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ABSTRACT 

 

 

Discrete Fracture Modeling for Fractured Reservoirs Using Voronoi Grid Blocks.  

(May 2006) 

Matthew Edward Gross, B.S., Texas A&M University  

Chair of Advisory Committee: Dr. David Schechter 

 

 Fractured reservoirs are commonly simulated using the Dual Porosity model, but 

for many major fields, the model does not match field results.  For these cases, it is 

necessary to perform a more complex simulation including either individual fractures or 

pseudofracture groups modeled in their own grid blocks. 

 Discrete Fracture Modeling (DFN) is still a relatively new field, and most 

research on it up to this point has been done with Delaunay tessellations.  This research 

investigates an alternative approach using Voronoi diagrams, yet applying the same 

DFN principles outlined in previous works.   

 Through the careful positioning of node points, a grid of Voronoi polygons can 

be produced so that block boundaries fall along the fractures, allowing us to use the DFN 

simulation methods as proposed in the literature.  Using Voronoi diagrams allows us to 

use far fewer polygons than the Delaunay approach, and also allows us to perfectly align 

flow so as to eliminate grid alignment errors that plagued previous static systems.  The 

nature of the Voronoi polygon further allows us to simplify permeability calculations 

due to orthogonality and, by extension, is more accurate than the commonly used corner-

point formulation for non-square grid blocks. 
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INTRODUCTION 

 

1. The History of Modeling Fractured Reservoirs 

 

 Ever since the first numerical simulations for fluid flow modeling were 

developed, there has been the issue of how to handle the myriad fractures that lace 

naturally fractured reservoirs and spread out in stress-oriented directions from 

hydraulically fractured wells.  Early formulations of square grids adjusted the 

permeability and porosity of the matrix blocks in an attempt to compensate for additional 

flow, or simply ignored the issue completely. 

 The most commonly cited and widely adopted first approach to the problem of 

simulation fracture networks was proposed by Warren and Root, and is used today in 

modified form as the Dual Porosity model.1 Essentially, an additional analytical flow 

term is added to each block to represent the flow from the matrix into the fracture, and 

the block contains a mix of matrix and fracture permeability.  Figure 1 presents a 

visualization of what is commonly known as the sugar-cube model: 

 

 

 

Fig 1 – “Sugar Cube” analytical model for Dual Porosity1 

 

  

                             

This thesis follows the style of SPE Journal. 
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This approach was a great improvement over earlier methods.  However, inter-

fracture flow was not modeled, and the description worked best on models with a very 

uniform set of fractures that did not induce flow anisotropy.  This model is still used 

today as a way of including the effects of a fracture network without modeling the 

individual fractures, which may be too computationally intensive, even when sufficient 

data to visualize them is present. 

 Later adaptations improved the basic model,2 expanding the technique as far as 

triple porosity models, which attempted to add an additional term for further realism.  

The Dual Porosity would persist as the general model for fractured reservoirs up to the 

present day, in spite of the numerous attempts to supplant it. 

However, in part due to the general applicability to most reservoirs, and in part 

due to the limits of computational power, advances in terms of simulating individual 

fractures were limited.  Some early attempts were made at simulating very small, limited 

cases by discretely representing the fractures,3 but work remained rather sparse until the 

early 1980’s.  
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2. The Discrete Fracture Network Approach 

 

 Discrete Fracture Networks (DFN) used in attempts to directly model the 

fractures, either as a virtual grid-block or some other separate entity.  No longer is the 

fracture an additional factor influencing our matrix grid blocks, but a separate grid block 

with its own properties.  This allows us to conduct simulations without blending matrix 

and fracture properties as was done in previous models.  Additionally, it is now possible 

to directly model inter-fracture flow. 

 Work on DFN to model fluid flow in porous media dates back to at least the 

early 80’s, when authors such as Noorishad, Mehran, and Baca applied the technique.  

Further refinements for use in petroleum engineering were made by Karimi-Fard and 

Firoozabadi in their 2001 paper.4 In that paper, the authors advocate using a Finite 

Element approach to avoid problems with simulating the very small grid blocks that 

would be used to represent the fractures.  To build his DFN grid, Karimi-Fard used a 

Delaunay tessellation to align the block boundaries on the fractures. 

 Aziz5 would attempt to make a general framework for applying the DFN 

approach more widely.  One of the more important aspects of the Aziz paper was 

expanding the use of DFN to finite difference simulators, which Karimi-Fard and 

Firoozabadi had dismissed, saying that an accurate representation “…may not be 

possible using a finite difference approach.” 

 The DFN approach Aziz outlined called for the representation of fractures as 

their own discrete grid blocks, which he illustrated in Figure 2.  However, while these 

grid blocks had volume as a property, in the grid itself, they were represented only as the 

intersection between two matrix blocks.  As such, the boundaries of those blocks must 

be aligned along the fracture, and the fracture will be added during the solving phase, 

with flow occurring between neighboring fractures and the matrix blocks whose sides lie 

on the fracture itself. 
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Fig 2 – Aziz’s formulation of the DFN domains; fractures are grid boundaries, yet 
have volume for computational purposes.5 

 

 Aziz also compared the DFN 2D simulator to traditional square-grid models 

which used different blocks for the fracture and matrix.  While these were completely 

artificial case studies, they did demonstrate that DFN simulators provided results that 

replicated those of very densely gridded traditional simulators.  The Eighth SPE 

Comparative Solution Project had earlier examined the use of dynamic grids (Without a 

DFN component) and found that they can “allow a significant computer time saving 

during a reservoir simulation.”6 

 While verification of DFN simulators against theoretical models is a useful first 

step, it doesn’t link their improved accuracy to tangible field results.  For a true 

experimental calibration of the method, a relatively recent addition to the repertoire of 

fluid flow visualization can be used.  The CT scanner allows us to view the flow inside a 

core, distinguishing between fluids either through their density or the addition of a 

doping substance.  A mounted core could provide the saturation front needed to assure 

that the flow modeled in the DFN simulator is an accurate portrayal of what is occurring 

in the reservoir itself. 

 Once DFN simulators have been calibrated to lab results, the next plausible 

approach is to apply the method to fields that have a history anisotropic fracture flow, 

such as the Spraberry field in West Texas.  The Spraberry field was discovered in 1949, 
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and is thought to have originally contained 10 billion BBLs of oil, of which, only 10% 

has been recovered, in part due to the difficulties of water flooding a field where flow is 

primarily controlled by the fracture network.7 Such fields are poorly served by the 

current methods for fracture characterization, yet contain large possible payoffs, making 

them ideal candidates for DFN analysis. 

 Fracture data will have to be extracted either from seismic results, approximated 

from outcropping data, or FMI logs, to cover only a few of the possible sources for 

fracture data.   Techniques such as pressure transient testing, tracer tests, and 

compositional gradients, while not providing exact fracture data, can also be used to 

discover fractures and causes of flow anisotropy.  While fractures are represented 

discretely, the modeled fracture does not have to be a single fracture, but can instead be 

a pseudofracture, with properties derived from actual field results, as a form of history 

matching. 

 While the DFN approach is currently limited to experimental and two 

dimensional simulators, as computational power expands and is complemented by 

increased data on the fractures in the reservoir a full 3D approach should be usable.  For 

current purposes, however, petroleum engineering and the geosciences in general benefit 

from the layering of sedimentary rocks, allowing for the use of two dimensional models 

to represent beds.  Vertical permeability is often a tenth of horizontal permeability, 

making the treatment of layers as individual flow units possible in many reservoirs.   

This approach should increasingly supplant a basic Dual Porosity model in many 

areas where fractures dominate such as Type I fractured reservoirs, where fractures 

provide both essential porosity and essential permeability, as per Nelson’s classification. 

 Extending any kind of polygon into the third dimension can be difficult, and 

extending the DFN technique to do so is also a challenge.  Work on Voronoi diagrams in 

the third dimension is still ongoing in the world of computational mathematics, although 

there are some techniques for building Voronoi polygons that extend to the third 

dimension as well as the first two.  
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 However, given that our blocks often represent one layer and the aforementioned 

bedded nature of sedimentary rocks, a straight-down extension as demonstrated in 

Figure 3, or a curvilinear approach can be added to the 2D Voronoi diagram to handle 

additional layers. 

 

 

 

Fig 3 – Example 3D Voronoi blocks, extended directly downwards 

 

 It should be noted that the three dimensional aspect of this adaptation will 

necessarily make the flow between blocks not completely orthogonal, in the case of 

varying height between grid blocks, which is not uncommon in a reservoir setting. 
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3.  The History of Voronoi Diagrams 

 

 Simplistic Voronoi-like diagrams were employed as early as 1644 by Descartes; 

however, the first comprehensive formulations were developed by Peter Dirichlet and 

Georges Voronoi.  Voronoi proposed the general case of the Voronoi diagram in 1907.   

 These diagrams are also known as Dirichlet domains, and consist of a polygon 

with all edges equidistant between the center point and neighboring points. 

Alternatively, to quote Wolfram Research, a Voronoi diagram is: “The partitioning of a 

plane with n points into convex polygons such that each polygon contains exactly one 

generating point and every point in a given polygon is closer to its generating point than 

to any other.”8 

 Voronoi polygons were already being applied as early as 1909 in the earth 

sciences to estimate ore reserves.  However, well into the 20th century, Voronoi 

diagrams were being rediscovered (and renamed) by various scientists in a variety of 

fields, culminating in perhaps the last know rediscovery in 1987 by Icke for use in 

astronomy.  Voronoi diagrams have been used in just about every imaginable scientific 

field, including use to estimate the growth area of trees to areas of language dialects.  

Well into the 1960's, the application of Voronoi diagrams was limited, due to the 

difficulties of drawing them by hand, but advances in computational geometry and 

microcomputers have put them into the spotlight. 
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As geometry goes, the actual techniques for building Voronoi diagrams in a non-

graphical sense are quite new.  While several methods exist for drawing a Voronoi 

diagram by hand, they are of little use for simulation purposes.  Work on boundary 

Voronoi diagrams started in 1987 with a paper by Wang and Schubert defining the 

concept,9 and work continued on the subject as recently as 1995.10 Thus, Voronoi 

diagrams are a subject many people in both the petroleum industry and the broader 

world are unfamiliar with. 

Much of the recent work with Voronoi diagrams has been centered around Japan, 

including what is now the 2nd Annual Symposium on Voronoi Diagrams which was held 

in 2005 in Seoul, Korea.  This area of research is quite active, and already several 

different methods for constructing two dimensional Voronoi diagrams exist, with 

research continuing into the third dimension.   

Techniques vary from older methods such as Flipping which resulted in a worst 

case time of n2 to relatively newer methods including Gift-Wrapping and Divide-and-

Conquer which see O(n) run times and superior worst case scenarios.11 Modern 

computers provide the computational power necessary to create these grids on demand, 

with recent advances12 allowing for the use of graphics co-processors to aid the building 

process, which should allow for building denser grids, as well as real-time rebuilding of 

the grids for user convenience. 
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4. Why the Voronoi Diagram Was Selected 

 

 Given the ease and years of use of traditional square-block grids, some 

explanation is needed for the application and advantages of unstructured grids.  While 

the order of a structure grid is sufficient to determine its neighbors, and unstructured grid 

must track its location as well as the neighbors to which it is adjacent.  As such, the use 

of dynamic grids is necessarily more complex than a square grid model. 

 One of the earliest reasons for going with an unstructured grid was the issue of 

grid alignment.   This problem occurs due to the way that flow is simulated, as flow 

takes place only perpendicular to grid sides.  This results in poor modeling of flow when 

the primary direction does not correspond well with any given side, as the fluid is 

actually moving farther through grid boundaries than it is physically moving in the  

Reservoir, as shown in Figure 4: 

 

Fig 4 — (A) An improperly aligned square grid, (B) A grid rotated to align, and (C) 
A Voronoi grid which requires no rotation 

 

 Grid rotation was the first and most obvious solution to grid alignment problems, 

however it is limited to patterns where the grid can be rotated to fit all flow paths.  In the 

case of field anisotropy, it may not be possible to simply rotate a grid to assure flow 

alignment. 
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 Early solutions following the use of alignment were curvilinear, so called “Nine 

Point”13 versions of square grids which allow for flow through the corners of square grid 

blocks as well as through the sides.  The nine-point approach merely allowed for flow 

through the corners of a square grid, calculating the properties of that flow path from an 

average of the flow paths of the true side.  This complicated flow formulations, and also 

was only a “split-the-difference” solution to alignment problems, as it merely reduced 

the angle to which it was possible for flow to be misaligned. 

The curvilinear approach is a modification of the square grid that slants the grid 

as a whole, while maintaining the constant number of sides and orthogonality, a cross-

section of which is displayed in Figure 5.  Much like grid rotation, this solution assumes 

a relatively simple reservoir, and is inapplicable to more complicated grid geometry.  

However, it did provide an early solution to simple grid alignment problems and also 

had a formulation to allow for automatic grid generation.14 

 

Fig 5 – An example of a curvilinear grid in 2D15 

 

The use of polygonal patterns in which the number of sides are fixed, continues 

up to the modern day16 in an attempt to address this issue.  Although this technique is 

more elegant than the kind of mathematical fix embodied in the nine-point solution, it 

suffers from the same drawback of essentially attempting to minimize the flow error by 

increasing the shear number of possible flow paths.   Truly unstructured gridding allows 

the simulator to align the grid faces precisely with the direction of flow, reducing the 

computational complexity of the work as a whole. 
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It is worth noting that dynamic grids do not inherently fix the problem of grid 

alignment.  Commonly used fixed-side-number methods such as the Delaunay 

tessellation do allow for perfect alignment for flow between two wells, however, for 

complex flow geometries, it becomes impossible to align the grid correctly, as there are 

insufficient sides to allow all of them to perpendicular to the required flow directions. 

 The advantages of dynamic gridding also become increasingly apparent when we 

have to deal with large areas that are poorly described, or features that we wish to model 

in place.  Frequently, this includes either a fracture network or faulting.  When we wish 

to grid up a field with irregular features, we are somewhat limited by the basic square 

formulation.  The basic formulation can be reduced in size so that the feature in question 

can be modeled, but doing generally produces so many grid blocks that the resulting grid 

is too computationally demanding to be practical. 

 Unstructured gridding techniques such as the Delaunay tessellation and corner-

point gridding allow us to align the grid boundaries along the contours that we desire.  

However, the Voronoi diagram enjoys several advantages over either technique.   

 Being dual to the Delaunay tessellation in the graphical sense, the Voronoi 

diagram can describe any shape that the Delaunay tessellation does, however, it can do 

so using less grid blocks (although of a varying number of faces.)  The advantage of the 

reduced number of blocks is somewhat mitigated by the variable face number, which 

requires the use of sparse matrix solving equations rather than the more traditional and 

more efficient banded matrix solvers. 

 Flow for the Voronoi diagram is guaranteed to be orthogonal, thus allowing us to 

use the simpler orthogonal flow equations from our square grid rather than the corner-

point formulation with suffers accuracy due to the non-orthogonal approximation.  This 

is particularly evidenced in the formulation of the transmissibility equations, which gain 

both accuracy and simplicity compared to the nine-point formulation, or a similar 

approximation for the Delaunay triangle.  So long as were able to construct a grid 

consisting only of true Voronoi polygons, we gain the simplicity of the square grid 
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calculations with the multifaceted nature of center-point geometry or other, more generic 

polygon solutions. 

The trade-off is limited grid flexibility.  As we must build our diagram so that all 

polygons are Voronoi polygons and aligned with the boundaries desired, we are 

occasionally left with smaller grid blocks than more flexible corner-point geometry 

would allow for.  This is only to a limited extent, as the corner-point grid’s accuracy is 

impacted by the degree of distortion of the gravity centers of the grid block.17 

 Having outlined the strengths of the Voronoi diagram, it is only fitting that the 

most striking disadvantage of the system should be detailed.  That is, with a variable 

number of grid faces, one ends up with a sparse matrix rather than a banded matrix, 

requiring that the matrix solver is a more general (and computationally intensive) sparse 

matrix solver. 

 These difficulties can be addressed, however, given the proper techniques.  Once 

the Voronoi diagram is generated, additional points can be added to reduce Voronoi 

diagrams to a reasonable number of sides, at the expense of increasing block numbers.  

 Alternatively, there exist several algorithms, such as the Gibbs-Poole-

Stockmeyer and Cuthill-McKee which can reduce sparse matricies, allowing us to go 

from O(n3) which is the general case to O(n2) for gaussian elimination.  It should be 

noted that while performance of these algorithms is generally linear, worst case 

performance can be as bad as not using the algorithm at all. 

 While the idea of using the Voronoi diagram is that its lower block count and 

orthogonality of flow surfaces can reduce computational time, this is counteracted by the 

use of a sparse matrix solver.  Using Voronoi diagrams may or may not increase the 

computational time of the simulation, the advantages are primarily the improved flow 

alignment and improved accuracy through orthogonal flow (over approximations such as 

center-point,) both of which lead to increased accuracy when modeling field 

performance. 
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PROBLEM STATEMENT 

 

 Our goal is to create a gridded structure consisting of Voronoi polygons, with the 

boundaries aligned on our fractures.  For simulation purposes, all polygons must be valid 

Voronoi polygons (due to the assumptions made for orthogonality of flow) and their 

boundaries must be on the fractures, so that when they are simulated, their positions are 

accurately modeled.  Thus, we will be able to build an accurate simulation model of a 

field where fractures dominate the reservoir and produce significant flow anisotropy.  

Higher accuracy in simulation of these fields will allow for optimized production 

techniques and ultimately greater recovery of the oil in place. 

 The generation of proper Voronoi polygons from points has been solved since 

the early 80’s in computational geometry.  For the purposes of using only points to align 

our boundaries, there are three central problems that need to be addressed: 

 The first is how the basic step of how points dictate polygonal edges in the 

Voronoi diagram.  This is a deduction from the nature of the Voronoi and forms the 

basis for our other approaches.  The second deals with the nature of intersections, and 

how to assure that points from a nearby intersection don’t distort it in such a way that it 

does not align correctly.  The third and final issue is a verification process to assure that 

no points distort edges on top of fractures, and to add points to assure that the boundaries 

stay aligned. 

 While much of the work is devoted to explaining how to build a Voronoi 

diagram that can be used with the DFN approach, additional details are included as to 

exactly why a Voronoi diagram should be used and how it can be applied to solve other 

issues that arrive in the course of simulation. 
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METHODOLOGY 

 

1. Building the Voronoi Diagram from Points 

 

 Our first concern is the generation of a Voronoi Diagram from any set of points, 

within a polygonal boundary.  So long as we possess a method of doing so, we can 

produce any grid required so long as the grid points are positioned appropriately to form 

the structures we desire.  To do so, the visibility shortest-path Voronoi diagram 

generation method is utilized. 

 The first step to building the Voronoi diagram is essentially to build a 

constrained Delaunay tessellation, which is defined a triangulation where the 

circumcircle of each triangle does not contain in its interior any other vertex which is 

visible from the vertices of the triangle.18 This concept is demonstrated graphically in 

Figure 6: 

 

 

 

Fig 6 – (A) An invalid Delaunay triangle contains extra points within the 
circumcircle, (B) A valid Delaunay triangle constructed for those same points 

 

Essentially, any point will be connected to the nearest available points to form a 

triangle.  This will give us a series of shortest distances to each point, which will in turn 

be used to produce the Voronoi polygon. 

There are numerous approaches to building the polygon itself, the earliest 

proposed by El Gindy and Avis in 1981.19  From there, the visibility graph is built, 

which can then been solved for the shortest path using any number of methods, such as 

Dijkstra’s.20 
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From a geometric standpoint, the process used is as follows:  We take a system 

which has been gridded up using a Delaunay tessellation, and examine each vertex in 

turn, as each will form the center point of a Voronoi polygon.  Figure 7 shows our 

example series of Delaunay triangles: 

  

 

 

Fig 7 – A single vertex with accompanying Delaunay triangles 

 

Each line segment going into the vertex is bisected and its midpoint, and a 

perpendicular line drawn through it, extended outside the polygon.  Figure 8 shows the 

above example, with the bisecting lines added: 
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Fig 8 – Vertex and triangles with perpendicular lines added 

 

We detect the intersections and truncate the lines at the intersections, which gives 

us the polygon in Figure 9: 

 

 

 

Fig 9 – A finished Voronoi polygon after line truncation 

 

This procedure is repeated for all vertices in our grid, and then extended all 

external intersections to our boundaries to form the boundary polygons shown in Figure 

10. 
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Fig 10 – A bounded Voronoi Diagram, with extended lines dotted 

 

Our technique will not modify existing methods of producing Voronoi polygons 

themselves, but will focus solely on positioning points so as to align the fracture 

boundaries on polygon borders, so that any standard technique for generation can be 

used. 
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2. Aligning Boundaries on Fractures 

 

 With the technique to construct Voronoi polygons from any set of points in a 2D 

space available, it is possible to proceed with the task of placing the points in such a 

manner that they form boundaries along our fractures.  Three basic issues require 

addressing: how to grid individual fracture lines, how to handle intersections, and how to 

verify neighboring points do not disturb boundaries.  

The approach outlined in this paper is two dimensional.  Although it is possible 

to extend the model itself downwards in a straight or curvilinear approach to allow for 

3D modeling, the formulation inherently considers fractures to be two dimensional.  For 

most of our applications, this is a reasonable approximation, and generally our grid 

blocks are the entire layer of interest.  However, this simplification is worth noting, as 

fractures into adjacent water-bearing layers can be a major influence on the production. 

 So while fractures must be constrained in the z direction to the layer of their 

origin, nothing prevents this approach from being compensated with advanced fracture 

modeling techniques of an analytical nature.  This can include the use of analytical 

techniques beyond the simple Parallel Plate model, or simply the inclusion of a 

“roughness” or tortuosity factor to match experimental results.  For the vast majority of 

naturally fractured reservoirs with anisotropic flow, and most correctly contained 

hydraulically fractured reservoirs, the model outlined here will be applicable. 

 Now that we have constrained ourselves to two dimensions, it is possible to 

further abstract our fractures as a series of straight lines.  While any complex curve may 

be reduced into a series of straight lines, it will be important for the purposes of gridding 

that these lines be as straight as possible.  While fractures are rarely truly straight, for the 

purposes of modeling they may be abstracted as such generally due to the scale involved, 

as well as the interest in using as few polygon sides as possible for each block. 

 Once we have a system of straight lines, borders can be aligned on them by 

simply placing points equidistant on each side of the line, as our algorithm to build the 

grid (and the Voronoi diagram, itself, by definition) places borders in the exact middle of 
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two neighboring points.  This can be done rather simply by using the equation of the 

fracture line and taking a line perpendicular to it, then going a set distance down that line 

on either side and placing a point, as demonstrated in Figure 11. 

 

 

 

 

Fig 11 – Adding bracketing points to a fracture to align the Voronoi boundaries 
 

 Generally, an even spacing of points could be used to grid up fractures, or the 

spacing could be tuned to use a certain number of blocks per fracture line.  Alternatively, 

as is detailed towards the later part of the methodology, only the end points can be 

bracketed, and the exact number of points needed to properly represent that fracture 

segment calculated with the algorithm used to assure that no neighboring points interfere 

with the fracture boundary, and added dynamically. 

 There is, however, one more concern, regarding the simulation dynamics.  Since 

we are treating the fracture as a flow block, the easiest approach is to have an entire side 

dedicated to the fracture.  If endpoints are simply placed perpendicular to the end of the 

fracture, this will not happen: 

 

 

Fig 12 – A point configuration where grid blocks have only part of a fracture on the 
resulting sides 

 

 The extra points to the side of Figure 12 merely represent other non-fracture 

related points in our grid; the final grid block could end up containing almost no fracture 
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on its side if the other neighboring point is sufficiently far away.  Rather than attempt to 

come up with a formula for compensating for part block-to-block transfer and part 

block-to-fracture transfer, it is easier to simply adjust the gridding to assure that all 

blocks have sides consisting of either all fracture or no fracture. 

 

 

 
Fig 13 – The fracture from Figure 12, with end point placement modification 

 

 In Figure 13, we have placed four grid points at each end of the fracture.  Both 

sets are equidistant from the actual fracture end point, which results in the block 

boundary being aligned perpendicular to the endpoint.  The obvious drawback to this 

technique is the use of more grid blocks, which will have to be weighed in light of how 

well the actual fracture end points are known, as well as the number of fractures in the 

simulation as a whole. 

 To use the validation technique to assure the optimal amount of grid points, it 

may also be necessary to place the end points very close together, as any point placed 

between them would reintroduce the problem they were placed to solve. 
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3. Handling Fracture Intersections 

 

 The aforementioned technique will work for a reservoir consisting of non-

intersecting fractures, so long as the fractures are either finely gridded or relatively 

widely spaced.  However, this is not useful for the vast majority of fractured reservoirs, 

so it is necessary to extend our technique to intersecting fractures. 

 Using our previous technique, two crossing fractures would, unless by 

coincidence their spacing was perfectly aligned, distort the area of their intersection 

(Figure 14):   

 

                

 

Fig 14 – An unadjusted intersection, and one where points have been adjusted 
 

 To avoid this, the area immediately around the fracture needs to be cleared out, 

and a pair of points set around each line segment involved in the intersection, an equal 

distance away from the intersection itself.   

To facilitate this, all existing fractures should be reduced to a set of line 

segments, split at the intersections.  In this form, rather than analytically comparing lines 

to determine if they intersect, the end points can simply be compared. 

Once all line segments involved have been identified, the distance cleared out 

should be maximized to prevent the formation of very small grid blocks. The distance 

will be necessarily restrained to less than one half of the distance to the nearest 

intersection to prevent overlap and interference.  
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With our intersection cleared of points, we travel a fixed distance down each line 

segment from the intersection, and place a pair of points on each side, to form a polygon 

boundary on the fracture, as shown in Figure 15. 

 

 

 

Fig 15 – A 90o intersection with intersection points present 

 

 This solution will work for all intersections, regardless of the number of 

intersecting points or size of the angles between the intersecting lines, however, it is a 

non-ideal solution, in that we are creating two grid blocks between each set of line 

segments when we should be producing only one.  Furthermore, for low angle 

intersections, this will require a truly huge number of points to preserve the boundary 

angles.  Therefore, an optimized solution is suggested to produce a sparser grid in the 

event of these types of intersections. 
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4. Low Angle Intersection Optimization 

  

 To produce a single block with sides along each of the two lines segments, we 

need to place a single point between each set of segments in such a way that it is 

equidistant to neighboring points in our intersection on a perpendicular line. 

 We can place all the points by proceeding a set distance down each line segment, 

and drawing a perpendicular line through each of them, as demonstrated in Figure 16.  

These perpendicular lines will intersect, and the intersection point will be where we 

place our first point.  Although it is possible to get an intersection with angles larger than 

90o, the distance at which we must place the points makes it undesirable for use. 

 

 

 

Fig 16 – Perpendicular lines are used to create an intersection point for properly 
aligning gridding for an acute angle 

 

 Once the point has been placed, the distance from the intersection point to each 

line segment should be measured, and another point placed an equal distance down the 

perpendicular line, so that the grid borders will align perfectly with the line segments.  

This approach can be continued around the intersection, by recycling the first line to our 

newly placed point (which is now the middle point of the line segments were are 

examining) and taking a line with the perpendicular slope of the neighboring line 

segment through the intersection point, generating a new point with each angle, until we 

come full circle around the intersection, as demonstrated in Figure 17: 

 



24 

 

 

Fig 17 – The technique expanded to grid around the intersection, with an 
intersection point for each angle 

 

 This process will have closely mimicked the procedure outlined earlier in which 

a Voronoi polygon was built from a Delaunay tessellation, with the intersection as the 

middle vertex of the neighboring triangles.  However, there are important differences. In 

the procedure, rather than the midpoint of the line segments, an arbitrary (and generally 

small) distance was chosen as the starting point.   Additionally, the intersecting line must 

be placed so as to go through the later points rather than forming them (Figure 18):  

 

 

Fig 18 – A finished intersection using this technique, with and without the lines 
 

This technique only works for angles that are relatively similar.  Figure 19 

demonstrates a case in dissimilar angles cause the technique to fail: 

 

 



25 

 

 

Fig 19 – An intersection with obtuse angles constructed using the low angle 
technique, dotted lines show where the Voronoi boundaries would fall if this 

technique was attempted with an obtuse angle 
 

In that case, it will be necessary to simply place a point on either side of the 

obtuse angle, in essence “skipping” that section and using an extra grid block to properly 

align the sides.  An example of that is shown in Figure 20, with the added points used to 

compensate for the obtuse angle shown with a hollow center. 

 

 

Fig 20 – Handling obtuse intersections, with obtuse angles “skipped” 
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Furthermore, we are only guaranteed a properly gridded intersection using this 

method if the intersection is symmetrical.  This isn’t as critical a restriction as one might 

think, as fracture intersections are often symmetrical, having formed perpendicular to 

stresses which are relatively low angles apart. However, it means that this technique 

cannot be applied to branching intersections or asymmetrical fracture sources.  Thus, 

most of our intersections still must use the earlier case, although this technique will find 

particular use in addressing low angle intersections or kinks in existing fractures. 

  Calculating the distance to clear from the center of the intersection, the worst-

case functioning scenario will be √2 times the distance down the line you use.  The does 

mean this technique uses more space compared to the two-dot bracketing method, which 

can be an issue when there are multiple fracture intersections in very close proximity. 

While the two-dot bracketing method does provide a far more useful general 

solution, simulation time will be almost entirely a function of the node points, and thus 

extra diligence in constructing the grid mesh is desirable, as that operation need only be 

performed a small number of times (or only once, if no modification is desired) 

compared to the possibility of hundreds of runs of a finished simulation.   Finally, 

smaller blocks can lead to convergence problems, providing a final justification for the 

increased complexity of adding a secondary intersection method. 
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5. Evaluating Proximity Issues 

 

 Now that intersections and basic gridding have been handled, one more issue 

requires addressing, namely how to make sure that the points placed so far are not 

distorting the boundaries that the simulation will need.  When two gridded fractures are 

close to each other, it is possible that the points on one distort the boundary on the other 

as shown in Figure 21: 

 

Fig 21 – Interference of a nearby point on Voronoi boundaries as a function of 
proximity, from upper left to bottom right 

 

 While many of these problems occur in intersection situations, extending the 

radius of the intersection points to encompass the problem area is often impractical due 

to fracture spacing or the need for high resolution in the area in question.  Increasing the 

number of points around each fracture can also be prohibitive, if done across the board.  

Thus, we need a method of adding grid points only in areas where it is necessary to 

preserve the gridding structure. 
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 At this point, the implementation of the data structure tracking our points 

becomes important.  Arrays are generally used due to a fast O(1) look-up time for any 

particular value.  However, insertion can be problematic as it generally requires that 

either our array be unsorted (in which case insertion is O(1)) or that it be resorted, which 

is O(n log n) in the case of an optimal sorting algorithm.  For the purposes of 

constructing the point network, it is suggested that a linked list be used, which allows for 

insertion at any point, which is finally cast to an array when we are finished with our 

grid construction. 

 Maintaining a “sorted” list is important, so as to know which points are adjacent 

to each other and assigned to be bracketing points on which fracture line, in order to 

verify all points are compliant.  This may be done either by adding metadata to the point, 

identifying the line the point is assigned to as well as its ordinal position in placement, or 

simply adding the points to the storage structure in a known order (although this later 

case requires an ordered structure at all times.) 

 As this process should be performed after we’ve done all other modifications to 

our grid, we will have points placed to manage intersections.  These points also need to 

be considered, and the two-points-per-line-segment technique is easily incorporated into 

our scheme as simply another set of bracketing points ending the line segment.  The 

single-point-per-angle scheme may be also be included in a similar manner. 

 Our process for grid verification is thus: all fractures have already been reduced 

to straight line segments, which either do not intersect other segments or terminate at 

fracture intersections.  On each side of this fracture are a set of points running down it to 

align the grid.  In the case of line segments that end in fractures, the final points will 

consist of two of the fracture bracketing points. 

 For each fracture segment in our grid, all points must be verified against all other 

fractures.  The basic comparison is shown in Figure 22, and will be between the points 

on the nearest side of each line segment in question, and each point on our segment will 

be compared to each two adjacent points on the other, running down the length of the 

segment: 
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Fig 22 – One set of comparisons between two line segments, as each point in one 
side compares to all neighboring pairs on the other 

 

 While this may be sufficient for most cases, when the line segments in question 

are nearly perpendicular, the end points of each side of line segment may need to be 

included, regardless of which side is chosen for the comparison (Figure 23.)  Comparing 

bracketed points on one line segment to those on the other, and vice versa is generally 

sufficient to determine which sides need examining, although a slope check can help 

verify which end points do or do not need to be included. 

 

 

 

Fig 23 – An example of a case where both endpoints must be evaluated 

  

 The distance we must first gauge is that between the closest point on the line to 

our point of interest.  This can be found by running a line with the perpendicular slope of 

our line through our point of interest until it intersects the line.  The intersection point 

will be our closest point (Figure 24.) 
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Fig 24 – Cases where the intersection point will be the closest point, and cases 
where the end point will be the closest point 

 

 There are geometric equations available to determine the intersection point of 

two lines, including whether or not they intersect at all.  Paul Borke, from Swinburne 

University Center details the following equations21:  

 

………………..…………………(1) 

 

 Either of the above coefficients can be plugged into the following equations to 

supply the X and Y coordinate of the intersection point, as follows: 

 

     x = x1 + ua (x2-x1)……………………………………………………………..….(2) 

 

     y = y1 + ua (y2 - y1)…………………………………………………………..…...(3) 

 

 If either of the two coefficients are less than zero or greater than one, then there 

is no intersection point.  In that case, one of our endpoints will be the point on the line 

closest to our point of interest.  When that occurs, the point of interest will not exhibit a 

distortion of the fracture boundary, and we will not have to examine that case for the 

purpose of verifying our grid. 
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Once we have the point of intersection, the distance to both the bracketing points 

on the same line and the point of interest can be evaluated (Figure 25.)  If either of the 

distances to the bracketing points is farther than the distance to the point of interest 

(Figure 26,) an additional set of bracketing points will need to be placed. 

 

 

 

Fig 25 – The distances from each point to the intersection point (hollow) are shown 
as dashed lines, which the distance from the point of interest is a solid line 

 

 

Fig 26 – A point triangle that doesn’t require correction and a second set that does 

 

 Provided that we used the line between the bracketing points rather than the true 

line for our examination, our extra pair can consist of our intersection point, and another 

placed by taking a the perpendicular slope of our line, and proceeding from our 

intersection point twice the bracketing distance, so as to place a point balanced on the 

other side of our fracture (Figure 27): 

 

 

Fig 27 – Placement of a new point set to correct a fracture boundary 

 

 However, placing the new point at the intersection will only solve our problems 

if the slopes of the two line segments are very close, as the new point is constructed 
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perpendicular to the first line, not necessarily the second (Figure 28.)  Especially with 

low angles, this can cause a great number of added points.   

 

 

 

 

 

Fig 28 – Different line slopes result in a point which is not perpendicular to the 
intersection 

 

 What has occurred in the figure above is that the point placed is placed using the 

slope of the second line (which is necessary, to assure that the boundaries are aligned on 

our fracture line.)  Thus, we have formed a new triangle for evaluation where it’s 

possible it still fails validation.  If this is the case, our algorithm would try to go back 

and place a point on top of the one it just placed. 

A more general solution is to simply add another point equidistant from the two 

points (Figure 29.)  While this may result in a non-ideal solution for line segments that 

are parallel or near parallel, it allows us to evaluate all line segments without worrying 

about special cases, and avoid the error outlined previously.  

 

 

Fig 29 – Placement of a new point equidistant to our two trial points 

 

 We must insert the new point into our list of points so as to maintain the order of 

the examination, as the points in order on the line segment may be used later in the 

process for evaluating the validity of other nearby line segment’s bracketing points.  
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Either the point is dynamically inserted if we are using a linked list or other dynamic 

data structure, or the point is inserted in the end of our array and the array resorted to 

assure proper ordering.  Fortunately, as we already have a mostly ordered array, the 

sorting process can take place in O(n) time. 

 Assigning points to their line for the purposes of use in this method is simple for 

the two-point-per-segment intersection method, as each line segment will get two points, 

one on each side.  The greater difficulty comes from using the single-point method, 

which requires a point to share two line segments, for the purpose of comparison.  An 

example of situation in which the line must be considered is shown below (Figure 30): 

 

Fig 30 – An example of a case requiring mid-point examination due to misaligned 
bracketing points in close proximity 

 

 Rather than bracketing fractures with points at a set interval, this technique can 

be used to add the optimum number of points.  To do this, each line segment is bracketed 

with only 4 points, one set at the each end point (or as mentioned earlier, 8 points to 

guarantee all sides are 100% fracture.) Then intersections are dealt with, and the 

verification procedure is run to place only those points which are needed.   

 If points have been be added to lines that have already been evaluated, then were 

must either back the entire procedure up, or the procedure should be run iteratively until 

no further points need to be added.  It should be noted that only the points that were 

added in last run need be checked against all others for verification purposes, hence run 

time will decrease as the process iterates. 

 The choice between the fixed interval and the automatic generation is generally 

one of resolution.  If a desired spacing is already known, or the grid is full or expected to 

be filled with many non-fracture points, a fixed spacing technique supplemented with the 

evaluation technique may be appropriate.  From a strict standpoint of minimizing run-
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time, only the end point should be bracketed and all other points added via the method 

described, so as to guarantee the bare minimum number of points placed and therefore 

the minimum number of grid blocks. 

 The operation described requires that roughly half of the points be compared to 

half of the points, each, giving the operation an average time of O(n2).  This is not 

influenced by the choice between an array or a linked list implementation, so long as 

both are handled well, assuring that a pointers are kept to current locations in the list to 

prevent walking through it excessively, or in the case of arrays, that they are sorted with 

an algorithm that gets O(n) performance for a mostly sorted array.  This is, of course, 

assuming that the number of points added is relatively small compared to the total 

number of points, an assumption that may not be true in the case of using this technique 

to place points optimally, rather than a fix-distance bracketing solution. 

 User-added points are somewhat more complicated than in traditional models, as 

we must verify that they don’t move the Voronoi boundaries off of the fractures.  As 

such, following point insertion we must run the evaluation technique, comparing that 

added point to the nearest side of all fractures to insure that boundaries are valid, and 

adding points as necessary.  The user would also need to be constrained so that they 

could not place points closer to the fractures than the bracketing distance, which would 

be impossible for even the aforementioned evaluation technique to fix, although in 

practice a relatively small bracketing distance could make such an event unlikely. 

 The user has a definite, legitimate need to place points, either to increase 

resolution in an area, or for the purposes of grid alignment and flow.  However, in part 

due to the nature of the automated gridding, such techniques will be somewhat limited 

by the approach we have chosen. 
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6. Using Real World Data 

 

 Once we have all the tools required to build the grid, we need to import actual 

field data in the simulator.  Traditional maps for features such as porosity, permeability 

and other reservoir properties can be imported in the usual manner, with properties 

averaged across grid areas.  This averaging process is a little more complex for Voronoi 

polygons than simpler block forms, however, the formula does not add a great deal of 

computational complexity to the task.22 

The real notable difference in the importation task comes with the inclusion 

of the fracture set.  For the purposes of demonstration, a sample outcrop study will be 

used (Figure 31): 

 

Fig 31 – An outcrop study, with the portion to be gridded circled 23 

 

For clarity, and due to the resolution limitations of printed medium, only the  

left section of the study was selected.  The fracture or pseudofracture data to be analyzed 

must be imported in line form.  This can involve either a vector data format, such as 
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SVG, a standard proposed by the World Wide Web Consortium,24 in which case only 

interpretation of the format is needed, or it can involve more traditional raster graphics 

formats such a the commonly used JPEG and GIF standards.  In the case of the later, it is 

necessary to use line detection methods to find the end points for each line; however, 

such techniques are beyond the scope of this paper.  Commercial applications are 

available which will perform this conversion, allowing the matter to be left to external 

programs, although this does add an extra step for the user to import the data.  For the 

purposes of expediency, this example was vectorized by hand. 

 The transformation of our above data sample to a vector form usable in the 

simulator is presented here (Figure 32): 

 

 

Fig 32 – The fractures in vector form, as imported into the simulator 

 

In a real simulation run, the outlying areas away from the fractures would be  

gridded so as to prevent huge blocks.  A single point was placed on the left hand side to 

demonstrate this, but otherwise, the only points placed are to preserve fracture 

boundaries.  All the aforementioned techniques for aligning the Voronoi grid are used 
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here, with the exception of the low angle intersection technique, which doesn’t see 

application due to the nature of the fracture pattern, which sees mainly aligned fractures 

intersected by perpendicular fractures, but no low angle intersections.  This results in the 

finished grid seen below (Figure 33): 

 

 

Fig 33 – The gridded version of the outcrop study 

 

The gridding around the fractures is auto-generated from the points and fractures 

supplied.  This leaves the actual grid itself as unalterable directly by the user, although it 

can be rebuilt after the addition of user-placed points.  This is a requirement to maintain 

true Voronoi polygons so the assumptions made by our flow equations continue to hold.  

In the areas beyond the fractures any traditional block pattern could be used, and 

would be desirable to lower the number of blocks with large numbers of sides, and thus 

reduce matrix size.  This is also easily automated, allowing for the generation of a 

complete grid with only a suggested block size, and any user-desired touch-ups around 

areas of interest. 
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SUMMARY  

 

 The techniques discussed in the Methodology section outlines what is required to 

build a properly-aligned Voronoi diagram so that DFN techniques can be used.  An 

outline of the full procedure to be utilized, from start to finish, is as follows. 

 Once a fracture set has been imported or created as a set of lines, it is necessary 

to identify intersections and break the lines into segments.  This will facilitate the 

handling of intersections as well as the use of points to delineate each fracture. This is 

necessary because many of the techniques mentioned earlier assume we are dealing with 

line segments that intersect only at the end points. 

 To break each line into a set of line segments, Equations 1 through 3 can detect 

an intersection between any two lines.  A pair of nested loops can identify all possible 

intersections, in the following form: 

 

For LoopVariableA = 1 to (NumberOfLines - 1) 

 For LoopVariableB = LoopVariableA to NumberofLines 

  Call Findintersection() 

 Next LoopVariableB 

Next LoopVariableA 

 

 This yields an O(n2) time for the operation, which is a one-time cost.  Each line 

should be split at each intersection, dividing into two line segments, each with one set of 

the previous lines end points and sharing the common intersection point as their new 

endpoints. Intersections that are in fact the end points of the line segments in question 

should be ignored for the purposes of splitting, as they indicate a successful splitting that 

has already taken place, or a situation in which splitting was not necessary to begin with.  

 To avoid the issue of splitting a line incorrectly, all the lines should be 

discretized into line segments to begin with, and only the current line segment used for 

comparisons, rather than the original line.  This implies the NumberofLines variable used 
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above actually represents the number of current line segments, not the number of lines 

we begin with.  This complicates the formulation slightly, as NumberOfLines will not be 

constant for the duration of the loops above.  Intersections should be cached at this stage 

for use in the intersection handling routines. 

 At this point, every line segment should be assigned its bracketing points, which 

can either be only two at each end if the earlier method to use minimal points is be 

employed, or a set distance or number of points per line can be used.  The routine will 

consist of going a set distance down the line for each set of points, and using the 

technique mentioned earlier to place one on each side.  

 Once the bracketing points have been placed, it will be time to handle 

intersections.  The distance at which to set intersection points should be determined, 

generally with a set value reflective of the desired gridding resolution for the project as 

whole.  However, intersections in close proximity will require precautions to assure the 

added points for each don't overlap or interfere.  Thus, each intersection should be 

checked against each other one using a simple distance comparison, with a loop structure 

similar to the one outlined for identifying line segments, to assure all possible cases are 

compared.  If two of the intersections are closer than the desired value, a value of 

slightly less than half the distance between them should be used for each. 

 Reducing the lines to line segments that only intersect at end points allows us to 

quickly determine the exact number of line segments (as well as which line segments) 

involved in an intersection by comparison of the end points.  Thus, a quick linear trip 

through the list of line segments will yield the number and identities of all line segments 

involved and required for the use of intersection techniques.  

 The intersection technique used should default to the first technique (two points 

per line segment) discussed, with a check for the applicability of the second technique 

which uses fewer grid blocks.  The two basic tests for this consist of verifying that at 

least two line segments involved in the intersection possess the same slope, and that all 

angles involved are less than 90 degrees.  Additionally, it may be desirable, in the case 
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of only two line segments forming an acute angle, to use the simple version of the 

second technique, which would require a simple line segment check and an angle check. 

 Before any points are placed to form the intersection, all points within the radius 

where we are to place our points need to be removed, whether they were placed there by 

the user or via the bracketing technique.  If arrays have been used for tracking the points, 

it may be convenient to remove all points for all intersections, and then reorder the array 

to avoid the cost of deleting points at each operation. 

 Once intersection points have been placed for all intersections, it is time to verify 

the grid, to assure that no points are interfering with the line boundaries.  Technically, 

this technique need not be applied until the finalization process, when the user decides to 

save or utilize the finished grid.  However, as a matter of good practice, it should be 

applied immediately, so that the user has an accurate picture of what the grid will look 

like. 

 The addition of fractures after the original grid operation has been performed will 

force at least a partial repetition of the task above, especially if the new fractures 

intersect old and previously gridded fractures.  Validation of user added points can also 

be delayed, however, it will probably be necessary for the user to see if his newly-added 

point has caused the addition of several more points along fractures to maintain grid 

integrity.  The user must also be prohibited from adding a point closer to a fracture than 

the distance used for offsetting the bracketing points from the fracture line, as it would 

be impossible for the verification method to guarantee the grid boundaries' alignment in 

that case.  If the user is to be permitted to carry out such an action, it will be necessary to 

re-grid at least the fracture he is distorting, utilizing the new offset distance. 

 Similar restrictions apply to the user's ability to add points near to an intersection.  

In that case, the existing intersection points must be removed and the intersection redone 

with the tighter radius.  The relatively large amount of verification required for each 

user-added point coupled with the restrictions on adding points in areas of interest means 

that the use of this technique favors automatically generated grids.  Rather than bother 

the user with the frustration of attempting to add a single point and grid block only to 
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find the verification technique adds several, the automatic generation of the grid even in 

areas away from the fracture is desirable.  A completely or near completely automatic 

grid generation procedure also allows for the reduction of Voronoi blocks with excessive 

numbers of sides, which could cause problems with the matrix solver, and removes a 

great deal of complication from the concern of the engineer using it.  
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CONCLUSION 

 

 The techniques described in this thesis allow for the construction of a set of grid 

blocks ready for simulation using either a black-oil or compositional simulator, with the 

standard flow orthogonal flow equations.  From a simulation standpoint, once the grid is 

built, the only real adaptation needed to the equations used for conventional grids is the 

adjusted matrix solver. 

 Any standard Voronoi generation technique can be used, as only the position and 

number of grid block points is altered.  The techniques themselves require only 

relatively simple techniques of computational geometry and allow for the production of 

a grid that helps to maximize accuracy and minimize simulation time.  While building a 

dynamic grid can be more computationally intensive to build than a standard grid, grid 

building is by nature a much faster operation than the numeric simulations that follow, 

which may use the same grid for countless runs of the actual simulation. 

 The DFN technique is still in its infancy, due to the relatively recent introduction 

of better fracture data sources as well as increasing computational power. Given the 

difficulty of simulating individual fractures for fracture intensive reservoirs with little 

anisotropy, it is likely that variations of the Dual Porosity model will be used even if 

DFN is fully adopted.  Indeed, there’s no reason that both techniques can not be used, 

with only the major fractures being modeled, or specific flow affecting fracture groups 

being modeled as discrete pseudofractures. 

 Experimental confirmation of the DFN idea is already underway using the CT 

scanner to analyze flow through a core with a single discrete fracture.  Once 

experimental results produce confirmation of the technique and an increased 

understanding of fractured flow, the use of DFN will expand to larger studies, and in 

time, take its place in the numerical simulation field as new tool for increasing 

simulation accuracy.  Fractured reservoirs have long been a source of uncertainty when 

it comes to forecasting future production, and this technique, coupled with improved 
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imaging of fractures and analysis thereof will help reduce that uncertainty, to the benefit 

of operators of many fractured reservoirs. 

 The Voronoi grid provides an improved platform over the Delaunay tessellation, 

with low block count and greater versatility for aligning itself with directional flow.  

While adoption of Voronoi polygons for simulation has been slow due to the rather 

fragmentary nature of the technique’s adoption by the sciences, new advances in both 

the computational formulation and sparse matrix solvers and matrix reducers can now 

bring this technique into the repertoire of the reservoir engineer. 
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APPENDIX I 

 

 This appendix presents a demonstration of each technique at various angles, to 

show that computational methods to produce the desired results.  All grids were 

produced using the SmartSim gridding program, parts of which are provided in code in 

Appendix II. 

 

 

 

 

 

 

 

Two fractures intersecting at 300, single point technique 
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Two fractures intersecting at 450, single point technique 

 

 

Two fractures intersecting at 900, single point technique 
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Two fractures intersecting at 300, multi-point technique 

 

 

Two intersecting fractures at 450, multi-point technique 
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Two intersecting fractures at 900, multi-point technique 

 

 

Lines in close proximity, without the use of the validation technique 
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The same fractures, after use of the validation technique 
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APPENDIX II 

 

 The code which performs the primary gridding task is broken into three 

subroutines.  The primary routine, Intersections(), parses the fractures into line segments, 

determines intersections, and then passes intersection control to BuildMultiCircle(), 

which then passes it further to LowAngleCircle() if a two line intersection with a small 

angle is detected. 

 Once control has resumed upon return from the circle drawing procedures, 

Intersections() performs grid validation and a quick check to assure no duplicate points 

have been placed before returning. 

 

Sub Intersections() 
'This subroutine handles all the automatic grid generation work with the exception of the actual 
'drawing of voronoi polygons 
Dim A, B, C, F As Integer, G As Integer, H As Integer, i As Integer, j As Long 
Dim D, E, RunningX As Double, RunningY As Double, PointsEachSide As Integer, AddedON As Integer 
Dim TempS As String, Inversion As Boolean 
Dim TempX As Double, TempY As Double, OSlope As Double, FinalX As Double, FinalY As Double 
Dim SideArr(4, 100) As Integer 'Stores indexes into our point arrays for each side 
Dim SideInn(4) As Integer 'Index 
 
PointsEachSide = 3 'essentially a constant 
 
'First, find all the intersections 
 
C = 0 
For A = 0 To (FLine - 2) 
    For B = A To (FLine - 1) 
        Call IntersectPoint(A, B, RunningX, RunningY) 
    'Now we need to install modification for dealing with intersections 
    If RunningX <> -65535 Then 
        G = 0 
        For F = 1 To C 
            If (Abs(InterArr(F, 1) - RunningX) < 0.001) And (Abs(InterArr(F, 2) - RunningY) < 0.001) Then G = 1 
        Next F 
        If G = 0 Then 'Now we're sure it's not a dupe. 
            C = C + 1 
            InterArr(C, 1) = RunningX: InterArr(C, 2) = RunningY 
            InterArr(C, 3) = A: InterArr(C, 4) = B 
        End If 
    End If 
    If C >= 1000 Then 'Too many intersections 
        MsgBox ("Too many intersections (> 1000)") 
        B = FLine - 1 'End the loops 
        A = FLine - 2 
    End If 
    Next B 
Next A 
 
'Now, break the lines down into line segments 
 
B = 0 
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For A = 0 To (FLine - 1) 
    'Don't add lines that aren't real 
    If (Form1.FracLine(A).x1 <> Form1.FracLine(A).x2) Or (Form1.FracLine(A).y1 <> Form1.FracLine(A).y2) Then 
        B = B + 1 
        LSegment(B, 1) = Form1.FracLine(A).x1: LSegment(B, 2) = Form1.FracLine(A).y1 
        LSegment(B, 3) = Form1.FracLine(A).x2: LSegment(B, 4) = Form1.FracLine(A).y2 
        'LSegment(B, 5) = A 'Parent Line 
    End If 
Next A 
 
'All lines loaded, now start splitting them. 
 
'Note, this assumes there are no duped entries in Interarr 
'If there are, we could end up with cloned line segments. 
 
For A = 1 To C 'Examine each intersection 
            H = B 'B will be altered 
            For G = 1 To H 
                D = Point2LineB(InterArr(A, 1), InterArr(A, 2), LSegment(G, 1), LSegment(G, 2), LSegment(G, 3), LSegment(G, 4)) 
                If (D < 0.00001) And (CheckLine(G, InterArr(A, 1), InterArr(A, 2)) = False) Then 
                        B = B + 1 
                        LSegment(B, 1) = LSegment(G, 1): LSegment(B, 2) = LSegment(G, 2) 
                        LSegment(B, 3) = InterArr(A, 1): LSegment(B, 4) = InterArr(A, 2) 
                        'Now, alter the original entry. 
                        LSegment(G, 1) = InterArr(A, 1): LSegment(G, 2) = InterArr(A, 2)                         
                        'Leave the x2 and y2 in place. 
                    End If 
            Next G 
Next A 
                           
LSNum = B 
 
Thickness = 0.06 
CurrentLine = 0 'Start Up 
 
PointCount = LSNum * PointsEachSide * 2 
 
'First pass done, number in PointCount 
 
OldNNN = NNN 
j = NNN + PointCount 'Allocate space for new points 
If j > ArraySize Then Call ReAllocArray(j) 
 
NNN = j 
 
CurrentLine = 1 
 
While (CurrentLine <= LSNum) 
    OrigThickness = dis1(LSegment(CurrentLine, 1), LSegment(CurrentLine, 2), LSegment(CurrentLine, 3), LSegment(CurrentLine, 
4)) 
    spacing = OrigThickness / (PointsEachSide - 1) 'Each line should have 6 points on each side 
    'Evaluate all line segments 
    If (LSegment(CurrentLine, 1) <> LSegment(CurrentLine, 3)) Or (LSegment(CurrentLine, 2) <> LSegment(CurrentLine, 4)) Then 
        'It's not a point, rather than a line 
        LLength = OrigThickness  
        AmountDone = 0 
        If LLength >= spacing Then 
            'At least one set of points to place. 
            OpNumber = Round(LLength / spacing, 0) + 1 
            For LoopVar = 1 To OpNumber 
                Distance = spacing 
                Call LineOperation(LSegment(CurrentLine, 1), LSegment(CurrentLine, 2), LSegment(CurrentLine, 3), 
LSegment(CurrentLine, 4), AmountDone, TempX, TempY) 
                'TempX:TempY holds a point, spaced on the fracture, but we want it perpendicular. 
                If Abs(LSegment(CurrentLine, 1) - LSegment(CurrentLine, 3)) < 0.001 Then 
                        OSlope = -65535 
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                        Else 
                            If Abs(LSegment(CurrentLine, 2) - LSegment(CurrentLine, 4)) < 0.1 Then 
                                OSlope = 0 
                                Else 
                                    OSlope = (LSegment(CurrentLine, 4) - LSegment(CurrentLine, 2)) / (LSegment(CurrentLine, 3) - 
LSegment(CurrentLine, 1)) 
                            End If 
                    End If 
                Call FinalPoint(TempX, TempY, Thickness, OSlope, FinalX, FinalY, False) 
                'Now we have the FinalX:FinalY of our new point, but is it valid? 
                    aX(OldNNN) = FinalX: aY(OldNNN) = FinalY 
                    Xorg(OldNNN) = FinalX: Yorg(OldNNN) = FinalY 
                    ad(OldNNN) = dis1(0, 0, FinalX, FinalY) 
                    AO(OldNNN, 1) = CurrentLine: AO(OldNNN, 2) = 0 
                    Form1.Picture1.Circle (aX(OldNNN), aY(OldNNN)), 0.2, RGB(255, 255, 255) 
                    OldNNN = OldNNN + 1 
 
                'Second point on other side 
                Call FinalPoint(TempX, TempY, Thickness, OSlope, FinalX, FinalY, True) 
                    aX(OldNNN) = FinalX: aY(OldNNN) = FinalY 
                    Xorg(OldNNN) = FinalX: Yorg(OldNNN) = FinalY 
                    ad(OldNNN) = dis1(0, 0, FinalX, FinalY) 
                    AO(OldNNN, 1) = CurrentLine * -1 'neg number, to show it is on the other side 
                    AO(OldNNN, 2) = 0 
 
                    Form1.Picture1.Circle (aX(OldNNN), aY(OldNNN)), 0.2, RGB(255, 255, 255) 
                    OldNNN = OldNNN + 1 
 
                AmountDone = AmountDone + spacing 
                If AmountDone > LLength Then AmountDone = LLength 
            Next 'Done with this segment 
        End If 
    End If 
    CurrentLine = CurrentLine + 1 'Do for all segments of the fracture 
Wend 'End of While 
 
'MsgBox (C) 
 
D = 10000 
For F = 1 To (C - 1) 
    For E = (F + 1) To C 
        H = dis1(InterArr(F, 1), InterArr(F, 2), InterArr(E, 1), InterArr(E, 2)) 
    If (H < D) And (H > 0) Then D = H 
    Next E 
Next F 
 
'Technically, we should make sure this isn't beyond the length of any line segment 
If (D = 0) Or (D > 6) Then D = 6 
For F = 1 To C 
    Call BuildMultiCircle(InterArr(F, 1), InterArr(F, 2), InterArr(F, 3), InterArr(F, 4), D) 'Evaluate all intersection points 
Next F 
 
AddedON = 1 'This is the validation trigger, and is enabled, at the moment. 
 
While ((AddedON > 0) And (LSNum > 1)) 
 
AddedON = 0 
'Now, we need to verify that the spacing is correct 
 
For A = 1 To 100 
    SideArr(1, A) = 0: SideArr(2, A) = 0: SideArr(3, A) = 0: SideArr(4, A) = 0 
Next A 
 
For A = 1 To LSNum 
    'Evaluate every fracture 
    SideInn(1) = 0: SideInn(2) = 0 
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    For B = 1 To LSNum '(A + 1) To LSNum 
        If (A <> B) Then 
 
        'Build SideArr 
        For F = 1 To 4 
            SideInn(F) = 0 
        Next F 
         
        For C = 0 To (NNN - 1) 
            D = 0 
            If (AO(C, 1) = A) Then D = 1 
            If (AO(C, 1) = A * -1) Then D = 2 
            If (AO(C, 1) = B) Then D = 3 
            If (AO(C, 1) = B * -1) Then D = 4 
            If D > 0 Then 
                SideInn(D) = SideInn(D) + 1 
                SideArr(D, SideInn(D)) = C 
            End If 
             
            D = 0 
            If (AO(C, 2) = A) Then D = 1 
            If (AO(C, 2) = A * -1) Then D = 2 
            If (AO(C, 2) = B) Then D = 3 
            If (AO(C, 2) = B * -1) Then D = 4 
            If AO(C, 1) = AO(C, 2) Then D = 0 'Do not make duplicates! 
            If D > 0 Then 
                SideInn(D) = SideInn(D) + 1 
                SideArr(D, SideInn(D)) = C 
            End If 
        Next C 
         
        'Now we have all the relevant points for the other line 
        'Here we take advantage of the fact that points were added in order 
        'Thus, the first and second points on each side are adjacent in the array 
         
        RunningX = dis1(aX(SideArr(1, 1)), aY(SideArr(1, 1)), aX(SideArr(3, 1)), aY(SideArr(3, 1))) 
        RunningY = dis1(aX(SideArr(2, 1)), aY(SideArr(2, 1)), aX(SideArr(3, 1)), aY(SideArr(3, 1))) 
        If (RunningX < RunningY) Then G = 1 Else G = 2 'Which side we'll be using 
        RunningX = dis1(aX(SideArr(3, 1)), aY(SideArr(3, 1)), aX(SideArr(G, 1)), aY(SideArr(G, 1))) 
        RunningY = dis1(aX(SideArr(4, 1)), aY(SideArr(4, 1)), aX(SideArr(G, 1)), aY(SideArr(G, 1))) 
        If (RunningX < RunningY) Then H = 3 Else H = 4 'The same 
        Call SortPoints(SideInn(), SideArr()) 'Sort the points 
        For C = 1 To SideInn(G) 
            'For each point on one of our lines 
            For D = 1 To (SideInn(H) - 1) 'Note: This technique assumes points are in order 
                'For each point on the opposing line 
                'Slope between the two points on the line 
                'RunningX:RunningY will be one endpoint, FinalX:FinalY the other 
                OSlope = 1 
                If aY(SideArr(H, D)) - aY(SideArr(H, D + 1)) = 0 Then 
                    'Horz line, perpendicular will be vertical 
                    RunningX = aX(SideArr(G, C)): FinalX = aX(SideArr(G, C)) 
                    RunningY = aY(SideArr(G, C)) + 10: FinalY = aY(SideArr(G, C)) - 10 
                    OSlope = 0 
                End If 
                If aX(SideArr(H, D)) - aX(SideArr(H, D + 1)) = 0 Then 
                    'Vert line, perpendicular will be horizontal 
                    RunningY = aY(SideArr(G, C)): FinalY = aY(SideArr(G, C)) 
                    RunningX = aX(SideArr(G, C)) + 10: FinalX = aX(SideArr(G, C)) - 10 
                    OSlope = 0 
                End If 
                If OSlope <> 0 Then 
                    RunningX = aX(SideArr(G, C)) + 10 
                    FinalX = aX(SideArr(G, C)) - 10 
                    OSlope = (aY(SideArr(H, D)) - aY(SideArr(H, D + 1))) / (aX(SideArr(H, D)) - aX(SideArr(H, D + 1))) 
                    'Perpendicular slope 
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                    OSlope = -1 / OSlope 
                    'Now, we need to make a line through our 3rd point 
                    RunningY = OSlope * (RunningX - aX(SideArr(G, C))) + aY(SideArr(G, C)) 
                    FinalY = OSlope * (FinalX - aX(SideArr(G, C))) + aY(SideArr(G, C)) 
                End If 
                                                                 
                Call IntersectPointB(FinalX, FinalY, RunningX, RunningY, aX(SideArr(H, D)), aY(SideArr(H, D)), aX(SideArr(H, D + 
1)), aY(SideArr(H, D + 1)), TempX, TempY) 
                'Now TempX:TempY should hold the closet point on our line to the 3rd point 
                'Distance to end point #1 
                RunningX = dis1(aX(SideArr(G, C)), aY(SideArr(G, C)), aX(SideArr(H, D)), aY(SideArr(H, D))) 
                'Distance to end point #2 
                RunningY = dis1(aX(SideArr(G, C)), aY(SideArr(G, C)), aX(SideArr(H, D + 1)), aY(SideArr(H, D + 1))) 
                'Distance to "Closest" point 
                FinalX = dis1(aX(SideArr(G, C)), aY(SideArr(G, C)), TempX, TempY) 
                If (TempX <> -65535) And (FinalX < RunningX) And (FinalX < RunningY) Then   
                    'There is an intersection 
                    'Now, we'll need three temp variables to evaluate if we have a problem or not. 
                    FinalX = dis1(aX(SideArr(G, C)), aY(SideArr(G, C)), TempX, TempY) 'From point to middle 
                    RunningY = dis1(aX(SideArr(H, D)), aY(SideArr(H, D)), TempX, TempY) 'From one side 
                    RunningX = dis1(aX(SideArr(H, D + 1)), aY(SideArr(H, D + 1)), TempX, TempY) 'The other 
                    If ((FinalX < RunningY) Or (FinalX < RunningX)) And (RunningX > 0.1) And (RunningY > 0.1) Then 
                        'We need to take corrective action 
                        TempS = Str(RunningX) + "," + Str(RunningY) 
                        TempX = (aX(SideArr(H, D + 1)) + aX(SideArr(H, D))) / 2 
                        TempY = (aY(SideArr(H, D + 1)) + aY(SideArr(H, D))) / 2 
                        AddOn = AddOn + 1 
                        If (NNN + 2) > ArraySize Then Call ReAllocArray(NNN + 2) 
                         
                        NNN = NNN + 2 
                        'First, make space to insert them in the proper spot in the main array. 
                        'Make sure we don't insert it after an intersection point, if possible 
                        If SideArr(H, D) > SideArr(H, D + 1) Then j = SideArr(H, D + 1) Else j = SideArr(H, D) 
                        'J holds the point we need to insert afterwards of 
                                                                 
                        i = NNN 'Our array, plus two slots at the end 
                                                                                                 
                        While (i >= (j + 2)) 
                            AO(i, 1) = AO(i - 2, 1): AO(i, 2) = AO(i - 2, 2) 
                            ad(i) = ad(i - 2) 
                            aX(i) = aX(i - 2): aY(i) = aY(i - 2) 
                            Xorg(i) = Xorg(i - 2): Yorg(i) = Yorg(i - 2) 
                            i = i - 1 
                        Wend 
                         
                        'i = j + 1 'The spot after our last good point 
                        If H = 3 Then 
                            i = j + 1 
                            AO(i, 1) = B 
                        Else 
                            i = j + 2 
                            AO(i, 1) = B * -1 
                        End If 
                        aX(i) = TempX: aY(i) = TempY 
                        AO(i, 2) = 0 
                        ad(i) = dis1(0, 0, TempX, TempY) 
                        'Now we need the other line, we still have the perpendicular slope 
                        'This next trick can be done due to the ordering of the points 
                        If H = 3 Then Inversion = True Else Inversion = False 
                        Call FinalPoint(TempX, TempY, Thickness * 2, (-1 / OSlope), RunningX, RunningY, Inversion) 
                                                
                        'i = i + 1 
                                                 
                        'Form1.Picture1.Circle (aX(i), aY(i)), 0.4, RGB(155, 50, 155) 
                        If H = 3 Then 
                            i = j + 2 
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                            AO(i, 1) = B * -1 
                        Else 
                            i = j + 1 
                            AO(i, 1) = B 
                        End If 
                        aX(i) = RunningX: aY(i) = RunningY 
                        AO(i, 2) = 0 
                        ad(i) = dis1(0, 0, RunningX, RunningY) 
                        'Now we need to rebuild our side arrays 
                         
                        For TempX = 1 To 4 
                            SideInn(TempX) = 0 
                        Next TempX 
                         
                        For TempX = 0 To (NNN - 1) 
                            F = 0 
                            If (AO(TempX, 1) = A) Then F = 1 
                            If (AO(TempX, 1) = A * -1) Then F = 2 
                            If (AO(TempX, 1) = B) Then F = 3 
                            If (AO(TempX, 1) = B * -1) Then F = 4 
                            If F > 0 Then 
                                SideInn(F) = SideInn(F) + 1 
                                SideArr(F, SideInn(F)) = TempX 
                            End If 
             
                            F = 0 
                            If (AO(TempX, 2) = A) Then F = 1 
                            If (AO(TempX, 2) = A * -1) Then F = 2 
                            If (AO(TempX, 2) = B) Then F = 3 
                            If (AO(TempX, 2) = B * -1) Then F = 4 
                            If AO(TempX, 1) = AO(TempX, 2) Then F = 0 'Do not make duplicates! 
                            If F > 0 Then 
                                SideInn(F) = SideInn(F) + 1 
                                SideArr(F, SideInn(F)) = TempX 
                            End If 
                        Next TempX 
                         
                        Call SortPoints(SideInn(), SideArr()) 
                         
                        AddedON = 1 
                        'We only care about the point added on our side of interest 
                        'Note: Because of the way we made our new point the next point, 
                        'We'll look at it again to make sure it doesn't need further correction 
                    End If 
                End If 'There was an intersection 
            Next D 
        Next C 
    End If 
    Next B 
Next A 
                     
Wend 'Done with verification 
 
For F = 0 To FLine - 1 
   Form1.FracLine(F).Visible = False 'Hide it so we can see grid results 
Next F 
 
 
'Now, graph up the intersections 
 
B = NNN 
A = DuplicatePoints 
TempS = "Old Points: " + Str(B) + " New Points: " + Str(NNN) + " Dupes: " + Str(A) 
MsgBox (TempS) 'Duplicate points should only be present in the event of errors in gridding. 
 
End Sub 



59 

 

Sub BuildMultiCircle(X As Double, y As Double, LineA As Double, LineB As Double, ByVal CInter As Double) 
 
'This builds a circle of points around an intersection. 
'LineA and LineB are only used if just 2 line segments intersect 
 
Dim MinimumD  As Double, Thickness As Double, A As Integer, LCount As Integer, B As Double, C As Integer, D As Integer, E 
As Long 
Dim Lines(20) As Integer  'As many as 20 lines allowed through one point 
Dim Skip As Boolean, TempMax As MAXMIN, NewX As Double, NewY As Double, FinalX As Double, FinalY As Double, 
OSlope As Double, TempX As Double, TempY As Double 
Dim TS As String 
 
 
Thickness = 0.1: Skip = False 
LCount = 0 'Number of lines involved in intersection 
MinimumD = (CInter / 2.1) / 2 'To assure neighboring intersection circles do not overlap 
 
'Detect true number of lines involved 
For A = 1 To LSNum 
        If ((X = LSegment(A, 1)) And (y = LSegment(A, 2))) Or ((X = LSegment(A, 3)) And (y = LSegment(A, 4))) And (B = 0) Then 
                LCount = LCount + 1 
                Lines(LCount) = A 
        End If 
Next A 
 
PointNum = NNN: D = NNN 
 
If LCount = 2 Then 
    'Send to low angle handler 
    TempMax = AngleTRI(LSegment(Lines(1), 1), LSegment(Lines(1), 2), LSegment(Lines(1), 3), LSegment(Lines(1), 4), 
LSegment(Lines(2), 1), LSegment(Lines(2), 2), LSegment(Lines(2), 3), LSegment(Lines(2), 4)) 
    NewX = TempMax.MIN 'Now we have the smallest angle between the two segments 
    If NewX <= 45 Then 
        Call LowAngleCircle(Lines(1), Lines(2), LSegment(Lines(1), 1), LSegment(Lines(1), 2), LSegment(Lines(1), 3), 
LSegment(Lines(1), 4), LSegment(Lines(2), 1), LSegment(Lines(2), 2), LSegment(Lines(2), 3), LSegment(Lines(2), 4), X, y, 
MinimumD) 
        Skip = True 
    End If 
End If 
 
If Skip = False Then 'Alternative method 
 
For A = 0 To (NNN - 1) 
        B = dis1(X, y, aX(A), aY(A)) 'Distance to center point 
        If (B < (CInter / 2)) Then         
            aX(A) = -65535: aY(A) = -65535 'Mark for deletion 
        End If 
Next A 
 
A = CleanArray() 'Delete points that were too close. 
 
D = NNN '+1 or over? 
E = NNN + (LCount * 2) 
 
If (E > ArraySize) Then Call ReAllocArray(E) 
 
NNN = E 
 
'Make sure we don't go beyond the end of any portion 
 
B = 10000 
For A = 1 To LCount 
        'Choose which end point is NOT on the intersection 
        If (LSegment(Lines(A), 1) = X) And (LSegment(Lines(A), 2) = y) Then 
            TempX = LSegment(Lines(A), 3): TempY = LSegment(Lines(A), 4) 
        Else 
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            TempX = LSegment(Lines(A), 1): TempY = LSegment(Lines(A), 2) 
        End If 
        C = dis1(TempX, TempY, X, y) 
        If (C < B) And (C > 0) Then B = C 
Next A 
 
If (B > MinimumD) Then B = MinimumD 
If (B < Thickness) Then 
    MsgBox ("Line Segment shorter than Thickness, will not render correctly.") 
    B = MinimumD 
End If 
 
'MsgBox (B) 
 
For A = 1 To LCount 
    'Choose which end point is NOT on the intersection 
    If (LSegment(Lines(A), 1) = X) And (LSegment(Lines(A), 2) = y) Then 
        TempX = LSegment(Lines(A), 3): TempY = LSegment(Lines(A), 4) 
        Else 
            TempX = LSegment(Lines(A), 1): TempY = LSegment(Lines(A), 2) 
    End If 
     
    Call LineOperation(TempX, TempY, X, y, B, NewX, NewY) 
    If Abs(X - TempX) < 0.001 Then 
        OSlope = -65535 
            Else 
                If Abs(TempY - y) < 0.001 Then 
                    OSlope = 0 
                        Else 
                            OSlope = (y - TempY) / (X - TempX) 
                End If 
        End If 
   Call FinalPoint(NewX, NewY, Thickness, OSlope, FinalX, FinalY, False) 
   'Now we add the points 
   aX(D) = FinalX: aY(D) = FinalY: Xorg(D) = FinalX: Yorg(D) = FinalY 
   ad(D) = dis1(0, 0, aX(D), aY(D)) 
   AO(D, 1) = Lines(A): AO(D, 2) = Lines(A) 
   D = D + 1 
    
   Call FinalPoint(NewX, NewY, Thickness, OSlope, FinalX, FinalY, True) 
   aX(D) = FinalX: aY(D) = FinalY: Xorg(D) = FinalX: Yorg(D) = FinalY 
   ad(D) = dis1(0, 0, aX(D), aY(D)) 
   AO(D, 1) = Lines(A) * -1: AO(D, 2) = Lines(A) * -1 
   D = D + 1 
Next A 
End If 
 
End Sub 
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Sub LowAngleCircle(LA As Integer, LB As Integer, ax1 As Double, ay1 As Double, ax2 As Double, ay2 As Double, bx1 As 
Double, by1 As Double, bx2 As Double, by2 As Double, X As Double, y As Double, MinimumD As Double) 
'Deals with kinks in the fracture that are < 45 degrees. 
 
Dim cx1 As Double, cy1 As Double, cx2 As Double, cy2 As Double 
Dim dx1 As Double, dy1 As Double, dx2 As Double, dy2 As Double 
Dim SideArr(4, 100) As Integer 'Stores indexes into our point arrays for each side 
Dim SideInn(4) As Integer 'Index 
 
Dim E As Double, F As Double, A As Integer, TempX As Integer, G As Double, H As Double, TempY As Integer, i As Double, j As 
Double 
Dim x1 As Double, y1 As Double, x2 As Double, y2 As Double 
Dim Dist As Double, TempS As String, PointNum As Integer, RunningX As Double, RunningY As Double, FinalX As Integer 
    
For TempX = 1 To 4 
    SideInn(TempX) = 0 
Next TempX 
    
For TempX = 0 To (NNN - 1) 
                        TempY = 0 
                        If (AO(TempX, 1) = LA) And (AO(TempX, 2) = 0) Then TempY = 1 
                        If (AO(TempX, 1) = (LA * -1)) And (AO(TempX, 2) = 0) Then TempY = 2 
                        If (AO(TempX, 1) = LB) And (AO(TempX, 2) = 0) Then TempY = 3 
                        If (AO(TempX, 1) = (LB * -1)) And (AO(TempX, 2) = 0) Then TempY = 4 
                        If (TempY = 0) Then 
                            If (AO(TempX, 2) = LA) Then TempY = 1 
                            If (AO(TempX, 2) = (LA * -1)) Then TempY = 2 
                            If (AO(TempX, 2) = LB) Then TempY = 3 
                            If (AO(TempX, 2) = (LB * -1)) Then TempY = 4 
                            'We need to handle intersection points (Those with Two AO() entries) specially. 
                            'Thanks to our technique, we're guaranteed that all intersections points are 
                            'higher on the array that fracture gridding points. 
                            If TempY > 0 Then 
                                'An intersection point 
                                RunningX = dis1(aX(TempX), aY(TempX), aX(SideArr(TempY, 1)), aY(SideArr(TempY, 1))) 
                                RunningY = dis1(aX(TempX), aY(TempX), aX(SideArr(TempY, SideInn(TempY))), aY(SideArr(TempY, 
SideInn(TempY)))) 
                                If (RunningX < RunningY) Then 
                                    'Put a front of list 
                                    SideInn(TempY) = SideInn(TempY) + 1 
                                    FinalX = SideInn(TempY) 
                                    While (FinalX > 0) 
                                        SideArr(TempY, FinalX) = SideArr(TempY, FinalX - 1) 
                                        FinalX = FinalX - 1 
                                    Wend 
                                    SideArr(TempY, 1) = TempX: TempY = 0 
                                    Else 
                                        SideInn(TempY) = SideInn(TempY) + 1 
                                        SideArr(TempY, SideInn(TempY)) = TempX: TempY = 0 
                                    End If 
                                End If 'TempY > 0 
                            End If 'TempY = 0 
                        If (TempY <> 0) Then 
                            SideInn(TempY) = SideInn(TempY) + 1 
                            SideArr(TempY, SideInn(TempY)) = TempX 
                            End If 'TempY <> 0 
                        Next TempX 'Done loading all points for our fracture 
     
     
    RunningX = dis1(aX(SideArr(1, 1)), aY(SideArr(1, 1)), aX(SideArr(3, 1)), aY(SideArr(3, 1))) 
    RunningY = dis1(aX(SideArr(2, 1)), aY(SideArr(2, 1)), aX(SideArr(3, 1)), aY(SideArr(3, 1))) 
    If (RunningX < RunningY) Then G = LA Else G = -1 * LA 'Which side we'll be using 
    If G = LA Then i = 1 Else i = 2 
    RunningX = dis1(aX(SideArr(3, 1)), aY(SideArr(3, 1)), aX(SideArr(i, 1)), aY(SideArr(i, 1))) 
    RunningY = dis1(aX(SideArr(4, 1)), aY(SideArr(4, 1)), aX(SideArr(i, 1)), aY(SideArr(i, 1))) 
    If (RunningX < RunningY) Then H = LB * -1 Else H = LB 'The same 
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    Call SortPoints(SideInn(), SideArr()) 
       
    x1 = ax1: y1 = ay1 
    x2 = bx1: y2 = by1 
    If (ax1 = X) And (ay1 = y) Then 'Chose the point besides the intersection 
        x1 = ax2: y1 = ay2 
    End If 
     
    If (bx1 = X) And (by1 = y) Then 'Chose the point besides the intersection 
        x2 = bx2: y2 = by2 
    End If 
         
    E = dis1(X, y, x1, y1) 
    Call LineOperation(x1, y1, X, y, MinimumD, cx1, cy1) 
    x1 = cx1: y1 = cy1 
    E = dis1(X, y, x2, y2) 
    Call LineOperation(x2, y2, X, y, MinimumD, dx1, dy1) 
    x2 = dx1: y2 = dy1        
     
    'So now we have two points, equidistant from the intersection. 
         
    If (ay2 - ay1) = 0 Then 
        'Horizontal Line 
        cy2 = cy1 + 100 
        If cy1 > dy1 Then cy2 = cy1 - 100 
        cx2 = cx1 
        Else 
            If (ax2 - ax1) = 0 Then 
                'Vertical Line 
                cx2 = cx1 + 100 
                If cx1 > dx1 Then cx2 = cx1 - 100 
                cy2 = cy1 
                    Else 
                    i = (ay2 - ay1) / (ax2 - ax1) 'Slope of first line 
                    i = -1 / i 'Perpendicular slope 
                    cx2 = cx1 + 100 
                    If cx1 > dx1 Then cx2 = cx1 - 100 
                    cy2 = i * (cx2 - cx1) + cy1 
                End If 
        End If 
     
    If (by2 - by1) = 0 Then 
        'Horizontal Line 
        dy2 = dy1 + 100 
        If dy1 > cy1 Then dy2 = dy1 - 100 
        dx2 = dx1 
        Else 
            If (bx2 - bx1) = 0 Then 
                'Vertical Line 
                dx2 = dx1 + 100 
                If dx1 > cx1 Then dx2 = dx1 - 100 
                dy2 = dy1 
                    Else 
                        j = (by2 - by1) / (bx2 - bx1) 'Slope of second line 
                        j = -1 / j 'Perpendicular slope 
                        dx2 = dx1 + 100 
                        If dx1 > cx1 Then dx2 = dx1 - 100 
                        dy2 = j * (dx2 - dx1) + dy1 
                    End If 
            End If 
         
    'Now we have two perpendicular lines that should intersect, provided that our angles are acute. 
    Call IntersectPointB(cx1, cy1, cx2, cy2, dx1, dy1, dx2, dy2, E, F) 
     
    For A = 0 To (NNN - 1) 
        cx1 = dis1(X, y, aX(A), aY(A)) 'Distance to center point 
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        If (cx1 < MinimumD) Then 
            Form1.Picture1.Circle (aX(A), aY(A)), 0.2, RGB(0, 255, 0) 
            aX(A) = -65535: aY(A) = -65535 'Mark for deletion 
        End If 
    Next A 
             
    A = CleanArray() 
    PointNum = NNN + 3 
             
    If PointNum > ArraySize Then Call ReAllocArray(PointNum) 
     
    'e,f holds the intersection point. 
    'The intersection point will be our first point added. 
     
    aX(NNN) = E: aY(NNN) = F: Xorg(NNN) = E: Yorg(NNN) = F: AO(NNN, 1) = G: AO(NNN, 2) = H 
         
    cx1 = (x1 - E) 'Change in X, reversed direction 
    cx1 = cx1 + x1 'Add it to the original X position 
    cy1 = i * (cx1 - x1) + y1 
     
   aX(NNN + 1) = cx1: aY(NNN + 1) = cy1: Xorg(NNN + 1) = cx1: Yorg(NNN + 1) = cy1: AO(NNN + 1, 1) = G * -1 
    AO(NNN + 1, 2) = G * -1 
     
    cx1 = (x2 - E) 'Change in X, reversed direction 
    cx1 = cx1 + x2 'Add it to the original X position 
    cy1 = j * (cx1 - x2) + y2 
        
    aX(NNN + 2) = cx1: aY(NNN + 2) = cy1: Xorg(NNN + 2) = cx1: Yorg(NNN + 2) = cy1: AO(NNN + 2, 1) = H * -1 
    AO(NNN + 2, 2) = H * -1 
     
    Form1.Picture1.Circle (aX(NNN), aY(NNN)), 0.2, RGB(0, 0, 255) 
    Form1.Picture1.Circle (aX(NNN + 1), aY(NNN + 1)), 0.2, RGB(0, 0, 255) 
    Form1.Picture1.Circle (aX(NNN + 2), aY(NNN + 2)), 0.2, RGB(0, 0, 255) 
         
    NNN = PointNum 
 
End Sub 
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