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ABSTRACT

Discrete Fracture Modeling for Fractured Reservoirs Using Vorondi Backs.
(May 2006)
Matthew Edward Gross, B.S., Texas A&M University
Chair of Advisory Committee: Dr. David Schechter

Fractured reservoirs are commonly simulated using the Dual Porosity model, but
for many major fields, the model does not match field results. For these cases, it
necessary to perform a more complex simulation including either individualrizaatr
pseudofracture groups modeled in their own grid blocks.

Discrete Fracture Modeling (DFN) is still a relatively nevidfjend most
research on it up to this point has been done with Delaunay tessellations. Thisiresearc
investigates an alternative approach using Voronoi diagrams, yet apiblgisgme
DFN principles outlined in previous works.

Through the careful positioning of node points, a grid of Voronoi polygons can
be produced so that block boundaries fall along the fractures, allowing us to use the DFN
simulation methods as proposed in the literature. Using Voronoi diagrams allows us to
use far fewer polygons than the Delaunay approach, and also allows us to pdifgectly a
flow so as to eliminate grid alignment errors that plagued previous stagosysThe
nature of the Voronoi polygon further allows us to simplify permeability caloaks
due to orthogonality and, by extension, is more accurate than the commonly used corner

point formulation for non-square grid blocks.
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INTRODUCTION

1. The History of Modeling Fractured Reservoirs

Ever since the first numerical simulations for fluid flow modeling were
developed, there has been the issue of how to handle the myriad fractures that lace
naturally fractured reservoirs and spread out in stress-oriented dirdotions
hydraulically fractured wells. Early formulations of square grids éeljuihe
permeability and porosity of the matrix blocks in an attempt to compensate fooaldi
flow, or simply ignored the issue completely.

The most commonly cited and widely adopted first approach to the problem of
simulation fracture networks was proposed by Warren and Root, and is used today in
modified form as the Dual Porosity moddEssentially, an additional analytical flow
term is added to each block to represent the flow from the matrix into the fractdre,
the block contains a mix of matrix and fracture permeability. Figure 1 presents

visualization of what is commonly known as the sugar-cube model:

r I
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Fig 1 — “Sugar Cube” analytical model for Dual Porosity

This thesis follows the style &E Journal.



This approach was a great improvement over earlier methods. However, inter-
fracture flow was not modeled, and the description worked best on models with a very
uniform set of fractures that did not induce flow anisotropy. This model is still used
today as a way of including the effects of a fracture network without modkéng t
individual fractures, which may be too computationally intensive, even when suifficie
data to visualize them is present.

Later adaptations improved the basic mddstpanding the technique as far as
triple porosity models, which attempted to add an additional term for furthesmeali
The Dual Porosity would persist as the general model for fractured resarpdiv the
present day, in spite of the numerous attempts to supplant it.

However, in part due to the general applicability to most reservoirs, and in part
due to the limits of computational power, advances in terms of simulating individual
fractures were limited. Some early attempts were made at simulatipgmall, limited
cases by discretely representing the fracttitrg, work remained rather sparse until the
early 1980’s.



2. The Discrete Fracture Network Approach

Discrete Fracture Networks (DFN) used in attempts to directly mioeel t
fractures, either as a virtual grid-block or some other separate eNotionger is the
fracture an additional factor influencing our matrix grid blocks, but a separdtelock
with its own properties. This allows us to conduct simulations without blending matrix
and fracture properties as was done in previous models. Additionally, it is now possible
to directly model inter-fracture flow.

Work on DFN to model fluid flow in porous media dates back to at least the
early 80’s, when authors such as Noorishad, Mehran, and Baca applied the technique.
Further refinements for use in petroleum engineering were made byikard and
Firoozabadi in their 2001 papém that paper, the authors advocate using a Finite
Element approach to avoid problems with simulating the very small grid blocks that
would be used to represent the fractures. To build his DFN grid, Karimi-Fard used a
Delaunay tessellation to align the block boundaries on the fractures.

Aziz®> would attempt to make a general framework for applying the DFN
approach more widely. One of the more important aspects of the Aziz paper was
expanding the use of DFN to finite difference simulators, which Karimi-Fard and
Firoozabadi had dismissed, saying that an accurate representation “...may not be
possible using a finite difference approach.”

The DFN approach Aziz outlined called for the representation of fractsires a
their own discrete grid blocks, which he illustrated in Figure 2. However, whde the
grid blocks had volume as a property, in the grid itself, they were represented thdy as
intersection between two matrix blocks. As such, the boundaries of those blocks must
be aligned along the fracture, and the fracture will be added during the solvieg phas
with flow occurring between neighboring fractures and the matrix blocks wiiese|s

on the fracture itself.



Grid Domain Computational Domain

Fracture Block

Fig 2 — Aziz’'s formulation of the DFN domains; fractures are grid boundaris, yet
have volume for computational purposes.

Aziz also compared the DFN 2D simulator to traditional square-grid models
which used different blocks for the fracture and matrix. While these were delyple
artificial case studies, they did demonstrate that DFN simulators proviidtsrénat
replicated those of very densely gridded traditional simulafbne. Eighth SPE
Comparative Solution Project had earlier examined the use of dynamic gittisfi\a
DFN component) and found that they can “allow a significant computer time saving
during a reservoir simulatiorf.”

While verification of DFN simulators against theoretical models is a ufeful
step, it doesn’t link their improved accuracy to tangible field results. foea
experimental calibration of the method, a relatively recent addition topgkdaoee of
fluid flow visualization can be used. The CT scanner allows us to view the flow aside
core, distinguishing between fluids either through their density or the addition of a
doping substance. A mounted core could provide the saturation front needed to assure
that the flow modeled in the DFN simulator is an accurate portrayal of wbetusring
in the reservoir itself.

Once DFN simulators have been calibrated to lab results, the next plausible
approach is to apply the method to fields that have a history anisotropic fracture flow,

such as the Spraberry field in West Texas. The Spraberry field was discovagel9,



and is thought to have originally contained 10 billion BBLs of oil, of which, only 10%
has been recovered, in part due to the difficulties of water flooding a field Wderis
primarily controlled by the fracture netwoflSuch fields are poorly served by the
current methods for fracture characterization, yet contain large posayaés, making
them ideal candidates for DFN analysis.

Fracture data will have to be extracted either from seismic seaplbroximated
from outcropping data, or FMI logs, to cover only a few of the possible sources for
fracture data. Techniques such as pressure transient testing, tracantbst
compositional gradients, while not providing exact fracture data, can also be used to
discover fractures and causes of flow anisotropy. While fractures aeseaped
discretely, the modeled fracture does not have to be a single fracture, but eaah loest
a pseudofracture, with properties derived from actual field results, as a forstany
matching.

While the DFN approach is currently limited to experimental and two
dimensional simulators, as computational power expands and is complemented by
increased data on the fractures in the reservoir a full 3D approach should be usable. For
current purposes, however, petroleum engineering and the geosciencess ah lgemefit
from the layering of sedimentary rocks, allowing for the use of two dimensiuogzls
to represent beds. Vertical permeability is often a tenth of horizontal datityea
making the treatment of layers as individual flow units possible in manyoaser

This approach should increasingly supplant a basic Dual Porosity model in many
areas where fractures dominate such as Type | fractured reservoirs frabrres
provide both essential porosity and essential permeability, as per Nelsmssichtion.

Extending any kind of polygon into the third dimension can be difficult, and
extending the DFN technique to do so is also a challenge. Work on Voronoi diagrams in
the third dimension is still ongoing in the world of computational mathematics, afthoug
there are some techniques for building Voronoi polygons that extend to the third

dimension as well as the first two.



However, given that our blocks often represent one layer and the aforementioned
bedded nature of sedimentary rocks, a straight-down extension as demonstrated in
Figure 3, or a curvilinear approach can be added to the 2D Voronoi diagram to handle
additional layers.

Fig 3 — Example 3D Voronoi blocks, extended directly downwards

It should be noted that the three dimensional aspect of this adaptation will
necessarily make the flow between blocks not completely orthogonal, in ehefcas

varying height between grid blocks, which is not uncommon in a reservoir setting.



3. The History of Voronoi Diagrams

Simplistic Voronoi-like diagrams were employed as early as 1644 byabesc
however, the first comprehensive formulations were developed by Peter Diaictle
Georges Voronoi. Voronoi proposed the general case of the Voronoi diagram in 1907.

These diagrams are also known as Dirichlet domains, and consist of a polygon
with all edges equidistant between the center point and neighboring points.
Alternatively, to quote Wolfram Research, a Voronoi diagram is: “The auitity of a
plane withn points into convex polygons such that each polygon contains exactly one
generating point and every point in a given polygon is closer to its generatmdhaoi
to any other®

Voronoi polygons were already being applied as early as 1909 in the earth
sciences to estimate ore reserves. However, well into the 20th century, Voronoi
diagrams were being rediscovered (and renamed) by various scientistrietya of
fields, culminating in perhaps the last know rediscovery in 1987 by Icke for use in
astronomy. Voronoi diagrams have been used in just about every imaginable scientifi
field, including use to estimate the growth area of trees to areas of langdjabagts.

Well into the 1960's, the application of Voronoi diagrams was limited, due to the
difficulties of drawing them by hand, but advances in computational geometry and
microcomputers have put them into the spotlight.



As geometry goes, the actual techniques for building Voronoi diagrams in a non-
graphical sense are quite new. While several methods exist for drawingraoVor
diagram by hand, they are of little use for simulation purposes. Work on boundary
Voronoi diagrams started in 1987 with a paper by Wang and Schubert defining the
concept and work continued on the subject as recently as T9Btus, Voronoi
diagrams are a subject many people in both the petroleum industry and the broader
world are unfamiliar with.

Much of the recent work with Voronoi diagrams has been centered around Japan,
including what is now the" Annual Symposium on Voronoi Diagrams which was held
in 2005 in Seoul, Korea. This area of research is quite active, and already several
different methods for constructing two dimensional Voronoi diagrams exist, with
research continuing into the third dimension.

Techniques vary from older methods such as Flipping which resulted in a worst
case time of? to relatively newer methods including Gift-Wrapping and Divide-and-
Conquer which se®(n) run times and superior worst case scenafiddodern
computers provide the computational power necessary to create these gridaod,dem
with recent advanc&sallowing for the use of graphics co-processors to aid the building
process, which should allow for building denser grids, as well as real-time regwfdi

the grids for user convenience.



4, Why the Voronoi Diagram Was Selected

Given the ease and years of use of traditional square-block grids, some
explanation is needed for the application and advantages of unstructured grids. While
the order of a structure grid is sufficient to determine its neighbors, and tmscugrid
must track its location as well as the neighbors to which it is adjacent. Aslsicisgt
of dynamic grids is necessarily more complex than a square grid model.

One of the earliest reasons for going with an unstructured grid was thefissue
grid alignment. This problem occurs due to the way that flow is simulated, as flow
takes place only perpendicular to grid sides. This results in poor modeling of likemv w
the primary direction does not correspond well with any given side, as the fluid is
actually moving farther through grid boundaries than it is physically moving in the

Reservoir, as shown in Figure 4:
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Fig 4 — (A) An improperly aligned square grid, (B) A grid rotated to align, and (C)
A Voronoi grid which requires no rotation

Grid rotation was the first and most obvious solution to grid alignment problems,
however it is limited to patterns where the grid can be rotated to fit all fldvs.pén the
case of field anisotropy, it may not be possible to simply rotate a grid to #issure

alignment.
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Early solutions following the use of alignment were curvilinear, so called “Nine
Point™ versions of square grids which allow for flow through the corners of square grid
blocks as well as through the sides. The nine-point approach merely allowed for flow
through the corners of a square grid, calculating the properties of thaidtbvirom an
average of the flow paths of the true side. This complicated flow formulations, and als
was only a “split-the-difference” solution to alignment problems, as itlynerduced
the angle to which it was possible for flow to be misaligned.

The curvilinear approach is a modification of the square grid that slantsdhe gr
as a whole, while maintaining the constant number of sides and orthogonality, a cross-
section of which is displayed in Figure 5. Much like grid rotation, this solution assumes
a relatively simple reservoir, and is inapplicable to more complicatedgoichetry.
However, it did provide an early solution to simple grid alignment problems and also
had a formulation to allow for automatic grid generatibn.

z
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Fig 5 — An example of a curvilinear grid in 205°

The use of polygonal patterns in which the number of sides are fixed, continues
up to the modern daYin an attempt to address this issue. Although this technique is
more elegant than the kind of mathematical fix embodied in the nine-point solution, it
suffers from the same drawback of essentially attempting to miniheziotv error by
increasing the shear number of possible flow paths. Truly unstructured gridding al
the simulator to align the grid faces precisely with the direction of fladwaiag the

computational complexity of the work as a whole.
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It is worth noting that dynamic grids do not inherently fix the problem of grid
alignment. Commonly used fixed-side-number methods such as the Delaunay
tessellation do allow for perfect alignment for flow between two wells glvevy for
complex flow geometries, it becomes impossible to align the grid corrastihere are
insufficient sides to allow all of them to perpendicular to the required flow directi

The advantages of dynamic gridding also become increasingly apparent when we
have to deal with large areas that are poorly described, or features that we nstet
in place. Frequently, this includes either a fracture network or faulting. Whensive wi
to grid up a field with irregular features, we are somewhat limited blyabkie square
formulation. The basic formulation can be reduced in size so that the feature in question
can be modeled, but doing generally produces so many grid blocks that the resiglting
is too computationally demanding to be practical.

Unstructured gridding technigues such as the Delaunay tessellation aad corn
point gridding allow us to align the grid boundaries along the contours that we desire.
However, the Voronoi diagram enjoys several advantages over either technique.

Being dual to the Delaunay tessellation in the graphical sense, the Voronoi
diagram can describe any shape that the Delaunay tessellation does, howanatoi
so using less grid blocks (although of a varying number of faces.) The advantiage of
reduced number of blocks is somewhat mitigated by the variable face numludr, whi
requires the use of sparse matrix solving equations rather than the morenahditid
more efficient banded matrix solvers.

Flow for the Voronoi diagram is guaranteed to be orthogonal, thus allowing us to
use the simpler orthogonal flow equations from our square grid rather than the corner
point formulation with suffers accuracy due to the non-orthogonal approximatios. Thi
is particularly evidenced in the formulation of the transmissibility egusit which gain
both accuracy and simplicity compared to the nine-point formulation, or a similar
approximation for the Delaunay triangle. So long as were able to construdt a gri
consisting only of true Voronoi polygons, we gain the simplicity of the square grid
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calculations with the multifaceted nature of center-point geometry or otloeg, generic
polygon solutions.

The trade-off is limited grid flexibility. As we must build our diagram so that a
polygons are Voronoi polygons and aligned with the boundaries desired, we are
occasionally left with smaller grid blocks than more flexible corner-poiotnggry
would allow for. This is only to a limited extent, as the corner-point grid’s accigacy
impacted by the degree of distortion of the gravity centers of the grid Hlock.

Having outlined the strengths of the Voronoi diagram, it is only fitting that the
most striking disadvantage of the system should be detailed. That is, with aevariabl
number of grid faces, one ends up with a sparse matrix rather than a banded matrix,
requiring that the matrix solver is a more general (and computationahsiug) sparse
matrix solver.

These difficulties can be addressed, however, given the proper techniques. Once
the Voronoi diagram is generated, additional points can be added to reduce Voronoi
diagrams to a reasonable number of sides, at the expense of increasing block.numbers

Alternatively, there exist several algorithms, such as the Gibbs-Poole
Stockmeyer and Cuthill-McKee which can reduce sparse matricies, rajasito go
from O(n®) which is the general case®gn?) for gaussian elimination. It should be
noted that while performance of these algorithms is generally lineast vase
performance can be as bad as not using the algorithm at all.

While the idea of using the Voronoi diagram is that its lower block count and
orthogonality of flow surfaces can reduce computational time, this is coustétacthe
use of a sparse matrix solver. Using Voronoi diagrams may or may not increase the
computational time of the simulation, the advantages are primarily the impiowed f
alignment and improved accuracy through orthogonal flow (over approximations such as
center-point,) both of which lead to increased accuracy when modeling field

performance.
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PROBLEM STATEMENT

Our goal is to create a gridded structure consisting of Voronoi polygons, with the
boundaries aligned on our fractures. For simulation purposes, all polygons must be valid
Voronoi polygons (due to the assumptions made for orthogonality of flow) and their
boundaries must be on the fractures, so that when they are simulated, their pamstions
accurately modeled. Thus, we will be able to build an accurate simulation model of a
field where fractures dominate the reservoir and produce significant ficateopy.

Higher accuracy in simulation of these fields will allow for optimized producti
techniques and ultimately greater recovery of the oil in place.

The generation of proper Voronoi polygons from points has been solved since
the early 80’s in computational geometry. For the purposes of using only poingsto ali
our boundaries, there are three central problems that need to be addressed:

The first is how the basic step of how points dictate polygonal edges in the
Voronoi diagram. This is a deduction from the nature of the Voronoi and forms the
basis for our other approaches. The second deals with the nature of interseudions, a
how to assure that points from a nearby intersection don’t distort it in such a way that
does not align correctly. The third and final issue is a verification prazessare that
no points distort edges on top of fractures, and to add points to assure that the boundaries
stay aligned.

While much of the work is devoted to explaining how to build a Voronoi
diagram that can be used with the DFN approach, additional details are incltded as
exactly why a Voronoi diagram should be used and how it can be applied to solve other

issues that arrive in the course of simulation.
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METHODOLOGY

1. Building the Voronoi Diagram from Points

Our first concern is the generation of a Voronoi Diagram from any set of points,
within a polygonal boundary. So long as we possess a method of doing so, we can
produce any grid required so long as the grid points are positioned appropriately to form
the structures we desire. To do so, the visibility shortest-path Voronoi diagram
generation method is utilized.

The first step to building the Voronoi diagram is essentially to build a
constrained Delaunay tessellation, which is defined a triangulation where the
circumcircle of each triangle does not contain in its interior any othexwshieh is
visible from the vertices of the triangl&This concept is demonstrated graphically in

Figure 6:

L

*

A B

Fig 6 — (A) An invalid Delaunay triangle contains extra points within the
circumcircle, (B) A valid Delaunay triangle constructed for those sampoints

Essentially, any point will be connected to the nearest available points to form a
triangle. This will give us a series of shortest distances to each poini, williah turn
be used to produce the Voronoi polygon.

There are numerous approaches to building the polygon itself, the earliest
proposed by El Gindy and Avis in 198’ From there, the visibility graph is built,
which can then been solved for the shortest path using any number of methods, such as

Dijkstra’s 2
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From a geometric standpoint, the process used is as follows: We take a system
which has been gridded up using a Delaunay tessellation, and examine each vertex in
turn, as each will form the center point of a Voronoi polygon. Figure 7 shows our
example series of Delaunay triangles:

Fig 7 — A single vertex with accompanying Delaunay triangles

Each line segment going into the vertex is bisected and its midpoint, and a
perpendicular line drawn through it, extended outside the polygon. Figure 8 shows the

above example, with the bisecting lines added:
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Fig 8 — Vertex and triangles with perpendicular lines added

We detect the intersections and truncate the lines at the intersections, msch g
us the polygon in Figure 9:

Fig 9 — A finished Voronoi polygon after line truncation

This procedure is repeated for all vertices in our grid, and then extended all
external intersections to our boundaries to form the boundary polygons shown in Figure
10.
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Fig 10 — A bounded Voronoi Diagram, with extended lines dotted

Our technique will not modify existing methods of producing Voronoi polygons
themselves, but will focus solely on positioning points so as to align the fracture
boundaries on polygon borders, so that any standard technique for generation can be

used.
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2. Aligning Boundaries on Fractures

With the technique to construct Voronoi polygons from any set of points in a 2D
space available, it is possible to proceed with the task of placing the points in such a
manner that they form boundaries along our fractures. Three basic issues requir
addressing: how to grid individual fracture lines, how to handle intersections, and how to
verify neighboring points do not disturb boundaries.

The approach outlined in this paper is two dimensional. Although it is possible
to extend the model itself downwards in a straight or curvilinear approach tofatlow
3D modeling, the formulation inherently considers fractures to be two dimensional. For
most of our applications, this is a reasonable approximation, and generally our grid
blocks are the entire layer of interest. However, this simplification iswnating, as
fractures into adjacent water-bearing layers can be a major infloaertbe production.

So while fractures must be constrained in the z direction to the layer of their
origin, nothing prevents this approach from being compensated with advancecfractur
modeling techniques of an analytical nature. This can include the use of analytical
techniques beyond the simple Parallel Plate model, or simply the inclusion of a
“roughness” or tortuosity factor to match experimental results. For thenagarity of
naturally fractured reservoirs with anisotropic flow, and most correotiyained
hydraulically fractured reservoirs, the model outlined here will be appdicabl

Now that we have constrained ourselves to two dimensions, it is possible to
further abstract our fractures as a series of straight lines. Whilamlex curve may
be reduced into a series of straight lines, it will be important for the purposeddingr
that these lines be as straight as possible. While fractures aretmalsestraight, for the
purposes of modeling they may be abstracted as such generally due to thevebadd,i
as well as the interest in using as few polygon sides as possible for each block.

Once we have a system of straight lines, borders can be aligned on them by
simply placing points equidistant on each side of the line, as our algorithm to build the

grid (and the Voronoi diagram, itself, by definition) places borders in the enddte of
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two neighboring points. This can be done rather simply by using the equation of the
fracture line and taking a line perpendicular to it, then going a set distanogltaine

on either side and placing a point, as demonstrated in Figure 11.

Fig 11 — Adding bracketing points to a fracture to align the Voronoi boundaries

Generally, an even spacing of points could be used to grid up fractures, or the
spacing could be tuned to use a certain number of blocks per fracture line. Adddynat
as is detailed towards the later part of the methodology, only the end points can be
bracketed, and the exact number of points needed to properly represent that fracture
segment calculated with the algorithm used to assure that no neighboringenésea
with the fracture boundary, and added dynamically.

There is, however, one more concern, regarding the simulation dynamics. Since
we are treating the fracture as a flow block, the easiest approach is tanhetviire side
dedicated to the fracture. If endpoints are simply placed perpendicular to thetlead of

fracture, this will not happen:

Fig 12 — A point configuration where grid blocks have only part of a fracture on the
resulting sides

The extra points to the side of Figure 12 merely represent other non-fracture
related points in our grid; the final grid block could end up containing almost no fracture
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on its side if the other neighboring point is sufficiently far away. Rather tremgitto
come up with a formula for compensating for part block-to-block transfer and part
block-to-fracture transfer, it is easier to simply adjust the gridding toeatsat all
blocks have sides consisting of either all fracture or no fracture.

Fig 13 — The fracture from Figure 12, with end point placement modification

In Figure 13, we have placed four grid points at each end of the fracture. Both
sets are equidistant from the actual fracture end point, which results in the block
boundary being aligned perpendicular to the endpoint. The obvious drawback to this
technique is the use of more grid blocks, which will have to be weighed in light of how
well the actual fracture end points are known, as well as the number of fracttires
simulation as a whole.

To use the validation technique to assure the optimal amount of grid points, it
may also be necessary to place the end points very close together, as anageint pl

between them would reintroduce the problem they were placed to solve.
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3. Handling Fracture Intersections

The aforementioned technique will work for a reservoir consisting of non-
intersecting fractures, so long as the fractures are either grided or relatively
widely spaced. However, this is not useful for the vast majority of fractessuvoirs,
S0 it is necessary to extend our technique to intersecting fractures.

Using our previous technique, two crossing fractures would, unless by
coincidence their spacing was perfectly aligned, distort the area of tleegeiction
(Figure 14):

*
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Fig 14 — An unadjusted intersection, and one where points have been adjusted

To avoid this, the area immediately around the fracture needs to be cleared out,
and a pair of points set around each line segment involved in the intersection, an equal
distance away from the intersection itself.

To facilitate this, all existing fractures should be reduced to a set of line
segments, split at the intersections. In this form, rather than anajytioatiparing lines
to determine if they intersect, the end points can simply be compared.

Once all line segments involved have been identified, the distance cleared out
should be maximized to prevent the formation of very small grid blocks. The distance
will be necessarily restrained to less than one half of the distance to tastnea

intersection to prevent overlap and interference.
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With our intersection cleared of points, we travel a fixed distance down each line
segment from the intersection, and place a pair of points on each side, to formoe poly

boundary on the fracture, as shown in Figure 15.

Fig 15 — A 90 intersection with intersection points present

This solution will work for all intersections, regardless of the number of
intersecting points or size of the angles between the intersectinglovesver, it is a
non-ideal solution, in that we are creating two grid blocks between each s&t of li
segments when we should be producing only one. Furthermore, for low angle
intersections, this will require a truly huge number of points to preserve the boundary
angles. Therefore, an optimized solution is suggested to produce a sparser grid in the

event of these types of intersections.
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4, Low Angle Intersection Optimization

To produce a single block with sides along each of the two lines segments, we
need to place a single point between each set of segments in such a way that it is
equidistant to neighboring points in our intersection on a perpendicular line.

We can place all the points by proceeding a set distance down each line segment,
and drawing a perpendicular line through each of them, as demonstrated in Figure 16
These perpendicular lines will intersect, and the intersection point will be wiger
place our first point.Although it is possible to get an intersection with angles larger than

90, the distance at which we must place the points makes it undesirable for use.

Fig 16 — Perpendicular lines are used to create an intersection poirrfproperly
aligning gridding for an acute angle

Once the point has been placed, the distance from the intersection point to each
line segment should be measured, and another point placed an equal distance down the
perpendicular line, so that the grid borders will align perfectly with the é#gments.

This approach can be continued around the intersection, by recycling thedirst dur

newly placed point (which is now the middle point of the line segments were are
examining) and taking a line with the perpendicular slope of the neighboring line
segment through the intersection point, generating a new point with each angle, until we

come full circle around the intersection, as demonstrated in Figure 17:
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Fig 17 — The techniqgue expanded to grid around the intersection, with an
intersection point for each angle

This process will have closely mimicked the procedure outlined earlier it whic
a Voronoi polygon was built from a Delaunay tessellation, with the intersection as the
middle vertex of the neighboring triangles. However, there are important ddésrelin
the procedure, rather than the midpoint of the line segments, an arbitrary (aradlgener
small) distance was chosen as the starting point. Additionally, the inbegseéwe must

be placed so as to go through the later points rather than forming them (Figure 18):

Fig 18 — A finished intersection using this technique, with and witbut the lines

This technique only works for angles that are relatively similar. Figure 19

demonstrates a case in dissimilar angles cause the technique to fail:
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Fig 19 — An intersection with obtuse angles constructed using the low angle
technique, dotted lines show where the Voronoi boundaries would faflthis
technique was attempted with an obtuse angle
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In that case, it will be necessary to simply place a point on either side of the
obtuse angle, in essence “skipping” that section and using an extra grid block toyproperl
align the sides. An example of that is shown in Figure 20, with the added points used to
compensate for the obtuse angle shown with a hollow center.

N

Fig 20 — Handling obtuse intersections, with obtuse angles “skipped”
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Furthermore, we are only guaranteed a properly gridded intersection using this
method if the intersection is symmetrical. This isn't as criticab&ioion as one might
think, as fracture intersections are often symmetrical, having formed perplan to
stresses which are relatively low angles apart. However, it medrhbithechnique
cannot be applied to branching intersections or asymmetrical fracture solihces
most of our intersections still must use the earlier case, althoughctmiscpee will find
particular use in addressing low angle intersections or kinks in existirigrés.c

Calculating the distance to clear from the center of the intersection, thte wors
case functioning scenario will b& times the distance down the line you use. The does
mean this technique uses more space compared to the two-dot bracketing method, which
can be an issue when there are multiple fracture intersections in veryobaamity.

While the two-dot bracketing method does provide a far more useful general
solution, simulation time will be almost entirely a function of the node points, and thus
extra diligence in constructing the grid mesh is desirable, as that operagd only be
performed a small number of times (or only once, if no modification is desired)
compared to the possibility of hundreds of runs of a finished simulation. Finally,
smaller blocks can lead to convergence problems, providing a final justificatitref

increased complexity of adding a secondary intersection method.
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5. Evaluating Proximity Issues

Now that intersections and basic gridding have been handled, one more issue
requires addressing, namely how to make sure that the points placed so far are not
distorting the boundaries that the simulation will need. When two gridded fraateres
close to each other, it is possible that the points on one distort the boundary on the other

as shown in Figure 21:

Fig 21 — Interference of a nearby point on Voronoi boundaries as a function of
proximity, from upper left to bottom right

While many of these problems occur in intersection situations, extending the
radius of the intersection points to encompass the problem area is often impdaetical
to fracture spacing or the need for high resolution in the area in question. ihgcthas
number of points around each fracture can also be prohibitive, if done across the board.
Thus, we need a method of adding grid points only in areas where it is necessary to

preserve the gridding structure.
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At this point, the implementation of the data structure tracking our points
becomes important. Arrays are generally used due to @fBskook-up time for any
particular value. However, insertion can be problematic as it generallyagthat
either our array be unsorted (in which case inserti@(1¥) or that it be resorted, which
is O(n log n) in the case of an optimal sorting algorithm. For the purposes of
constructing the point network, it is suggested that a linked list be used, which altows f
insertion at any point, which is finally cast to an array when we are finistieewur
grid construction.

Maintaining a “sorted” list is important, so as to know which points are adjacent
to each other and assigned to be bracketing points on which fracture line, in order to
verify all points are compliant. This may be done either by adding metadh&agoint,
identifying the line the point is assigned to as well as its ordinal positionaerpént, or
simply adding the points to the storage structure in a known order (although this later
case requires an ordered structure at all times.)

As this process should be performed after we've done all other modifications to
our grid, we will have points placed to manage intersections. These points also need to
be considered, and the two-points-per-line-segment technique is easily incarptate
our scheme as simply another set of bracketing points ending the line segment. The
single-point-per-angle scheme may be also be included in a similar manner.

Our process for grid verification is thus: all fractures have alreagly teeluced
to straight line segments, which either do not intersect other segmentsioaterat
fracture intersections. On each side of this fracture are a set of pointsgrdomin it to
align the grid. In the case of line segments that end in fractures, the finiz woi
consist of two of the fracture bracketing points.

For each fracture segment in our grid, all points must be verified againsteall ot
fractures. The basic comparison is shown in Figure 22, and will be between the points
on the nearest side of each line segment in question, and each point on our segment will
be compared to each two adjacent points on the other, running down the length of the

segment:
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Fig 22 — One set of comparisons between two line segments, as each point & on
side compares to all neighboring pairs on the other

While this may be sufficient for most cases, when the line segments iroguesti
are nearly perpendicular, the end points of each side of line segment may need to be
included, regardless of which side is chosen for the comparison (Figure 23.) Comparing
bracketed points on one line segment to those on the other, and vice versa is generally
sufficient to determine which sides need examining, although a slope checkgan hel

verify which end points do or do not need to be included.
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Fig 23 — An example of a case where both endpoints must be evaluated

The distance we must first gauge is that between the closest point on the line to
our point of interest. This can be found by running a line with the perpendicular slope of
our line through our point of interest until it intersects the line. The intersection point

will be our closest point (Figure 24.)
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Fig 24 — Cases where the intersection point will be the closest point,dacases
where the end point will be the closest point

There are geometric equations available to determine the intersection point of

two lines, including whether or not they intersect at all. Paul Borke, from Swinburne
University Center details the following equatifns

, Cfxg - ANyl - y3) - (y4 - w3kl - ®3)
a7 (y4 - yix=d - =1 - (=24 - ®3INF2 - v1)
, 2 - omlMyl - y3) - (y2 - yligl - %3]
BT iyd - wil=2 - =1) - (x4 - ®3(y2 - y1)

Either of the above coefficients can be plugged into the following equations to
supply the X and Y coordinate of the intersection point, as follows:

DG 0 Gt I PPN 02

YEYLF (Y2 - Y1) i e (3)

If either of the two coefficients are less than zero or greater than on¢hénen
is no intersection point. In that case, one of our endpoints will be the point on the line
closest to our point of interest. When that occurs, the point of interest will not exhibit

distortion of the fracture boundary, and we will not have to examine that case for the
purpose of verifying our grid.
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Once we have the point of intersection, the distance to both the bracketing points
on the same line and the point of interest can be evaluated (Figure 25.) If eitteer of
distances to the bracketing points is farther than the distance to the pointestinter
(Figure 26,) an additional set of bracketing points will need to be placed.

Fig 25 — The distances from each point to the intersection point (hollow) asthiown
as dashed lines, which the distance from the point of interest is a sbline

Fig 26 — A point triangle that doesn’t require correction and a second set thaloes

Provided that we used the line between the bracketing points rather than the true
line for our examination, our extra pair can consist of our intersection point, and another
placed by taking a the perpendicular slope of our line, and proceeding from our
intersection point twice the bracketing distance, so as to place a point balanced on the

other side of our fracture (Figure 27):

Fig 27 — Placement of a new point set to correct a fracture boundary

However, placing the new point at the intersection will only solve our problems

if the slopes of the two line segments are very close, as the new point is dedstruc
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perpendicular to the first line, not necessarily the second (Figure 28.) Hspeithal

low angles, this can cause a great number of added points.

Fig 28 — Different line slopes result in a point which is not perpendidar to the
intersection

What has occurred in the figure above is that the point placed is placed using the
slope of the second line (which is necessary, to assure that the boundaries atealigne
our fracture line.) Thus, we have formed a new triangle for evaluation wigere it’
possible it still fails validation. If this is the case, our algorithm woyldatigo back
and place a point on top of the one it just placed.

A more general solution is to simply add another point equidistant from the two
points (Figure 29.) While this may result in a non-ideal solution for line segments tha
are parallel or near parallel, it allows us to evaluate all line segnvéhtsut worrying

about special cases, and avoid the error outlined previously.

Fig 29 — Placement of a new point equidistant to our two trial points

We must insert the new point into our list of points so as to maintain the order of
the examination, as the points in order on the line segment may be used later in the

process for evaluating the validity of other nearby line segment’s braglgdints.
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Either the point is dynamically inserted if we are using a linked list or dimeamic
data structure, or the point is inserted in the end of our array and the arrayresorte
assure proper ordering. Fortunately, as we already have a mostldoadexy, the
sorting process can take placedfn) time.

Assigning points to their line for the purposes of use in this method is simple for
the two-point-per-segment intersection method, as each line segment wilbgaiints,
one on each side. The greater difficulty comes from using the single-point method,
which requires a point to share two line segments, for the purpose of comparison. An

example of situation in which the line must be considered is shown below (Figure 30):

Fig 30 — An example of a case requiring mid-point examination due to misaligned
bracketing points in close proximity

Rather than bracketing fractures with points at a set interval, this techaigue c
be used to add the optimum number of points. To do this, each line segment is bracketed
with only 4 points, one set at the each end point (or as mentioned earlier, 8 points to
guarantee all sides are 100% fracture.) Then intersections are dealmwitthe
verification procedure is run to place only those points which are needed.

If points have been be added to lines that have already been evaluated, then were
must either back the entire procedure up, or the procedure should be run iteratively until
no further points need to be added. It should be noted that only the points that were
added in last run need be checked against all others for verification purposes, hence run
time will decrease as the process iterates.

The choice between the fixed interval and the automatic generation is generall
one of resolution. If a desired spacing is already known, or the grid is full ctedpe
be filled with many non-fracture points, a fixed spacing technique supplementetthevit

evaluation technique may be appropriate. From a strict standpoint of minimizing run-
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time, only the end point should be bracketed and all other points added via the method
described, so as to guarantee the bare minimum number of points placed and therefore
the minimum number of grid blocks.

The operation described requires that roughly half of the points be compared to
half of the points, each, giving the operation an average tir®ndf. This is not
influenced by the choice between an array or a linked list implementatiamgad
both are handled well, assuring that a pointers are kept to current locations intthe lis
prevent walking through it excessively, or in the case of arrays, that thegraed with
an algorithm that ge®®(n) performance for a mostly sorted array. This is, of course,
assuming that the number of points added is relatively small compared to the total
number of points, an assumption that may not be true in the case of using this technique
to place points optimally, rather than a fix-distance bracketing solution.

User-added points are somewhat more complicated than in traditional models, as
we must verify that they don’t move the Voronoi boundaries off of the fractures. As
such, following point insertion we must run the evaluation technique, comparing that
added point to the nearest side of all fractures to insure that boundaries are valid, and
adding points as necessary. The user would also need to be constrained so that they
could not place points closer to the fractures than the bracketing distandeywehid
be impossible for even the aforementioned evaluation technique to fix, although in
practice a relatively small bracketing distance could make such an elikalyun

The user has a definite, legitimate need to place points, either to increase
resolution in an area, or for the purposes of grid alignment and flow. However, in part
due to the nature of the automated gridding, such techniques will be somewhat limited
by the approach we have chosen.
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6. Using Real World Data

Once we have all the tools required to build the grid, we need to import actual
field data in the simulator. Traditional maps for features such as porosityeaality
and other reservoir properties can be imported in the usual manner, with properties
averaged across grid areas. This averaging process is a little morexcéonMoronoi
polygons than simpler block forms, however, the formula does not add a great deal of
computational complexity to the tak.

The real notable difference in the importation task comes with the inclusion
of the fracture set. For the purposes of demonstration, a sample outcrop study will be
used (Figure 31):

Bridger Gap, Wyoming

Bed Thiwlumaa mw 2 =

Fig 31 — An outcrop study, with the portion to be gridded circled®

For clarity, and due to the resolution limitations of printed medium, only the
left section of the study was selected. The fracture or pseudofractaite tat analyzed

must be imported in line form. This can involve either a vector data format, such as
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SVG, a standard proposed by the World Wide Web Consoffiimyhich case only
interpretation of the format is needed, or it can involve more traditional gaaggics
formats such a the commonly used JPEG and GIF standards. In the case ef,tiéslat
necessary to use line detection methods to find the end points for each line; however,
such techniques are beyond the scope of this paper. Commercial applications are
available which will perform this conversion, allowing the matter to be leftterm
programs, although this does add an extra step for the user to import the data. For the
purposes of expediency, this example was vectorized by hand.

The transformation of our above data sample to a vector form usable in the

simulator is presented here (Figure 32):

i

Fig 32 — The fractures in vector form, as imported into the simulator

In a real simulation run, the outlying areas away from the fractures would be
gridded so as to prevent huge blocks. A single point was placed on the left hand side to
demonstrate this, but otherwise, the only points placed are to preserve fracture

boundaries. All the aforementioned techniques for aligning the Voronoi grid are used



here, with the exception of the low angle intersection technique, which doesn’t see
application due to the nature of the fracture pattern, which sees mainly aligctedefs
intersected by perpendicular fractures, but no low angle intersections. Titis ireghe
finished grid seen below (Figure 33):

Fig 33 — The gridded version of the outcrop study

The gridding around the fractures is auto-generated from the points and fractures
supplied. This leaves the actual grid itself as unalterable directly mgénealthough it
can be rebuilt after the addition of user-placed points. This is a requiremenntaima
true Voronoi polygons so the assumptions made by our flow equations continue to hold.
In the areas beyond the fractures any traditional block pattern could be used, and
would be desirable to lower the number of blocks with large numbers of sides, and thus
reduce matrix size. This is also easily automated, allowing for theragem of a
complete grid with only a suggested block size, and any user-desired touch-ups around

areas of interest.
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SUMMARY

The techniques discussed in the Methodology section outlines what is required to
build a properly-aligned Voronoi diagram so that DFN techniques can be used. An
outline of the full procedure to be utilized, from start to finish, is as follows.

Once a fracture set has been imported or created as a set of lines,@ss&anec
to identify intersections and break the lines into segments. This will feciiita
handling of intersections as well as the use of points to delineate eachefratisris
necessary because many of the techniques mentioned earlier assume akngrevitie
line segments that intersect only at the end points.

To break each line into a set of line segments, Equations 1 through 3 can detect
an intersection between any two lines. A pair of nested loops can identify abll@oss

intersections, in the following form:

For LoopVariableA = 1 to (NumberOfLines - 1)
For LoopVariableB = LoopVariableA to NumberofLines
Call Findintersection()
Next LoopVariableB
Next LoopVariableA

This yields arO(n® time for the operation, which is a one-time cost. Each line
should be split at each intersection, dividing into two line segments, each with one set of
the previous lines end points and sharing the common intersection point as their new
endpoints. Intersections that are in fact the end points of the line segments onquesti
should be ignored for the purposes of splitting, as they indicate a successful ghkiting
has already taken place, or a situation in which splitting was not necessagintavibie.

To avoid the issue of splitting a line incorrectly, all the lines should be
discretized into line segments to begin with, and only the current line segment used for
comparisons, rather than the original line. This implied\uraberofLines variable used
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above actually represents the number of current line segments, not the number of lines
we begin with. This complicates the formulation slightlyNasber OfLines will not be
constant for the duration of the loops above. Intersections should be cached at this stage
for use in the intersection handling routines.

At this point, every line segment should be assigned its bracketing points, which
can either be only two at each end if the earlier method to use minimal points is be
employed, or a set distance or number of points per line can be used. The routine will
consist of going a set distance down the line for each set of points, and using the
technique mentioned earlier to place one on each side.

Once the bracketing points have been placed, it will be time to handle
intersections. The distance at which to set intersection points should be determined,
generally with a set value reflective of the desired gridding resolutidhdquroject as
whole. However, intersections in close proximity will require precautionsstoaghe
added points for each don't overlap or interfere. Thus, each intersection should be
checked against each other one using a simple distance comparison, with aitopestr
similar to the one outlined for identifying line segments, to assure all possiele aa
compared. If two of the intersections are closer than the desired value, a value of
slightly less than half the distance between them should be used for each.

Reducing the lines to line segments that only intersect at end points allows us to
quickly determine the exact number of line segments (as well as which linergsym
involved in an intersection by comparison of the end points. Thus, a quick linear trip
through the list of line segments will yield the number and identities of akkéigments
involved and required for the use of intersection techniques.

The intersection technique used should default to the first technique (two points
per line segment) discussed, with a check for the applicability of the secondjtechni
which uses fewer grid blocks. The two basic tests for this consist of verifyingt that
least two line segments involved in the intersection possess the same slope, @hd tha
angles involved are less than 90 degrees. Additionally, it may be desirable, irethe cas
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of only two line segments forming an acute angle, to use the simple version of the
second technique, which would require a simple line segment check and an angle check.

Before any points are placed to form the intersection, all points within the radius
where we are to place our points need to be removed, whether they were placeg there b
the user or via the bracketing technique. If arrays have been used for trackingthe poi
it may be convenient to remove all points for all intersections, and then reorderajne
to avoid the cost of deleting points at each operation.

Once intersection points have been placed for all intersections, it is tim&yo ve
the grid, to assure that no points are interfering with the line boundaries. Téghnica
this technique need not be applied until the finalization process, when the user tbecides
save or utilize the finished grid. However, as a matter of good practice, it should be
applied immediately, so that the user has an accurate picture of what thdldoiokw
like.

The addition of fractures after the original grid operation has been pedovithe
force at least a partial repetition of the task above, especially iethéractures
intersect old and previously gridded fractures. Validation of user added pointsaan als
be delayed, however, it will probably be necessary for the user to see if hysaueled
point has caused the addition of several more points along fractures to maintain grid
integrity. The user must also be prohibited from adding a point closer to a fracture than
the distance used for offsetting the bracketing points from the fracturediiteyauld
be impossible for the verification method to guarantee the grid boundaries'ediginm
that case. If the user is to be permitted to carry out such an action, it will lssargae
re-grid at least the fracture he is distorting, utilizing the new offsédrite.

Similar restrictions apply to the user's ability to add points near to areitiers
In that case, the existing intersection points must be removed and the idenssiine
with the tighter radius. The relatively large amount of verification requaeddch
user-added point coupled with the restrictions on adding points in areas of intemest mea
that the use of this technique favors automatically generated grids. Bathéother

the user with the frustration of attempting to add a single point and grid block only to
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find the verification technique adds several, the automatic generation of theagrithe
areas away from the fracture is desirable. A completely or near ewmtyphutomatic

grid generation procedure also allows for the reduction of Voronoi blocks witisswxe
numbers of sides, which could cause problems with the matrix solver, and removes a

great deal of complication from the concern of the engineer using it.
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CONCLUSION

The techniques described in this thesis allow for the construction of a set of gri
blocks ready for simulation using either a black-oil or compositional simulaitbrftve
standard flow orthogonal flow equations. From a simulation standpoint, once the grid is
built, the only real adaptation needed to the equations used for conventional grids is the
adjusted matrix solver.

Any standard Voronoi generation technique can be used, as only the position and
number of grid block points is altered. The techniques themselves require only
relatively simple techniques of computational geometry and allow forrtuigtion of
a grid that helps to maximize accuracy and minimize simulation time. Whitirigud
dynamic grid can be more computationally intensive to build than a standard grid, grid
building is by nature a much faster operation than the numeric simulations tat foll
which may use the same grid for countless runs of the actual simulation.

The DFN technique is still in its infancy, due to the relatively recent inttimstuc
of better fracture data sources as well as increasing computational @wesr the
difficulty of simulating individual fractures for fracture intensive resas with little
anisotropy, it is likely that variations of the Dual Porosity model will be used éven i
DFN is fully adopted. Indeed, there’s no reason that both techniques can not be used,
with only the major fractures being modeled, or specific flow affectirgudra groups
being modeled as discrete pseudofractures.

Experimental confirmation of the DFN idea is already underway using the CT
scanner to analyze flow through a core with a single discrete fracture. Once
experimental results produce confirmation of the technique and an increased
understanding of fractured flow, the use of DFN will expand to larger studies, and in
time, take its place in the numerical simulation field as new tool for increasing
simulation accuracy. Fractured reservoirs have long been a source of uncettaimt

it comes to forecasting future production, and this technique, coupled with improved
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imaging of fractures and analysis thereof will help reduce that umtgrtie the benefit
of operators of many fractured reservoirs.

The Voronoi grid provides an improved platform over the Delaunay tessellation,
with low block count and greater versatility for aligning itself with dicezal flow.
While adoption of Voronoi polygons for simulation has been slow due to the rather
fragmentary nature of the technique’s adoption by the sciences, new advances in both
the computational formulation and sparse matrix solvers and matrix reducers can now

bring this technique into the repertoire of the reservoir engineer.
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APPENDIX |

This appendix presents a demonstration of each technique at various angles, to
show that computational methods to produce the desired results. All grids were
produced using the SmartSim gridding program, parts of which are provided in code in

Appendix II.

Two fractures intersecting at 30, single point technique



Two fractures intersecting at 48, single point technique

Two fractures intersecting at 96, single point technique
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Two fractures intersecting at 39, multi-point technique

Two intersecting fractures at 48, multi-point technique
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Two intersecting fractures at 96, multi-point technique

AN

Lines in close proximity, without the use of the validation technique
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AN

The same fractures, after use of the validation technique
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APPENDIX I

The code which performs the primary gridding task is broken into three
subroutines. The primary routine, Intersections(), parses the fracturdéisénsegments,
determines intersections, and then passes intersection control to BuildMlg{)Circ
which then passes it further to LowAngleCircle() if a two line interseatith a small
angle is detected.

Once control has resumed upon return from the circle drawing procedures,
Intersections() performs grid validation and a quick check to assure no duplicase point

have been placed before returning.

Sub Intersections()

"This subroutine handles all the automatic gridegation work with the exception of the actual

‘drawing of voronoi polygons

Dim A, B, C, F As Integer, G As Integer, H As Ingegi As Integer, j As Long

Dim D, E, RunningX As Double, RunningY As Doubl@ifitsEachSide As Integer, AddedON As Integer
Dim TempS As String, Inversion As Boolean

Dim TempX As Double, TempY As Double, OSlope As blay FinalX As Double, FinalY As Double
Dim SideArr(4, 100) As Integer 'Stores indexes iotio point arrays for each side

Dim SideInn(4) As Integer 'Index

PointsEachSide = 3 'essentially a constant
'First, find all the intersections

Cc=0
For A=0 To (FLine - 2)
For B = A To (FLine - 1)
Call IntersectPoint(A, B, RunningX, Runnifjg
‘Now we need to install modification for dealiwith intersections
If RunningX <> -65535 Then
G=0
ForF=1ToC
If (Abs(InterArr(F, 1) - RunningX) <@Z1) And (Abs(InterArr(F, 2) - RunningY) < 0.001h&n G =1
Next F
If G = 0 Then 'Now we're sure it's not @€eu
C=C+1
InterArr(C, 1) = RunningX: InterArr(2) = RunningY
InterArr(C, 3) = A: InterArr(C, 4) =B
End If
End If
If C >= 1000 Then 'Too many intersections
MsgBox ("Too many intersections (> 1000)")
B = FLine - 1 'End the loops
A =FLine - 2
End If
Next B
Next A

'Now, break the lines down into line segments

B=0
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For A=0 To (FLine - 1)
'‘Don't add lines that aren't real
If (Form1.FracLine(A).x1 <> Forml.FracLine(A2xOr (Forml.FracLine(A).yl <> Form1.FracLine(A))yhen
B=B+1
LSegment(B, 1) = Form1.FracLine(A).x1: L8emt(B, 2) = Form1.FracLine(A).yl
LSegment(B, 3) = Form1.FracLine(A).x2: L8emt(B, 4) = Form1.FracLine(A).y2
'LSegment(B, 5) = A 'Parent Line
End If
Next A

'All lines loaded, now start splitting them.

'Note, this assumes there are no duped entriesaralr
'If there are, we could end up with cloned linersegts.

For A =1 To C 'Examine each intersection
H = B 'B will be altered
ForG=1ToH
D = Point2LineB(InterArr(A, 1), ketArr(A, 2), LSegment(G, 1), LSegment(G, 2), LSegt(®, 3), LSegment(G, 4))
If (D < 0.00001) And (CheckLine(BterArr(A, 1), InterArr(A, 2)) = False) Then
B=B+1
LSegment(B, 1) = LSegment{§ LSegment(B, 2) = LSegment(G, 2)
LSegment(B, 3) = InterArr(®): LSegment(B, 4) = InterArr(A, 2)
'‘Now, alter the originalten
LSegment(G, 1) = InterArr(®: LSegment(G, 2) = InterArr(A, 2)
'Leave the x2 and y2 incgla
End If
Next G
Next A

LSNum =B

Thickness = 0.06
CurrentLine = 0 'Start Up

PointCount = LSNum * PointsEachSide * 2
'First pass done, number in PointCount

OIdNNN = NNN
j = NNN + PointCount 'Allocate space for new points
If j > ArraySize Then Call ReAllocArray(j)

NNN =
CurrentLine =1

While (CurrentLine <= LSNum)
OrigThickness = dis1(LSegment(CurrentLine LBegment(CurrentLine, 2), LSegment(CurrentLine L®egment(CurrentLine,
4))
spacing = OrigThickness / (PointsEachSide'Eagh line should have 6 points on each side
‘Evaluate all line segments
If (LSegment(CurrentLine, 1) <> LSegment(Cuttéme, 3)) Or (LSegment(CurrentLine, 2) <> LSegn{€ntrentLine, 4)) Then
'It's not a point, rather than a line
LLength = OrigThickness
AmountDone = 0
If LLength >= spacing Then
'At least one set of points to place.
OpNumber = Round(LLength / spacingt @)
For LoopVar = 1 To OpNumber
Distance = spacing
Call LineOperation(LSegment(Curténe, 1), LSegment(CurrentLine, 2), LSegment(Cutlcere, 3),
LSegment(CurrentLine, 4), AmountDone, TempX, TempY)
"TempX:TempY holds a point, spaoadhe fracture, but we want it perpendicular.
If Abs(LSegment(CurrentLine, 1)Ségment(CurrentLine, 3)) < 0.001 Then
OSlope =-65535



Else
If Abs(LSegment(Curteing, 2) - LSegment(CurrentLine, 4)) < 0.1 Then
OSlope =0
Else
OSlope = (LSegt(CurrentLine, 4) - LSegment(CurrentLine, 2))$égment(CurrentLine, 3) -
LSegment(CurrentLine, 1))
End If
End If
Call FinalPoint(TempX, TempY, Thi@ss, OSlope, FinalX, FinalY, False)
'Now we have the FinalX:FinalY afravew point, but is it valid?
aX(OIdNNN) = FinalX: aY(OIdNNMN) FinalY
Xorg(OIdNNN) = FinalX: Yorg(OMNN) = FinalY
ad(OIdNNN) = dis1(0, 0, FinalXinalY)
AO(OIdNNN, 1) = CurrentLine: AOIdNNN, 2) =0
Form1.Picturel.Circle (aX(OldNN aY(OIdNNN)), 0.2, RGB(255, 255, 255)
OIdNNN = OIdNNN + 1

'Second point on other side

Call FinalPoint(TempX, TempY, Thidss, OSlope, FinalX, FinalY, True)
aX(OIdNNN) = FinalX: aY(OIdNNMN) FinalY
Xorg(OIdNNN) = FinalX: Yorg(OMNN) = FinalY
ad(OIdNNN) = dis1(0, 0, FinalXinalY)
AO(OIdNNN, 1) = CurrentLine % ‘-neg number, to show it is on the other side
AO(OIdNNN, 2) =0

Form1.Picturel.Circle (aX(OIdNN aY(OIdNNN)), 0.2, RGB(255, 255, 255)
OIdNNN = OIdNNN + 1

AmountDone = AmountDone + spacing
If AmountDone > LLength Then AmoDwne = LLength
Next 'Done with this segment
End If
End If
CurrentLine = CurrentLine + 1 'Do for all segntseof the fracture
Wend 'End of While

'MsgBox (C)

D = 10000
ForF=1To(C-1)
ForE=(F+1)ToC
H = dis1(InterArr(F, 1), InterArr(F, 2),terArr(E, 1), InterArr(E, 2))
If (H< D) And (H>0) ThenD=H
Next E
Next F

‘Technically, we should make sure this isn't beytiredlength of any line segment
f(D=0)Or(D>6)ThenD=6
ForF=1ToC
Call BuildMultiCircle(InterArr(F, 1), InterArit, 2), InterArr(F, 3), InterArr(F, 4), D) 'Evalua#dl intersection points
Next F

AddedON =1 'This is the validation trigger, ane:iabled, at the moment.
While ((AddedON > 0) And (LSNum > 1))

AddedON =0
'Now, we need to verify that the spacing is correct

For A=1To 100
SideArr(1, A) = 0: SideArr(2, A) = 0: SideArr(8) = 0: SideArr(4, A) =0
Next A

For A=1To LSNum
‘Evaluate every fracture
Sidelnn(1) = 0: Sidelnn(2) =0
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For B =1 To LSNum '(A + 1) To LSNum
If (A <>B) Then

'‘Build SideArr
ForF=1To 4

Sidelnn(F) =0
Next F

For C=0 To (NNN - 1)
D=0
If (AO(C, 1) = A) ThenD =1
If (AO(C, 1) =A*-1) ThenD =2
If (AO(C, 1) = B) Then D = 3
If (AO(C, 1) =B *-1) Then D = 4
If D >0 Then
Sidelnn(D) = Sidelnn(D) + 1
SideArr(D, Sidelnn(D)) =C
End If

D=0
If (AO(C,2)=A) ThenD =1
If (AO(C, 2)=A*-1) ThenD =2
If (AO(C, 2)=B) ThenD =3
If (AO(C,2)=B*-1) ThenD =4
If AO(C, 1) = AO(C, 2) Then D = 0 'Dotrmake duplicates!
If D >0 Then
Sidelnn(D) = Sidelnn(D) + 1
SideArr(D, Sideinn(D)) =C
End If
Next C

‘Now we have all the relevant points fa tither line
'Here we take advantage of the fact thaitpavere added in order
'Thus, the first and second points on esgab are adjacent in the array

RunningX = dis1l(aX(SideArr(1, 1)), aY(Side@@, 1)), aX(SideArr(3, 1)), aY(SideArr(3, 1)))
RunningY = disl(aX(SideArr(2, 1)), aY(Side®, 1)), aX(SideArr(3, 1)), aY(SideArr(3, 1)))
If (RunningX < RunningY) Then G = 1 Else=@ 'Which side we'll be using
RunningX = dis1(aX(SideArr(3, 1)), aY(Side@, 1)), aX(SideArr(G, 1)), aY(SideArr(G, 1)))
RunningY = disl(aX(SideArr(4, 1)), aY(Side@, 1)), aX(SideArr(G, 1)), aY(SideArr(G, 1)))
If (RunningX < RunningY) Then H = 3 Else=H 'The same
Call SortPoints(SideInn(), SideArr()) 'Stre points
For C =1 To Sidelnn(G)
'For each point on one of our lines
For D =1 To (SideInn(H) - 1) 'Note:iStechnique assumes points are in order
'For each point on the opposing lin
'Slope between the two points anlithe
'RunningX:RunningY will be one emilft, FinalX:FinalY the other
OSlope =1
If aY(SideArr(H, D)) - aY(SideArr(HD + 1)) =0 Then
'Horz line, perpendicular viak vertical
RunningX = aX(SideArr(G, C)JnalX = aX(SideArr(G, C))
RunningY = aY(SideArr(G, C))1®: FinalY = aY(SideArr(G, C)) - 10
OSlope =0
End If
If aX(SideArr(H, D)) - aX(SideArr(HD + 1)) =0 Then
‘Vert line, perpendicular ik horizontal
RunningY = aY(SideArr(G, C)nalY = aY(SideArr(G, C))
RunningX = aX(SideArr(G, C))1®: FinalX = aX(SideArr(G, C)) - 10
OSlope =0
End If
If OSlope <> 0 Then
RunningX = aX(SideArr(G, C)}1®
FinalX = aX(SideArr(G, C)) - 10
OSlope = (aY(SideArr(H, D)) ¥@&ideArr(H, D + 1))) / (aX(SideArr(H, D)) - aX(S@hrr(H, D + 1)))
'Perpendicular slope
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OSlope = -1/ OSlope
‘Now, we need to make a limetigh our 3rd point
RunningY = OSlope * (Running¥X(SideArr(G, C))) + aY(SideArr(G, C))
FinalY = OSlope * (FinalX - aSifleArr(G, C))) + aY(SideArr(G, C))
End If

Call IntersectPointB(FinalX, FinalRunningX, RunningY, aX(SideArr(H, D)), aY(Sideft, D)), aX(SideArr(H, D +
1)), aY(SideArr(H, D + 1)), TempX, TempY)
'Now TempX:TempY should hold thesgt point on our line to the 3rd point
'Distance to end point #1
RunningX = dis1(aX(SideArr(G, Ca)Y(SideArr(G, C)), aX(SideArr(H, D)), aY(SideArr(HD)))
'Distance to end point #2
RunningY = disl(aX(SideArr(G, Ca)Y(SideArr(G, C)), aX(SideArr(H, D + 1)), aY(Sidedir, D + 1)))
'Distance to "Closest" point
FinalX = dis1(aX(SideArr(G, C)), &ideArr(G, C)), TempX, TempY)
If (TempX <> -65535) And (FinalXRunningX) And (FinalX < RunningY) Then
‘There is an intersection
‘Now, we'll need three tempiafales to evaluate if we have a problem or not.
FinalX = dis1(aX(SideArr(G, CHY(SideArr(G, C)), TempX, TempY) 'From point tadule
RunningY = dis1(aX(SideArr(H))PaY(SideArr(H, D)), TempX, TempY) 'From one side
RunningX = dis1(aX(SideArr(H,#1)), aY(SideArr(H, D + 1)), TempX, TempY) 'Théher
If ((FinalX < RunningY) Or (FahX < RunningX)) And (RunningX > 0.1) And (Running¥0.1) Then
'We need to take correctigéon
TempS = Str(RunningX) + +,'Str(RunningY)
TempX = (aX(SideArr(H, D1}) + aX(SideArr(H, D))) / 2
TempY = (aY(SideArr(H, D1)) + aY(SideArr(H, D))) / 2
AddOn = AddOn + 1
If (NNN + 2) > ArraySize &h Call ReAllocArray(NNN + 2)

NNN = NNN + 2

'First, make space to int@em in the proper spot in the main array.

'Make sure we don't inseaffter an intersection point, if possible

If SideArr(H, D) > SideAH( D + 1) Then j = SideArr(H, D + 1) Else j = Sidefd, D)
'J holds the point we needhsert afterwards of

i = NNN 'Our array, plusawlots at the end

While (i >= (j + 2))
AO(i, 1) = AO(i - 2,:10(i, 2) = AO(i - 2, 2)
ad(i) =ad(i - 2)
aX(i) =aX(i-2):ay@EaY(i-2)
Xorg(i) = Xorg(i - 2Y‘org(i) = Yorg(i - 2)
i=i-1

Wend

'i =j+ 1 'The spot afterr last good point
If H=3Then
i=j+1
AO(i, 1) =B
Else
i=j+2
AO(i, 1) =B *-1
End If
aX(i) = TempX: aY(i) = Tevip
AO(i, 2) =0
ad(i) = dis1(0, 0, Temp>eripY)
'Now we need the other liwe still have the perpendicular slope
"This next trick can be dafue to the ordering of the points
If H = 3 Then Inversion #UE Else Inversion = False
Call FinalPoint(TempX, Tewprhickness * 2, (-1 / OSlope), RunningX, Runnindivversion)

=i+l
'Form1.Picturel.Circle (9X&aY(i)), 0.4, RGB(155, 50, 155)

If H=3Then
i=j+2



AO(,1) =B *-1
Else
i=j+1
AO(i,1) =B
End If
aX(i) = RunningX: aY(i) =URningY
AO(i, 2)=0

ad(i) = dis1(0, 0, RunnindgXunningY)
'Now we need to rebuild sigte arrays

For TempX=1To 4
Sidelnn(TempX) =0
Next TempX

For TempX =0 To (NNN - 1)
F=0
If (AO(TempX, 1) = AhEnF=1
If (AO(TempX, 1) = A1) Then F =2
If (AO(TempX, 1)=Bhén F=3
If (AO(TempX, 1) =B-1) Then F=4
If F>0 Then
Sidelnn(F) = Side(R) + 1
SideArr(F, SidelRr))= TempX
End If

F=0
If (AO(TempX, 2) = AhEnF=1
If (AO(TempX, 2) = A1) Then F =2
If (AO(TempX, 2) =Bhén F=3
If (AO(TempX, 2) =B-1) Then F=4
If AO(TempX, 1) = AO(irgpX, 2) Then F = 0 'Do not make duplicates!
If F>0 Then
Sidelnn(F) = Side(R) + 1
SideArr(F, SidelR))= TempX
End If
Next TempX

Call SortPoints(Sidelnrg)deArr())

AddedON =1
'We only care about thenpaidded on our side of interest
'‘Note: Because of the waymade our new point the next point,
'We'll look at it againtizake sure it doesn't need further correction
End If
End If 'There was an intersection
Next D
Next C
End If
Next B
Next A

Wend 'Done with verification
For F=0 To FLine -1

Form1.FracLine(F).Visible = False 'Hide it so @& see grid results
Next F

'‘Now, graph up the intersections

B = NNN

A = DuplicatePoints

TempS ="0ld Points: " + Str(B) + " New Points: 'Str(NNN) + " Dupes: " + Str(A)
MsgBox (TempS) 'Duplicate points should only bespre in the event of errors in gridding.

End Sub
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Sub BuildMultiCircle(X As Double, y As Double, LineA As Double, LineB As Double, ByVal Cinter As Doubg)

"This builds a circle of points around an intersett
'LineA and LineB are only used if just 2 line segseintersect

Dim MinimumD As Double, Thickness As Double, A kaeger, LCount As Integer, B As Double, C As Ireedd As Integer, E
As Long

Dim Lines(20) As Integer 'As many as 20 lineswaéd through one point

Dim Skip As Boolean, TempMax As MAXMIN, NewX As Dble, NewY As Double, FinalX As Double, FinalY As Olae,
OSlope As Double, TempX As Double, TempY As Double

Dim TS As String

Thickness = 0.1: Skip = False
LCount = 0 'Number of lines involved in intersectio
MinimumD = (Cinter / 2.1) / 2 'To assure neighbgrintersection circles do not overlap

'‘Detect true number of lines involved
For A=1To LSNum
If (X = LSegment(A, 1)) And (y = LSegmeAt(2))) Or ((X = LSegment(A, 3)) And (y = LSegmeht))) And (B = 0) Then
LCount = LCount + 1
Lines(LCount) = A
End If
Next A

PointNum = NNN: D = NNN

If LCount = 2 Then
'Send to low angle handler
TempMax = AngleTRI(LSegment(Lines(1), 1), LSemrt{Lines(1), 2), LSegment(Lines(1), 3), LSegmeintgs(1), 4),
LSegment(Lines(2), 1), LSegment(Lines(2), 2), LSegt(Lines(2), 3), LSegment(Lines(2), 4))
NewX = TempMax.MIN 'Now we have the smallesglerbetween the two segments
If NewX <= 45 Then
Call LowAngleCircle(Lines(1), Lines(2), L§ment(Lines(1), 1), LSegment(Lines(1), 2), LSegrfleénes(1), 3),
LSegment(Lines(1), 4), LSegment(Lines(2), 1), LSegt(Lines(2), 2), LSegment(Lines(2), 3), LSegmeintés(2), 4), X, y,
MinimumD)
Skip = True
End If
End If

If Skip = False Then 'Alternative method

For A=0To (NNN - 1)
B = dis1(X, y, aX(A), aY(A)) 'Distance tewter point
If (B < (CInter / 2)) Then
aX(A) = -65535: aY(A) = -65535 'Markrfdeletion
End If
Next A

A = CleanArray() 'Delete points that were too close

D = NNN '+1 or over?
E = NNN + (LCount * 2)

If (E > ArraySize) Then Call ReAllocArray(E)
NNN =E
'‘Make sure we don't go beyond the end of any portio

B = 10000
For A=1To LCount
‘Choose which end point is NOT on the seetion
If (LSegment(Lines(A), 1) = X) And (LSegntérines(A), 2) =y) Then
TempX = LSegment(Lines(A), 3): TempY.Segment(Lines(A), 4)
Else



TempX = LSegment(Lines(A), 1): TempY.Segment(Lines(A), 2)
End If
C =dis1(TempX, TempY, X, y)
If(C<B)And (C>0)ThenB=C
Next A

If (B > MinimumD) Then B = MinimumD

If (B < Thickness) Then
MsgBox ("Line Segment shorter than Thicknes#,net render correctly.")
B = MinimumD

End If

'MsgBox (B)

For A=1To LCount
‘Choose which end point is NOT on the inteisect
If (LSegment(Lines(A), 1) = X) And (LSegmentfigs(A), 2) =y) Then
TempX = LSegment(Lines(A), 3): TempY = L&snt(Lines(A), 4)
Else
TempX = LSegment(Lines(A), 1): TempY.Segment(Lines(A), 2)
End If

Call LineOperation(TempX, TempY, X, y, B, NewXewY)
If Abs(X - TempX) < 0.001 Then
OSlope = -65535

Else
If Abs(TempY -y) < 0.001 Then
OSlope =0
Else
OSlope = (y - TempY)X/- TempX)
End If
End If

Call FinalPoint(NewX, NewY, Thickness, OSlop@dX, FinalY, False)
'Now we add the points

aX(D) = FinalX: aY(D) = FinalY: Xorg(D) = FinalXYorg(D) = FinalY
ad(D) = dis1(0, 0, aX(D), aY(D))

AO(D, 1) = Lines(A): AO(D, 2) = Lines(A)

D=D+1

Call FinalPoint(NewX, NewY, Thickness, OSlop&dX, FinalY, True)
aX(D) = FinalX: aY(D) = FinalY: Xorg(D) = FinalXYorg(D) = FinalY
ad(D) = dis1(0, 0, aX(D), aY(D))
AO(D, 1) = Lines(A) * -1: AO(D, 2) = Lines(A) *1
D=D+1

Next A

End If

End Sub
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Sub LowAngleCircle(LA As Integer, LB As Integer, axl As Double, ayl As Double, ax2 As Double, ay2 Asible, bx1 As
Double, byl As Double, bx2 As Double, by2 As DouhlX As Double, y As Double, MinimumD As Double)
'Deals with kinks in the fracture that are < 45rdeg.

Dim cx1 As Double, cyl As Double, cx2 As Double2dys Double

Dim dx1 As Double, dyl As Double, dx2 As Double2dys Double

Dim SideArr(4, 100) As Integer 'Stores indexes iotio point arrays for each side
Dim SideInn(4) As Integer 'Index

Dim E As Double, F As Double, A As Integer, TempX lteger, G As Double, H As Double, TempY As Irted As Double, j As
Double

Dim x1 As Double, y1 As Double, x2 As Double, y2 Beuble

Dim Dist As Double, TempS As String, PointNum Asefger, RunningX As Double, RunningY As Double, BXhas Integer

For TempX=1To 4
Sidelnn(TempX) = 0
Next TempX

For TempX =0 To (NNN - 1)
TempY =0
If (AO(TempX, 1) = LA) AngAO(TempX, 2) = 0) Then TempY =1
If (AO(TempX, 1) = (LA * 1 And (AO(TempX, 2) = 0) Then TempY =2
If (AO(TempX, 1) = LB) An@d\O(TempX, 2) = 0) Then TempY =3
If (AO(TempX, 1) = (LB *)LAnd (AO(TempX, 2) = 0) Then TempY =4
If (TempY =0) Then
If (AO(TempX, 2) = LA)hen TempY =1
If (AO(TempX, 2) = (LA-1)) Then TempY =2
If (AO(TempX, 2) = LBhen TempY =3
If (AO(TempX, 2) = (LB-1)) Then TempY =4
'We need to handlerseetion points (Those with Two AO() entries) spégi
"Thanks to our techmgwe're guaranteed that all intersections poirgs a
‘higher on the arragttfracture gridding points.
If TempY > 0 Then
'An intersectioninto
RunningX = dis1(@¥MmpX), aY(TempX), aX(SideArr(TempY, 1)), aY(SidefrempY, 1)))
RunningY = dis1(éMmpX), aY(TempX), aX(SideArr(TempY, Sidelnn(Temp) rY (SideArr(TempY,
Sidelnn(TempY))))
If (RunningX < RungY) Then
'Put a frontlist
Sidelnn(Tempy Bideinn(TempY) + 1
FinalX = Sida(fTempY)
While (FinalX0y
SideArr(Tel FinalX) = SideArr(TempY, FinalX - 1)
FinalX =n@iX - 1
Wend
SideArr(Temply),= TempX: TempY =0
Else
Sidelnn(Tg¥)) = SideInn(TempY) + 1
SideArr(Tel Sidelnn(TempY)) = TempX: TempY =0
End If
End If 'TempY >0
End If 'TempY =0
If (TempY <> 0) Then
Sidelnn(TempY) = SidefiempY) + 1
SideArr(TempY, SidelfiempY)) = TempX
End If 'TempY <> 0
Next TempX 'Done loadingmints for our fracture

RunningX = dis1l(aX(SideArr(1, 1)), aY(SideAry(@), aX(SideArr(3, 1)), aY(SideArr(3, 1)))
RunningY = disl(aX(SideArr(2, 1)), aY(SideArr(@®), axX(SideArr(3, 1)), aY(SideArr(3, 1)))
If (RunningX < RunningY) Then G = LA Else G % * LA 'Which side we'll be using
IfG=LATheni=1Elsei=2

RunningX = disl(aX(SideArr(3, 1)), aY(SideArr@B), axX(SideArr(i, 1)), aY(SideArr(i, 1)))
RunningY = disl(aX(SideArr(4, 1)), aY(SideArr®), axX(SideArr(i, 1)), aY(SideArr(i, 1)))
If (RunningX < RunningY) Then H = LB * -1 Eld¢ = LB 'The same



Call SortPoints(Sidelnn(), SideArr())

x1 =axl:yl=ayl

X2 = bx1l:y2 = byl

If (ax1 = X) And (ayl =y) Then 'Chose the pgdiesides the intersection
x1 =ax2:yl = ay2

End If

If (bx1 = X) And (byl =y) Then 'Chose the pdiesides the intersection
X2 = bx2: y2 = by2
End If

E =disl(X,y, x1, y1)

Call LineOperation(x1, y1, X, y, MinimumD, cxdy1)
x1=cxl:yl=cyl

E =disl(X, y, x2, y2)

Call LineOperation(x2, y2, X, y, MinimumD, dxdy1)
x2 =dx1:y2 =dyl

'So now we have two points, equidistant fromititersection.

If (ay2 - ayl) =0 Then
‘Horizontal Line
cy2 =cyl + 100
If cyl > dyl Then cy2 = cyl - 100
cx2 =cx1
Else
If (ax2 - ax1) = 0 Then
'Vertical Line
cx2 =cx1 + 100
If cx1 > dx1 Then cx2 = cx1 - 100
cy2 =cyl
Else
i =(ay2 - ayl) / (ax2 - ax3)dpe of first line
i =-1/i'Perpendicular slope
cx2 =cx1 + 100
If cx1 > dx1 Then cx2 = cx10QL
cy2 =i*(cx2-cxl) +cyl
End If
End If

If (by2 - byl) =0 Then
'Horizontal Line
dy2 = dyl + 100
If dyl > cyl Then dy2 = dy1 - 100
dx2 = dx1
Else
If (bx2 - bx1) =0 Then
'Vertical Line
dx2 = dx1 + 100
If dx1 > cx1 Then dx2 = dx1 - 100
dy2 = dyl
Else
j = (by2 - byl1) / (bx2 - bx'Slope of second line
j=-11/] 'Perpendicultope
dx2 = dx1 + 100
If dx1 > cx1 Then dx2 = dx100
dy2 =j* (dx2 - dx1) + dyl
End If
End If

‘Now we have two perpendicular lines that stigndersect, provided that our angles are acute.

Call IntersectPointB(cx1, cyl, cx2, cy2, dx§1ddx2, dy2, E, F)

For A=0 To (NNN - 1)
cx1 = dis1(X, y, aX(A), aY(A)) 'Distance tenter point
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If (cx1 < MinimumD) Then
Form1.Picturel.Circle (aX(A), aY(A)),20 RGB(O0, 255, 0)
aX(A) = -65535: aY(A) = -65535 'Markrfdeletion
End If
Next A

A = CleanArray()
PointNum = NNN + 3

If PointNum > ArraySize Then Call ReAllocArrd&gintNum)

‘e,f holds the intersection point.
‘The intersection point will be our first poexdded.

aX(NNN) = E: aY(NNN) = F: Xorg(NNN) = E: Yorg(NN) = F: AO(NNN, 1) = G: AO(NNN, 2) =H
cx1 = (x1 - E) 'Change in X, reversed direction

cx1 = cx1 + x1 'Add it to the original X positi

cyl=i*(cx1-x1)+yl

aX(NNN + 1) = cx1: aY(NNN + 1) = cyl: Xorg(NNN *) = cx1: Yorg(NNN + 1) =cyl: AO(NNN + 1, 1) =1
AONNNN +1,2)=G *-1

cx1 = (x2 - E) 'Change in X, reversed direction
cx1 = cx1 + x2 'Add it to the original X positi
cyl =j*(cx1-x2) +y2

aX(NNN + 2) = cx1: aY(NNN + 2) = cyl: Xorg(NNN 2) = cx1: Yorg(NNN + 2) = cyl: AO(NNN + 2, 1) =H+-1
AONNN +2,2)=H*-1

Form1.Picturel.Circle (aX(NNN), aY(NNN)), 0ORGB(0, 0, 255)
Form1.Picturel.Circle (aX(NNN + 1), aY(NNN +)10.2, RGB(0, 0, 255)
Form1.Picturel.Circle (aX(NNN + 2), aY(NNN +)20.2, RGB(0, 0, 255)
NNN = PointNum

End Sub
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