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ABSTRACT 
 

 

3D Characterization of Acidized Fracture Surfaces. (May 2007) 

Camilo Malagon Nieto,  B.S., Universidad de América  

Chair of Advisory Committee: Dr. A. Daniel Hill 

 

 

The complex interrelations among the different physical processes involved in acid 

fracturing make it difficult to design, and later, to predict the outcome of stimulation 

jobs.  Actual tendencies require the use of computational models to deal with the 

dynamic interaction of variables.  This thesis presents a new study of acidized surface 

textures by means of a laser profilometer to improve our understanding of the remaining 

etched surface topography and its hydraulic response.   

 

Visualization plots generated by the profilometer identified hydrodynamic channels that 

could not be identified by the naked eye in acidized surfaces.  The plots clarified the 

existence of rock heterogeneities and revealed how the processes of dissolution function 

in chalk rock. 

 

Experimental data showed clearly that the effect of dissolution depends on the type of 

rock and the fluid system; dolomite, for example, dissolves more rapidly but more 

roughly than limestone.  Fluid leakoff rate and temperature also affect the dissolution.  

Further research is necessary to clarify the effects of conductivity.  
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1.  INTRODUCTION 

 

1.1. Acid Fracturing and Conductivity 

 

The basic principle of acid fracturing is to dissolve the surfaces of induced or natural 

fractures to avoid closure after the pressures declines (Fig. 1.1).  The process consists of 

creating and opening the fracture with a fluid pumped at high pressure, then pumping an 

acid solution to etch the fracture walls, the pressure is reduced by flowing back the well 

so the fracture will close.   

 

 

                              

Fig. 1.1—Acid fracturing dissolves portions of the rock faces, thus leaving a rough 

surface that remains open to fluid flow. 

 

 

The altered features on each side of the fracture create void areas along the dissolved 

fracture that may improve the flow capacity of the production fluid.  The complexity of 

the process becomes evident in the large number of variables required to model it.   

 

This thesis follows the style and format of SPE Drilling and Completion Journal.  

Fracture 
Opening 

Rock Dissolved  
By Acid 

Fracture 
Closing 
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Engineering design objectives and operative variables are different for each of the stages 

of the process (Table 1.1).   Success of a design depends on how the variables are 

considered and manipulated. 

 

The design of the fracture opening can be achieved by using the standard hydraulic 

fracturing theory including analytical or finite element calculations to determine the 

fracture geometry as a function of the fluid pumped.   

 

Table 1.1— Design variables.  

 Fracture Opening Rock Dissolution Mechanical Closure 

Design 
Objective 

• Optimum Fracture 
Geometry (height  
and long length) 

• Sustain change in 
fracture geometry. 

• Deep acid 
penetration into the 
fracture. 

• Uniform/controlled 
etching along the 
fracture. 

• Achieve conductivity 

• Sustain achieved 
conductivity on time. 

 

 

Principal 
Operational 
Variables 

and 
Parameters 

• Fluid Properties 

Flow rate 

Viscosity 

Pressure 

• Rock Properties 

In-situ stress 

• Leakoff 

• Acid Fluid Properties 

Concentration 

Flow rate 

Viscosity 

Pressure 

• Rock Properties 

Dissolution rate 

• Leakoff 

• Rock Properties 

  Closure pressure 

• Surface Texture 

  Rock surface  
strength 

  Etched path 
geometry  

 

 

The rock dissolution stage is much more difficult to design since the dissolution of the 

fracture faces changes the fracture geometry and the leakoff rate.  That dynamic change 

occurs in both time and space; as a result, it requires the use of 3D numerical 

calculations. 
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The ultimate stage of acid fracture is the mechanical closure, where the closure pressure 

is a formation property that can not be influenced, and all the other variables are direct 

consequences of the rock-dissolution stage.  Under this conceptual model, the surface 

texture formative process is a fundamental part of the dissolution stage design.  Since the 

interaction between the fracture faces and the acid dissolution itself are different 

physical processes, two approaches can be use to model the processes; one is to create a 

model to up-scale the surface interaction to the size of the dissolution model grid; the 

other is to use the final dissolution model output as input for a specific closure-modeling 

application.  Both of these first require more knowledge about the acidized surface 

interaction. 

 

That knowledge must include an understanding of the surfaces characteristics, and its 

formative process, how those characteristics change depending on the acidizing 

conditions, and how the surfaces interact against each other depending on their texture. 

 

 

1.2.  Development of Acid Fracturing 

 

Acid fracturing was developed to overcome the short penetration of acid treatments (Fig. 

1.2).  Barron & Hendrickson
1 

identifies the interactions among variables such as fracture 

width, acid concentration, contact time, and fracture height that affected the reaction of 

acid on marble.  They showed that the reaction rate is a function of the flow velocity and 

fracture width, so while increasing the flow rate will increase the penetration, it will also 

increase the reaction rate and therefore the spending.  This deeper penetration could be 

attained by increasing the fracture width during the treatment to reduce spending and 

force live acid to travel farther into the fracture. 
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Fig. 1.2—Acid stimulation done (a) may improve flow capacity and wormhole growth 

(b) may extend it, but hydraulic fracturing (c) will create larger, more effective flow 

area. 

 

 

Efforts to improve acid treatment assume that large quantities of acid and large contact 

times would make better treatments but ignored the fact that over etching of the rock can 

soften the rock faces, causing the rock to crush under closure stress and reduce flow 

capacity.  Broaddus et al.
2
 showed that different formations, acids, solutions, and 

temperatures all affected fluid flow.  And that rock properties and surface etching pattern 

are of vital importance to the final fracture flow capacity.  

 

Williams & Nierode
3
 proposed a design procedure that takes into account the change in 

fracture geometry where the rock has been dissolved by the acid and the change in fluid 

volume as it leaks into the formation.  Nevertheless, they recognized that the fracture 

conductivity after treatment cannot be predicted with certainty because it is a related to 

the degree of formation heterogeneity. 

 

In theory, avoiding leakoff into the formation will sustain deeper acid penetration; 

furthermore, retarded acid will allow less over-etching in the near-wellbore region, more 

homogenous concentration along the fracture, and long penetration distance.  This 

Wellbore  Damage Zone  New Fluid Paths  

a) Acid dissolute paths 

(wormholes) overcome the 

damage area improving the 

well flow capacity. 

b) Wormhole growing stops 

and no additional stimulation 

can be achieved. 

c) Long high flow capacity 

path is created through the 

fracture faces dissolution 
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concept led to the use of improved fluid systems such as gelled, emulsified, or 

viscosified acids,  in which the dynamic fluid properties supposedly act as both fluid-

loss control and retardant. 

 

Addressing the use of specialized fluid systems, Nierode and Kruk
4
 developed a 

correlation for conductivity estimation that takes into account the rock strength and the 

applied closure stress. Assuming that the fracture walls dissolve uniformly, they 

developed the dissolved rock equivalent conductivity (DREC) concept, which is 

calculated from the rock weight loss.  The authors conclude that since the 

heterogeneities and fingering can lead to channels along the fracture, any measurement 

of conductivity, in the laboratory or by correlation, will show the lower boundary of the 

attainable conductivity. 

 

Using an acidizing cell that allows leakoff, Beg et al.
5
 observed that sometimes the 

increase in contact time results in lower conductivity, and that the fluid loss can increase 

the fracture conductivity.  They also discovered that increased acid exposures will weak 

the rock structure so that it is prone to crush under closure pressure.  Beg et al.
5
 also 

observed that different experiments with leakoff exhibited different etching patterns, 

such as channels and valleys, which illustrated the importance of characterizing the 

acidized surface. 

 

Ruffet et al.
6
 characterized the etched surfaces quantitatively and evaluated their relation 

with acid injection conditions.  In their approach Ruffet et al.
6
 measured the 2D surface 

profile with a mechanical profilometer after each etching experiment and used these 

digital data to calculate the statistical measurements of the data distribution and the 

linear and absolute roughness values.  Their global roughness parameter encapsulates all 

these measurements to compare between different treatment conditions.  In addition, 

Ruffet et al.
6
 estimated the mechanical behavior of the surface under closure stress, using 



 

 

 

6 

digitalized profile data to calculate specific topographic descriptors, which are used to 

estimate the fracture conductivity behavior.   

 

In their model for acid fracture conductivity, Gong et al.
7
 assumed plastic deformation 

closure of the asperities after closure stress is applied and achieved close agreement 

between the laboratory conductivity measurements and the model output. 

 

Dong et al.
8
 used synthetic surfaces from geostatistical methods to validate a 

computational model for acidizing carbonates.  This model uses mass conservation for 

acid solution, acid transport, and change in fracture caused by dissolution.  The 

experimental work identified three different kind of etching patterns: wormhole features, 

channeling, and pure surface roughness.  The differentiation of those three patterns 

indicates that normal profilography (2D unidirectional measurement) will not be able to 

effectively characterize the features of the surfaces because of the nature of the profile. 

 

 

1.3. Scope of Present Study 

 

The complex interrelations among the different physical processes involved in acid 

fracturing make it difficult to design and, later, to predict the outcome of stimulation 

jobs.  Actual tendencies require the use of computational models to deal with the 

dynamic interaction of variables.  This project presents a new study of acidized surface 

textures by means of the use of a laser profilometer to improve the understanding of the 

remaining etched surface topography and its hydraulic response.   

 

The project developed a preliminary surface assessment technique to characterize the 

acidized surfaces.  It developed computer programs to handle, visualize, and analyze the 

data sets and to characterize the 3D digital recorded data, and identified relevant 
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variables for future mathematical modeling and a more robust theory of etched surface 

interaction. 

 

 

1.4 Content of the Thesis 

 

Section 2 presents a brief description of the equipment used to perform the experiments.  

Section 3 is dedicated specifically to describing the profilometer apparatus software and 

hardware; it includes a brief description of the procedure to measure the surfaces.   

Section 4 presents the theory of profilometry and surface characterization; it contains the 

explanation of the characterization stages and presents the characterization technique.    

Section 5 contains the characterization of the surfaces using the techniques proposed in 

section 4, this section starts with a summary of the experiments followed by the 

sequential analysis for each one.  Finally, section 6 presents the conclusions regarding 

the experiments results and the characterization technique; additionally, it presents a set 

of recommendations for future work. 
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2.  ACID FRACTURING EXPERIMENTS 

 

 

A complete acid fracture experiment in this project consists of four main stages: rock 

preparation, acid fracture treatment, profile scanning, and conductivity measurement.  

Initially, the rock is cut to the shape of the cell; those dimensions are 7.11 in. length, 

1.61 in. width, and 3 in. height; the rock sides are covered with a silicone rubber 

compound to assure a complete seal and to prevent fluid bypass around the rock during 

the experiments (Fig. 2.1). Then, an initial surface scan is made to record the surface 

before the acidizing.  Finally, the sample is taken to a vacuum vessel to saturate it with 

brine.   

 

 

 

Fig. 2.1—Rock samples are cut to the shape of the cell and coated with silicone rubber 

to prevent fluid bypass during experiments. 

 

 

For the acid treatment, the two rocks are fitted into an API cell (Fig. 2.2.a), leaving a gap 

to simulate the fracture width, typically 0.12 in. (Fig. 2.2.b).  The cell is mounted on a 

frame and connected to the acid flow lines and the pressure sensors (Fig. 2.3.a).   

Aluminum Mold Sample Rock 
Sample with Rubber 

Compound 
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Fig. 2.2—Samples are placed onto the acidizing cell (a), a gap is left to simulate a 

fracture gap (b). 

 

 

During the acidizing, the acid solution is pumped from the mixing tank through a tubing 

line which passes through heater jackets to heat the fluid to the desired temperature.  

From the heater the fluid goes to the cell inlet.   Consequently, part of the fluid leaves 

the cell through the outlet and part leaves the cell through the pistons leakoff tubing; the 

fluid leaving from the outlet goes through a backpressure regulator which assures an 

internal cell pressure of ~1,000 psi and later to a disposal tank. The fluid leaving from 

the leakoff tubing goes to another backpressure regulator and finally to a leakoff 

recipient (Fig. 2.3.b).   

 

When the acidizing stage finishes, the rock samples are pulled out of the cell and 

scanned in the profilometer (Fig. 2.4.).  For the final stage, the rocks are again put 

together in the cell at the same initial position; then, the cell is mounted in the 

conductivity stack (Fig. 2.5.).  There, the piston applies pressure to the rocks through the 

pistons, while nitrogen is flowed through the etched fracture. 

 

a) 

b) 
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Fig. 2.3—The cell mounted on the rack to sustain internal pressure (a). Acid flows from 

the mixing tank through the test cell and back out through both the leakoff lines and the 

discharge line (b). 

  

 

 

Fig. 2.4—The profilometer identifies surface changes in the acidized rock. 

 

a) b) 
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Fig. 2.5—Nitrogen gas is flow through the acidized surfaces while different loads are 

applied in the conductivity stack. 
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3.  PROFILOMETER DESCRIPTION 

 

A profilometer is a precision vertical distance measurement device; it can measure small 

surface variations in vertical surface topography as a function of the sample position. 

The vertical measurement is made with a laser displacement sensor while the sample is 

moved along its length on a moving table. That measurement is repeated several times 

over the width of the sample to cover the entire surface area.  The resolution on the 

vertical measurement is 0.002 in.; the horizontal X and Y resolution is 0.05 in.  At that 

resolution the scanning time is 2 hours. 

 

 

3.1. Hardware Description 

 

The principal profilometer components are a laser displacement sensor, two micro-pulse 

linear transducers, two stepping motor units, and a horizontal milling table.  All the 

components are mounted on a heavy marble plate except for the laser sensor that is 

attached to the vertical milling table on an aluminum frame.  All the components of the 

profilometer can be seen in Fig. 3.1.   

 

All the component hardware controllers are connected inside the control box through a 

multichannel board.  This board receives signals from the laser and the micro-pulse 

transducer drivers; it also sends signals to the motor driver board.  In this way, the 

control box contains the multichannel board, the laser signal receiver, two motor drivers, 

and a power supply (Fig. 3.2). 

 

The entire control box is controlled automatically with a Data Acquisition Board (DAQ) 

on a personal computer. The DAQ is cabled to the multichannel board socket in the back 

of the control box.   The movement of the horizontal table can also be controlled 

manually from the control box front panel.    
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Fig. 3.1—Profilometer components. 

 

 

  

Fig. 3.2—Control box and its components. 

 

 

The Laser Displacement Sensor is an AR200-25 from Acuity Laser Measurement Inc.  

This device is a laser diode measurement sensor that uses triangulation to measure 

distance.  It projects a laser beam and captures the reflection from the target surface into 

collection lenses.  The lenses focus the laser spot image on an array camera; the position 

of the image on the camera pixel sensors is processed to determine the distance to the 

target.
9
  The device accuracy is 50.8 µm (0.002 in.), and its measurement range is 25.4 

mm (1.0 in.). 

Control Box 
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The two micro-pulse linear transducers use magnetic wave sensors to measure the 

horizontal displacement; since the movable magnet element is attached to the sample 

table, it measure the milling table position.  Each of them measures in the X and Y 

directions.   

 

The stepping motor units are high-torque, low-vibration devices attached to each of the 

milling table screws.  Their function is to move the table during the measurement. The 

table moves dynamically in the X direction during the data reading, while the motor 

moves only in small steps in the Y direction for each X profile measurement.  A diagram 

of the path followed for a measurement set is presented in Fig. 3.3.   The small Y steps 

are equal to the resolution distance (i.e. 0.05 in.); the measurements on X are recorded 

each time the laser passes over the specified measurement point i.e. each 0.05 in. (Fig. 

3.4). 

 

 

 

Fig. 3.3—Data measurement path along the specified scanning area. 

 

 

x 

y 

Start 

End 
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Fig. 3.4—Points where data is recorded for a 7 in. x 1.7 in. scanning area and 0.05 in. 

resolution (4935 data points). 

 

 

3.2. LabView Software Description 

 

The data acquisition board allows control of the profilometer devices by means of 

LabView software.  LabView primarily controls the servo-table movement, as seen on 

Fig. 3.3 through the operation of the step motors and depending on the sample 

dimension and measurement interval setup.  The software receives the signals from the 

laser and from the micro-pulse sensors and records the data in a text file as coordinates 

and heights.   

 

Fig. 3.5 shows the software window while scanning is being performed.  First the user 

establishes the filename and the directory path for the data file; next, the sample 

information and the sample dimensions are entered; and then the scanning is started by 

clicking the Start Scan button.  The window will automatically show the updated 

information of the laser position and height measurement during the entire scanning 

time.   

 

The software was provided by the profilometer manufacturer, and some adjustments 

have been performed on the display and data input dialog boxes.  The output is an ASCII 

text file consisting of a header and scan data values (Fig. 3.6).  The header records the 

Start 

End 
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sample information entered on the software screen; that includes the name of the file, 

experiment number, sample dimensions and measurement interval.  The scanning data is 

recorded in three columns, two for position and the third for the height, so that each row 

corresponds to a 3D coordinate.  The extension of the file is equal to the number of data 

points recorded.  (i.e. 4,935 rows for a 7 in. x 1.7 in. sample and 0.05 in. resolution).  

The order of the data follows the laser trajectory over the sample.  

 

 Fig. 3.5—Profilometer software user window. 

 

   

Fig. 3.6—First rows of the text data file from the profilometer output and its trajectory.  
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3.3. Measurement Procedure 

 

The measurement procedure consists of six steps described below; however, a detailed 

explanation and special warnings are presented in the profilometer manual in Appendix 

A. 

 

1. Place the rock sample on the table and secure it using the table screws. 

2. Adjust the laser sensor using the vertical milling table screw to assure full range 

measurements over the surface topography.  

3. Set the X and Y distance indicators to zero manually using the control box front 

panel.  

4. Switch the control panel to automatic. 

5. Input the data file location, experiment information, and sample dimensions on the 

software user window. 

6. Start scanning by clicking on the Start Scan button on the software screen.   
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4.  SURFACE CHARACTERIZATION 

 

4.1. Introduction 

 

Traditionally, the meaning of surface characterization is misunderstood.  The common 

thought is that the surface does not need to be described; instead, the real importance is 

its response to the physical process under study rather than its multiple surface features 

and attributes.  This is clearly a common statement in tribology science, where the 

question is not how to characterize the surface, but how to effectively model the 

response of the surface from the characterization parameters.
10 

 

Nevertheless, specialized fields and physics research recognize the strong influence of 

surface texture on understanding surface behavior.  Unfortunately, there is no common 

consensus on which characteristics are decisive or irrelevant for each of the different 

applications. 

 

Therefore, the characterization of the surface topography is intended to accomplish two 

objectives.  The first is to provide a general understanding of the surface and to serve as 

a guide to interpret and envision its properties. This is accomplished by applying 

different techniques such as statistical, spatial, or functional approaches. The second 

objective is to relate those parameters to some other physical process.  This objective is 

intrinsically related to the specific phenomenon physical response, and then, the analyst 

must pick those parameters that represent the expected response of the surface.
11 

 

Historically, a considerable amount of characterization techniques has been proposed.  

As a result of the broad spectrum of techniques and data analysis theories, an 

international effort arose to review and propose a standard for 3D characterization.
12

  

This work uses the techniques proposed in the first edition of that compendium. 
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4.2. The Surface Topography as a Random Process 

 

To understand the significance of the surface shape, we must understand how the surface 

acquires that shape.  We define surface texture to means the affectation of the original 

material topography from its original nominal shape.
1
  For the case of etching as it is 

proposed in this work, this affectation is based on the mixture of different processes as 

will be discussed in Section 4.3. 

 

The height distribution of many surface profiles has a Gaussian shape product of a 

random process (Fig. 4.1).  In theory, if the engineering surface acquires its shape from 

to the occurrence of a very large number of separate events that occur randomly along 

the whole surface and whose effects are cumulative, then the histogram shape will be 

Gaussian.  This is observed in surfaces from processes like deposition (Fig. 4.2) or 

extrusion.   

 

 

 

Fig. 4.1—Height probability density function (histogram) of 3D surface data set. 
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Fig. 4.2—Generation of a rough surface due to deposition of (a) a single drop, (b) 

multiple, random and cumulative process.   (After Thomas
12

). 

 

 

If the surface height histogram follows the Gaussian shape, a plot of the cumulative 

distribution will be a straight line (Fig. 4.3).  But deviation from the Gaussian behavior 

starts appearing for other creation processes like sanding, milling, or grinding. 

Therefore, as Fig. 4.3 shows, the curve behavior for other processes is different.   

 

The change in the shape of the cumulative distribution curve can be attributed to two 

situations; first, that the creation process is not strictly random (independent multiple 

single events, random and cumulative), and second, that the surface is affected by more 

than one random process.  Those secondary processes such as wear will affect the 

surface or a stratum of it, adding or destroying the primary surface defined by processes 

such as etching. 

 

For the more complex case, formative processes can also be a mixture of random and 

nonrandom processes, some affecting only part of the surface spectrum. Those are called 

multi-event formative processes.    
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Fig. 4.3.—Cumulative height distribution curve.  a) Polished copper etched in ferric 

chloride. b) Polished copper etched in nitric acid.  c) Polished brass etched in ferric 

chloride. (After Thomas
12

). 

 

 

4.3. Acid Etching as a Multi-event Formative Process 

 

Surface topography of etched surfaces appears to have an additional complexity to other 

engineering surfaces, mainly because the formative processes responsible for surface 

shape have two totally different components, the acid and the surface material.  

Although in theory the acid attacks the entire surface uniformly, in reality, the 

dissolution is affected spatially by the original fracture surface topography.  

Furthermore, the rock features can cause nonrandom dissolution; such features include 

the type of minerals present and their distribution, micro-structural features, 

heterogeneities, granules, and pores.   

 

a) 

b) 

c) 
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Under this theoretical frame, the combined action of the two intrinsic components (acid 

and rock) make the acidized surface texture a mixture of formative events that may also 

change its mechanism dynamically during the extent of the surface dissolution. 

 

This is clearly visible when surface wormholes are analyzed.  A wormhole will start 

growing from a micro-structural feature or heterogeneity that allows its development.  

But after that first set of random occurrences, older, larger wormholes will take control 

over the appearance of new ones; so their effect on the surface texture changes with time 

and destroys part of the simple surface dissolved by acid.  This additional process causes 

the height distribution to be asymmetric and to acquire a gamma distribution shape (Fig. 

4.4); that shape is representative of consecutive, rare, random events occurring in a 

process with no memory.
13 

 

 

 

 

Fig. 4.4—No-symmetric height distribution shape of acidized surfaces.  
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4.4. Surface Assessment 

 

The main goal of the 3D surface texture assessment is to establish a correspondence 

between the surface shape and its physical characteristics.  Therefore, a measurement of 

a spatial property has to be expressed in a way that more complicated physical variables 

(hardness, deformation, thermal or electrical conductance or conductivity) can be 

deducted.  Traditionally, a 2D profile will accomplish this task for the case of 

standardization or quality control (especially of machined surfaces), but for more 

complex processes (such as radiation, adherence, fluid flow capacity, deformation, 

friction) 3D surface measurements are necessary. 

 

The surface assessment is an integrated process that includes three main stages:  data 

acquisition, data pre-processing, and data characterization.  Fig. 4.5 presents the surface 

characterization assessment work flow as proposed by the standard compendium.
11

  

Notice the three main components: surface data acquisition, pre-processing, and 

characterization. 

 

 



   

2
4
 

 

Fig. 4.5—Procedure for 3D surface characterization assessment.  (After Stout
11

). 
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4.4.1. Data Acquisition 

 

Data acquisition starts by establishing the physical set-up; it consist of mounting the rock 

sample on the servo-table and establishing the sampling dimensions, measurement 

interval, and the measurement datum on the profilometer software window.  

Secondarily, the measurement system (profilometer device) is used to measure and 

record the heights from the laser as a matrix of data.    

 

A detailed explanation of the physical setup is available in the profilometer manual in 

Appendix A.   Special care should be take in maintaining the same laser measurement 

datum if the same rock sample is scanned before and after acidizing for rock volume loss 

calculations. 

 

The importance of the measurement intervals lies in the fact that the profile roughness is 

dependent of the measurement scale.  As shown in Fig. 4.6, each small profile section 

has micro-roughness that continues until molecular dimensions are reached.   

 

 

Fig. 4.6—Micro-roughness at smaller measurement intervals. (After Thomas
12

). 
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Although a fine measurement interval is a better representation of the surface, Fig4.7a 

shows that exceeding a resolution that allows us to study the process is unnecessary; on 

the other hand, Fig. 4.7b shows that a large measurement interval will produce a false 

roughness profile.  In this way an optimum resolution should be found to capture the 

accurate resolution roughness without compromising the scanning time. 

 

 

   

Fig. 4.7—a) The interaction scale of some processes (contact) does not require micro-

roughness resolution.  b) Large measurement interval fail capturing roughness features. 

(After Thomas
12

). 

 

 

All the surfaces presented in this study have a measurement interval of 0.05 in.; that is 

the profilometer specification resolution.  Although increasing the resolution may be 

desirable to collect more data points for evaluation, the increase in scanning time is 

unacceptable. 

 

 

4.4.2. Data Pre-processing 

 

Data pre-processing consists of preparing the data for future analysis.  That preparation 

includes, leveling the raw data to measurement datum, inverting the axes, selecting the 

evaluation area, and filtering roughness-waviness.  This data processing is done using 

MatLab; the two main steps involved are explained below: 

 

a) b) 
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• Convert the text data file from profilometer output to a matrix data file. 

-  Level to a determined measurement datum (phase). 

-  Invert data from rocks that acidized in inverse direction (by mistake). 

• Filter the surface roughness and waviness.  

 

This basic concept of these two steps is explained next; however, a detailed explanation 

of the MatLab functions used to perform the tasks is presented in Appendix B. 

 

 

4.4.2.1. Data File Conversion 

 

The profilometer output text file comes in three columns of coordinates (Fig. 4.8); the 

length of the file corresponds to the number of data points and follows the scanning path.  

For simple data manipulation, the data is converted to three matrixes of  two dimensions 

(X(i,j), Y(i,j), Z(i,j)).  In each one, the matrix positions correspond to the number of data 

points in each direction; and the data itself contains the distance for the case of the X and 

Y matrixes, and height for the case of the Z matrix.  This structure of the Z height matrix 

allows the calculations between different data sets (i.e. after/before, 

roughness/waviness), the other two matrixes are used to easily plot the axes of surfaces 

and profiles.  

 

Fig. 4.9 presents a 3D plot of data in the raw form; notice that the Z direction range is 

referred to as the laser measurement range (1 in.) and not to any specific datum.  

Additionally, the corners of the sample are recorded as zero values since the laser falls 

outside the range. For this reason, the program requests the user to input a datum value, 

specifically for the case when the rock volume loss is going to be calculated but the 

“before” and “after” scans do not have the same datum (the laser device was at different 

static height positions). 
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Fig. 4.8—Simplified explanation of data matrix conversion.  

 

 

            

 

Fig. 4.9—Raw data visualization. 

 

 

For the case where the sample is acidized or set on the table on the wrong direction,  the 

data processor MatLab program asks the user if the data should be inverted in the Y 

direction (see Appendix B).  Finally, the converted MatLab file saves the three matrixes 

as well as the sample name, length, width, and measurement interval.    

Sample Length:     1.0 in. 

Sample Width:     0.5 in. 

Measurement Interval: 0.5 in. 

  0.0    0.0    0.2   

  0.5    0.0    0.9       

  1.0    0.0    0.3 

  1.0    0.5    0.1 

  0.5    0.5    0.7 

  0.0    0.5    0.4 

0.0 0.5 1.0 

0.0 0.5 1.0 

0.0 0.0 0.0 

0.5 0.5 0.5 

X matrix 

Y matrix 

Z matrix 
0.2 0.9 0.3 

0.4 0.7 0.1 

   0          0.5         1.0 

0 
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4.4.2.2. Filtering of the Surface Roughness and Waviness 

 

The original texture profile is a summation of two components, waviness and roughness 

(Fig. 4.10).  The roughness is associated with the formative process by itself, while the 

waviness is associated with other processes
12

 like hydrodynamic effects for the case of 

acidized surfaces. If we assume that a profile is similar to an electrical signal, the 

roughness corresponds to the small-spectrum wavelengths, and the waviness to the long 

wavelengths.
14

 

 

 

 

Fig. 4.10—Profile components a) Original profile and its waviness. b) Roughness profile 

after waviness subtraction.  (After Thomas
12

). 

 

 

Filtering of the data allows separating both components; thus, roughness can be analyzed 

independently.  This is especially important for samples that present a channel like shape 

at the inlet (Fig. 4.11).  On the other hand, the filtering aligns the profile to a mean line 

that is requirement for most of the characterization parameters.  Fig. 4.12 presents the 

filtered roughness and waviness from the surface presented in Fig. 4.11.    

 

The filtering process is performed according to the ISO Standard
15

 (replacement of DIN 

4776 proposed by Stout
11

) but using a moving average algorithm instead of the proposed 

weighted-function Fourier transformation.  The filtering process is performed in two 

dimensions; hence, it is applied to each of the X direction profiles that make the 3D 
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surface.  A detailed explanation is presented next; however, a detailed explanation of the 

calculations algorithms is available in Appendix B. 

 

 

 

Fig. 4.11—Unfiltered surface with hydrodynamic channel (light blue). 

 

 

      

Fig. 4.12—a) Waviness surface after filtering. b)  Roughness surface after filter, notice 

that the surface is leveled to zero.  

 

The basic filter principle is to find the profile mean line and subtract it from the profile 

to eliminate the waviness.  That mean line is calculated at each data point as the average 

Unfiltered 3D Surface 

Waviness Roughness a) b) 
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among the point, the next, and the previous data point.  This process can be repeated 

until the mean-line profile follows the waviness of the original profile.    

 

Because most of the acidized profiles have valleys caused by the wormholes, the ISO 

Standard proposes to calculate the mean line, suppress the data points that fall below that 

line, and calculate a second mean line over the remaining profile;  that second mean line 

is finally subtracted from the original profile to obtain the filtered roughness profile (Fig. 

4.13).  Although the difference between the first and second mean line seems to be 

small, if the filter is made using only the first mean line, the filtered profile will exhibit 

exaggerately high values for the data points next to the valleys. 

 

 

   

Fig. 4.13—ISO Standard 13565 Filtering.  a) Calculation of the first mean line over the 

original profile. b) Suppression of the profile data points below the first mean line. c)  

Second mean line calculated over the remaining profile. d) Filtered profile after 

subtraction of second mean line.  

 

 

Since the filter process separates the long wavelengths of the profile, it can not be used 

when a big channel is the main characteristic of the acidized surface (Fig. 4.14).  For that 

a) 

b) 

c) 

d) 
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case, the waviness surface keeps the channel features, and the roughness surface exhibits 

the roughness inside and outside of the channel (Fig. 4.15). 

 

 

 

Fig. 4.14—3D surface with major channel as main characteristic. 

 

 

      

Fig. 4.15—Filter of Fig. 4.14.  a) Waviness surface after filtering keeps the shape of the 

channel. b)  Roughness surface after filter destroys the channel features (notice the color 

scale). 

 

 

a) b) 
Roughness Waviness 

Unfiltered 3D Surface 
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Because profile filtering must have sound characterization parameters but will eliminate 

channel features, the filter should be used when the roughness (small wavelengths) is the 

main object of study and precise characterization values are desired, as in modeling.   

 

In contrast, the original surface (no filter) should be used when the channel features need 

to be preserved and to correlate the surface with the laboratory experiment conductivity 

measurements.  For that instance, the characterization parameters should be used 

carefully and only for qualitative proposes.  

 

 

4.4.3. Data Characterization 

 

As explained before, surface characterization has two goals:  to provide ways to 

understand the surface, and to supply parameters for modeling (i.e. conductivity 

prediction).  Fig. 4.16 presents a classification of the actual characterization techniques. 

 

Three techniques have been selected from the proposed characterization techniques from 

the 3D characterization compendium.
11

  The first is the use of 3D visualization and 2D 

profiles; second, the statistical characterization by calculation of amplitude parameters; 

and third, the use of hybrid and functional parameters.  A summary of the parameters is 

presented in Table 4.1. 
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The other techniques were considered but not selected for various reasons.  All of them 

are mathematically complex, some are still under development and the available 

literature is limited.  Secondly, the output of the techniques is also complex and difficult 

to relate to the physical and functional meaning.  Third, some techniques are dedicated 

to the study of machined surfaces with periodic features; that is not the case for acid 

dissolution.  Explanation of those techniques, usage, and weaknesses are available in the 

Stout compendum.
11

  

 

Fractal characterization was also considered, but two main constraints prohibited its use. 

First, although the wormholes can be described under fractal geometry theory, the laser 

is not able to capture their internal shape; as a result, the acquired data only represents 

the surface that can be measured by the vertical laser beam.  Additionally, the lower 

resolution dataset does not allow satisfy the fractal basic requirement of recognizing 

self-similarity;  that is, every segment of the curve should be indistinguishable from the 

entire surface.
16

   Secondarily, assuming that the first can be neglected, since the 

acidizing is a multi-event process, it requires the use of at least two fractal signatures, 

but that development is theoretically complex. 

 



   

3
5
 

 

Fig. 4.16—Classification of the characterization techniques. (After Stout
11

). 
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Table 4.1—Applied characterization techniques.  

 TECHNIQUE PARAMETER 

1 Visualization 

Unfiltered color 3D surface  

Z inverted gray 3D surface  

Filtered color 3D surface  

Longitudinal and transversal cross-section plot 

2 
Statistical 

(Amplitude) 

(Sa)  Arithmetic Mean Deviation  

(Sq)  Root-Mean-Square Deviation 

(Sz)  Ten Point Height 

(Ssk)  Skewness Height Distribution 

(Sku)  Kurtosis Height Distribution 

Hybrid 
(S∆q)  RMS Slope 

(Sdr)  Developed Area Ratio 3 

Functional (Sc)  Core Roughness depth from the material Ratio Curve 

 

 

4.4.3.1. Visualization 

 

The objective of the visualization technique is to allow the human eye to visualize 

features that are not visible at normal conditions.  This can be achieved by the use of 

colors, different views, and scale increments.  This project uses four techniques:   

 

Unfiltered Color 3D Surface.  This is an isometric plot of the original image from the 

profilometer with the shape of the original sample. The image is rotated 50° and inclined 

to an angle of 40°; the Z scale is amplified 3 times.  The color bar represents height and 

it has been modified to be logarithmic in color so more contrast can be seen at small 

sizes close to the zero point. The color bar starts from zero and goes to -0.3 in. (Fig. 

4.11). 
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Z Inverted Gray 3D Surface.  The purpose of this image is allow a better visualization of 

the topographic valleys since those are an important characteristic of the acidized 

surfaces.  For this purpose, the data is inverted in the Z direction and the color bar is a 

black-to-gray linear scale (Fig. 4.17). 

 

 

Fig. 4.17—Inverted 3D gray surface visualization technique 

 

 

Filtered Color 3D Surface.  This plot shows the roughness of the surface after filtering.  

It has the same setting as the unfiltered plot but the Z scale is increased 10 times, and the 

color bar is logarithmic from 0.1 to -0.6 in. (Fig. 4.12b). 

 

Longitudinal and Transversal Cross-Section Plot.  Two cross-section plots are generated, 

one each longitudinal and transversal directions.  The longitudinal plot has three profiles 

at 1/4, 1/2, and 3/4 of the surface width; the transversal section has four profiles at 1/5, 

2/5, 3/5, and 4/5 of the surface length.  The plots purpose is to visualize clearly the 

change in topography at determined distances (Fig. 4.18). 

Z inverted 3D Surface 

(in.) 
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Fig. 4.18—Cross-section plot visualization technique. 

 

 

4.4.3.2. Amplitude Property 

 

A digital profile can be defined as a set of data points located in space.  The data 

distribution, grouped by height, corresponds to an inverted axis histogram (Fig. 4.19).  

The shape of that height distribution is representative of the profile characteristics (Fig. 

4.20) and can be described using statistical parameters such as dispersion, extremes, 

asymmetry, and peakedness.  

 

 

Fig. 4.19—Profile digital data represented as a height distribution.  

 

 

The digital 3D data is evaluated as a Z(x,y) 2D height matrix where M is the number of 

rows and N the number of columns, and ∆x and ∆y the measurement interval. 
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Fig. 4.20—The height distribution curve as profile descriptor. (After Thomas
12

). 

 

 

Arithmetic Mean Deviation (Sa).  Since the surface has been normalized to a mean plane 

during the prepossessing, this measurement gives the absolute value above and below 

the mean plane; it is calculated using Eq. 4.1; 
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Root-Mean-Square Deviation (Sq).  This is the measurement of the data dispersion from 

the mean line, it is equivalent to the statistics standard deviation and is calculated using 

Eq. 4.2; 
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Ten-Point Height (Sz).  This is a measurement of the extreme values; it uses the five 

highest surface summits and the five lowest surface valleys.  
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Skewness Height Distribution (Ssk).  This is the measurement of asymmetry of the data 

to each side of the mean line (Fig. 4.21a); it is calculated by Eq. 4.4; 
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Kurtosis Height Distribution (Sku).  This is the surface height distribution measurement 

for peakedness or sharpness (Fig. 4.21b); calculated by Eq. 4.5;  
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Fig. 4.21—Skewness and kurtosis as distribution shape descriptors.  (After Thomas
12

). 

 

 

 

4.4.3.3. Hybrid Property 

 

The amplitude parameters can describe the shape of the height distribution, but that 

distribution can be assigned to totally different profiles, since if does not consider the 

a) b) 
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spatial (distance) interrelation of the data points (Fig. 4.22).  For this reason the hybrid 

parameters are a combination of amplitude and space.  Therefore, they vary with the 

amplitude changes but they are affected by the sampling interval. 

 

 

Fig. 4.22—Different profiles can exhibit same height distribution. 

 

RMS Slope (S∆q).  This is the root-mean-square value of the surface slopes in between 

data points and along the entire sampling area.  It is calculated using Eq. 4.6;  
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Developed Area Ratio (Sd).  The developed area parameter measures the increment of 

the area over the assumed flat surface. It is calculated using Eqs. 4.7 through 4.9; 
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4.4.3.4. Material Ratio Curve 

 

The material ratio curve describes topographic features that are related to some specific 

physical behavior. The material ratio curve is the cumulative distribution curve of the 

height distribution curve and its calculation is explained in Appendix B (Fig. 4.23a).   

 

 

 

Fig. 4.23—Material ratio curve. a) Origin of the curve. b) MRC Hp and Hv.  (Modified 

from Thomas
12

). 

 

 

The ISO 13565-2 Standard
17

 indicates how to geometrically obtain several parameters to 

describe the curve.  Those parameters depend upon the amount of material below the 

curve at determined percentages. Nevertheless, we propose the use of a single modified 

parameter, Sc explained below. 
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Core Roughness Depth (Sc).  Considering Hp and Hv as the heights where the material 

ratio curve corresponds to the 10% and 90% of the material, the core roughness depth is 

calculated as the difference between Hp and Hv (Fig. 4.23b).  This parameter accounts for 

the core roughness profile that excludes the protruding peak and deep valleys of the 

material ratio curve. 

 

Volumetric.  This technique simply consists of calculating the volume of rock dissolved.  

It is calculated over the matrix resulting from the subtraction of the “after” and “before” 

measurements (Z’) not over the filtered Z matrix. 
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5.  TEXTURE OF ACIDIZED SURFACES 

 

 

 

5.1. Experimental Work Summary 

 

We performed eight sets of experiments, all of them having three different contact times 

except for the Experiments 4 and 8, for a total of 21 pairs of rocks acidized.  The rocks 

were limestone, dolomite, and two types of chalk.  Four different fluids were used.  

Table 5.1 presents a summary of the nine experiments and their treatment conditions. 

 

The acid fluids used include straight acid, emulsified acid, gelled acid, and viscoelastic 

surfactant acid.  The emulsified acid is an oil external emulsion stabilized with an 

emulsifier.   The gelled acid is simply a straight acid with a gelling agent.   The 

viscoelastic surfactant acid is a self-diverting acid system in which the acid viscosifies 

in-situ, blocking dominant wormholes.   

 

 

5.2. Experimental Surfaces Characterization 

 

This section presents the 3D images and the characterization parameters obtained for the 

complete set of experiments presented in Table 5.1.  Since both sides of the rock exhibit 

the same etching pattern, the results are presented for only one of the rock faces.  

Nevertheless, the pictures of the rock samples for each experiment can be seen in 

Appendix C.  
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Table 5.1—Summary of experiments. 

Exp. # Fluid & Rock 
Temperature 

(°F) 
Leak-off Rate 

(ft/min) 
Contact Time 

(min)) 

15 
30 1 

Emulsified Acid   
Limestone 

200 0.005 

60 

15 
30 2 

Emulsified Acid 
Limestone 

275 0.005 

60 

15 

30 3 
Gelled Acid  
Limestone 

200 0.005 

60 

15  
4 

Gelled Acid 
Limestone 

200 0.010 
30 

15 
30 5 

Self-Diverting Viscoelastic 
Limestone 

200 0.003 

60 

10 

20 6 
Self-Diverting Viscoelastic 

Dolomite 
200 0.005 

30 

3 
5 7 

Straight Acid 7% 
North Sea Chalk 

100 0.005 

7 

8 
Straight Acid 7% 

North Sea Chalk II 
100 0.005 7 

 

 

5.2.1. Experiment 1: Emulsified Acid and Limestone, 200°F, 0.005 ft/min. 

 

Figures 5.1, 5.2 and 5.3 show the visualization results for the experiment 1 (Table 5.1); 

the figures present, for each contact time, the 3D unfiltered surface, the 3D view of 

valleys and the 3D view of the filtered roughness.    

 

Fig. 5.3 shows that the acid dissolves more rock at longer contact time since the surface 

color falls on the blue spectrum of the color scale.  Fig. 5.4 also shows the plot of the 

volume loss for each contact time.  The gray surfaces in Fig. 5.3 indicate that the 

wormhole development starts appearing at 60 min.  Even though, the surfaces do not 

show any important roughness increase until 60 min., small wormholes begin to appear 

before then.  This behavior is the result of the emulsified system that acts as an acid 

retardant. 
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Fig. 5.1—Exp. 1: Visualization 3D surfaces of emulsified acid and limestone—200 °F, 

0.005 ft/min., 15 min. 
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Fig. 5.2—Exp. 1: Visualization 3D surfaces of emulsified acid and limestone—200 °F, 

0.005 ft/min., 30 min. 
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Fig. 5.3—Exp. 1: Visualization 3D surfaces of emulsified acid and limestone—200 °F, 

0.005 ft/min., 60 min. 
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Fig. 5.4—Exp. 1—Volume of rock dissolved on rock surface. 

 

 

Fig. 5.5 presents the profiles for each contact time experiment.  It clearly shows how a 

hydrodynamic effect occurs at the inlet of the cell; the black line on the longitudinal 

cross-section plots shows the gradual dissolution from the inlet (left side).  Fig. 5.6 

presents the comparative profile development for the three experiments showing how the 

rock gradually dissolves along the entire surface. This central plot illustrates the inlet 

channel that may affect the conductivity measurement.  Fig. 5.7 compares roughness 

profiles for the experiment.  The amount of roughness created at each contact time 

shows how little the roughness increases, as even at 60 min. the rock roughness is still 

slightly higher than for lower contact times. 

 

The roughness change can be better understood by looking of Fig. 5.8, which presents 

the roughness parameters for the experiment.  The different parameters have been 

grouped on three plots because the magnitude of its values does not allow them to be 

combined in one single plot.    The values of all those parameters are low for the entire 

set of values obtained for the 21 experiments.  
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Fig. 5.5—Exp. 1—Longitudinal and transversal cross-section profiles.  

 

 

 
Fig. 5.6—Exp. 1—Comparative cross-section profile.  

 

 

 
Fig. 5.7—Exp. 1—Comparative roughness cross-section profile.  
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Fig. 5.8—Exp. 1—Roughness parameters. 

 

 

Fig. 5.9 compares the roughness material ratio curve for the three experiments;  the 

small change in the roughness can be seen since all the curves overlap along the entire 

curve; notice that the 60-min. test deviates after 90% because of the small wormholes. 

 

The conductivity measurements (Fig. 5.10) show that the 60-min. rock has very low 

conductivity from the beginning of the measurement; it is also barely affected by the 

increasing load.   The 30-min. rock starts with higher conductivity than the 15-min. 
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sample; this is not surprising since it has a hydrodynamic channel that may increase the 

conductivity readings, but the 30-min. rock loses conductivity faster with load.   

 

       
Fig. 5.9—Exp. 1—Roughness comparison of material ratio curves.  

 

 

                                                

 
Fig. 5.10—Exp.1—Conductivity measurements. 
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The filtered waviness of the samples shows that the degree of empty space increases 

with contact time (Fig. 5.11).   The same characteristic can be seen on the material ratio 

curve for the original data set (Fig. 5.12) where the surface core parameter Sc is higher 

for the 60-min. rock. 

 

 

  

  
Fig.  5.11—Exp. 1—Waviness 3D surface views. 

 

 

The roughness parameters reveal that the roughness of the surfaces is small and similar 

for all three contact times; but Fig. 5.12 shows that the core height (Sc) of the 60-min. 

rock is bigger than the other two samples.  This implies that the 60-min. rock has more 

empty space available for flow; thus, the 60-min. rock has very low conductivity, a 

different behavior than we expected. 
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If we speculate that the initial conductivity depends on the waviness, the 60-min. rock 

should not start which such low conductivity unless the weakening is so high that the 

rock crushes at a load less than 1,000 psi.  In contrast, little can be concluded from the 

roughness since the fluid system successfully maintains low roughness at every contact 

time because wormholes do not form. 

 

 

 
Fig. 5.12—Exp. 1—Original surfaces comparative of material ratio curves.  

 

 

 

5.2.2. Experiment 2: Emulsified Acid and Limestone, 275°F, 0.005 ft/min. 

 

Fig. 5.13 shows the pictures corresponding to each of the contact times for the Exp. 2 

(Table 5.1).  Fig. 5.14 shows how the acid has dissolved a large amount of rock at 15-

min. and some wormholes start appearing.  Fig. 5.15 shows larger wormholes at 30-min.  

The 60-min. rock in Fig. 5.13 and Fig. 5.16 shows how the wormhole has penetrated the 

rock entirely; those holes are very clear on the 3D view valleys surface in Fig. 5.16.  

This set of experiments shows more dissolution than Exp. 1, which has the same 

conditions except the temperature. 

Sc 
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Fig. 5.13—Pictures of experiment 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

56 

3
D

 V
ie

w
 U

n
fi

lt
er

ed
 

 

3
D

 V
ie

w
 V

a
ll

ey
s 

 

3
D

 V
ie

w
 F

il
te

re
d

 

 
Fig. 5.14—Exp. 2: Visualization 3D Surfaces of emulsified acid and limestone—275 °F, 

0.005 ft/min., 15 min.  
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Fig. 5.15—Exp. 2: Visualization 3D surfaces of emulsified acid and limestone—275 °F, 

0.005 ft/min., 30 min.  
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Fig. 5.16—Exp. 2: Visualization 3D surfaces of emulsified acid and limestone—275 °F, 

0.005 ft/min., 60 min. 
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Fig. 5.17 presents the volume of rock dissolved for each contact time.  The data points 

on this plot show an increase in the amount of rock dissolved for each increase in contact 

time.  The 60-min. point does not follow the increase tendency because the big 

wormholes take control of the dissolution on the surface and also because the range of 

the laser can not measure to the total depth of the holes. 

 

 

 
Fig. 5.17—Exp. 2—Volume of rock dissolved on rock surface. 

 

 

Fig. 5.18 presents the profiles for each contact-time experiment.  The vertical scale has 

been increased with respect to the other profile plots to clarify the entire wormhole 

penetration along the rock, especially for the 60-min. rock.  Although the hydrodynamic 

effect can be seen, the degree of dissolution creates a central channel, as shown by the 

transversal view at 30- and 60-min. contact times. 

 

Fig. 5.19 compares the profile development for the three experiments, and Fig. 5.20 

compares the roughness profiles. These profiles are in the extreme of the filter 

capabilities and some overshooting appears on the corners of the wormholes.  The 

roughness profiles are dominated by the big wormhole features. 
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Fig. 5.18—Exp. 2—Longitudinal and transversal cross-section profiles.  

 

 
Fig. 5.19—Exp. 2—Comparative cross-section profile.  

 

 
Fig. 5.20—Exp. 2—Comparative roughness cross-section profile.  
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Fig. 5.21 shows that the roughness parameters have high values and that the roughness 

increases with contact time for all the parameters but Sz which is altered because the 

filter overshoot of the samples. 

 

 

 
 

 
Fig. 5.21—Exp. 2—Roughness parameters. 

 

 

Fig. 5.22 and 5.23 show the roughness and original data material ratio curves (MRC) for 

the experiments.  The roughness MRCs of the 30- and 60-min. samples exhibit a 

significant decrease on the portion of the curve after the 90% value; this indicates the 

growth of the wormholes.  On the other hand, the original data MRC in Fig. 5.23 
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exhibits curves with different plateaus for each contact time.  The upper plateau on the 

30-min. rock corresponds to the data points that remain on the sides of the rock; the 

plateau on the 60-min. rock corresponds to the lower inlet height of the sample.  

 

 
Fig. 5.22—Exp. 2—Roughness material ratio curves.  

 

 

 
Fig. 5.23—Exp. 2—Original data material ratio curves. 
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Since all the samples present a concave dissolution (transversal view on Fig. 5.14) and 

the rocks after 30-min. were highly affected by the acid, no conductivity measurements 

were performed on this set of rocks. 

 

 

 

5.2.3. Experiment 3: Gelled Acid and Limestone, 200°F, 0.005 ft/min. 

 

Exp. 3 (Table 5.1) is like Exp. 1 but with a different fluid system.  Fig. 5.24, 5.25 and 

5.26 present the visualization results for the experiment.  Notice that the 15-min. rock 

presents heterogeneity at the rock outlet; that heterogeneity was a feature of the rock 

before acidizing;  pictures of the rocks are presented in Appendix C.  The gray 3D views 

show how more wormholes develop at higher contact times.  The increase in the amount 

of rock dissolved can also be seen on Fig. 5.27. 

 

The gelled fluid does not cause a large hydrodynamic effect, but minor channeling 

appears at the middle of the rock sample.  Fig. 5.28 illustrates the behavior of the fluid 

for each contact time.  Fig. 5.29 verifies that the dissolution occurs along the entire rock 

surfaces at all contact times.  Fig. 5.30 presents the successive increase of roughness 

with increase in contact time.  

 

The roughness of the samples has a significant increase at 60 minutes, when a great 

number of wormholes start appearing.  That increase can be seen in all the roughness 

parameters (Fig. 5.31).  Assuming that the 30-min. rock is representative of the 

dissolution, the fluid system appears to control the wormholes up to a certain time. 
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Fig. 5.24—Exp. 3: Visualization 3D surfaces of gelled acid and limestone—200°F, 

0.005 ft/min., 15 min. 
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Fig. 5.25—Exp. 3: Visualization 3D surfaces of gelled acid and limestone—200°F, 

0.005 ft/min., 30 min. 
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Fig. 5.26—Exp. 3: Visualization 3D surfaces of gelled acid and limestone—200°F, 

0.005 ft/min., 60 min. 
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Fig. 5.27—Exp. 3—Volume of rock dissolved on rock surface. 
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Fig. 5.28—Exp. 3—Longitudinal and transversal cross-section profiles. 
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Figs, 5.32 and 5.33 serve for comparison between the present the roughness and original 

data MRC.  The curves of 15- and 30-min. almost overlap showing that the surface has 

barely been affected; the 60-min. roughness curve deviates at 90%, representing the 

increase of wormholes in the rock.  Better understanding can be seen on the original data 

MRC plot where the distance between the 10% and 90% (Sc parameter) increases for 

higher contact times. 

 

The conductivity measurements show that the initial conductivity is proportional to the 

acidizing contact times; this can be attributed to the combined effect of roughness and  

the size of the hydrodynamic channels.  The slope of the curves increases with contact 

time also, causing the conductivity of all three samples to reach almost the same final 

conductivity.  In particular the 60-min. conductivity exhibits the greatest decrease of 

conductivity with closure stress (Fig. 5.34). 

 

 

 
Fig. 5.29—Exp. 3—Comparative cross-section profile.  

 

 

 
Fig. 5.30—Exp. 3—Comparative roughness cross-section profile.  
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Fig. 5.31—Exp. 3—Roughness parameters. 

 

 
Fig. 5.32—Exp. 3—Roughness material ratio curves. 
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Fig. 5.33—Exp. 3—Original data material ratio curves. 

 

 

      
Fig. 5.34—Exp. 3—Conductivity measurements. 
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5.2.4. Experiment 4: Gelled Acid and Limestone, 200°F, 0.010 ft/min. 

 

Exp. 4 is similar to Exp. 3 but with double the leakoff rate.  Fig. 5.35 and 5.36 show the 

visualization plots. The 30-min. rock exhibits more wormholes than the 30-min. sample 

of Exp. 3 (See Fig. 5.25).  This indicates that the leakoff facilitates the wormhole 

development.  Longer contact time creates more volume loss, as can be seen in Fig. 5.37. 

 

The increase in wormholes can be observed on the profile plots (Fig. 5.38).  The 30-min. 

rock presents more surface roughness and a small channel in the middle of the rock; this 

channel has bigger dimensions that its counterpart on Exp. 3. 

 

Fig. 5.39 shows that the dissolution is uniform along the sample surface.  Fig. 5.40 

compares the roughness, showing that the 30-min. rock is rougher. 

 

All the roughness parameters have an increase from the 15-min. contact time to the 

30.min. contact time (Fig. 5.41).  This increment is greater than the one seen on other 

experiments, proving the quick development of wormholes because of the high leakoff 

rate. 
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Fig. 5.35—Exp. 4: Visualization 3D surfaces of gelled acid and limestone —200 °F, 

0.010 ft/min., 15 min. 
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Fig. 5.36—Exp. 4: Visualization 3D surfaces of gelled acid and limestone—200 °F, 

0.010 ft/min., 30 min. 
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Fig. 5.37—Exp. 4—Volume of rock dissolved on rock surface. 
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Fig. 5.38—Exp. 4—Longitudinal and transversal cross-section profiles.  
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Fig. 5.39—Exp. 4—Comparative cross-section profile.  

 

 

 
Fig. 5.40—Exp. 4—Comparative roughness cross-section profile.  
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Fig. 5.41—Exp. 4—Roughness parameters. 

 

 

Fig. 5.42 compares the experiment roughness MRCs; the main characteristic on that plot 

is the displacement of the 30-min. curve after 80% as the wormholes develop. 
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Fig. 5.42—Exp. 4—Roughness comparative of material ratio curves.  

 

 

The conductivity measurements exhibit an inverse behavior with respect to the acidized 

time and the roughness. The 15-min. rock shows excessively high values even at 

pressures of 5,000 psi.  In contrast, the 30-min. rock shows less initial conductivity and 

its expected decrease with compression (Fig. 5.43).  This high value of the 15-min. rock 

is abnormal since the 30-min. rock has a channel that is expected to contribute at least to 

the initial conductivity (see Fig. 5.44). 

 

       

               
Fig. 5.43—Exp. 4—Conductivity measurements. 
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Fig.  5.44—Exp. 4—Waviness 3D surface view for 30-min. rock. 

 

 

 

5.2.5. Experiment 5: Viscoelastic Surfactant Acid and Limestone, 200°F, 0.003 ft/min. 

 

Figs. 5.45, 5.46 and 5.47 present the results for Exp. 5.  The 3D view unfiltered on all 

three plots shows that the acid dissolves a big amount of rock progressively (see how the 

60-min. surface is blue reflecting the deep surface values).  The 3D view valleys plot 

shows that the amount and size of the wormholes that appear at 30 minutes is almost the 

same at the 60-min. although the acid continues dissolving the surface.   

  

The increase in the amount of rock dissolved can be seen in Fig. 5.48, where the slope of 

the curve increases after 30 minutes.  The profiles in Fig. 5.49 show how the wormholes 

that develop at 30 minutes do not become significantly larger when the acidizing time is 

doubled to 60 minutes; this can be observed in Fig. 5.50, which shows that the 

hydrodynamic effect present at 30 minutes is eliminated in the 60 minutes profile.  
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Fig. 5.45—Exp. 5: Visualization 3D surfaces of viscoelastic surfactant acid and 

limestone—200 °F, 0.003 ft/min., 15 min.  
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Fig. 5.46—Exp. 5: Visualization 3D surfaces of viscoelastic surfactant acid and 

limestone—200 °F, 0.003 ft/min., 30 min.  
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Fig. 5.47—Exp. 5: Visualization 3D surfaces of viscoelastic surfactant acid and 

limestone—200 °F, 0.003 ft/min., 60 min.  
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5.48—Exp. 5—Volume of rock dissolved on rock surface. 
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Fig. 5.49—Exp. 5—Longitudinal and transversal cross-section profiles.  
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Fig. 5.50—Exp. 5—Comparative cross-section profile.  

 

 

The roughness in Fig. 5.51 shows that the roughness at 30-min. is close to that at 60-

min. This can be confirmed by the roughness parameters in Fig. 5.52, which shows that 

some of 30-min and 60-min. roughness parameters are close, but far from the 15-min. 

values.  

 

 

 
Fig. 5.51—Exp. 5—Comparative roughness cross-section profile. 

 

  

Notice that the Sa, Sq, Sz and Sc parameters increase with contact time, but SDq and Sdr 

have a decrease from 30 minutes to 60 minutes.  The raw meaning of this is that the 

surface area starts decreasing, and that the wormholes are not growing at the same rate 

that the surface is being dissolved.  This process can be observed in Fig. 5.53 where the 

original data MRC plot of the 30 and 60 minutes curves overlap.  

 

The conductivity measurements (Fig. 5.54) show that the 30-min. rock sustained the 

conductivity better than the other two rocks.  That could be attributed to the large 
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channel created in this experiment.   In contrast, the 60-min. rock conductivity falls 

along the same slope as the 15-min. contact time, even though it has more roughness.   

 

 

  

 
Fig. 5.52—Exp. 5—Roughness parameters. 
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Fig. 5.53—Exp. 5—Original data material ratio curves. 

 

 

 

        

                       
Fig. 5.54—Exp. 5—Conductivity measurements. 

 

 



 

 

 

86 

5.2.6. Experiment 6: Viscoelastic Surfactant Acid and Dolomite, 200°F, 0.005 ft/min. 

 

The samples in Exp. 6 were treated with viscoelastic surfactant acid.  Figs. 5.55, 5.56 

and 5.57 show that dolomite has a different dissolution texture; as can be seen on the 3D 

valley figures, the wormhole density is higher.  These wormholes are not as deep as 

those created in limestone.  Unfortunately, the 30-min. rock had different nature than the 

other two pairs, that fact was apparent before the treatment was performed.  Therefore, 

heterogeneities can be seen in the blue transversal strips on the filtered 3D view on Fig. 

5.57.  This fact also causes the 30-min. results not to represent the contact time 

sequence, but again it is clear that the acid system does not allow the wormholes to grow 

up after a certain point. 

 

Fig. 5.58 shows that the 30-min. experiment has less volume dissolved at the surface 

than the 20-min. one.  The dissolution pattern (Fig. 5.59) occurs along the entire surface 

and no channel or hydrodynamic effect is visible.  Again, the 30-min. rock exhibits 

fewer wormholes and less dissolution than the 20-min. rock.   

 

Fig. 5.60 compares the roughness profiles.  The roughness increases somewhat between 

10 an 20 minutes, but the 30-min. roughness is less than 20-min.  Fig. 5.61 shows the 

roughness parameters. Here again, all the parameters show that the 30-min. rock 

roughness is less than expected.  
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Fig. 5.55—Exp. 6: Visualization 3D surfaces of viscoelastic surfactant acid and 

dolomite—200 °F, 0.005 ft/min., 10 min. 
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Fig. 5.56—Exp. 6: Visualization 3D surfaces of viscoelastic surfactant acid and 

dolomite—200 °F, 0.005 ft/min., 20-min.  
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Fig. 5.57—Exp. 6: Visualization 3D surfaces of viscoelastic surfactant acid and 

dolomite—200 °F, 0.005 ft/min., 30 min. 
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Fig. 5.58—Exp. 6—Volume of rock dissolved on rock surface. 
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Fig. 5.59—Exp. 6—Longitudinal and transversal cross-section profiles.  
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Fig. 5.60—Exp. 6—Comparative roughness cross-section profile.  

 

 

  

 
Fig. 5.61—Exp. 6—Roughness parameters. 

 

 

Fig. 5.62 shows that the 30-min. rock MRC is between the 10- and 20-min. curves.  

Additionally, Fig. 6.63 shows that the higher slope of the 20-min. sample causes higher 
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values of the core depth parameter Sc than that observed in the limestone experiments.  

This is caused by the high-density wormholes that characterize the dolomite dissolution. 

 

 

 
Fig. 5.62—Exp. 6—Roughness comparative of material ratio curves.  

 

 

 
Fig. 5.63—Exp. 6—Original data comparative of material ratio curves.  
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The conductivity measurement on this set of rocks is shown in Fig. 5.64.  The 10-min. 

contact time sample starts with low conductivity and continues without a considerable 

decrease.  On the other hand, the 20-min. rock has high conductivity at low closure 

stress, but declines more rapidly than the 10-min. rock at high closure stresses.  The 30-

min. rock exhibits a behavior close to the 10-min. rock but with slightly higher 

conductivity decay.  

 

       

                   
Fig. 5.64—Exp. 6—Conductivity measurements. 

 

 

5.2.7. Experiment 7 and 8: Straight Acid and Chalk, 100°F, 0.005 ft/min. 

 

Some of the rocks in Exp. 7 were inadvertently protected from the acid by a rock/clay 

component; therefore only 3- and 5-min. experiments are valid.  The experiments were 

run at 100°F with 0.005 ft/min leakoff rate.  The main characteristics of this rock are the 

big channel features, no roughness, and no large wormholes. The surfaces are presented 

on Fig. 5.65 and 5.66; notice that the roughness plot has been changed for a mean-line 

leveled plot.  The amount of rock dissolved increases with contact time, as can be 

observed in Fig. 5.67. 
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Fig. 5.65—Exp. 7—Visualization 3D surfaces of straight acid and chalk I—100°F, 0.005 

ft/min., 3 min.  

 

(in.) 

 

(in.) 

(in.) 

 



 

 

 

95 

3
D

 V
ie

w
 U

n
fi

lt
er

ed
 

 

3
D

 V
ie

w
 V

a
ll

ey
s 

 

3
D

 V
ie

w
 (

L
ev

el
ed

) 

 
Fig. 5.66—Exp. 7: Visualization 3D surfaces of straight acid and chalk I—100°F, 0.005 

ft/min., 5 min. 
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Fig. 5.67—Exp. 7—Volume of rock dissolved on rock surface. 

 

 

Fig. 5.68 shows the profiles of both tests. The hydrodynamic effect is easily 

recognizable on the left side of the profile at both contact times. 
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Fig. 5.68—Exp. 7—Longitudinal and transversal cross-section profiles.  
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Exp. 8 was performed at only one acidizing time, 7.5 minutes. The temperature was 

100°F and the leakoff was 0.005 ft/min.  Although these rocks differed from the chalk I 

rock, especially with respect to the strength, similar channel features occur on the sample 

(Fig. 5.69).  No conductivity measurements were conducted. 

 

The profile of Exp. 8 can be seen in Fig. 5.70.  The plot shows that the hydrodynamic 

effect has affected the rock at the inlet. 

 

Since the main features of both experiment channels are on the waviness scale, there is 

no sense in filtrating them for roughness.  Therefore, characterization parameters in Fig. 

5.71 have been calculated using the original data set.  Those plots combine Exp. 7 and 8; 

although they are not filtered, all of them increase with the contact time.  
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Fig. 5.69—Exp. 8: Visualization 3D surfaces of straight acid and chalk II—100°F, 0.005 

ft/min, 7.5 min. 
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Fig. 5.70—Exp. 8—Longitudinal and transversal cross-section profiles.  

 

 

 
 

 
Fig. 5.71—Exp. 7 and 8—Characterization parameters. 
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6.   CONCLUSIONS AND RECOMMENDATIONS 

 

 

This study showed that the profilometer can represent textural effects of rock 

dissolution, and models function predictably.  However, comprehensive understanding 

of the effect will require further analysis and testing. 

 

6.1. Characterization Technique 

 

Visualization:  The visualization plots were useful in identifying the texture of the 

acidized surfaces, especially those related with visualizing the hydrodynamic channels 

and chalk rock that could not be perceived by the naked eye.  The Z inverted gray 3D 

surface was useful to recognize the occurrence and magnitude of the wormholes;  the 

filtered color 3D surface plot revealed rock heterogeneities and the pure action of the 

dissolution process without the hydrodynamic effect.  The longitudinal and transversal 

plots were more useful to identify uneven dissolution from one experiment to another.  

The 2D profile plots are helpful to identify dissolution progress and channel patterns. 

 

Statistical Amplitude:   Although Sa (mean), Sq (standard deviation) and Sz (ten point 

height) all responded the same to the degree of roughness, Sq is logically the most 

reliable of all three.  Sa may be skewed by the normalization process that subtracts the 

value of valleys before the mean is calculated, which might result in higher than accurate 

values, Sz may also overestimate if the laser beam reflects on anomalous bright spot on 

the sample.  Sq is unaffected by either of these irregularities, so its results are likely 

more consistent.  Using all three would be redundant.   

 

Neither Ssk (skewness) nor Sku (kurtosis) was included in the characterization because the 

Sz they may be highly affected by data set outliers.  Both Ssk and Sku can lead to 

misinterpretations when they are not strictly applied to Gaussian distributions. 
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Hybrid: The hybrid parameters Sdr and SDq represented the relationship between the 

viscoelastic properties of the surfactant fluid and the growth of wormholes, Sdr is the 

more reliable parameter because it represents percentage of increase at surface area; 

using both would be redundant.  

 

Functional: The core roughness depth Sc represents both the increasing roughness and 

the unfiltered material ratio curve, which describes the empty space left by the 

dissolution.  The volume of rock dissolved is useful to understand the degree of 

dissolution and to verify the validity of the data when longer contact times did not mean 

big increases on roughness. 

 

 

6.2. Profilometer 

 

The profilometer hardware and software has been setup, tested, and validated as a useful 

measurement tool to measure the acidized surface topography, and programs have been 

developed to perform data preprocessing and visualization and to analyze surface 

characteristics.  

 

The software calculates the amount of rock dissolves during the test by subtracting the 

data before and after acidizing.  Those values are useful to verify the validity of the 

experiment, and they can be used as input for future correlation and dissolution 

modeling. 

 

The technique presented on this work used a filter to separate the two components of the 

surface data, the roughness and the waviness.  The roughness represents the effect of the 

constant dissolution of the acid along the rock surface, and it is adequate to describe the 

surface characteristics.  The waviness represents the surface features related to localized 
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dissolution, like the hydrodynamic effect at the inlet of the cell or the less dissolved 

areas that appear when the rock has geological heterogeneities. 

 

 

6.3. Experimental Results 

 

Conclusions about treatment conditions and conductivity are premature because of the 

diverse change of variables for the entire sets of experiments.  As shown by Section 5, 

the texture of the surface responds very differently depending on the type of rock treated 

and the fluid system used.   

 

The Change on Fluid Type:  The fluid system not only creates different degrees of 

topography but it also can stop the increase in roughness as seen in Exp. 5.  This 

different type of behavior illustrates that any modeling effort must be independent for 

each type of fluid. 

 

The Change on Rock Type:  When Dolomite is treated with viscoelastic acid; it presents 

more roughness than the limestone.  The dolomite lost its volume faster than the 

limestone, and that it gains empty space much faster, too. 

 

Change on Leak off Rate:  Higher leakoff increases the roughness and the amount of 

rock dissolved of the surface when gel acid is pumped. 

 

The Change on Temperature:  The experiment of high temperature resulted in much 

higher roughness.  Additionally, the proportion of the dissolution is very high. 

 

Conductivity:  Since different fluids cause different etching patterns and different 

degrees of dissolution, it is not surprising that they may also create different degrees of 
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rock weakening.  Therefore, the weakening effect may hide the topography interaction in 

a way prohibits definite conclusions regarding the conductivity response.   

 

When rocks with hydrodynamic effects are put together in the load frame, the channel 

will not close since its borders will prop it open even at higher loads.  That leads to 

measurement problems:  First, the surfaces do not interact along the entire length of the 

sample, and second, the flow through the channel will overcome the flow through the 

pressed surfaces.  Therefore, the conductivity measurements for most cases can not be 

related to the roughness parameter Sq since the roughness features are not the ones that 

direct the flow.   

 

 

6.4. Recommendations About Conductivity 

 

We recommend the following procedures to improve our understanding of the 

relationship between conductivity and rock strength. 

 

1. Take rock strength loss into consideration as one of the most important parameters to 

determine the conductivity response.  Measure the rock strength before and after 

dissolution and add that information to future data sets.  Watch for correlation 

between roughness and rock weakening. 

 

2. Measure the rock compressive strength of pure, nonacidized fractured rock to create 

a basic understanding of the conductivity closure-stress phenomenon.  This 

knowledge will serve as a basis for the understanding of conductivity of acidized 

rocks. 

 

3. Perform roughness measurements of the rocks after they come out of the 

conductivity cell.  To analyze the change of the curve, compare the material ratio 
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curve with the original surface.  The material ratio curve may be the basis for 

modeling conductivity. 

 

4. Improve the conductivity measurement, assuring the nitrogen flows through the rock 

and not around it.  Additionally, use water instead of nitrogen to measure the 

conductivity so the measurements can be performed faster and with minimal 

calculation errors. 

 

5. Improve the conductivity stack measurements. Starting at zero load, at small pressure 

increments (e.g. 100 psi.) and continue to come final pressure such as 7,000 psi. 

 

 

6.5.  General Recommendations 

 

We offer the following recommendations for quality management of future results. 

 

1. Avoid using rocks with heterogeneities or different rock qualities during a set of 

experiments since heterogeneities alter the sequence of results. This includes labeling 

and placing of the rocks in the cell carefully.  Follow the manual instructions about 

labeling of the rocks to avoid wrong scanning or misalignment. 

 

2. Explore ways to optimize the fast Fourier transformation of the original data to filter 

special features from the topography.  

 

3. Incorporate the material ratio curve to model the interaction of the acidized surfaces 

under closure stress.  Use accurate profilometer data and the material ratio curve as 

presented in the ISO Standard
17

 as the next research step to understand the process.  
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4. To analyze the differences between fractured surfaces and cut surfaces, develop a 

technique to fracture the rock instead of cutting it.  

 

5. Use the original volume or the dissolved value of the rock to verify the Neirode & 

Kurk correlation behavior and also as a tool for the future correlation. 

 

6. Take microcopy pictures of the pure and acidized rock to observe the effects of acid 

dissolution on rock weakening. 

 

7. Explore changes in the conductivity cell to avoid hydrodynamic effects at the rock 

inlet. 

 

8. Perform conductivity measurements on channeled rocks and verify its response on 

the amplitude and hybrid parameters. 
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APPENDIX A 

PROFILOMETER MANUAL 

 

 

 

Section 3 of this thesis contains a description of the profilometer and its components. 

This appendix contains a step-by-step procedure to operate the profilometer. 

 

 

 

1. Starting the Software and Hardware 
 

First double click on the LabView file (profilometer.vi) and wait until the software 

console appears. Fig. A-1.  Then press the button with the arrow on the upper right 

corner of the LabView window. 

 

 

 
Fig. A-1.  LabView profilometer main screen.   
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Activate the red power source switch on the control box front panel (Fig. A-2).  After a 

few seconds the distance readings start appearing on the software window.  

 

 
Fig. A-2.  Control box front panel. 

 

2. Preparing the rock sample: 
 

Before any other step, make sure of the following: 

 

Use prepared rocks that have rubber compound around then; each rock should have both 

rock surfaces clear and free of any excess of rubber (Fig. A-3).  

 

 
Fig. A-3. Cleaning the rock surface. 

 

Verify that the surfaces to be scanned correspond to each other at the time they were cut.  

 

Put both rocks as pictured in Fig. A-4, and label as indicated in Fig. A-5.  

 

The label should have three letters and a one- or two-digit number.  The rock on the top 

is rock “A” and the rock on the bottom is rock “B”.  The name is written on the center of 

the rock and repeated on the corner of each sample.  The texts are first engraved using a 
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pin tack and then rewritten using the paint pen. Additionally, the letters “OT” (On Top) 

are engraved and marked on the side of the sample.  Finally, draw two lines to show 

which ones are the fracture faces.  

 

 
Fig. A-4. Position of the rocks. 

 

 
Fig. A-5. Labeling. 

 

 

3. Placing the Sample. 
 

Clean the aluminum table (Fig. A-6) of any dirt that can alter a stable rock placement.  

 

Place the rock sample on the table and secure it using the table screws.  Make sure the 

sample is secured firmly against the four table rods (Fig. A-7). 

 

Always make sure that the arrow of the flow direction labeled on the sample points left 

to right on the profilometer.  That guarantees that the rock is scanned in the same 

position before and after the treatment. 

 

 

A&M 12A 

A&M 12B 

A&M 12A 

A&M 12B 
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Fig. A-6. Table components. 

 

 

 
Fig. A-7. Firm rock placement. 

 

 

4. Adjust the Laser Sensor. 
 

Adjust the laser sensor using the vertical milling table screw to assure full range 

measurements over the surface topography.  

 

For this propose, put the aluminum ruler on the surface and across the laser beam and 

verify that you have readings between 0.9 and 0.999 on the Z direction. (Fig A-8) 

 

 

4. Position Laser at Zero X, Y value. 
 

On the control box front panel, put both switches labeled “Mode” on Manual position.   

Put the switches “Speed” on Fast and proceed to press the Position button.  This causes 

the motors to move the table.  

 

Rod

Screws 
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The controls on the right move the table in the Y direction and the ones on the left in the 

X direction.   

 

Look at the software window X and Y position indicators, and keep controlling the 

motor until both are exactly at zero position.   When the table position is close to zero, it 

will be necessary to switch the Speed controls to Slow and press the Position button 

quickly in order to get the zero value; If you over pass the zero, change the Direction and 

continue with the positioning.   

 

When finished switch both “Mode” buttons to Auto Position. 

 

 

 
Fig. A-8. Use of ruler to procure full range measurement. 

 

 

5. Input the file and scan information. 
 

On the software window, first click on the File setup button and select a location to save 

the data file.  Then press the button Sample Setup to open the window shown in Fig. A-

9.  Start filling the boxes first inputting the name of the experiment or important 

information that is relevant to the sample; then, input the experiment number as it is 

labeled on the rock sample.  Since all the rocks have the same dimensions, input 7 as the 

sample length, and 1.7 as the sample width.  Finally input as measurement interval 0.05 

for a 2 hours scanning, or 0.025 for a 4 hour scanning. 

 

Press OK. 

Pre-set 

marker  
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Fig. A-9. Establishing the measurement settings. 

 

 

6.  Start Scanning 
 

Click on the Start Scan button on the software screen.  A window will remind you to 

have the mode switches on Auto mode.  Click OK.  Immediately the laser will start 

moving along the sample backward and forward.   At the end of the scan, the laser will 

stay still at the lower right corner of the sample.  Turn off the profilometer and then stop 

the LabView software application. 

 

 

Safety Measures 
Do not leave the equipment working without supervision; some input mistakes or low 

power surge can make the controls fail and then cause damage to the parts.  

 

If by mistake you need to stop the scanning, first stop the application window by 

pressing the stop button on the upper menu of the software.  Close the software window 

and then reopen the LabView file and restart the setting process.   

 

Never turn off the profilometer while running the LabView application; that will cause a 

dangerous abnormal response even if you reset the program.  In that case, turn off the 

profilometer, close the software, and start from the beginning. 

 

Make sure that the measurement interval is a multiple or fraction of 0.05 in.  If it is not, 

it will cause a malfunction that will damage the equipment.  

 

Make sure to keep the same laser sensor height for the before and after measurements; if 

not, make sure to record the difference in height by measuring it on the marker of the 

laser screw milling table.  Avoid leaving the samples on the table for long periods of 
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times because although they are clean they still have acid vapors that can cause 

corrosion of the table.  Also, keep the rock from touching the laser sensor since it can 

scratch the lenses and damage the device. Finally, keep rock particles from falling onto 

the milling table screws, and lubricate the screws after each 50 scans using only 

lubricant for plastic nuts (Trigel-300s). 
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APPENDIX B 

MATLAB FUNCTIONS 

 

 

MatLab was used to process the data obtained from the profilometer. This is done using 

two programs: Original Data Processor and Final Calculator.   The first one is used to 

convert the vector data from the profilometer in to a 2D height matrix.  The second uses 

different subroutines to perform the filtering, plotting, and parameters calculations.  The 

diagram in Fig. B-1 shows a schematic of the work flow. An explanation of each process 

follows. 

 

Fig. B-1. Data analysis work flow. 

Original Data 

Processor   

Cut Corners  

and Sides 

  

Log Color  

Bar 

ISO Filter 

Evaluation 

Area 

Material Ratio 

Curve 

Raw data from 

Profilometer (BEFORE) 
 

Raw data from 

Profilometer (AFTER) 

Final Calculator   

- 

 - 3D Plot 
 - Etched Volume 

 - 3D Plot  

 - 2D Profiles Plot 

 - 3D Roughness Plot 

 - 3D Waviness Plot 

 - 3D Valleys Plot 

MRC 

Roughness 

Calculations 

Roughness 
Parameters 

 

Vector to Matrix 

Conversion 

Vector to Matrix 

Conversion 

Original Data 

Processor   

Save 
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Two sets of data from the profilometer are processed using the Original Data Processor 

program; it uses a vector-to-matrix algorithm to covert the raw data into a 2D height 

matrix of data.  

 

The Final Calculator program reads the matrices After and Before, and subtracts them. 

The new matrix is then processed using a routine to cut the corners and the sides that 

correspond to the rubber around the sample. After that process the etched volume can be 

calculated using the eq. 4.10, and a 3D plot of the surface appears on the screeen. 

 

Next, the evaluation area is selected from the surface by cutting the rounded parts of the 

data. Then a new 3D plot is generated as (see Final Calculator Program on this 

appendix) as well as the 2D longitudinal and transversal plots.  At this point, the ISO 

Filter algorithm is applied to separate the roughness and the waviness; this allows 

creating the 3D plots for Roughness, Waviness, and Valleys Views. Some of the plots 

use a log color bar subroutine that allows the color scale to have more resolution at 

shallow values. 

 

The data corresponding to the Roughness is then used to calculate the Roughness 

parameters in eq. 4.1 to 4.9; then the Material Ratio Curve (MRC) is generated and the 

core depth parameter is calculated.  Subsequently, the characterization parameters are 

presented and the material ratio curve plot is generated.  

  

Finally, all the data is saved for future use i.e for comparative studies. The saved data 

includes the surface matrix, the MRC data, and all the parameters. 

 

 

Original Data Processor Program 

The original data processor is a data converter program.  It is used to convert the file 

from the profilometer (coordinates data) to a 2D height matrix.  First, the program uses 

the original file location path to open the file, and then it reads and saves the file header, 
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which includes Experiment Title, Sample Length, Sample Width, and Measurement 

Interval.  Next it reads the three columns of data called X Position, Y Position, and Z 

Displacement; all the columns are recorded in a data matrix.  The size of this matrix is 

equal to the number of data points recorded.   

 

The dimensions of the 2D matrix are calculated by: 

Num. Columns = (Sample Length / Measurement Interval) + 1 

Num. Rows = (Sample Width / Measurement Interval) + 1 

 

Then an algorithm takes sections of data from the data matrix at intervals equal to the 

number of rows and orders them in sequence.  As result a 2D matrix is created, its 

dimensions are the number of columns and the number of rows. 

 

Defining: 

data(i,j) = the data matrix 

nrows = the number of rows 

ncols = the number of columns. 

X(i,j), Y(i,j),  and Z(i,j) = New 2D matrixes 

The algorithm is. 

 
for i=1:2:nrows   % this reads the data points where the laser moves left to right 

    k=(i-1)*ncols; 

    for j=1:ncols 

        k=k+1; 

        X(i,j)=data(1,k); 

        Y(i,j)=data(2,k);  

        Z(i,j)=data(3,k); 

    end 

end 

 

for i=2:2:nrows   % this reads the data points where the laser moves right to left 

    k=i*ncols; 

    for j=1:ncols 

        X(i,j)=data(1,k); 

        Y(i,j)=data(2,k); 

        Z(i,j)=data(3,k); 

        k=k-1; 

    end 

end 
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The program also asks the user if the surface values should be inverted on Y direction; 

this is necessary when the rock has been placed on the profilometer in the wrong 

direction. Defining Z(i,j) as the 2D surface matrix, the inversion is done by the next 

algorithm. 

 

A=Z;    % Duplicate the matrix 

[ncols,nrows]=size (A);  % Get matrix dimensions 

for j=1:ncols 

     for i=1:nrows 

         Backward=nrows+1-i; % backwards position counter 

         ANew(j,i)=A(j,Backward); % new matrix with Y values inverted 

     end 

end 

Z=ANew;         % reassigning the inverted matrix to the Z matrix. 

end 

 

  

Final Calculator Program 

This program is a filtering and visualization program. It starts reading the data from two 

processed files, the After and the Before; then simply subtracts of the correspondent 

element of both matrixes to obtain a unique surface matrix. 

 

Then, the data points of the surface that correspond to the rubber are converted to not-a-

value (NaN).  This is done using a template in a subroutine called “CutCornersSides.m”; 

this routine contains the positions of the points that need to be converted to NaN.  After 

this, the surface obtained corresponds exactly to the shape of the rock sample.  Then the 

etched volume calculation is performed using the eq. B-1, where Z’ is the matrix after 

the corners are cut. This matrix is presented in a 3D color plot, and the etched volume is 

reported.  
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Next, the matrix is cut again to the evaluation area matrix; this is done by deleting the 

data from first four rows, the last five rows, and the first and last 12 columns.  With this 

new evaluation area matrix, a new 3D plot is presented as well as the 2D longitudinal 



 

 

 

119 

and transversal plot.  The longitudinal plot draws Rows 7, 14, and 21; the transversal 

plot draws the Columns 23, 46, 69, and 92. 

 

The evaluation area is then processed using a subroutine called “ISOFilter.m”.  This 

program calculates an approximation to the least mean square line (LMSL) for each 

longitudinal profile.  By definition, the LMSL is the line parallel to the geometrical 

profile such that the sum of the squares of the deviations of the effective profile from it 

is a minimum.   The program first calculates an approximated mean line by calculating a 

three-points average for each data point. This process is repeated 100 times until an 

optimum mean line is obtained.  Then the data points that fall below that mean line are 

subtracted from the profile and a second mean line is calculated over the remaining data 

by the same process, repeated only 10 times.   This last mean line is then subtracted from 

the original profile data.  Subsequently, the resultant matrix corresponds to the 

roughness and the second mean line corresponds to the waviness.  The three most 

challenging cases of surfaces with big holes and valleys were tested to find that 100 

calculations of the first mean line and 10 calculation of the second mean are necessary to 

achieve an adequate filtering. 

 

If the original matrix is:  

Zinput(i,j)= evaluation matrix 

The algorithm computes as follows. 

 

for f=1:Nrows 

    ZL=Zinput(f,:);   % captures the row of data or profile to be filtrated. 

    [nrows,ncols]=size(ZL);   

    ZLOriginal=ZL;  % New matrix to save the original profile for future subtraction. 

 

% THIS “cycle for” is for the FIRST MEAN Calculation. 

    for h=1:100                % 100 has been found to be the optimum for the roughest surfaces 

        for i=2:ncols-1 

            j=i-1; 

            k=i+1; 

            ZLlsml(1,1)=ZL(1,1);   % first data point. 

            ZLlsml(1,i)=(ZL(1,j)+ZL(1,i)+ZL(1,k))/3;    % three points average 

            ZLlsml(1,ncols)=ZL(1,ncols);  % last data point. 

        end 

        ZL=ZLlsml;    % reassigning the variable for the next h 

    end 
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% THIS “cycle for” is to subtract the data below the mean line  

    for i=1:nrows 

        for j=1:ncols 

            if ZLOriginal(i,j)>ZL(i,j)       % compares the original to the high wave filtered 

                ZLHighWave(i,j)=ZLOriginal(i,j); % If is bigger then keeps the original 

            else 

                ZLHighWave(i,j)=ZL(i,j);       % if is smaller change to the filtered value 

            end 

        end 

    end 

     

    ZL=ZLHighWave;        % reassigning to calculate the second mean line 

     

% THIS “cycle for” is for the SECOND MEAN Calculation. 

    for h=1:10    %  10 Has been found to be the optimum for the 100 on the FIRST CYCLE  

        for i=2:ncols-1 

            j=i-1; 

            k=i+1; 

            ZLlsml(1,1)=ZL(1,1); 

            ZLlsml(1,i)=(ZL(1,j)+ZL(1,i)+ZL(1,k))/3; % three points average 

            ZLlsml(1,ncols)=ZL(1,ncols); 

        end 

        ZL=ZLlsml; 

    end 

     

    ZLfinal=ZLOriginal-ZL;   % the final profile is calculated 

    Zwaviness(f,:)=ZL;  % Zwavines is the Waviness matrix 

    ZFiltered(f,:)=ZLfinal;   % ZFiltered is the Roughness matrix 

end 

 

After these calculations, the plots of roughness, waviness, and 3D valleys are presented; 

subsequently, the roughness parameters Sa, Sq, Sz, Ssk, Sku, SDq, and Sdr are calculated 

using the data from the roughness matrix obtained.  This is done using Eqs. 4.1 to 4.9 in 

Section 4. 

 

For the calculation of the parameter Sc (core depth) the MRC is calculated by means of 

the linearization of the roughness matrix and its ordering by height.  Then the values of 

90% and 10% are calculated using an interpolation point technique.  The linearization is 

performed by the algorithm. 

 

% Linearization = Converting the ZLFinal matrix to a one dimension Matrix ZL. 

ZLFinal=ZFinal;     % this is a new assignation to avoid changing the original ZFinal matrix 

[nrows,ncols]=size(ZLFinal);  

ZLineal=[]; % Initializing ZLineal matrix variable. 

for i=1:nrows 

   for j=1:ncols 

      ZLineal=[ZLineal, ZLFinal(i,j)];  % adds each row after row to create a vector variable. 
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   end 

end 

 

% Creating the MRC 

Zsort=sort(ZLineal);               % Ordering MRC 

ZMRC=InvertVectorOrder(Zsort);    % Order for plot by height 

 

[value1,MRCsize]=size(ZLineal);   % size for Xaxis 

Xmrc=[0:1:MRCsize-1];                % creation of X axis matrix 

Xmrc=100*Xmrc/MRCsize;              % X matrix on percentage 

Sp10=interp1(Xmrc,ZMRC,10);        % Interpolating for 10% 

Sv90=interp1(Xmrc,ZMRC,90);         % Interpolating for 90% 

Sc=Sp10-Sv90;   % calculation of the Sc parameter value 

 

The last figures displayed by the program are the MRC plot as well as a histogram of the 

data.  Finally the all the roughness parameters are printed in the MatLab screen and the 

variables are saved on a MatLab data file that contains the following variables: 

 

ExpTitle = Experiment title 

SampleLength = Sample length 

SampleWidth = Sample Width 

MeasurementInterval = Measurement interval 

PhaseApplied = Datum correction applied to the after rock. 

X2=  X matrix of the coordinates positions of on the X direction. 

Y2 = Y matrix of the position coordinates in the Y direction 

ZFinal = Height matrix of the Roughness. 

Xmrc =  X values of the MRC 

ZMRC = Matrix of the Material Ratio Curve 

Sa, Sq ,Sz, Ssk, Sku, SDq, Sdr,Sp10, Sv90 = Roughness parameters. 
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APPENDIX C 

 

SAMPLE PICTURES 
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Fig. C-1—Exp. 1: Emulsified acid and limestone, 200 °F, 0.005 ft/min. 
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Fig. C-2—Exp 2: Emulsified acid and limestone, 275 °F, 0.005 ft/min.  
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Fig. C-3—Exp. 3: Gelled acid and limestone, 200 °F, 0.005 ft/min.  
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Fig. C-4—Exp. 5: Viscoelastic surfactant acid and limestone, 200 °F, 0.003 ft/min. 
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Fig. C-5—Exp. 6: Viscoelastic surfactant acid and dolomite, 200 °F, 0.005 ft/min. 
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Fig. C-6—Exp. 7: Straight acid and chalk I, 100 °F, 0.005 ft/min. 
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Fig. C-7—Exp. 8: Straight acid and chalk II, 100 °F, 0.005 ft/min. 
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