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ABSTRACT
Protein Folding and Phylogenetic Tree Reconstruction Using Stochastic

Approximation Monte Carlo. (May 2007)
Sooyoung Cheon, B.A., Korea University, Korea;

M.S., Korea University, Korea
Chair of Advisory Committee: Dr. Faming Liang

Recently, the stochastic approximation Monte Carlo algorithm has been proposed
by Liang et al. (2005) as a general-purpose stochastic optimization and simulation
algorithm. An annealing version of this algorithm was developed for real small pro-
tein folding problems. The numerical results indicate that it outperforms simulated
annealing and conventional Monte Carlo algorithms as a stochastic optimization al-
gorithm. We also propose one method for the use of secondary structures in protein
folding. The predicted protein structures are rather close to the true structures.

Phylogenetic trees have been used in biology for a long time to graphically repre-
sent evolutionary relationships among species and genes. An understanding of evolu-
tionary relationships is critical to appropriate interpretation of bioinformatics results.
The use of the sequential structure of phylogenetic trees in conjunction with stochas-
tic approximation Monte Carlo was developed for phylogenetic tree reconstruction.
The numerical results indicate that it has a capability of escaping from local traps
and achieving a much faster convergence to the global likelihood maxima than other
phylogenetic tree reconstruction methods, such as BAMBE and MrBayes.
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CHAPTER I

INTRODUCTION
This dissertation has utilized the stochastic approximation Monte Carlo (SAMC)
algorithm for protein folding and phylogenetic tree reconstruction. Quite recently,
SAMC has been proposed by Liang et al. (2005), which overcomes the weaknesses
of the Wang-Landau algorithm (Wang and Landau, 2001) in convergence. Liang et
al. found that the Wang-Landau algorithm is not trapped by local energy minima,
but there does not exist a rigorous theory to support its convergence and thus the
estimates produced by the algorithm can only reach a limited statistical accuracy.
Because the self-adjusting nature of the SAMC algorithm enables it to overcome any
barrier of the energy landscape, it can escape from local traps. Thus it is an excellent
tool for Monte Carlo optimization.

The main problem in protein folding is the di�culty of the prediction of native
structures from its sequence. The di�culties are that the dimension of the system
is usually high because it is in the same order with the number of atoms involved
in the system, and a multitude of local minima can be separated by high-energy
barriers (i.e., the energy landscape of the system is usually complicated). Phylogenetic
tree reconstruction also has high dimensionality di�culty because the number of all
possible trees will increase much faster than exponential time as the number of taxa
increases and local trap di�culty because the posterior probability distribution of
trees can contain multiple energy minima.
This dissertation follows the style of Journal of the American Statistical Association.
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1.1 Stochastic Approximation Monte Carlo
Before describing annealing stochastic approximation Monte Carlo (ASAMC) and
sequential stochastic approximation Monte Carlo (SSAMC) algorithms, we �rst give
a brief description for SAMC (see Liang et al., 2005).

Suppose that we are interested in sampling from the following distribution,
p(x) = 1Z� exp

��U(x)�
� ; x 2 X ;

where X is the sample space, Z� is the normalizing constant, � is called the tem-
perature, and U(x) is called the energy function. In Bayesian statistics, U(x) cor-
responds to the negative log-posterior density/mass function. Without the loss of
generality, we assume that X is continuous and compact. Then the sample space
X can be restricted to the region fx : U(x) � Umaxg, where Umax is su�ciently
large such that the region fx : U(x) > Umaxg is not of interest. Suppose that
X has been partitioned according to a chosen parameterization, say the energy
function U(x), into m disjoint subregions denoted by E1 = fx : U(x) � u1g,E2 = fx : u1 < U(x) � u2g, � � � , Em = fx : U(x) > um�1g where u1; u2; � � � ; um�1are m � 1 speci�ed real numbers. Let  (x) be a non-negative function de�ned on
the sample space X with 0 < RX  (x)dx < 1, and gi = REi  (x)dx. In practice, we
often set  (x) = exp��U(x)�

�, and gi turns out to be the normalizing constant of
the truncated distribution of p(x) on the subregion Ei. Let ĝi(t) denote the estimateof gi obtained at iteration t.

Let �ti = log(ĝi(t)) and �t = (�t1; � � � ; �tm). The distribution can be written as
p�t(x) = 1Zt

mX
i=1

 (x)e�ti I(x 2 Ei); x = 1; 2; � � � ;m:
Assume that �t 2 � for all t, where � is a compact set and set � = [�B�; B�]mwith B� = 1020 for all examples in this paper, although as a practical matter this is
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essentially equivalent to setting � = <m. Let T (x; y) denote a proposal distribution
which is not necessarily symmetric and satisfy the following condition. For every
x 2 X , there exist �1 > 0 and �2 > 0 such that jx � yj � �1 =) T (x; y) � �2:This is a natural condition in a study of MCMC theory (Mengersen and Tweedie,
1996). In practice, this kind of proposal can be designed easily for both continuum
and discrete systems. For a continuum system, T (x; y) can be set to the random
walk Gaussian proposal y � N(x; �2I) with �2 being calibrated to have a desired
acceptance rate. For a discrete system, T (x; y) can be set to a discrete distribution
de�ned in a neighborhood of x by assuming that the states have been ordered in
a certain way. For a continuum system with the sample space consisting of several
disconnected regions, we often employ a global proposal (i.e, T (x; y) > 0 for all
x; y 2 X ).

Let the desired sampling distribution � = (�1; � � � ; �m) be a m-vector with
0 < �i < 1 and Pmi=1 �i = 1 which de�nes the desired sampling frequency for each
of the subregions. Let ftg be a positive, non-increasing sequence satisfying the twoconditions,

(i) 1X
t=1 t =1; (ii) 1X

t=1 t� <1for some � 2 (1; 2). In this paper we set
t = � t0max(t0; t)

�� ; t = 1; 2; � � �
for some speci�ed value of t0 > 1 and � 2 �12 ; 1�. A large value of t0 will allow the
sampler to reach all subregions very quickly even for a large system. With the above
notations, the SAMC simulation proceeds as follows.

Let x(t) and ĝ(t)(Ei) denote the sample and the estimate of g(t)(Ei), respectively,at the tth iteration of the simulation. The simulation starts with the initial estimates
ĝ(0)(E1) = � � � ;= ĝ(0)(Em) = 1, and then iterates as follows:
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1. Propose a new con�guration x� in the neighborhood of x(t) according to a pre-

speci�ed proposal distribution T (x(t); �)
2. Accept x� with probability

min( ĝ(t)(EIx(t) )ĝ(t)(EIx� )  (x�) (x(t)) T (x� ! x(t))T (x(t) ! x�) ; 1
),

where Iz denotes the index of the subregion where z belongs to. If it is accepted,set x(t+1) = x�; otherwise, set x(t+1) = x(t).
3. Set �� = �+t(et+1��), where et+1 = (et+1;1; et+1;2; � � � ; et+1;m) and et+1;i = 1 if
x(t+1) 2 Ei and 0 otherwise. If �� 2 �, set �t+1 = ��; otherwise, set �t+1 = ��+c�
where c� = (c�; � � � ; c�) can be an arbitrary vector which satis�es the condition
�� + c� 2 �.

Under mild conditions, Liang et al. (2005) showed that
�ti =

8><>:
C + log �REi  (x)dx�� log(�i + d) if Ei 6= ;
�1 if Ei = ;

as t!1, where d =Pj2fi:Ei=;g �j=(m�m0) and m0 is the number of empty subre-gions, and C is an arbitrary constant. To determine the value of C, extra information
is needed, e.g., Pmi=1 e�ti is equal to a known number. Let �ti denote the realized
sampling frequency of the subregion Ei at iteration t. As t ! 1, �̂ti converges to�i + d if Ei 6= ; and 0 otherwise. Note that for a non-empty subregion, its sampling
frequency is independent of its probability REi p(x)dx. This implies that SAMC is
capable of exploring the whole sample space, even for the regions with tiny proba-
bilities. Potentially, SAMC can be used to sample rare events from a large sample
space. In practice, SAMC tends to lead to a \random walk" in the space of non-empty
subregions being proportional to �i + d:
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The critical di�erence between SAMC and other stochastic approximation MCMC

algorithms (Younes, 1988, 1999; Moyeed and Baddeley, 1991; Gu and Kong, 1998;
Gelfand and Banerjee, 1998; Delyon, Lavielle and Moulines, 1999; Gu and Zhu, 2001)
is regarding sample space partitioning. Sample space partitioning improves its perfor-
mance of stochastic approximation in optimization. With sample space partitioning,
SAMC can be applied to protein folding and phylogenetic tree reconstruction for op-
timization. Control of the sampling frequency also e�ectively prevents the system
from getting trapped into local energy minima in simulations.

1.2 Annealing Stochastic Approximation Monte Carlo for Folding SmallProteins
The annealing stochastic approximation Monte Carlo (ASAMC) algorithm (Liang,
2006) has been applied to the study of the BLN model protein. This model uses three
residue types: hydrophobic (B), hydrophilic (L), and neutral (N). The self-adjusting
nature of SAMC enables it to overcome any barrier of the energy landscape. The
ASAMC algorithm is an accelerated version of the SAMC algorithm for optimization
problems. We propose one method for the use of secondary structures in protein
folding to improve the prediction of protein folding. Our numerical results show that
ASAMC is a very promising algorithm for �nding the ground con�gurations of pro-
teins.

1.3 Sequential Stochastic Approximation Monte Carlo for Phylogeny Re-construction
Sampling from high-dimensional systems often su�ers from the curse of dimension-
ality. In this chapter, we explore the use of sequential structures in sampling from
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high-dimensional systems with the aim of eliminating the curse of dimensionality and
propose an algorithm called sequential stochastic approximate Monte Carlo (SSAMC)
for alleviating the problem of local optimum traps in phylogenetic tree reconstruction
(PTR). Numerical results suggest that the SSAMC algorithm is a promising tool for
sampling from high-dimensional systems, it has a capability of escaping from local
traps and achieving a much faster convergence to the global likelihood maxima than
other phylogenetic tree reconstruction methods, such as BAMBE (Bayesian Analysis
in Molecular Biology and Evolution; Simon and Larget, 2001) and MrBayes (Bayesian
phylogenetic inference; Ronquist and Huelsenbeck, 2003).



7
CHAPTER II

ANNEALING STOCHASTIC APPROXIMATION MONTE CARLO FOR
FOLDING SMALL PROTEINS

2.1 Introduction
In recent years there has been a great deal of interest in studying the prediction of
protein folding from its amino acid sequence in biophysics. Proteins are not linear
molecules such as a \string" of amino acid sequences. Rather, this \string" folds into
an intricate three-dimensional structure that is unique to each protein. This three-
dimensional structure allows proteins to function. Native-state topology often plays
a dominant role in the kinetics of this folding process. This implies that interactions
among 20 di�erent amino acids give rise to cooperative formation of native structure
through backbone hydrogen bonding and speci�c side-chain packing of the native-
state core.

Molecular modeling attempts to predict the structure of a protein ab initio (i.e.,
by trying to apply laws of physics to describe the protein molecule) rather than
by using databases of known structures. It is assumed that the native state of the
molecule is given by those parameter values that minimize the energy function. The
energy function may have multiple minima; in this case the molecule is assumed to
have multiple native states, which indeed occurs in reality. Energy functions take
into account all atoms in a protein molecule. Since the number of amino acids in
proteins ranges from 25 to 3000 and the number of atoms ranges from around 500 to
more than 10000, dealing with even the simplest energy functions may be a di�cult
computational task.

Some good prediction results can be obtained by using methods such as threading



8
based on information on known structure (Moult et al., 1999; Venclovas et al., 1999).
However, for small proteins the information contained in the amino acid sequence de-
termines su�ciently the tertiary structure of protein with the lowest minimum energy
value. Lu et al. (2003) noticed this point and suggested a new minimization function
called \relative entropy". But, it is di�cult to �nd the thermodynamically stable
state of the protein; it is a NP-hard problem. The di�culties of the problem are that
the dimension of the system is usually high because it is in the same order with the
number of atoms involved in the system, and the energy landscape of the system can
be characterized by a multitude of local minima separated by high-energy barriers.
At low temperatures, traditional Monte Carlo and molecular dynamic simulations
tend to get trapped in local minima. Hence, only a small fraction of the phase space
is sampled, and the thermodynamic quantities cannot be estimated accurately. Thus
it makes the simulations ine�ective.

Many studies to alleviate this problem have been developed and successfully ap-
plied to various problems such as methods searching for the lowest potential energy
conformation [Monte Carlo with minimization (Li and Scheraga, 1987), simulated an-
nealing (Kirkpatrick et al., 1983), and genetic algorithms (Holland, 1975; Goldberg,
1989)] and methods sampling the phase space with more e�cient samplers [multi-
canonical (Berg and Neuhaus 1991; 1992), entropic sampling (Lee, 1993), parallel
tempering (Geyer, 1991; Hukushima and Nemoto, 1996), simulated tempering (Mari-
nari and Parisi, 1992), 1=k-ensemble sampling (Hesselbo and Stinchcomb, 1995), chain
growth algorithms (Rosenbluth and Rosenbluth, 1955; Grassberger, 1997; Frauenkron
et al., 1998; Bastolla et al., 1998), and Metropolis algorithms with long range moves
(Ramakrishnan et al., 1997; Deutch, 1997)].

Honeycutt and Thirumalai (1990, 1992) and Veitshans et al. (1997) introduced
an o�-lattice model protein. This o�-lattice model uses an � carbon trace to repre-
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sent the protein backbone. The so-called BLN proteins are modeled as a sequence
of beads of three types: hydrophobic (B), hydrophilic (L), and neutral (N). These
models exhibit many similarities with real proteins, and thus are particularly useful in
the study of predicting the native structure of a protein. Honeycutt and Thirumalai
(1990, 1992) studied a 46-residue BLN protein, and Guo et al. (1992), Honeycutt
and Thirumalai (1992) and Thirumalai and Guo (1995) demonstrated that the fold-
ing kinetics of the BLN 46-mer is very similar to that of real proteins. Brown et al.
(2003) showed that the sequence mapping from a 20-letter amino acid code to the
three-letter reduced code is su�cient for determining the folding to a target topology.
Furthermore, there have been e�orts in �nding the global minimum-energy confor-
mation by studying this o�-lattice model protein to avoid the high energy barriers
between local minima in recent years (Kim et al:, 2003).

In this chapter, we apply the ASAMC algorithm to an o�-lattice (BLN) model
protein. The SAMC algorithm is a generalization of the Wang-Landau algorithm
(Wang and Landau, 2001) and the 1/k-ensemble algorithm (Hesselbo and Stinchcomb,
1995). It can be used for both continuous and discrete systems. The self-adjusting
nature of the algorithm enables it to overcome any barrier of the energy landscape.
The ASAMC algorithm is an accelerated version of the SAMC algorithm for opti-
mization problems. Our numerical results show that ASAMC is a very promising
algorithm for �nding the native topology of proteins.

The remaining part of this chapter is organized as follows. In Section 2.2, we
describe the BLN model. In Section 2.3, we review the ASAMC algorithm briey.
Section 2.4 presents numerical results for real small proteins. The applications of the
use of secondary structures in protein folding are given in Section 2.5.
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2.2 Model
The model is a simple BLN protein model proposed by Kim et al. (2003). The
protein chain is modeled as a sequence of beads of three types: hydrophobic (B),
hydrophilic (L), and neutral (L) (Table 1). Hydrophobic beads tend to pull each
other to form a strong core. Hydrophilic beads tend to push other beads, balancing
the forces and reducing the bias of the correct native fold. The neutral beads also
typically give a signal of the turn regions in the sequence.

The total potential energy function of the BLN model with M residues is given
by

V = MX
i=2

Kr2 (jri � ri�1j � a)2 + MX
i=3 (angles)

K�2 (�i � �0)2
+ MX

i=4 (dihedrals) [Ai(1 + cos�i) +Bi(1 + cos3�i)]
+ 4�M�3X

i=1
MX

j=i+3Cij
"� �rij

�12 �Dij � �rij
�6# ;

where the force constants are given by kr = 400�=a2 and k� = 20�=(rad)2, � is the
energy constant, a is the average bond length, ri is the position of the ith residue,
� is the Lennard-Jones parameter, and rij is the distance between two nonbonded
residues i and j given by rij = jri � rjj.
Table 1: Sequence mapping between 20-letter (20) amino acid and coarse-grainedthree-letter (3) code

20 3 20 3 20 3 20 3Ala B Met B Gly N Asn LCys B Val B Ser N His LLeu B Trp B Thr L Gln LIle B Tyr B Glu L Lys LPhe B Pro N Asp L Arg L
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Bond lengths are held rigid. The bond angle �i is de�ned by three residuals

i � 2, i � 1, and i and is maintained by a harmonic potential with force constant
k� and equilibrium bond angle �0 = 1:8326 rad or 105o. First and second parts in
the total energy are called the bond-stretching energy and the bond-angle bending
energy, respectively. In the dihedral or torsional angle energy, each dihedral �i in the
chain is de�ned by four residues i� 3; i� 2; i� 1, and i and prede�ned: Ai = 0 and
Bi = 0:2� if two or more of the four residues are neutral; Ai = Bi = 1:2� for all the
other cases. Finally, the non-local interactions in the van der Waals energy are given
by Cij = Dij = 1 for BB interactions, Cij = 2=3 and Dij = �1 for LL and LB interac-
tions, and Cij = 1 andDij = 0 for all interactions involving N residues. The attractive
forces in the model responsible for collapse are due to the interactions between hy-
drophobic beads (B-B interactions). The interactions among all other combinations
of beads are repulsive, although di�erent strengths of repulsion are used depending
on the bead types involved (Brown et al., 2003). All simulations are performed in
reduced units, with a; � and � all set equal to unity.

2.3 The Annealing Stochastic Approximation Monte Carlo Algorithm
In order to accurately predict protein folding, we must focus on minimizing U(x).
Liang (2004) proposed a space annealing version of a contour Monte Carlo algorithm
for structure optimization in an o�-lattice protein model and showed that it can be
applied successfully to �nding ground states. Liang (2006) also suggested the space
annealing version of the SAMC (ASAMC) algorithm for neural network training and
numerical results indicated that ASAMC is superior to simulated annealing and the
gradient-based algorithms in MLP training. Thus, we make use of this annealing
concept to accelerate the optimization process of protein folding. The basic concept
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is that the sample space is limited at each iteration of SAMC to a small region to
accelerate the process because the process may be slow due to the broadness of the
sample space. We give a brief description for this ASAMC algorithm [see Liang (2004,
2006)].

Suppose that the subregions E1; � � � ; Em have been arranged in ascending order
by energy. Let $(u) denote the index of the subregion that a sample x with energy
U(x) = u belongs to. For example, if x 2 Ei then $(U(x)) = i. Let X (t) denote the
sample space at iteration t. The simulation process is as follows:

1. Start with X (1) = Smi=1Ei; i.e., all subregions are used.
2. Set iteratively

X (t) = $(Umin+4)[
i=1 Ei;

where Umin is the minimum energy value obtained so far in the run, and 4 > 0
is a user-speci�ed parameter.

The phase space X (t) shrinks iteration by iteration. In this sense, this modi�ed
algorithm is called annealing SAMC (ASAMC).

We considered several issues for an e�ective implementation of ASAMC:
� Partition of the sample space. The sample space can be partitioned according
to the energy function which allows for minimizing the energy function. The
maximum energy di�erence in each subregion should be bounded by a reason-
able number (e.g., 1) which ensures that the local Metropolis Hastings moves
within the same subregion have a reasonable acceptance rate.
� Choice of 4. The performance of ASAMC depends on the value of 4. If 4 is
too large or small, ASAMC may take a long time to locate the global minimum
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due to the broadness of the sample space. In this case, the sample space may
contain only a few separated regions, and most of proposed transitions will be
rejected. It is generally believed that allowing a sampler to jump to intermediate
states of high energy will increase the probability of transitions from one local
energy minimum to others. The proposal distribution used in ASAMC should
be more spread out than that used in SAMC in order to reduce the negative
e�ect of the sample space restriction. In this chapter, we set 4 = 50. This
value works well for all cases considered in my research.
� Desired sampling distribution �. Generally, � should be chosen to bias sampling
to the low energy subregions in order to increase the chance of �nding the
global minima because it controls the sampling frequency of each subregion.
However, sampling in ASAMC has been restricted to the low energy subregions
by choosing an appropriate value for 4. Thus, considering a good choice of �
is not necessary for ASAMC. For protein folding, we set � to be uniform on the
subregions E1; � � � ; E$(Umin+4).
� Choice of N , � , and t0. Here N is the total number of iterations of a run, and
� and t0 determine the gain factor ftg. The gain factor controls the ability
of ASAMC moving across subregions. We �xed � = 1:0 and t0 = 2500 in all
simulations of this case. The appropriateness of the choice of t0, � , and N
can be diagnosed by examining the convergence of the run. In ASAMC, the
desired sampling distribution has been set to be equal to the realized sampling
frequencies of these subregions. As suggested by Wang and Landau (2001),
because it is impossible to obtain a perfectly at histogram, convergence of a
run means that the sampling frequency for each subregion is not less than 80%
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of the average sampling frequency; that is,

�f = min�fif : i = 1; � � � ; $(Umin +4); Ei 6= ;� � 80%
where fi denotes the realized sampling frequency of the subregion Ei, and f is
the average sampling frequency of the subregions included in X (1).

2.4 Numerical Results
A simple representation was adopted as the BLN model, in which a residue was re-
duced to a bead and its coordinate was in the position of the C� atom of the residue.
Two small proteins, 1a7f and 9ins, were selected as the tested targets from the RCSB
Protein Data Bank (Berman et al., 2000; www.rcsb.org). For both proteins, we parti-
tioned the phase space into E1; � � � ; E201 with an equal energy bandwidth of 1.0; thatis, we set E1 = fx 2 X : H(x) � �100g, E2 = fx 2 X : �100 < H(x) � �99g,� � � ,
E200 = fx 2 X : 99 < H(x) � 100g, and E201 = fx 2 X : H(x) > 100g. In simula-
tions, we set � = 1:0; t0 = 2500 and n = 108, where n denotes the number of iterations
performed in the simulation. We had three types of local moves as follows. These
moves happen equally likely at each iteration. Let x(t) = (�3; � � � ; �N ; �4; � � � ; �N) de-note the current state. In the type-I move, a component of x(t) is selected randomly
by modifying with Gaussian random variable � � N(0; s2[H(x(t)) � H0]), where sis a user tunable parameter and H0 is a user-guessed lower bound for H(x(t)). We
set H0 = �100. The variance of � suggests a di�erent step size spH(x(t))�H0 fordi�erent states. The step size is large for high-energy states, and the step size is
small for low-energy states. This allows the sampler to move through the high-energy
region fast and explore the low-energy region in detail. The type-II move is the same
with the type-I move, except for which two components are picked up randomly. In
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the type-III move, a spherical proposal distribution is used. A direction is generated
uniformly, and then the radius is drawn from N(0; 2s2[H(x(t)) � H0]). In this case,
we set s = 4:0 for 1a7f, and s = 3:0 for 9ins.

The ASAMC algorithm was run 5 times independently. The computational re-
sults are summarized in Table 2. It was found that the root mean square deviation
(r.m.s.d.) data are not in the reasonable range (with r.m.s.d. values ranging from 3
to 7.5 for small proteins; Lu et al., 2003). However, the comparison shows that the
ASAMC algorithm has made a signi�cant improvement over the simulated anneal-
ing (SA) and the conventional Metropolis Monte Carlo (MH) method in locating the
ground states for the BLN model protein. For all proteins, the average minimum
energy found by the ASAMC algorithm is better than the minimum energy by SA and
MH in all runs. The di�erences of the energy values come from the di�erences of the
folding predicted angles. The values of r.m.s.d. were obtained from distance between
the folded predicted protein structures and their native structures. Protein structures
tested are as follows: 1a7f (29 residues - BBLLLBBNNL BBLBBLBBBN LLNNBBLNL);
9ins (30 residues - BBLLLBBNNL BBLBBBBBBN LLNBBBLNLB). Figure 1 shows that
the folded predicted structure using the ASAMC algorithm is somewhat similar to,
but is not exactly the same as, the native structure (9ins). That is, there may be a
problem in the turn direction of the predicted structure. Thus, we need to improve
our method.
2.5 The Use of Secondary Structure in Protein Folding
Levinthal (1968) and Wetlaufer (1973) argued that the time for a random search
of all possible structures would be unrealistically long for even a small protein, and
that something like a nucleation event must occur to permit structure formation in
biologically feasible time. In this study, they found that distinct structural regions
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Table 2: Comparison of ASAMC with SA and the conventional Metropolis
Protein NEa Metropolis(rmsd)b SA(rmsd)c ASAMC(rmsd)d1A7F (29) 60.7142 24.7843(19.584) 14.5720(16.012) -3.8187(8.374)9INS (30) 61.9850 34.3073(15.576) -3.9989(21.600) -6.5567(9.552)

a : The energy of the native structure. b : The average minimum energy value and r.m.s.d.

data of sample by the Metropolis method. c : The average minimum energy value and

r.m.s.d. data of sample by the simulated annealing. d : The average minimum energy

value and r.m.s.d. data of samples by the ASAMC algorithm.

(a) (b) (c)
Figure 1: Comparison native structure with best target structure predicted byASAMC for 9ins. (a) A native structure. (b) A folded best structure generatedby ASAMC. (c) The native structure superimposed on the best structure found byASAMC.
have been found in several globular proteins composed of single polypeptide chains,
and proteins fold much too fast to involve an exhaustive search. This is the so called
Levinthal paradox: how can a protein �nd a native state without a globally exhaustive
search? Experiments show that a protein folds to its native state according to a
relatively small number of pathways [i.e., it folds by a speci�c sequence of molecular
events (Creighton, 1978; Kim and Baldwin, 1990)]. A pathway is de�ned by the
intermediate states and the transition states which occur between the initial and
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�nal states (Creighton, 1978). Some pathways are strongly favored [i.e., folding is
\cooperative" in that a \nucleating" HH contact acts as a constraint that restricts
local conformational freedom on 2D hydrophobic-hydrophilic (HP models) and speeds
the \zipping up" of other contacts nearby]. Mainly two types of interaction contribute
to protein folding: (i) the helix-coil propensities, among monomers that are connected
neighbors in the chain sequence; (ii) the hydrophobic and solvent interactions among
monomers that may either be near each other or far apart in the chain sequence
(Miller et al., 1992; Dill et al., 1993). Based on this information, Liang and Wong
(2001) proposed one method for the use of secondary structures for protein folding in
2D HP model and showed that it is very successful in �nding low energy states.

Motivated by the above studies, we add the following steps using the secondary
structures to the ASAMC algorithm for speed-up of the simulation:

1. Sample the subsequences at random in the library consisting of the number
of residues, bond and dihedral angles, which will possibly fold to secondary
structures in the native states of known proteins.

2. Perform sampling on the constrained conformation space where some subse-
quences are subject to possible secondary structures.

The representation we use for protein subsequences is based on a library of various
fragments of protein backbone according to the number of residues, and consists of
bond and dihedral angles of �-helix and �-sheet, respectively, in its C� atoms. To
generate the library we considered 122 protein domains based on Rost and Sander
database (Rost and Sander, 1993) whose three-dimensional structure was accurately
determined. These secondary structures, �-helix and �-sheet, were obtained from the
RCSB Protein Data Bank. Each of these fragments (sequences) was grouped using
MCLUST (Fraley and Raftery, 2002), a software package for model-based clustering,
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density estimation, and discriminant analysis interfaced to the S-PLUS commercial
software, to cluster angles. The possible secondary structures folded by subsequences
of �-helix and �-sheet are illustrated in Figures 2(a), 2(b), 2(c) and 2(d), which
correspond to �-sheet (with 2 residues), and �-helix (with 8, 10 and 11 residues) of
a real protein, respectively.

(a) (b) (c) (d)
Figure 2: Secondary structures folded by subsequences of �-helix and �-sheet. (a)Extended �-Sheet with 2 residues. (b) �-helix with 8 residues. (c) �-helix with 10residues. (d) �-helix with 11 residues.

However, the total number of secondary structures that could be folded by the
subsequence may be huge as the number of amino acid sequence increases. Thus,
an essentially arbitrary distribution should be assigned to these secondary structures
with each structure having a nonzero mass value. For example, a secondary structure
for �-Sheet with 2 residues like Figure 2(a) consists of bond and dihedral angles. Bond
angles were divided into two groups with probabilities 0.34536 and 0.65464, respec-
tively, and dihedral angles were divided into two groups with probabilities 0.54639
and 0.45361, respectively. Each of these groups has a di�erent mean and variance.
Once one group with a speci�ed mean and variance is selected according to its prob-
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ability for each angle, new bond and dihedral angles are generated. These angles
make a three-dimensional structure for protein folding. For example, we assigned 2
residues of the structure [shown in Figure 2(a)] with a probability 0.65464 and 0.54639
for bond and dihedral angles, respectively. These groups have di�erent means and
variances. This function will then work as a proposal transition function for the move
of the block of residues; the resulting simulation will be ergodic.

Under the constrained conformation space, we consider 1a7f (29 residues), 9ins
(30 residues), and two new small proteins such as 1ejg (46 residues) and 1crn (46
residues). By sampling on the constrained conformation space, we fold all these
proteins rapidly to their lowest energy states. The primary sequences of new pro-
teins are given as follows: 1crn/1ejg (46-LLBBNNBBBL NLBLBBLBNN LNLBBBBLBL

NBBBBNNBLB NNLBBL). We set � = 1:0; t0 = 2500; n = 108, and H0 = �50. For1a7f and 9ins, we partitioned the phase space into E1; � � � ; E201 with an equal energy
bandwidth of 1.0; that is, we set E1 = fx 2 � : H(x) � �50g; E2 = fx 2 � : �50 <
H(x) � �49g; � � � ; E201 = fx 2 � : H(x) > 150g. For 1crn and 1ejg, we partitioned
the phase space into E1; � � � ; E301 with an equal energy bandwidth of 1.0; that is, we
set E1 = fx 2 � : H(x) � �50g; E2 = fx 2 � : �50 < H(x) � �49g; � � � ; E301 =fx 2 � : H(x) > 250g. For a step size, we set s = 4:0 for all proteins.

The positions of secondary structure sequences (Table 3) used in this example
were assigned with the DSSP program designed by Kabsch and Sander (1983), and
these subsequences were chosen randomly with assigned mean and variance according
to each type of their secondary structures. The ASAMC algorithm was run 5 times
independently for each of the proteins. The reported values are the lowest energy
values and the r.m.s.d. data achieved during the most e�cient run. The folded pre-
dicted structures found by the constrained ASAMC sampler are shown in Figure 3 for
1a7f, 9ins, 1crn, and 1ejg. Figure 3 indicates the folded target structures predicted
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by our method are very similar to the native structure for all proteins.

The computational results are summarized in Table 3. The average minimum
energy found by the ASAMC algorithm is better than the minimum energy by SA
and MH algorithms in all runs. The r.m.s.d. data are also in the reasonable range
(with r.m.s.d. values ranging from 3 to 7.5 for small proteins) based on information
of known structures (Lu et al., 2003).

Table 3: Protein folding simulations with the use of secondary structures
Proteina NEb Metropolis(rmsd)c SA(rmsd)d ASAMC(rmsd)e1A7F (29) 60.7142 34.1537(16.446) 19.7759(13.296) 15.4885(6.934)9INS (30) 61.9850 37.6464(15.202) 19.1160(16.494) 15.2736(6.762)1CRN (46) 101.2824 221.4140(23.358) 74.2322(13.674) 32.2536(7.446)1EJG (46) 103.2615 102.3827(20.146) 90.0267(12.766) 28.3862(7.140)

a: In 1a7f, the subsequence (residues 9-18) is constrained to the secondary structure as

�-helix. In 9ins, the subsequence (residues 7-17) is constrained to the secondary structure

as �-helix. In 1crn, the subsequence (residues 7-17, 23-30 as �-helix and 33-34 as �-sheet)

is constrained to the secondary structure. In 1ejg, the subsequence (residues 7-17, 23-30) is

constrained to the secondary structure as �-helix. The positions of all subsequences were

assigned with DSSP. b,c,d,e: same with Table 2.
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(a) (b)

(c) (d)
Figure 3: The native structure superimposed on the best structure predicted byASAMC with the use of secondary structures. (a) 1a7f. (b) 9ins. (c) 1crn. (d) 1ejg.
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CHAPTER III

SEQUENTIAL STOCHASTIC APPROXIMATION MONTE CARLO FOR
PHYLOGENY RECONSTRUCTION

3.1 Introduction
Phylogenetic trees have been used in biology for a long time to graphically represent
evolutionary relationships among species and genes. However, computational com-
plexity makes it di�cult to develop statistical approaches for phylogenetic inference.
Many studies have been developed which attempts to alleviate this problem (e.g.,
Bayesian inference and Markov chain Monte Carlo techniques have been introduced).
Bayesian inference is a recently designed method for estimating phylogenetic trees
(Rannala and Yang, 1996; Yang and Rannala, 1997; Mau and Newton, 1997; Mau
et al:, 1999; Larget and Simon, 1999; Li et al:, 2000). These papers showed that
Markov chains based on the conventional Metropolis Monte Carlo algorithm were
computationally more e�cient than other phylogeny estimation methods, such as the
maximum likelihood (Felsenstein, 1981; Kishino et al., 1990), maximum parsimony
(Fitch, 1971; Lake 1987), and neighbor joining (Saitou and Nei, 1987) methods. These
methods have many weaknesses; i.e., they do not produce valid inferences beyond
point estimates, measures of uncertainty rely exclusively on computer-intensive and
approximate bootstrap analysis (Felsenstein, 1985; Newton, 1996), and mathematical
and computational complexity are limited to extremely small problems (Evans and
Speed, 1993; Sinsheimer et al., 1996).

However, a Bayesian inference method that incorporates MCMC has several
advantages over other methods of phylogeny inference. First, it takes care of the
uncertainty of trees automatically (Rannala and Yang, 1996; Mau and Newton, 1997;
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Mau et al:, 1999; Larget and Simon, 1999). Second, it can be used to infer for the
models of sequence mutation (Rannala and Yang, 1996). Third, it makes analysis of
large data sets more tractable (Mau et al:, 1999; Li et al:, 2000). Samples from the
posterior distribution of the trees can be used to construct a consensus tree. This
is much faster than bootstrap resampling (Larget and Simon, 1999), an alternative
method for a consensus tree construction.

A Bayesian analysis of phylogenetic trees requires the evaluation of high-dimensional
summations and integrals. The computation su�ers from two di�culties. First, it
su�ers from the curse of dimensionality. As the number of taxa increases, the num-
ber of all possible trees will increase in a speed ((2n � 3)!=[2n�2(n � 2)!] for rooted
trees and ((2n� 5)!=[2n�3(n� 3)!] for unrooted trees. This speed is much faster than
exponential time. Thus, the search time for the optimal tree will increase drastically
as the number of taxa increases. Second, it su�ers from the local trap problem. The
posterior probability distribution of trees can contain multiple energy minima. This
phenomenon has been observed in applications of the maximum parsimony method
(Maddison, 1991) and the maximum likelihood method (Felsenstein, 1981, 1983, 1993;
Salter and Pearl, 2001). A number of authors have noticed the local trap di�culty
and have applied some advanced MCMC algorithms to the problem. For example,
Huelsenbeck and Ronquist (2001) and Altekar et al: (2004) applied parallel tempering
and its parallel implementation to this problem, respectively. However, no authors
have addressed the di�culty of high dimensionality.

With the development of science and technology, we frequently must deal with
high-dimensional systems, particularly in biology. The traditional MCMC algorithms
often su�er from a severe di�culty in convergence. One reason is multimodality.
Many techniques to alleviate this problem have been proposed such as simulated
tempering (Marinari and Parisi, 1992), parallel tempering (Geyer, 1991; Hukushima
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and Nemoto, 1996), and evolutionary Monte Carlo (Liang and Wong, 2001). However,
the slow convergence is not due to the multimodality, but the curse of dimensional-
ity (i.e., the number of samples increase exponentially with dimension to maintain a
given level of accuracy).

In this chapter, we will apply SAMC to the problem and propose to make use of
the sequential structure of phylogenetic trees in conjunction with SAMC (i.e, SSAMC)
to overcome the curse of dimensionality. SSAMC works by simulating a sequence of
systems of di�erent dimensions. The idea is to use the information provided by
the simulation from low-dimensional systems and thus alleviate high-dimensionality
problems signi�cantly. We demonstrate the phylogeny reconstruction capability of
our algorithm by estimating the original tree topology using data that we generated
with �xed branch lengths, substitution model, and tree topology from root data.
Our method is also applied to analyze nine bacteriophage T7 and DNA sequences
for 32 species of African cichlid �shes. We can expect that SSAMC will be able to
escape from local traps and achieve a much faster convergence to the global likeli-
hood maxima than other MCMC simulation-based PTR methods such as BAMBE
and MrBayes.

The remaining part of this chapter is organized as follows. In Section 3.2, we
describe a probability distribution on phylogenetic trees. In Section 3.3, we describe
the SSAMC algorithm. Section 3.4 presents numerical results in several examples.

3.2 A Probability Distribution on Phylogenetic Trees
In this chapter, we use the same tree terminology with one described in Mau and
Newton (1997). We give a brief description of the tree terminology they used.
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3.2.1 A Tree Representation

Figure 4: Graphical depiction of a sample tree with �ve taxa.
Let consider a tree like Figure 4. All trees will be assumed to be rooted binary, mean-
ing that an edge splits into two children edges (i.e., three edges meet at every branch
node, a node being an endpoint of an edge). A phylogenetic tree represents the rela-
tionship of a set of species or genetic sequences. This phylogeny tree can be viewed
abstractly as a rooted binary weighted tree. Mathematically, a tree is a connected
graph with node sets (terminal node and internal node) and edge set. Each edge
of the tree has a certain amount of evolutionary divergence associated to it, de�ned
by some measure of distance between sequences, or from a model of substitution of
residues over the course of evolution. This is called \length". The time separating a
child from its parent is its edge weight, called its branch length (fh1; h2; h3; h4g in
Figure 4). We call nodes terminal nodes (or leaves) if they are connected through a
single edge and internal nodes otherwise. A true biological phylogeny has a \root",
or ultimate ancestor of all the sequences. Some algorithms provide information, or
at least a conjecture, about the location of the root. Others, including parsimony,
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(a) (b)
Figure 5: (a) A tree with the molecular assumption. (b) A tree without the molecularassumption.
are completely uninformative about its position and other criteria have to be used
for rooting the tree. The placement of the root relative to the leaves determines the
direction of time and hence ancestry. The labeled shape of the tree is called the tree
topology. This is determined by which pairs of nodes coalesce. The topology can
be summarized by using parentheses to indicate coalescence. For example, the tree
topology in Figure 4 is (((4,5),(1,2)),3).

There are many di�erent applications of trees. As a result, there are many
di�erent algorithms for manipulating them. However, many of the di�erent tree algo-
rithms have in common the characteristic that they systematically visit all the nodes
in the tree (i.e., the algorithm walks through the tree data structure and performs
some computation at each node in the tree). This process of walking through the
tree is called a tree traversal (Durbin et al., 1998). There are essentially two di�erent
methods in which to visit systematically all the nodes of a tree: depth-�rst traversal
as a recursive traversal and breadth-�rst traversal as a non-recursive traversal. Cer-
tain depth-�rst traversal methods occur frequently enough that they are given names
of their own: pre-order traversal, in-order traversal and post-order traversal (Drozdek
and Simon, 1995).
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A binary tree with n leaves has n � 1 internal nodes including the root. Each

taxon (leaf) and internal node appear at a peak and a valley in graph, respectively.
The permutation of taxa is read across tops of the peaks. Branch lengths and tree
topology are determined by n�1 (Figure 5(a)) or 2(n�1) (Figure 5(b)) valley depths.
There is a left/right choice to make a subtree at each internal node. Based on these
choices there is a unique post-order traversal of the tree. In this chapter, we use a
post-order traversal. The permutation of leaf labels and the ordered valley depths
determine the tree completely.
3.2.2 A Bayesian Approach
A Bayesian analysis requires a likelihood model for sequence evolution through a
phylogenetic tree, prior distribution on trees and model parameters and data. Let a
phylogenetic tree  = (�; �) be described by its tree topology � and associated branch
lengths �. Let � be a parameter vector describing rates of change among states in
the Markov process for a given branch. Data on n taxa can be arranged as a n�N
matrix, where N is the common number of sites, or positions, providing information
for each taxon. Elements of this matrix are discrete characters from a �nite set D of
size d. This data are viewed as a realization of a stochastic process that has evolved
along the branches of an unknown phylogeny  . Modeling is reduced to a single site
by assuming that evolution among sites is independent. Thus, ! = ( ; �) = (�; �; �)
represents a speci�c choice of tree topology, branch lengths, and model parameters
and we calculate the likelihood model L(!jx) = L(�; �; �jx) for observed data x.

The posterior distribution of a particular tree topology � is given by

p(� jx) = RB R� L(�; �; �jx)p(�; �; �)d�d�p(x)
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where B and � are the sets of all possible branch lengths and model parameters, re-
spectively. p(�; �; �) is a prior joint distribution of di�erent parameter values f�; �; �g.
L(�; �; �jx) is the likelihood function and describes the probability of di�erent pa-
rameter values f�; �; �g given data. p(x) =P� RB R� L(�; �; �jx)p(�; �; �)d�d� is the
total probability of the data over the parameter space 
 = (	;�) where 	 is the sets
of all possible trees. The Bayesian approach is based on this p(� jx) called posterior
distribution.
3.2.3 Nucleotide Substitution Models
All evolutionary models deal with the random substitution of one nucleotide for
another at individual sites, and share the following set of underlying assumptions:
Markov property, homogeneity and stationarity (Salemi and Vandamme, 2003). There
are several evolutionary models: one parameter model (Jukes and Cantor, 1969), in
which nucleotide substitutions have equal probabilities; an extension 2-parameter
model by Kimura (1980), who allowed the di�erent rate of transitional and transver-
sional events; Felsenstein model (1981), which added three parameters to the Jukes-
Cantor model by allowing the stationary probabilities to be di�erent; HKY85 model
(Hasegawa, Kishino, and Yano, 1985), a general stationary distribution of the nu-
cleotides and di�erent rates for transition and transversion events.

This chapter considers the most general model TN93 (Tamura and Nei, 1993).
This model has both HKY85 and F84 (Felsenstein's PHYLIP since 1984) as special
cases. Instantaneous rate matrix R is parameterized as follows:
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A �(��G + �C + �T ) ��G �C �TG ��A �(��A + �C + �T ) �C �TC �A �G �(�A + �G + ��T ) ��TT �A �G ��C �(�A + �G + ��C)

1CCCCCCCCCCA
where � = 4� + 1, and we implicitly assume the order A;G;C; T for bases. There
are seven parameters, six of which are free. The model is reversible with stationary
distribution given by �A; �G; �C ; �T (Pi2fA;G;C;Tg �i = 1). The parameter � controls
the overall mutation rate. The transition/transversion ratio is �, and  is the �nal
parameter which a�ects the ratio of transition/transversion rates among purines and
pyrimidines (Simon and Larget, 2001).

Our SSAMC approach uses transition probabilities calculated from the HKY85
model in TN93 (� = �=2;  = 1). The elements of the transition probability matrix
are given by

Qij(t)
0BBBBB@

�j + �j � 1�j � 1� e��t + ��j � �j�j
� e��jt i = j

�j + �j � 1�j � 1� e��t � ��j�j
� e��jt i 6= j (transitional event)

�j(1� e��t) i 6= j (transversional event)

1CCCCCA
where �j = �A + �G if base j is a purine (A or G) and �j = �C + �T if base j is a
pyrimidine (C or T ), and j = 1 + (�� 1)�j (Hasegawa et al., 1985; Li et al., 2000).
3.2.4 A Likelihood Model
Let � be a root node and y� be the ancestral root state. Given y� and branch lengths,Markov process on each node emanates independently from the root � along the
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corresponding branches of 	. Let y� be a value when a given process reaches an
internal node �. This evolution stops when it reaches observed taxa (e.g., leaves).
Conditionally on the phylogeny 	, the initial distribution �0 on D = fA;G;C; Tg,
and transition probabilities p(y� jy�(�); �� ; �) where �(�) is the parent node of �, �� isthe branch length, and � is a parameter vector of substitution model, the probability
of the particular realization y is given by

p(Y = yj�; �; �) = NY
k=1 �0(y�k)

Y
�2fall nodes except �kg p(y�k jy�(�k); �� ; �):

To calculate the likelihood function from leaf data at multiple sites, we must marginal-
ize this likelihood function over all values for all sites. Unfortunately, this straight-
forward computation is not feasible, but the amount of computation can be reduced
considerably by the pruning method because it takes care of the Markov property
of the substitution model (Felsenstein, 1983). The pruning method has a recur-
sive relationship in a tree, starting from the leaves and working recursively to the
root for each site as follows: for each leaf � and state s, L�(s) = I(y� = s) where
I(�) is the indicator function and for an internal node � and �(u) = �(w) = �,
L�(s) = �Px2D Lu(x)p(xjs; �u; �)���Px2D Lw(x)p(xjs; �w; �)�. The likelihood func-tion is given by

L(�; �; �) = NY
k=1
X
s2D �0(s)Lk�(s):

3.3 The Sequential Stochastic Approximation Monte Carlo Algorithm
To overcome the curse of dimensionality, we propose the following sequential version of
SAMC, the so-called sequential SAMC (SSAMC) algorithm, to reconstruct phyloge-
netic trees. The SSAMC algorithm consists of two steps: buildup ladder construction
and SSAMC simulation.
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3.3.1 Buildup Ladder Construction
A builder ladder (Wong and Liang, 1997; Liang, 2003) comprises a sequence of systems
of di�erent dimensions. Typically, we have

dim(X1) < dim(X2) < � � � < dim(Xm)
where Xi denotes the sample space of the ith system, with an associated density/massfunction �i(zi)=Zi and partition function Zi. The principle of the buildup ladder con-struction is to approximate the original system by a system with a reduced dimension;
the reduced system is again approximated by a system with a further reduced dimen-
sion until one reaches a system of a manageable dimension, that is, the corresponding
system is able to be sampled easily by a local updating algorithm, such as the MH
algorithm or the Gibbs sampler. The solution of the reduced system is then extrap-
olated level by level until the target system is reached.

For the phylogeny example, the buildup ladder can be constructed as follows.
Intuitively, we want to �rst approximate the shape of the phylogenetic tree using a
small number of taxa, and then add other taxa to the tree locally. To achieve this
goal, the taxa can be ordered in the following manner. Let A and Ac denote the sets
of ordered and not yet ordered taxa, respectively. We start with an arbitrary taxa,
the next taxa added to A should be one with the maximum distance with the starting
taxa, the third taxa should be the one with the maximum distance with the set A,
and so on. Here we de�ne the distance of a taxa to A as the minimum distance of
the taxa in A, i.e., minj2Adij for i 2 Ac, where dij denotes the distance of the taxa iand j. The ordering procedure can be summarized as follows:

1. Calculate the pairwise distance matrix (dij) of the taxa. For example, the
distance can be simply the number of di�erences between two sequences, or
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the alignment score calculated according to the substitution scoring matrices
[e.g., PAM matices (Dayho� et al:, 1978) or BLOSUM matrices (Heniko� and
Heniko�, 1992)]. In this chapter, we use the alignment score for the pairwise
distance.

2. Order the taxa sequentially. The next taxa added to A is the taxa k(2 Ac)
which satis�es the condition: There exist a taxa m 2 A such that dkm =
maxi2Acminj2Adij. If there are several taxa, all satisfying the above condition,choose one randomly.

3.3.2 Sequential SAMC Simulation
Suppose a build-up order has been constructed for a set of taxa. Let D1; � � � ; Dmdenote m subsets of taxa, D1 � D2 � � � � � Dm, where Di contains the �rst jDij taxain the build-up order and Dm contains all taxa of the dataset. We then work on the
following distribution:

f(�) / mX
k=1

1Zk f(�kjDk)
where �k is the phylogenetic tree constructed for the taxa in the set Dk, f(�kjDk)=Zkis the posterior distribution of the tree, and Zk is the unknown normalizing constant.
The sample space of f(�) can be written as Snk=k0 Xk, where Xk denotes the samplespace of f(�kjDk). We can then employ the following procedure to estimate the
unknown normalizing constants and explore the target sample space Xm.
3.3.2.1 Proposal Distribution
Let Q(i! j) denote the proposal probability for a transition from the level i to the
level j of the buildup ladder. For example, Q can be speci�ed as a tridiagonal matrix
with elements Q1;1 = Qn;n = 2=3; Q1;2 = Qn;n�1 = 1=3, and Qk;k�1 = Qk;k = Qk;k+1 =
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Figure 6: An example of tridiagonal matrix.
1=3 for k = 2; � � � ; n�1 (Figure 6). Let T (�i ! �j) denote the proposal distribution ofgenerating �j conditional on �i. If i = j (i.e., updating the tree conditional on the same
set of taxa), in this case, T can be speci�ed as in Larget and Simon (1999). There are
two main tree proposal algorithms, each with clock and non-clock as follows: global
with a molecular clock, global without the molecular clock, local with a molecular
clock, and local without the molecular clock. Here we give a brief description for this
proposal distribution [see Larget and Simon (1999)]. In the global proposal with a
molecular clock, a distance from the root in a depth �rst traversal of the tree gives
a graph with peaks and valleys for any given collection of left/right orientations for
subtrees at each internal node (Figure 7). The tree is parameterized by a permutation
of the taxa as read from left to right in the representation and the valley depths from
left to right. The global proposal without the molecular clock is the same as the global
proposal with a molecular clock except that all peaks may be di�erent distances from
the root in the tree representation and thus each valley has two depths, the depths to
its left and right peaks (Figure 8). The local proposal distribution with a molecular
clock modi�es the tree only in a small neighborhood of a randomly chosen internal
branch, leaving the remainder of the tree unchanged. The local proposal distribution
without the molecular clock acts on the unrooted tree.

If i < j, the transition is to extrapolate �i(2 Xi) to �j(2 Xj); otherwise, the tran-sition is to project �i(2 Xi) to �j(2 Xj). The extrapolation and projection operators



34

(a) (b) (c)
Figure 7: An example of global with a molecular clock. (a) A current tree. (b) Atree selected randomly. (c) A tree perturbed each valley depth independently.

(a) (b) (c)
Figure 8: An example of global without the molecular clock. (a) A current tree. (b)A re-rooted tree. (c) A tree perturbed each valley depth independently.
should be chosen such that the pairwise move �i $ �j is reversible (illustrated by
Figures 9 and 10).

1. Projection Operator
The projection operator is very simple; we can just remove the leaves belonging
to the set Di nDj and the corresponding internal nodes. Thus, we have T (�i !�j) = 1 for the projection operator.

2. Extrapolation Operator
The extrapolation operator can be described by the following procedure. Let
D� denote the set including all taxa and nodes in Di.
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Figure 9: Illustrative graphs for extrapolation and projection operators when a newtaxon `5' is sampled from leaves. Extrapolation (left ! right): add taxon `5' andinternal node 'd' to the current tree where node `d' is selected uniformly under branchlength L4b. Projection (right ! left): delete taxon `5' with corresponding internalnode `d' from the current tree.

Figure 10: Illustrative graphs for extrapolation and projection operators when a newtaxon `5' is sampled from nodes. Extrapolation (left ! right): add taxon `5' andinternal node 'd' to the current tree where node `d' is selected uniformly under branchlength Lab. Projection (right ! left): delete taxon `5' with corresponding internalnode `d' from the current tree.
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� For each taxon k 2 Dj nDi, do the following steps:

A) Sample a leaf or node l with probability pkl = e�dkl=ts=PjD�jl0=1 e�dkl0=ts ; l0 2D�, where ts is called the insertion temperature. A large ts correspondsto a random insertion, whereas a small ts corresponds to the nearest
neighbor insertion.

B) Add the taxon k to the tree as a sister leaf (or node) of l and set
D�  D� + fk; parent node of k and lg. The position of the parent
node of k and l is chosen uniformly on the branch between l and its
current parent node.

� Calculate the extrapolation probability T (�i ! �j) = Y
k2DjnDi

pklLlk , whereLlk denotes the length of the branch between l and its parent node before
adding taxa k to the tree.

3.3.2.2 SSAMC Algorithm
Let k(t) and � (t) denote the ladder level and the tree sampled at iteration t, respec-
tively. Let e�t;k denote the working estimate of Zk, and �t = (�t;k0 ; � � � ; �t;kn). One
iteration of SSAMC consists of the following steps:

1. Generate level k� according to the proposal matrix Q.
2. If k� = k(t), simulate a sample � � from f(� (t)jDk(t)) by a MCMC iteration and

set (k(t+1); � (t+1)) = (k�; � �).
3. If k� 6= k(t), generate a sample � � according to the proposal distribution T and
Q, and accept the sample (k�; � �) with probability

min(1; e�t;k(t)e�t;k� f(� �jDk�)f(� (t)jDk(t))Q(k
� ! k(t))Q(k(t) ! k�) T (� � ! � (t))T (� (t) ! � �)

)
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If it is accepted, set (k(t+1); � (t+1)) = (k�; � �); otherwise, (k(t+1); � (t+1)) =
(k(t); � (t)).

4. Set �� = �t + t(et+1 � �), where et+1 = (et+1;1; � � � ; et+1;m), and et+1;i = 1 if
k(t+1) = ki and 0 otherwise. If �� 2 �, set �t+1 = ��; otherwise, set �t+1 = ��+c�,
where c� is chosen such that �� + c� 2 �.

The MCMC algorithm employed in step 2 of the above algorithm can be the MH algo-
rithm, the Gibbs sampler or any other advanced MCMC algorithms, such as simulated
tempering, parallel tempering, evolutionary Monte Carlo and SAMC-importance-
resampling. In this paper, we used the MH algorithm.

We considered several issues for an e�ective implementation of SSAMC.
� Partition of the sample space. The sample space can be partitioned accord-
ing to the index of a set of taxa because our aim is to eliminate the curse of
dimensionality.
� Choice of N , � and t0. Here N is the total number of iterations of a run, and
� and t0 determine the gain factor ftg. In SSAMC, the desired sampling dis-
tribution has been set to be uniform over all subregions, so the convergence of
the run can be diagnosed by examining the equality of the realized sampling
frequencies of these subregions (see section 2.3).

3.4 Examples
In the �rst subsection, we demonstrated phylogeny reconstruction capability of SSAMC
by showing the regeneration of tree topology based on data (e.g., taxa) which gener-
ated using �xed branch lengths and tree topology. We also showed that SSAMC is
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superior to other PTR methods such as BAMBE and MrBayes in �nding the global
likelihood maxima. In the next two subsections, we applied SSAMC to analyze nine
bacteriophage T7 and DNA sequences for 32 species of cichlid �shes and present the
best tree and the convergence property. As a gain factor in this paper, we set

t = � t0max(t0; t)
�� ; t = 0; 1; 2; � � � ;

for some speci�ed value of t0 > 1 and � 2 �12 ; 1�.
3.4.1 Phylogenetic Tree Reconstruction3.4.1.1 Tree Topology of 10 Taxa and 200 Sites with Molecular Clock

Table 4: The root data for phylogenetic tree reconstruction
ATGAACCCTT ACATCCTAAT AACCCTTCTT TTCGGACTAG GTCTAGGAACTACAATTACA TTTGCAAGCT CCCACTGACT CCTTGCTTGA ATAGGCCTTGAACTAAACAC CCTCGCTATT ATCCCACTGA TAGCCCAACT CCACCACCCCCGGGCAGTCG AAGCTACCAC AAAATACTTC CTCACCCAAG CTGCTGCCGC
The purpose of phylogenetic studies is to reconstruct the correct evolutionary relation-
ship between organisms. In our attempt to reach this goal, we �rst set root data with
200 sites like Table 4. We �xed all equal branch lengths (molecular clock) which is
the time of divergence between organisms and used the �ve-parameter HKY85 model
for nucleotide substitution model. Under this HKY85 model, we set � = 2:0; � = 1:0
and (�A; �G; �C ; �T ) = �14 ; 14 ; 14 ; 14

�. Based on this information, we generated 10
taxa and made a tree topology like Figure 11(a). The sample space was restricted to
the taxa region X = f1; 2; 3; 4; 5; 6; 7; 8; 9; 10g, and was then partitioned into 8 sub-
regions, E1 = fx 2 X : x � 3g; E2 = fx 2 X : x = 4g; � � � ; E8 = fx 2 X : x = 10g.
The parameters were set as follows: � = 0:6; t0 = 1000. SSAMC was run 10 times
independently, and each run consists of n = 107 iterations. Figure 11(b) shows the
estimated best tree with maximum log likelihood value -2433.5838. Table 5 shows the



39
comparison of branch lengths between true tree and estimated best tree. It indicates
that both trees have overall similar branch lengths. Thus, Figure 11 indicates that
two trees are very similar each other. In addition, by Table 6 since the sampling
frequency for each subregion is not less than 80% of the average sampling frequency,
a SSAMC run is regarded as converged.
Table 5: Comparison of branch lengths between true tree and estimated best treewith 10 taxa and 200 sites
node true ssamc node true ssamc node true ssamc node true ssamc0 1.00 0.73 1 1.00 0.73 2 2.00 1.88 3 2.00 1.884 5.00 4.96 5 8.00 6.53 6 6.00 6.86 7 4.00 3.628 3.00 3.13 9 3.00 3.13 10 2.00 1.74 11 2.00 2.4912 1.00 0.59 13 3.00 1.57 14 2.00 2.62 15 0.00 0.0016 4.00 2.29 17 2.00 3.24 18 1.00 0.49
Table 6: The relative sampling frequency of each subset in estimated best tree with10 taxa and 200 sites
subset frequency subset frequency subset frequency subset frequency1 106.8265 2 105.3385 3 103.2719 4 101.30295 99.1611 6 96.6812 7 94.8926 8 92.5253

3.4.1.2 Tree Topology of 20 Taxa and 200 Sites with Molecular Non-clock
Although section (3.4.1.1) gives a good result, there is no signi�cant di�erence be-
tween other softwares for phylogenetic tree reconstruction. Thus, we considered more
complicated tree topology with a molecular non-clock (i.e, di�erent branch lengths).
Based on the same information with the �rst example with the exception of branch
lengths, we generated 20 taxa and made a tree topology like Figure 12(a). The sample
space was restricted to the taxa region X = f1; 2; � � � ; 20g, and was then partitioned
into 12 subregions, E1 = fx 2 X : x � 4g; E2 = fx 2 X : x = 5g; � � � ; E7 = fx 2X : x = 10g; E8 = fx 2 X : x = f11; 12gg; � � � ; E12 = fx 2 X : x = f19; 20gg.
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(a)

(b)
Figure 11: Comparison between true tree topology and best tree estimated by SSAMCwith 10 taxa and 200 sites. (a) A true tree (log likelihood = -2438.3435). (b) A besttree estimated by SSAMC (log likelihood = -2433.5838).
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Table 7: Comparison of branch lengths between true tree and estimated best treewith 20 taxa and 200 sites
node true ssamc node true ssamc node true ssamc node true ssamc0 0.10 0.11 1 0.10 0.07 2 0.20 0.04 3 0.20 0.224 0.20 0.27 5 0.30 0.37 6 0.10 0.06 7 0.10 0.178 0.40 0.26 9 0.10 0.04 10 0.10 0.07 11 0.10 0.0312 0.20 0.21 13 0.20 0.19 14 0.10 0.08 15 0.20 0.1916 0.20 0.14 17 0.20 0.22 18 0.20 0.21 19 0.20 0.0920 0.30 0.23 21 0.20 0.20 22 0.20 0.13 23 0.20 0.5224 0.20 0.03 25 0.60 2.00 26 0.20 0.25 27 0.30 0.7528 0.30 0.28 29 0.20 0.08 30 0.40 0.27 31 0.00 0.0032 0.10 0.08 33 0.30 0.48 34 1.60 0.13 35 0.20 1.4136 0.20 0.75 37 0.30 0.39 38 1.40 0.56
Table 8: The relative sampling frequency of each subset in estimated best tree with20 taxa and 200 sites
subset frequency subset frequency subset frequency subset frequency1 100.8321 2 100.6020 3 100.4161 4 100.25125 99.8520 6 99.4255 7 98.9422 8 98.70809 100.7606 10 100.1461 11 100.4045 12 99.6597

The parameters were set as follows: � = 1:0; t0 = 50000. SSAMC was run 5 times
independently and each run consists of n = 5 � 106 iterations. Figure 12(b) shows
the estimated best tree with a maximum log likelihood value of -4196.0907. Table 7
shows the comparison of branch lengths between true tree and estimated best tree.
It indicates that both trees have overall similar branch lengths. Therefore, Figure 12
indicates that two trees has similar structure to each other. In addition, because the
sampling frequency for each subregion is not less than 80% of the average sampling
frequency, a SSAMC run is regarded as converged (Table 8).
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(a)

(b)
Figure 12: Comparison between true tree topology and best tree estimated by SSAMCwith 20 taxa and 200 sites. (a) A true tree with 20 taxa and 200 sites (log likelihood= -4209.442723). (b) A best tree with 20 taxa and 200 sites generated by SSAMC(log likelihood = -4196.090699).
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3.4.1.3 Comparison with Other PTR Methods for Phylogenetic Tree Reconstruction
In this chapter, we are interested in assessing high dimensionality and local trap prob-
lems. A number of authors considered only the local trap di�culty. The alternative
method most similar as a method to alleviate local trap problems is MrBayes. We
also considered BAMBE, a popular software for a consensus tree reconstruction, to
compare with our method. Based on the same information in section (3.4.1.2), we
ran 5 times BAMBE and MrBayes independently with 2� 106 iterations. Figure 13
shows the comparison between SSAMC and BAMBE, and SSAMC and MrBayes.

In the early iterations, BAMBE sometimes reaches its maximum log likelihood
value. However, it does not improve maximum log likelihood value. The reason is
that it may not escape from local traps. In MrBayes, all results were worse than
SSAMC. Here we wondered what would happen if we ran more iterations. Thus, we
ran 10 times BAMBE and MrBayes independently with 2:0 � 107 iterations (Figure
14). During the simulation, we found that there were errors in BAMBE. After an
inde�nite time, the log likelihood value of BAMBE tends to negative in�nity. Thus,
results using BAMBE cannot be improved as the simulation goes on. Also, MrBayes
never reaches the best value of SSAMC. Therefore, in all cases, SSAMC provides
more accurate results comparing the other softwares. Figure 15 indicates that the
tree topology estimated by SSAMC more closely resembles to true tree topology.
Thus, the SSAMC algorithm can escape from the local trap problems and reach the
optimal tree much faster.
3.4.2 Bacteriophage Example
Phylogenetic inferences are premised on the inheritance of ancestral characteristics
and on the existence of an evolutionary history de�ned by changes in these character-
istics. Phylogenetic analysis seeks to infer the evolutionary history that is most con-
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Figure 13: Comparison between estimates by SSAMC and other methods with 2�106iterations. (a) The comparison between SSAMC and BAMBE. (b) The comparisonbetween SSAMC and MrBayes.

Figure 14: Comparison between estimates by SSAMC and other methods with 2�107iterations. (a) The comparison between SSAMC and BAMBE. (b) The comparisonbetween SSAMC and MrBayes.
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Figure 15: The comparison of tree topologies generated by SSAMC, BAMBE, andMrBayes. Maximum log likelihood = [(a) -4209.442723, (b)-4196.090699, (c) -4197.680353, (d) -4198.194959].
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Table 9: The part of the aligned DNA sequences of nine bacteriophage T7
R CCGGGCCTCG GCTGCGCACC CGCGCCCCAC TGCTGCGGCG GGTCCTCCGG GGACGCTCGG CGCJ CCGGGCCCTA GCCGTACACC CGCGTTCCAC TGCCACGGCG GGTCCTCCGG TGGTGCCCAG CGTK TCGGGCCCCG GCCGCACACC CGCACTCCAC TGCCATGGCG GGGCCGCCGG TGGTGCCCAG CGTL TCAGGCCCCG ACCGCACATC CGCACTTCAC TGCCATAGCG GGGCCGCTGG TGGTGCCCAG CGTM CTGAGCCCCG GCCGTATACC CGTGCTCCAT TGCCACGGCG GGTTCTCCAA TAGTGTCCAG CGTN CCGGGTTCCG GTCACGCACT TACGCCCTGC CGCCGCGACA AATCCTTCGG TGGCACCTGG CACO CTGGACCCCG GCCGCGCACC TGCGCCCCGC TACCGCGATG AATCTTCCGG TGGCATCCGA CACP CCGGACCCCG GCCACGCCCC TGCGCCCCGC TGCCGCGACG AATCCTCCGG TGGCACCCGG TACQ CCGGGTCCCG GTCACGCACT TACGCCCTGC TGTCGCGACA AATCCTTCGG TGGCACCCGG CAC

sistent with a set of observed data. In this example, we considered nine bacteriophage
T7 as observed data with a known phylogeny of nine taxa. The data is shown in Table
9 (Hillis et al:, 1992). This data is an ideal data for phylogenetic tree construction.
The data in Table 9 is part of the aligned DNA sequences of nine bacteriophage T7.
This portion, 63 sites out of 1,091 total sites, is regarded as \informative" (See Li et
al., 2000) and thus we used only these sites in this example. Taxa R is an outgroup
from bacteriophage T7. We assumed the molecular non-clock and used the �ve-
parameter HKY85 model for nucleotide substitution model. The sample space was
restricted to the taxa region X = f1; 2; � � � ; 9g and was then partitioned into 6 sub-
regions, E1 = fx 2 X : x � 4g; E2 = fx 2 X : x = 5g; � � � ; E6 = fx 2 X : x = 9g.
The parameters were set as follows: � = 1:0; t0 = 10000. SSAMC was run with
n = 1:0� 106 iterations.

From Table 9, we see that a sequence K is very close to a sequence L, and simi-
larly a sequence N is very close to a sequence Q. On the other hand, the sequences K
and L are both far from the sequences N and Q. The nine trees with highest posterior
probabilities found by our method reect this relationship (Figure 16). Together they
make up 77.3 % of the total probability. The estimated best tree with maximum log
likelihood value is the same as true tree representations. Also, Figures 16(a) and 16(d)
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contain all 10 top trees in log likelihood value (Table 10). Therefore, SSAMC has a
capability to reconstruct phylogenetic trees. In addition, for summarizing samples of
substitution parameters and trees and branch lengths, we used MrBayes. Figure 17
shows a plot of the generation versus the log probability of the data (the log likelihood
values). Since there is no tendency of increase or decrease over time in this plot, a
SSAMC run may be at stationarity. Table 11 is a table summarizing the samples of
the parameter values. For each parameter, the table lists the mean and variance of
the sampled values, the lower and upper boundaries of the 95% credibility interval,
and the median of the sampled values. The last column in Table 11 contains a con-
vergence diagnostic, the Potential Scale Reduction Factor (PSRF). If we have a good
sample from the posterior probability distribution, these values should be close to 1.0
(Gelman and Rubin, 1992). Since all PSRF values are close to 1.0, a SSAMC run is
regarded as converged. Table 12 shows summary statistics for the taxon bipartitions.
We also know that all PSRF values for branch lengths are close to 1.0. The clade
credibility tree (Figure 18) gives the probability of each partition or clade in the tree,
and the phylogram (Figure 19) gives the branch lengths measured in expected sub-
stitutions per site. The clade credibility tree and phylogram indicate that they give
a similar result with the true tree representation.
3.4.3 A Nucleotide Sequence Example
We have analyzed aligned protein-coding mitochondrial DNA sequences obtained
from 32 species of cichlid �shes (Kocher et al., 1995) using the HKY85 model of
nucleotide substitution. Table 13 shows a tribal classi�cation of 32 species of African
cichlid �sh. Each DNA sequence contains 1044 sites that can be partitioned into
three blocks of sites according to codon position, and our analysis allowed di�erent
parameter values across blocks (Mau et al., 1999).
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Figure 16: Experimental phylogeny using nine bacteriophage T7 DNA sequences of63 sites. The topology in (a) is the true phylogenetic tree structure. The nine topolo-gies in (a)-(i) have the highest posterior probabilities among 444,742 possibilities.Topologies (a) through (i) constitute a 77.3% credible regions.
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Table 10: The top 10 tree in log likelihood value for nine bacteriophage T7
Rank log likelihood Tree topology1 -310.992241 (R,(((J,M),(K,L)),((P,O),(Q,N))))2 -311.152437 (R,(((J,M),(K,L)),((P,O),(Q,N))))3 -311.714725 (R,(((J,M),(K,L)),((P,O),(Q,N))))4 -311.737703 (R,(((J,M),(K,L)),((P,O),(Q,N))))5 -311.842822 (R,(((J,M),(K,L)),((P,O),(Q,N))))6 -311.849127 (R,(((J,M),(K,L)),((P,O),(Q,N))))7 -312.216711 (R,(((J,M),(K,L)),((P,O),(Q,N))))8 -312.448688 (R,(((J,M),(K,L)),((P,O),(Q,N))))9 -312.457940 (R,(((J,(K,L)),M),((P,O),(Q,N))))10 -312.480285 (R,(((J,(K,L)),M),((P,O),(Q,N))))

Figure 17: A plot of the generation versus the log likelihood values for nine bacterio-phage T7. If a chain is at stationary, this plot should look like 'white noise', that is,they should be no tendency of increase or decrease over time.
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Table 11: Model parameter summaries for African cichlids
95 % Cred. IntervalParameter Mean Variance Lower Upper Median PSRF�Tratio 0.025952 0.001973 0.000000 0.100000 0.000000 1.000Kappa 58.866465 494.812818 22.704060 113.103064 54.338657 1.040pi(A) 0.131748 0.000715 0.084548 0.189567 0.129840 1.003pi(G) 0.309034 0.001840 0.227592 0.394851 0.308259 1.000pi(C) 0.398761 0.002136 0.309287 0.488913 0.398629 1.001pi(T) 0.160458 0.000687 0.113570 0.216034 0.158825 1.000Pratio 0.057618 0.002442 0.000000 0.100000 0.100000 1.000Th 0.055388 0.000638 0.020783 0.119848 0.050985 1.044

*: Convergence diagnostic (PSRF = Potential Scale Reduction Factor[Gelman and Rubin,

1992], uncorrected) should approach 1 as runs converge. The values may be unreliable

if you have a small number of samples. PSRF should only be used as a rough guide to

convergence since all the assumptions that allow one to interpret it as a scale reduction

factor are not met in the phylogenetic context.



51

Table 12: The summary statistics for taxon bipartitions, a tree with clade credibility,and a phylogram for nine bacteriophage T7
ID Partitiona NUMb Probc Brlend Vare PSRFf1 =======+= 444986 1.000000 0.006242 0.000027 1.0162 =++++++++ 444986 1.000000 0.012484 0.000095 1.0113 ======+== 444986 1.000000 0.011870 0.000063 1.0224 =====+=== 444986 1.000000 0.005418 0.000016 1.0175 ========+ 444986 1.000000 0.002791 0.000008 1.0306 ====+==== 444986 1.000000 0.016767 0.000107 1.0377 ==+====== 444986 1.000000 0.003150 0.000012 1.0078 =+======= 444986 1.000000 0.005370 0.000022 1.0189 +======== 444986 1.000000 0.012484 0.000095 1.01110 ===+===== 444986 1.000000 0.008149 0.000036 1.02811 ==++===== 444777 0.999530 0.013670 0.000083 1.01912 =====+==+ 433309 0.973759 0.015449 0.000097 1.03413 =====++++ 428040 0.961918 0.033980 0.000571 1.01314 =++++==== 367692 0.826300 0.021531 0.000421 1.01415 ======++= 186307 0.418681 0.006910 0.000052 1.00616 =====+=++ 172297 0.387196 0.005720 0.000035 1.01217 =+++===== 145318 0.326568 0.005047 0.000035 1.00318 =+==+==== 144371 0.324439 0.004363 0.000022 1.01419 ==+++==== 113849 0.255848 0.003657 0.000017 1.00120 =====++=+ 76499 0.171913 0.003262 0.000014 1.00821 ====+++++ 26065 0.058575 0.006727 0.000041 1.000

a: The partition in the \=" and \+"; e.g., The �rst partition (ID 1) is the terminal branch

lending to taxon 2 since it has a \+" in the 2nd position and a \=" in all other positions.

b: The number of times the partition was sampled. c: The probability of the partition. d:

The mean of the branch length. e: The variance of the branch length. f: The Potential

Scale Reduction Factor (PSRF).
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Figure 18: The clade credibility tree of nine bacteriophage T7.

Figure 19: The phylogram of nine bacteriophage T7.
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Table 13: The tribal classi�cation of 32 species of African cichlid �sh
Label Species name Tribe Clade1 Cichlasoma citrinellum Central America Outgroup2 Pseudotropheus zebra Malawi A3 Buccochromis lepturus Malawi A4 Champsochromis spilorhynchus Malawi A5 Lethrinops auritus Malawi A6 Rhamphochromis sp. Malawi A7 Lobochilotes labiatus Tropheini B8 Petrochromis orthognathus Tropheini B9 Gnathochromis pfe�eri Limnochromini B10 Tropheus moorii Tropheini B11 Callochromis macrops Ectodini C12 Cardiopharynx schoutedeni Ectodini C13 Opthalmotilapia ventralis Ectodini C14 Xenotilapia avipinnus Ectodini C15 Xenotilapia sima Ectodini C16 Chalinochromis popeleni Lamprologini D17 Julidochromis marlieri Lamprologini D18 Telmatochromis temporalis Lamprologini D19 Neolamprologus brichardi Lamprologini D20 Neolamprologus tetracanthus Lamprologini D21 Lamprologus callipterus Lamprologini D22 Lepidiolamprologus elongatus Lamprologini D23 Perissodus microlepis 1 Perissodini E24 Perissodus microlepis 2 Perissodini E25 Cyphotilapia frontosa Tropheini E26 Tanganicodus irsacae Eretmodini Unattached27 Limnochromis auritus Limnochromini E28 Paracyprichromis brieni Cyprichromini E29 Oreochromis niloticus Tilapiini F30 Tylochromis polylepis Tylochromini F31 Boulengerochromis microlepis Tilapiini F32 Bathybates sp. Bathybatini F

We assumed the molecular non-clock. The sample space was restricted to the
taxa region X = f1; 2; � � � ; 32g and was then partitioned into 18 subregions, E1 =
fx 2 X : x � 4g; E2 = fx 2 X : x = 5g; � � � ; E7 = fx 2 X : x = 10g; E8 = fx 2X : x = f11; 12gg; � � � ; E18 = fx 2 X : x = f31; 32gg. The parameters were set as
follows: � = 1:0; t0 = 50000. SSAMC was run with n = 1:0� 106 iterations.

Mau et al. (1999) showed a fair degree of similarity in the di�erent solutions
such as neighbor-joining plus parsimony, maximum likelihood and MCMC methods.
Our numerical result also shows a similarity with tree topologies estimated by Mau et
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al. (1999) [i.e., each estimate has clades A;B;C;D, and F in common; the estimates
are di�er according to the elements of clade E; except for the common pair f23; 24g,
these species are dispersed throughout Lake Tanganyika (Table 14)]. In particular,
the estimated tree by our method looks like similar to that by the MCMC method.
Like the results of Mau et al., our algorithm concurs in placing the B clade closer to
the Malawi ock A.

We are now interested in maximum posterior likelihood. Thus, we compared our
algorithm with two popular software applications for phylogenetic tree reconstruction,
BAMBE and MrBayes. Figures 20, 21, and 22 indicate that tree topology estimated
by SSAMC is quite similar to both BAMBE and MrBayes, but SSAMC is much better
in terms of maximum posterior log likelihood value. Tables 15 and 16 show summary
statistics for the samples of the parameter values and taxon bipartitions, respectively.
Since all PSRF values are close to 1.0, a SSAMC run is regarded as converged. The
clade credibility tree (Figure 23) and phylogram (Figure 24) indicate that they give
a similar result with the best tree estimated by our method.
Table 14: Comparison of the SSAMC estimate of the phylogeny with estimates usingother methods for African cichlid �sh. An subtopologies are A1 = ((02((0304)05))06),A2 = ((02((0305)04))06), B1 = (((0708)10)09), B2 = (((0708)09)10), B3 =((07(0809))10), C1 = ((11(1213))(1415)), C2 = (11((1213)(1415))), D1 =(((16(2021))((1718)19))22), D2 = ((16(((1718)19)(2021)))22), F1 = ((2930)(3132)),F2 = (((2930)31)32), F3 = (((2930)32)31), F4 = (29(30(3132))):
Method Tree topologyNeighbor-joining plus parsimony ((((((A2B3)(C2(2324)))(2527))28)(D226))F3)Maximum likelihood (((((A2B2)((((2324)25)28)27))C2)(D226))F2)Markov chain Monte Carlo (((((A1B1)(((2324)28)(2527)))C1)(D126))F1)SSAMC ((((((A1B3)(((2324)28)(2527)))C1)D2)26)F4)
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Figure 20: The SSAMC estimate for African cichlid �sh (log likelihood = -7736.7444).
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Figure 21: The BAMBE estimate for African cichlid �sh (log likelihood = -7888.5659).

Figure 22: The MrBayes estimate for African cichlid �sh (log likelihood = -7876.98).
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Table 15: Model parameter summaries of African cichlid �sh
95 % Cred. IntervalParameter Mean Variance Lower Upper Median PSRF�Tratio 0.013417 0.001188 0.000000 0.100000 0.000000 1.000Kappa0 5.924017 1.155349 3.982923 8.027161 5.847887 1.015Theta0 0.547963 0.003829 0.436087 0.679446 0.544960 1.000pi0(A) 0.284100 0.000355 0.248053 0.321887 0.283671 1.000pi0(G) 0.200467 0.000263 0.169666 0.233156 0.200106 1.000pi0(C) 0.325071 0.000391 0.287046 0.364589 0.324866 1.001pi0(T) 0.190363 0.000248 0.160787 0.222290 0.189913 1.001Kappa1 2.370734 0.352743 1.366809 3.696883 2.310012 1.000Theta1 0.341831 0.002969 0.242743 0.456637 0.339473 1.009pi1(A) 0.173706 0.000320 0.139973 0.209993 0.173328 1.000pi1(G) 0.122537 0.000238 0.093684 0.154262 0.122170 1.001pi1(C) 0.319533 0.000483 0.278068 0.364831 0.318883 1.000pi1(T) 0.384225 0.000548 0.338623 0.431416 0.384030 1.000Kappa2 13.465889 4.975446 8.217172 18.754512 13.304374 1.008Theta2 2.110206 0.005745 1.951282 2.250288 2.114424 1.005pi2(A) 0.381259 0.000387 0.341838 0.419903 0.381433 1.001pi2(G) 0.101990 0.000047 0.089045 0.115877 0.101816 1.007pi2(C) 0.328156 0.000200 0.301112 0.356964 0.327929 1.000pi2(T) 0.188595 0.000099 0.169693 0.208517 0.188337 1.001Pratio 0.025022 0.001876 0.000000 0.100000 0.000000 1.000Th 0.115320 0.000436 0.076376 0.152878 0.116998 1.473

*: Convergence diagnostic (PSRF) should approach 1 as runs converge. The values may

be unreliable if you have a small number of samples. PSRF should only be used as a rough

guide to convergence since all the assumptions that allow one to interpret it as a scale

reduction factor are not met in the phylogenetic context.
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Table 16: The part of summary statistics for taxon bipartitions of African cichlid �shID Partitiona NUMb Probc Brlend Vare PSRFf1 ==============+================= 144622 1.0 0.010463 0.000008 1.0182 =============+================== 144622 1.0 0.008151 0.000005 1.0703 ============+=================== 144622 1.0 0.007788 0.000008 1.0084 ==========+===================== 144622 1.0 0.023060 0.000040 1.0455 ===========+==================== 144622 1.0 0.013015 0.000021 1.0106 ====+=========================== 144622 1.0 0.001149 0.000001 1.0007 =====+========================== 144622 1.0 0.005761 0.000004 1.0138 ===+============================ 144622 1.0 0.002079 0.000003 1.0659 =+============================== 144622 1.0 0.003194 0.000002 1.01010 ==+============================= 144622 1.0 0.002121 0.000001 1.01611 ===========================+==== 144622 1.0 0.020653 0.000022 1.05412 ==============================+= 144622 1.0 0.025331 0.000036 1.01613 =========================+====== 144622 1.0 0.031049 0.000029 1.02414 ===============================+ 144622 1.0 0.042156 0.000077 1.00215 =+++++++++++++++++++++++++++++++ 144622 1.0 0.072954 0.000441 1.49216 ============================+=== 144622 1.0 0.021344 0.000115 1.05617 ======================+========= 144622 1.0 0.001151 0.000003 1.00018 =======================+======== 144622 1.0 0.001606 0.000005 1.02519 ======================++======== 144622 1.0 0.023365 0.000030 1.00720 ========================+======= 144622 1.0 0.019296 0.000024 1.05621 ==========================+===== 144622 1.0 0.011001 0.000009 1.00022 ===============+================ 144622 1.0 0.011651 0.000006 1.00023 ===================+============ 144622 1.0 0.001583 0.000001 1.11224 =======+======================== 144622 1.0 0.009800 0.000010 1.02525 ==================+============= 144622 1.0 0.004872 0.000003 1.00326 ======+========================= 144622 1.0 0.006463 0.000004 1.05327 =====================+========== 144622 1.0 0.019778 0.000019 1.00528 =================+============== 144622 1.0 0.002171 0.000001 1.02329 +=============================== 144622 1.0 0.072954 0.000441 1.49230 ========+======================= 144622 1.0 0.016826 0.000011 1.07831 ================+=============== 144622 1.0 0.006206 0.000006 1.00232 ====================+=========== 144622 1.0 0.002716 0.000011 1.03033 =============================+== 144622 1.0 0.007850 0.000012 1.00034 =========+====================== 144622 1.0 0.010423 0.000013 1.02135 =+++++++++====================== 144621 1.0 0.011214 0.000010 1.003
a: The partition in the \=" and \+"; e.g., The �rst partition (ID 1) is the terminal branch
lending to taxon 18 since it has a \+" in the 18th position and a \=" in all other positions.
b: The number of times the partition was sampled. c: The probability of the partition. d:
The mean of the branch length. e: The variance of the branch length. f: The Potential
Scale Reduction Factor (PSRF).
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Figure 23: The clade credibility tree of African cichlid �sh.
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Figure 24: The phylogram of African cichlid �sh.
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CHAPTER IV

SUMMARY AND CONCLUSIONS
We have shown that the ASAMC algorithm can be e�ectively applied to simulations
of protein folding using the BLN model. In all cases it did better than the SA and
Metropolis Monte Carlo method, and it found new lowest energy conformations. The
numerical results showed that the ASAMC algorithm is a very promising algorithm
for a general optimization task. Liang and Wong (2001) and Liang (2004) showed
the ASAMC algorithm can be successfully applied to the 2D and 3D AB models
and suggested that if we can incorporate some speci�c moves, which are designed
based on some speci�c properties of the protein model, into the ASAMC algorithm,
the performance of the ASAMC algorithm may be further improved. Thus, we have
proposed one method for the use of secondary structures in protein folding. This
method shows that the average minimum energy and r.m.s.d. found by the ASAMC
algorithm is better than those by the SA and Metropolis Monte Carlo methods in all
runs. The r.m.s.d. data of our simulations are also in the reasonable range (Moult
et al., 1999; Venclovas et al., 1999; Lu et al., 2003), although a value of 6 �A for the
r.m.s.d. has been suggested as a target value for a small protein (Reva et al., 1998).
The improvement in accuracy of folding prediction is in e�ect in current ab initio
protein folding; however, the correct protein folding is still very di�cult, especially
for folding predictions with a very simpli�ed model such as the BLN model. Lu et al.
(2003) stated that the CASP3 meeting indicated the absolute accuracy of all ab initio
methods is still low compared with solving the structure experimentally, with over
90% of predictions for the \hard" targets having a global r.m.s.d. for C� > 10�A.

A further area of interest is how to de�ne the best energy function. In our sim-
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ulation, the ASAMC algorithm is very e�ective for small proteins (< 50 sequences).
However, for somewhat large proteins (> 50 sequences) our algorithm produces less
reliable results including unstableness in the r.m.s.d. of the structures of folded pre-
dicted proteins versus the native structure. The use of the ASAMC algorithm will be
further applied to these problems.

We have also proposed the use of the sequential structure of phylogenetic trees
in conjunction with SAMC to overcome the di�culty of high dimensionality, showing
that the SSAMC algorithm can be e�ciently applied to simulations for phylogenetic
tree reconstruction. Our proposal for investigating evolutionary histories is a pack-
age of model assumptions and movement strategies, together with a diagnostics to
examine the convergence of run. As in the model used by Mau et al. (1999), Larget
and Simon (1999), and Li et al. (2000), we reviewed with three examples.

A Bayesian analysis of phylogenetic trees su�ers from two di�culties. First, it
requires the evaluation of high-dimensional summations and integrals and thus this
computation is a challenging task because of the curse of dimensionality. Second,
it has a local trap problem. The SSAMC algorithm is very e�cient with respect to
the high-dimensional problems because it makes use of the sequential structure of
phylogenetic trees to overcome the curse of dimensionality. In regard to the second
problem, our algorithm is also e�cient because it has the capability of controlling
the sampling frequency to escape from any local traps (Liang et al., 2005). The
numerical results indicate that it has a capability of phylogeny tree reconstruction
by alleviating local trap di�culty and the curse of dimensionality and is superior to
other phylogenetic tree reconstruction methods such as BAMBE (Simon and Larget,
2001) and MrBayes (Ronquist and Huelsenbeck, 2003) in �nding the global likelihood
maxima. Therefore, we conclude that SSAMC is a new, promising phylogenetic tree
reconstruction method which can overcome both curse of dimensionality and local
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optimum traps.
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