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ABSTRACT 
 
 

An Assessment of Regional Climate Trends and Changes  
 

to the Mt. Jaya Glaciers of Irian Jaya. (May 2007) 
 

Joni L. Kincaid, B.A., The University of Texas 
 

Chair of Advisory Committee: Dr. Andrew G. Klein 
 
 
Over the past century, glaciers throughout the tropics have predominately retreated. 

These small glaciers, which respond quickly to climate changes, are becoming 

increasingly important in understanding glacier-climate interactions. The glaciers on Mt. 

Jaya in Irian Jaya, Indonesia are the last remaining tropical glaciers in the Western 

Pacific region. Although considerable research exists investigating the climatic factors 

most affecting tropical glacier mass balance, extensive research on the Mt. Jaya glaciers 

has been lacking since the early 1970s.  

Using IKONOS satellite images, the ice extents of the Mt. Jaya glaciers in 2000, 

2002, 2003, 2004, and 2005 were mapped. The mapping indicates that the recessional 

trend which began in the mid-19th century has continued. Between 1972 (Allison, 1974; 

Allison and Peterson, 1976) and 2000, the glaciers lost approximately 67.6% of their 

area, representing a reduction in surface ice area from 7.2 km2 to 2.35 km2. From 2000 

to 2005, the glaciers lost an additional 0.54 km2, representing approximately 24% of the 

2000 area. Rates of ice loss, calculated from area measurements for the Mt. Jaya glaciers 

in 1942, 1972, 1987, and 2005, indicate that ice loss on Mt. Jaya has increased during 

each subsequent period.  
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Preliminary modeling, using 600 hPa atmospheric temperature, specific humidity, 

wind speeds, surface precipitation, and radiation values, acquired from the NCEP 

Reanalysis dataset, indicates that the only climate variable having a statistically-

significant change with a magnitude great enough to strongly affect ice loss on these 

glaciers was an increase in the mean monthly atmospheric temperature of 0.24°C 

between 1972 and 1987.  However, accelerated ice loss occurring from 1988-2005 

without large observed changes in the weather variables indicates that a more complex 

explanation may be required. Small, though statistically-significant changes were found 

in regional precipitation, with precipitation decreasing from 1972-1987 and increasing 

from 1988-2005. While, individually, these changes were not of sufficient magnitude to 

have greatly affected ice loss on these glaciers, increased precipitation along with a 

rising freezing level may have resulted in a greater proportion of the glacier surface 

being affected by rain.  This may account for the increased recession rate observed in the 

latter period. 
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1. INTRODUCTION 
 
 
Tropical glaciers are important indicators of climate change and provide valuable 

information on past climate conditions. However, there are fundamental gaps in the 

current body of research on glaciers that thwart a more complete understanding of 

glacial processes in relation to global climate change. First, long-term records of glacial 

change need to be established for glaciers (Houghton and others, 2001). Mass balance 

and climate observations are scarce or completely lacking for most glaciers, and 

observations that have been made commonly cover only short time periods (Braithewaite 

and Zhang, 1999; Dyurgerov and Meier, 2000). This is partially a result of 

inaccessibility, as glacial environments are generally remote, and harsh climate 

conditions offer few opportunities for investigation.  

Second, more individual case studies are required because glaciers located in diverse 

geographical regions respond differently to various climatic factors (Braithewaite and 

Zhang, 1999; Francou and others, 2003). Overall, the synchronicity of mass balance 

changes in temperate and tropical glaciers indicates that rising atmospheric temperatures 

are the global cause for glacier recession (Kaser, 2001). However, the relationships 

between glaciers and tropical climate are complex and simple explanations for change 

should not be overstated. Therefore, additional studies must be completed to provide 

more detailed causal explanations (Kaser, 2001). Indicative of this oversimplification, it 

was reported in the contribution of Working Group I to the Third Assessment Report of  

 
_____________ 
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the Intergovernmental Panel on Climate Change (IPCC) (Houghton and others, 2001) 

that tropical glaciers have experienced accelerated rates of recession over the past 

century that are inconsistent with the warming trend in the region for the same period. 

Whereas, Kaser and Osmaston (2002) note several excellent studies on tropical glaciers, 

they state that these glacier studies are based on those that have been completed in the 

Alps and, thereby, remain “alpine-centric” for lack of sufficient research on tropical 

glaciers.  

To counter these gaps in the knowledge base and to improve overall understanding 

of climate-glacier interactions the IPCC report indicated a directive for future research. 

First, priority should be given to acquiring data on glaciers that have established long-

term records. Second, remote sensing techniques should be established for long-term 

glacial monitoring. Third, research should focus on a few glaciers from different climatic 

regions to maximize efforts. And fourth, energy balance and glacier geometry models 

should be improved so that knowledge of climate-glacier interactions can advance more 

rapidly. 

Following the delimitation of tropical glacier regions set forth by Kaser (2001), 

tropical glaciers currently exist in South America, East Africa, and in Indonesia. Recent 

studies of tropical glaciers have primarily focused on a few glaciers located in the Andes 

(Francou and others, 1995; Kaser, 2001; Ramírez and others, 2001; Francou and others, 

2003; Favier and others, 2004a; Francou and others, 2004; Georges, 2004) in South 

America; and on Mt. Kenya (Mölg and others, 2003; Mölg and Hardy, 2004) in Africa. 

However, extensive studies of the Mt. Jaya glaciers in Indonesia have not been 
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completed since 1972. These glaciers differ from other tropical glaciers not only in 

geographic location, but also in that a historical record of changes exists for these 

glaciers extending from 1913 to 1987. Following the directives from the last IPCC 

report, this thesis extends the record for glacial change on Mt. Jaya using satellite images 

and tests whether or not the recession of these tropical glaciers is in fact accelerating. 

Secondarily, regional climate trends, as well as the Oceanic Niño Index (ONI) will be 

examined and statistical techniques are used to provide an overview of the general 

climate conditions existing in the region from 1951 to 2005.   

The glacial mapping done as part of this thesis will be provided to the World Glacier 

Monitoring Service (WGMS) and the Global Land Ice Measurements from Space 

(GLIMS), a collaborative project involving over sixty institutions including the National 

Aeronautics and Space Administration (NASA), United States Geological Survey 

(USGS), and the National Snow and Ice Data Center. 

 
1.1. Thesis Objectives 

The objectives of this thesis are to: (1) map and measure the area extents for the Mt. Jaya 

glaciers for May 2000, June 2002, May 2003, July 2004, and June 2005, (2) evaluate the 

changes in surface ice area for the Mt. Jaya glaciers from ca. 1850 to June 2005 by 

combining our time series with historical observations, and (3) compare and contrast the 

meteorological record for Irian Jaya and ONI with the surface ice area changes for the 

Mt. Jaya glaciers using National Centers for Environmental Prediction/National Center 

for Atmospheric Research reanalysis data. 
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The purpose for objective one is to extend the historical database of surface ice 

measurements for these important glaciers and objective two tests whether or not the Mt. 

Jaya glaciers have receded at an accelerating rate over the past century as indicated by 

the last IPCC report. Several valuable studies on climate-glacier interactions have been 

completed on tropical glaciers in South America and Africa since 1972, when the last 

detailed studies for the Mt. Jaya glaciers occurred. Therefore, the last objective of this 

thesis will test whether or not the findings from these studies are transferable to the Mt. 

Jaya glaciers which are located in a climatically different location.  
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2. THE STUDY SITE: MT. JAYA IN IRIAN JAYA, INDONESIA 

 
The Mt. Jaya glaciers are located in Irian Jaya, Indonesia at latitude 4°05’S and 

longitude 137°11’E. The peaks of Mt. Jaya reach 4884 m and are part of a west-

northwest and east-southeast trending mountain range that extends across the island of 

New Guinea (Allison, 1974) (Fig. 1).  

 
2.1. Descriptions of the Mt. Jaya Glaciers 

In 1972, five ice masses existed on Mt. Jaya:  the Carstensz glacier system, which 

included the Wollaston and Van de Water glaciers, the Meren glacier, the Southwall 

Hanging glacier, and the east and west sections of the Northwall Firn glacier (Allison, 

1974; Allison and Peterson, 1976). The following two sections summarize the 

descriptions of the glaciers provided by Allison (1974) and Allison and Peterson (1976) 

based on their field observations in 1972 (Fig. 2). 

 
2.1.1. The Valley Glaciers 

The Meren and Carstensz glaciers are valley glaciers flowing westward into the Meren 

and Yellow Valleys, respectively. These valley glaciers lie on the southern side of the 

range and are separated only by a very narrow ridge. In 1972, the Carstensz flowed from 

a peak (the Carstensz Top) with a vertical extent ranging from 4800 m down to 4380 m. 

The Meren glacier flowed from a peak at 4862 m located within the E. Northwall Firn, 

as well as from an area at the head of the valley that Dozy (1938) referred to as the 

Middle Firn, to a minimum elevation of about 4260 m. There are not many details 
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Fig. 1. Site map for the Mt. Jaya glaciers. The Mt. Jaya glaciers are located in Irian Jaya, Indonesia on the western half of the 
island of New Guinea. The large circular feature to the left of the glaciers is a gold and copper mine. This map was created 
using a Landsat TM scene taken on July 26, 2004. 
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Fig. 2. The Mt. Jaya glaciers in 1972.  The black outlines indicate the extent of the 
glaciers as mapped during the Australian Universities' field expeditions in 1972 (Hope 
and others, 1976). The yellow and green circles denote the general areas of the Carstensz 
glacier designated as the Van de Water and Wollaston glaciers. The base image is an 
IKONOS image acquired by the sensor on June 11, 2002. 
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provided for the smaller Harrer, Wollaston, and Van de Water glaciers, which from all 

reports, were quite small in area even at the beginning of the 20th century. However, the 

Harrer glacier extended east from the Middle Firn, the Van de Water glacier extended 

down the southern wall of the head of the Carstensz glacier, and the Wollaston glacier 

flowed off of the Carstensz from its southern border. These small glaciers were limited 

in size by the precipitous cliffs over which the glaciers flowed.  

The Southwall Hanging glaciers were small glaciers that flowed over a cliff along 

the southern ridge of the Yellow Valley just west of the Carstensz glacier. 

Approximately a hundred glaciers comprised the Southwall Hanging glaciers giving the 

cliff an apron-like appearance. Similar to the Harrer, Wollaston, and Van de Water 

glaciers, these glaciers were limited in size due to the steep topography of the south face 

of the mountain. 

 
2.1.2. The Northwall Firn 

The E. Northwall Firn lies along a ridge, north of the Meren Valley, extending from a 

mountain peak to the east to the New Zealand Pass on the west and covers an elevation 

range of 4520-4810 m. The W. Northwall Firn is a long, very narrow firn field 

(approximately 3.5 km in length and averaging 0.7 km in width) extending west from the 

New Zealand Pass along the same ridge as the E. Northwall Firn. The W. Northwall Firn 

covers an elevation range of 4510-4750 m. 
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2.2. History of Field Excursions to the Area 

The Mt. Jaya glaciers were first observed in 1623 by Jan Carstensz (Allison, 1974). 

Since then visits on record to the glaciers were made by Wollaston in 1913 (Wollaston, 

1914), Colijn and Dozy in 1936 (Dozy, 1938), and by a climbing team in 1962 (Harrer, 

1965). Each of these field excursions resulted in the acquisition of surface area 

measurements for at least one or more of the glaciers. 

The Australian Universities’ expeditions to the glaciers in the early 1970s involved 

extensive field research, resulting in not only mass balance measurements for 1972-1973 

for the Carstensz and Meren glaciers, but also, measurements of surface areas for all of 

the ice fields (Allison, 1974; Allison and Peterson, 1976). Climate data (Allison and 

Bennett, 1976), a topographic survey derived trigometrically (Peterson and others, 

1973), and detailed descriptions of other aspects of the area, such as geomorphic and 

botanical features (Hope and others, 1976) were also made and served to support further 

research on the glaciers. After the 1972-1973 field excursions, several other 

measurements of the surface areas of the Mt. Jaya glaciers were made primarily using 

satellite images (Allison and Peterson, 1989; Peterson and Peterson, 1994; Klein and 

Kincaid, 2006). The 2000-2002 measurements obtained from this thesis have already 

been published (Klein and Kincaid, 2006). In addition, this thesis further extends the 

record for the 2003-2005 periods. 
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3. BACKGROUND 

 
3.1. Glacier Regimes of the Tropics  

Three distinct glacier regimes: subtropical, inner and outer, exist within the tropics 

(Kaser, 1999). According to Kaser (1999), subtropical glaciers, located in the 

southwestern portion of Bolivia and in northern Chile, exist in arid environments. 

Changes in the mass balance of subtropical glaciers are greatly affected by high 

sublimation rates (Favier and others, 2004b). At the other extreme, the inner tropical 

environment is wet and humid with negligible seasonal variation in precipitation and 

temperature (Kaser, 2001). These inner tropical glaciers are found in the Ruwenzori 

Range, located in Uganda (Kaser, 2001), in the lower latitudes of the Andes, such as in 

Ecuador (Favier and others, 2004b), and in Irian Jaya, Indonesia (Kaser, 2001). 

Intermediate to these two glacier regions is the outer tropics, where climate-glacier 

relationships most resemble those of temperate glaciers. Outer tropical glaciers are 

characterized by distinct wet and dry seasons and are located in the Cordillera Blanca, 

Peru (Kaser, 2001) and the Cordillera Real, Bolivia, and include the Zongo (Favier and 

others, 2004b), Chacaltaya (Ramírez and others, 2001), and the Illimani (Wagnon and 

others, 2003) glaciers. The majority of tropical glaciers are located in the outer tropics, 

and to date, research has predominantly focused on outer tropical glacier-climate 

interactions. 
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3.2. Inner Tropical Glaciers and Climate Change  

Kaser (1999) suggests that, whereas atmospheric vapor and temperature have been 

indicated as the climate factors primarily controlling tropical glacier change, a complex 

interplay of climate variables best explains the observed glacier recession. However, 

only a few recent studies (Kaser, 2001; Mölg and others, 2003; Francou and others, 

2004; Favier and others, 2004a, 2004b), specific to the inner tropics, have focused on 

glacier-climate relationships that are relevant to Irian Jaya. Overall, theoretically 

modeling of the vertical mass balance profile of inner tropical glaciers suggest that these 

glaciers are highly sensitive to changes in air temperature (Klein and others, 1999; 

Kaser, 2001).  

Studies on the Antizana 15 glacier in Ecuador indicate that air temperature controls 

the precipitation phase (snow versus rain), and therefore, is the primary control on mass 

balance (Favier and others, 2004a, 2004b; Francou and others, 2004). Overall, one-

quarter of the precipitation occurs as rain over the glacier, decreasing albedo, and 

subsequently increasing melt (Favier and others, 2004a).  

Hastenrath and Kruss (1992) suggest that, on the equatorial African glaciers of Mt. 

Kenya, incoming solar radiation was the major control for glacier recession occurring 

between 1899 and 1963. However, this could not account for ice thinning which 

occurred uniformly over the glaciers between 1963 and 1987. Sensitivity analyses 

indicated that increases in specific humidity resulting in increased energy available for 

melt was the cause for the thinning ice. A radiation modeling study, by Mölg and others 
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(2003), on the glaciers in the Rwenzori range suggests that increases in short-wave 

radiation are the primary cause of recession for these glaciers.  

For the Mt. Jaya glaciers, Allison and Kruss (1977) successfully constructed a flow-

line model of the Carstensz glacier to determine possible causes for the observed retreat 

in the area. The results from this model indicated that a temperature change of 0.6°C 

over the past century, which corresponded well with overall estimated tropical climate 

changes from 1870 to 1940, best reflected the glacier recession that had occurred over 

the same time period. However, according to Allison and Kruss (1977), their model 

primarily investigated temperature and precipitation, and therefore, they did not rule out 

other climate factors that could be affecting the glaciers. Some lines of evidence 

indicated that net radiation was of primary importance in the higher melt rates for the 

Meren glacier. In 1972, the tongue of the Meren glacier was covered quite heavily by 

cryo-algae and numerous melt ponds, both of which resulted in lower albedos (Allison, 

1974). Increased cloud cover, observed shortly before noon on most days, protected the 

western side of the Carstensz glacier from incoming solar radiation resulting in different 

elevations for the east and west sides of the snowline (Allison and Peterson, 1976).  

 
3.3. El Niño Southern Oscillation (ENSO) Effects on Tropical Glaciers 

The El Niño Southern Oscillation (ENSO) phase correlates well with the annual mass 

balance of Andean glaciers (Francou and others, 1995; Ramírez and others, 2001; 

Francou and others, 2004; Favier and others, 2004b; Georges, 2004). On these glaciers, 

El Niño years correspond with drier conditions, higher temperatures, and lower wind 

speeds (Francou and others, 2004). On the Antizana 15 glacier, the greatest impacts on 
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mass balance occurred between February and May during El Niño years indicating a 

three month lag time between sea surface anomalies controlling ENSO phase and 

corresponding climate changes in the Andes (Francou and others, 2004). In addition to 

drier conditions, a higher proportion of the reduced precipitation occurs as rain. Lower 

wind speeds also act to reduce sublimation rates on inner tropical glaciers by reducing 

the turbulent heat fluxes (Francou and others, 2003; Francou and others, 2004).  

The opposite conditions occur during La Niña years and these conditions have been 

shown to induce small positive anomalies in the mass balance of Antizana 15 glacier 

(Francou and others, 2004). Although these studies have found correlations between 

ENSO phase and inner tropical glacier mass balance, Garreaud and others (2003) 

suggest that additional studies are required to understand thoroughly the connections. In 

their study of climate of the Altiplano, they found that some discrepancies existed in 

correlations between drier, warmer conditions and El Niño years. To this date, no studies 

have investigated the effect of ENSO on the Mt. Jaya glaciers. 
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4. DATA SOURCES 

 
4.1. IKONOS Images 

In 1999, the IKONOS sensor was launched and began collecting data from space 

(GeoEye, 2006). The IKONOS sensor is in a sun-synchronous orbit and acquires all 

images at approximately 10:30am local time. Facilitating change detection studies, this 

sensor collects data over the same geographical space once approximately every 3 days 

at 40° latitude, more frequently at higher latitudes, and less frequently near the equator 

(Grodecki and Dial, 2001). IKONOS acquires images at very high spatial resolutions of 

1 m and 4 m for the panchromatic and multispectral bands, respectively (GeoEye, 2006). 

Overall, five spectral bands of data are collected covering the 0.45 to 0.90 micrometers 

spectral range (Table 1), and includes one panchromatic band, three visible infrared 

(VIR) bands, and one near infrared (NIR) band. The radiometric resolution is 8 bits for 

the multispectral bands and 11 bits for the panchromatic band. The high geometric and 

radiometric accuracy of these images, as well as the high spectral resolution, makes 

IKONOS images an excellent data source for automated classifications and change 

detection (Haverkamp and Poulsen, 2003). 

A 1-meter true color composite IKONOS product was selected for this research 

because it offers superior spatial resolution, while retaining the spectral information 

available in the true color bands. It was produced by a pan-sharpening process with the 

panchromatic band. The IKONOS composite was projected in a Universal Transverse 

Mercator (UTM) projection for zone 53 S and set to the World Geodetic System (WGS)  

84 datum. Bands 1, 2, and 3 cover the spectral ranges from 0.445-0.516, 0.506-0.595,
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Table 1. Spectral (µm) and spatial (m) characteristics of the IKONOS, ASTER, and Landsat TM and ETM+ images. 

IKONOS1  ASTER2  Landsat 5 (TM) and 7 (ETM)3 

Band Spectral 
Resolution 

Spatial 
Resolution  Band Spectral 

Resolution 
Spatial 

Resolution  Band Spectral 
Resolution 

Spatial 
Resolution 

1 0.445-0.516 4       1 0.45-0.52 30  
2 0.506-0.595 4   1 0.52-0.60 15   2 0.52-0.60 30  
3 0.632-0.698 4   2 0.63-0.69 15   3 0.63-0.69 30  
4 0.757-0.853 4   3 0.76-0.86 15   4 0.76-0.90 30  
    4 1.60-1.70 30   5 1.55-1.75 30  
    5 2.145-2.185 30   
    6 2.185-2.225 30   7 2.08-2.35 30  

    7 2.235-2.285 30      
    8 2.295-2.365 30      
    9 2.360-2.430 30      
    10 8.125-8.475 90      
    11 8.475-8.825 90      
    12 8.925-9.275 90      
    13 10.25-10.95 90   
    14 10.95-11.65 90   6 10.4-12.5 60*/120** 

Panchromatic 0.526-0.929 1       Panchromatic** 0.50-0.90 15  
           

Data obtained from 1 GeoEye (2006).  2 NASA (2006a). 3 NASA (2006c). *Landsat TM data. ** Landsat ETM+ data.
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and 0.632-0.698 micrometers, respectively.  

 
4.2. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

Images 

The ASTER sensor was launched in 1999 and began disseminating data to the public in 

2000 (ERSDAC, 2006). The sensor is in a sun-synchronous orbit around the earth 

acquiring images at approximately 10:30 am over the equator. This sensor can image the 

same geographic location every 16 days and collects data in fourteen spectral bands 

using three separate radiometers: a Visible Near Infrared (VNIR) radiometer, a Short-

wave Infrared (SWIR) radiometer, and a Thermal Infrared (TIR) radiometer collecting 

data in four, five, and five bands, respectively. The spectral range of each radiometer is 

of 0.56-0.86, 1.60-2.43, and 8.125-11.65 micrometers and the spatial resolution is 15 m, 

30 m, and 90 m, respectively (Table 1). Radiometric resolutions are 8 bits for the VNIR 

and SWIR radiometers and 12 bits for the TIR radiometer (ERSDAC, 2006). 

ASTER data are available at NASA’s Land Processes Distributed Active Archive 

Center (NASA, 2006b). For this thesis, ASTER’s Level 1B product was used because it 

is the lowest level product with geometric and radiometric coefficient corrections 

applied and can be obtained projected to the UTM, zone 53 S projection and WGS84 

datum.  

 
4.3. Landsat TM and ETM+ Images 

Landsat data, pertinent to this thesis, were acquired by the Landsat Thematic Mapper 

(TM) and Enhanced Thematic Mapper (ETM+) sensors, which are carried aboard the 
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Landsat 5 and Landsat 7 satellites launched in 1984 and 1999, respectively. Both sensors 

collect data in seven bands. The first five bands and the seventh band spectrally range 

from 0.45 to 2.35 micrometers, are quantized at 8 bits, and have spatial resolutions of 

28.5 m (Table 1). Band 6 records thermal emissions received at the sensor from the 

earth’s surface and has a resolution of 120 m and 60 m for the TM and ETM+ sensors, 

respectively. The ETM+ sensor has an additional panchromatic band, ranging spectrally 

from 0.50 to 0.90 micrometers at a spatial resolution of 15 m. The Landsat TM and 

ETM+ sensors are on orbital paths crossing over the equator between 10:00 and 10:30 

a.m. local time and are capable of imaging the same geographic location every 16 days.  

For this thesis, level 1G products were ordered from the USGS’s Earth Resources 

Observation and Science (EROS) Internet site (USGS, 2006). These products are 

geometrically and radiometrically corrected, as well as projected in a UTM projection 

for zone 53 S and set to the WGS84 datum.  

 
4.4. Topography of the Mt. Jaya Glacier Area 

In 2005, the topography of the Mt. Jaya area was derived using Shuttle Radar 

Topography Mission data (SRTM) (Fig. 3) (Klein and Kincaid, 2006). Elevations 

acquired from the SRTM data in the areas of the Carstensz glacier and the W. Northwall 

Firn were quite good and compared well with those obtained in the 1972 survey of the 

area. However, a large number of missing values in the SRTM dataset existed within the 

area of the eastern portion of the E. Northwall Firn and, thus, required a great deal of 

interpolation. A determination of the accuracy of the interpolations in the E. Northwall 

Firn is difficult as a result of the unreliability of the mapping in 1972 of this same area.
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Fig. 3.  Topography of the Mt. Jaya area.  Topography was derived from SRTM data. Base image is an IKONOS image 
acquired by the sensor on June 11, 2002. Dotted lines represent areas in which data values were missing from the SRTM data. 
Map modified from Klein and Kincaid (2006). 
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However, the topography generated from the SRTM data set should be sufficient to 

make some general determinations regarding recession of this firn field as the area in 

question is along the higher reaches of the field. 

 
4.5. National Centers for Environmental Prediction/National Center for  
 
Atmospheric Research (NCEP/NCAR) Reanalysis Data 
 
The National Centers for Environmental Prediction/National Center for Atmospheric 

Research (NCEP/NCAR) Reanalysis data is a modeled 4-dimensional gridded climate 

data set extending from 1948 to present. The values for meteorological variables used in 

producing this climate set are acquired from a multitude of sources, including land 

surface observations, observations from ships, rawinsonde, pibal, aircraft, geostationary 

satellites, and other sources. The primary purpose for creating this source of climate data 

was to provide an accurate consistent database for researchers. Atmospheric temperature 

and pressure height at the 500 hPa level, and atmospheric temperature, pressure height, 

specific humidity, and wind magnitude at the 600 hPa level, as well as accumulated 

precipitation, radiation, and percent cloud cover data at the surface were acquired from 

the NCEP/NCAR Reanalysis dataset at the National Oceanic and Atmospheric 

Administration (NOAA)-Cooperative Institute for Research in Environmental Sciences 

(CIRES) website (NOAA-CIRES, 2006). While the values for precipitation and 

radiation are surface data that are completely derived by the model, the values are forced 

to closely approximate real observations. The surface dataset has been found to be 

reliable for seasonal and interannual studies and, therefore, should be appropriate for 

broad scale purposes here. 
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While the density of observations is good for the Northern Hemisphere in the earlier 

years, the quality of modeled results for some areas of the southern hemisphere is limited 

due to a dearth of observations. However, improvements in data density in the southern 

hemisphere occurred with increased synoptic land surface reports in the 1950s, in the 

1960s with increased ship, radiosonde, and aircraft reports, and in the 1970s with 

satellite observations. Despite the lower data densities existing in the southern 

hemisphere, studies indicate that the difference in quality between the northern and 

southern hemisphere modeling results in the early years is not as significant as would be 

indicated by the data density reports.  

 
4.6. Oceanic Niño Index (ONI) 

Monthly classifications of ENSO events from 1951 to 2005 were acquired from 

NOAA’s National Weather Service’s Climate Prediction Center (CPC) (NOAA-CIRES, 

2006). Classifications are based on 3-month running means of the extended 

reconstructed sea surface temperature anomalies in the Niño 3.4 region (5°N-5°S, 120°-

170°W). A month is classified as cold or warm based on whether or not a threshold of 

+/- 0.5°C is met during five consecutive seasons. 

 
4.7. Historical Data  

Over the past century, a variety of data sources and methods have been used to measure 

the area extents of the Mt. Jaya glaciers. As technologies have improved, errors have 

been discovered and corrections have been made to the originally published glacier 
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areas. It is prudent to provide a history of the published research because one of the 

objectives of this thesis is to compare the glacier surface areas over various time periods.  

 
4.7.1. Glacier Extents From ca. 1850-1972 

According to Mercer (1967), the only surface area measurements for the Mt. Jaya 

glaciers published prior to his report for the American Geographical Society had been 

acquired by Dozy and Colijn in 1936 (Dozy, 1938). Wollaston (1914) only provided a 

record for the snowline in the area, as he only reached the hanging glaciers on the south 

face before having to turn back. The Harrer climbing expedition team sought out the 

cairns previously established by the Dozy team, but were only able to locate the cairn for 

the Meren glacier (Harrer, 1965). Before leaving the area they constructed new cairns 

which identify the 1962 ice front for the Meren glacier.  

The glacier surface areas on Mt. Jaya in 1913, 1936, 1942, 1962 and1972 were all 

published by the Australian Universities’ team (Allison, 1974; Allison and Peterson, 

1989) and ice fronts for each year, as well as the entire glacier boundaries for 1972, are 

illustrated in the team’s 1972 map of the Mt. Jaya area. The 1972 glacier boundaries 

were determined primarily from field work, and vertical and oblique aerial photographs 

acquired by the United States Air Force in 1942.  

The methods used for delineating various segments of the glacier boundaries are 

identified on their map. Fieldwork primarily focused on the Carstensz and Meren glacier 

tongues and the boundaries mapped for these areas are considered the most accurate. A 

combination of survey and photogrammetric techniques were utilized to map the 

northern border of the Carstensz, the southwest border of the E. Northwall Firn, and the 
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entire W. Northwall Firn. However, defining the limits of the W. Northwall Firn was 

somewhat problematic due to cloud cover in the photos. The eastern-most boundaries of 

the Carstensz glacier, Meren glacier, and E. Northwall Firn, as well as the southern 

boundaries of the Meren glacier and a portion of the southern boundary of the Carstensz 

glacier which includes the Wollaston and Van de Water glaciers were mapped solely 

from aerial photography after the expedition and the reliability of these glacier 

boundaries is considered poor (Allison, 1974). Various degrees of uncertainty are 

associated with each method and clearly defined in the map.  

Whereas the 1972 measurements were made in the field, the 1913, 1936, 1942, and 

1962 measurements were derived using photographs acquired during each of the visits to 

the area, cairns that had been established during both the Dozy and Harrer trips, and 

vertical aerial photographs taken of the area by the United States Air Force in 1942 

(Allison, 1974). Photographs supplied by Dozy to the universities and plotted onto the 

1972 base map resulted in slightly different area measurements reducing the total glacier 

area on Mt. Jaya in 1936 from 14.5 km2 (Mercer, 1967) to 13 km2 (Allison, 1974; 

Allison and Peterson, 1976).  

Area measurements for ca. 1850 were determined from geomorphic evidence 

acquired in the field (Peterson and others, 1973). Average retreat rates were calculated at 

33 m yr-1 and 16 m yr-1 for the Meren and Carstensz glaciers, respectively, and 

extrapolation of these rates suggests that the current recession may have begun about 

1820-1850 A.D. (Peterson and others, 1973). 
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4.7.2. Glacier Extents From 1972-1987 

The 1974 area values were measured by Allison and Peterson (1989) from a Landsat 

Multispectral Scanner (MSS) image. The spatial resolution of Landsat MSS images is  

79 m, and therefore, the minimal mapping unit for these images is approximately 6241 

m for linear features (Jensen, 2000).  Whereas the spatial resolution of Landsat MSS 

may be limiting, the authors did have first-hand knowledge of the glaciers as both were 

involved in the 1972 field expeditions and the glaciers were much larger than they are 

presently. However, the image did afford a larger perspective of the area and it was 

realized that the eastern boundaries for the 1972 glacier boundaries were incorrect, as 

were the western boundaries for the E. Northwall Firn. Corrections to these boundaries 

resulted in raising the original 1972 ice surface areas for the E. Northwall Firn and 

Carstensz glacier by approximately 0.25 km2 and 0.2 km2, respectively.  

Allison and Peterson (1989) also analyzed 1982 and 1983 Landsat MSS images of 

the Mt. Jaya area. The results from their analyses of these images indicated that the 

glaciers had not changed significantly in extent since 1974, with no more than 100 m of 

retreat occurring between the time periods. Surface ice areas for the 1982 and 1983 years 

were not published. 

Glacier extents were also measured from a 1987 SPOT image of the area by Peterson 

and Peterson (1994). SPOT images are of high spatial quality at 20 m resolution. Their 

data collection and analysis also included a short field visit to the area in 1992. Results 

of their mapping will be discussed in the next section, as their mapping was used 

extensively in this thesis.  
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Peterson and Peterson (1994) published an updated version of the 1972 map 

produced in the field during the Australian Universities expeditions. They accomplished 

this by creating a single digital database that included the mapped glacier areas for 1972 

and 1987, along with markers for ground control points that were obtained during the 

1972 field expeditions. Their mapping confirmed large errors made in the 1972 mapping 

of the E. Northwall Firn and Carstensz glacier. 
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5. METHODS 

 
5.1. Acquisition of Satellite Images 

A thorough search of Internet sites providing satellite images was completed to identify 

suitable images for this thesis. To meet the objectives of this thesis the images selected 

had a clear view of all of the Mt. Jaya glaciers, and a spatial resolution sufficient for 

detecting small ice masses. According to Jensen (2000), in order to detect landscape 

features within satellite images the feature must be at least twice the size of a pixel and 

the spectral resolution of the image must be high enough to discriminate the object from 

its background. Applying these criteria for identifying suitable images resulted in the 

acquisition of six images: two IKONOS, one ASTER, one Landsat ETM+, and two 

Landsat TM images dated 8 June 2000, 11 June 2002, 29 May 2003, 29 May 2003, 26 

July 2004, and 11 June 2005, respectively (Figs. 4-9). Unfortunately, there were not any 

remotely sensed images acquired in 2001 that were deemed suitable for this thesis.  

Applying Jensen’s requirements for feature detection within remotely sensed images, 

the spatial resolutions of the IKONOS, ASTER, and Landsat data enable a minimum 

mapping unit of 16, 900 m2 and 800 m2 in surface area, respectively. Investigation into 

the area requirements for inclusion into the World Glacier Monitoring Service database 

indicates that glaciers must measure at least >0.001 km2 (i.e. 1000 m2) when utilizing 

remotely sensed images to attain the measurement. However, historically, ice masses 

less than 0.1 km2 (i.e. 100,000 m2) were not included in the overall totals of glacier ice 

for Mt. Jaya (Allison, 1974; Allison and Peterson, 1976). Therefore, the sensor data 

acquired for this thesis should be sufficient for detecting the Mt. Jaya glaciers.  
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Fig. 4.  Original 2000 IKONOS image of the Mt. Jaya glaciers. This 1-meter true color 
image was acquired by the sensor on June 08, 2000. Geographic datum: WGS84, 
Coordinate System: UTM 53S.
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Fig. 5.  Original 2002 IKONOS image of the Mt. Jaya glaciers. This 1-meter true color 
image was acquired by the sensor on June 11, 2002. Geographic datum: WGS84, 
Coordinate System: UTM 53S. 
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Fig. 6.  Original 2003 ASTER image of the Mt. Jaya glaciers. This 15-meter  image was 
acquired by the sensor on May 29, 2003. Geographic datum: WGS84, Coordinate 
System: UTM 53S, RGB=432. 
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Fig. 7.  Original 2003 Landsat ETM+ image of the Mt. Jaya glaciers. This 28.5-meter 
image was acquired by the sensor on May 29, 2003.  Geographic datum: WGS84, 
Coordinate System: UTM 53S, RGB=543. 
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Fig. 8.  Original 2004 Landsat TM image of the Mt. Jaya glaciers. This 28.5-meter 
image was acquired by the sensor on July 26, 2004. Geographic datum: WGS84, 
Coordinate System: UTM 53S, RGB=543. 
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Fig. 9.  Original 2005 Landsat TM image of the Mt. Jaya glaciers. This 28.5-meter 
image was acquired by the sensor on June 11, 2005. Geographic datum: WGS84, 
Coordinate System: UTM 53S, RGB=543. 
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Spectrally, the interface between ice/snow and the surrounding bedrock are clearly  

visible within all of the images.  

The actual dates selected for analysis were determined primarily by the availability 

of cloud-free images. Although seasonal differences on tropical glaciers are not 

considered to be great, studies on the inner tropical glacier Antizana 15 indicate that 

small seasonal changes in some climate variables do occur and can affect glacier 

processes (Favier and others, 2004a; Francou and others, 2004).  Therefore, it is 

advantageous to this thesis that all images were acquired during May-July time periods 

so that seasonal differences on the glaciers will less likely complicate comparisons of 

climate and glacier changes. 

 
5.2. Preprocessing Satellite Images: Band Selection for Color Composites 

The IKONOS data product was delivered as a true color composite and therefore, band 

selection was not necessary. Band composites that would highlight the glacier/rock 

interfaces had to be created for the ASTER and Landsat images. After experimenting 

with several band combinations and visually examining the results it was determined 

that bands 4, 3, and 2 and bands 5, 4, and 3 for the ASTER and Landsat composites, 

respectively, resulted in the best highlighting of the glacier/rock interface. Figures 10 

and 11 illustrate the contrast at the glacier/rock boundary on the IKONOS images, and 

the Landsat and ASTER composites, respectively. Table 1 illustrates the correspondence 

between the selected bands.
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Fig. 10.  Subsets of the IKONOS images after processing. The 2000 and 2002 images are true color images and have 1 m 
spatial resolutions as a result of pan-sharpening. 
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Fig. 11. Subsets of the coregistered ASTER and Landsat composites. The 2003 ASTER image (above) has a spatial 
resolution of 15 m and consists of a 432=RGB color composite. The Landsat scenes (below) have spatial resolutions of 
28.5 m and each consist of a 543=RGB color composite. These images illustrate how clearly the glacier/rock boundary can 
be seen in the images.
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As Table 1 illustrates, band 4 of the ASTER data has a spatial resolution of 30 m, 

whereas bands 2 and 3 are 15 m. To create the 432 band composite for the ASTER 

image, band 4 was resampled to 15 m by nearest neighbor interpolation. Therefore, the 

accuracy of glacier mapping from the ASTER 432 composite is limited to 30 m.  

 
5.3. Coregistration of the Satellite Images 

5.3.1. IKONOS Images 

To facilitate the visual detection of surface ice area changes that occurred between 2000 

and 2002 the IKONOS images were co-registered. The image-to-image registration was 

first attempted using a global polynomial transformation. This process entails selecting 

common points found in both images and then applying a polynomial transformation to 

the target image which results in warping the image so that the geolocation of each pixel 

corresponds with the pixels in the base image. The calculation for the transformation can 

be a first order polynomial which requires as few as three ground control points (GCPs) 

or higher order polynomials can be utilized. The use of higher order polynomials 

requires an increasingly higher number of GCPs with each increase in order. In this case, 

a third order polynomial using twenty GCPs resulted in the least error. However, a visual 

inspection of the resulting image deemed it unsatisfactory. Local variations across the 

image, enhanced by the high spatial resolution of the IKONOS images, seem to be the 

main cause of this distortion.  

To accommodate for the local variations, subsets of the images were created of the 

area of interest and an automated cross correlation routine was implemented resulting in 

the identification of over 25,000 GCPs. The root mean square (RMS) error calculated by 
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the program code was less than 1 m. Once the GCPs had been identified, Delaunay 

triangulation transformation was applied for final rectification of the target image. Errors 

of approximately 1 m were identified for approximately 95% of the image through a 

visual inspection. A few small areas of high relief and shadowing complicated the 

procedure and errors as high as 8 m were observed.  

  
5.3.2. ASTER Image 

Consistent with the coregistration of the IKONOS images, the 2003 ASTER image was 

georeferenced to the 2002 IKONOS image. A first order global polynomial 

transformation resulted in an RMS error of 0.66 pixels. This implies that for each point 

utilized to warp the image, the average displacement of the point in the warped image 

from its original position was 0.66 pixels (i.e. approximately 20 m). A visual inspection 

indicated that the transformation was successful over most of the image. However, some 

areas, primarily around the small portion of the tail of the Carstensz, were off by 

approximately 40 m. This was not surprising because not only was the tail of the 

Carstensz glacier located along the periphery of the image, but this area is also one of 

very diverse relief. 

 
5.3.3. Landsat TM and ETM+ Images 

The Landsat images were subset to areas comparable to those created with the IKONOS 

images. First order global polynomial transformations were applied on the 2003, 2004, 

and 2005 Landsat subsets, respectively, using the 2002 IKONOS image as the base 

image. Although all three rectifications resulted in RMS errors of less than 30 m (i.e. 
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less than one pixel), a visual inspection of the results indicated that unacceptable errors 

existed when comparing the warped Landsat images. The most likely cause of these 

errors was the identification of good GCPs within the images. Not only were acceptable 

GCPs lacking, but the 26 m difference in spatial resolution between the IKONOS (4 m) 

and Landsat (30 m) images further complicated the procedure. Therefore, the 2004 

Landsat image was rectified to the 2002 IKONOS and the 2003 and 2005 Landsat 

images were rectified to the 2004 Landsat image resulting in RMS errors of 0.479 (13.7 

m), 0.319 (9.1 m), and 0.518 (14.8 m), respectively. Although using this method most 

likely resulted in error propagation, this method resulted in both, acceptable RMS errors 

and the best visual results. A visual inspection of the 2004 Landsat image after warping 

it to the 2002 IKONOS indicates that over most of the image the coregistration was 

successful. In some areas around the W. Northwall Firn and at a rock protrusion within 

the Carstensz the error appears to be approximately 30 m. The 2003 to 2004 and the 

2005 to 2004 transformations visually appear to have been successful over most of the 

glacierized areas. In a small portion of the images, probably less than 5%, errors of up to 

approximately 30 m (one pixel) were observed.  

 
5.4. Glacial Boundary Mapping 

All surface ice areas were mapped by visual interpretation and manual digitization in a 

Geographic Information System (GIS).  
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5.4.1. Mapping from the IKONOS Images 

Visual inspections of the 1-meter IKONOS images indicated that it was possible to 

detect several features within the images including ice, snow, and recently glaciated 

areas. There was little supraglacial debris and an absence of moraines along the edges, 

both of which facilitated the mapping process. In general, at the ice/rock interface the 

digital numbers for the rock were much higher than that for the older ice. Snow cover 

was restricted to the higher elevations of the glacier where less melt has occurred. 

Therefore, at the snow/rock interface the snow had much higher reflectance. This 

variation in digital numbers made it possible to delineate the glacier borders by 

individual pixels at an approximate scale of 1:1000. There were only a few areas where 

this was not the case. In these areas, it was necessary to use a 1:4000 scale in order to 

define the general boundary location. Following the determination of the general 

boundary, the 1:1000 scale could then again be utilized to more precisely demarcate the 

ice border. Figures 12 and 13 illustrate the two most difficult areas to accurately map: 

the ice/rock interface along a small portion of the southern edge of the East Northwall 

Firn and the snow/rock interface around the Carstensz tail, respectively. Also 

complicating the mapping around the Carstensz tail was the steep, rugged terrain and 

shadowing. Overall, these areas were not common and it was possible to maintain 

mapping errors to ± one meter. 
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Fig. 12.  Distinguishing ice from rock. One of the more difficult areas to visually 
interpret in the IKONOS image lies along the southern edge of the E. Northwall  
Firn. The reflectance values for the ice and the surrounding rock are very similar. 
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Fig. 13. Mapping the Carstensz tail. Visual interpretation of the snow/rock interface 
around the Carstensz tail was complicated by steep, rugged terrain, shadowing, and 
similarities in the reflectance values of the snow and recently glaciated limestone. Map 
is modified from Klein and Kincaid (2006). 
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5.4.2. Mapping from the ASTER Image 

Despite the lower resolution of the ASTER image, snow and ice were still 

distinguishable as a result of the high spectral quality of the bands. In addition, as a 

result of the higher spectral quality of the ASTER image, there was greater contrast 

between ice/snow and the surrounding rock at the glacier boundaries, thereby facilitating 

mapping. The same mapping procedure that was used for mapping the IKONOS images 

was utilized for the ASTER. However, as a result of the lower spatial resolution, 

delineation of the glacier boundaries was completed at 1:2000 scales. Overall, it was 

possible to map the boundaries within ± one pixel (i.e. 30 meters). 

Unfortunately, only one cloud-free image of the Mt. Jaya glaciers was available from 

the ASTER archives. Within this image, the glaciers are on the periphery, and a small 

portion of the Carstensz glacier tail is missing (Fig. 11). To account for the area of the 

missing tail this portion of the Carstensz was delineated in the 2003 Landsat ETM+ 

image (mapping of the 2003 ETM+ image is described in section 5.4.3), which was 

acquired by the sensor on the same day as the ASTER scene, and added to the Carstensz 

surface area measured from the ASTER image.  

 
5.4.3. Mapping from the Landsat TM and ETM+ Images 

The Landsat images were also spectrally superior to the IKONOS images, creating 

greater contrast at the glacier/rock interface and facilitating mapping. However, it was 

not possible to distinguish between snow and ice as a result of the broader bandwidths of 

the Landsat data when compared to the ASTER.  The lower spatial resolution of the 

Landsat and ASTER images also resulted in more difficulties with visually interpreting 
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mixed pixels. A great deal of effort and care was afforded to maintaining a consistent 

approach when mapping the glaciers in each of the images. To insure a non-biased 

approach to the mapping, comparisons between the images were not made during the 

mapping process. Keeping this in mind, along most of the glacier boundaries delineated 

in each image, mapping was accomplished within ± one pixel (i.e. 28.5 m). 

 
5.5. Comparing Historical Extents with 2000 to 2005 Surface Areas 

To compare glacier surface areas in 1972 and 1987 to those from 2000-2005, the glacier 

extents provided in the 1972 and 1987 maps had to be digitized in a GIS. Numerous 

attempts to rectify the 1973 map to the 2002 IKONOS image were unsuccessful. 

However, it was determined that both the 1973 map and 2002 image could successfully 

be coregistered to the 1987 map. Therefore, the 1987 map was used as the base image to 

rectify the 1972 map. This was accomplished using the eleven ground control points that 

had been established in the field and were marked on both maps. Application of a 1st 

order (affine) transformation resulted in an RMS error of 1.2 m. The 1973 and 1987 

maps, respectively, were then rectified to the 2002 IKONOS subset using ten tie points 

that were identifiable in both of the maps and the image. These points primarily 

consisted of glacial lakes and rock formations at the Carstensz top. 1st order 

transformations were used in both cases and resulted in RMS errors of 37.08 m.  

After coregistration, the glaciers were digitized from the 1972 and 1987 maps and 

overlaid in a GIS. A visual inspection of the resulting map indicated that it closely 

resembled the results that Peterson and Peterson (1994) obtained. Peterson and Peterson 
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(1994) did not differentiate the individual glaciers in their analysis. Therefore, as a final 

step, the 1987 surface areas for each glacier were measured in a GIS. 

 
5.6. Climate Data Analysis 

Freezing level was calculated at 6 hour intervals using the temperature and pressure 

height data at 500 and 600 hPa. This was accomplished by determining the interval in 

meters existing between these two pressure levels, dividing it by the change in 

temperature occurring between these two levels, multiplying this result by the degrees 

necessary to reach 0°C, and adding that result to the 600 hPa pressure height. 

The NCAR/NCEP Reanalysis data, along with the freezing level results, were 

analyzed on a monthly basis for the period 1951-2005 to correspond with the temporal 

resolution of the ENSO classification acquired from the CPC. To facilitate a broad scale 

comparison between the changes occurring to the Mt. Jaya glaciers and changes in the 

meteorological variables, the monthly means (monthly sum in the case of accumulated 

precipitation) were aggregated into single means to coincide with periods of glacial 

observations. Periods representing major observations of the glaciers are defined as 

1972-1987 and 1988-2005. To provide an indication of climate conditions prior to 1972, 

the data for 1951-1971 was also aggregated.  

To test for the statistical significance in the differences in means between periods for 

each of the climate variables, t-tests at the 95% confidence level were run. If the 

significance value of the T-test was less than 0.05 then the variable was considered to 

have changed from one period to the next, but if the significance value was higher than 

0.05 then the mean for the variable was not considered to have changed. In addition to 
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testing the significance of magnitude changes in the monthly SSTs, frequency of ENSO 

classifications were calculated to determine if the occurrence of El Niño events had 

changed between periods. 

During each time period, respectively, the monthly means for each climate variable 

(i.e., atmospheric temperature, freezing level, accumulated precipitation, accumulated 

convective precipitation, radiation, percent cloud cover, specific humidity, and wind 

speed) was examined to determine if the pattern of change from period to period was 

similar to that of the ONI.  
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6. RESULTS 

 
6.1. 2000 to 2005 Mapping Results 

The dramatic recession of the Mt. Jaya glaciers documented since ca. 1850 has 

continued into the 21st century. Of the seven ice masses documented on Mt. Jaya in 1972 

(the E. and W. Northwall Firns, and the Carstensz, Meren, Wollaston, Van de Water, and 

Southwall Hanging glaciers), only four remain. These include the E. and W. Northwall 

Firns, the Carstensz, and the Southwall Hanging glacier. The tongue of the Meren 

glacier and the Middle Firn area are gone. All that remains of the Meren is the portion of 

the E. Northwall Firn that previously flowed into the glacier. The Wollaston glacier has 

completely receded and the Van de Water glacier only exists as small, fragmented ice 

masses. Therefore, any possible remains of these two glaciers are incorporated into the 

Carstensz glacier area. Figures 14 through 17 illustrate the recession of the remaining 

glaciers over the 2000-2005 period. 

Table 2 provides the surface areas for all of the ice masses mapped from 2000-2005. 

Two totals for the Mt. Jaya area are provided in the table. The first value represents the 

total surface ice area for Mt. Jaya including all ice masses >0.001 km2, as this is the 

minimum mapping unit now required for standardization by the World Glacier 

Monitoring Service. These totals were 2.327, 2.153, 1.913, 2.107, 1.936, and 1.728 km2 

for May 2000, June 2002, May 2003 (ASTER), May 2003 (Landsat ETM+), July 2004, 

and June 2005, respectively. Following protocols established in previous reporting for 

the Mt. Jaya glaciers, the second value provided in the table represents the total for all  
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Fig. 14. Ice loss for the Mt. Jaya glaciers from 2000 to 2002. Mapping was 
accomplished using the 2000 and 2002 IKONOS images. Top: E. Northwall Firn; 
Center: W. Northwall Firn; Bottom: Carstensz glacier. Maps modified from Klein 
and Kincaid (2006). 
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Fig. 15.  Ice loss for the Mt. Jaya glaciers from 2000 to 2003. Mapping was 
accomplished using the 2000 and 2002 IKONOS images and the 2003 ASTER image. 
Top: E. Northwall Firn; Center: W. Northwall Firn; Bottom: Carstensz glacier. 
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Fig. 16. Ice loss for the Mt. Jaya glaciers from 2003 to 2005. Mapping was 
accomplished using a 543 color composite created from Landsat ETM+ data.  Top: E. 
Northwall Firn; Center: W. Northwall Firn; Bottom: Carstensz glacier. 
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Fig. 17.  Ice loss for the Mt. Jaya glaciers from 2000 to 2005. Mapping was 
accomplished using the 2000 IKONO image and the 2005 Landsat image. Top: E. 
Northwall Firn; Center: W. Northwall Firn; Bottom: Carstensz glacier.
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Table 2. Surface ice areas (km2) for the Mt. Jaya glaciers from 2000 to 2005.  

Glacier 2000 Area1 
(IKONOS) 

2002 Area1 
(IKONOS) 

2003 Area 
(ASTER) 

2003 Area 

(Landsat ETM+) 
2004 Area 

(Landsat TM) 
2005 Area 

(Landsat TM) 

2.327 2.153 1.913 2.107 1.936 1.728 All Mt. Jaya 
Glaciers2 2.250 2.101 1.888 2.069 1.908 1.715 
Carstensz 
Glacier 0.747 0.696 [0.636]3 0.712 0.619 0.552 

Main Area 0.734 0.686 [0.629]3 0.705 0.612 0.549 

Ice Mass 1 0.010 0.009 * * * * 

Ice Mass 2 0.003 0.001 [0.007]3 0.007 0.007 0.003 

Ice Mass 3 <0.001 0.000  

Ice Mass 4 <0.001 <0.001 * * * * 

Ice Mass 5 <0.001 0.000  

Ice Mass 6 <0.001 0.000  
E. Northwall 

Firn 1.228 1.173 1.061 1.120 1.084 0.982 

Main Area 1.228 1.170 1.061 1.120 1.084 0.982 

Ice Mass 1  0.003 * * * * 

Ice Mass 2  <0.001 * * * * 
W. Northwall 

Firn 0.352 0.284 0.216 0.275 0.233 0.194 

Main Area 0.288 0.245 0.198 0.244 0.212 0.184 

Ice Mass 1 0.037 0.026 0.015 0.022 0.015 0.010 

Ice Mass 1a <0.001 0.000     

Ice Mass 2 0.022 0.012 0.003 0.009 0.006 0.000 

Ice Mass 3 0.005 0.001 * * * * 
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Table 2 Continued. 

Glacier 2000 Area 
(IKONOS)1 

2002 Area 
(IKONOS)1 

2003 Area 
(ASTER)1 

2003 Area 

(Landsat ETM+)1 
2004 Area 

(Landsat TM)1 
2005 Area 

(Landsat TM)1 
Southwall 

Hanging Glacier4 0.029 0.022 0.015 0.028 0.025 0.005 

Main Area 0.029 0.022 0.015 0.028 0.025 0.000 

Ice Mass 1      0.003 

Ice Mass 2      0.002 

       
Spatial resolution of data sources is 4, 15, and 30 m for the IKONOS, ASTER, and Landsat images, respectively. 1 Data obtained from Klein and 
Kincaid (2006). 2 The top number represents the total surface area of ice on Mt. Jaya (i.e. main glacier areas and small ice masses that have separated 
from the main glaciers) excluding the Southwall Hanging glacier (see text). The bottom number represents the total area for all glaciers measuring at 
least >0.1 km2 (excluding the Southwall Hanging glacier: see Southwall Hanging glacier in results section). 3 These values represent the mapping results 
of the Carstensz glacier in the ASTER image plus the portion of the Carstensz missing from the ASTER scene. The area measurements for the missing 
portion were obtained by mapping the 2003 Landsat ETM+ image, which was acquired on the same day as the ASTER image.  4Difficulties existed in 
mapping the Southwall Hanging glacier (see text) and the areas are not considered accurate. Therefore, these totals are only shown to indicate the 
magnitude in size of this glacier and are not included in the Mt. Jaya totals provided at the top of the table. *The resolution of the ASTER or Landsat 
images does not permit detection of these small ice masses.
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glaciers larger than 0.1 km2. These totals were 2.250, 2.101, 1.888, 2.069, 1.908, and 

1.715 km2 for the same dates, respectively.  

Whereas, the Southwall Hanging glacier was observed in all of the images, the small 

size of this glacier, the rock overhang above it, and complex shadowing on the south 

facing glacier hindered accurate delineation of the glacier’s boundaries. Based on the 

observations made from the IKONOS image it was determined that the Southwall 

Hanging glacier could not be measured accurately utilizing images acquired at the 

acquisition angles of the IKONOS, ASTER, and Landsat sensors. Therefore, it is not 

included in area totals. 

 
6.2. Results from Comparing the 1972 and 1987 Glacier Areas to the 2000 to 2005 

Areas 

An error was discovered in the reporting of the Mt. Jaya glacier area for 1987 (Klein and 

Kincaid, 2006). Using the methods outlined in Section 5.5 of this thesis, the surface 

areas for the individual glacier systems in 1987 were 2.3, 1.3, 1.4, and <0.1 km2 for the 

E. Northwall Firn/Meren glacier system, W. Northwall Firn, Carstensz glacier system, 

and the Southwall Hanging glacier, respectively, and the total surface ice area for Mt. 

Jaya was approximately 5.0 km2. Peterson and Peterson (1994) reported that the total ice 

area on Mt. Jaya in 1987 was approximately 3.0 km2.  

Several lines of evidence suggest that the area of 5.0 km2 is correct. The glacier 

extents represented on the 1987 map were measured using the scale bar provided within 

the map and the total of those areas closely approximate the 5.0 km2 measurement. The 

1987 map also illustrated the 1972 glacier extents. The surface ice area of the W. 
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Northwall Firn area as measured in a GIS from the 1987 map corresponded with those 

published in 1972. The W. Northwall Firn was selected for this process because it was 

the only glacier within the map for which the entire boundary was visible. As a last 

measure, the area of a small lake was measured from the 1987 map and found 

comparable in area to the measurement obtained from the 2002 IKONOS image.  

Therefore, the correct total for surface ice area on Mt. Jaya in 1987 was 5.0 km2 and the 

surface areas for the individual glacier systems were 2.3, 1.3, 1.4, and <0.1 km2 for the 

E. Northwall Firn/Meren glacier system, W. Northwall Firn, Carstensz glacier system, 

and the Southwall Hanging glacier, respectively. Glacier recession over the period from 

1972 to 2005 is illustrated in Figure 18. 

 
6.3. Climate Analysis Results 

6.3.1. Frequency and Magnitude of El Niño 

The climate analysis indicates that El Niño occurrences became more frequent and 

were of greater magnitude during periods 2 and 3 than those occurring in period 1. From 

the first to the second and second to third periods, the frequency of El Niño months 

increased by approximately 7.8% and 2.3%, while La Niña months decreased by 5.6% 

and 3.7%, respectively (Fig. 19). During the same time periods, neutral months 

decreased 2.2% and, then, increased by 1.4%. Specific to each time period, El Niño 

months accounted for 19.84%, 27.60%, and 29.91%, La Niña months accounted for  
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Fig. 18. Glacier recession on Mt. Jaya, Indonesia in 1972, 1987, 2000, and 2005. Glacier 
extents were determined in the field in 1972 (Hope and others, 1976), from a 1987 SPOT 
satellite image (Allison and Peterson, 1989), a 2000 IKONOS image (Klein and Kincaid, 
2006), and a 2005 Landsat TM image. 
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Fig. 19. Oceanic Niño Index and ENSO events. Graph A illustrates the mean monthly 
anomalies for the Oceanic Niño Index for each time period. B. Pie charts illustrate the 
frequency with which each ENSO phase occurred during each period. 
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32.14%, 26.56%, 22.90%, and neutral months accounted for 48.02%, 45.83%, and 

47.20% of the total monthly events, respectively. 

A statistically significant change (significance of t-test is 0.02 at 95% confidence 

level) in the overall mean for monthly ENSO anomalies is indicated between periods 1 

and 2, but not for periods 2 and 3. From time period 1 to time period 2, the monthly 

anomalies decreased from -0.01 to -0.25. The monthly mean anomaly for period 3 was -

0.29. 

Analyzing the monthly changes in anomalies separately for each event category (i.e., 

El Niño, La Niña, and neutral events) indicates that a change in the magnitude of El 

Niño events is the reason for the shift towards more negative anomalies during the last 

two periods (Fig. 20). El Niño anomalies averaged -0.87 in period 1, whereas anomalies 

averaged -1.33 in period 2 (statistically significant at 0.01 for 95% confidence level). 

The mean anomalies during periods 2 and 3 were not statistically different, nor were 

anomalies for La Niña and neutral events over any of the periods tested.  

 
6.3.2. Analysis of the Meteorological Variables  

From period 1 to period 2, the mean monthly atmospheric temperature at 600 hPa 

increased by about 0.24°C, from 2.47°C to 2.71°C, and the freezing level rose by 

approximately 48 m, from 4854 m to an altitude of 4902 m. Cloud cover decreased by 

almost 4%, from 67 to 63%, precipitation at the surface decreased by about 7%, from 

236 mm to 218 mm, radiation at the surface increased by 3%, from 232 watts m-2 to 

238.5 watts m-2, and wind speeds at 600 hPa decreased by about 7.5%, from 6.8 m s-1 to  
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Fig. 20. Mean monthly Oceanic Niño Index anomalies during each period for La Niña, 
neutral, and El Niño months, respectively, from 1951 to 2005. 
 

 

 

 

 



  

 

58

6.3 m s-1. T-tests for statistically different means resulted in significance values of 0.000, 

0.000, 0.000, 0.001, 0.000, 0.000 for the climate variables, respectively, at the 95%  

confidence level. The mean values for specific humidity at 600 hPa did not statistically 

change from period 1 to period 2 (Fig. 21, Table 3).  

From period 2 to period 3, El Niño events became even more frequent, but the 

magnitude of the events remained approximately the same. However, mean monthly 

radiation decreased by approximately 1.7%, from 238.5 to 234.5 watts m-2, precipitation 

at the surface increased by about 8%, from 218 mm to 235.8 mm, wind speeds at 600 

hPa increased by 6.4% to 6.7 m s-1, and specific humidity at 600 hPa increased by 

approximately 4%, from 4.05 to 4.2 g kg-1 (statistically significant at 0.027, 0.002, 

0.002, 0.006, respectively, at the 95% confidence level). Atmospheric temperature, the 

freezing level, and percent cloud cover did not statistically change from their 1972-1987 

mean.  

 
6.3.3. Climate Variables and ENSO 

Monthly means of atmospheric temperature, freezing level, and percent cloud cover 

during periods 1, 2, and 3 all change similarly to the change in the magnitude of ENSO 

anomalies, with statistical differences in the mean values only between periods 1 and 2. 

Whereas atmospheric temperature and freezing level rise with El Niño, percent cloud 

cover decreases. Monthly means for precipitation, wind speeds, and radiation all have 

significant differences between periods 1 and 2 and periods 2 and 3. While following the  

same trend as the ENSO anomalies, the magnitude of change in monthly mean values for 

specific humidity in the Mt. Jaya area does not indicate a relationship. 
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Fig. 21. Monthly means for temperature, freezing level, precipitation, incoming 
radiation, wind magnitude, specific humidity, and percent cloud cover during each time 
period. 
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Table 3. Climate changes from 1951-2005. The magnitude of change over each time 
period for each climate variable and the significance of the t-test are shown. Values in 
bold indicate that the mean during that period significantly changed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Magnitude of 
Change From 
Period 1-2 

T-test Magnitude of 
Change From 
Period 2-3 

T-test 

ONI Anomalies -0.24 0.024 -0.04 0.682 
Atmospheric 
Temperature 

0.24°C 0.000 0.01°C 0.881 

Freezing Level 48.3 m 0.000 4.12 m 0.673 
Precipitation -17.55 mm 0.001 17.86 mm 0.002 
Radiation 7.0 watts m-2 0.000 -3.96 watts m-2 0.027 
% Cloud Cover -3.87% 0.000 -0.26% 0.615 
Specific 
Humidity 

0.02 g kg-1 0.655 0.17 g kg-1 0.006 

Wind Speeds -0.5 m s-2 0.000 0.13 m s-2 0.002 
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7. DISCUSSION 

 
7.1. Comparisons of the Mapping Results Obtained Using ASTER and Landsat 

ETM+ Images 

Acquisition of images of the Mt. Jaya glaciers on May 29, 2003 by both Landsat and 

ASTER provides a unique opportunity to compare glacier areas of these small glaciers 

from two sensors.  In Table 2, it can be seen that the surface ice areas mapped from the 

Landsat image consistently resulted in larger surface areas for the glaciers. More 

specifically, the main areas of the glaciers were 5.3%, 11.2%, and 18.9% larger for the 

E. Northwall Firn, Carstensz, and W. Northwall Firn, respectively, when mapped from 

the Landsat image. There is also a pattern of increasing difference in the mapping 

between the two sensors with decreasing glacier area.  

 
7.2. Overall Changes in Glacier Extents on Mt. Jaya from ca. 1850 to 2005 

7.2.1. Description of Tables and Figures Compiling Observations from ca. 1850-2005 

Tables 4 through 6 present the compilations of the glacier surface areas recorded for Mt. 

Jaya over the past century as published by Allison (1974), Allison and Peterson (1976), 

Allison and Peterson (1989), Klein and Kincaid (2006) and the results of this work for 

2003-2005. Table 4 provides the areas of the major systems, whereas Tables 5 and 6 

discriminates between the individual glaciers comprising the Northwall Firn/Meren and 

Carstensz glacier systems, respectively. The Northwall Firn/Meren glacier system 

consists of the E. and W. Northwall Firns, and the Meren and Harrer glaciers, while the 

Carstensz, Wollaston, and Van de Water glaciers comprise the Carstensz glacier system. 
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 Table 4. Ice surface areas (km2) for the Mt. Jaya glaciers from ca. 1850 to 2005. 

Italicized values represent our totals computed from published areas. 1Allison (1974) and Allison and Peterson (1976). 2Allison and Peterson    
(1989). 3Peterson and Peterson (1994). 4Klein and Kincaid (2006). To facilitate comparisons, only the areas of ice masses >0.1 km2 are given.    
5These values were computed from the mapped glacier areas on the Peterson and Peterson (1994) map (see text). 6This value was computed by   
adding the tail of the Carstensz, as measured on the 2003 Landsat ETM+ image, on to the area measured from the 2003 ASTER image (see text). 
 

 
 
 
 
 
 

 Entire Mt. Jaya Area Northwall Firn and 
Meren Glacier Total Carstensz System Southwall Hanging Glacier Harrer Glacier 

Neoglacial  
(ca 1850)1 19.3 14.2 3.6 1.0 0.5 

19131    0.4  
19361 13 11.1 1.6 0.3 <0.1 
19421 9.9 8.1 1.5 0.3 <0.1 
19621     <0.1 
19721 6.9 5.5 1.2 0.2 <0.1 
19722 

(corrected) 7.3 5.8 1.4 0.1  

19742 6.4 
[6.6] 

4.9 1.4 0.1  

19873 3.0 
[5.0]5 

 
[3.6]5 

 
[1.4]5 

 
[<0.1]5 

 

20004 2.25 1.52 0.73 <0.1  
20024 2.10 1.42 0.69 <0.1  
2003 1.89 1.26 [0.63]6 <0.1  
2003 2.07 1.36 0.71 <0.1  
2004 1.91 1.30 0.61 <0.1  
2005 1.72 1.17 0.55 <0.1  
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Table 5. Ice surface areas (km2) for individual glaciers comprising the Northwall Firn/Meren glacier system  
from ca. 1850 to 2005.  

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Only ice masses >0.1 km2 are given. 1Allison (1974) and Allison and Peterson (1976). 2Allison and Peterson (1989). 3Peterson and  
Peterson (1994). 4Klein and Kincaid (2006). 5These values were computed from the mapped glacier areas on the Peterson and  
Peterson (1994) map (see text). 6The W. and E. Northwall Firn areas were observed as one contiguous ice mass in 1936 and 1942.  
The ice masses separated sometime between 1942 and 1962 (Allison and Peterson, 1976). 7The boundary between the E. Northwall  
Firn and Meren glacier shifts (see text). Sometime between 1987 and 1992 the tongue of the Meren separated from the rest of the  
glacier and completely melted by 2000.  

 
 

 Northwall 
Firn and 

Meren Glacier 

W. and E. 
Northwall 

Firn6 

W. 
Northwall 

Firn6 

W. 
Northwall 
Firn (A) 

W. 
Northwall 
Firn (B) 

E. 
Northwall 
Firn6 & 7 

Meren 
Glacier7 

E. Northwall 
Firn  

and Meren 
Glacier7 

Neoglacial  
(ca 1850)1 14.2 9.1     5.1  

19131         
19361 11.1 8.3 6.7   1.6 2.8 4.4 
19421 8.1 5.5 4.4   1.1 2.6 3.7 
19621       2.1  
19721 5.5 3.6 2.5   1.1 1.9 3.0 
19722 

(corrected) 5.8 3.6     2.2  

19742 4.9 2.8     2.1  
19873 

[3.6]5   [1.12]5 [0.18]5   [2.3] 

20004 1.52   0.29 0.00   1.23 
20024 1.42   0.25    1.17 
2003 1.26   0.20    1.06 
2003 1.36   0.24    1.12 
2004 1.30   0.21    1.08 
2005 1.17   0.18    0.98 
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Table 6. Ice surface areas (km2) for the individual glaciers comprising the Carstensz glacier  
system from ca. 1850 to 2005.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

1Allison (1974) and Allison and Peterson (1976).  2Allison and Peterson (1989). 3Peterson and Peterson  
(1994). 4Klein and Kincaid (2006). To facilitate comparisons, only the areas of ice masses >0.1 km2 are given.  
5These values were computed from the mapped glacier areas on the Peterson and Peterson (1994) map  
(see text). 6This value was computed by adding the tail of the Carstensz, as measured on the 2003 Landsat  
ETM+ image, on to the area measured from the 2003 ASTER image. *Distribution unknown.

 Total Carstensz System Carstensz Glacier Wollaston Glacier Van de Water Glacier 

Neoglacial  
(ca 1850)1 3.6 2.5 0.5 0.6 

19131   0.3 0.2 
19361 1.6 1.25 0.2 0.15 
19421 1.5 1.1   
19621  0.95   
19721 1.2 0.89 0.17 0.14 
19722 

(corrected) 1.4 * * * 

19742 1.4 * * * 
19873  

[1.4]5 
* * * 

20004 0.73 *  * 

20024 0.69 *  * 
2003 [0.63]6 *  * 
2003 0.71 *  * 
     
2004 0.61 *  * 
2005 0.55 *  * 
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 Providing information on both the individual glaciers and the glacier systems was 

necessary to adequately compare the glacier areas and to calculate the rates of loss over a 

century long record of recession. Over the past century not only has the Northwall Firn 

divided into the E. and W. Northwall Firns, but also, the Harrer, Meren, and Wollaston 

glaciers, the latter two flowing from other ice masses on the mountain, have melted. As 

these glaciers receded, ice flow patterns in the firn areas shifted resulting in 

redistributing the area between the glaciers sharing the firn field. For example, the 1972 

measurements of the area distribution of the E. Northwall Firn and Meren glaciers were 

made based on identifying flow lines and the portions of the E. Northwall Firn that were 

contributing to the Meren glacier. (Allison, 1974; Allison and Peterson, 1989). It was 

expected that the dividing line between the E. Northwall Firn and Meren glacier would 

continue to shift as the Meren glacier receded. Although the Meren glacier is now gone 

and it appears from the mapping that the E. Northwall Firn is all that remains, reporting 

an area measurement for the E. Northwall Firn of 1.23 km2 for 2000 would suggest that 

the firn field has grown when it has actually greatly receded from its 1972 surface area. 

Using the 1-meter IKONOS images it is not possible to identify flow-lines, and thereby, 

discriminate what may remain of the Meren glacier. Therefore, the E. Northwall Firn 

and Meren glacier will be called the E. Northwall Firn/Meren glacier system after 1974, 

when the last measurements were made for the Meren glacier. 

Both the original 1972 and the corrected 1972 values are shown in the Tables 4-6. 

However, only the corrected values were used in calculating rates of ice loss (Table 7). 
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 Table 7. Rates of ice loss (km2/year) for the Mt. Jaya glaciers from ca. 1850 to 2005.  

 1This value was computed using the combined values for both the W. Northwall Firn A and B in 1987. 2 In the 2002-2003 and 2003-2004 columns   
 the top and bottom values for each glacier represent the rates of recession calculated with the results obtained from mapping the 2003 ASTER and  
 2003 Landsat ETM+, respectively. 

Glacier 

ca 
1850 

to 
1913 

1913 
to 

1936 

1936 
to 

1942 

1942 
to 

1962 

1962 
to 

1972 

1972 
to 

1974 

1974 to 
1987 

1987 to 
2000 

2000 
to 

2002 

2002 
to 

20032 

20032 
to 

2004 

2004 
to 

2005 

0.52 0.09 0.45 [0.11]1 0.21 -0.02 Mt. Jaya 0.07 
0.16 0.15 

[0.21]1 0.07 
0.03 0.16 

0.19 

0.5 0.08 0.45 0.10 0.16 -0.04 Northwall Firn and Meren 
Glacier 0.04 

0.15 0.15 
0.16 0.05 

0.05 0.06 
0.13 

0.47 0.06 W. and E. Northwall Firn 0.01 
0.13 

0.40  

0.38 0.06 0.05 -0.01 W. Northwall Firn   
0.12 

[0.08]1 [0.08]1 0.02 
0.01 0.03 

0.03 

0.03 0.03 -0.01 Meren Glacier 0.03 
0.02 

0.05  

0.12 0.02 0.11 -0.02 
E. Northwall Firn and Meren  

0.04 
0.05 0.08 0.03 

0.05 0.04 
0.10 

0.02 0.003 0 0 0.06 0.02 
Total Carstensz System 0.02 

0.01 0 
0.05 0.02 

-0.02 0.10 
0.06 

0.01 0.004 0.0 0.01 Southwall Hanging Glacier 0.01 0.01 0  
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The recession of the Mt. Jaya glaciers from ca. 1850 to 2005 is graphically illustrated in 

Figure 22.  

Whereas the Mt. Jaya glaciers are well-studied and have a long record of 

observations, the chronology presented here is coarse. This is a common problem for 

most all glacier records, and especially those of the tropics (Kaser, 1999). In making 

comparisons between the rates of recession, most all of which have occurred over time 

intervals of varying length, it is important to note that there is not an implication that 

high or low rates of recession existed over an entire period or that periods of high or low 

rates did not occur at other times during the century. They simply represent periods in 

which it is known that at some point during that time period exceptionally high rates of 

recession occurred. An examination of the 2000-2005 rates of ice loss in Table 7 

illustrates the degree of fluctuation that can occur between annual time periods. 

 
7.3. Detailed Changes for the Northwall Firn and Meren Glacier System 

Overall, the Northwall Firn and Meren glacier system dominates the recessional trend 

for the total Mt. Jaya area. From ca. 1850 to 2005 the system lost 13.0 km2 of its surface 

ice area representing 91.5% of its ca. 1850 area. In 1936, Dozy (1938) described the 

Northwall Firn system as one contiguous firn field. This glacier system split into two 

parts at the New Zealand Pass sometime between 1942 and 1962 (Allison and Peterson, 

1976), resulting in the W. Northwall Firn and the E. Northwall Firn/Meren glacier 

systems. 
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Fig. 22. Surface ice areas for the Mt. Jaya glaciers from ca. 1850 to 2005. Squares represent data points for observations over 
the time period.
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7.3.1. E. Northwall Firn/Meren Glacier System 

Total area measurements, obtained from fieldwork for the E. Northwall Firn/Meren 

glacier system were provided as early as 1936. This system decreased in area by 3.4 

km2, from 4.4 km2 in 1936 to 0.98 km2 in 2005. This loss represents 24% of the surface 

area of the entire Northwall Firn/Meren system and 18% of all surface ice existing on 

Mt. Jaya at the LIA maximum.  

Between ca. 1850 and 1974 the Meren glacier lost 3.0 km2 of its surface ice area, 

constituting almost 59% of its ca. 1850 area. The Meren glacier formerly flowed into the 

Meren Valley from the most eastern portion of the E. Northwall Firn. Using data from 

the 1972 field expeditions, Allison and Kruss (1977) numerically modeled the Meren 

glacier and predicted that increased melting would likely occur over the next several 

years. In 1992, during a field expedition, Peterson and Peterson (1994) observed that the 

tongue of the Meren glacier had separated from the E. Northwall Firn and predicted that 

within a few short years it would no longer exist. Observations made from the 2000 

IKONOS image indicate that the tongue of the Meren glacier has completely melted.  

As illustrated in Figure 18, the E. Northwall Firn/Meren system has primarily 

receded along its southwest and western borders. However, some recession has occurred 

along most all borders from 1987 to 2005. Hypsometries, for 1972, 1987, and 2002 

determined from SRTM topography (Klein and Kincaid, 2006), illustrating the recession 

in regards to elevation are shown in Figure 23. The hypsometry indicates that the E. 

Northwall Firn/Meren glacier is losing surface area at all elevations, with the majority of 
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Fig. 23. Hypsometries for the W. Northwall Firn, the E. Northwall Firn/Meren glacier system, and the Carstensz glacier for 
1972, 1987, and 2002. Map modified from Klein and Kincaid (2006).



  

 

71

ice loss having shifted to higher elevations between the intervening periods. This pattern 

of loss suggests that the elevation range for this firn field is shrinking.  

Evidence of ice thinning is also apparent in as the number of rock protrusions 

increased between 2000 and 2005. Whereas the SRTM data used to produce the 

topographic map for this thesis is too coarse for providing detailed topography over the 

glacier, the 1972 survey map indicates that these rock protrusions are in an area 

surrounding a peak in elevation of 4810 m.  

 
7.3.2. W. Northwall Firn  

From 1936 to 2005, the W. Northwall Firn lost approximately 6.52 km2 of its surface ice 

area, representing 97% of its 1936 area. This loss also represents 59%, and 50% of the 

surface ice area of the Northwall Firn/Meren system and the Mt. Jaya ice areas measured 

for 1936, respectively. A period of extreme ice loss occurred between 1936 and 1942 

resulting in a loss of approximately 34% of its surface area over this short period. While 

the acquisition of surface area measurements was not frequent enough to constrain the 

loss to these years, this time period of excessive retreat is consistent with the behavior of 

other tropical glaciers, worldwide (Kaser, 1999). 

The W. Northwall Firn began disintegrating sometime after 1972. Allison and 

Peterson (1989) reported that this glacier was observed as three separate ice masses in a 

1983 Landsat image. One of these ice masses, which no longer exists, lied outside the 

area shown in the 2000-2005 mapping as illustrated in Figure 18. In 1987, two ice 

masses were observed and by 2000 only one ice mass was observed with an area >0.1 

km2. Spatially, over the past century this firn field has predominantly receded from the 
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west. Whereas this firn field is primarily receding from its lowest elevations, ice loss 

substantially increased at higher elevations between 1987 and 2000, at which time 

recession slowed substantially.  

 
7.4. Detailed Changes for the Carstensz Glacier System 

Overall, the Carstensz glacier system receded from a surface area of 3.6 km2 in ca. 1850 

to an area of 0.55 km2 in 2005, representing a loss of 98.5% of its original area and 

representing 19% of the entire Mt. Jaya ice area. Similar to the Meren glacier, rates of 

recession calculated for the Carstensz glacier from 1936-1942 were not nearly as high as 

for the Northwall Firn areas. Along the north and eastern ridges of the Carstensz glacier 

small portions of the 2002 mapping extended past the maximum areas delineated from 

the 2000 image. It is unlikely based on the overall trend in the area that the glacier has 

grown and these areas are most likely a result of coregistration errors or possibly snow-

cover rocks. Overall, these areas account for only approximately 0.2% of the 2000 

glacier area.  

From field observations in 1992, Peterson and Peterson (1994) reported that the 

Wollaston glacier was nearly gone. Although it is difficult to distinguish between the 

boundaries of the Wollaston glacier and the Carstensz glacier in the satellite images, the 

magnitude of melt along the southern edge of the border from 1987 to 2000 suggests that 

the Wollaston glacier has melted. The same situation applies for the Van de Water 

glacier in that its boundaries are indistinguishable from the Carstensz glacier. 

Comparisons of earlier maps with the results obtained in the 2000-2005 mapping 

indicates that it has either melted or that the tail of the Carstensz is all that remains.  



  

 

73

For 1987-2005, recession occurred along the entire circumference of the Carstensz 

glacier system (Figures 18 and 23). However, this was not the case from 1972-1987 

during which ice loss was primarily restricted to the lower elevations of the glacier. The 

greatest recession has occurred along the tongue of the Carstensz glacier, along the 

entire southern border of the Carstensz system, and along the tail of the Carstensz 

system. Six small ice masses were observed in the 2000 image along the eastern edge of 

the glacier indicating rapid disintegration in the tail area. Only two of these ice masses 

remained in 2002 and only one was observed in the 2003-2005 images. From 2003-

2005, most of these very small ice masses probably melted, but others may not have 

been detectable as a result of the lower spatial resolution of the ASTER and Landsat 

images. In addition to these observations, a large portion of the tongue of the Carstensz 

glacier appears to be severely thinning as indicated by the increase in number and the 

pattern of rock protrusions observed from 2000-2005.  

 
7.5. The Rates of Recession for the Mt. Jaya Glaciers are Accelerating 

Sporadic observations over the past century have highlighted some periods of 

exceptionally high rates of ice loss for the area, such as from 1936-1942, 1972-1974, and 

1987-2000. In general, the 1936-1942 and 1987-2000 periods correspond well with 

periods of higher recessional rates for tropical glaciers and for other glaciers world-wide 

(Kaser, 1999). However, the 1972-1974 period does not correlate well. Kaser (1999) 

reports that the 1970s was a period of stable conditions, with some tropical glaciers 

slightly advancing. The high ice losses for the Mt. Jaya area from 1972-1974 solely 

represents the area losses from the Northwall Firn/Meren glacier system. No area losses 
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were reported for the Carstensz glacier from 1972-1987 and the state of this glacier 

during the 1970s does correspond with other tropical glaciers. The lower area losses for 

the Carstensz glacier when compared to the Meren glacier can be attributed to the higher 

elevation of its firn field and the steeper valley in which it flows (Peterson and Peterson, 

1994; Allison, 1974). Overall, Kaser (1999) notes that the Irian Jaya glaciers are 

receding at much quicker paces than most other tropical glaciers similar in size and 

attributes this to the smaller elevation range on which they are located. 

From ca. 1850 to 2005, the Mt. Jaya glaciers retreated from 19.3 km2 in area to 1.72 

km2, amounting to a 91% surface ice area loss since the LIA maximum. As is illustrated 

in Figure 22, from ca. 1850 to 1936, the Carstensz and Meren glaciers dominated the 

recessional trend for the area. This trend was reversed from 1936-2003 with the 

Northwall Firn/Meren system dominating the area losses. Closer examination of the 

Northwall Firn/Meren system (Fig. 24) indicates that from 1936-2000 the high surface 

area losses for the W. Northwall Firn overshadowed those of the E. Northwall Firn, 

which appears to have maintained a constant surface ice area from 1942-1972. Higher 

rates of loss for the E. Northwall Firn/Meren system from 1972 to sometime between 

1992 and 2000, when the Meren glacier completely melted, were primarily controlled by 

the rapid recession of the Meren glacier. After 2000, the E. Northwall Firn continued to 

lose ice at higher rates. The Carstensz glacier maintained low recessional rates from1942 

to 1987, but these rates began to increase around 1987 and have remained high into 

2005.  
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Fig. 24. Surface ice areas for the Northwall Firn and Meren glacier from 1936 to 2005. Squares represent data points from 
observations made during this time period.
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7.6. Relationship of Climate Variables to Glacial Recession  

According to the studies on the inner tropical glacier, Antizana 15 (Favier and others, 

2004b), El Niño years are accompanied by higher temperatures, less precipitation, lower 

specific humidity, and lower wind speeds. These conditions appear to affect the Mt. Jaya 

glaciers as well as El Niño events became more frequent and of greater magnitude in 

period 2. In addition, radiation increased and cloud cover decreased. Although ice loss 

from 1942-1972 was less than that for period 2, the amount that occurred between 1951 

(the time period for which climate data is available) and 1972 is not known and 

therefore, some uncertainty does exist in the amount of ice loss for period 1. However, 

according to numeric modeling (Kaser and Osmaston, 2002) an increase in temperature 

of 0.24°C (the magnitude of change occurring between periods 1 and 2) would have 

resulted in an increase in the ELA of approximately 70 m. Changes in the other climate 

variables were not of a magnitude sufficient to have caused the increase in ice loss. This 

result suggests that rising temperatures and freezing level heights are the primary reason 

for increased ice loss between these two periods.  

However, rising temperatures alone does not explain the acceleration of ice loss 

between periods 2 and 3. Between these two periods, the frequency of El Niño months 

increased, but the magnitude of the monthly events did not significantly change, nor did 

temperature. The only variables that did significantly change were specific humidity, 

wind, precipitation, and radiation, all increasing except the latter. A decrease in 

radiation, as well as increased precipitation would result in reducing ice loss, whereas 

increases in specific humidity and stronger winds would increase sensible heat inputs to 
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the glaciers and result in increased melt. It is unlikely that the increase in specific 

humidity was of sufficient magnitude to account for the increased ice loss or to offset the 

reduction in radiation and the increase in precipitation.  

On Antizana 15 glacier, increased quantities of precipitation were occurring in rain 

phase as opposed to snow as a result of higher temperatures and freezing levels. 

Precipitation/rain phase may be having a major impact on the Mt. Jaya glaciers as 

observed in the 2000 through 2005 satellite images. Prentice (2005) calculates that the 

snow/rain transition boundary is at approximately 250 m below the freezing level for the 

Mt. Jaya glaciers. Examination of the glaciers within the 2000-2005 satellite images 

suggests that this may be a good estimate as melt water ponds are visible in the images at 

around elevations obtained utilizing Prentice’s estimation. Specifically, the snow/rain 

transition is estimated at 4606 m, 4706 m, 4701 m, 4680 m, and 4720 m for the 2000-

2005 images, respectively, using the freezing levels computed from the NCEP/NCAR 

Reanalysis data. Calculations for the snow/rain transition for periods 1-3 result in a 

transition line at 4604 m for the former period and approximately 4654 m during the 

latter two. While the boundary line for the precipitation phase did not rise during the 

third period, the amount of precipitation did increase which would have resulted in 

increased ice loss, especially thinning.  
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8. CONCLUSIONS 

 
With the exclusion of the 1936-1942 rates of ice loss, the overall ice loss for the Mt. Jaya 

glaciers does appear to have increasingly accelerated over the past century. The Meren 

glacier disappeared sometime between 1991 and 2000, as most likely did the Wollaston 

glacier. By 2005, the Van de Water glacier no longer was observable in the images.  

However, closer examination of the individual glacier systems indicates that the ice 

loss for all of the glaciers was not increasingly accelerating over the entire century. The 

overall rates of ice loss on Mt. Jaya were dominated by the W. Northwall Firn 

throughout most of the century until 2000 when only one small ice mass remained that 

was at least >0.1 km2. It is difficult to access the ice loss for the E. Northwall Firn after 

1972 as the next recorded observation was not until 1987 and this area measurement 

included the Meren glacier which was increasingly deteriorating. The literature does 

indicate that from 1942-1972 the E. Northwall Firn was not experiencing the same 

degree of ice loss as the W. Northwall Firn and actually maintained a fairly consistent 

area of ice over that same period.  

The mapping indicates that, sometime after 1972, ice loss for the E. Northwall Firn 

began to increase. The Meren glacier, the largest valley glacier in the area, lost ice at a 

fairly consistent rate over the first half of the century. It was not until sometime after 

1972 that this glacier began to lose ice at increasingly accelerated rates. Finally, the ice 

loss rates for the Carstensz glacier indicate that ice loss was decreasing for this glacier 

over most of the past century with no ice loss at all from 1972-1987. Only sometime 
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after 1987 did this glacier begin to lose ice at increasing rates. Therefore, with the 

exception of the W. Northwall Firn, and for the E. Northwall Firn during the time period 

1936-1942, area losses for the ice masses on Mt. Jaya did not accelerate until after 1972. 

Overall, several periods of high recessional rates are observed in the Mt. Jaya glacier 

record: 1936-1942, 1972-1974, 1987-2000, and 2002-2005. The recession of the Mt. 

Jaya glaciers, during the periods from 1936-1942 and 1987-2000, correlate well with the 

recessional trend of glaciers world-wide during the same time periods (Kaser, 1999). 

However, the correlation in losses for 1936-1942 is primarily a result of the high 

amounts of ice loss occurring on the Northwall Firn. More studies would have to be 

completed to confirm that the Meren and Carstensz glaciers followed the same 

accelerated recessional trend as other glaciers during this period. According to Kaser 

(1999), the 1970s were a period of stability for most tropical glaciers, with some even 

advancing. While the Carstensz glacier did maintain a consistent area of ice throughout 

the 1970s, the other ice masses on Mt. Jaya experienced increased ice loss during this 

period when compared to earlier periods.  

The overall trend for the ONI indicates that the frequency and magnitude of El Niño 

events increased in the 1970s and were consistently strong thereafter. At the same time, 

ice loss on Mt. Jaya accelerated suggesting that a relationship may exist between the 

increase in negative ONI anomalies (i.e., El Niño events) and the accelerated retreat of 

the glaciers. Additional studies are needed to determine if this relationship does exist.  

Overall, El Niño events for Indonesia should result in higher temperatures, decreased 

precipitation, increased solar radiation, decreased cloud cover, and an increased 
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proportion of the overall precipitation occurring in rain phase, all of which would cause 

an increase in recession rates for the glaciers. Statistically, at the 600 hPa pressure height 

over the Mt. Jaya area, temperatures did increase by 0.24° C from the period 1951-1971 

to the period 1972-1987 and remained consistently higher through 2005 than 

temperatures before this time period. As a result of higher temperatures, the freezing 

level height increased approximately 50 m over the same time period. According to 

Kaser’s mass balance model, a 24°C increase in temperature would result in an ELA 

increase in elevation of approximately 70 m. Cloud cover also decreased as did 

precipitation, whereas incoming radiation increased. While this correlates well with the 

increased recession of the Mt. Jaya glaciers overall, the Carstensz glacier did not retreat 

during this time period. Additionally, while anomalies in the ONI remained consistently 

negative during the time period from 1987-2005, temperatures did not increase and some 

climate parameters, such as an increase in precipitation and a decrease in radiation, 

shifted to conditions favorable for glacial advances. However, the glacial retreat on Mt. 

Jaya continued to accelerate during this time period. Accelerated retreat could have been 

caused by several factors. First, if the increase in precipitation was accompanied by 

increases in rain as the primary phase, this would have resulted in increased melt. 

Second, perhaps an imbalance of a larger magnitude than that for which the glaciers 

could recover existed. Observations of melt ponds over most of the glacier surfaces, 

especially extensive in the 2005 image, suggests that the glaciers can no longer recover 

under the current climate conditions. 
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While it is not possible to conclusively assign causation of the recession to any of the 

climate variables, application of the results Kaser and Osmaston (2002) obtained in 

modeling ELA changes indicate that a temperature rise is the most likely explanation for 

the recession of the Mt. Jaya glaciers. The 0.24°C increase in temperature from period 1 

to period 2 in the Mt. Jaya region would result in an approximate rise in the ELA by 

about 70 m. At the same time, the magnitudes of the changes in the other climate 

variables over the region were not sufficient to have had such an impact on the ELA. 

However, it is obvious that ice loss for the glaciers increased even more from 1987 to 

2005 and this cannot be accounted for by the 0.1°C increase in atmospheric temperature 

that occurred during the same time period. All of this suggests that the explanation for 

increased recession is much more complicated than can be explained through a direct 

relationship to temperature and that additional studies are needed.  

Indications that El Niño events are increasing in both frequency and magnitude as a 

result of global warming, and the synchronicity of the increased El Niño periods with the 

accelerated recession of the Mt. Jaya glaciers over the past quarter of a century suggests 

that the glaciers will continue to recede at high rates over the near future. Using a 

conservative rate of recession calculated from ice losses over the period of 1972-2005, 

the Carstensz glacier system, the E. Northwall/Meren system, and the W. Northwall Firn 

will be gone in approximately 21, 14 years, and 2.5 years, respectively. If El Niño 

frequency and magnitude continues to increase, a rate of recession calculated from 1987-

2005 could still be considered conservative. Using this rate only slightly changes the 

prediction for the E. Northwall/Meren system and the W. Northwall Firn. However, 
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utilizing the 1987-2005 rate of recession the Carstensz glacier system will be gone in 

approximately 11.5 years.  
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