by solving

sup Varg(E[Yyw (h)|G]) (6.13)
heH(Kw)
subject to
Ec[Var(Ty (h)|G)] = [|1hlF ) = 1 (6.14)

Itis seen that Vaf(E[Ww (1)|G]) = (h, Tph)yx,,,) @nd hence characterization of the so-
lutions to problem (6.13) can be achieved by the study of the opéfator
Analogous to the finite dimensional case, the spectral decomposititp will pro-

vide the solutions to the optimization in (6.1). Thus, as in (4.1), iifeas

J—-1

T = Z Vil & Oty (6.15)

i=1

wherey; > ... > ;-1 > 0 are eigenvalues dofs anda;,7 = 1,...,J — 1, are the
associated eigenfunctions. Note that,: = 1,...,J — 1} in H(Ky ) are an orthonormal

basis forlm(7) = Im(Tp).
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THEOREM VI.2. Suppose thdlz has the spectral decomposition in (6.15). Then,/the
satisfying (6.13) and (6.14) are given by= «; and the corresponding linear discriminant
variables of theX space are; = Yy (f;).

Proof. We have

Varg (E[Uy (h)|G]) = (h, Tsh) K>—Z% (0, D) y(rc -

Since the{a; } are orthonormal irH (K x),

J—
Varg (E[Vy (h Z @i, h H(Kw) < %HhH%(KW)

by Bessel’s inequality. Then, the equallty holds if and only # «;. For the general case
we haveh L a;, 1 <i <k —1and Vag(E[Tw (7)|G]) < w3k, With inequality if

and only ifh = ay.

We now see that the linear discriminant functions are given by
b =Tw(h), i=1,...,J—1, (6.16)
where theh; are the eigenvectors @fz corresponding to its positive eigenvalye Theh;
satisfy the constraints
[hill2e(rew) = 1
and
(Pis hi)peicngy = 05 K # .
With z(-) = X (-, wp) for wy € Q
Uwo) = Y (h)(wo) == Y (h).
Let us now adopt the notatiof{z) = Uy ..(h) instead of? to explicity emphasize the

dependency on. The classification rule is then to classify a new curue class if

Dist;(x) = min Distj(z),

J
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where the squared Mahalanobis distahet; confined to the subspace defined by the first

s (< J — 1) linear discriminant functions is given by

Disti(x) = > (f(x) — E[G:]G = 4])* = Z (Vwa(hi) = (ot i) sey) - (6.17)

k=1 k=1

6.1.2 Generalized Fisher’s Linear Discriminant Analysis

We now wish to formulate the general version of Fisher’s discrimination method in this
section with respect to optimization ovef( K x). In this regard, maximizing (6.1) over

¢ € L% is equivalent to maximizing
Varg (E[¢|G])/Var(¢) (6.18)

over/ € L% since Vat() = Varg(E[(|G]) + E¢[Var(¢|G)] implies that (6.18) equals

Varg (E[¢|G]) /Eq[Var((|G)]
1 + Varg(E[¢|G])/Eg[Var(¢|G)]

and+f; is an increasing function im > 0.
We have seen from Proposition 1V.1 that given € H(Ky ) a linear mappingV x

betweerH (K x) and L% defined by
\IIX<KX<7t)) = X<t)7 teT
is an isomorphism with the properties

E[Ux(f)] = ([, M>H(KX) (6.19)

and
Cov(Wx (fM), x (f) = (fY, FP)sysery: (6.20)

In addition,V x has the following property

E[\DX<f)|G :]] = <f7 ,Uj>H(KX)- (6.21)
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As in Section 6.1.1, observe that

Varg (E[f|G]) = Varg (E[Wx (£)|G]) = (F(x), (KB (%), F D)) 1)
and
Var(() = Var(Wx(f)) = | fll3x)-
We now define the operat6rs from H (K x) to H(Kx) by

(CeN) = (KBt ), [())rxy (6.22)

for f € H(Kx). Consequently, we now can restate the general discrimination problem

(6.18) in the RKHSH (K x) as findingf* € H (K x) such that

<f*a CBf*>H(KX) = Sup <fa CBf>H(KX) (6.23)
JEH(Kx)
subject to
1 ey = 1.

Thus, characterization of the solutions to problem (6.23) is achieved through study of the
operatorC'z.

THEOREM VI.3. The operatoiC in (6.22) is a bounded linear operator froki( K x) to
H(K x) with operator norm at most 1.

Proof. We see that
Cove (E[Wx (fM)|G]E[Tx (f®)IG]) = (fN, CofP)yyicr

for any functionsf™ andf® in H (K x). Now observe from the Cauchy-Schwarz inequal-
ity that
‘<f(1)aCBf(2)>H(KX)‘ = |Covg (E[¥x (fM)|G], E[Ux(fP)|G]) |
< Varg (E[Ux(f")|G])"/*Vare (E[¥x (f*)|G])/?

< Var(Wx (1)) 2Var(Wx (f*)"2 = 1F D e 1P lrece)-
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Replacingf™® by Cf® entails that|Cp f P | nxy) < I1F P2y and completes the
proof.
U

We can easily see thaty is self-adjoint, compact and positive in a similar way to
the operatofl’z. So, Cp has the spectral decomposition as in (6.15). Aep; be the
eigenvalues and the corresponding eigenvectors of the opéfaioespectively. Note that
1> A > - > A(cy) > 0. Then, the solutions to problem (6.23) subjeqtfqﬁ{(KX) =1
are given byf; = (; with 3; the eigenvectors of the operato and the corresponding
linear discriminant variables of th¥ space aré;, = U (f;).

We may be interested in the relationship between the operatoes B(H(Kyw )) and
Cp € B(H(Kx)) and the relationship between the isomorphisis and Vy. These
links are addressed by the following results.
LEMMA VI.1. LetTp andCp be the operators defined as in (6.5) and (6.22), respectively.
Also, letL be the linear transformation defined in (6.3). Then, the operaisss related
to Tz in the following way:

CB:TBOL.

A|SO,\I/)((f> = ‘ij(Lf) = \Ifw(f) — \I/[/V(CBf> for fe H(Kx>
Proof. We observe from (6.4) that

(TeLf)(t) = (KB 1), L)) = (KBC)s Pygey) = (CBF()-

for f € H(Kx). Also, the isomorphism¥ y from H(Kx) to L% and ¥y, from H(Ky,)

to L% are related in that

Ux(f) =VYw(Lf), f € H(Kx)

which follows from

Ux(Kx(1) = X(t) = Uw(Kw (-, 1) = Vi (LKx (1)),
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Fromf(t) = (Lf)(t) + (TsLf)(t) = (Lf)(t) + (C[f)(t), we then have

(Cef)t) = ((I = L)])(®).

Thatis,L = I — Cp.
U
Since the linear transformatiah € B(H(Kx), H(Kw)) is one-to-one and onto, we

observe from the open mapping theorem and the relationship beffyeamndC's that
TB == CB o L_l

with L=! € B(H(Kw), H(Kx)) satisfyingL o L™! = Iy, andL ™ o L = Iyx,). SO,
the compactness @iz is a consequence of the compactness gfand the boundedness of
L1
Now Fisher’s linear discriminant function was originally obtained by solving
sup Varg(E[(|G]) = sup  (f, T )y,
teLk feH(Kw)
subject to

Eq[Var(?|G)] = 1.
If we let {pisher s DE the solutions to problem in (6.1), we then get

l;
gFisher,i = 1/2
(Ec[Var(4;|G)])

with /; the solutions to the problem (6.18). But we can observe that

Ec[Var(t;|G)] = (fi(-), (Kw (-, %), fi(%)) gm0 11 x)
= 1 filfumry = (fis OB I iy = 1= i
Thus, we have

EFisher,i = (]- - /\i)_1/2\IjX<fi)
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with f; the eigenvectors of the operatGf. So, the squared Mahalanobis distaea;

in (6.17) becomes

(‘Dx,x(fk) — ([ Mj>H(KX))2'
(6.24)

Dists(x) = " —— (tu(2)—El4]G = j))* =

6.1.3 Bayes Procedure: Linear Discriminant Analysis

In this section, we wish to consider the classification of a Gaussian pro&ess ¢ € 7}

under the assumption of a common within-class covariance function. This problem dates
back to Parzen (1962, 1963) who developed a unified approach to the extraction of signal
in noise problems based on RKHS theory.

Let us consider the stochastic model
J
X(t) =Y (Y (j) + e(t) (6.25)
j=1

with Ele(t)] = 0 and CoVe(s), e(t)) = Kw(s,t). Then, our interest is in prediction of the
membership ofX corresponding to the population indexed ¥y ).
Let (2 be the space of all real-valued functionsdnForj = 1,...,J, let i, and P;

be the probability measures defined on the measurable subsétQ by
Fy(B) = P[{e(t),t € T} € B]
and

quj )+ e( )tET}EB’G—]]

Letp;(X(t),t € T) denote the probability density of the procgps(t)+e¢(t),t € T}
with respect to the procegs(t),t € 7 }. Recalling our definitions of the RKHE (Ky)

and the isomorphisn¥y, betweerfH(Ky,) and L%, we see that ifi; € H(Ky ) ande(t)
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is a normal process, then the probability density functionat;ofith respect taF is

dP; 1
pi(X(t),teT)= d_PZ) = exp {‘I’W(ﬂj) - §||Mj||${(KW)}

— exp {‘Pw(ﬂj) - %(EN]W(WHG N j]>2}

from (6.10).
The Bayes classifier classifies a new observation to the class which maximizes the
posterior probability

;pi(X(t),teT)

PlO=aXOt e D) = N ieT)

However,
. 1
PG = i1X(0.1 € T) xxp { vt~ Sl B +Toe
since BV (11)|G = j] = [lul3 k.- SO, we can define the discriminant function for
classj to be

1
dj(r) = Wwa(py) — §||Mj|!31(z<w) + log m;

and we classify: to the class for whicld;(z) is largest.

6.2 Fisher’s Linear Discrimination and Bayes Procedure

Suppose/ = 2 andm; = mp. Assume thaf; andpu, belong toH (K ). In this instance,

the Bayes classification becomes
classifyz to class 1 ifd; (z) — da(z) = Wwa(p1 — p2) = (11 — B2, 1) gyxyyy > 0

with po = (p1 + p2) /2.
In contrast, Fisher’s linear discriminant function is obtained by maximizing
2
|<,u1 - M2, h>H(KW)’

.
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overh € H(Ky). This ratio has maximunfju; — M?”?{(KW) which is attained when
h = u; — poe. Hence, Fisher’s linear discriminant functionfis= Wy (1 — p2). The

corresponding classification rule to (6.17) is then to classifying class 1 if

|‘IfW,z(/~Ll — p2) — (1 — M2,M1>H(Kw){ < ’\I/W,a:<,ul — p2) — (1 — M2,M2>H(Kw) )
which provides exactly the same rule as in the Bayes procedure.

6.3 Fisher’s Linear Discrimination and Canonical Correlation Analysis

It was seen that Fisher’s linear discriminant functions can be derived from canonical corre-
lation analysis in the finite dimensional case in Section 3.2.6. Our goal is now to generalize
that result to the infinite dimensional setting.

Let{Y(j),7 =1,...,J} be afamily of indicator variables for a collection of mutually
exclusive and exhaustive populations numbered I.toNe definer; = P(G = j) =
P(Y(j) = 1). Then auto and cross covariance functions for XhendY” processes are
given by

Kx(s,t) = Cov(X (s), X(t)), Ky (i,j) =CovY (i),Y (j))

and

Kxvy(s,j) = Cou(X(s),Y (j))

fors,t € 7 andi, j € {1,...,J} and recall that

Ky:{Ky(Z,j) 7 :diaq7T1,...,7TJ)—7T7TT.

ij=1

Now letH(K x), H(Ky) be the RKHS's with r.k’sKx, Ky, respectively. In particu-

lar, H(KYy) is the linear manifold of functions ofl, . . ., J} of the form

J
> biKy ()
Jj=1
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forb = (by,...,b;)" € Ker(Ky)*. The associated inner product is
(9", 9")1y,) = b1 Kyby (6.26)

for ¢, ¢» € H(Ky) andby, b, € Ker(Ky)*. Sincenr’b; = #’7b, = 0 as in Section
3.2.6, (6.26) becomes

(9,9 )24(1cy) = b1 diagms, ..., ms)ba.

Letg = (g(1),...,9(J))T = Kyb. Thenl € Ker(Ky) and premultiplying byl” pro-

duces

Further, fromg = Kyb = diag(m, ..., 7,)b it follows that

: 1 J
b = diagr,',..., 7, )g = (M, - M) )
st ™7
Thus, the associated inner producHiiKy ) is
T aW()g@(j
<g(1)7g(2)>H(Ky) = Z d (]719 (j) (6.27)
j=1 J

As explained in Section 5.1, the canonical variables ofXhepace and” space in

this setting are
J . .
(7)Y
h=Ux(f) and bIY =y (g) = 3 HVU)
j=1 Ty

whereY = (Y(1),...,Y(J))T andf;, g; are the singular functions of the operafogiven

by
(Tg)(t) = (Kxv (), 9)mxy) = Z %j)g(])

fort € 7 andg € H(Ky) andf;, g; satisfying

1 filbukey =1 and (fi, fi)rx) =0, (6.28)
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and ; ; ;
. 9: (j) 9i(7)91 ()
jzlgi(j):(), ;W—jﬂ and ;T:o (6.29)

for: # landi,l = 1,...,J. Note that the operatdf' from H(Ky) to H(Kx) is clearly
bounded and compact sindan(H(Ky)) is finite.

We now provide a general result that links Fisher’s discriminant functions and canon-
ical correlation analysis.
THEOREM VI.4. Fori = 1,...,J — 1, the canonical variables of th& space,n;, are
identical to the linear discriminant functiong, apart from scaling factors and the canoni-
cal correlationsp; are precisely square roots of the eigenvalues obtained from the spectral
decomposition of the operatdrz.

Proof. Let us first observe that

Ux(f) =VYw(f) = VYw(Caf), f € H(Kx) (6.30)

and
(LY L)y = EFY D)y = (T = Co) Y, f D)y

= <f(1)7 f(2)>H(Kx) _ <C'Bf(1)7 f(2)>H(KX)
for f, 2 in H(K). The canonical variables fof are then given by, = U (f;),i =

1,...,J —1,wheref; € H(Kx) are obtained from
TT*f, = p; (6.31)

and Fisher’s discriminant functions are given Qy= Wy, (h;),i = 1,...,J — 1, where
h; € H(Ky ) are obtained from

We can see that, fof € H(Kx),
(TT*F)(t) = (Kxy (t,), (T*F) (Vi)

= <TKXY(t> ')7 f(')>H(KX)'
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However,

J . .

K “y K ta
TKxy(t,) = (Kxy (%), Kxy (69w = Y ol j; xrihd)
i=1 ’

and, fori=1,.... J,
Ky (i) = Cov(X ()Y (1)) = EIX ()Y (i)] - EIX()JEY (1)) = m(yu(-) — () (6.33)
since

ELX()Y ()] = Ea[E(X Zm OIG = 116, = T

with ¢;; = 1if ¢ = j, §;; = 0 otherwise, EX(-)] = u(-), and BY (4)] = 7;. So,
TKxy(t Zﬂj (- D (8) = () = Kt ),

(TT*F)(t) = (TExy (8, ), F (D) = (K ) F ()i (6.34)
and (6.34) becomes
(TT"f)(t) = (CBf)(1).
Now use the factthat'z f = TgLf andf = Lf + TgLf for f € H(K ) to rewrite
(6.31) as
(TsLfi)(t) = pF(Lfi)(t) + (TsLfi)(8));

2

(TsLF) ) = 725 (LA 0)

1
Since thef; satisty| fill%x,) = 1,

HLfiH?i(KW) = HfiH%[(KX) —(Cs /i, fi>H(KX) =1-pj.

Moreover, thé; in H(Ky ) corresponding to Fisher’s discriminant functidhs= Wy, (h;)
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the h; are related to thé; via

sz sz 2\1
hi = = — (1—p)2f,. 6.35
| Lfillnrwy (1= p2)1/2 ( p;) " f, ( )

Also, from the relationship between the isomorphisins from H(Kx) to L3 and ¥y,

from H (K ) to L%

mi=Vx(f;) =VYw(Lf;) = (1= p})Uw(fi) = (1= p)"? Uy (k) = (1 - p})"/¢;.
Therefore, Fisher’s discriminant functionsare related to the canonical variablesy; in

M

This result is the exact parallels of what transpires in the finite dimensional setting.
O

Note that the eigenvalues @} and7'7T* are related as

2
R 6.37
L (6.37)

Also, the canonicak variables and the generalized Fisher’s discriminant functions in Sec-
tion 6.1.2 are identical SINCET* f = Cgf.

Now we wish to interpret the canonical variables of thespace from canonical cor-

relation analysis in Chapter IV. The canonical variables otilspace are obtained from
T"Tg = \g.
Then we have

(T*Tg)(l) = (Kxvy (-, 1), (Tg)(')>H(KX)'

Now observe that

(7)) = S0 T 57,0 - u)ati) = Y- ot

Jj=1



102

becausez;.]:1 g(j) = 0. So, the operatof” from H(Ky) to H(Kx) provides a contrast

among the population mean functions. Hence

(T"Tg)(l) =m ZQ(J)<M(') — ()5 15 () = 10D pgxe -
Also,
(£, Tg)s Zg (Fs 1450 b1k )

which is the contrast among the transformed mean functions: (f, uj)H(KX).
Let Ux(f1) and ¥y (g;) be the first canonical variables of tBé andY processes.

Then, f; andg; are obtained by maximizing

J
‘Zg(j)<f7 :uj>H(KX) )

subject to|| f||lnxy) = 1,ijlg(j) 0 andz Wj = 1. Thus, we have exactly
the same interpretation as in the finite dimensions. The functigmevide the coefficient
of a contrast in transformed means and so it measures the importance of the transformed
meansn; = (f, uj>H(KX) in the contrast. Also, it plays an important role in classification
analogous to the finite dimensions.

From (5.14), we have

Jio<Tyg;

and we have seen thdlg;,: = 1,...,J — 1 are the orthogonal contrasts among class
means. Thusl'g;,i = 1,...,J —1 are exactly the same as the RKHS vectfrapart from

a constant of proportionality.

6.4 Classification

A goal of discriminant analysis is in construction of classification rule. In this section,
the classification rule based on the canonical variables oktladY processes will be

formulated as in Section 3.2.7.
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Letn = Wy (f) and¢ = bTY = Y7, 97U pe a pair of canonical variables for the
J
X andY processes corresponding to the canonical correlati@incer is the best linear

predictors of, ¢ can be predicted from. The predicted score is given by

Cov(¢, n)

(n — E[n]) = p(n — E[n))

because E] = Z] 19(7) = 0and Va(n) = 1.

Now we provide the classification rule in the subspace defined by the predicted scores
of the firsts (< J — 1) canonical variables of th& space. Lef(w,) := & () = pi(n;(x) —
En),i=1,...,J — 1, withz(-) = X(-,wp). Then, the squared Mahalanobis distance is

S

> )~ )° (6.38)
with & = E[&|G = j] = pu(fu 1y — 1))~ We can easily see from this that the dis-
tances in (6.17), (6.24) and (6.38) are the same. However, these distances are expressed in
terms of eithe fi, 1) 5 x,,,) OF (fx: 15)5(x ) Which pose practical problems for estimation
from data.

Our goal is now to find new classification rule which is free of inner products and is
equivalent to the distances (6.17), (6.24) and (6.38). Now our goal is to find the equivalent
classification rule to the distances (6.17), (6.24) and (6.38) through CCA. As in Section

3.2.7, we can introduce distance measures constructed from the CCA approach as follows:

for a sample path,

s

S Ele) — by)? Zb (6.39)

1 1 _pk

and

s

21 _1 7 (Wxa(fi) = ik;)? (6.40)
k=1 Pk

With 75 = (fr, 1) HKy) T pibi; the predicted score ofy, via ¢ for the classj. The

proposed classification rule is to classifying a sample pdththe class whose index min-

imizes (6.40).
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THEOREM VL.5. The distances in (6.17), (6.24),(6.38) and (6.40) are the same.

Proof. We can easily see that (6.17) and (6.24) are identical from the fact that

Wy (hs) = (1= p}) U (f)
and
(Fir i) raesy = (L )iy = (1= 0D 2Py 183) 14110 )
whereh; are the eigenvectors @fz and f; are the eigenvectors @f7* associated with its

eigenvalueg?.

We start with (6.24). We see from Theorem 14 that (6.24) becomes

s

Dist}(x) = Zl 1pk(77k:() <fk7#j>H(KX)2-

Then, observe that

S

Disti(z) =Y ! > (nk(x) — Eni] + E[mi] — <fk,uj>H<KX))2.

k=1 1=k
From (5.15) and (6.33), we have

(T fe)(d) = <fk>KXY('aj)>H(KX 75 { fres 115 — M)H(KX) = prgr(J)-

Hence we havef;, 1 — u}H( ) = PR Yor(j) = piby; forj=1,...,J. So,

(s ) 3ecrexy — Elmel = (o b — M)y

Thus, the result follows.

Il
COROLLARY VI.2. The distance measure in (6.39) is equivalent to the distances in (6.17),
(6.24),(6.38) and (6.40) in the sense of classification.
Proof. We begin with (6.24) since (6.24) and (6.38) are identical. Then, observe that

S

Dz’stj.(x)—z ! (nk( Eln]) +Z fk,uj wy) — Elm])?

B 2; 1 _1/)2 (me(2) — Elme]) ((Frs 15035y — Elel)-
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We first see that
() — Eln] = pp "&().
Also, we have seen that
(s i) pi010i0) — Elme] = prbij

forj =1,...,J. Thus,Dist; can be simplified to

s

1 ~ s p2 s 1 ~
Z 2 1— P gk’(l‘)Q + Z 1 _k Qb%j - 22 1 — 2£k(x)bkj
(1 =p3) 1

1 Pk
= p () + — biy)? Z by
k=1 =

and the desired result is obtained.

6.5 Computation

Let X;,..., Xy be iid copies of a random continuous cut¥e Let X;; be theith curve
randomly drawn from thgth class. Also letu; be the true mean curve of an individual
from thejth class ana;; be the random noise processes with mean zero and covariance
kernel K'y,. We will focus on the case af = [0, 1] and smooth covariance functidtix

of the X process. Then,

XZ]<t) = [,L](t) + €Z'j(t), 1= 1, Ce Nj, ] = ]_, R J, t e [0, ]_]
In practiceX;; is observed at a discrete set of finitely many potats. ., ¢,,. Let X;;, be
the value for theth curve att;, from thejth class. Observe that

Xijk = Xij<tk) + Vijk, k= 1, e, Mm,

wherev;;;,’s are the uncorrelated measurement errors with zero mean and constant variance

2. We now have

Xijk = ,Uj(tk) + €k, k=1,....,m,
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wheree; ;. = e;;(ti) + vi;i, satisfy
CoVl(ej, €ijir) = Kw(ty, ty) +0°, i=1iandk =k
= Ky (ty, tr), i =14 andk # k'
=0, i 7

Defining X, = + Zf.vzjl X1, We have

X = p () + €, (6.41)
where
1
€k = = ) €ijk
J N] Zzl J
and

1
COV(Ejk,gjkr) = F {Kw(tk,tk) + 0'2} , k= K
J

1
= — Kw(ty. tw kE#E.
N. W( ks Uk )7 7&

J
We first propose to estimate the between-class covariance kigsiel-) defined in

(6.2). For this purpose, we will estimate andy.. One natural approach is to use nonpara-
metric function estimation. Then, in general, the estimate, dfas the following form
() = wilt, \) X,
k=1
wherewy(t, A) is a weight function at depending on a smoothing parameterNow let
us assume that the’s are smooth and use a smoothing spline to estimaendy. (e.g.,
see Eubank, 1999). Specifically, cubic spline smoothing will be used in where we estimate

(; by the minimizerj; of

1 2
X — o NTW-UX. . (2)

Whererk = (le, e ,ij)T, B = (,U/j(tl)a . ,Mj(tm>)T andW = KW + o?1 with

Ky = {Kw(ty, tr)} vy Then,u can be estimated by(t) = >, p;/;(t) with p; =
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%. Combining these estimators produces

Ras.) = 3 piis(s) = )iy (0) = 0), 5.t € T

and

m

Kp = {fA(B(tk,tk/)} ;

k,k'=1
where{t,, ..., t,,} is afinite dimensional subset @f.
Now to estimateyy (-, -) let Ky (m) = NZ] 121 (X — X)) (X — X)), where
Xij = (Xii(t1), ..., Xij(tm))T @andX; = Fj Zi:ﬂl X,;. We now adopt the approach dis-
cussed in Silverman (1996). Compute the eigenvalues and eigenvectors of the generalized
eigen equation

Ky (m)e = A(I + 9Q)e, (6.42)

whered is a smoothing parameter afiis such that’ 2e = [(¢”)? for the cubic smooth-
ing spline.

Let My be the number of the nonzero eigenvalues of the eigen equation
Ky (m)™e = M1 + 9Q)e,

whereKy, (m)!~ is the sample pooled covariance matrix computed withitheobser-

vation X; = (Xi(t1),..., Xi(t))T left out. Also, lete] (), | = 1,..., M, be the
eigenvectors corresponding to the nonzero eigenvalues of the above eigen equation. For
[=1,..., My, IetHH] (9) be the projection onto the linear space spanne@ﬂtﬂ,(ﬁ),

eE\};](ﬁ) Then, the smoothing parametérs chosen by minimizing

ZZH — W)X,

=1 =1

2

R?
From the linear system (6.42) retajin< m smoothed principal component vectors for

use in subsequent analysisAlf e; denote the resulting eigenvalues and smoothed principal

components we then estimagy (s, t) on [0, 1] x [0, 1] by Ky (s, t) = 7 hiei(s)ei(t).



108

DefineKy, = {IA(W(tk, tw) -, @nd perform an eigenvalue decomposition on
K, "KzK;,"
to obtain eigenvalue$; with the associated eigenvectars Letl; = K;,/*w;. Then, the

squared correlations are

and the canonical vectofs are
a = (1 )

which produce the estimated RKHS function

~

fi= (= p0)"h
with 2;(-) = Py L Kw (-, t,) and corresponding estimated canonical variate
=Y aaX ().
k=1

Now compute

i:ﬁ;l[/:l’l — B,y —ft]Téz-

o>

with f; = {fi;(t,) }7e, andp = {fi(tx)}7,. Then, we have

m

J
e = Y apX,(ty) and & =) buY, (k)
k=1

k=1
forr=1,...,N. So, for any fixed our transformed data is
(ﬁi?"7€i7’)7 r = 1, .. .7N.

Now, regress théir’s onn;,'s to get the predicted canonical scores

ﬁi = b + bliéz‘



109

with

iV:I (ézr - éZ)Q
bOi = 7?/1 - blzgz

b (G — &) — )
1: —

Y

andp, = L7 firs &5 = LS ¢, Thus, given a sample path we assign: to the

class whose index minimizes

with 5; (z) = > 52 aawa(tr).

ExaMPLE 1. To illustrate the use of our estimation method, tdke- [0, 1] and consider

the case where

Y (1)
~ Multinomial(1; my, 7o)
Y(2)
with m = 7y = .5. Let
20
X(t) = m )Y (1) + p(t)Y(2) + Y i~ *Uiv2cos(int) fort € T, (6.43)

=1

and theU; being i.i.d. standard normal random variables and
p1(t) = 3v/2 cos(mt) + V2 cos(2nt),

fi2(t) = V2 cos(2t).

A typical data set consisting of 50 sample paths of process (6.43) is shown in Figure 2
and the true mean functions of two different classes is shown in Figure 3. In this instance,
18
Kp(s,t) = mma(p(s) = ma(s)) (m(t) = pia(t)) = = cos(ms) cos(r),

20

2
Kw(s,t) = Z i cos(ims) cos(irt).
i=1
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Xt

Figure 2: Sample paths of 50 curves from 2 different classes: 23 for class 1 and 27 for class
2. The red curves are from class 1 and the blue curves are from class 2.

We see that; andy, belong toH (K ). The integral representation Theorem then has the

consequence th&t( Ky ) consists of functions of the form
20
h(t) = vikiV2cos(imt)
i=1

for real coefficientss; = v; '(h(-), \/§COS(2'7r-)>L2[O7H andy; = i7', i =1,...,20. The

associated inner product is

20 20
(h1y ha)sgscny = D Vikinikiai = > vy (b (+), V2 cos(im)) 1ajg gy (ha(-), V2 cos(im)) g
=1 =1
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o — Y(1)=1
- — Y(2=1
Ln —
D —
Ll.l'.! -
T T I I I I
0.0 0.2 0.4 06 0.8 10

Figure 3: True mean functions andus.

Direct calculations then lead us to
9
(Tah)(t) = 3VZeos(m){v/2os(m), h(-)) iy

= g 2 cos(mt)

20 20
X Z v (V2 cos(m), \/Ecos(im))Lg[oju ( Z vV 2 cos(k-), \/§cos(i7r-)>L2[0’1]
i=1

k=1

9
= Zml\/icos(ﬁt).

Thus,(Tsh)(t) = vh(t) entails that there is only one nonzero eigenvajue- 9/4.
Now observe thal; (t) = v/2 cos(nt)/r; which follows fromK (s, t) = (Tshy)(s)hi(t).

Moreover,

20
[ Z v; (V2 cos(m), \/5008(”‘));[0,1] =K =R
=1
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So, the corresponding eigenfunction is
hi(t) = V2 cos(nt).

Fore(t) = X(t) — u ()Y (1) — pa(t)Y (2) = 3272, i~ /2U;+/2 cos(imt), we then have
Ve(h1) = kiUy = Uh

from (4.10). Therefore, from (4.14),

1 =Yy (hy) = te(h) + (ha, Y (1) + p2Y (2))344,,
= U, + (V2cos(m),3Y (1)V2 cos(n-) + \/§cos(27r-)>H(KW) =3Y (1) + U;.
From (6.35), (6.37), and (6.36), we find that the first canonical correlation, RKHS

variate, and canonical variable of theprocess are

(i.e.,p1 = 3/V/13 ~ .83),

fi(t) = (1 = pHY2hy(t) = V13 cos(nt) /2,

and
2
=(1—pHY%, = —@BY 1)+ 1h).
m=(1—p1)""l Jﬁ< (1) +Uh)
Consequently,
(b117 le)T - (17 _1)T
and

(71, 712) " = (1.664,0)7.

The data in Figure 2 were analyzed via our estimation algorithm. We initially took
m = 100 equally spaced points df, 1] andg = 20. The smoothing parameter for cubic

spline smoothing was chosen by generalized cross validation (GCV) for estimation of the
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between-class covariance ker#él while the smoothing parameteriét= .0008 was used
for estimation of the within-class covariance kerig},. The true and estimated between
and within class covariance functions are shown in Figure 5. The estimated first canonical

correlation in this case was found to pe= .831 with
(by1, b12)T = (1.083, —.923)"

and
(111, 712)T = (1.264, —.407)7.
Figure 4 (a) and (b) provide the plots of the estimated and true eigenfunctions of
Tg andT*T corresponding t@; andp;, respectively, and Figure 6 shows the estimated
versus true first canonical scores of tkiespace. Figure 7 is a plot of canonicélscores
superimposed on the predicted canoni¥ascores assigned to the classes. From Table 2,

the misclassification rate was 1 out of 50 or 2%.

(a) (b)

15

— True — True
— — Estimated — Estimated

1.0

0.0
1

-1.0

-1.5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 038 1.0

Figure 4: Estimated and true RKHS functionsHit Kv) = H(Kx): (a) k. (green curve)
andh; (black curve); (a)f; (green curve) and; (black curve).
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(@) (b)

Figure 5: True and estimated between class covariance functiong<4@)-) and (b)
Kg(-,-); True and estimated within class covariance functions: Kg)(-,-) and (d)

Kw(--).
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Figure 7: Each point represents the canoni€acore for a sample path and the horizontal
lines provide the values af;;. The sample curve corresponding to the point marked with
black circle was misclassified.
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Table 2: Confusion matrix of classification for the simulated data set

Class1 Class?2
Class1l| 23 0 23
Class 2 1 26 27

ExampLE 2. (Canadian Weather Data) Monthly temperatures for 35 weather stations dis-
tributed across Canada were measured. Canada can be divided into Atlantic, Continental,
Pacific and Arctic meteorological zones and 14 stations are in the Atlantic zone, 5 stations
in the Pacific, 13 stations in the Continental and 3 stations in the Arctic zones. Ramsay
and Silverman (1997) used these data to conduct functional principal components analysis
and functional analysis of variance. Figure 8 (a) and (b) show the monthly temperatures
of 35 weather stations and mean monthly temperatures for the Canadian weather stations,

respectively.

(@) (b)

Temperature

Atlantic
Pacific
Continental
Arctic

Figure 8: (a) Monthly temperatures for Canadian weather stations; (b) Mean monthly tem-
peratures for the Canadian weather stations.

Let us analyze these data by our estimation algorithm. The estimated canonical corre-
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lations are

p1 =931, po = .910, p3 = .823
and the estimated coefficient vectors of the canonical variables &f 8pace are
by = (—.040, —.938, —.316, 3.123)7,
by = (—1.148,.067,1.106, .450)",
by = (.425, —2.261, .606, —.841)7.

Figure 9 shows the estimated eigenfunctiong6f" corresponding t@,, p, andps.

0.2 0.4 0.6 0.8

Figure 9: Estimated RKHS functiong; (black curve).f, (red curve) and’; (green curve)

As we investigated in Section 3.2.6, we can expect the first discriminator or canonical
X variable to distinguish the Arctic zone from the others by lookingatSimilarly, we
can expect the second discriminator to distinguish the Atlantic zone from the other zones
and expect the third discriminator to distinguish the Pacific zone from the Atlantic and

Continental zones. Since the three discriminators play different roles, they all contribute
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3rd can. score k4

1st can. score

3rd can. score

2nd can. score
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2nd can. score

Figure 10: Plot of the canonical scores of 35 weather stations. Each point represents

score for a sample path.

to discrimination and the estimated canonical correlations are all large. As a result, we

use all three discriminators for discrimination purposes. Table 3 is a confusion matrix of

classification for the Canadian weather data. Figure 10 provides the candngmires

for 35 temperature profiles with different angles. Separation is very clear and there is no

misclassification.

Table 3: Confusion matrix of classification for Canadian monthly temperature data

Atlantic Pacific Continental Arctic
Atlantic 14 0 0 0 14
Pacific 0 5 0 0 5
Continental 0 0 13 0 13
Arctic 0 0 0 3 3
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CHAPTER VI

SUMMARY AND FUTURE RESEARCH

7.1 Summary

Multivariate analysis under the less than full rank scenario plays an important role as a
beginning step for the development of infinite dimensional statistical methods. We have
investigated multivariate canonical correlation analysis and discriminant analysis including
Bayes’ classifier and Fisher’s discriminant method under the less than full rank scenario in
Chapter IIl. Under this condition, we have shown the well-known connection between
canonical correlation analysis and Fisher’s discriminant method. Also, we have introduced
some distance measures for classification and have shown the equivalence of those distance
measures in a sense that parallels work by Hastie et al. (1995).

In this dissertation, discrimination and classification in infinite dimensional settings is
motivated by the connection between Fisher’s discriminant analysis method and canonical
correlation analysis that is well known for the finite dimensional case. We have shown that
this connection extends to infinite dimensions using the abstract canonical correlation con-
cept developed by Eubank and Hsing (2005). A key part of this dissertation involved using
this approach to develop a theoretical framework for discrimination and classification of
sample paths from stochastic processes through use of thetarzen isomorphism that
connects a second order process to the reproducing kernel Hilbert space generated by its
covariance kernel. This paradigm provides a seamless transition between finite and infinite
dimensional settings and lends itself well to computation via smoothing and regulariza-
tion. In addition, we have developed and illustrated a new computational procedure with

simulated data and Canadian weather data.
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7.2 Future Research

One of the goals of this dissertation work was to develop a general methodological paradigm
that simultaneously includes classical multivariate analysis, functional data analysis, etc.
Statistical methods for analyzing functional data will ultimately parallel those for multivari-
ate analysis. Among many possible extensions, a future research area concerns the infinite-
dimensional extensions of Bayes’ classifier method from multivariate analysis. Further, dis-
criminant analysis and multivariate analysis of variance are closely related concepts that,
in a sense, represent different sides of the same coin. As a result, this dissertation work
also provides a theoretical structure from which one can extend ANOVA and MANOVA
to the infinite dimensional setting. So, the next research area to consider is the develop-
ment of high dimensional ANOVA techniques that can be applied to, e.g. the FDA context.
Among other applications, the methodology developed in this dissertation can be applied
to discriminant analysis for FDA bioinformatics data. Subsequent studies will pursue the
development of large sample theory for the tests and estimators.

We conclude by mentioning a few other remaining problems that will be focused of
future investigations. First, we have roughly shown that MANOVA under the less than
full rank scenario parallels to the classical developments. This should be proved more
precisely and connected to the general theory of multivariate linear models. Secondly, the
computation algorithm in Section 6.5 needs to be refined for more complex data structure

such as the data with noise, surfaces, etc. Finally, one can generalize the case of

Kl 0) = 3 mius(s) = ) s (0) — (1) (7.2)
to situations
Kp(s,1) = /Q (s, @) — ()t @) — () dP(q) (7.2)

with P a Stieltjes measure @p. This provides a collection of useful extensions of previous



121

developments that includes framework for the development of abstract regression concepts.

We plan to explore this topic in some detail.
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