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ABSTRACT 

High Performance RF and Baseband Building Blocks for  

Wireless Receivers. (May 2006) 

Faramarz Bahmani, M.S., Tehran University 

Chair of Advisory Committee: Dr. Edgar Sánchez-Sinencio 
   

Because of the unique architecture of wireless receivers, a designer must 

understand both the high frequency aspects as well as the low-frequency analog 

considerations for different building blocks of the receiver. The primary goal of this 

research work is to explore techniques for implementing high performance RF and 

baseband building blocks for wireless applications. Several novel techniques to improve 

the performance of analog building blocks are presented. An enhanced technique to 

couple two LC resonators is presented which does not degrade the loaded quality factor 

of the resonators which results in an increased dynamic range.  

A novel technique to automatically tune the quality factor of LC resonators is 

presented. The proposed scheme is stable and fast and allows programming both the 

quality factor and amplitude response of the LC filter.  

To keep the oscillation amplitude of LC VCOs constant and thus achieving a 

minimum phase noise and a reliable startup, a stable amplitude control loop is presented. 

The proposed scheme has been also used in a master-slave quality factor tuning of LC 

filters.  

An efficient and low-cost architecture for a 3.1GHz-10.6GHz ultra-wide band 

frequency synthesizer is presented. The proposed scheme is capable of generating 14 

carrier frequencies.  



 iv

A novel pseudo-differential transconductance amplifier is presented. The 

proposed scheme takes advantage of the second-order harmonic available at the output 

current of pseudo-differential structure to cancel the third-order harmonic distortion. 

 A novel nonlinear function is proposed which inherently removes the third and 

the fifth order harmonics at its output signal. The proposed nonlinear block is used in a 

bandpass-based oscillator to generate a highly linear sinusoidal output.  

Finally, a linearized BiCMOS transconductance amplifier is presented. This 

transconductance is used to build a third-order linear phase low pass filter with a cut-off 

frequency of 264MHz for an ultra-wide band receiver.  
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CHAPTER I 

INTRODUCTION 

 

The radio frequency (RF) and wireless market has suddenly expanded to 

unimaginable dimensions. Devices such as pagers, cellular and cordless phones, cable 

modems, and RF identification (RFID) tags are rapidly penetrating all aspects of our 

lives, evolving from luxury items to indispensable tools. In the field of communication 

circuit design, the realization of the complete integration of RF transceivers and digital 

signal processing blocks onto a single integrated circuit (IC) is a logical area in which to 

develop system-on-chip (SoC) solutions. Presently, with the growing demand for multi-

functional wireless consumer devices, the need for full integration of the RF and logic 

circuits in wireless communications systems is becoming increasingly evident. 

Meanwhile, the lower cost and faster advance of CMOS processes has motivated 

extensive efforts in designing RF CMOS circuits. CMOS technologies exhibit properties 

and limitations that directly impact the design of a receiver from the architecture level to 

the device level and from the RF front end to the baseband processor.  

Complexity, cost, power dissipation, and the number of external components have 

been the primary criteria in selecting receiver architecture. As IC technologies evolve, 

however, the relative importance of each of these criteria changes, allowing approaches 

that once seemed impractical to return as plausible solutions.   

RF architectures impose severe requirements upon the performance of their 

constituent circuits. The very small signal amplitude received by the antenna in the  

____________ 
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presence of large interferers mandates both careful allocation of noise and linearity to 

various stages and sufficient suppression of spurious components generated in the 

frequency synthesizers and the power amplifier. As with most analog systems, RF 

circuits suffer from tradeoffs among various parameters such as noise, gain, linearity, 

frequency and supply voltage.  

 

1.1. Motivation  

Because of the unique architecture of wireless receivers, a designer must 

understand both the high frequency aspects as well as the low-frequency analog 

considerations for different building blocks of the receiver. The primary goal of this 

research work is to explore techniques for implementing high performance RF and 

baseband building blocks for wireless applications. The objectives of this work can be 

summarized as 

•  To investigate the feasibility of employing on-chip LC bandpass filters in order to 

eliminate the bulky ceramic, crystal, or pre-select filters used in receiver front 

ends. This aims to obtain a fully integrated receiver, thereby reducing the power 

consumption, area, cost, and matching issues. However, due to implementation of 

passive elements, mainly inductors, the quality factor of this kind of filters are 

subject to variations. Implementation of the quality factor tuning schemes for LC 

filters is also part of the objective of this research work.  

•  To devise an efficient ultra-wide band frequency synthesizer to downconvert the 

entire 7.5GHz frequency range of the UWB signal.  
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•  To develop new circuit techniques to make feasible the on-chip integration of 

Transconductance-C (Gm-C) baseband low pass filters. This research pushes 

outward the main limitations of Gm-C filters, which are dynamic range, 

frequency response stability and high frequency performance. The Gm-C filter 

topology was chosen for its high-speed, low power consumption and tenability 

advantages. The dynamic range of the integrated Gm-C filter is increased on a 

circuit level by introducing a new linearized transconductance circuit. A highly 

linearized oscillator, to be used in the frequency tuning of the Gm-C filters, is also 

presented. 

Fig. 1.1 visualizes the contributions of this research work on different parts of a 

wireless receiver chain.  
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Fig. 1.1 Contributions of this research work in a wireless receiver. 

 

1. 2. Dissertation Organization 

Chapter II presents an overview of some commonly implemented wireless 

receiver topologies along with a qualitative analysis of the filtering requirements for each 
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type of system. Some inherent advantages and disadvantages for each type are also 

briefly covered. Specifications that define the operational characteristics of wireless 

receivers are also examined and the requirements of some current wireless standards are 

analyzed to highlight performance parameters required for integrated filters.  

Chapter III discusses the issue of RF bandpass filter prototype selection, and 

explains why a forth order mutual electric coupled-resonator LC filter is chosen as the 

prototype in this work. The building blocks that make up this filter are presented along 

with the overall circuit architectures.  

Chapter IV presents a novel feedback loop which can achieve accurate voltage 

controlled oscillator (VCO) loss- control and robust amplitude regulation. For GHz-range 

coupled-resonator LC bandpass filters, one popular approach to tune the quality factor of 

each resonator uses a VCO to set the time constant of the tracking resonator. Amplitude 

regulation is needed in this case to reduce distortion caused by the non-linearity of the 

active devices in the VCO so that the tuning error can be kept low.  

Due to process tolerances and temperature variations the quality factor of LC 

resonator filters can change. In Chapter V a new technique for quality factor tuning of 

second order LC filters is presented. The tuning accuracy and stability of the proposed 

technique are analyzed.  The design of the tuning system and its performance are also 

discussed. 

Chapter VI presents the design of transconductor circuits that can be used to build 

tunable Gm-C filters for wireless receivers. There is always a trade-off between the 

linearity, the bandwidth and the tuning range of the Gm circuits. A pseudo-differential 
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(PD) transconductance is presented. When implemented in a unity gain voltage buffer, 

the proposed transconductance can minimize the overall linearity of Gm-C filters. 

In Chapter VII a highly linearized oscillator is presented which can be used as the 

reference for center/cut-off frequency tuning of baseband filters. A multilevel hard limiter 

(MHL) is proposed which inherently removes the most critical odd harmonics from the 

frequency spectrum of the output signal. Detailed analysis of the proposed MHL block 

along with the measurement results is presented.  

Finally, In Chapter VIII two building blocks of a UWB receiver are studied. A 

linearized transconductance suitable for high frequency implementation of a Gm-C low 

pass filter is proposed. Furthermore, an efficient architecture for the UWB frequency 

synthesizer is presented.  

 

1. 3. Major Contributions of This Dissertation 

 The contributions of this dissertation can be divided in two categories of RF 

frequencies and Baseband Frequencies. Two main building blocks of primary concern in 

the RF frequency range are LC filters and LC VCOs. One of the challenges associated 

with the integrated LC filters is their quality factor tuning. In this dissertation two 

techniques to automatically tune the quality factor of this kind of filters are proposed. 

Furthermore, a stable and fast amplitude control loop to automatically regulate the 

oscillation amplitude of integrated LC VCOs is proposed. Moreover, an efficient and 

low-cost architecture for ultra-wide band receivers is proposed which covers the entire 

frequency range of 3.1GHz to 10.6GHz.  
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 In the baseband frequencies, a novel pseudo-differential transconductance 

amplifier is proposed. The proposed transconductance is also used to build a bandpass 

based oscillator. A novel nonlinear transfer function is proposed which inherently 

removes the 3rd and 5th order harmonics form the frequency spectrum of its output signal. 

A new BiCMOS transconductance is proposed to implement a 264MHz low pass filter 

used in the ultra-wide band receivers.  
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CHAPTER II 

RECEIVER ARCHITECTURES 

 

2.1. Introduction 

The major challenge in RF transceiver design is to utilize, more effectively, the 

continuously scaling technologies in order to improve the integration level of RF 

transceivers.  This should result in further improvement in power dissipation, form factor, 

and cost [1]-[3]. A wireless transceiver consists of two main parts, an analog front end 

which performs frequency upconversion/downconversion of the modulated information 

signal, and a digital back-end where the actual modulation/demodulation of the signal 

takes place, through extensive use of digital signal processing techniques. Although the 

continued downscaling has resulted in better integration and lower power consumption in 

the transceiver back-end, this is not the case for the front-end, where integration level and 

lower power consumption is more related to the physical limitations of the transceiver 

topology rather than the used technology. Thus, it is this analog transceiver front-end, the 

part which represents the interface between the antenna and the digital signal processing 

back-end, which is the main bottleneck for advancement in RF transceiver design [3].  

Wireless receiver design, and the need for creating a compact, power efficient 

system-on-a-chip requires that both the digital and analog/RF part circuitry to be 

implemented on the same chip. CMOS has proved to be a strong contender in this field, 

with the larger amount of digital circuitry benefiting from a higher transistor density and 

therefore smaller size and lower fabrication cost [2]. This explain the greater tendency, in 
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recently published RF CMOS work, towards single-chip transceiver realization than seen 

in complementary IC’s for cellular and cordless telephones developed in industry [2].  

One of the key components of portable devices used in wireless communication 

systems is the receiver, which senses an incoming signal and extracts the desired 

information. Since the Federal Communications Commission (FCC) regulates the 

frequency at which signals can be translated, the incoming signal is typically centered at 

a frequency which is much larger than the bandwidth of the desired signal.  

In a real wireless transmission environment, the received signal is almost always 

far from ideal. The signal which reaches the receiver can be very weak because of 

attenuation by objects which obstruct the transmission path between the transmitter and 

receiver or simply because of the loss due to spatial separation between the transmitter 

and receiver. In addition, the received signal can include unwanted signals along with the 

desired one. These unwanted signals, or interfaces, can be significantly stronger than the 

desired signal.  

Due to the limited amount of attenuation achievable by practical filter designs as 

well as the noise and distortion introduced by circuits used to implement the RF front-

end, the design of a highly-integrated, low-power becomes increasingly challenging when 

the received signal consists of a very weak desired signal in the presence of strong 

adjacent interferes. 

This chapter provides an overview of various receiver architectures, starting with the 

heterodyne architecture, which, unfortunately, is not very amenable to high levels of 

integration, and followed by an overview of a few other receiver architectures which are 

more conductive to single-chip implementation.  
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Fig. 2.1 Heterodyne architecture block diagram. 

 

2.2. Heterodyne Architectures 

The heterodyne receiver operates by down-converting incoming RF signals to 

baseband in multiple frequency steps. The heterodyne architecture is commonly used in 

current commercial receiver implementations because of its excellent sensitivity and 

selectivity performance [1].  

A block diagram of the heterodyne architecture with two frequency translation 

steps is illustrated in Fig. 2.1. In this architecture, the signal received at the antenna first 

passes through an RF filter before being amplified by a low noise amplifier (LNA). The 

signal is then filtered by an image reject (IR) filter before being frequency translated to 

an intermediate frequency (IF) by the first local oscillator (LO). At the intermediate 

frequency the signal is further filtered and amplified before being frequency translated to 

baseband along parallel in-phase (I) and quadrature (Q) signal paths by the second LO. 

At baseband, the signal is further amplified and filtered before being converted to a 

digital signal by the analog-to-digital converter (ADC). 
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2.2.1. Image Problem 

As detailed in Fig. 2.1, there are three different filter blocks normally 

incorporated into this type of receiver. Bandpass filtering is required for the band-select 

RF and channel select IF filters, while the image reject filtering is often achieved with a 

bandstop notch circuit. Operationally, different channels can be selected by changing the 

frequency of the local oscillator (LO) that heterodynes with the RF signal in the mixer. 

The selection of the intermediate frequency in this architecture is directly related to the 

image problem. In Fig. 2.2, the desired signal centered at the carrier frequency fc is 

frequency translated to the intermediate frequency fIF  by an LO located at the frequency 

fc-fIF. However, the signal centered at the image frequency fc-2fIF is also frequency 

translated to fIF. Since the image signal can be much stronger than the desired signal, the 

image signal must be sufficiently attenuated before frequency translation.  

IFc ff 2− cf

LO

IFc ff 2−cf

LO

IFf0

0

 

Fig. 2.2 The image problem. 

 

The choice of fIF depends on the characteristics of practical filter implementations. 

For a typical ceramic filter, the amount of attenuation increases at frequencies further 

away from the center frequency f0. Consequently, in order to achieve a large amount of 

image signal attenuation, it is preferable to select a high intermediate frequency so that 
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the image signal is far away from the center frequency of the filter. However, a high 

intermediate frequency also increases the design challenges in the IF filtering and 

amplification circuits. Therefore, the choice of fIF must be based on following tradeoffs: 

•  A high intermediate frequency results in maximum image signal attenuation from 

the IR filter, while 

•  A low intermediate frequency results in relaxed IF filtering and amplification 

requirements.  

Since small physical size and low power consumption are two critical design goals in 

the design of portable units, the heterodyne architecture is inadequate and other receiver 

architectures which are more amendable to highly-integrated, low-power 

implementations must be considered for future wireless communications systems. These 

architectures include: 

•  The direct-conversion architecture 

•  The image-reject architecture  

•  The low-IF architecture 
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Fig. 2.3 Direct-conversion architecture block diagram. 
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2.3. Direct-Conversion Architecture 

The direct-conversion architecture, also known as zero-IF or homodyne 

architecture, translates the incoming RF signal directly to baseband frequency. The block 

diagram of this architecture is shown in Fig. 2.3 [3]. The direct-conversion architecture 

offers two main advantages over the heterodyne receiver. First, the problem of image 

rejection is nullified because the IF frequency for this type of receiver is zero. Second, 

the IF filter and amplifier stages are replaced by low-frequency counterparts which are 

easily integrated on-chip. However, two practical considerations have limited the use of 

the direct-conversion architecture: DC offsets and flicker noise. DC offsets are 

problematic for two reasons. First, DC offsets can saturate the baseband circuits. Second, 

even if the baseband circuits do not saturate, DC offsets, if uncorrected, degrade the bit-

error rate (BER) performance of the system.  

There are three primary sources of DC offsets: LO self-mixing, even-order 

distortion, and baseband circuit mismatch. Finite isolation from the LO port to the RF 

port of the mixer leads to DC offset at the mixer output that results from LO self-mixing. 

LO leakage back to the antenna can also create interference output signals that can 

adversely affect other nearby users.  Also, because of the limited gain in zero-IF receivers 

provided by the RF amplifier and mixer, the downconverted signal is very sensitive to 

noise. This is particularly problematic in CMOS technology, which suffers from a large 

flicker noise component generated by MOS transistors at low frequencies. One 

alternative to the zero-IF problem is the implementation of a ‘low-IF’ frequency plan.  

 



 13

LNA

)(input  RF cf

filter RF

)( LO1 IFc-ff

ADC I

QADC

ο90
ο0

)( LO2 IFf
ο90

ο0

Fig. 2.4 Image-reject (Weaver) architecture block diagram. 

 

2.4. Image-Reject Architecture 

In the heterodyne architecture, the image problem arises from the use of a real 

sinusoidal LO signal to frequency translate the input signal to an intermediate frequency. 

More specifically, the Fourier transform of a real sinusoidal LO signal, cos(2πfLO1t), 

consists of a negative frequency component at –fLO1 can a positive frequency component 

at +fLO1: 

[ ])()(
2
1)2cos( 111 LOLOLO fffftf ++−↔ δδπ (2.1)

During the frequency translation process, the negative frequency component of 

the LO signal downconverts the positive frequency component of the desired signal to fIF, 

while the positive frequency component of the LO signal downconverts the negative 

frequency component of the image signal also to fIF.  

The process description of the mechanism behind the image problem suggests a 

potential solution: use a complex sinusoidal LO signal to downconvert the input signal to 



 14

the intermediate frequency. The Fourier transform of a complex sinusoidal LO 

signal, tfLOe 12π− , consists of only a negative frequency component at –fLO1: 

)( 1
2 1

LO
tf ffe LO +↔− δπ . (2.2)

When the input signal is multiplied by the LO signal, only the positive frequency 

components of the input signal are translated to the intermediate frequency. The complex 

mixing function described above can be implemented using the image-reject mixer. This 

complex mixing function serves as the basis for the image-reject receiver architecture, 

also called the Weaver architecture [4]-[7], illustrated in Fig. 2.4.  

Unfortunately, in practice the amount of image rejection achievable by 

implementations based on this architecture is limited by the gain mismatch between the 

different paths of the receiver as well as by the quadrature phase mismatch between the I 

and Q signals in the two local oscillators.  

The Weaver architecture is also susceptible to DC offsets and flicker noise. Self-

mixing due to the second LO can occur during downconversion of the received signal 

from the intermediate frequency to baseband. And similar to the direct-conversion 

architecture, even-order distortion and baseband circuit mismatch can also result in DC 

offset in the Weaver architecture. In addition, since the desired signal is frequency 

translated to baseband prior to analog-to-digital conversion, flicker noise from the 

baseband analog amplifiers and filters can potentially corrupt the desired signal.   
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Fig. 2.5 Low-IF architecture block diagram. 

 

2.5. Low-IF Architecture 

One way to avoid the problems associated with DC offsets and flicker noise is to 

perform analog-to-digital conversion at the intermediate frequency. By using digital 

circuit techniques to downconvert the desired signal from the intermediate frequency to 

baseband as well as to perform the subsequent amplification and filtering, impairments 

associated with analog implementation techniques can be avoided. However, due to 

conversion speed limitations in analog-to-digital converters, this approach is limited to 

low intermediate frequencies, and consequently, a third receiver architecture which is 

based on this technique is called the low-IF architecture [8]-[10]. Fig. 2.5 shows the 

block diagram of a low-IF architecture.  

Since the received signal is downconverted to an intermediate frequency, the low-

IF architecture must also content with the image problem. Consequently, the same image-

reject mixing technique used in the Weaver architecture must also be used in the low-IF 

architecture. This architecture is limited to applications which have relaxed image-

rejection requirements at small frequency offsets from the desired signal.  

 



 16

Selective
network

Envelope
detector

LNA

Ka(t)

Quench
oscillator

Lowpass
filter

Superregenerative
oscillator

 

Fig. 2.6 Superregenerative architecture block diagram. 

 

2.6. Superregenerative Architecture 

 The detailed block diagram of the superregenerative receiver is shown in Fig. 2.6 

[11]-[12]. The core of the diagram is the superregenerative oscillator. It is an RF 

oscillator that is controlled by a low-frequency quench oscillator, which causes the RF 

oscillations to rise and die out repeatedly. The RF oscillator can be modeled as a 

frequency-selective network fed back through a variable-gain amplifier. This gain is 

modified by the quench oscillator, making the closed-loop system alternatively unstable 

and stable. The primary function of the low-noise amplifier (LNA) is to isolate the 

antenna from the oscillator. Otherwise, the relatively large amplitude RF pulses present in 

the oscillator will generate an appreciable radiated power that can cause interference in 

other systems.  

Currently, the major application of the Superregenerative receiver is in short-

distance RF links, in which reduced cost and low power consumption are required. 

Among these applications are remote control systems (such as garage door openers, 

robotics, and model ships and airplanes), short-distance telemetry, and wireless security.  
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2.7. Receiver Architecture Selection Guidelines 

 System level specifications, such as modulation schemes, signal bandwidth, and 

interference rejection requirements, strongly influence the choice of receiver architecture. 

The advantages and disadvantages of the heterodyne architecture, direct-conversion 

architecture, the image-reject architecture, and the low-IF architecture are summarized in 

Table 2-1. 

Table 2-1 Receiver architecture performance summary 

 Advantage Disadvantage 

Heterodyne Excellent sensitivity and 

selectivity performance. 

Large number of discrete 

components. 

Direct conversion Minimal number of RF 

components 

DC offsets and flicker noise 

 

 

Image reject 

Facilitates integration of 

low phase noise LO. 

Large number of RF 

components. 

DC offsets and flicker noise. 

Image-rejection is limited by 

gain and phase mismatches. 

 

 

Low IF 

Minimal number of RF 

components. 

Avoids problems 

associated with DC offsets 

and flicker noise 

ADC sampling frequency must 

be at least fIF+fsig 

Image rejection is limited by 

gain and phase mismatches 
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2.8. Short-Range Wireless Communication Standards 

Many standards exist today for connecting various devices. At the same time, 

every device has to support more than one standard to make it inter-operable between 

different devices. These standards deliver opportunities for rapid ad hoc connections, and 

the possibility of automatic, unconscious, connections between devices. They will 

virtually eliminate the need to purchase additional or proprietary cabling to connect 

individual devices, thus creating the possibility of using mobile data in a variety of 

applications. Wired LANs have been very successful in the last few years and now with 

the help of these wireless connectivity technologies, wireless LANs (WLAN) have 

started emerging as a much more powerful and flexible alternatives to the wired LANs. 

There are many such technologies/standards and notable among them are 

Bluetooth, IEEE 802.11.b and ultra wide band (UWB). These technologies compete in 

certain fronts and are complementary in other areas. 

 

2.8.1. Bluetooth 

Bluetooth is a high-speed, low-power microwave wireless link technology, 

designed to connect phones, laptops, PDAs and other portable equipment together with 

little or no work by the user [13]. Unlike infra-red, Bluetooth does not require line-of-

sight positioning of connected units. The technology uses modifications of existing 

wireless LAN techniques but is most notable for its small size and low cost. Whenever 

any Bluetooth-enabled devices come within range of each other, they instantly transfer 

address information and establish small networks between each other, without the user 
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being involved. Bluetooth technology operates in the 2.56 GHz ISM band and uses FHSS 

(frequency hop spread spectrum) in a 10m to 100m range.  

 

2.8.2. 802.11 (“Wi-Fi”) 

Wi-Fi's popularity really took off with the growth of high-speed broadband 

Internet access in the home. It was and remains the easiest way to share a broadband link 

between several computers spread over a home. The growth of hotspots, free and fee-

based public access points, have added to Wi-Fi's popularity. The latest variant was 

802.11g. This Wi-Fi technology, like 802.11a, uses a more advanced form of modulation 

called orthogonal frequency-division multiplexing (OFDM), but enables it to be used in 

the 2.4 GHz band. 802.11g can achieve speeds of up to 54 Mbps [14]. 

Today 802.11 is rapidly proliferating all over the planet. Nonetheless, it still faces 

a number of technological challenges. A major one is range. The farthest a device can 

currently stray and still receive an adequate signal from an 802.11 access point is about 

300 feet and that's if there are no major walls or other substantial physical obstructions.  

Other major challenges 802.11 faces include how to improve data throughput speeds, 

enhance security, and improve quality of service.  

 

2.8.3. Ultra-Wideband (UWB) 

Ultra-Wideband (UWB) technology brings the convenience and mobility of 

wireless communications to high-speed interconnects in devices throughout the digital 

home and office. Designed for short-range, wireless personal area networks (WPANs), 

UWB is the leading technology for freeing people from wires, enabling wireless 
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connection of multiple devices for transmission of video, audio and other high-bandwidth 

data. UWB, short-range radio technology, complements other longer range radio 

technologies such as Wi-Fi, WiMAX and cellular wide area communications. It is used 

to relay data from a host device to other devices in the immediate area (up to 10 meters, 

or 30 feet).  

Specifically, UWB is defined as any radio technology having a spectrum that 

occupies a bandwidth greater than 20 percent of the center frequency, or a bandwidth of 

at least 500 MHz. UWB systems use Orthogonal Frequency Division Multiplexing 

(OFDM) to occupy these extremely wide bandwidths. UWB's combination of broader 

spectrum and lower power improves speed and reduces interference with other wireless 

spectra. In the United States, the FCC has mandated that UWB radio transmissions can 

legally operate in the range from 3.1 GHz up to 10.6 GHz, at a limited transmit power of 

-41dBm/MHz [15]. Consequently, UWB provides dramatic channel capacity at short 

range that limits interference. 

To illustrate the range of frequencies and IF bandwidths in current receiver 

designs Table 2-2 shows the allocation information pertaining to several commercially 

available wireless devices. Additionally, commercially available SAW filters are 

routinely incorporated for intermediate frequency (IF) discrimination in receiver 

architectures for cellular telephone standards, with these IF frequencies ranging from 85 

MHz to 400 MHz [16]. Although required IF frequencies vary widely depending on the 

receiver type and frequency plan, this information provides a general idea of current 

commercial IF frequency requirements. Dynamic range (DR) requirements associated 

with some wireless standards for cellular telephone, WLAN, and PAN are presented in 
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Table 2-2 for reference. These specifications are important in determining the practicality 

of implementing front-end integrated RF CMOS filters as these filters have finite 

maximum input signals and minimum noise characteristics which fundamentally limit the 

dynamic range achievable in the overall receiver.  

 

Table 2-2. Frequency allocations for wireless devices 

Device Frequency 

allocation (MHz) 

Channel BW 

(MHz) 

Receiver  

sensitivity 

RF  

Power 

WLAN 802.11.a 5725-5850 54 -82dBm to    

-65dBm 

50mW;250mW;

1W 

WLAN 802.11.b, 

(Wi-Fi) 

2400-2484 5.5-11 -76dBm 30dBm 

Bluetooth (PAN) 2400-2484 1.0 -70dBm 0dBm; 20dBm 

UWB 3100-10600 500 - -41.3dBm/MHz 

ZIGBEE 868/915MHz 

2.4GHz 

5 -88dBm and 

-92dBm 

0.5mW to 

10mW 

  

Table 2-3 Wireless standard dynamic range requirements. 

Receiver Type Dynamic Range (dB) 

CDMA Cellular 79 (-104 to -25 dBm) 

GSM Cellular 87 (-102 to -15 dBm) 

Bluetooth PAN 50 (-70 to -20 dBm) 
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With the rapid advancement of CMOS fabrication technology, more and more 

signal-processing functions are implemented in the digital domain for a lower cost, lower 

power consumption, higher yield, and higher re-configurability. Hence, the cost and size 

will be further reduced. Second, to further improve transceiver integration, the LC tanks 

associated with the VCO’s are required to be on board.  

The recent advent of wireless communications has created a need for high-

selectivity, integrated, continuous-time filters in the GHz range, in which inductorless 

active filters have encountered serious difficulties. Bandpass filters that utilize LC tank 

circuits have the advantage of being less sensitive to parasitic capacitance attributable to 

active device structures or on-chip signal routing. This allows for the implementation of 

filter circuits at higher operational frequencies, as these parasitic capacitors can actually 

be absorbed into the total reactance required for the design frequency. Even though LC-

based filters offer higher dynamic range with respect to Gm-C filters [11], they suffer 

from the large silicon area occupied by the inductors.  Alternately, filters based on Gm-C 

structures are fundamentally affected by the presence of these parasitics, where the 

inherent excessive capacitance values tend to increase the overall capacitance at a 

particular node, having the effect of reducing the highest achievable operational 

frequency. In comparison with the LC-based filters, the Gm-C filters occupy less silicon 

area but demand more power consumption. Furthermore, due to the contribution of noise 

associated with the active elements the dynamic range of this kind of filters are usually 

low.  

The main difficulties in integrating RF filters on-chip are: 



 23

1- High dynamic range requirement. An inductorless active filter can realize a high 

quality-factor bandpass transfer function, but cannot deliver reasonable dynamic range 

performance at gigahertz frequencies with low power. On the other hand, a pure passive 

LC bandpass filter can have a large dynamic range and requires no power supply, but 

needs high quality factor on-chip inductors. An active LC filter is a compromise between 

the above two types of filters. It uses on-chip inductors, and compensates the losses in the 

on-chip reactive components by active means. With the aid of active components, an 

active LC filter can realize a high quality factor bandpass transfer function with little or 

no insertion loss or even with gain in the passband. Although at present the dynamic 

range of active LC filters is still not sufficient for them to be included in wireless 

receivers, it is large enough to allow their use in wireless transmitters. Consequently, it 

turns out that the dynamic range requirement is the most important factor to enable RF 

filters on-chip. The experimental results for quality factor of on-chip inductors in CMOS 

and BiCMOS technologies suggest a quality factor around 5 and 15, respectively. 

However, Using the MEMS technique, the quality factor of on-chip inductors can reach 

as high as 30.   

2- The need for automatic tuning circuits. This is probably the second most important 

factor to enable RF filters on-chip. For RF filters the required quality factor is still 

relatively high (typically, 20~60), which makes them very sensitive to the process, 

voltage, and temperature variations. High frequency operation also makes the tuning 

design very difficult.  

3- Low-power requirement. This requirement is true especially for mobile 

applications. As more and more functions are integrated, the design is facing more and 
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more battery life problems. Power management will help, but in general we would prefer 

low-power designs for mobile applications.  
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CHAPTER III 

A FOURTH-ORDER ACTIVE LC BAND PASS FILTER 

 

3.1. Introduction 

 Surface acoustic wave (SAW) filters are applied extensively in today’s 

communication equipment. These high performance components have reached a key [17] 

position in current communication technology assisting the efforts to increase the spectral 

efficiency of limited frequency bands for higher bit rates. During the last decade, driven 

by booming wireless technology business, great and important progress in SAW device 

performance was made, and a variety of innovative applications were developed. These 

developments are based on technological improvements. SAW technology has evolved to 

the GHz range in recent years and now routinely covers the frequency range up to 3GHz. 

This frequency band is used as carrier frequency for many new wireless communication 

and sensor applications. SAW filters are not suitable for monolithic implementation and 

are usually implemented off-chip since silicon is not a piezoelectric material. Some 

attempts can be found in the literature [18] that implements an integrated SAW filter 

using a ZnO-SiO2-Si layered structure. The aluminum inter-digital transducers are 

located at the ZnO-SiO2 [18]-[19] interface to obtain a high piezoelectric material 

combining the attractive SAW propagation with a relatively easy fabrication process. The 

reduced size and weight of the complete system will be an advantage in cordless 

telephone, car radio, and all kinds of portable consumer electronics product. Moreover, 

receiver architectures, such as in radio, television, and other telecommunication systems 

use higher IF frequencies to improve the interfering signal rejection.  
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Recent allocations of radio frequency spectrum for cellular services have placed 

new emphasis on the development of small, low-cost, wireless products [20]-[21]. The 

commercial sector has responded with the introduction of chip sets with increasing levels 

of integration. However, to date, virtually all high performance wireless products 

continue to rely on discrete LC, crystal, ceramic, or SAW devices for the realization of 

RF pre-selection and IF channel selection filtering [11].  

Researchers have attempted to design high Q bandpass filters by enhancing lossy 

integrated inductors [17]-[29]. Shunt mounted resonators, composed of an inductor and 

capacitor in parallel can be used to realize RF bandpass filters [30]-[33]. Shown in Fig. 

3.1(a), active Q-enhancement for LC filters can be implemented by placing the lossy 

monolithic inductors in a positive feedback loop containing an amplifier to realize high Q 

filters [26]. Another equivalent approach is to connect a negative resistor in parallel with 

the LC resonator, and this resistor can be linearized to yield a filter with improved 

linearity [27] (see Fig. 3.1(b)). Furthermore, the negative resistor has to be variable to 

tune Q over process and temperature variations.   

 

3.2. Q-Enhancement Technique 

Regardless of the coupling mechanism between the resonators, losses associated 

with the on-chip reactive components change the center frequency and loaded quality 

factor of the filter. Having estimated and modeled the total resistive loss of the resonator, 

a negative resistor (-1/Gneg) can be added to compensate its effect. The Q-enhancement 

technique, shown in Fig. 3.2, is widely used to boost the Q of the filter [17]-[23].  
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Fig. 3.2 Q-enhancement technique applied to a RLC filter 

 

The series combination of the inductor (LS) and its loss (RL) can be modeled as a 

parallel combination of LP=Ls(1+1/Q0
2) and RP=RL(1+Q0

2) where Q0=Lω0/RL. Thus, the 

center frequency ω0, quality factor Q and the bandwidth BW of the resonator in Fig. 3.2 

can be described as:  
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As (3-1) shows, the quality factor of the inductor (Q0) modifies the center 

frequency and the Q of the resonator. Thus at high frequencies, due to the higher loss, a 

larger Gneg is required which results in changing both Q and ω0. Note that (3-2) is valid 

only around the LC tank’s resonant frequency, due to the fact that the equivalent parallel 

conductance from the inductor loss varies with frequency. 

The series combination of the inductor L and its loss RL can be modeled as a 

parallel combination of )/11( 2
0QLLP += and )Q1(RR 2

0LP += .  If the inductor quality 

factor Q0 is large enough then, LLP ≅  and LC/12
0 ≈ω . In this case the loaded quality 

factor of the tank depends on the exact relation between RP and Gneg (see (3-2)). The 

frequency response of the filter in Fig. 3.2 can be approximated as  
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where Gp=1/Rp, CLQGGGGA mnegPm /)/(0 =−=  and )/(/ negp GGLCQ −= . 
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Fig. 3.3 Q-enhanced LC bandpass filter. 

 

 Fig. 3.3 shows the circuit implementation of a second-order Q-enhanced LC filter.  

The center frequency tuning is achieved through varactors which are PMOS transistors 

implemented in separate wells (in an n-well technology) and with their drain/source 

terminals connected together to the well terminal. The capacitance seen by the gate is 

adjusted by changing the voltage Vf and exploiting the variation of the gate capacitance 

when the transistor goes from weak inversion to the accumulation region [23].  

 The cross coupled transistors M2-M3 form the negative transconductance -Gneg which 

based on (3-2) changes the quality factor of the filter. The transconductance Gneg has the 

following dependence on Vq. 

( )Tqqneg VVG −= β  (3-4)

where ( ) ( )13,2 //5.05.0 LWLWCoxq  µβ =  and (W/L)2,3 and (W/L)1 refer to the (W/L) 

ratios of M2,3 and M1 in Fig. 3.3, respectively.  
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 The control voltage Vgm changes the transconductance Gm of the input differential pair 

M4-M5 thus, changing the peak amplitude gain A0 of the filter while keeping the Q 

invariant. Note that Gm as a function of Vgm can be expressed as  

( )Tgmmm VVG −= β  (3-5)

where ( ) ( )65,4 //5.05.0 LWLWCoxm  µβ =  and (W/L)4,5 and (W/L)6 refer to the (W/L) 

ratios of M4,5 and M6 in Fig. 3.3, respectively.  

 Thus, using (3-4) and (3-5) the peak amplitude gain A0, defined in (3-3), can be 

expressed as,  
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(3-6)

 In a similar way the quality factor Q can be expressed as,  

)( TqqP VVG
L

C
Q

−−
=

β
. 

(3-7)

 

3.3. Higher Order LC Filter Implementation 

For a single ideal LC resonator considered between a source of impedance RS and 

a load of impedance RL, the loaded QL becomes RP/XP where RP=RS||RL and XP is the 

reactance of the inductor or capacitor at resonance. For source and load impedances of 

50Ω, the overall loaded QL and ultimately the frequency selectivity would be low. One 

solution to this problem is to implement an impedance transformer that can shift the 

source and load impedance up in value such that the effective source and load 

impedances seen by the resonator are higher. This is illustrated in Fig. 3.4(a). However, 
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the wire-wound impedance transformers shown in Fig. 3.4(a) are not usually used in 

practice. 
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Fig. 3.4 Single LC resonator with (a) ideal impedance transformers (b) tapped capacitor 

transformers. 

 

A more convenient way of realizing the impedance transformation is to use a 

tapped capacitor or inductor. The tapped capacitor, shown in Fig. 3.4(b), is usually 

preferred for practical reasons.  The impedance matching between the input and output 

impedances can be achieved by proper ratio between the tapped capacitors. The 

impedance transformation ratio at the input and output can be expressed as  
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Observe from (3-7a) and (3-7b), depending on the values of input and output 

impedances the capacitor ratios can be high which results in using big capacitors.  
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When realizing a practical narrow-band bandpass filter, two or more resonators 

are needed. The resonators must be coupled together, and the most common means of 

accomplishing this is to use capacitors, as shown in Fig. 3.5(a).  
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Fig. 3.5 Schematic of a coupled resonator bandpass filter using (a) capacitor (b) mutual 

inductance 

 

The choice of the coupling capacitor value is important. Too high a value results 

in over-coupling and a broadening of the response; on the other hand, too low a value 

results in under-coupling and excessive insertion loss. On-chip capacitor values usually 

show significant variations which demand a separate tuning scheme. Alternatively, by 

using mutually coupled inductors (Fig. 3.5(b)), the problem of the variation in the 

inductance value is solved since their values depend mostly on layout, which usually is 

less sensitive to process variations [33].  

 

3.4. Coupled Resonators Implementation 

As mentioned previously, to establish a magnetic coupling between two on chip 

inductors, we can use either layout [24] or circuit techniques [25]. In the former case, 

coupled-inductor resonators are implemented using on chip interleaved spiral inductors 
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on the top level metal and patterned ground shield to improve the quality factor. In this 

technique, large capacitive coupling can cause the phase difference of the currents in the 

coupled-inductors to deviate from the desired ο90  in addition to the capacitive loss. Also, 

there is no control on the magnetic coupling to change the quality factor of the filter.  
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Fig. 3.6. Two possible emulations of coupled inductors based on (3-9) (a) using VCVS’s 

(b) Norton equivalent using CCCS’s [31]. 

 

Another technique to couple two inductors is to emulate the magnetic coupling in 

an electrical way [25]. Starting with the equations describing an ideal transformer, there 

are different ways to emulate it. One option is,   

)s(sIL)s(sIL
L
M)s(Vand)s(sIL
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1
222

2
111 +=+=  

(3-8)

where M and 21LL/MK =  are the mutual inductance and the coupling coefficient, 

respectively.  
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Fig. 3.7. Emulation technique proposed in [25]. 

 

Two possible implementations based on (3-8) are shown in Fig. 3.6. The main 

drawback of Fig. 3.6(a) is the need of voltage summation in the input and output 

branches. Fig. 3.6(b) is the basic idea used in [25], in which instead of detecting the 

current before it flows into each inductor, the net current of each inductor is detected as a  

voltage drop across a resistor in series with the inductor (see Fig. 3.7). This series resistor 

degrades the quality factor of the inductor and the linearity of the filter. 
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Fig. 3.8 Proposed emulation technique for coupled inductors. 

 

3.4.1. Proposed Coupled Inductors Emulator 

The transformer equations in (3-8) can be written in a form suitable for both high 

frequency operation and practical implementation using current addition instead of 

voltage addition:   
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Equation (3-9) is obtained using the approximation V2≈L2sI2(s) which is based on 

the fact that since the two inductors are a great distance apart in space and there is no 

magnetic coupling between them, their mutual inductance is very small and K is close to 

zero (loosely coupled). Similarly, 
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Equations (3-9) and (3-10) suggest that the mutual effect of V2 and V1 can be 

emulated by converting voltage V2 and V1 to current using a transconductance block with 
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gain GK=M/(L1L2) and then integrating this current. Fig. 3.8 shows the proposed 

implementation of coupled inductors based on (3-9) and (3-10).  

The combination of the GK and integrator operation can be implemented using a 

properly sized cascode structure, as shown in Fig. 3.9.  
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Fig. 3.9 Cascode structure used as GK cell (a) Conceptual single-ended; (b) Fully-

differential implementation. 

 

Consider the small signal equivalent circuit of a cascode GK circuit shown in Fig. 

3.10. Since the output is connected to the LC resonator, Cgd2 and Cdb2 can be merged with 

the capacitor of the tank. Thus, their effect in the following analysis can be neglected.  
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Fig. 3.10 Small signal differential-mode equivalent circuit of a cascode structure 
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CP in Fig. 3.10 is the total parasitic capacitance at node VC which is mainly 

dominated by Cgs2. Straight analysis yields: 
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where Av2=gm2/g02.  

Note that the zero will occur after the pole implying that in the frequency range of 

p<ω<z the output current of Fig. 3.9 is the integrated version of its input voltage. In this 

frequency range, (3-11) can be approximated as: 
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where GK0=gm1gm2/(Cgs2+Cgd1).  

Thus, assuming L1=L2=L, the relation between the coupling circuit design 

parameters and the filter specifications can be found as: 
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(3-16)

where C is the resonance capacitance of the varactors and K is the coupling coefficient.  
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Fig. 3.11 A fourth-order LC bandpass filter. 

 

3.5 Fourth-Order Band Pass Filter Architecture 

Consider Fig. 3.5(b) with RS=RL=2R, L1=L2=L and C1=C2=C. For a fourth-order 

filter the ideal design equations for equal LC resonators can be calculated as [34]: 
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1LC
ω

= , 
Q2
1K = , 

C
L2QR = , 

RCQ
20 =

ω  
(3-17)

In critical coupling (flat passband), i.e. 2/1/0 =Qω , R has no effect on 

bandwidth but can change the peak and flatness of the passband. In other words, while 

the resonant (center) frequency LCKQ /20 =ω  is tuned by changing K, the value of R 

needs to be adjusted properly to preserve the flatness of the passband, which is to 

keep 2/1/0 =Qω . Note that at the center frequency and in critical coupling the absolute 

value of the transfer function from Vin to V2 is the same as Vin to V1. Furthermore, there is 

a 90° phase shift between V1 and V2.  

A simple fourth-order LC bandpass filter can be built using two equal resonators 

with their lossy inductors coupled to each other by a factor of K, as shown in Fig. 3.11. 

The transfer function of the filter using an arbitrary notation [24] can be written as: 
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(3-18)

where CKL )1(/1 2
0 −=ω , C/)K1(L/RQ 2−= and )GG/(1R negP −= .  

As equation (3-18) shows, the magnetic coupling K between the two inductors 

affects both 0ω  and Q. For a fixed 0ω , the effect of K can be compensated by varactor 

capacitance C. Once 0ω  is fixed, the bandwidth of the filter can be tuned by changing K. 

For proper operation of the magnetic coupling emulator, any magnetic coupling due to 

the interaction between the two inductors should be kept to a minimum. One way to 

accomplish that is by placing the inductors far from each other. Another option is to use a 

neutralization technique [11]. The former approach is used in the work presented here.  

Fig. 3.12 shows the circuit implementation of the fourth-order bandpass filter based on 

Fig. 3.8, Fig. 3.9 and Fig. 3.11.  

Gin converts the input voltage to a current, and also tunes the passband gain of the 

filter. Gin consists of a differential pair connected to the LC tank. The differential pair 

consisting of MC1-MC2 and IK realizes the emulator (GK/s in Fig. 3.8) which is connected 

in a cross coupled manner, in which the amount of coupling is controlled by IK. Mneg’s 

implement the Q-enhancement negative transconductance Gneg, as depicted in Fig. 3.2. 

On-chip spiral inductors and CMOS varactors form the resonators. The inductor 

parameters were calculated using ASITIC [28]. The varactors were realized using simple 

PMOS transistors with drain and source connected to ground [35].  
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Fig. 3.12  Fourth-order LC bandpass filter circuit implementation. 

 

The gate voltage Vctrl modifies the capacitance value of the varactor. Total losses 

of the resonators were calculated in a realistic estimation of inductor’s Q which for this 

technology is around 2 to 3. Using (1b) the value of the negative resistor (-2/Gneg) can be 

calculated based on the required quality factor of the filter. The bias current IQ sets the 

value of Gneg for the filter Q-enhancement.  

 

3.5.1. Nonlinearity Analysis 

Following the approach presented in [25], the nonlinearity of individual 

parameters (Gneg, Gin, Gk and CV) taken into account one at the time can be determined 

with the assumption that the rest of the circuit is linear. This approach provides insight as 
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to which parameters contribute most to the total nonlinearity. A detailed expression of the 

nonlinearity due to each individual block can be found in [23] and [29].  

The two parameters which are affected by the full output voltage swing are Gneg 

and GK. Due to the negative transconductance at the resonance frequency, the total output 

impedance of each resonator is extremely high. Thus, to generate a finite output voltage 

swing, a very small coupling current GKVI (and GKVQ) is required. In other words, the 

coupling transconductance GK is a small value and its impact on the overall nonlinearity 

of the filter can be ignored. Furthermore, the harmonics generated by the GK parameter 

get attenuated more due to the integration property of GK at the resonance frequency. 

Considering the negative transconductance Gneg as the main source of nonlinearity, the 1-

dB compression point of a second order LC filter can be approximated as [17]: 
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Note that the predicted V1-dB-Gneg of (3-19) and the total V1-dB from transistor level 

circuit simulation with Q=20 differ by 33%. To increase the linearity of the Q-

enhancement, source degeneration resistors for Gneg or attenuating the input signal to Gneg 

[27] could be used. Similar discussion can be held to study the two-tone behavior of the 

filter. The IM3 of the filter due to two input tones with equal amplitudes of Ain and at two 

frequencies close to ω0 can be approximated as: 
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where, β=1/2µCoxW/L.  
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Note that by having a better coupling between the two resonators, i.e. K≈1, the IM3 can 

significantly increase. Simulation results for two cases with Q=75, ω0=2.5GHz and 

different inductor losses verify the inverse relation between IM3 and Gneg, so that for 

Q01=2.7 and Q02=2 the IM3/Gneg ratio is -38.6dBc/8.46mA/V and -33dBc/9.9mA/V, 

respectively.  

 

3.5.2. Noise Analysis 

The total input referred noise of Fig. 3.12 can be expressed as: 
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where γ accounts for the excess noise of short-channel devices and α<1 is defined as [31]:  
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where ZI(f) and ZQ(f) are the total impedances seen by the in-phase and quadrature 

output nodes which at resonance are equal and can be approximated as 1/(GP-Gneg), thus 

α=1. AV is the absolute value of voltage gain from input to the in-phase (VI=V1) and 

quadrature (VQ=V2) outputs which at the resonance frequency are equivalent and can be 

approximated as: 
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(3-23)

Based on (3-21) and (3-23), one way to reduce noise is to increase AV by 

increasing Gin; however, this brings an increase in nonlinearity and power consumption 

due to the increased Gin. Having larger GP (i.e. smaller RL) helps to significantly reduce 

noise and power consumption. It also gives a raise to the center frequency of the filter for 
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the same amount of power consumption (See (3-1) and (1b)). Simulation result for Q=66 

and ω0=2.5GHz shows 15dB gain and 162µV input referred noise in 40MHz bandwidth. 

Based on (3-21) and (3-23), the predicted noise is 12% smaller and gain is 14% greater 

than the simulation results. These differences are mainly due to the approximate values 

(α=1, K=0.02 and γ=1.5) used to evaluate (3-21) and (3-23) as well as second-order 

effects not included in the approximation.  

 

3.5.2. Dynamic Range and Power Consumption 

The total 1dB compression point of the filter is due to the nonlinearity 

contributions of all the parameters. Considering all these nonlinearity sources makes the 

analysis very difficult. Instead, assuming Gneg as the only nonlinear element, the dynamic 

range (DR) of the filter can be approximated as:  
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Having a less resistive loss (RL) in series with the inductor 

increases )RQ/(1G L
2
0P = and reduces the required negative transconductance Gneg, which 

means a significant increase in GP-Gneg. By increasing GP-Gneg the Q is decreased and 

based on (3-25) this leads to increase in DR. Also, decreasing Gin improves the dynamic 

range as it reduces the swing of the voltage at the output and linearizes the filter. 

Furthermore, increasing GP-Gneg helps to reduce the power consumption. At the 

resonance frequency, the power dissipated due to the loss of the resonator can be 

calculated as: 
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For a fixed quality factor of the filter, having less resistive loss (greater GP) 

results in a smaller Gneg and consequently smaller Pdiss. Simulation results show that 

increasing inductor loss by 10% increases Gneg by 7% which leads to 70% increases in 

Pdiss.  

Table 3-1 compares some of the most important parameters of the proposed filter 

with those of [31] in terms of the resistance ratio RS/RL, where RS is the additional resistor 

in series with the inductor used in [31] to sense current, and RL is the inherent resistive 

loss of the inductor. The last column in Table 3-I compares the simulation results of the 

proposed LC filter with [31], both designed to have the same Q=50 and center frequency 

of 2.4GHz. These results are obtained based on the following parameters: Gin=3mA/V, 

L=2.5nH and C=1.4pF, Q0=2.5. 
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In Table 3-I, parameters marked with the prime sign (‘) are those of [25] and the 

comparison has been carried out with the assumption of having the same Q and ω0 for 

both cases. As Table 3-I shows, having less resistance in series with the inductor results 

in lower loss and consequently lower Gneg which leads to a higher 1dB compression 

point. Also, lower loss means lower noise associated with the loss which in  

connection with the improved 1dB compression point results in a significant increase in 

dynamic range.  

 

3.6. Test-Chip Measurement Results 

The filter chip prototype was fabricated in AMI 0.5µm CMOS technology. The 

micrograph is shown in Fig. 3.13 which occupies a silicon area of 0.15mm2.  

 

 

Fig. 3.13 Chip micrograph of the filter 

 

The measurement setup for the transfer function and the intermodulation distortion of the 

filter are shown in Fig. 3.14 and Fig. 3.15, respectively.  
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Fig. 3.14 Measurement setup for transfer function  
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Fig. 3.15 Measurement setup for intermodulation distortion  

 

The nominal power supply is 2.7V. Note that a simple open drain output buffer is 

employed to drive the 50Ω load of the instrument which shows a stand-alone attenuation 

of around -25dB at 2.5GHz. Simultaneous adjustments are made with both coupling (GK) 

and Q tuning (Gneg) to keep one of the outputs constant while adjusting the other one. By 

tuning the amplitude and Q of the filter, once the two plots intersect, the coupling 

between them can be tuned to gain the optimum flatness over the band. The center 

frequency can be tuned from 2.42GHz up to 2.528GHz realizing a 4.3% tuning range. 

Note that to preserve the 4th order nature of the filter at different center frequencies, the 

above procedure should be repeated to tune the filter. Fig. 3.16 shows the magnitude of 
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the frequency response of the both VI (upper trace) and VQ (lower trace) outputs of the 

filter which at the center frequency of 2.51GHz shows a -14dB passband gain. Note that 

due to -25dB attenuation of the output buffer, the actual passband gain of the filter is 

11dB.  

 

 

Fig. 3.16 Magnitude response (5dB/div) of both in-phase and quadrature outputs 

at 0f =2.51GHz (Note that the output buffer has -25dB attenuation). 
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Fig. 3.17 Phase difference (45◦/div) between the two in-phase and quadrature outputs. 

 

Fig. 3.17 shows the phase difference between VI and VQ outputs and observe that 

they are in phase quadrature (-90 degree) at the filter center frequency. By changing 

coupling (GK) the bandwidth of the filter can be tuned at the resonance frequency; which 

changes both the Q and the center frequency of the filter as depicted in Fig. 3.18. This 

figure shows the quadrature output of the filter (VQ in Fig. 3.10) for four different values 

of GK. The best measured ripple in the passband shows about ±0.4dB. The bandwidth 

tuning range is nearly 10%. To maintain a fixed center frequency while tuning the 

bandwidth, a separate center frequency tuning through Vctrl is carried out. Fig. 3.19 shows 
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the center frequency tuning of the quadrature output (VQ) by changing the control voltage 

Vctrl of the varactors manually. To maintain the flatness of the passband, the Q and 

coupling coefficient (GK) of the two resonators need to be tuned while the center 

frequency is changed.  

 

 

Fig. 3.18 Bandwidth tuning obtained by changing GK (5dB/div). Upper trace for BW= 

92.1MHz, and lower one for BW=102MHz. 
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Fig. 3.19 Center frequency tuning (~108MHz/div) between 2.42GHz and 2.528GHz. 

 

Fig. 3.20 shows the two-tone intermodulation distortion measurement. The two 

tones with equal amplitude of -38dBm are applied at 2.5GHz and 2.51GHz. The 

measured IM3 in a 1MHz resolution bandwidth is -38dBc. Fig. 3.21 shows the measured 

1dB compression point at 2.5GHz which shows -19dBm and -32dBm 1-dB compression 

points for input and output, respectively. The corresponding SFDR is 39dB and the 

measured output noise density at the center of the band is -164dBm/Hz. Thus, the output 

noise integrated over the 100MHz filter’s bandwidth, in a 1MHz bandwidth resolution is 

-84dBm, which yields a 1dB compression point dynamic range, noise figure and SFDR 
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of 52dB, 32dB and 39dB, respectively. The filter has a passband gain of 11dB and around 

30dB of image rejection at ±0f 100MHz. The minimum power supply for proper 

operation is 2.4V. A summary of the filter results is shown in Table 3-2. 

 

START 2.478 GHz                                                                  STOP 2.529 GHz
 

Fig. 3.20 Two tone (at 2.5GHz and 2.51GHz) intermodulation measurement. 
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Fig. 3.21 1dB compression point measurement at 2.5GHz and BW=92MHz. 

 

Table 3-2 Fourth-Order Filter Performance Parameters Comparison 

 [25] This work 
)(0 GHzf  1.8 2.5 
)(MHzBW  80 92 

Ripple in passband(dB) 25.0±<  4.0±<  
Passband gain 9 11 

*
0Q  2.7 2.7 

1-dB compression DR (dB) 42 52 
Current drain (mA)/Power 

supply (V) 
16/2.7 15/2.7 

Technology 
CMOS

m5.0HP µ  
CMOS

m5.0AMI µ  

Relative Area(mm2) per 
pole 

0.0375 0.0375 
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CHAPTER IV 

A STABLE VCO AMPLITUDE CONTROL LOOP 

 

4.1. Introduction 

In practical implementations of LC oscillators, due to dependence of the 

oscillation amplitude on the square of the oscillation frequency and the bias current of the 

LC tank [36], a stable amplitude control loop is essential to maintain constant oscillation 

amplitude over the tuning range of the VCO and to optimally bias the VCO over different 

conditions. Furthermore, using an amplitude control loop the bias current of the VCO can 

be tuned to achieve an optimum phase noise performance. A stable amplitude control 

loop, besides providing the above advantages for a single running VCO, it plays a key 

role in tuning the quality factor of Gigaherts LC filters. In this chapter a stable amplitude 

control loop is presented and its effect on improving the performance of LC VCO’s is 

demonstrated. It has been also shown that the proposed amplitude control loop can be 

used to tune the quality factor of 2nd order LC filters.  

 

4.2. Loss-Control Feedback Loop 

Besides its application in the VCO-based Q-tuning scheme, in practical 

implementations of LC oscillators, due to dependence of the oscillation amplitude on the 

square of the oscillation frequency and the bias current of the LC tank, a stable amplitude 

control loop is essential to maintain a constant oscillation amplitude over the tuning range 

of the VCO and to optimally bias the VCO over different conditions. 
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4.2.1 Nonlinear Behavior of Q-enhanced LC Resonator 

A lossless LC resonant tank has an ideal quality factor of infinity and, with a 

nonzero initial condition, produces a steady sinusoidal oscillation. However, mainly due 

to losses associated with the integrated spiral inductors, the achievable quality factor of 

the tank in the GHz frequency range is, in practice, low. This loss kills the oscillation. As 

explained in 3.2, to over compensate the total loss of the LC tank, a Q-enhancement 

technique can be achieved by introducing a negative loss (resistor) through a positive 

feedback around the tank. Fig. 4.8 shows the conceptual implementation of the Q-

enhancement technique.  

The non-linear transfer characteristic of -Gneg can be approximated by the 

following third degree polynomial. Even order terms do not appear due to the nature of 

the fully differential circuit,  

3
31 outoutG vavai

neg
+−=  (4-1)

where, a1>0 and a3>0.  

Applying Kirchoff’s current law at the output node, the non-linear differential 

equation governing the oscillator of Fig. 4.1 can be found as 
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where, CLP/10 =ω . 
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Fig. 4.1 Q-Enhancement LC resonator. 

 
Assuming a steady state response for the output voltage vout(t)=Assin(ω0t+φ) in 

Fig. 4.1, the describing function (DF) of -Gneg , which is the linear transconductance gain 

relating the amplitudes of the fundamental frequency component of the output current to 

that of the input voltage [37], can be expressed as 
2

31, 4
3

)(
)(

s
out

Gneg
DFneg Aaa

sV
sI

G +−== . 

Thus, in the s-domain, the describing equation of the circuit can be expressed as  

0)( 2
0

2 =++ ωsAbs s  (4-3)

where, 






 +−= 23
1 4

31)( sps AaaG
C

Ab .  

In the oscillator’s dynamic amplitude control mechanism, the position of the real 

part of the poles (b(As) in (4-3)) depends on the oscillation amplitude A. If A is less than 

the desired steady state amplitude As, the poles move into the right half plane, making the 

amplitude increase. If A is greater than As, the poles move into the left half plane, 

decreasing the amplitude. As a consequence of this property, the poles will stay on the 

imaginary axis for A=As. In other words, the stability requirement [38] requires 

0
)(
>

dA
Adb s .  
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Next, VCO amplitude regulation techniques based on the LCF scheme currently 

available in the literature are discussed.  

 

4.3. Loss Control Feedback Mechanism 

Fig. 4.2 shows the block diagram of an oscillator with a dynamic amplitude 

control mechanism in which Vf and VC  control the frequency and amplitude of the 

oscillation, respectively. 

refA

envv
∑

)cos()()( 0ttAtVo ω=
VCO

Detector
Envelope

fV

CV

 

Fig. 4.2 Oscillator with amplitude control feedback. 

  

In practical realizations of an oscillator, usually the signal VC in Fig. 4.2 changes 

with ω0, which means the oscillation amplitude changes as ω0 changes even when the Aref  

is fixed. As shown in Fig. 4.3(a), integrating the error signal VC before going to the 

oscillator can minimize this effect [39]. Assuming VC linearly controls the real part of the 

poles in (4-3) i.e., b(s)=αVC(s), the frequency response of the amplitude control loop A(s) 

in Fig. 4.3(a) [39] as a function of the input reference Aref(s) can be described as 
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(a) (b) 

Fig. 4.3 Oscillator with amplitude regulation loop (a) unconditionally unstable AGC [39]   

(b) conditionally stable AGC using a feed forward path [40]. 
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where, As, τInt and τENV are the oscillation amplitude at ω0, the integrator and the envelop 

detector time constants, respectively.  

The procedure of obtaining (4-4) is explained in detail in the next section. By 

observing the change of signs of the coefficients of the denominator of (4-4), based on 

the Routh-Hurwitz criteria [34] and [41], one can conclude the poles are located in the 

right half plane. This equation will be derived as a particular case of our proposed 

architecture in Section IV.  

The loop in Fig. 4.3(a) can be made conditionally stable by introducing a feed 

forward path (m) as depicted in Fig. 4.3(b) and reported in [40]. Unfortunately, this 

scheme requires stringent limitations on m for stability purposes and degrades the phase 

noise of the oscillator by injecting the low frequency noise associated with the feedback 

loop to the control voltage VC. This effect has been analyzed extensively in a bipolar 



 58

implementation of the amplitude control loop in [41]. Next, an alternative solution is 

proposed which overcomes the previous drawbacks. 

4.3.1. Proposed Loss-Control Feedback Loop 

Fig. 4.4 shows the proposed LCF loop scheme. This technique not only relaxes 

the stability requirement imposed on the local feedback F, to be discussed next, but it 

also generates a low pass filter which reduces and bounds the low frequency noise effect 

of the LCF loop.    
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Fig. 4.4 Proposed loss control feedback loop for amplitude tuning. 

 

With regard to the selective properties of the resonant circuit of the oscillator, i.e. 

the first order harmonic component markedly predominates over the other harmonics, we 

assume the solution in the form νout(t)=A(t)sin(ωt+φ), where A(t) is the waveform of the 

envelope with the steady state amplitude of A(∞)=As. Substituting νout(t) in (4-2) results in 
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 Leaving out all the components other than the fundamental frequency in (4-4a), 

yields the following coefficients for sine and cosine terms, which must be identically 

zero. 
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The steady state oscillation amplitude As can be obtained from (4-5b) by setting 

dA(t)/dt=0. Thus, the first term in (4-5b) becomes zero which means that in the second 

term either A(t) or the expression inside the brackets should be zero. Having A(t)=0 

results in no oscillation, thus the expression inside the brackets in (4-5b) can be solved 

for the steady state amplitude As which results in 
3

1
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transient behavior of A(t) before reaching the steady state can be analyzed by solving (4-

5b) for A(t).  
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where, 231 )(
3

)( ττ A
C
a

C
aGb P +

−
= .  

For oscillation amplitude close to the stable amplitude A(t0)=As, the term b(t) in 

(4-6) approaches zero and thus, the corresponding exponential term in (4-6) can be 

approximated by its first two terms of the Taylor expansion: 
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Note that b(t) is a function of A(t) and ω0, and since A(t) is controlled by VC (see 

Fig. 4.6),  in the frequency domain b(t) is a function of s and vc. Therefore, in the 

frequency domain, (4-7) can be expressed as:  

),(
2

)( c
s vsb
s

AsA −= . 
(4-8)

The exact dependence of b on vc in (4-8) depends on the implementation of the 

oscillator, but for small signal analysis we may assume they are linearly dependent [40].  

)()( svsb Cα= . (4-9)

To investigate the small signal behavior of the LCF loop in Fig. 4.4, the envelope 

detector’s output (VENV (t)) is assumed to always be a delayed version of A(t). This is due 

to the fact that the source follower behaves like a low pass filter with the time constant of 

τENV . Thus, in frequency domain the transfer function of the envelope detector can be 

expressed as: 

)1(
1

1
)(

)(
ENV

ENV

ENV s
ssA

sV τ
τ

−≅
+

=  
(4-10)

where, τENV  is the time constant of the envelope detector.  

Note that in the amplitude control loop in Fig. 4.4, vC(s) can be expressed as 
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. Thus, using (4-8) and (4-9), the frequency response of the 

amplitude of the LCF loop can be found as  
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where, τInt is the time constant of the integrator in Fig. 4.4.  
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To guarantee the stability of (4-11), the coefficients of the denominator should 

have the same polarity, thus the following requirement for F can be obtained to ensure 

stability of the proposed LCF loop in Fig. 4.4. 

2
ENVsAF τα

> . 
(4-12)

Equation (4-12) represents a second order system with a the damping factor of 

Ints
ENVs AAF ταταξ 2/)

2
( −=   which for a critically damped (Butterworth like) step 

response, i.e., ξ= 2/1 , the exact value of F can be found as 
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Fig. 4.5 LC oscillator core in Fig. 4.11. 
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In the case of the LC oscillator shown in Fig. 4.5, which is modeled in Fig. 4.1, 

the parameter α in the above expressions can be derived using the characteristic equation 

of the circuit. 
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Comparing (4-14) with (4-3) reveals that b=(GP-Gneg)/C which for 
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where, (W/L)1 and (W/L)tail are the W/L ratios of M1 and Mtail in Fig. 4.5, respectively. 

For typical values of α=2×109, As=0.1V and τENV=2nsec, (4-12) results in F>0.2. 

Observe from (4-11), a higher value of F yields a higher damping factor ξ and thus less 

overshoot in the step response of the loop. However, since in terms of circuit 

implementation, F represents the ratio of two different transconductance’s, a higher F 

results in increased power consumption.  

4.3.2. Transient Response of the Proposed LCF Loop 

The effect of F on the transient response of the amplitude control loop in Fig. 4.5 

can be explored using the model depicted in Fig. 4.6. The envelope detector in Fig. 4.6 is 

considered ideal. The parameter F in this model is equal to the ratio of Gm2/Gm1.  
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Fig. 4.6 Macro model of the proposed LCF of Fig. 4.4. 

 

A step input is assumed for the reference signal Aref(t) so that it changes from Ar0 

to Ar1 at t=0, and the corresponding steady-state oscillation amplitudes are A01 and A02, 

respectively. The control voltage vc in Fig. 4.6 can be expressed as 
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where, ve= A(t)-A02.  

From (4-6) it can be found that 
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By substituting (4-16) and (4-17) in (4-9), the equation governing the transient behavior 

of the amplitude dynamics of the system in Fig. 4.6 can be solved.  
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where, A&=dA(t)/dt and τInt=Cloop/Gm2=Cloop/(FGm1). 
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(a) (b) 

 
(c) 

Fig. 4.7 Basic amplitude response of the (a) conventional control loop in Fig. 4.3(a);               

(b) control loop in Fig. 4.3(b); (c) proposed control loop of Fig. 4.4. 

 

The numerical solutions of (4-18) for A02=0.1V and for both the proposed (see (4-

11) and Fig. 4.4) and the reported amplitude control loops in Fig. 4.3 are shown in Fig. 

4.7. As Fig. 4.7(a) shows, removing the local feedback F, which corresponds to τInt=∞, 

results in an unstable system (see Fig. 4.3(a)). By using (4-12) and following the above 

procedure used to derive (4-18), the poles of the unstable system are determined to be 

located at  )2/(1 loopsm CAGj α± .  

In a similar way, the step response of the amplitude control loop in Fig. 4.3(b) is 

shown in Fig. 4.7(b). By selecting proper value of the feed forward m in this scheme, the 
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loop can be stable. However, there is a large settling time at the output, which shows the 

behavior of a damped oscillation in the form of e-ξtsinωft. In the previous behavioral 

expression for the output, ξ=1/(2L(GP-Gneg)) and 22
0 ξωω −=f are the damping factor 

and the natural frequency of free oscillations in the circuit of Fig. 4.1.  

In Fig. 4.6, when the local feedback F=Cloop/(Gm1τInt) is present, the system 

becomes stable primarily due to a non-zero τInt. Depending on the value of τInt, the step 

response of the system can change from being over damped (small τInt) to under damped 

(large τInt). Assuming Gm1=1m/Ω, the transient response of (4-18) for three different 

values of F has been shown in Fig. 4.7(c). Note that higher F, which corresponds with 

higher Gm2, results in smaller τInt and thus smaller settling time. While increasing Gm2 

improves the settling time of the transient response and reduces the noise associated with 

Gm2, it also increases power consumption. The power consumed by Gm2 can be expressed 

as: 
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Fig. 4.8 Power consumption of Gm2 cell and settling time as a function of F. 
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An optimum value of Gm2 requires a trade off between the settling time of the step 

response of the amplitude control loop depicted in Fig. 4.7(c), and the power 

consumption described in (4-19). These two parameters, for Cloop=2pF and (W/L)2=50, as 

a function of Gm2 are plotted in Fig. 4.8.  

4.3.3. Circuit Implementation of the Proposed LCF Loop 

Fig. 4.9 shows the fully integrated circuit implementation of the proposed LCF 

loop together with the LC oscillator. Cross-coupled transistors M3-M4 compose the 

negative transconductance –Gneg which is controlled by the tail current source (M5). The 

implemented inductors use the top metal layer and are designed and optimized using 

AISTIC [42]. The varactors are accumulation-mode PMOS capacitors, and are realized 

using multiple simple PMOS transistors connected in parallel with drain and source 

connected to ground. The control voltage Vf  at the bulk terminal modifies the capacitance 

value of each varactor.  
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Fig. 4.9 Fully differential implementation of the proposed loss control feedback loop. 
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Fig. 4.10 depicts the circuit used as the envelop detector [43]. The transfer 

function of this circuit is derived in (4-10). Assuming that the DC voltage at the inputs of 

ME1-ME2 are high enough to drive these transistors in the saturation region, then this 

circuit is just a simple source follower and can detect any signal amplitude as long as it 

doesn’t push the transistors to leave the saturation region. The main issue associated with 

the envelop detector is the trade-off between its speed and accuracy. Increasing its bias 

current results in a faster transient response, while decreasing it improves the accuracy of 

the output voltage. The total parasitic capacitance at the output node is represented by 

CENV.  Gm1 and Gm2 cells used in Fig. 4.9 are implemented based on the simple three-

current mirrors OTA’s [44], and their ratio is determined by the stability factor 

F=Gm2/Gm1. A  total capacitance of 2pF is used to implement Cloop. 
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Fig. 4.10 Schematic of the envelop detector. 
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Fig. 4.11 Chip microphotograph. 

 

4.4. Experimental Results 

  A test chip has been fabricated in the TSMC 0.35µm CMOS process available 

through, and thanks to, MOSIS. The chip micro photograph is shown in Fig. 4.11. The 

entire oscillator and the control loop, along with additional on-chip buffers, occupy an 

area of 0.038mm2 and 0.008mm2, respectively. All the measurements described in this 

section include the effect of the on-chip buffers with a measured attenuation of -20dB at 

2.2GHz (for Ω50  termination). The oscillator operates from a single 2.8V supply 

voltage, and consumes 8mA current. The oscillator operates from a minimum power 

supply voltage of 1.8V up to 2.8V. The measurement setup for the phase noise of the LC 

VCO is shown in Fig. 4.12. 
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Fig. 4.12 Measurement setup for phase noise 



 69

Fig. 4.13 shows the measured phase noise for an oscillation frequency of 2.3GHz 

under the stable condition of F=2. The phase noise at an offset frequency of 1MHz from 

the carrier is -125dBc/Hz. Note the feedback factor F in Fig. 4.4 can be changed using 

Gm2 in Fig. 4.9. Reducing F to a value smaller than the critical value in (4-14) makes the 

LCF loop unstable. To verify this statement, Fig. 4.14 shows the measured phase noise of 

the unstable LCF loop, i.e. F=0. Due to the instability of the loop, the control voltage VC 

is changing and it modulates the amplitude and frequency of oscillation which changes 

the zero crossing points and results in the deterioration of the phase noise performance.  

 

 

Fig. 4.13 Measured phase noise of the VCO at 2.3GHz under stable LCF loop condition, 

i.e., F=2. 
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Fig. 4.14 Measured phase noise of the VCO at 2.3GHz under unstable LCF loop 

condition, i.e., F=0.  

 
The robust and stable step response of the proposed scheme is verified through 

measurement and this result is shown in Fig. 4.15. This figure shows the transient 

behavior of the control voltage VC for a reference amplitude step from 2.8V to 2.2V. The 

result shows a very close match with the behavioral model depicted in Fig. 4.7(c).  
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Fig. 4.15 Measured AC transient response of the feedback loop for F=2 (DC level=1.8V 

and Aref is a pulse wave with frequency of 20MHz). 
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Fig. 4.16 shows the measured oscillation frequency range versus the tuning 

voltage Vf as a function of the power supply. The results show the frequency range is 

fairly independent of the supply voltage and can vary from 2GHz to 2.5GHz.  
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Fig. 4.16 Experimental oscillation frequencies versus varactor control voltage as a 

function of the power supply. 

40−

30−

 

Fig. 4.17 Measured oscillation amplitude (-25, -29, -33, -36) dB for four different 

reference voltages (from bottom to top: 1.4V, 1.9V, 2.1V and 2.5 V). 
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The oscillation amplitudes for four different reference voltages are measured and 

the results are shown in Fig. 4.17. By applying different reference amplitudes, the control 

voltage VC in Fig. 4.9 changes. Under this condition, the variation of the oscillation 

amplitude versus VC is plotted in Fig. 4.18. The output amplitude shows a monotonic 

behavior with respect to the bias voltage of the tail current. Note that the level of the 

signal at the output already contains the -20dB attenuation due to the output buffer.  

Fig. 4.18 also shows the HD3 of the output amplitude, as well as the measured 

phase noise at 1MHz offset from the carrier frequency, as a function of the control 

voltage VC. At lower control voltages, the oscillation amplitude is lower and the phase 

noise is relatively poor, but the HD3 is higher primarily due to the smaller voltage swing 

across the LC tank. At very high values of the control voltage, the tail current transistor 

(Mtail) moves to the triode region and this leads to larger noise sources in the tank. The 

increased noise in the tank degrades both phase noise and the HD3. The optimum point in 

this figure, in terms of the lowest phase noise value, occurs at a bias voltage around 2V. 

At this bias, the variation of the oscillation frequency with respect to the tail current 

fluctuations is minimum.  
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Fig. 4.18 Measured oscillation amplitude (■), phase noise (●) and HD3 (▲) vs. the 

control voltage of the tail current source (VC in Fig. 4.9). 

 

4.5. Quality Factor Tuning of LC Filters 

The tuning techniques can be classified into two categories: indirect (master-

slave) tuning and direct tuning. Indirect tuning was the first technique developed for real 

time tuning of continuous time filters [45]-[46]. As shown in Fig. 4.19, indirect tuning 

uses a master as the plant in the tuning control system. The control loop tunes the master 

in such a way that certain signals generated by the master lock to the references. The 

resulting control signals are then used to tune both the master and slave filters.  

Filter
Slave

Filter 
Master

Control
Tuningreference

Input Output

 

Fig. 4.19 Indirect (master-slave) tuning scheme 
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Direct tuning was the first technique proposed to achieve better tuning accuracy 

than indirect tuning [47]. The basic concept behind direct tuning is shown in Fig. 4.20. 

Here the filter itself becomes the plant in the tuning control system, and it is periodically 

taken away from the signal path for tuning. Hence, the tuning accuracy does not rely on 

matching and is much improved.  

Depending on whether we use a filter or an oscillator as the plant in the tuning 

system, we have voltage-controlled filter (VCF) tuning [45]-[50] and voltage-controlled 

oscillator (VCO) tuning [51]-[54].  

Because VCF tuning needs a reference signal with low harmonic content and a 

phase detector having low offsets, it is very difficult to realize it at GHz frequencies. 

Furthermore, for Q-enhanced LC filters, automatic tuning is more difficult than for Gm-C 

filters because the filter’s critical frequencies depend on the passive devices’ values and 

are not as easily controlled as Gm to C ratio in Gm-C filters.  
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Fig. 4.20 Direct tuning scheme. 
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In general, the VCO-based tuning has the advantage over the VCF-based system 

that no input reference is needed. In addition, since the amplitude and phase of a VCO 

are, theoretically, independent thus, the Q-tuning loop and frequency tuning loop do not 

interfere. Unlike the VCO-based tuning system, the amplitude of the VCF’s output signal 

varies with frequency, thus the Q-tuning loop heavily relies on the accuracy of the 

frequency tuning loop. However, a problem of the VCO-based tuning system is that the 

inherent nonlinearity of the VCO affects the accuracy of the Q-tuning loop.  

 

4.6. VCO-Based Q-tuning 

The VCO-based Q-tuning scheme, shown in Fig. 4.21, has been successfully 

implemented for high order MMIC bandpass filters [55].  

This technique assumes a 0dB pass band insertion loss for the cascaded equal LC 

resonators in the slave filter which mandates that their quality factors should be infinite. 

The exact value of Gneg for an infinite Q can be obtained from a master VCO with the 

same LC resonator of the filter so that its resonant frequency is equal to the center 

frequency of the filter. 

An infinite Q, i.e. poles on the jω axis, for the VCO means oscillation with 

constant, regulated amplitude. An automatic amplitude control (AAC) loop detects the 

oscillation amplitude and compares it with a dc reference voltage using an integrator 

whose output is the Q-control voltage. The dc reference voltage is chosen so that the 

oscillation amplitude is maintained at a level low enough to ensure a good matching 

between its tank characteristics and the slave filter. Next we are showing that the above 
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technique can be also used to tune the quality factor of a single LC band pass filter to 

finite values of Q. 
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Fig. 4.21 VCO-based Q-tuning scheme. 

 
4.6.1 Principle of Operations 

Fig. 4.22(a) shows a second order LC resonator which can be considered as the 

slave filter in Fig. 4.20 but with only one resonator. Fig. 4.22(b) shows the master VCO 

used in Fig. 4.21. The quality factor of the Q-enhanced LC resonator [56], shown in Fig. 

4.22(a), in which the resistive loss of the tank has been compensated by adding the 

negative transconductance of Gneg at the resonance frequency can be expressed as 
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Fig. 4.22 (a) Q-enhanced LC filter (b) LC VCO 

 

The quality factor of the Q-enhanced LC resonator, shown in Fig. 4.22(a), in 

which the resistive loss of the tank has been compensated by adding the negative 

transconductance of Gneg at the resonance frequency can be expressed as 

L
C

GG
Q

negP −
= 1 . 

(4-20)

where, GP=(Q0
2RL)-1 and Q0 is the quality factor of the inductor. Typical values of Q0 in 

0.35µm CMOS technology are around 2.7 to 3.  

Fig. 4.22(b) shows the circuit implementation of the master VCO which requires 

|Gneg|>GP. The steady-state oscillation amplitude of this VCO has been derived in Section 

3-2-1 
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(4-23)

The above result for As can also be obtained using the describing-function 

technique [57]. The negative transconductance Gneg used in the LC tank of the filter 

behaves more linear than the one used in the oscillator due to the fact that the LC tank in 
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the filter experiences a smaller voltage swing. This means that the characteristics of Gneg 

of the filter in (4-1) can be, in practice, approximated as Gneg≈|a1|. Thus, from (4-20) and 

(4-23) the following relation between the quality factor of the slave filter and the steady 

state oscillation amplitude As of the master VCO can be approximated as 

L
C

Aa
Q

s
2

33
4≅ . 

(4-24)

Observe from (4-24) that the quality factor of the filter can be tuned by changing 

the oscillation amplitude As of the VCO. The above analysis of the VCO-based Q-tuning 

scheme of the 2nd order LC filters are experimentally demonstrated next and the results 

are also applicable to the higher order MMIC filters [55].  

 

 

Fig. 4.23 Microphotograph of the VCO-based Q-tuning scheme. 

 

4.6.2 Experimental Results 

Fig. 4.23 shows the microphotograph of the fabricated prototype in a TSMC 

0.35µm, 2-poly, 4-metal standard CMOS technology. The whole master VCO with the 

AAC loop along with the slave filter occupies an area of 0.08mm2 and 0.066mm2 and 

they consume 7mA and 8mA from a 1.8V supply voltage, respectively. A simple open 

drain output buffer is employed as the output buffer to drive the 50Ω load of the 
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instrument which shows a stand-alone attenuation of around -10dB at 2.25GHz. Fig. 4.24 

shows the measurement setup to tune the quality factor of the LC filter.  
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Fig. 4.24 Measurement setup to tune the quality factor of the LC filter. 

 

The measured characteristic of the amplitude control loop of the VCO is shown in 

Fig. 4.25 which shows a monotonic behavior with respect to the input reference voltage. 

This figure also shows the measured settling time of the Q-control voltage for different 

input reference voltages which demonstrate the stable performance of the AAC loop. The 

spurious-free dynamic range (SFDR) of the tuned LC filter is also shown in this figure. 

Note that by increasing the input reference voltage the quality factor of the filter is 

decreased and thus the SFDR is increased.  

Fig. 4.26 shows the measured amplitude response of the slave filter in the Q-

tuning loop. This figure shows that by changing the dc voltage reference of the amplitude 

control loop the quality factor of the slave filter can be tuned from 110 to 300 while the 

total current consumption changes from 15mA to 13mA, respectively 
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Input reference voltage [V]
 

Fig. 4.25 Measured oscillation amplitude (■), settling time of the Q-control 

voltage ( ) and the SFDR (▲) of the tuned filter 
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Fig. 4.26 Measured amplitude response of the LC filter for different values of Q. 

(5dB/div. vertical and 40MHz/div. horizontal) 
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CHAPTER V 

AN ACCURATE AUTOMATIC QUALITY FACTOR 

TUNING SCHEME FOR 2nd-ORDER LC FILTERS 

 

5.1. Introduction 

Traditionally, gigahertz filters were implemented off-chip with lumped RLC 

components, but recently, the increasing demand for portable low-cost radio frequency 

front ends has motivated the emergence of integrated LC filters [58]. However, the 

implementation of integrated LC filters continues to present a challenge. The low quality 

factor of on-chip inductors requires the introduction of active circuitry implementing a 

negative resistance to compensate for the losses associated with the inductance [59]. 

Furthermore, the large unpredictable variations in component values and parasitics of 

monolithic implementations produce large variations in the resonance frequencies and 

filter quality factors. These variations make the filter completely useless unless some 

kind of tuning can be done after fabrication. Even in this scenario, the variations in 

temperature and operating conditions make it necessary to include automatic tuning 

circuitry to have a practical commercial product.  

Automatic frequency tuning schemes for LC filters have already been developed 

[58], [60] and [61]. They employ the same techniques used for Gm-C filters [62]-[66]. A 

master filter in a VCO configuration is used to sense the oscillation frequency and a PLL 

is used to lock the oscillation frequency of the VCO to the desired reference frequency. 

However, the quality factor (Q) tuning scheme of LC filters cannot follow the same 
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principles of Gm-C filters due to the lack of precise relation between Q and amplitude 

response at the center frequency.  

This chapter introduces a technique for automatic tuning of the quality factor of 

the LC filters which relies neither on the phase information of the filter nor the exact 

value of the amplitude gain at the center frequency. The quality factor tuning is achieved 

based on the adjustment of the amplitude response of the filter at the center and one of 

the cut-off frequencies. Furthermore, since most of the information is processed at very 

low frequencies good accuracies are obtained. For example it can achieve an accuracy of 

1.9% for Q=50. This technique is validated through experimental results. We will present 

a preliminary Q-tuning architecture to reach the final proposed stable architecture.  

 

5.2. Automatic Quality Factor Tuning 

5.2.1 Existing Quality Factor Tuning Techniques 

 The traditional Q-tuning schemes reported for Gm-C filters [64]-[69] are not 

applicable to LC filters mainly because most of them rely on the fact that Q)j(H 0 =ω . 

Currently, available Q-tuning schemes for high frequency LC filters manipulate the 

frequency response of the filter in a digital [70]-[73] or an analog [61] feedback loop.  

 In [70] the quality factor tuning is achieved by converting the LC filter to an 

oscillator and then varying the negative transconductance until the desired (stable) Q is 

achieved. However, this technique relies on the assumption that the variation of the 

negative transconductances in the filter and the oscillator is constant which is valid only 

if a relatively high quality factor inductor is used in the resonator.  
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 In [71] the center frequency and the quality factor tuning are achieved by comparing 

the amplitude gain at three different frequencies. Low accuracy of the gain comparison at 

high frequencies and relying on the matching between the sampling times of the error 

signal at different frequencies are the main drawbacks of this technique.  

 In [72] a digital tuning scheme based on the phase comparison of the filter at different 

frequencies is presented. However, finite resolution of the needed frequency synthesizer, 

phase offset and parasitic poles and zeros of the filter limit its performance especially for 

high frequency applications.  

 The scheme presented in [73] is based on direct characterization of the complete 

frequency response of the filter, and it is not adaptable to automatic Q-tuning. Finally, the 

VCO-based Q-tuning approach presented in [61] is a great advance in the theory of 

automatic Q-tuning of LC filters. It varies the negative transconductance to tune a 

number of LC resonators to behave as ideal (loss-less) resonators based on a master-slave 

approach. However, the fact that the negative transconductance added to the LC 

resonators compensate the losses of the passive components only at one particular 

frequency imposes restriction on wider frequency range filters. 

5.2.2 Proposed Quality Factor Tuning Scheme 

 We will present how the proposed tuning scheme evolved. The first proposal (Fig. 

5.1) is the basis for the proposed scheme illustrated in Fig. 5.2. The approach presented in 

this work in principle achieves tuning of any arbitrary values of Q and amplitude gain A0 

at resonance. This approach uses information of the transfer function at two different 

frequencies. Assuming that these two frequencies are the center and one of the -3dB cut-

off frequencies (ωL), an iterative scheme to tune the Q and the gain of the filter at the 
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center frequency is proposed. Based on the fact that 00 )( AjH =ω  and 

2/)( 03 AjH dB =ω , the following results can be obtained.  
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Fig. 5.1 Proposed schemes for amplitude and quality factor tuning. 
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 Assuming that the input signal is V0cos(ω0t) and filter is tuned at the desired center 

frequency ω0, the peak amplitude gain A0 can be tuned using the amplitude tuning loop 

shown in Fig. 5.1. When the amplitude tuning loop settles to its steady state i.e., 

errora=0, the peak amplitude gain A0 at the center frequency is tuned to the desired 

amplitude gain of Ad. The steps to achieve Ad are indicated in Fig. 5.1.  

 Based on the -3dB cut-off frequency information, the quality factor of the filter can 

be tuned to the desired Qd using the Q-tuning loop shown in Fig. 5.1. This technique 

relies on the fact that Re(H(jωL))=A0/2. Note that according to (5-1) the output of the 

filter at ωL has two components with equal amplitudes of A0/2 but 90° phase difference. 

This explains the presence of sin(ωLt) and cos(ωLt) at the output of the filter in the Q-

tuning loop in Fig. 5.1. The voltage Vq, which controls the quality factor of the filter, is 

adapted such that when the loop settles to its steady state, the equality 

( ) 02/1/0
2 ≈−= dLq AAVerror  is satisfied.  

 Unfortunately the controls Vgm and Vq cause the two amplitude and Q-tuning loops 

interact. Assume the amplitude control loop is not yet calibrated such that the overall gain 

is too low, then the Q-tuning loop (even if Vq is correct) will see too small an output 

signal and think the Q is too large. Vq will then be erroneously adjusted to reduce the Q, 

This Q reduction (through Vq) will produce a further reduction in the gain A0 (as can be 

deduced from equations (3-6) and (3-7)), resulting in an unstable tuning scheme. An 

extensive analysis, illustrated in subsection D, has been carried out to study the stability 
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of the preliminary proposed scheme in Fig. 5.1 and the results confirm that this technique 

is not stable.  

5.2.3 Proposed Stable Q-Tuning Scheme 

 To fix the instability problem, the Q-tuning loop needs to know that the amplitude is 

too small (not yet settled). This can be accomplished by sending the amplitude error 

signal, errora in Fig. 5.1, to the Q-tuning loop. Fig. 5.2 shows the modified Q-tuning 

scheme.  

 The amplitude tuning loop of Fig. 4.2 remains the same as the one in Fig. 5.1. The 

computed amplitude error is defined as 

)1(
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0

d
a A

AVerror −= . 
(4-3)

 Equation (5-3) shows that when errora=0 the amplitude gain A0 at the center 

frequency is equal to the desired amplitude Ad. Note that at the same time the quality 

factor of the filter is tuned by the Q-tuning loop. Assume that the real part of the gain at 

the cut-off frequency ωL is AL≠A0/2 i.e., the output of the filter in the Q-tuning loop of 

Fig. 5.2 is ALV0(cos(ωLt)+sin(ωLt)). Thus, the error signal in this loop can be expressed as 
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 Observe from (5-3), when A0=Ad the errorq becomes zero if AL=A0/2 which 

means that the quality factor is appropriately tuned.  Also note that the feedback signal 

FB in Fig. 5.2 does not degrade the performance of the Q-tuning loop due to mismatches 

in the input amplitudes V0 and VL. Provided that the amplitude tuning loop has been 

already settled to A0=Ad and the condition LVV ≠0  holds, if AL=Ad/2 then errorq becomes 

zero which means that the quality factor is correctly tuned.  
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Fig. 5.2 Final stable Q-tuning scheme. 

  

 Let us study analytically the basics of the behavior of the Q-tuning loop. As explained 

above, the Q-tuning loop (both in Fig. 5.1 and Fig. 5.2) adapts the real part of the gain at 

the lower cut-off frequency to be A0/2. Let us suppose the filter Q has not been already 

properly tuned so that the filter bandwidth deviates from the desired ∆ωd=ω0/(2Qd) one to 
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the actual ∆ωa=ω0/(2Qa). As a consequence, the actual real part of the gain at the applied 

ωd (which is the target lower cut-off frequency), A0/δq deviates from the target A0/2 value. 

Using (3) and assuming Qd>>1, the real part of H(jωd) can be expressed as  
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 From (5-5) and using that ∆ωd/∆ωa=Qa/Qd,, the actual factor δq can be related with the 

error of the quality factor tuning as 

2

2

1
d

a
q Q

Q
+=δ  

(5-6)

11 −−=
−

=
∆

q
a

ad

a

a

Q
QQ

Q
Q δ . 

(5-7)

 When the Q-tuning loops in Fig. 5.1 and Fig. 5.2 reach their equilibrium states 

δq=2 and therefore Qa=Qd. That is, the actual Q (Qa) is equal to the desired Qd. 

5.3.4 Stability Analysis 

 Bellow, the stability of the Q-tuning schemes shown in Fig. 5.1 and Fig. 5.2 is 

analyzed assuming the second order LC filter shown in Fig. 3.3 is being tuned.  

 We can compute the target equilibrium values of the controlling voltages Vq and Vgm 

of the second order filter shown in Fig. 3.3. They can be deduced imposing that at the 

equilibrium A0=Ad and Q=Qd, and using equations (3-6) and (3-7). The following 

solution for Vq0 and Vgm0 can be obtained. 
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 In the next, we will demonstrate that both tuning systems shown in Fig. 5.1 and Fig. 

5.2 with the LC second order filter shown in Fig. 3.3 have the above values of Vq0 and 

Vgm0 as equilibrium point. However, the nature of the equilibrium points of both systems 

is very different from an stability point of view.   

Let us first study the dynamics of the system shown in Fig. 5.1. The derivatives of 

the two control voltages Vgm and Vq in the amplitude and Q-tuning loops in Fig. 5.1 can 

be expressed as 
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where, δq and A0 are defined in (5-6) and (3-6), respectively.  

Substituting δq and A0 for their expressions in (5-6) and (3-6) and redefining 

variables (u=Gp-βq(Vq-VT), v=βm(Vgm-VT) and mgm vV β/&& =  and qq uV β/&& −= ), equations 

(5-10) and (5-11) can be re-expressed as  
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where, 2/2
LqL VK β=  and 2/2

00 VK mβ= . 
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Equations (5-12) and (5-13) allow to identify dQLCu //0 =  and 

)2/(/0 dd QLCAv =  as an equilibrium point (which is the same equilibrium point 

defined by (5-8) and (5-9)). However, to find other equilibrium points the null isoclines 

of the system defined by 0=u&  and 0=v& need to be obtained.  Then using the phase 

portrait concept the qualitative behavior of the system given any initial condition can be 

determined [74].  

The above technique has been applied to (5-12) and (5-13) for the following 

parameters: Ad=1, C=1.6pF, L=3.7nH, VL=V0=1, βq=14.25m/Ω, βm=1.425m/Ω and Qd=10.  

The phase portrait of the system is plotted in Fig. 5.3.  

 

 

Fig. 5.3 Phase portrait corresponding to Fig. 5.1. 

 

Observe that the equilibrium point in Fig. 4.3 is a saddle point which is stable 

only for one trajectory. However, the system is unstable for any other initial conditions in 

the state space. Note that form the null isoclines of the system there is another 



 91

equilibrium point corresponding with u<0 and v<0 which is not considered here as it is 

not a feasible solution. 

  The same approach described above has been also used to study the stability of 

Fig. 5.2. Since the amplitude tuning loop (Loop1) in both schemes of Fig. 4.1 and Fig. 

5.2 are the same thus the expressions for gmV&  and v& remain intact. However, the 

expressions for qV&  and u& are changed to the following expressions. 
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 The same equilibrium point dQLCu //0 =  and )2/(/0 dd QLCAv =  can be 

identified from equations (5-14) and (5-15). Let us identify its stability behaviour using 

the phase-portrait concept. Fig. 5.4 shows the phase portrait of the system defined by (5-

14) and (5-15) using the same filter parameters. This figure clearly shows that the 

equilibrium point is a stable node and the system is asymptotically stable for any given 

initial condition in the state space.  
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Fig. 5.4 Phase portrait corresponding to Fig. 5.2. 

  

 The behavioral performance of the previously proposed tuning schemes has been 

examined using SIMULINK and their stability properties have been confirmed through 

SIMULINK simulations. The conceptual block diagram of the second-order LC bandpass 

filter used in the SIMULINK simulations is shown in Fig. 5.5.  
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Fig. 5.5 Conceptual block diagram of the filter used in SIMULINK simulations. 
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)V(Vgm

(sec)t  

)V(Vq

(sec)t  

(a) (b) 

Fig. 5.6 SIMULINK simulation of the tuning scheme of Fig. 5.3 (a) Evolution of the Vgm 

voltage versus time, and (b) evolution of the Vq voltage versus time. 

  

 Fig. 5.6 shows the results of a simulation of the tuning scheme proposed in Fig. 5.1. 

The simulation is done for the following target values, ω0=13×109rad/s, Ad=1 and Q=26. 

The filter parameters are the same used in the previous computations. The initial 

conditions of the loops were set to Vgm=1 and Vq=1. For that system, the equilibrium 

point is Vgm0=0.78V and Vq0=1.286V. In the simulation, we can observe how the system 

diverges from the equilibrium point as can be foreseen from the system phase portrait. 

)V(Vgm

(sec)t  

)V(Vq

(sec)t  
(a) (b) 

Fig. 5.7 SIMULINK simulation of the tuning scheme of Fig. 5.4 (a) Evolution of the Vgm 

voltage versus time, and (b) evolution of the Vq voltage versus time. 
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 Fig. 5.7 shows the results of a simulation of the tuning scheme proposed in Fig. 5.2. 

The target values, filter parameters and initial conditions are the same ones used in the 

previous simulation of Fig. 5.6. However, we can observe, that in this case the system 

control voltages Vgm and Vq evolve towards their stable equilibrium point. Fig. 5.8 shows 

the magnitude and phase plots of the resulting tuned filter. It has the desired Q and the 

desired gain at resonance. 

   

(a) (b) 

Fig. 5.8 (a) Magnitude and (b) phase plots of the tuned filter in Fig. 5.2 for Q=26 and 

Ad=1 at f0=2.07GHz 

4.3. Non-ideal Effects 

4.2.1 Remarks on the effect of parasitic capacitances 

 The main source of parasitics in the circuit implementation of the LC filter is shown 

in Fig. 5.9. The overall transfer function of the filter can be expressed as 
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where, CT=C+4Cod+Cos; Cid is the gate-drain capacitance of M4-M5 and Cod and Cos are 

the gate-drain and gate-source capacitances of M2-M3, respectively.  
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Fig. 5.9 Parasitic capacitances of the filter. 

 

Comparing (3-3) and (5-16) reveals that by considering the parasitic capacitances, 

center frequency will decrease to TLC/1 , which can be corrected in a frequency tuning 

loop, while Q will increase to )/(/ negpT GGLC − . Note that at the center frequency, the 

phase of the amplitude transfer function of the filter will change from 0° to 














−

TT

id

LCC
C 1tan 1  and the amplitude response of the filter will increase by a factor 

of
TT

id

LCC
C 11

2









+ . However, since the proposed Q-tuning scheme in Fig. 5.2 is not 

relying on the phase and absolute value of the peak amplitude gain of the filter, the above 

variations in these parameters will not affect the performance of the presented scheme. In 

summary, our proposed tuning scheme can absorb these parasitic effects. 
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5.3.2 Remarks on the Effect of the DC Offsets 

Assume the DC offset of the combination of the multipliers together with the 

LPFs and the summers in Fig. 5.2 can be modeled as additive terms of γ and θ, 

respectively. Recall that the gain of the real part of the filter at ωL is A0/δq, with δq ideally 

equal to 2. Following the steps shown in Fig. 5.10, the final error of loop1 can be found 

as 


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Thus, in steady state the relative error of the peak amplitude gain can be 

expressed as  
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Similarly, the final error of the loop2 and the corresponding relative Q-tuning 

error can be expressed as 
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Fig. 5.10 Effects of the DC offsets on the Q-tuning scheme of Fig. 5.2 (a) Loop1 

(b)  Loop2 

 

The numeric value of γ has been accurately extracted as a function of the input 

amplitude from the difference between the simulation and the measurement results (see 

Fig. 5.15).  Assuming Ad=1, the relative errors in (5-18) and (5-20) for θ=0 to θ=50mV in 

steps of 10mV have been plotted in Fig. 5.11.  
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mV50=θ

0=θ

 

mV50=θ

0=θ

(a) (b) 

Fig. 5.11 Estimated errors vs. θ (a) relative peak amplitude error (b) relative Q error 

 

Based on these results the relative errors of the amplitude and the Q-tuning loops 

for Vin=50mV and θ=50mV are around 1.2% and 2.5%, respectively. As Fig. 5.11 shows, 

besides minimizing the DC offsets of different blocks, by increasing the input amplitude 

the relative errors in the amplitude and the Q-tuning loops can be decreased. For example 

by increasing the input amplitude by 10%, for θ=50mV and Vin=10mV, the above errors 

decrease by 0.1% and 0.12%, respectively. Furthermore, under the influence of process 

variations due to the mobility (10%), threshold voltage (10%) and width (5%) deviations 

of MOS transistors as well as 15% degradation in the sheet resistance of the top metal 

layer, the simulation results show that the quality factor of the filter is changed by 8% 

which can be tuned back using the proposed scheme.  

 

5.4. Test Chip Measurement Results 

A prototype has been designed in a TSMC 0.35µm, 2-poly, four metal standard 

CMOS technology. The microphotograph is shown in Fig. 5.12 which occupies a silicon 

area of 0.0725mm2 and contains a filter with two multipliers.  
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Fig. 5.12 Chip microphotograph. 
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Fig. 5.13 Block Diagram of the fabricated chip. 

 

A simple open drain output buffer is employed at the output of the filter to drive 

the 50Ω load of the instrument which shows a stand-alone attenuation of around -10dB at 

1.8GHz. Fig. 5.13 shows the block diagram of the fabricated prototype chip. Note that we 

are using only one loop (filter). Note that the input sinusoids at ω0 and ωL can be 

generated by a fractional-N synthesizer with an LC oscillator. However, we have used 

external inputs in the following experimental results.  

 Fig. 5.14 shows the transistor level implementation of the multiplier [75].  
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Fig. 5.14 Schematic of the multiplier [75] with the RC LPF as its load. 

 

The injected current, called bleeding current, allows separate control of current 

flowing through the drive stage (M1 and M2) from the current switches (M3-M6). For the 

same drive bias current, bleeding reduces the current flowing through the current 

switches and load resistance. Thus, the flicker noise contributed by the switches is 

significantly reduced and allows us to use large load resistors which increase the 

conversion gain. Since the load of the multiplier is resistive, the need of a common mode 

feedback circuit at the multiplier output is avoided.  

It is of great importance to have exact knowledge of the DC performance of the 

multiplier for different input amplitudes. This has been carried out by the precise 

extraction of the DC output of the multiplier using the HP4156C while the test chip is 

shielded by the test fixture Agilent 16442A. The above setup is set to operate in the long 

time (1sec) mode during which the measured output is averaged over 1000 samples. 
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Fig. 5.15 DC level at the output of the multiplier MX2 in Fig. 5.13 as a function of the 

input amplitude at 2 GHz (circles: measured, solid line: simulated). 

 

Fig. 5.15 compares the measured and simulated DC output voltages of the 

multiplier with both inputs connected together. Note that the deviation of the measured 

data from the simulation data for amplitudes greater than -3dBm is mainly due to the 

large signal operation of the multiplier which no longer provides the exact multiplication 

of the input amplitudes.  

In this experimental prototype we chose to implement the low frequency portion 

of the control loops off-chip. That gives us more flexibility in the loops configuration 

during the testing process of the proposed procedures. However, as can be observed from 

Fig. 5.1 and Fig. 5.2, all the off-chip operations are just simple mathematical expressions 

of the signals at low frequency and thus, are appropriate for full integration of the entire 

tuning loop. Furthermore, the center frequency of the filter has been tuned manually 

throughout the following measurement results.  
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Fig. 5.16 Tuning algorithm using one filter. 

 

The Q-tuning procedure can be summarized as follows. Assume that for an 

arbitrary constant voltage Vgm0, the center frequency ω0 is already set. By applying an 

input signal at 0ω  to the loop1 in Fig. 5.2, the controlling voltage gmV  will settle to a final 

voltage Vgmf for which errora becomes zero i.e., A0=Ad. Then for Vgm= Vgmf, by applying 

the feedback signals FB, the Q-tuning loop in Fig. 5.2 (Loop2) will settle to a final 

control voltage of Vq=Vqf  for which errorq becomes zero i.e., AL=Ad/2. In the case that 

we don’t have two separate filters to tune the Q and the amplitude simultaneously the 

above procedure has to be repeated several times to get the desired amplitude and Q. Fig. 

5.16 shows the flow chart of the tuning procedure using only one filter.  

Fig. 5.17 shows the measured frequency response of the filter using a network 

analyzer for five different values of Ad and Q tuned from 60 to 220 at the center 
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frequency of 1.97GHz. The current consumption of the filter for Q of 60 and 220 are 

3.6mA and 4.3mA, respectively.  

)( ωjH

frequency  

Fig. 5.17 Amplitude A0(dB)={-15, -10, -5, 0} and Q-tuning Q={60, 80, 120, 

220}measurement results. 

Table 5-1 Summary of experimental results of tuning Q for different amplitudes 

Targeted values Achieved values Tuning error (%) 

Qd dA (dB) Q A 0(dB) 

Number 

of 

Iterations

Q-Tuning 

60 -15 63 -14 5 4.7 

80 -10 84 -11 7 4.7 

120 -5 127 -7 9 5.5 

220 0 246 -0.2 11 10.5 
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As shown in Table 5-1, which summarizes the performance of the tuning scheme, 

susceptibility of the filter to oscillate at very high values of Q results in higher tuning 

error with more iterations of the off-chip control loop.  

The measured frequency response of the filter for fixed amplitude of Ad=0dB and 

Q tuned from 60 to 120 is shown in the Fig. 5.18. In this case, since only Q is a variable 

in the tuning scheme, better performance has been achieved in terms of tuning error and 

number of iterations. The performance of the tuning loop for this case is summarized in 

Table 5-2. 

)( ωjH

frequency  

Fig. 5.18 Q-tuning measurement results for Q={50, 60, 70, 120} and fixed amplitude of 

A0=0dB at ω0=1.84GHz.  
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Table 5-2 Summary of experimental results of tuning Q for fixed amplitude at 

ω0=1.84GHz. 

Targeted values Achieved values Tuning error (%) 

Qd dA (dB) Q A 0(dB) 

Number 

of 

Iterations

Q-Tuning 

50 0 51 0 5 1.9 

60 0 62 -0.1 7 3.2 

70 0 74 -0.1 7 5.4 

120 0 125 -0.2 9 6.9 
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CHAPTER VI 

A HIGHLY LINEAR PSEUDO-DIFFERENTIAL 3rd-ORDER 

LOW PASS FILTER 

 

6.1. Introduction 

The development of a host of portable wireless communication systems increases 

a demand for high performance and highly integrated circuits. High frequency low 

distortion continuous time filters are among the key building blocks for most of the high 

performance systems like ADCs and asymmetrical digital subscriber loops (ADSLs) [76].  

Due to the rapid increase in the power consumption of the classical Active-RC filters to 

maintain their quality performance at higher frequencies, fully balanced Gm-C filters have 

received considerable attention [76]-[81]. However, due to the lack of large feedback 

gain on the integrators in the implementation of Gm-C filters, higher frequency of 

operation and larger signal linearity are imposed on them.  

In analog/mixed signal processing, fully differential structures are preferred in 

comparison with their single-ended counterparts because they result in a larger dynamic 

range and a better rejection to power-supply noise and clock feedthrough. The main 

disadvantages of the fully differential approach are the increased power and area 

requirement due to the common mode feedback (CMFB) circuit and the limitation of 

filter speed due to the loading of the CMFB circuit on the differential path. Furthermore, 

the CMFB circuit is intrinsically slower than the differential one and thus, in the presence 

of mismatches which lead to an interaction between the common mode and differential 
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paths, plays a greater role than the differential one in determining the maximum operating 

frequency of fully differential Active-RC filters.  

For applications of even lower power supply voltage and larger signal swing, 

pseudo-differential (PD) structures, [82]-[84], become more advantageous since they 

avoid the voltage drop across the biasing current source which due to considerations in 

matching, noise and output impedance should be at least few hundreds of mV. However, 

since in the PD structure the two input branches operate independently and the whole 

structure can be seen as differential only if the input signal is balanced, i.e. 

Vin±=Vcm±vac/2, a careful and efficient control over the common-mode behavior of the 

circuit is required. In fact a common-mode signal at the OTA inputs follows the same 

path as the differential signal, which is the only one containing the information and the 

only one of interest for analog processing. If the OTA output is taken differentially, any 

common-mode signal is ignored, thus leaving virtually the same differential information 

as in a truly differential implementation. This, however, is true only if the common mode 

at the OTA outputs is low enough not to push the OTA out of its linear operating regime. 

This means that the common-mode signal allowed at the input of the OTA must be low. 

In the presence of mismatches a differential-mode signal can arise due to the common-

mode signal multiplied by the mismatch factor. Thus a low input common mode voltage 

helps in this way too. Another cause of increased common-mode signal at the OTA 

outputs is the unwanted signals such as the power supply noise, which can be 

capacitively coupled to both the OTA inputs. A well-designed bias circuit and a careful 

layout to avoid as many couplings as possible have to be used. Another important issue is 

that, in pseudo-differential transconductors, the current consumption, the linearity and, at 
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least as second order effect, the transconductance are functions of the CM input voltage. 

A CM signal therefore can originate a large amount of distortion also in the process of 

differential signals. 

Considering the effect of mobility degradation in short channel transistors, Table 

6-1 summarizes some of the important features of FD and PD transconductors for 

Vin1,2=VCM±Vin/2. In this table VDSAT represents the saturation voltage of the input 

transistors and Ain is the magnitude of the differential input signal. As stated above, 

removing the tail current source, in a PD structure, reduces the minimum supply voltage 

Vddmin and increases the output voltage swing which yields a higher dynamic range (DR) 

with respect to the FD structure. Removing the tail current source, however, results in 

larger common-mode gain (ACM). In a FD structure, the common-mode gain can be 

reduced by increasing the output resistance of the tail current source. However, for the 

PD structure, the common and differential mode gains, ACM and ADM, are equal, resulting 

in CMRR=ADM/ACM=1. This large ACM, in PD structures, can lead to huge common-mode 

variations at the OTA outputs unless a fast and strong CMFB is used. Furthermore, in a 

PD structure, a second order term always appears at the output current which its 

amplitude depends on the VCM and the second-order transconductance (g2) of the input 

transistors.  

In this chapter, a linearized PD CMOS OTA is presented. The behavior of a PD 

voltage buffer is studied and the effect of the second order harmonic on the overall 

linearity is explored. Analytical results show that the third order harmonic distortion 

(HD3) of the output voltage of a PD buffer is related to the amplitude of the second order 

harmonic.  
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Table 6-1 Summary of fully differential and pseudo-differential OTA’s performance 
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6.2. OTA Architecture 

Considerable work has been reported in the literature on improving the linearity 

of continuous time Gm-C filters [83], [85]-[87]. The challenge in this area has been on 

processing large signals at high frequencies and reducing the harmonic distortion of such 



 110

circuits. However, little has been done on the effect of the system on the linearity 

performance of the OTA’s as their main building blocks.  
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Fig. 6.1 Second-order Gm-C bandpass filter. 

 

Consider the Gm-C implementation of a second-order bandpass filter illustrated in 

Fig. 6.1. This topology is often preferred with respect to other versions since an 

additional lowpass output is available [88]. Furthermore, it has the advantage that allows 

controlling the common-mode voltage at both integrator outputs. In addition a minimum 

sensitivity of the quality factor with respect to capacitance mismatch is achieved by 

choosing C1=C2 [88].  Assuming C1=C2=C and neglecting finite output impedances of 

the OTA’s the transfer function of this filter can be expressed as 
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(6-1)

where, the center frequency and quality factor of the filter can be expressed as  

CGG mm /210 =ω  and 321 / mmm GGGQ = , respectively.  
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Note that the gain of the filter at the center frequency 0ω  is 340 /)( mm GGjH =ω  

which for Gm3=Gm4 becomes one. This is considered as the worse scenario for the 

linearity of the output signal in presence of a relatively large input signal.   

In pseudo-differential implementation the control of the common-mode output 

voltage can be done taking advantage of the presence of lossy-integrators which are 

generally used to introduce dumping. In fact a pseudo-differential transconductor closed 

in a negative feedback, creates a low impedance to ground for both the differential and 

common-mode signals. This automatically controls the common-mode output voltage. 

This is not the case for fully differential signal and thus a common-mode feedback must 

be implemented separately. Thus, in Fig. 6.1 the common mode output voltage is 

controlled by Gm3 which creates low impedance to ground, meaning that Gm2 and Gm4 

don’t need to have CMFB circuits. Thus, due to the high output impedance, the only 

block which its output voltage needs to be controlled is the Gm1.  

As far as the linearity is concerned, Gm1 has a little effect on the overall linearity 

of the output voltage in Fig. 6.1. This is due to the fact that the output impedance seen by 

Gm1 is large and since the voltage swing at this point is limited thus, Gm1 should be small. 

Assuming that Gm1=Gm2, the effect of Gm2 on the linearity of the output voltage is 

negligible too. Therefore, it can be concluded that the bottle neck for large signal linearity 

is the output node at which, for Gm3=Gm4, the signal swing is as large as the input swing.  

The above fact can be generalized to the voltage buffer, shown in Fig. 6.2(a), 

which is a series combination of two identical Gm blocks in a unity gain negative 

feedback loop. The first Gm in Fig. 6.2(a) converts the input voltage (Vin) to current (Iout) 

with some degree of nonlinearity. This nonlinear current flows across a diode connected 
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Gm, which behaves as a nonlinear resistor, deteriorating more the linearity of the output 

voltage. As illustrated in Fig. 6.2(b), only if the V-I transfer function of the diode 

connected Gm was exactly the inverse of the I-V transfer function of the input Gm, the 

output signal would be very linear. However, due to the large swing of signal across the 

drain-source of both Gm cells, the two transfer functions are not quite the same.  
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Fig. 6.2 (a) voltage mode buffer (b) conceptual implementation of Fig. 6.2(a) (c) general 

representation of Fig. 6.2(a) 
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The linearity behavior of the system shown in Fig. 6.2(a) can be analyzed using 

the control theory. Consider the general representation of Fig. 6.2(a) as depicted in Fig. 

6.2(c). The input and output signals in this figure can be expressed as  
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By substituting Si in So in the above equations, and equating both sides the 

following relation between the coefficients of Si and So can be obtained  
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Observe from the expression of b3 the second harmonic term of So can be used to 

cancel the third order harmonic distortion of Si, i.e. b3=0.  

The above idea can be applied to linearize some analog circuits which inherently 

contain even order information at their output. One example of such circuits is PD 

OTA’s. To explore the linearity behavior of the output signal of Fig. 6.2(a), consider its 

PD implementation shown in Fig. 6.3. Transistors M1 and M2 are identical with the same 

W/L ratios and considering the θ effect, their I-V characteristics can be expressed as: 
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Fig. 6.3 PD implementation of Fig. 6.2(a). 
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Based on (6-2), the output current of M1 contains higher order harmonics. 

Assuming an input sinusoidal signal )cos( tAV inin ω= , the output current of M1 can be 

expressed as 

)2cos()cos( 21 tBtBIi DCout ωω ++=  (6-3)

where,  

rththin BVVAB 1111 )32( βθβ =+−=  (6-4)

)31(
2
1 2

12 thin VAB θβ +=  
(6-5)
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(6-6)

where, )(
2
1

1 L
WCoxnµβ = , )32(1 ththinr VVAB θ+= and 2/)31(2

2 thinr VAB θ+= . 

Using (6-2)-(6-6), the third-order harmonic distortion (HD3) of the output voltage 

vout=vGS2 can be found as: 
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To verify the accuracy of (6-7) a simulation has been carried out and for 

IDC=90µA, Ain=1Vp-p, W/L=10 and θ=0.3 a HD3 of -76.8dB is obtained. Hand 

calculation based on (6-7) predicts a HD3 of -79.3dB.  

6.2.1. Mismatch Effect 

Mismatch between transistors M1 and M1’ in Fig. 6.4 will cause a variation in 

their output currents which results in a non-zero second order harmonic and a degraded 

third-order harmonic. To address this issue let us re-write (6-4) and (6-5) as 

rBB 111 β=  (6-8)

rBB 212 β=  (6-9)

where, )32(1 ththinr VVAB θ+= and 2/)31(2
2 thinr VAB θ+= . 

Using (6-8) and (6-9) and following the same procedure used to derive (6-7), after 

a few laborious derivations, the following expressions for HD3 and HD2 of the output 

voltage in Fig. 6.4 can be drawn.  
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(6-11)

where, 1β  and 1β ′  represent theβ  factors of M1 and M'1, respectively.  
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Fig. 6.4 Differential implementation of Fig. 6.3. 

 

For a mismatch of β1/ β’1=δ, HD3’ in (6-10) can be calculated as  
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Note that for δ=1, i.e., β1= β’1, HD2’=0 and (6-10) reduces to (6-7).  

6.2.2. Proposed Linearized PD OTA 

A careful look at (6-7) reveals that by properly increasing the second order 

harmonic of the output current of M1 the overall HD3 of the output voltage can be 

decreased. Thus, to linearize the structure of Fig. 6.2, the second order harmonic of the 

output current needs to be properly generated and injected back to the output node.  

The chain nature of the Gm-C filter implementation allows each Gm cell to take 

advantage of its following Gm cell to extract some of its output signal properties. This is a 

well known technique that in fully differential implementation of Gm-C filters with 

source degenerated Gm cells, the DC operating point of the output voltage of each cell 

can be extracted by the following cell. In the next section we will show that using this 
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technique, besides extracting the DC operating point of the output voltage in the PD 

implementation, the second order harmonic of the output signal can be extracted as well.  

Based on the above discussion, Fig. 6.5 shows the block diagram of the proposed 

OTA. The dashed block, called OTA2, is the diode connected Gm cell in a voltage buffer 

structure and it contains the DC operating point and the second-order harmonic 

extractions of the output signal to be used in the CMFB loop and the linearizing 

technique, respectively. OTA1 doesn’t need to be as complicated as the OTA2 since its 

input voltage is assumed to be linear. However, in a structure like Fig. 6.1, OTA1 needs 

to contain the DC extraction circuitry to be used by the preceding OTA block. The details 

of the circuit implementation of different blocks in Fig. 6.5 are presented in the next 

section. 

 

6.3. Circuit Implementation 

Fig. 6.6 shows the core, Gm in Fig. 6.5, of the proposed OTA circuit. In 

comparison with the traditional PD structure [84], cross coupling of the output branches 

results in a differential property for each output current which not only improves the 

common mode rejection ration (CMRR) but also increases the effective gm by a factor of 

2 i.e., )(2 21121 ininmoutout VVgII −=− . This increase in the effective gm, however, 

deteriorates the signal to noise ration (SNR) at the output node.  
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Fig. 6.5 Block diagram of the proposed OTA. 
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Fig. 6.6 Proposed OTA core. 

 

The combination of M2-M4 extracts the DC information of the input voltage. A 

simplified version of this operation is shown in Fig. 6.7. To extract the DC information of 
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the input signal, the output currents of M1L and M1R, which are two identical gm cells 

with complementary inputs, are summed up at the node CM. Using 

I1L=IDC+α1Vin1+α2V2
in1, I1R=IDC+α1Vin2+α2V2

in2 and Vin1=-Vin2=vac/2, the total current 

flowing into the node CM can be expressed as 

2
2

2
2

11
ac

DCRLCM
vIIII α

+=+= . 
(6-12) 

where, ( )2/5.0 thDCinoxDC VVLWCI −= µ .  
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Fig. 6.7 DC and second-order harmonic extraction circuit. 

 

In the above expressions, α1 and α2 are the transcnductances associated with the 

first and the second order harmonics, respectively. Thus, the voltage at node CM can be 

expressed as 
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Substituting vac=Aincosωt in (6-13) results in the following expression for VCM  
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)2cos( tAVV CMDCCM ω−=  (6-14) 

where, 

 
2

2
2

2 2
4

m

in

m

DC
DC g

A
g

IV α
−

−
=  

(6-15) 

2

2
2

2 m

in
CM g

AA α
= . 

(6-16) 

Observe from (6-15), the first term contains the information of the input DC 

voltage and the second term contains the information of the second-order harmonic. In 

other word, the node CM in Fig. 6.7 contains the essential information needed to stabilize 

the DC output voltage in a CMFB loop as well as to linearize the small signal output 

current. Thus, the net information of the frequency multiplication, DC extraction and 

adder blocks in Fig. 6.5 can be easily obtained at the node CM in Fig. 6.7.  

It is worth mentioning that to extract the DC information the input voltages could 

have directly connected to the gates of M3’s in Fig. 6.6, removing the parasitic pole at the 

gate of M3. However, this scenario increases the parasitic capacitances seen by the input 

signals which ultimately reduce the frequency of operation.  

6.3.1. Harmonic Injection 

Fig. 6.8 shows the feedback circuit used to inject the second-order harmonic 

information back to the first Gm cell. Considering the negative sign of the small signal 

information in (6-15), node D in Fig. 6.8 is the only node in the Gm structure which can 

properly conduct the injected second-order harmonic to the output. Furthermore, the 

output impedance of the Gm cell is not affected by the injecting feedback circuit 

connected to the node D. To ensure that the DC component of the injected current will 

not affect the DC bias current of the main Gm, the reference current for Mfb has been 
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generated using the circuit shown in Fig. 6.8. In this circuit the capacitor Cf=1pF 

sufficiently attenuate the small signal components of the reference current.  

In PD circuits the control of the common mode output voltage can be done by 

taking advantage of the presence of lossy integrators which are generally used to 

introduce dumping. In fact a PD transconductor closed in negative feedback, creates a 

low impedance to ground for both the differential and common mode output voltages.  
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Fig. 6.8 Second-order harmonic injection circuit. 

 

6.3.2. CMFB Loop 

If the proposed Gm cell is not loaded with a similar diode connected Gm cell the 

harmonic injection block, M5-Mfb in Fig. 6.8, can be used to adjust the output DC 

operating point. Thus, for this scenario the combination of M5-M5fb along with the DC 

extraction circuit of the following Gm cell is called the CMFB loop. In this case, the 
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control voltage Vbias of M5 serves as the reference voltage for the CMFB loop while the 

DC information of the output nodes is available at the CM node of the following Gm cell. 

By changing Vbias, the DC current of M5 is changing. Then, this current is compared with 

the DC current of Mfb which has the information of the output DC voltage. The 

difference between I5 and IMfb flows across the diode connected transistor M2 which 

mirrors this difference to the output node. The outcome of the above procedure changes 

the DC operating point of the output node. Transistors Mr in Fig. 6.6 and Fig. 6.8 are 

operating in triode region and are used to tune the Gm value of the OTA cell and their 

drain-source resistors can be changed by control voltage VCTRL. The overall CMFB loop 

gain can be found as  
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Fig. 6.9 Biasing the harmonic injection circuit. 
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Assuming CL>CD>CCM, the dominant pole is located at the output node and the 

frequency behavior of the CMFB loop can be tuned by changing the load capacitance CL.  

The common-mode gain Acm and common-mode rejection ration (CMRR) of the 

proposed Gm cell at very low frequencies can be expressed as  
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Fig. 6. 9 shows the biasing circuit for the harmonic injection block. The complete 

schematic of the proposed OTA is shown in Fig. 6.10. 
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Fig. 6.10 Complete schematic of the proposed OTA. 
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A. Noise Analysis 

Considering only the thermal noise, the corresponding input referred noise 

voltage of the proposed transconductance cell as well as the harmonic injection circuit 

(Fig. 6.9) can be expressed as:  
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where, BW is the equivalent noise bandwidth.   

As (6-21) shows by increasing gm1 the input referred noise can be reduced at the 

price of increasing power. Using (6-4)-(6-7) and (6-21) the total signal to noise ratio at 

the input (SNRin) can be expressed as: 
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(6-22)

As (6-22) shows, for a given HD3, increasing gm1 improves the SNRin but at the 

same time, it increases the power consumption.     

 

6.3.4. 3rd Order Low Pass Filter  

As illustrated in Fig. 6.11, as an application of the proposed PD OTA, a 3rd order 

LPF based on ladder structure is implemented. It consists of 7 PD OTA and the cut off 

frequency is programmable around 10.7 MHz by changing the value of Gm’s.  
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Fig. 6.11 Block diagram of the 8th order Butterworth LPF. 

 

6.4. Measurement Results 

A 3rd order low pass filter using the proposed OTA has been fabricated in AMI 

0.5µm CMOS process available through MOSIS. Fig. 6.12 shows the micrograph of the 

chip which occupies an area of 0.019mm2. Fig. 6.13 and Fig. 6.14 show the measurement 

setups for transfer function and intermodulation distortion of the PD LPF, respectively.   

 

 

Fig. 6.12 Microphotograph of the fabricated chip. 
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Fig. 6.13 Measurement setup for transfer function. 
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Fig. 6.14 Measurement setup for intermodulation distortion. 

 

A source degenerated buffer, shown in Fig. 6.15, is used as buffer to characterize 

the OTA and the filter’s performances. Fig. 6.16 shows the frequency spectrum of the 

buffer for a signal at 10.7 MHz with 1VPP amplitude. Fig. 6.17 shows the frequency 

spectrum of the proposed OTA implemented in the structure of Fig. 6.4.  
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Fig. 6.15 Output buffer. 

 

A HD3 of -69dB for an input signal at 10.7 MHz and 1 VPP is obtained. Fig. 6.18 

shows the two tones measurement result. The two tones are applied at 11.9 MHz and 12 

MHz with total amplitude of 1 VPP. The measured IM3 is -67dBm. Fig. 6.19 shows the 

IM3 measurement results for 10 different chips to explore the effect of the process 

variations on the OTA performance. The measured CMRR of the OTA is 55dB at 10 

MHz and the measured input referred noise spectral density at 40 MHz is 1.1 HznV / .  

 

 

Fig. 6.16 Frequency spectrum of the output buffer.  
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Fig. 6.17 Frequency spectrum of the proposed OTA. 

 

Fig. 6.18 IM3 measurement of the proposed OTA. 
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Fig. 6.19 Measured IM3 for 10 chips at three different frequencies. 

 

Fig 6-20 shows the measured frequency response of the filter. The filter cut off 

frequency can be tuned from 12MHz to 24MHz. The total output noise integrated over a 

bandwidth of 12 MHz is about 300µVrms. This corresponds to 66dB of dynamic range 

for 0.5% total harmonic distortion (THD). Fig. 6.21 shows the two tone measurement 

result for the LPF. The two tones are applied at 11.9MHz and 12MHz with total 

amplitude of 1 VPP and the measured IM3 is -63dBm. Fig. 6.22 shows the frequency 

response of the bandpass filter with the center frequency of 10.7MHz. Illustrated in Fig. 

6.23, using two tones at 10MHz and 11MHz with 1Vpp total amplitude, an HD3 of -

65dB can be obtained for the BPF.  Table 6-2 compares the measured results of this work 

with the previously reported publications.   
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Fig. 6.20 Frequency response of the third-order filter. 

 

 

Fig. 6.21 IM3 measurement of the third-order LPF. 
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Fig. 6.22 Frequency response of the 2nd order band pass filter in Fig. 6.1. 

 

 

 
Fig. 6.23 IM3 measurement of the 2rd order BPF. 
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Table 6-2 Summary of experimental results of the PD LPF 

Reference [87] [82] This work 

Filter order 5 4 3 

f-3dB 100 kHz 100 MHz 12 MHz-24 MHz 

IM3 

@ Vin 

@ frequency 

 

- 

40 dB 

700 mVpp 

100 MHz 

63 dB 

1 Vpp 

12 MHz 

Dynamic range 57 dB 45 66 

Power supply > 0.9 V 3.3V 3.3 V 

Current consumption 10.5 µA 26 mA 20 mA 

Area 0.2 mm2 0.158 mm2 0.105 mm2 

Technology N/A 0.5µm CMOS 0.5µm CMOS 

 

 

 

 

 

 

 

 

 



 133

CHAPTER VII 

A LOW THD BANDPASS-BASED OSCILLATOR 

USING MULTILEVEL HARD LIMITER  

 

7.1. Introduction 

Sine wave generators are required in a number of diverse application areas, 

including audio testing, calibration equipment, transducer drivers, power conditioning 

and automatic test equipment. As the other characteristics of integrated circuits improve 

with technology, the linearity and spectral purity of the signals generated in systems 

become increasingly important.  

Producing and manipulating the sine wave function is a common problem 

encountered by circuit designers. A sinusoidal oscillator is a combination of a selective 

(linear) circuit to set the oscillation frequency, a power boosting element at the oscillation 

frequency, and an active element (limiter) to stabilize the oscillation amplitude [89].  

To start up the oscillation, the poles of the linearized circuit have to be on the right half 

plane (RHP) of the complex frequency plane. The actual placement of the poles on the 

imaginary axis is due to the nonlinear components in a positive feedback loop.   

The selective network is ideally composed entirely of linear elements and 

includes reactive components, which can be reduced to a simple resonant circuit or a 

bandpass filter. The active element has the essential feature of being nonlinear (hard 

limiter) and is assumed to be free from reactive parameters. Therefore its behavior is 

defined by a static characteristic of arbitrary shape. The property of the static 

characteristic of the nonlinear active element (limiter) essentially determines the level of 
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distortion of the generated sinusoidal signal. However, the nonlinearities may cause the 

oscillation frequency to deviate from that expected based on linear operation if the 

amplitude becomes excessive. For example in a master-slave tuning scheme a voltage 

controlled oscillator (VCO) with significant nonlinearities, even though locked to the 

external clock with a phase locked loop (PLL), results in a poor tracking operation. Thus, 

VCO linearity is critical and is maintained by controlling the amplitude of the oscillation 

so that the effect of the selective circuit nonlinearities on the oscillation frequency is 

minimized. Amplitude control can be achieved with an automatic gain control circuit or 

more simply with a carefully designed hard limiter circuit.  

LC tank [90] and active-RC [91] circuits are among the most popular approaches 

to implement oscillators. While for practical reasons the former approach is not preferred 

for implementations at relatively low-frequencies, the later one suffers from the 

frequency limitation of the active elements (Opamp) operating in closed loop. 

Operational transconductance amplifier (OTA) based oscillators seems to be a better 

solution for frequencies below GHz due to the fact that they have high frequency poles 

and operate in open loop architectures [92].  

 

7.2. Bandpass-Based Oscillator Theory 

The bandpass-based oscillator, shown in Fig. 7.1(a), consists of a bandpass filter 

as the selective element together with a hard limiter as the active element in positive 

feedback [92]-[94]. The conventional oscillator uses a two level comparator as indicated 

in Fig. 7.1(b) where |Z0| is the clamping amplitude and x0 is the threshold for the input 
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signal. i.e., f(x)=x for x<x0 and f(x)=Z0 for x>x0. A sound use of the bandpass filter in this 

structure allows decoupling the amplitude and frequency controls of the oscillator.  
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Fig. 7.1 (a) Bandpass based oscillator model (b) Conventional static characteristic. 

 

That is, the oscillation amplitude is indirectly controlled by the clamping levels 

|Z0| of the active element (comparator) while the oscillation frequency is changed by 

tuning the center frequency of the bandpass filter. The above property is due to the fact 

that only at the center frequency of the bandpass filter the loop gain phase becomes zero. 

If the gain in the feedback loop is made much larger than unity (before clamping), the 

feedback loop can be viewed as a sine-to-square wave converter. Due to the presence of 

the bandpass filter which attenuates the harmonics of the square wave but the 

fundamental one, the describing function (DF) [95] method can be used to study the 

dynamic behavior of the loop. In this technique, the input of the nonlinearity is assumed 

to be an undistorted sinusoidal signal, x(t)=A0sin(ω0t). The higher order harmonics 

present in the output signal y(t) in Fig. 7.1(a) are supposed to be filtered out sufficiently 
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by the bandpass filter. Assuming A0>x0, the amplitude of the fundamental component 

asin(ω0t) of y(t) can be found from its Fourier series as 
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where, m is the slope of the non-linear characteristic in Fig. 7.1(b) and T is the period of 

the signal.  

Thus, the describing function of the nonlinear block in Fig. 7.1(b), which is the 

linear gain relating the amplitude of the fundamental component at the output to that of 

the input, can be expressed as 
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Therefore, the hard limiter function f(·) in Fig. 7.1(a) can be expressed as a piece-

wise linear function which its slope depends on the oscillation amplitude A0, i.e., 

)()(
0AN

x
y

dx
xdf ≈= . Hence, the describing function of the whole oscillator in Fig. 7.1(a) 

can be related to the transfer function of the bandpass filter (H(s)) as  
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0ANsY
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(7-3)

Assume the bandpass filter has the following transfer function 
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where, Q and ω0 are the quality factor and the center frequency of the bandpass filter, 

respectively.  

Using (7-3) and (7-4), the time domain differential equation associated with the 

closed loop block diagram of Fig. 7.1(a) can be written as 
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Once the steady state is achieved, i.e. when the coefficient of dx(t)/dt in (7-5) 

becomes zero, the oscillation amplitude A0 can be determined from (7-5). This is due to 

the fact that the poles placement at the resonant frequency has to be just on the imaginary 

axis.  
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(7-6)

Observe that the oscillation frequency is equal to ω0 and independent of the 

oscillation amplitude. Next we propose a multilevel hard limiter scheme that combined 

with a bandpass filter yields an enhanced THD of the bandpass-based oscillator 

waveform. 

 

7.3. Proposed Multilevel Hard Limiter 

Little has been reported in the literature regarding the optimum shape of 

multilevel hard limiter (static characteristic) block in order to minimize its output 

harmonic distortion. Regarding the possible nonlinearities to be used in the feedback loop 

of Fig. 7.1(a), some restrictions must be made; otherwise the study of the oscillation 
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made by the describing function (DF) methodology is not feasible. We will exclusively 

focus on switching characteristics, i.e., slopes are only zero or infinity. Furthermore, 

practical implementation of these elements is relatively easy.  
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Fig. 7.2 Generalized static characteristic. 

 

7.3.1. Optimum Static Characteristic (Multilevel Hard Limiter) 

For the generalized static characteristic in Fig. 7.2, the output must be bounded 

therefore the slope of mN should be zero, where N is the number of levels.  
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To determine the remaining slopes in Fig. 7.2, the input and output of the static 

characteristic block are assumed to be x(t)≈A0sinω0t and  y(t)≈asinω0t, respectively. Note, 

due to the odd symmetry of Fig. 7.2, y(t) does not contain any cosine terms. To find the 

output amplitude a, the time ti where the input amplitude A0 exceeds the voltage level of 

xi must be known. 
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Using (7-1a) and f(x) for different intervals of x in Fig. 7.2 the output amplitude a 

with mN=0 can be found as  
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where,  
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π
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(7-9)

and,  

0/ Axii =ρ  (7-10)

Thus, based on (7-8) the describing function of Fig. 7.2 can be expressed as  
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Suitable choices of r(ρi) and mi can minimize the output harmonics. This is 

explored next. As an example, a system with N=4 will be analyzed. The transfer 

characteristic of the analyzed system is shown in Fig. 7.3(a). The describing function can 

be found as  
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When the circuit reaches a steady-state oscillation (i.e. s=jω0) the slopes of the 

hard limiter characteristic of Fig. 7.3(a) can be obtained using equations (7-6) and (7-12). 
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Fig. 7.3 (a) 4-level static characteristic (b) 4-level MHL optimized to reduce THD.  
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Using (7-8) for N=3, the Fourier series coefficients an of the output of the MHL 

block for A0>x2 can be calculated as 
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where, the index n represent the odd harmonics.  

The Pn functions are introduced to simplify the notation for an. The Pn functions 

to calculate the first four odd harmonics are shown in Table 7-1.  

 

Table 7-1 Pn(ρi) functions for an, i=1, 3, 5 and 7 
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It is important to note that for all Pn(ρi) functions in Table I Pn(0)=0. This 

property will be exploited to find the optimum slopes of the non-linear characteristic of 

Fig. 7.2 and Fig. 7.3(a) to null the third and the fifth harmonic components.   

If ρ2= ρ3, the expression for an can be simplified to  

Λ,7,5,3,1),()()( 22121 =+−= nPmPmma nnn ρρ . (7-17)

Analyzing Fig. 7.3(a) and using ρ2= ρ3, which implies r(ρ2)=r(ρ3) and x2=x3, 

results in m3= ∞. The same result could have been obtained from (7-15) knowing 

r(ρ2)=r(ρ3) implying a denominator of zero. 
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Our ultimate goal is to minimize the number of harmonics at the output of the 

multilevel hard limiter. The first step in doing this was setting m3= ∞. To further simplify 

an, the remaining terms must be reduced. The second term in (7-17) can be made zero by 

choosing m2=0, or by setting ρ2=0 implying x2=0. When m3 was set to infinity previously, 

x2 was made equal to x3. Therefore, x2=x3=0 would result in m1=m2=m3=∞ and the static 

characteristic in Fig. 7.3(a) would result in a two-level hard limiter (comparator). From 

here, the scenario of m2=0 is a better option to null the second term without 

compromising the characteristic of the active element. 

To null the remaining term in (7-17), there are two possibilities. First, m1 can be 

set to 0. However, this choice of m1=0 results in a dead band in the characteristic of the 

nonlinear block and prevents the start-up of the oscillator (see Fig. 7.3(a)). The second 

method to cancel the first term in (7-17) would be to set ρ1=0. Having ρ1=0 implies x1=0 

and r(ρ1)=0 which makes m1= ∞. From (7-13), having r(ρ1)=0 will also result in m1= ∞, 

verifying the result. Fig. 7.3(b) shows the resultant 4-level MHL with m1= ∞, m2= 0, m3= 

∞ and m4= 0. 

Note that in (7-17), the product of mi and Pi(ρ1) cannot be zero (mi× Pi(ρ1)=∞×0). 

This multiplication implies ai must always have a finite value. Although the output 

harmonics cannot be made zero, the THD at the output of the active element can be 

minimized if odd slopes (m1, m3, m5, . . .) are made infinite and even slopes (m2, m4, m6, . 

. .) are made zero.  

From the previous example where N=4, a more general output static characteristic 

can be obtained to minimize the output harmonics of the hard limiter. For even integer 

number of levels N it is required that N=2k, where k is an integer number. The 
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generalized static characteristic for minimized output harmonics is shown in Fig. 7.4. 

Next the detailed analysis of finding the optimum values of xi’s and yi’s to null the third 

and the fifth order harmonics at the output of the MHL block is presented. 
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Fig. 7.4 Generalized static characteristic for minimum output harmonics 

 

7.3.2 Time Domain Characterization 

Previously, the slopes of the MHL block were determined based on a combination 

of a general analysis and a specific example. However, to implement the MHL block into 

a practical system, the values of xi and yi must be exactly determined. If a sine wave is 

applied as the input to the generalized static characteristic shown in Fig. 7.4, the resulting 

positive half wave is shown in Fig. 7.5. To obtain the values of xi and yi, a Fourier 

analysis must be performed on the output of the MHL (see Fig. 7.5). 
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Fig. 7.5 Output of MHL for N slopes and a sine wave input. 

 

To begin, a simple comparator will be used as the limiter building block. The 

reference level of this block will be taken as zero such that the generated output will be a 

square waveform. The output of this comparator with a reference of zero will be denoted 

fo(t). There are two methods which may be used to obtain the output waveform shown in 

Fig. 7.5.  

The first implementation focuses on using the sum of the outputs of 2N-1 

comparator's with different references of ±yi. However, if this method is used, besides the 

increased power consumption and complexity, the exact times (ti) where the output's are 

summed will vary based on fluctuations in the reference levels of the different 

comparator's. These fluctuations will produce an unwanted output waveform which could 

cause the system to not operate as desired. 

The second implementation to obtain the MHL output as shown in Fig. 7.5 is 

based on using only one comparator with a reference voltage of zero. To illustrate this 
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methodology, again we use the previous example of a 4-level static characteristic. The 

output of this block for a sinusoidal input is shown in Fig. 7.6.  
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Fig. 7.6 Input (thin) and output (thick) of the nonlinear characteristic of Fig. 7.3(b). 
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Fig. 7.7 Decomposition of the output of the MHL block. 

 

As depicted in Fig. 7.7, the output of this block fc(t) can be obtained by summing 

f0(t) (ideal comparator output) together with two other properly scaled and time shifted 

versions of f0(t).  
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where, y1 and y2 are amplitudes of the stairs of waveform of Fig. 7.6   

Note that due to the symmetry of fc(t), the even harmonics of its Fourier series are 

zero. The first odd harmonics of fc(t) can be expressed as  

)(2cos)( 00
12

1
20 ωπω a

Ty
yyac

















+=  

(7-19)

 

)3(6cos)3( 00
12

1
20 ωπω a

Ty
yyac

















+=  

(7-20)

 

)5(10cos)5( 00
12

1
20 ωπω a

Ty
yyac

















+=  

(7-21)

where, T1=T/t1 and a0(nω) and ac(nω), n=1, 3 and 5, are the coefficients of the 

Fourier series of f0(t) and fc(t), respectively.  

A careful examination of (7-20) and (7-21) shows that in the case of a linear 

relation between y1 and y2, a proper value of T1 can make the two terms inside the 

brackets zero. To find this proper value of T1, the terms of )/cos( 1Tiπ for i=2, 6 and 10 as 

functions of T1 are plotted in Fig. 7.8. In order to simultaneously null the third and the 

fifth order harmonics, it is required that T1=8 which yields 

cos(6π/T1)=cos(10π/T1)= 2/2− . Thus, to make (7-20) and (7-21) zero, y1 and y2 have 

to be related as 

 

2
1

2 =
y
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(7-22)
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Fig. 7.8 )/cos( 1Tiπ for i=2, 6 and 10 as functions of T1=T/t1. 

 

7.3.3. General Case: Multilevel Hard Limiter 

From the previous example, a general expression for the output f(t) of the MHL 

block in Fig. 7.5 can be derived by induction as 
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By substituting (7-23) into (7-1a), the following expression for the Fourier series 

of the output signal fc(t) can be found.  
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(7-24)

where, ac(nω0) and a0(nω0) are the Fourier series coefficients of fc(t) and f0(t), 

respectively.  

It can be demonstrated that for specific values of k and n, the following 

expressions of ti and yi make (7-24) zero.  
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The above fact has been visualized in Fig. 7.9 for k=1, 2, 4, and 8 and n=f/f0. 

In the case of 4-level MHL, i.e. k=2 in Fig. 7.9, the absence of the third and the 

fifth order harmonics in the frequency spectrum of the output signal of the proposed 

MHL has a significant effect on increasing the spectrum purity of the sinusoidal output 

without any extra effort to implement a significantly high-Q bandpass filter. The 

harmonic distortion expressions for different number of levels are presented in Table 7-2.  
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Fig. 7.9 Frequency spectrum of the MHL (limiter) with different possible levels. 
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Table 7-2 Comparison of THD expressions for different levels 

Number of levels THD 

N=2 Λ++++++ 2
13

2
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2
9

2
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2
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2
3 HDHDHDHDHDHD  
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2
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2
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2
9

2
7 HDHDHDHDHDHD  

N=8 Λ++++ 2
33

2
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2
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2
15 HDHDHDHD  

N=16 Λ++ 2
33

2
31 HDHD  

  

7.3.4. Non-Ideal Effects 

In implementation of fc(t), based on (7-23), the main sources of non-idealities are 

finite slops (mi) and inaccuracy in the switching time ti. Considering the above effects, 

the output waveform of the previously studied 4-level MHL block in Fig. 7.3 can be 

modeled as the waveform shown in Fig. 7.10. In this figure, the deviation of the slopes 

from their ideal (infinity) values correspond to the deviation of t0 and t1 from their ideal 

values, zero and T/8, respectively. The nth Fourier series coefficient, taking into account 

these non-idealities, can be calculated as 
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(7-27)

where, ∆t1=(y2-y1)/m3 and t0=y1/m1.  
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Fig. 7.10 Non-ideal effects due to finite slopes of Fig. 7.3. 

 

Note that for ∆t1=0 and t0=0, (7-27) becomes (7-24). The overall THD of this 

waveform as well as the third and the fifth order harmonic distortions (HD3 and HD5) 

are shown in Fig. 7.11 and Fig. 7.12, respectively. The horizontal axes correspond to t0 

and t1 and the vertical axis corresponds to distortion. Note that for values of t0≠0 and 

t1≠T/8, the HD3 and the HD5 grew drastically from zero while the overall THD 

improves.  
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Fig. 7.11 THD of the proposed 4-level and the two-level (comparator) MHL’s as a 

function of t0 and t1 in Fig. 7-6 

  

(a) (b) 

Fig. 7.12 HD3 and HD5 as a function of t0 and t1 for (a) proposed 4-level MHL (b) two-

level (comparator) MHL. 

 

The improvement in the THD is expected due to finite slopes but it is not of 

interest since the higher harmonics of the output get attenuated by the bandpass filter 
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anyway. However, as Fig. 7.12 shows, even with deviation of t0 and t1 from their ideal 

values, the HD3 and the HD5 of the proposed MHL are considerably below their 

corresponding values for the conventional two-level hard limiter.   
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Fig. 7.13 Overall block diagram of the oscillator for testing purpose. 

 

7.4. Circuit Implementation 

Fig. 7.13 shows the overall block diagram of the fabricated chip. A conventional 

two-level hard limiter (comparator) is included in the design to compare its performance 

against the proposed MHL block. A linearized transconductance buffer [98] is employed 

to monitor the output signal.  

7.4.1. Bandpass filter design 

To increase the linearity of the oscillator, besides increasing the Q, the 

nonlinearities associated with the bandpass filter need to be minimized. Hence, a 

bandpass filter using the linearized pseudo-differential OTA [96] has been designed. Fig. 

7.14(a) shows the block diagram of the two-integrator loop biquad Gm-C filter. This 

topology is often preferred with respect to other versions since an additional low pass 
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output is available. Furthermore, it has the advantage of allowing the control of the 

common-mode voltage at both integrator outputs. In addition a minimum sensitivity of 

the quality factor with respect to capacitance mismatch is achieved by choosing C1=C2 

[97].  
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Fig. 7.14 (a) Biquad Gm-C BPF.  

 

7.4.2. MHL Static Characteristic Implementation 

The main challenge in implementing the nonlinear characteristic of the MHL in 

Fig. 7.3(b) is the accuracy of the comparison of the sinusoidal input with zero and x1. 

This problem can be avoided by emulating the performance of the static characteristic 

based on the decomposition of the waveforms in square waves as shown in Fig. 7.7. In 

this technique the output signal of the bandpass filter is only compared with zero and two 

independent delay lines generate the other two time-shifted waveforms. Its 

implementation is shown in Fig. 7.15. This implementation requires three tasks of 

comparison, time delay and digital to analog (DAC) conversion. The input comparator 
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compares the input signal with ground to generate the base square wave f0(t) in Fig. 7.7. 

Two separate delay lines generate f0(t-t1) and f0(t-(T/2-t1)). In order to properly adjust the 

delay times, the delay cells on the signal path can be configured using two DMUX cells. 

However, for simplicity these DMUX cells are not incorporated in our design and the 

delay cells are controlled using only a 3-bit control word. The total numbers of inverters 

used in this design for f0(t-t1) and f0(t-(T/2-t1)) are 8 and 24, respectively.   
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Fig. 7.15 Implementation of the proposed MHL block. 

 

The square wave f0(t) and its delayed versions are controlling two groups of 

switches, Ms1-Ms3 and Ms4-Ms6, which conceptually form a 3-bit DAC circuit. 

Transistors M1-M9 provide the reference currents for the switches Ms1-Ms6. The three 

switches of Ms1-Ms3 generate the positive portion of the composite pulse fc(t) while its 

negative portion is generated by Ms4-Ms6. The currents of these two groups of switches 
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after being summed up at the output nodes, across fc(t), are converted to voltage using 

two matched resistors R=10kΩ.  

To implement the 2  ratio between the two levels of the output voltage (see (7-

22)) the currents following through the switches have to be properly scaled with respect 

to IREF=20µA which result in the following relations between the current sources in Fig. 

7.15. 
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To compensate the effect of the process variations on the absolute values of the 

delays, the delay networks are made configurable using two independent 3-bit words. 

Moreover, reducing the mismatch between delay cells by careful layout design can 

improve the accuracy of the delay line. However, a more precise implementation of the 

delay line can be obtained by using a delay locked loop (DLL) [99] at the cost of more 

complexity and increased power consumption.  

The input comparator [100], required in Fig. 7.15, is depicted in Fig. 7.16. It is a 

synchronous high-speed comparator consists of a cascade of a preamplifier, latch, self-

biased differential amplifier, and output driver. The quiescent current of the comparator is 

90µA. The most critical parameter in this comparator is its input offset voltage. However, 

since we are reusing the output waveform to generate the 4-level signal, this offset won’t 

affect the performance of our circuit. Note that based on Fig. 7.7, any offset in f0(t) will 

uniformly affect the other two shifted signals.   
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Fig. 7.16 Two stages Opamp used as the comparator [100]. 

 

 

Fig. 7.17 Layout of the chip. 

 
7.5. Experimental Results 

The oscillator chip prototype was fabricated in TSMC 0.35µm CMOS technology 

through and thanks to MOSIS. The micrograph is shown in Fig. 7.17. The die size 
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occupies a silicon area of about 3.15mm2. Fig. 7.18 shows the measurement setup for BP-

based oscillator.  
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Fig. 7.18 Measurement setup for BP-based oscillator. 

 

Fig. 7.19 shows the measured frequency response of the BPF which shows a 

center frequency and quality factor of around 10.6MHz and 20, respectively. 

 

Fig. 7.19 Frequency response of the bandpass filter (vertical: -30dB/div. horizontal: 

7.5MHz/div.). 
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Fig. 7.20 Schematic of the output buffer [98] in Fig. 7.13. 

 

Fig. 7.21 IM3 measurement results for the buffer. 

 
A linear buffer, shown in Fig. 7.20, is used at the output of the bandpass filter to 

convert the internal voltage mode signals to current [98]. The linearity of the buffer is 

adjustable through Ibias2. To characterize the contribution of the bandpass filter on the 

overall HD3 of the oscillator, an IM3 measurement has been carried on the cascade 
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combination of the bandpass filter and the buffer and the result is shown in Fig. 7.21. The 

two input tones are at frequencies of 10.65MHz and 10.75 MHz with equal amplitudes of 

0.5Vpp. The best obtained IM3 of the buffer is -63dBm. Note that the more linear the 

bandpass filter, the more linear the output signal. However, in this research work the 

emphasis is on the nonlinearity associated with the nonlinear block.  

By closing the loop of the filter and the nonlinear block the circuit starts 

oscillating and its output spectrum for both cases of the conventional comparator and the 

proposed MHL are shown in Fig. 7.22 and Fig. 7.23, respectively. Note that to have a fair 

comparison between the two scenarios the reference current IREF in Fig. 7.15 has been 

adjusted so that the oscillation amplitudes of both cases are the same. Comparing these 

results shows a -24dB improvement in reduction of the third order harmonic distortion at 

the output of the filter in the case of the proposed MHL. Observe that the fifth order 

harmonic is reduced by several dB in Fig. 7.23 but its improvement is not as visible as 

the third order one due to the attenuation of the filter. However, the seventh order 

harmonics are comparable which is consistent with the analytical results obtained in (7-

24). It is important to mention that the measured result in the case of the proposed MHL 

block is the best obtained result through adjusting the delay cells in Fig. 7.15 which tunes 

the delay time of t1 in Fig. 7.6. This has been achieved by changing the digital word 

controlling the delay cells in Fig. 7.15 in order to maintain the requirement of T1=T/t1=8. 

If we assume that the first 7 harmonics are the main harmonics at the output, the overall 

THD of the measured frequency spectrums of Fig. 7.22 and Fig. 7.23 can be calculated as 

-38.63dB and -53.16dB, respectively.  
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Fig. 7.22 Output spectrum of the oscillator with a conventional two-level comparator. 

 

 

Fig. 7.23 Output spectrum of the oscillator with the proposed multilevel comparator. 
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These results show that more than 14 dB improvement in the THD can be 

achieved by using the proposed MHL block. Fig. 7.24 shows the theoretical predictions 

of THD versus different quality factors of the bandpass filter for both the comparator and 

the MHL block. This figure shows that, for the measured quality factor of 15, the 

experimental results are in good agreement with the theory.  

Fig. 7.25 shows the effect of the delay cells on the THD of the proposed 

architecture in both simulation and measurement cases. As it can be seen from this figure 

there is only one optimum delay for which the measured THD is minimized and this 

value is around 1/8 of the fundamental period T. Deviation from this optimal value for 

delay results in a degraded THD as it has been verified by the measurement results. 

 

Fig. 7.24 THD of the oscillator as a function of the quality factor (solid lines: analytical, 

circles: experimental). 
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Fig. 7.25 THD as a function of the delay time (see Fig. 7.15). 
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CHAPTER VIII 

ULTRA-WIDE BAND LOW PASS FILTER AND 

SYNTHESIZER 

 

8.1. Introduction 

Requirements for analog baseband signal processing in cellular communications 

are highly dependent on the receiver architecture. Recent demands for multistandard 

transceivers has been leading to frequent use of direct conversion architectures, notably 

because of their high integration potential and their relative system design easiness. The 

point of this research work is to provide a linear phase low pass filter to be used in a zero-

IF UWB receiver between the down-conversion mixer and the analog-to-digital 

converter.   

There are mainly two types of filters: digital filters and analog filters. While the 

data samples are discrete for digital filters, analog filters process continuous signals. 

Analog filters can be divided into passive (using only passive components) and active 

filters (using Opamp’s and OTA’s). Active filters can also be classified as Active-RC, 

Switched-Capacitor, Gm-C and LC filters. Passive filters don’t employ amplifiers and 

usually are off-chip filters (to have very high selectivity) and are not suitable for 

integration. Active RC and Switched-Capacitor filters need very large unity gain 

frequency and very wide bandwidth. Since a Gm cell in a Gm-C integrator operates in 

open loop configuration, a Gm-C filter implementation can reach a very high speed up to 

the unity-gain frequency of the Gm cell. Consuming a lot of power by the Gm cells and 
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being sensitive to the parasitic effects make Gm-C implementation unsuitable for very 

high frequency (GHz) range. 

8.1.1. Linear Phase Filter Approximation 

The primary purpose of this kind of filters is to limit the signal and noise bandwidth. 

In general, there are no stringent magnitude response requirements in the passband or 

stopband, but it must have a linear phase or constant group delay for all signal 

frequencies to maintain the data integrity. Non-uniform group delay causes phase 

distortion and leads to detection problems. In practice, a small group delay deviation or a 

ripple of about 5% is permitted and a filter with an order of 4-7 maybe used [101]-[102].  

8.1.2. Bessel-Thomson and Equiripple Linear Phase Filter Approximations 

Bessel-Thomson approximation (maximally flat delay) and equiripple delay 

approximation are the two main filter approximations used for the design of filters with 

approximately constant group delay [103]. For a fourth-order linear phase filter, the 

normalized frequencies ωi and Qi for both Bessel-Thomson and 0.05o Equiripple linear 

phase filters are shown in Table 8-1 and Table 8-2. Note that ω2
0= ω1ω2. 

 

Table 8-1 4th-order Bessel-Thomson linear phase filter parameters 

Filter Section ωi (rad/sec) Qi 

Biquad 1 1.419 0.522 

Biquad 2 1.591 0.806 
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Table 8-2 4th-order 0.05˚ equiripple linear phase filter parameters 

Filter Section ωi (rad/sec) Qi 

Biquad 1 1.007 0.573 

Biquad 2 1.599 1.148 

 

From Tables 8-1 and 8-2 we can see that for the Bessel-Thomson filter, the 

biquad section’s Qi’s are smaller, and the ωi’s are more closely clustered. However, the 

group delay for the 0.05˚ equiripple filter is flat up to 1.5fcut-off vs. 1.0fcut-off for the Bessel-

Thomson filter. Also, equiripple filter has a better selectivity than the Bessel-Thomson 

filter with the same order [102].  

 

8.2. UWB Low Pass Filter Specifications 

Besides adequate -3dB bandwidth, the main issue associated with the UWB LPF 

is maintaining the linear phase characteristic over the entire pass band so that the 

information arrived at the ADC experience a constant delay. The second issue associates 

with the attenuation of the next channel. These two issues can limit the flexibility of the 

order and type of the filter.  

Based on the first estimation of the total group delay variation of the whole 

system which is 1nsec, a total group delay of 0.5nsec has been allocated to the LPF. Also, 

from system level specification an attenuation of at least 20dB in the transient region is 

enough to meet the UWB specs. However, we decided to shoot for 25 dB attenuation in 

our calculations. Fig. 8.1 visualizes the above explanations. Having a tight restriction on 
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the variation of the group delay suggests the use of the linear phase approximation to 

implement the filter.  

 

230MHz 540MHz

25dB

0.5-3.5 dB

fA

fB

fC

 

(a) (b) 

Fig. 8.1 Characteristics of the UWB LPF. 
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Fig. 8.2 Block diagram of a biquad Gm-C LPF. 

 

8.2.1 Design equations for Linear Phase Approximation 

Fig. 8.2 shows the block diagram of a second-order (biquad) Gm-C filter. The 

transfer function of this filter, neglecting the output transconductances of the OTAs, can 

be expressed as  
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Using Table 8-2, (8-2) and (8-3), the required parameters for a second-order LPF with 

ω0=256MHz have been found and the results are shown in Table 8-3 

  

Table 8-3 Design parameters 

 gm1=gm2 gm3= gm4 C1 C2 

BQ#1 2.798m 4.88m 0.58p 1.18p 

 

 

8.3. Operational Transconductance Amplifiers (OTAs) 

OTAs can be generally classified as: single-ended, fully-differential (FD), and 

Pseudo-differential (PD) OTAs. Usually fully differential OTAs are preferred because 

they provide better dynamic range over their singlae-ended counter parts, this is mainly 

due to their larger signal swing, better distortion performance and better common-mode 

noise and supply noise rejection. The main drawback of using fully differential OTAs is 
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that a Common-Mode Feedback (CMFB) circuit must be added. The design of a good 

CMFB is nontrivial. The speed of the common mode path should be comparable to that 

of the differential path; otherwise the common-mode noise (e.g. power supply noise) may 

be significantly amplified such that the output signal becomes distorted. Also, the CMFB 

circuit is often a source of noise injection and increase the load capacitance that needs to 

be driven.  

8.3.1. Proposed Transconductance Circuit 

 Like every design targeted at portable electronics, our design has to be concerned 

with power efficiency, but stringent linearity and noise performances are required as well, 

notably because of the presence of strong blockers (possibly at a much higher level than 

the handled signal) at the receiver input.  

 The linearity/distortion requirements for such a cell are of course highly 

dependent on the standard and the system architecture. Noise specifications require a low 

input-referred noise power spectral density. The induced needed dynamic range is then 

achievable with a variable gain stage at the filter input. Consequently, this gain stage 

shifts the filter linearity specifications accordingly. This quite severe requirement is only 

achievable with a very linear transconductor. The need for a widely tunable, very linear 

transconductor led us to the use of the MOS transistor in its triode region since this 

allows a direct control on the MOS’s transconductance value through its VDS. 

Furthermore, a source degenerated source follower can be used to further linearized the 

transconductance. Fig. 8.3 shows the proposed Gm cell.  

The operation of this Gm cell can be intuitively explained by noting that the BJT 

transistors (Q1-Q2) are working in their active region while the NMOS transistors (M1-
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M2) are working in their triode region. Since the base-emitter voltage of the BJT’s are 

quite constant, the assumption of having a fixed DC voltage at node A and B is valid. 

Note that VA=VB=VDC-Vbe. This means that the gate voltage (VDC) of M1-M2 is greater 

that their drain (VA and VB) voltages which guarantees that M1 and M2 are in triode 

region. Due to different sign of input signals to each stage, the output current of M1 (I1) 

is subtracted from the current (I2) generated by the source degenerated stage. Thus, the 

output current Iout shows a better linearity at the cost of lower Gm value. 
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Fig. 8.3 Proposed BiCMOS Gm cell. 

 
8.3.2. Principle of Operation 

Considering the first order model describing the linear region of MOS transistor, 

the resistance of M1-M2 as a function of the input voltage can be written as: 
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Similarly the on-resistance of M1 can be found as  

inDCin KvRvR −≈− )(  (8-2)

Fig. 8.4 shows the simulated on-resistance of M1 and M2 for W/L=5µ/1µ. 

Observe that for small perturbations of input signal around 0V, the small signal 

resistances of M1 and M2 have different signs and can be considered linear, i.e., the 

currents generated by M1 and M2 in Fig. 8.3 have opposite directions.   

As (8-1) and (8-2) show by increasing the input voltage (vin) the resistance of M1 

increases while the resistance of M2 decreases. This property of M1 and M2 combined 

with the effect of the source degeneration resistance RS2, as the following analysis shows; 

generate a negative linear resistor connected to the emitters of Q1 and Q2 which is 

subtracted form the current flowing to RS1 making the output current more linear.  

 

 

Fig. 8.4 Simulation results for an NMOS with W/L=5µ/1µ. 
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To derive the small signal transconductance of the proposed Gm cell, consider the 

half-circuit small signal model of the proposed circuit in Fig. 8.5. In this figure, R(-vin) 

corresponds to the on-resistance of M1.  
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Fig. 8.5 Half circuit small signal model of Fig. 8.3. 
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where, Gsi=1/Rsi for i=1,2 and GDC=1/RDC. 
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As (8-3) shows, besides linearizing the output current, the total Gm,eff of the 

proposed cell can be tuned independently using RS1 and/or RS2.  

 

8.3.3. Common Mode Feedback (CMFB) Circuit 

Taking advantage of the filter architecture in Gm-C implementation along with 

the source-degenerated Gm cells provide a simple solution for CMFB circuit which is not 

necessarily fast enough. This is due to the nondominant poles close to the GBW of the 

CMFB circuit. To partially overcome this problem one may provide a faster path for 

common mode (CM) signal [104] or a more simple circuit for comparison purpose [105].  

The procedure of designing the CMFB circuit follows these steps: 

1- Fig. 8.6(a) shows a very simple amplifier, usually used in CMFB circuits. The 

gain of this amplifier is mainly the gain of the CMFB loop. Depend on the size of 

M2’s, the frequency response can be good enough. But since Vcmfb is going to be 

connected to “at least” two more transistor with the same size of M2, the total 

capacitance at Vcmfb becomes relatively high, lowering the GBW of the CMFB. 

This problem can be alleviated by changing the architecture from differential to 

single ended (Fig. 8.6(b)). In this case besides the increase in gain, the dominant 

pole of the loop is also increased due to reduced output capacitance at node Vcmfb.  
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Fig. 8.6 CMFB amplifier (a) low gain (b) high gain. 

 

2- The total load capacitance can be split in two parts so that one of them is 

grounded (CS2) and the other one (CS1) can serve as the high speed CM path by 

connecting it to a proper node (See Fig. 8.7). By grounding one of the splitted 

capacitors, we are ensuring that there is a path which allows the output node to 

respond to sudden CM variations. Connection of CS1 is important since the CM 

loop created by CS1 should be negative for stability purposes. The best possible 

point is Vext of the next Gm. Besides having a negative loop, this connection can 

be explained in this way that at high frequencies the splitted capacitors Cs1’s act 

as common mode detector and node VP indeed contains the common mode 

information. This means that node VP at high frequencies is doing the same job as 

node Vext does at lower frequencies, expediting the process of extraction of the 

CM signal.  
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Fig. 8.7 Complete schematic of the OTA with its CMFB circuit. 

 
3- Since the CMFB amplifier has a positive gain (from Vext to Vcmfb), its 

amplification process at high frequencies can be accelerated by providing a direct 

path from Vext to Vcmfb. This feedforward path is implemented using CFF. The 

effect of CFF can be viewed from the point of Miller effect. At node Vcmfb we have 

a negative capacitance which reduces the total capacitive load at node Vcmfb, 

pushing the major non-dominant pole further away from unity gain frequency.    

8.3.4. Simulation Results 

Fig. 8.7 has been designed and implemented in IBM6hp 0.25µ process. Fig. 8.8 

compares the HD3 performance o fthe proposed Gm cell against the conventional source 

degenerated one. As it can be seen from these plots, for the same value of Gm, the 

proposed Gm cell can improve the HD3 of the output current by at least 7dB.   
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Fig. 8.8 HD3 vs. input amplitude at fin=200MHz. 

 
The stability of the enhanced CMFB loop has been verified through its small 

signal simulation. As Fig. 8.9 shows, the CMFB loop has a 3dB cut-off frequency of 

350MHz with a phase margin of 54˚.  The transient behavior of the CMFB loop in 

response to a current impulse with different amplitudes is shown in Fig. 8.10.   

 

 

Fig. 8.9 Amplitude and phase response of the CMFB loop. 
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Fig. 8.10. Transient responses to a common mode current pulse at the output 

 

Fig. 8.11 shows the simulation results of a 3th order LPF. The third pole is 

implemented at the input using a passive pole to increase the magnitude roll off.  

The in-band and out-band linearity of the 3rd order LPF are measured by applying two 

tones at the cut-off frequency and the center frequency of the adjacent channel, 

respectively. Fig. 8.12 shows the simulation results. For two tones of equal amplitudes of 

-28dBm, the input and output IP3 are 19dBm and 20.5dBm, respectively.  

 

Attenuation
at 528 MHz from
cut-off =-16.5 dB

Cut-off frequency=270 MHz

Group delay variation=0.28 nsec

 

Fig. 8.11 Simulation results of the 3rd order linear phase LPF; Top plot: group 

delay, Bottom plot: magnitude response. 
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In-band IM3=-96 dBm
Out-band IM3=-99 dBm

The two tones have equal
power of -29 dBm

 

Fig. 8.12 In-band and out-band linearity. 

 

8.3.5. Experimental Results 

The above filter has been implemented in the SiGe IBM6hp 0.25µm process. Fig. 8.13 

shows the chip micrograph of the LPF. It occupies an area of 200µm×180µm and 

consumes about 7mA current from a 2.5V power supply. Fig. 8.14 shows the frequency 

response of the LPF. Since the inputs to the LPF weren’t accessible, the magnitude 

response of the LPF was obtained by sweeping the frequency at the input of the receiver.  

Fig. 8.15 shows the delay of the LPF between its input and output. The variation in the 

delay is the same as group delay which in this case is around 0.315nsec. 
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Fig. 8.13 Microphotograph of the UWB receiver.   
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Fig. 8.14 Magnitude response of the UWB LPF. 
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Fig. 8.15 Delay variations form input to output of the LPF. 

 

8.4. UWB Frequency Synthesizer Architecture 

Ultra-Wide Band (UWB) systems have recently received a great deal of interest 

due to their potential for high-speed wireless communication [106]–[108]. As part of 

IEEE P802.15, multiband orthogonal frequency division multiplexing (MB-OFDM) with 

fast frequency hopping is proposed as a means of high bit-rate wireless communication in 

the UWB spectrum. In mode-2 devices, the spectrum is divided into 528-MHz bands 

spanning 3.1–8.2 GHz, as shown in Fig. 8.16. The receiver front-end of such a system 

should have high linearity and a wideband local oscillator (LO) capable of frequency 

hopping in less than 9 ns. These features must be obtained at moderate power 

consumption and, to minimize cost, on a single chip.  
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Fig. 8.16 UWB frequency planning. 

 

According to the regulations from the Federal Communications Commission 

(FCC), Washington, DC, UWB devices for communication applications can operate in 

the 3.1–10.6-GHz frequency band while employing at least 500 MHz of bandwidth 

(measured at 10-dB points) with a power spectral density (PSD) of less than 41.25 

dBm/MHz [107]. In the multiband (MB) orthogonal frequency-division multiplexing 

(OFDM) proposal [108] the 7500-MHz UWB spectrum is divided into 14 bands of 528 

MHz each. The bands are grouped into five band groups, as shown in the upper section of 

Fig. 8.16. Only the first band group, corresponding to the lower part of the spectrum 

(3.1–4.8 GHz), is considered as mandatory by the current standard proposal. The 

remaining band groups have been defined and left as optional to enable a structured and 

progressive expansion of the system capabilities. Current efforts from semiconductor 

companies for the implementation of UWB devices focus on the first band group to 

achieve a faster time-to-market and affordable power consumption with current CMOS 

[109] and BiCMOS [110] technologies. The realization of UWB radios for operation in 

the entire 3.1–10.6-GHz range is an open research area, which leads to various design 

challenges at both the system and circuit levels.  
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As in other wireless systems, the frequency synthesizer has the crucial function of 

generating the local oscillator (LO) signal that drives the down-converter in the receiver 

path and the up-converter in the transmitter. There are at least two demanding 

requirements that make a frequency synthesizer for an MB-OFDM UWB radio 

significantly different from the widely explored synthesizers for narrow-band wireless 

systems, which are: 1) the range of frequencies to be generated spans several gigahertz 

and 2) the time to switch between different band frequencies within a band group should 

be less than 9.47 nS [108]. This requirement prevents the use of a standard phase-locked 

loop (PLL)-based synthesizer as a solution for this application [111].  

A compact frequency-synthesizer architecture is proposed and is shown in Fig. 

8.17. It can be seen that in this architecture all the reference tone generations involve a 

final up conversion by a 792-MHz tone. A significant reduction in power and area would 

be expected due to the small number of mixers with multiple frequency output. However, 

this architecture still needs a broad-band SSB up converter for the generation of all the 

reference tones (up conversion with 792 MHz).  

Harmonics can be curtailed by low-pass filtering at different stages, but 

suppressing the unwanted sidebands demands additional filtering (bandpass or band 

notch) for the different IF generated in the synthesizer. 
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Fig. 8.17 Proposed UWB frequency synthesizer. 

 

In the above architecture, this would imply a wide tuning-range bandpass (or 

notch) filter to cater to the wide range of IF generated (especially after the up conversion 

with 792 MHz) apart from the dedicated filtering wherever required (see Fig. 8.17). One 

possibility is to have dedicated SSB mixer blocks and filtering for generation of each 

reference tones, but that would be at the expense of higher power consumption. It must 

be mentioned here that the last two mixers used to generate the bands adjacent to the 

reference frequency (up/down conversion by 528 MHz) also have a multiple frequency 

input and output and would have to be broad-band. However, this structure with two 

mixers and one multiplexer at the end of the frequency synthesizer is common to all of 

the architectures presented in this work. Since filtering at the final stage would demand a 

broad-band tunable filter spanning several gigahertz, it is not practical and is, hence, not 

employed at the output of the last mixers in any of the architectures. Hence, the aim 

would be to have the reference frequency as spectrally pure as possible before the final 

up/down conversion. Therefore, an important consideration is to minimize the number of 

up/down-conversion operations in the generation of any reference frequency to reduce 



 183

the spurs within the UWB spectrum. The above discussion highlights some of the most 

important considerations for the design of a frequency synthesizer in an UWB system.  
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CHAPTER IX 

CONCLUSIONS 

 

In this dissertation, the design issues of high frequency continuous-time integrated 

filters have been examined. What mainly limit the performance of an analog filter are the 

non-idealities of the used building blocks and the circuit architecture. Several novel 

techniques and architectures have been proposed. On the circuit level, new building 

blocks have been introduced. A 4th order LC filter with an enhanced scheme to couple the 

LC tanks is shown. The proposed coupling scheme does not degrade the quality factor of 

inductors in the tank.  

 A novel quality factor tuning for 2nd order LC filters is proposed. The information 

of the magnitude response at the center and one of the cut-off frequencies is used to tune 

both the amplitude and the quality factor of the filter using two independent yet 

interacting loops. Furthermore, the synergic interaction between the loops makes the 

proposed scheme stable and insensitive to the mismatch between the input amplitudes. 

 An enhanced loss control scheme incorporating an integral feedback to 

automatically tune the oscillation amplitude of LC oscillators is proposed. The proposed 

loss control feedback (LCF) loop is practically unconditionally stable and its stability is 

examined i) by linearizing the system around the stable point using a perturbation method 

and ii) by numerically solving the nonlinear differential equation of the LCF loop 

describing the transient behavior of the step response of the loop.  

 A linearized fully balanced fully symmetric pseudo-differential operational 

transconductance amplifier (OTA) has been presented. Despite the previously reported 
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pseudo-differential architectures, the output current of the proposed OTA is a function of 

the differential input signals. It has been shown that the linearity of the proposed OTA 

can be improved by manipulating the second order harmonic which is inherently present 

at the output current of the pseudo-differential structure. The linearity behavior of the 

proposed OTA is measured in a unity gain negative feedback configuration which is the 

worst scenario in terms of large signal linearity. 

 In order to reduce the total harmonic distortion (THD) of a bandpass-based 

oscillator, instead of using a conventional hard limiter, a multilevel hard limiter (MHL) is 

proposed which inherently removes the third and the fifth order harmonics from the 

frequency spectrum of its output signal. The input-output characteristic of the proposed 

MHL contains slope values of only zero and infinity, making it easy to implement. The 

optimal height and width of each stair of the MHL characteristic is derived. 

 A linearized high frequency transconductance cell to build an UWB LPF is 

proposed. Due to the high bandwidth of this kind of filters, a fast common mode 

feedback loop is also proposed to reject the variations of common mode signals and 

preserve a high CMRR. Furthermore, an optimum and efficient UWB frequency 

synthesizer is proposed which is capable of generating all the carrier frequencies from 

3.1GHz to 10.6GHz.  
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