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ABSTRACT 
 

Advancing Methods for Determining the Source of HEU Used in Terrorist Nuclear 
Weapon (April 2007) 

 

Adrienne M. LaFleur 
Department of Nuclear Engineering 

Texas A&M University 
 

Research Advisor: Dr. William Charlton 
Department of Nuclear Engineering 

 

An algorithm was developed that uses measured isotopic ratios from fission product 

residue following the detonation of a high-enriched uranium nuclear weapon to compute 

the original attributes of the material used in the device. The specific attributes assessed 

are the uranium isotopics (considering 234U, 235U, 236U, and 238U) and the enrichment 

process used to create the material (e.g., gaseous diffusion, gas centrifuge, etc.). Using 

the original attributes of the weapon significantly increases the probability of identifying 

the perpetrator of the attack. In this study, research was conducted to perform sensitivity 

analysis of the calculated values, analyze alternate enrichment methods, determine the 

source (uranium mine) from which the feed material was taken and assess potential 

“spoofing” techniques. The purpose of this research was to verify that the analytical 

method developed would remain valid for a multitude of variations that could be used to 

disguise the origin of the nuclear material in the device. It is envisioned that this 

methodology could serve as a preprocessing step to a more computationally intensive 

and more accurate system in the event of a nuclear terrorist attack.   
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CHAPTER I 

INTRODUCTION 

 

Scenario of interest 

One of the most crucial issues to national security in the United States is the ability to 

safeguard our country against nuclear terrorism. If national security was breached and a 

terrorist nuclear device was detonated in the United States, how quickly could we assess 

the site to determine what type of device was detonated, how powerful the device was 

and where it came from? Nuclear threats are not widely understood by the general 

population; therefore, if a terrorist device was ever detonated in our country immediate 

results must be produced in order to prevent mass hysteria.  

 

The three types of weapons that use nuclear material are radiological dispersal devices 

(RDD), nuclear weapons, and improvised nuclear devices (IND). This work is focused 

on the post-detonation attribution of a Highly Enriched Uranium (HEU) terrorist nuclear 

weapon. Terrorist devices may differ from military nuclear weapons mainly in the 

sophistication applied when constructed (e.g., type and grade of material used and 

quality of tamper/reflector). Terrorist nuclear weapons that use HEU are typically gun-

type weapons. This type of weapon requires approximately 25 kg of weapons-grade 

_______________ 
This thesis follows the style of Nuclear Technology. 
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HEU and is detonated when a propellant blows one sub critical mass into the other 

forming a single supercritical mass and initiating a nuclear chain reaction. Since a gun-

type weapon is considerably less complicated than an implosion weapon and more 

reliable (generally, gun-type weapons are not tested), this is considered to be a likely 

scenario for a nuclear terrorist attack.1 The assembly system for a gun-type weapon is 

illustrated in Figure 1. 

 
 
 
  

 

Tamper 

Tamper 
Beryllium 

235U 

235U 

Explosive 

Gun Barrel 

 

Fig. 1. Assembly system for a gun-type weapon.   

 
 
 
The dispersal of fission products in the environment can vary greatly depending upon the 

altitude of weapon detonation.  The most likely scenario for the detonation of a terrorist 

nuclear weapon would be on the ground.  In this case, fission products would be 

dispersed on the ground within the blast radius of the weapon.  To account for any non-
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uniform fission of the HEU device, it is necessary to collect several samples along the 

diameter of the blast to determine if there are any significant variations in the 

concentration of fission products. The number of fissions in the device per unit mass 

may be calculated by using fission product measurements obtained from the ground 

samples. Two useful fission products to measure are 89Sr and 95Zr because they are 

characterized by low neutron absorption cross-sections and relatively long half-lives of 

50.53 days and 64.02 days, respectively.2 On the other hand, if a weapon was released 

from an aircraft and detonated at a high altitude, the fission products would be initially 

dispersed in the atmosphere before being deposited non-uniformly on ground.  In this 

case, using measurements of noble gas fission products in the atmosphere, such as 

krypton and xenon, would provide the most accurate determination of the number of 

fissions in the device per unit mass.    

 

Attribution of an HEU nuclear weapon 

The detonation of an HEU weapon would cause catastrophic damage and mass 

casualties. Due to the severity of such an attack, it is critical to be able to accurately 

identify the perpetrators responsible. A key deterrent to nuclear terrorism is the ability to 

compute the original material attributes of a weapon because it significantly increases 

the probability of correctly identifying perpetrators of the attack. The purpose of this 

research was to develop an algorithm that utilizes post-detonation measured isotopic 

ratios in order to determine the pre-detonation material attributes within reasonable 

accuracy.  In general, post-nuclear event attribution of nuclear material occurs in several 
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stages where the first stage focuses on unambiguous process signatures such as uranium 

isotopic composition.3 The process that nuclear material (both uranium and plutonium) 

undergoes in order to produce a nuclear weapon is illustrated in Fig. 2.  

 
 
 

 

Fig. 2. Technical routes to a nuclear capability.   

 
 
 
This study was focused only on the process used to produce an HEU nuclear weapon. 

The first step of this process consists of uranium mining and milling. The natural 

variation in the 234U concentration in uranium mines throughout the world provides a 

signature that is unique to this step of process.4  This signature may be used to narrow 
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down the geographic location of the source (uranium mine) from which the feed material 

originated. The next step of the process analyzed in this study was uranium enrichment. 

Depending upon the method used to enrich uranium, increasing the 235U concentration 

also causes the 234U concentration to increase. Therefore the variation in the 234U 

concentration for various methods of enrichment provides a signature indicating what 

process was used to enrich the uranium. Once the enrichment process is known, it is also 

useful to determine whether or not 236U was present in the original material.  Enriched 

uranium of U.S. or Russian origin contains a significantly higher abundance of 236U due 

to the re-enrichment of naval fuel which also provides a unique signature indicating 

where the uranium was enriched.   

 

Project overview 

An algorithm was developed5 that uses measured isotopic ratios from fission product 

residue following the detonation of a nuclear weapon to compute the original attributes 

of the nuclear material used in the weapon. The specific attributes assessed are the 

uranium isotopics (considering 234U, 235U, 236U, and 238U) and the type of enrichment 

process used to create the material (e.g., gaseous diffusion, gas centrifuge, etc.).  Before 

the methodology developed can be implemented, environmental measurements must be 

obtained from weapon debris to determine the isotopic composition of the post-

detonation fission product residue and uranium source.  Several methods may be used to 

perform these measurements.  Preliminary measurements of the post-detonation fission 

product residue will most likely be performed using gamma spectroscopy because it is 
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non-destructive.  In order to ensure accurate measurements using gamma spectroscopy, 

environmental samples will usually be counted on a High purity germanium (HPGe) 

detector for one to two days. Then, measurements of both the uranium and fission 

product isotopics will be performed using mass spectroscopy.  This is the most accurate 

method for measuring ratios of isotopes from environmental samples.6 The ability to 

measure both fission product ratios and uranium isotopic ratios to a high accuracy is 

necessary to ensure validity of the values calculated in the algorithm. Isotopic ratios of 

uranium relative to 238U can be measured using thermal ionization mass spectroscopy 

(TIMS) with a sensitivity of better than 1.2 x 10-10.7 

 

The approach to developing this algorithm consisted of two main parts: a forward model 

and an inverse model. The forward model consisted of simulations to predict post-

detonation isotopics given the original isotopics of the material and the number of 

fissions (or yield) of the device. The inverse model calculated pre-detonation isotopics 

using analytical inversions of the buildup and decay equations (all first-order ordinary 

differential equations) and post-detonation isotopic measurements. The algorithm used 

was purely analytical, derived directly from burnup and radioactive decay equations. 

Thus, this methodology provided solutions with essentially no computational time 

required. In this study, further research was conducted to perform sensitivity analysis of 

the calculated values, analyze alternate enrichment methods, determine the source 

(uranium mine) from which the feed material was taken, and assess potential “spoofing” 

techniques.  
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Given a measurement of the post-detonation isotopics from fission product residue, the 

interest in this work was to attempt to determine the following characteristics (in this 

order of importance): (1) pre-detonation 235U enrichment, (2) pre-detonation 234U/238U 

isotopic ratio, (3) pre-detonation 236U/238U isotopic ratio, (4) enrichment method used to 

produce material, (5) pre-enrichment 234U/238U isotopic ratio, (6) pre-enrichment 

236U/238U isotopic ratio, and (7) source (mine or otherwise) from which feed uranium 

was taken. It was acknowledged immediately that steps (1)-(3) would have a likely 

chance of success and the steps (4)-(7) would be significantly more difficult.   
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CHAPTER II 

METHODOLOGY 

 

Forward model development 

The forward model consisted of simulations to predict post-detonation isotopics given 

the original isotopics of the material and the number of fissions (or yield) of the device. 

These simulations were performed using the ORIGEN2 computer code.8 ORIGEN2 

calculates the buildup and depletion of isotopics from irradiation and decay. The code 

possesses a large set of libraries (each library corresponds to a specific type of reactor) 

with cross-section, decay, and fission product yield data. ORIGEN2 uses the matrix 

exponential method to solve a large system of coupled, linear, first -order ordinary 

differential equations. While not a weapons burn code, ORIGEN contains sufficient 

capability to allow for analysis of the feasibility of the method developed here. In order 

to perform the ORIGEN2 calculations, a basic model of the ORIGEN2 code was created 

for an HEU weapon without 236U present in the original fuel (see Appendix A).   

 

Four different uranium signatures from gaseous centrifuge and gaseous diffusion 

enriched uranium, both with and without 236U present in the original material, were 

simulated. The uranium was enriched to 95 a/o 235U. The 234U enrichment for gaseous 

centrifuge was calculated using the following equation:  
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where M238 is the atomic mass of 238U and M235 is the atomic mass of 235U. The 

following equation was used to calculate the 234U enrichment for gaseous diffusion:  
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Natural uranium contains essentially no 236U (though small quantities are found in 

natural material due to the activation of 235U from neutron background); however, 

enriched uranium of U.S. or Russian origin includes a significantly higher abundance of 

236U due to the re-enrichment of naval fuel. The following equation represents the 236U 

enrichment in U.S. origin fuel: 
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Then, the burnup of the initial material in the weapon given a 20 kT yield was simulated 

using ORIGEN2. Generally, a 2 kT yield is associated with terrorist weapons; however, 

this value was not used because only 2% of the original material fissions. The task of 

                                                
* These equations were taken from TransWare Enterprises Inc., “TransFX Computer Software Manuals,” July 2001.  
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determining the original material used in the weapon becomes much simpler for low 

yields because there is only a slight difference between the pre-detonation composition 

and the post-detonation composition of the weapon. The resultant isotopics produced 

from this burnup were then decayed for 1.0 day (assumes that it will take approximately 

1 day or more to acquire measurements from the post-detonation fission product 

residue). Assuming that the weapon was detonated on the ground or at a relatively low 

altitude, 89Sr and 95Zr (characterized by long half-lives, low absorption cross-sections, 

and the ability to be measured in the environment) were the two fission products used to 

calculate the total number of fission from the device in the inverse model.  

 

Inverse model development 

The inverse model equations are all expressed in terms of atom ratios relative to 238U 

(the 238U concentration in the device is roughly constant during irradiation). The inverse 

model uses an iterative procedure where the pre-detonation 235U/238U ratio is set to an 

initial guess input by the user. The pre-detonation 234U/238U and 236U/238U (if applicable) 

ratios were calculated using Eqs. (1)-(3) and then combined with the initial guess for 

235U/238U in order to calculate the 235U enrichment of the original material using: 

1
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where ie0  is the pre-detonation enrichment for step i and 
ix

N
N

0
238 








 is the pre-detonation 

atom ratio of isotope x to 238U from step i-1 (or from the initial guess for the first step).  

 

The number of fissions in the device per unit mass was calculated using the 

measurement of two fission products: 95Zr and 89Sr. A single fission product could have 

been used but by using two fission products, iteration between the two yielded a better 

prediction of the number of fissions. The following equation was used to calculate the 

number of fissions per unit mass in the device: 
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where FT
i is the number of fissions in the device following irradiation (i.e., at time T) per 

unit mass for step i, 
TN

N








238

89

 is the measured 89Sr/238U atom ratio post-detonation (i.e., 

at time T), NA is Avogadro’s number, ER is the recoverable energy per fission, and Y89 is 

the cumulative fission product yield for 89Sr. In using Eq. (5) we assumed that the fission 

product yields and recoverable energy per fission from 235U was adequate (i.e., this 

assumes that all fissions were from 235U).  

 

An updated 234U/238U value was then calculated using measurements of 232U/238U in the 

residue and the following equation: 
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where σf
235 is the one-group microscopic fission cross section for 235U and σn,3n

234 is the 

one-group microscopic (n,3n) cross section for 234U. This equation assumes that no 232U 

existed in the original material and the measured 232U concentration was produced only 

from the 234U(n,3n)232U reaction. 

 

An updated 235U/238U value was then calculated using measurements of 235U/238U in the 

residue and the following equation: 
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where σa
235 is the one-group microscopic absorption cross section for 235U. This assumes 

that the change in 235U is equal to its loss rate from absorption.   

 

Then, an updated 236U/238U value was then calculated using measurements of 236U/238U 

in the residue and the following equation: 
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This equation assumes that the change in 236U is equal to its production rate from 

radiative capture in 235U minus the loss rate from the absorption of 236U. Equation (2.8) 

was obtained by assuming that the ratio of 236U/235U as a function of irradiation time was 

linear and therefore was easily integrated. Verification of this assumption is illustrated in 
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Fig. 3 which depicts the ORIGEN2 calculated 236U/235U isotopic ratio as a function of 

irradiation time. A linear trend line was used to fit to the data points. 

y = 0.119x + 0.0045
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Fig 3.  ORIGEN2 calculation of 236U/235U isotopic ratio versus irradiation time. 

 
 
 
A new value for the 235U enrichment was then calculated using Eq. (2.4). Equations (2.4) 

- (2.8) were repeated iteratively until the pre-detonation 235U/238U ratio converged to a 

value within a specified tolerance.  
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CHAPTER III 

URANIUM SIGNATURES 

 

Enrichment processes 

Weapons-grade HEU is typically enriched to 90 a/o 235U or greater. The method of 

enrichment provides a useful signature that may indicate where the uranium was 

enriched. Methods used to enrich uranium include: gaseous centrifuge, gaseous 

diffusion, electromagnetic isotope separation, and atomic vapor laser isotope separation.1 

The two most common enrichment processes used throughout the world are gaseous 

centrifuge and gaseous diffusion both of which separate the uranium isotopes in a 

gaseous compound called uranium hexafluoride.  

Gaseous Centrifuge 

In the gaseous centrifuge process, a rotor that is powered by an electric motor spins at 

high speeds in vacuum.  The gas form of UF6 is introduced into the middle of the rotor 

and the resulting centrifugal force concentrates the heavier 238UF6 molecules towards the 

center while the lighter 235UF6 molecules are concentrated toward the axis of the rotor.9 

A slow axial countercurrent flow of gas increases the separation of these two isotopes by 

producing a small cascade within the centrifuge which concentrates the enriched gas at 

one end and depleted gas at the other. The separation capacity of one centrifuge is 

increased by increasing the length of the rotor and the rotor wall speed. An example of a 

centrifuge is illustrated in Fig. 4. 
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Fig. 4. Centrifuge for uranium separation.10 

 
 
 
Gaseous Diffusion 

The gaseous diffusion process utilizes molecular effusion through small porous walls to 

separate the heavier 238UF6 molecules from the lighter 235UF6 molecules. The lower mass 

of the 235UF6 molecule causes it to move at a slightly higher velocity than the 238UF6 

molecule which increases its probability of effusing through the walls. The difference in 

the velocity of a 235UF6 molecule versus a 238UF6 molecule is extremely small 

(approximately 0.4%) which causes the separation achieved by one gaseous diffusion to 
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be extremely small.9  Therefore, numerous stages are required to produce LEU assays 

and over 4000 stages are required to produce HEU assays. A gaseous diffusion stage is 

illustrated in Fig. 5. 

 
 
 

 

Fig. 5. A gaseous diffusion stage used for uranium enrichment.10 

 
 
 
Electromagnetic Isotope Separation (EMIS) 

In the EMIS process, U+ ions are generated in an enclosed vacuum located in a magnetic 

field. An electrical potential is used to accelerate the ionized atoms which follow a 

circular trajectory in the plane perpendicular to the magnetic field. The radius of 

curvature of an ion’s trajectory depends on the strength of the magnetic field and the 

mass of the ion, its electrical charge, and the speed of the ion. The lighter 235U ions are 

more easily deflected by the magnetic field and therefore have a smaller radius of 

curvature than the 238U ions, as illustrated in Fig. 6.1 To put this in perspective, in an 

EMIS separator with a beam diameter of 4 feet the difference between the beam 

diameters for 235U and 238U is about 0.3 inches.  
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Fig. 6. Uranium enrichment process based on electromagnetic isotope separation.11  

 
 
 
Atomic Vapor Laser Isotope Separation (AVLIS) 

The AVLIS process for uranium enrichment is based on the principle that 235U atoms 

and 238U atoms have slightly different excited energy states and therefore absorb light at 

different frequencies.  The lasers used in AVLIS are tuned to a precise frequency so that 

only the 235U atoms absorb the light.  The AVLIS system is operated in vacuum and the 

uranium is heated to a molten state which occurs at temperatures above 2000°C (which 

is significantly grater than the melting temperature for metallic uranium of 1130°C). 

Uranium becomes vaporized at this molten state forming an atomic vapor stream which 

flows through the collector plates, where it is illuminated by a precisely tuned laser light 



  18 

so only 235U atoms absorb the light. In order for a 235U atom to absorb enough energy to 

eject an electron and become a positively charged atom, three different lasers are used 

each tuned to precise frequency associated with a particular color in the ultraviolet 

spectrum.  The ionized 235U atom is then deflected an electromagnetic field into the 

collector while the neutral 238U atom passes through to the tails collector (see Fig. 7).1 

 
 
 

 

Fig. 7. Uranium enrichment process based on atomic vapor laser isotope separation.12  
 
 
 
In this study, the algorithm developed analyzed only gaseous centrifuge and gaseous 

diffusion enrichment methods. These methods are hard to distinguish because they both 

rely on the differences in mass between 235U containing molecules and 238U containing 

molecules, though they are based on different physical processes.  This results in small 

separation factors for both gaseous centrifuge and gaseous diffusion enrichment 
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methods, equal to 1.162 and 1.00429, respectively.13 It is expected that distinguishing 

most other methods (such as AVLIS or EMIS) would be much simpler. For instance, the 

AVLIS uses precisely tuned lasers to enrich uranium resulting in a separation factor that 

is nearly infinite which yields almost no 234U in the enriched product. 

 

In order to determine valid signatures indicating the method of enrichment, the values 

calculated in the inverse model for pre-detonation 234U concentrations were compared. 

For 95 a/o 235U centrifuge enriched fuel, the calculated 234U/238U ratio was 

approximately 5.0 times greater than the calculated 234U/238U ratio for 95 a/o 235U 

diffusion enriched fuel. These significant variations in 234U are presented in Table 1 and 

were used as signatures indicating the enrichment process used.  

 
 
 

TABLE I. 

Comparison of inverse model calculations to the exact values for gaseous centrifuge and 
gaseous diffusion enriched fuel with 236U.  

Pre-Detonation Value Inverse Model  Enrichment 
Process 

Atomic 
Ratio (T = 0 days) (T = 0 days) 

Percent 
Error 

N235/N238 42.4    43.1 ± 0.411 1.61% 
N234/N238 1.04     1.06 ± 0.015 1.66% Centrifuge  

(with 236U) 
N236/N238 0.195   0.204 ± 0.011 4.58% 
N235/N238 25.0    25.4 ± 0.254 1.58% 
N234/N238 0.200   0.204 ± 0.003 2.20% Diffusion       

(with 236U) 
N236/N238 0.115   0.121 ± 0.007 5.57% 
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TABLE II. 

Comparison of inverse model calculations to the exact values for gaseous centrifuge and 
gaseous diffusion enriched fuel without 236U.  

Pre-Detonation Value Inverse Model  Enrichment 
Process 

Atomic 
Ratio (T = 0 days) (T = 0 days) 

Percent 
Error 

N235/N238 35.5      36.1 ±  0.361 1.62% 
N234/N238 0.869   0.883 ± 0.013 1.69% Centrifuge  

(no 236U) N236/N238 0.0   0.005 ± 0.008 - 
N235/N238 22.4     22.6 ± 0.225 0.66% 
N234/N238 0.179  0.182 ± 0.005 1.31% Diffusion 

(no 236U) N236/N238 0.0  0.027 ± 0.003 - 
 
 
 
Presence of 236U 

After the enrichment process has been determined, whether or not 236U existed in 

original weapons material must be established. The values computed in the inverse 

model for gaseous diffusion and gaseous centrifuge enriched uranium, both with and 

without 236U present in the original material, are presented in Tables III and IV, 

respectively. For diffusion enriched fuel (with 236U), the 236U value from the inverse 

model was approximately 4.5 times greater than the 236U value for diffusion enriched 

fuel (without 236U).  
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TABLE III. 

Comparison of inverse model calculations to the exact values for gaseous diffusion 
enriched fuel with and without 236U.  

Pre-Detonation Value Inverse Model  Enrichment 
Process 

Atomic 
Ratio (T = 0 days) (T = 0 days) 

Percent 
Error 

N235/N238 25.0    25.4 ± 0.254 1.58% 
N234/N238 0.200   0.204 ± 0.003 2.20% Diffusion 

(with 236U) 
N236/N238 0.115   0.121 ± 0.007 5.57% 
N235/N238 22.4     22.6 ± 0.225 0.66% 
N234/N238 0.179  0.182 ± 0.005 1.31% Diffusion     

(no 236U) 
N236/N238 0.0  0.027 ± 0.003 - 

 
 
 

TABLE IV. 

Comparison of inverse model calculations to the exact values for gaseous centrifuge 
enriched fuel with and without 236U.  

Pre-Detonation Value Inverse Model  Enrichment 
Process 

Atomic 
Ratio (T = 0 days) (T = 0 days) 

Percent 
Error 

N235/N238 42.4    43.1 ± 0.411 1.61% 
N234/N238 1.04     1.06 ± 0.015 1.66% Centrifuge 

(with 236U) 
N236/N238 0.195   0.204 ± 0.011 4.58% 
N235/N238 35.5      36.1 ±  0.361 1.62% 
N234/N238 0.869   0.883 ± 0.013 1.69% Centrifuge  

(no 236U) 
N236/N238 0.0   0.005 ± 0.008 - 



  22 

CHAPTER IV 

SENSITIVITY ANALYSIS 

 

The methodology developed was tested for a 20 kT detonation of a 95 a/o 235U enriched 

HEU device. The “measured values” were produced from ORIGEN simulations for four 

different uranium signatures from gaseous centrifuge and gaseous diffusion enriched 

uranium, both with and without 236U present in the original material. The results from 

the inverse model were consistently higher than the exact values for the original material 

attributes. The resulting error may be attributed to the assumption made when 

developing the algorithm that the atomic density of 238U did not change with time. Error 

propagations were done by hand to predict uncertainties in the attributes as well as to 

determine the sensitivity of these results to errors in the input data. 

 

Sensitivity of initial guess for 235U concentration 

The algorithm was insensitive to the initial guess for 235U concentration. In all cases less 

than 10 iterations (less than 1 second computational time) were used to acquire a result. 

The results presented in Table V verified that for any positive initial guess of any order 

of magnitude input into the algorithm will be iterated to a reasonably correct answer. 
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TABLE V. 

Comparison of values calculated by the inverse model with various initial guesses for the 
235U concentration to the actual values. 

Enrichment 
Process 

Initial Guess 
(N235/N238)0 

Original Value   
(N235/N238)0 

Inverse Model    
(N235/N238)0 

Percent 
Error 

Centrifuge         
(with 236U) 1.00 x 1010 42.4 43.1 ± 0.431 1.61% 

Diffusion          
(no 236U) 1.00 x 10-10 22.4 22.6 ± 0.225 0.66% 

 
 
 
Sensitivity of error in calculated 234U attribute 

Error propagations were done by hand to predict uncertainties in the attributes as well as 

to determine the sensitivity of the results to the input data. Beginning with the equation 

derived for the original 234U/238U value, the error in the calculated 234U/238U isotopic 

ratio was determined by first substituting the equation for the total number of fissions in 

the device into the equation for the original 234U/238U value, resulting in the following 

equation for the 234U/238U value: 

 
1235234 232 238 89 238 235

238 238 89 235 234 238
30 0

i i
f

nT T

N N N Y M N
N N N M N

σ
σ

−
       ⋅=       
       

 (4.1) 

 

where substituting the equation for the total number of fissions in the device caused 

Avogadro’s number (NA), the recoverable energy per fission (ER), and the 235U 

enrichment (e0
235) terms to cancel out.  Then using error propagations the following 

equation was derived for the resulting error in the original 234U/238U value: 
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( ) ( )
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3
1235 232 89 89 235 234234 235

3
0 0

f n
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f nT

N M N Y N N
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εσε ε ε ε εσ ε
σ σ −

                  = + + + + +                              

 (4.2) 

 

In order to determine the sensitivity of the error in the 234U/238U value, Eq. (4.2) was 

used to plot the error in the calculated 234U/238U value as a function of the error in the 

measured 232U value and the 234U(n, 3n) microscopic cross-section.  The plot depicted in 

Fig. 8 shows that the calculated error in the 234U/238U value varies linearly as a function 

of the error in the measured 232U value and the error in the 234U(n, 3n) microscopic 

cross-section. The linear relationship determined is important because it indicates that 

error in the measured 232U value and the error in the 234U(n, 3n) microscopic cross-

section equally contribute to overall error in the calculated the 234U/238U value.  This 

relationship may also be utilized to determine the point at which reducing these errors no 

longer reduces the overall error in the calculated the 234U/238U value. 
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Fig. 8. Error in the calculated 234U/238U value as a function of the error in the measured 
232U value and the 234U(n, 3n) microscopic cross-section. 

 
 
 

Sensitivity of error in calculated 235U attribute 

Similar to the derivation for the error in the calculated 234U/238U isotopic ratio, the error 

in the calculated 235U/238U isotopic ratio was derived by first substituting the equation for 

the total number of fissions in the device into the equation for the original 235U/238U 

value resulting in following equation for the 235U/238U value: 
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 (4.3) 



  26 

 

where substituting the equation for the total number of fissions in the device caused 

Avogadro’s number (NA) and the recoverable energy per fission (ER) terms to cancel out, 

and squared the term for the 235U enrichment (e0
235). The error in the original 235U/238U 

value was derived by separating Eq. (4.3) into parts A and B in order to facilitate the 

error propagations.  The following equations represent the equations for A and B and the 

resulting error in the calculated 235U/238U value: 
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The sensitivity of the error in the 235U/238U value was determined by plotting the error in 

the calculated 235U/238U value as a function of the error in the 235U enrichment and the 

error in the 235U microscopic fission cross-section.  The plot depicted in Fig. 9 shows 

that the calculated error in the 235U/238U value varies linearly as a function of the error in 

the 235U microscopic fission cross-section and varies nonlinearly as a function of the 
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error in the 235U enrichment. The nonlinear relationship determined indicates that error 

in the 235U enrichment contributes more towards the overall error in the calculated the 

235U/238U value than the error in the 235U microscopic fission cross-section does.  

Therefore, more effort should be spent reducing the error in the value for the 235U 

enrichment than reducing the error in the 235U microscopic fission cross-section. 
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Fig. 9. Error in the calculated 235U/238U value as a function of the error in the 235U 
enrichment and the 235U microscopic fission cross-section. 

 

 

 

 



  28 

Sensitivity of error in calculated 236U attribute 

The derivation for the error in the calculated 236U/238U isotopic ratio is provided in 

Appendix B. The sensitivity of the error in the 236U/238U value was determined by 

plotting the error in the calculated 236U/238U value as a function of the errors in the 236U 

and the 235U microscopic absorption cross-sections.  The plot depicted in Fig. 10 shows 

that the calculated error in the 236U/238U value varies linearly as a function of the errors 

in the 236U and the 235U microscopic absorption cross-sections. The linear relationship 

determined indicates that the error in the 235U microscopic absorption cross-section 

affects the overall error in the calculated the 236U/238U value more than the error in the 

236U microscopic absorption cross-section.  This is because increasing the error in the 

235U microscopic absorption cross-section increases the overall error in the calculated the 

236U/238U value significantly more than increasing the error in the 236U microscopic 

absorption cross-section does. Therefore, more effort should be spent reducing the error 

in the 235U microscopic absorption cross-section than reducing the error in the 236U 

microscopic absorption cross-section. 
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CHAPTER V 

234U ISOTOPICS IN MINES 

 

Different uranium mines throughout the world are characterized by different isotopic 

abundances of 234U which may be used as a signature to indicate the geographic origin of 

the material. 234U has a relatively short half-life and exists in secular equilibrium with 

238U. Thus, the ratio of 234U to 238U should equal to the ratio of the half-lives (53.8 ppm).  

Variations in the ratio of 234U/238U may result from processes that disrupt the decay 

chain of 238U to 234U.7 All of the measured 234U/238U values shown in Table VI were 

measured directly using thermal ionization mass spectrometry where the 235U+ ion beam 

intensity was adjusted to correct for mass discrimination using the measured 235U/238U 

ratio obtained by gas source mass spectrometry.7, 14  
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TABLE VI. 

Variations in measured 234U/238U atom ratios from mines throughout the world.7,14  
Sample 

No.   
Country of 

Origin Milling Facility 
234U/238U 

Atom Ratio 
Statistical 

Uncertainty 
1 Finland Askola 5.444E-05 8.0E-08 
2 Finland Paukkajanvaara 5.126E-05 7.6E-07 
3 Australia Ranger Mine 5.455E-05 4.4E-07 
4 Australia Dam Operations 5.341E-05 6.2E-07 
5 Canada Cogema Resources 5.385E-05 6.0E-07 
6 Canada CAMECO Key Lake Op. 5.397E-05 3.4E-07 
7 Gabon Comuf Mounana 5.434E-05 4.2E-07 
8 Czech Republic DIAMO, Straz pod Ralskem 8.355E-05 4.9E-07 
9 Canada CAMECO Rabbit Lake Op. 5.444E-05 4.8E-07 

10 Namibia Roessing Uranium Mine 5.460E-05 4.1E-07 
11 France Cogema Lodeve 5.154E-05 2.8E-07 
12 France CETAMA Amethyste 5.340E-05 3.3E-07 

 
 
 

A plot of the measured 234U/238U atom ratios with associated uncertainties for all twelve 

samples is depicted in Fig. 11.  Sample 8 from the Czech Republic has a significantly 

greater 234U/238U atom ratio than any other sample which cannot be explained by 

geological processes.  One possibility may be a result of anthropogenic contamination 

with plutonium, especially 238Pu.7 This contamination may have occurred as a result of 

the Chernobyl accident. A more in depth comparison of the variation in the measured 

234U/238U atom ratios with associated uncertainties with sample 8 omitted is depicted in 

Fig. 12.    
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Fig. 11. The 234U/238U atom ratio measured in all twelve samples.7, 14 
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Fig. 12. Expanded plot of the measured 234U/238U atom ratios excluding sample 8. 7, 14
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CHAPTER VI 

DISCUSSION AND CONCLUSION 

 

Discussion 

Various methods that could potentially be used to disguise the origin of the nuclear 

material used in HEU weapon prior to it being detonated were assessed in order to 

determine their effects on the validity of the algorithm.  The first spoofing technique 

assessed was contamination of the original material used in the HEU weapon with 

fission products such as 137Cs or 60Co. This will result in higher measured post-

detonation concentrations of the fission products used to contaminate the original 

weapons material. The total number of fissions in the device per unit mass will be 

affected if the fission products used to contaminate the original material are the same as 

the fission products used in this calculation. Using two fission products the significantly 

increases the probability of determining that original material was contaminated because 

there is a smaller probability that the two fission products used in the algorithm were 

also used to contaminate the original material.  If only one of the fission products that 

was used in the algorithm was also used to contaminate the original material, then the 

total number of fissions in the device calculated using one fission product will differ 

significantly from the value calculated using the other fission product.  Thus, indicating 

that one of the fission products was either present in the original material or else 

measured incorrectly. 
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The second spoofing technique assessed was surrounding a metal uranium sphere with 

higher actinides such as 241Am or 237Np. This presents a considerably more difficult 

problem because all of the measured post-detonation fission product concentrations will 

be higher. Therefore, it is harder to determine obvious outliers from fission product 

concentrations that would indicate the original material was contaminated prior to being 

detonated.  In this case, the contamination of the original material with higher actinides 

may be determined by measuring the concentrations of several higher actinides to see if 

any stand out as being much larger than the rest.   

 

Another spoofing technique assessed was boosting the weapon prior to detonation. In a 

boosted nuclear weapon, a mixture of deuterium (D) and tritium (T) gas is injected into 

the central core of 235U metal sphere, called the “pit”.  The implosion of the pit causes 

the 235U to fission which in turn causes the atoms in the D-T mixture to undergo fusion.  

The fusion reaction produces large quantities of high energy neutrons (approximately 14 

MeV) which travel through the compressed pit causing additional fission reactions.11 

The boosting of a nuclear weapon greatly increases the yield by causing more of the 

material to fission during detonation.  Therefore, if calculated yield of an HEU weapon 

was on the order of 100 kT or greater it was probably boosted.  In the case where a 

weapon was boosted prior to being detonated but was a fizzle, then the atoms in the D-T 

mixture did not undergo fusion and post-detonation measurements of both deuterium and 

tritium could be obtained.  

 



  35 

The last spoofing technique assessed was using a combination of plutonium and uranium 

metal or Mixed Oxide fuel (MOX) fuel as the original material in the weapon. This 

presents the most difficult problem because not only will of the fission product 

concentrations be higher but any signatures indicating the method of enrichment will 

disappear.  In this case, it might be useful to combine techniques used to determine the 

original material in both an HEU and plutonium device.   

 

Conclusion 

In this work, an algorithm was developed that uses measured isotopic ratios from fission 

products and actinides present following the detonation of a nuclear weapon to compute 

the original material attributes of the weapon. The algorithm was comprised of analytical 

inversions of first-order differential equations derived directly from burnup and 

radioactive decay equations. The following post-detonation isotopic ratios were used: 

89Sr/238U, 95Zr/238U, 232U/238U, 234U/238U, 235U/238U, and 236U/238U. The primary 

advantage gained from this methodology was it provided accurate solutions with 

essentially no computational time required. Error propagations were used to determine 

the sensitivity of the error in the calculated original 234U, 235U, and 236U attributes for the 

HEU fuel.  The errors in the calculated 234U/238U and 236U/238U attributes were linearly 

related the errors in measured parameters. The error in the calculated 235U/238U attribute 

varied nonlinearly as a function of the 235U enrichment placing a significant importance 

on ensuring the accuracy of this value.  The determined signature that indicated the 

enrichment process used to create the weapons material was based on the calculated 
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234U/238U ratio in the inverse model. A source of error that was not assessed exists in the 

cross-section data used throughout the algorithm from the ORIGEN2 library for an 

FFTFC reactor. In this work, we were only testing the feasibility of the algorithm and 

did not consider its relationship to an actual weapon detonation. Thus, testing of this 

methodology using cross-section data obtained for an actual device detonation would 

improve the viability of the algorithm.  

 

This work is important to homeland security and a significant prototype to data protocol 

in the event of a terrorist attack in our country. The algorithm developed was restricted 

only to HEU devices; however, future efforts will consider plutonium devices as well.  It 

is also necessary to analyze how elements disperse in the environment and what current 

technology is available to measure isotopic fission fragments in the environment. All of 

the above aspects will affect the validity of the algorithm and if it could in fact be used if 

a terrorist device was detonated in the U.S. 
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APPENDIX A 

 

AN EXAMPLE OF ORIGEN2 DECK  
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Below is an example of the ORIGEN2 deck used to simulate the detonation of an HEU 

weapon. 

 

-1 
-1 
-1 
  RDA  Irradiation of 1 MT of fuel 
  RDA  Fuel enrichment is 95.0 w/o U-235 
  RDA 
  LIB  0  1 2 3  381 382 383  9  50 0 1 0 
  INP  1   1  -1  -1   1   1 
  BUP 
  IRP 0.0250 387037.0 1 2 4 2 BURNUP=9676   MWD/MT 
  IRP 0.0500 387037.0 2 3 4 0 BURNUP=19352  MWD/MT 
  IRP 0.1000 387037.0 3 4 4 0 BURNUP=38704  MWD/MT 
  DEC 1.1000         4 5 4 0 DECAY FOR 1.100 DAYS 
  BUP 
  OPTL 8 8 8 8 8 8 8 8 8 8 8 7*8 5*8 8 
  OPTA 8 8 8 8 2 8 7 8 7 8 8 7*8 5*8 8 
  OPTF 8 8 8 8 7 8 7 8 7 8 8 7*8 5*8 8 
  OUT     5   1  -1   0 
  END 
2 922340 7600. 922350 950000. 922380 42400. 0 0.0 
0  
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APPENDIX B 

 

CALCULATION OF ERROR IN 236U/238U ATTRIBUTE 
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The derivation for the error in the calculated 236U/238U attribute is long. The following 

equation for the 236U/238U isotopic ratio was obtained by substituting the equation for the 

total number of fissions in the device into the equation derived for the original 236U/238U 

value: 

 

{
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Several sub-variables are defined to avoid having the equations stretch out across 

multiple pages and to facilitate the error propagations. The sub-variables are used to 

simplify the solution and are not related to any physical concepts. The error in a given 

equation is represented by ε. The sub-variables A - F are defined as: 
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