Comparative Testing of the Combined Radiant Barrier and Duct Models in the ESL's Code-Compliant Simulation Model

A Project for Texas' Senate Bill 5 Legislation For Reducing Pollution In Non-Attainment and Affected Areas

Seongchan Kim, Ph.D. Jeff S. Haberl, Ph.D., P.E.

Energy Systems Laboratory (ESL) Texas A&M University System

> February 2007 Revised August 2007

ENERGY SYSTEMS LABORATORY

Texas Engineering Experiment Station Texas A&M University System

Executive Summary

This report presents a study of the application of a radiant barrier / duct model to the DOE-2.1e simulation program based on the previous methods (eQuest version 3.55 and EnergyGauge version 2.42) and the comparison of the results of the ESL's model versus the EnergyGauge program by the Florida Solar Energy Center (FSEC).

Sensitivity analyses were performed by varying duct insulation levels, supply duct area, return duct area, supply duct leakage, return duct leakage, and ceiling insulation levels. The results of sensitivity analyses show acceptable agreement versus the EnergyGauge program for duct insulation levels, supply duct area, return duct area, supply duct leakage, and ceiling insulation level. Significant differences in the return duct leakage calculations were observed. These comparisons show the ESL model is more sensitive to return duct leakage than the EnergyGauge model

Comparison of the results of the duct model for two cases (with radiant barrier and without radiant barrier) show acceptable agreements for the parameters of duct insulation, supply duct surface area, return duct surface area, supply duct leakage and ceiling insulation.

The results of savings (with and without radiant barriers) indicate that the ESL model shows slightly more savings for all parameters. In terms of the sensitivity of the results, the ESL model also shows more sensitivity for all parameters except supply duct leakage. This report used the results from the spreadsheet (Radiant_Barrier_Simulation.xls), DOE-2 input file (Default.inp) and EnergyGauge input (Habitat_radiant_barrier_test_again. enb).

Table of Contents

Executive Summary	1
Tables	3
Figures	3
1. Introduction	5
1. Introduction	5
1.1. Methods for Approximating Radiant Barriers with the DOE-2 Program	5
1.2. Comparison of the Radiant Barrier Calculations using Data from a Case-Study	
House versus the DOE-2 Simulation Model	5
1.3. Cooling and Heating Energy Use with and without the Radiant Barrier	9
2. Comparison of the ESL's Model (Radiant Barrier with a Duct Model) versus	
EnergyGauge (Radiant Barrier with a Duct Model)10)
3. Comparisons of Duct Model with and without Radiant Barrier	2
3.1 Comparison of Duct Model with Radiant Barrier	2
3.2. Comparison of Duct Model without Radiant Barrier 1	7
4. Comparisons of Saving Differences from Radiant Barrier of the ESL Model and	
EnergyGauge22	2
5. Summary	5
5.1. Comparison of the Results of the Duct Model with Radiant Barrier	5
5.2. Comparison of the Results of the Duct Model without Radiant Barrier	5
5.3. Comparison of the Results of Saving Difference of the ESL Model and	
EnergyGauge	7
5.4. Known differences between the ESL Model and EnergyGauge	3
References	9
Appendix)

Tables

Table 1. DOE-2.1e simulation codes for fictitious radiant barriers.	6
Table 2. Comparisons of the results of the duct model with radiant barrier	35
Table 3. Comparisons of the results of the duct model without radiant barrier	36
Table 4. Comparison of the results of savings differences between the ESL model and	
EnergyGauge	37
Table A. 1. Comparison of Dust Models with Padient Parrier	40
Table A. 1. Comparison of Duct Models with Radiant Barner	40
Table A. 2. Comparison of Duct Models without Radiant Barrier	40
Table A. 3. Savings Differences with and without Radiant Barriers for the ESL Model	
and EnergyGauge	41

Figures

Figure 1. Diagram of sensor location	. 7
Figure 2. Temperature plot of the measured and simulated attic temperature (08/01/2004	1—
8/14/2006)	. 8
Figure 3. Temperature plot of with and without the RB for summer (08/01/2004–	
08/14/2006).	. 8
Figure 4. On-site Solar radiation and wind speed (08/01/2004-08/14/2006)	. 8
Figure 5. Cooling energy use with and without the radiant barrier.	. 9
Figure 6. Heating energy use with and without the radiant barrier.	. 9
Figure 7. Schematic diagram of duct model based on ASHRAE 152-2004	10
Figure 8. Duct insulation	13
Figure 9. Supply duct area (% of conditioned space).	14
Figure 10. Return duct area (% of conditioned space)	14
Figure 11. Supply duct leakage (% of conditioned space)	15
Figure 12. Return duct leakage (% of conditioned space).	15
Figure 13. Ceiling insulation	16
Figure 14. Duct insulation	18
Figure 15. Supply duct area (% of conditioned space).	19
Figure 16. Return duct area (% of conditioned space)	19
Figure 17. Supply duct leakage (% of conditioned space)	20
Figure 18. Return duct leakage (% of conditioned space)	21
Figure 19. Ceiling insulation	21
Figure 20. Cooling energy differences and % savings from varying duct insulation with	
radiant barrier and without radiant barrier - ESL model	23
Figure 21. Cooling energy differences and % savings from varying duct insulation with	
radiant barrier and without radiant barrier – EnergyGauge	23
Figure 22. Comparison of cooling savings from varying duct insulation with radiant	
barrier and without radiant barrier for the ESL model and EnergyGauge	24
Figure 23. Cooling energy differences and % savings from varying supply duct area (%	
of conditioned space) with radiant barrier and without radiant barrier - ESL	
model	25

Figure 24. Cooling energy differences and % savings from varying supply duct area (% of conditioned space) with radiant barrier and without radiant barrier –
EnergyGauge
Figure 25. Comparison of cooling savings from varying supply duct area (% of conditioned space) with radiant barrier and without radiant barrier of the ESL model and EnergyGauge
Figure 26. Cooling energy differences and % savings from varying return duct area (% of conditioned space) with radiant barrier and without radiant barrier - ESL model.
Figure 27. Cooling energy differences and % savings from varying return duct area (% of conditioned space) with radiant barrier and without radiant barrier –
EnergyGauge
Figure 28. Comparison of cooling savings from varying return duct area (% of
conditioned space) with radiant barrier and without radiant barrier of the ESL and FSEC models
Figure 29. Cooling energy differences and % savings from varying supply duct leakage
with radiant barrier and without radiant barrier - ESL model
Figure 30. Cooling energy differences and % savings from varying supply duct leakage
with radiant barrier and without radiant barrier – EnergyGauge
Figure 31. Comparison of cooling savings from varying supply duct leakage with radiant
barrier and without radiant barrier of the ESL and FSEC models
Figure 32. Cooling energy differences and % savings from varying return duct leakage
with radiant barrier and without radiant barrier - ESL model
Figure 33. Cooling energy differences and % savings from varying return duct leakage
with radiant barrier and without radiant barrier – EnergyGauge
Figure 34. Comparison of cooling savings from varying return duct leakage with radiant
barrier and without radiant barrier of the ESL and FSEC models
Figure 35. Cooling energy differences and % savings from varying ceiling insulation with
radiant barrier and without radiant barrier - ESL model
Figure 36. Cooling energy differences and % savings from varying ceiling insulation with
radiant barrier and without radiant barrier – EnergyGauge
Figure 37. Comparison of cooling savings from varying ceiling insulation with radiant
barrier and without radiant barrier of the ESL and FSEC models

1. Introduction

In this analysis, it is assumed that a radiant barrier consists of sheets of aluminized mylar attached to the underside of rafters that support the roof deck in a residence to obstruct the radiant heat transfer between the hot roof surface and the other attic surfaces. According to the Florida Solar Energy Center (Parker et al. 2001), previous research in the Southeast has shown that roof-mounted radiant barriers can reduce the annual cooling electricity savings by 7-10%. In addition, the FSEC monitored nine homes with the radiant barrier systems and analyzed the pre- and post-cooling consumption to determine the impacts on energy use. The average cooling energy savings from a radiant barrier retrofit was 3.6 kWh/day, or about 9%. The average hourly reduction during the summer afternoon peak demand was 420 Watts (or about 16%). Radiant barriers can also provide reduced peak heating demand since the radiant barrier yields warmer attic temperatures during the night and early morning hours when the largest heating demands take place. The FSEC study showed that the attic temperature was 2°F warmer at 6 a.m. after the radiant barrier was applied in the winter time.

1.1. Methods for Approximating Radiant Barriers with the DOE-2 Program

Two methods were found in the literature to approximate radiant barriers in a DOE-2 simulation:

1) According to the eQuest program (James J. Hirsh & Associates (JJH 2004), the benefits due to radiant barriers can be calculated using information provided by the ASHRAE Handbook of Fundamentals, 1997, p. 24.13, Table 5, which assumes a 0.1 cfm/ft² ventilation rate (i.e., natural ventilation rate), attic temperature 80°F, sol-air temperature 120°F. In eQuest, the radiant barrier is incorporated by adding a fictitious insulation layer to the roof construction to account for the radiant barrier.

2) According to the FSEC (Parker 2005), radiant barriers were also calculated with EnergyGauge (FSEC 2005) by resetting the interior film resistance also according to the values suggested in the ASHRAE Handbook of Fundamentals. Since the start value used in EnergyGauge was not described in the publication, it was assumed that the values were the same as the value used for eQuest. Table 1 shows the DOE-2.1e simulation codes for the radiant barrier. In the case of eQuest, the fictitious material of the radiant barrier (R-value is 8.1 hr-ft²-F/Btu) is created and added to the roof layers (RF-1 and RF-2). For the EnergyGauge method, the DOE-2.1e command for the inside film resistance (I-F-R) was changed to 8.1 hr-ft²-F/Btu from the default value (0.68 hr-ft²-F/Btu).

Table 1. DOE-2.1e simulation codes for fictitious radiant barriers.

eQuest

RB	= MATERIAL RESISTANCE =	8.1	
RF-1	= LAYERS MATERIAL = (SHINGL PLYWOO	\$NON E-SIDING, PLASTIC- D-5/8IN, RB)	N STUD PART OF ROOF FILM-SEAL,
RF-2	= LAYERS MATERIAL = (SHINGL PLYWOO	\$STU E-SIDING, PLASTIC- D-5/8IN, WOOD-6IN,	JD PART OF ROOF FILM-SEAL, , RB)
EnergyGauge			
RF-1	= LAYERS MATERIAL = (SHINGL PLYWOO I-F-R = 8.1	\$NON E-SIDING, PLASTIC- D-5/8IN)	N STUD PART OF ROOF FILM-SEAL,
RF-2	= LAYERS MATERIAL = (SHINGL PLYWOO I-F-R = 8.1	\$STU E-SIDING, PLASTIC- D-5/8IN, WOOD-6IN)	JD PART OF ROOF -FILM-SEAL,

1.2. Comparison of the Radiant Barrier Calculations using Measured Data and

Simulated Data from a Case-Study House

The Energy Systems Laboratory at Texas A&M University has been monitoring the environmental conditions and energy consumption from the case-study house for 5 years. The case study house is a single-story, 1,100 sq. ft. house with an attic space. The house has 3 bedrooms, 1-½ bathrooms, one living room, one dining room, one kitchen, and one utility area (Kim 2006). The materials used in the construction of the wall include vinyl siding on 7/16-inch, OSB wrapped with Tyvek with all joints taped with foil tape. The inside of the walls has ½-inch gypsum on a 2x4-inch stud construction set at 16 inches on center with blown-in, treated cellulose insulation. The ceilings are 5/8-inch, fire-coded gypsum board on 2x4-inch trusses with 12-inches of fiberglass insulation. The roof construction consists of composite shingles on 30 lb. felt on 7/16-inch OSB deck placed on 2x4-inch trusses set at 24 inches on center. The windows are double-pane, clear glass with aluminum frame without a thermal break.

Figure 1 shows the location of the sensors. The temperature and humidity sensors were installed in the supply duct, at the end of the supply duct, in the attic space, and just behind the return air grill (Kim 2006). In order to calibrate the attic temperature of the case-study house, the measured attic temperatures were used for the verification of the attic temperature simulations.

Figure 1. Diagram of sensor location.

The calibration of attic temperature was performed using the initial simulation input file of the case-study house. Figure 2 shows the measured attic temperatures and calibrated simulation temperatures of the attic in the case-study house for the period August 1 to August 14, 2004.

After the calibration procedures for the attic temperature were applied (Kim 2006), two simulation methods (eQuest and EnergyGauge) for the radiation barrier systems were applied to the simulation input file of the case-study house. Figure 3 shows the measured and simulated attic temperatures, outdoor temperatures, and attic temperatures after the two different radiant barrier calculations were applied to the case-study house simulation model. From Figure 3, the two methods showed similar attic temperature patterns when a radiant barrier was simulated. Figure 4 shows on-site solar radiation and wind speed measurements.

Figure 2. Temperature plot of the measured and simulated attic temperature (08/01/2004– 8/14/2006).

Figure 4. On-site Solar radiation and wind speed (08/01/2004-08/14/2006).

1.3. Cooling and Heating Energy Use with and without the Radiant Barrier

Figures 5 and 6 show the annual cooling and heating energy use with and without the radiant barrier. For the annual cooling energy use, there were reductions of 8.3% for the method used by EnergyGauge and 7.8% for the method used by eQuest from the base case that does not have the radiant barrier. For the annual heating energy use, there were reductions of 1.4% for both methods. These results indicate that both methods result in similar effects to the base case.

Figure 5. Cooling energy use with and without the radiant barrier.

Figure 6. Heating energy use with and without the radiant barrier.

2. Comparison of the ESL's Model (Radiant Barrier with a Duct Model) versus

EnergyGauge (Radiant Barrier with a Duct Model)

ASHRAE developed ASHRAE Standard 152-2004 - Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 2004) to estimate design and seasonal efficiencies for residential building systems. This calculation considers the impacts of duct leakage, location (i.e., attic space, crawl space, etc.), insulation level, climate, etc. Figure 7 shows the ESL's duct model which contains two zones, one for return side and one for the supply side, derived from the model by Palmiter and Francisco (1996), which is the basis of the Standard 152-2004 model. This model was added to the DOE-2.1e simulation program using DOE-2 FUNCTION commands.

Figure 7. Schematic diagram of duct model based on ASHRAE 152-2004.

The following equations show the procedure for calculating the delivery efficiency of the heating and cooling systems that considers conduction loss and air leakage of the supply duct and return duct.

$$DE_{heating} = a_s B_s - a_s B_s (1 - B_r a_r) \frac{\Delta t_r}{\Delta t_e} - a_s (1 - B_s) \frac{\Delta t_s}{\Delta t_e}$$
(1)

$$DE_{cooling} = \frac{a_s Q_e \rho_{in}}{E_{cap}} \left(\frac{E_{cap}}{60Q_e \rho_{in}} + (1 - a_r)(h_{amb,r} - h_{in}) + a_r C_p (B_r - 1)\Delta t_r + C_p (B_s - 1)(t_{sp} - t_{amb,s}) \right)$$
(2)

where,

$$B_{s} = \text{conduction efficiency of supply duct} =_{\exp\left[\frac{-A_{s}}{60Q_{e}\rho_{in}C_{p}R_{s}}\right]}$$

$$B_{r} = \text{conduction efficiency of return duct} = \exp\left[\frac{-A_{r}}{60Q_{e}\rho_{in}C_{p}R_{r}}\right]$$

$$a_{s} = \text{air leakage efficiency of the duct of supply duct} = \left(\frac{Q_{e}-Q_{s}}{Q_{e}}\right)$$

$$a_{r} = \text{air leakage efficiency of the duct of return duct} = \left(\frac{Q_{e}-Q_{r}}{Q_{e}}\right)$$

$$E_{cap} = \text{capacity of the equipment (Btu/hr),}$$

Q_e	= system air flow (CFM),
C_p	= specific heat (Btu/(lb _m .°F)),
Δt_e	= temperature rise across the equipment (°F) = $\frac{E_{cap}}{60Q_e\rho_{in}C_p}$
Δt_s	= temperature difference between the building and the ambient temperature surrounding the supply (°F) = $t_{in} - t_{amb,s}$
Δt_r	= temperature difference between the building and the ambient temperature surrounding the return (°F) = $t_{in} - t_{amb,r}$,
t _{in}	= temperature of indoor air (°F),
t _{sp}	= supply plenum air temperature (°F),
t _{amb,s}	= ambient temperature for supply ducts (°F),
t _{amb,r}	= ambient temperature for return ducts (°F),
h _{amb,r}	= enthalpy of ambient air for return (Btu/hr),
h _{in}	= enthalpy of air inside conditioned space (Btu/hr),
A _s	= supply duct area (ft^2),
A _r	= return duct area (ft ²),
$ ho_{in}$	= density of air (lb/ft ³),
R _s	= thermal resistance of supply duct (hr-ft ² -°F /Btu),
R _r	= thermal resistance of return duct (hr-ft ² - ^{o}F /Btu).

To accomplish this, three function commands (SAVETEMP, DUCT, and DUCT2) were used: 1) The SAVETEMP function saves the buffer zone temperature and conditioned space temperature to send these temperatures to the next function; 2) The DUCT function calculates the delivery efficiency using temperature data from the hourly report and user inputs. Then, it modifies the Energy Input Ratio (EIR) every hour in proportion to the losses. The concept for this EIR modification came from Huang (2001); and 3) the DUCT2 function then changes the modified EIR back to the original value for the next calculation.

In order to verify the duct model based on ASHRAE 152-2004, the model was compared with EnergyGuage version 2.42 from the Florida Solar Energy Center, which can consider the duct heat gain from an attic space. To perform the comparison, a house with a similar size to the case-study house was developed with EnergyGuage version 2.42, and then several parameters were varied to compare with results from each simulation. Houston TMY2 data were used for all simulations. A sensitivity analysis was then performed by changing parameters including the supply duct area (ft^2), return duct area (ft^2), supply duct R-value, return duct R-value, supply duct leakage rate (%), return duct leakage (%), and ceiling insulation.

3. Comparisons of Duct Model with and without Radiant Barrier

3.1 Comparison of Duct Model with Radiant Barrier

Figures 8 to 13 show the annual cooling energy use (kWh) and percentage difference (%) using the ESL model versus the FSEC's program, EnergyGauge, both with radiant barrier models. Each model is compared against a base case as shown.

Figure 8 shows the results of varying the duct insulation (supply and return) from R-6 (base case) to R-4, which resulted in an annual cooling energy increase of 3.8% for the ESL model and .8% for EnergyGauge. Increasing the duct insulation level from R-6 (base case) to R-12 showed an annual cooling energy reduction of 1.8% for R-8, 2.9% for R-10, and 3.6% for R-12 from the ESL model; and 1.0% for R-8, 1.7% for R-10, and 2.1% for R-12 for EnergyGauge. These results are in reasonable agreement although the ESL model appears to be more sensitive to insulation changes than the FSEC model.

When compared to the base case where the supply duct surface area is 30% of the conditioned space area (330 ft²), the simulation results for different supply duct areas (Figure 9) show a 2.3% reduction for a 20% supply duct area (220 ft²), a 1.1% reduction for a 25% supply duct area (275 ft²), a 1.2% increase for a 35% supply duct area (385ft²), and a 2.3% increase for a 40% supply duct area (440 ft²) using the ESL model. EnergyGauge shows similar results with a 1.4% reduction for a 20% supply duct area, a 0.7% increase supply for a 35% duct area, and a 1.4% increase for a 40% supply duct area from the base case.

When compared to the base case where the return duct surface area is 6% of the conditioned space area (55 ft²) (Figure 10), the results show a 0.3% reduction for a 2% return duct area (22 ft²), a 0.1% reduction for a 4% return duct area (44 ft²), a 0.3% increase for an 8% return duct area (88 ft²), and a 0.5% increase for a 10% return duct area (110 ft²) using the ESL model. When using EnergyGauge, the results show a 0.2% reduction for a 2% return duct area, a 0.1% reduction for a 4% return duct area, a 0.2% increase for an 8% return duct area, and a 0.4% increase for a 10% return duct area.

For different supply duct leakages (Figure 11), the ESL model showed a 5.3% reduction for a 5% supply duct leakage, a 5.9% increase for a 15% supply duct leakage, and a 12.5% increase for a 20% supply duct leakage, as compared to the base case, which is a 10% supply duct leakage. EnergyGauge shows a 6.6% reduction for a 5% supply duct leakage, a 7.6% increase for a 15% supply duct leakage, and a 16.2% increase for a 20% supply duct leakage.

The return duct leakage variations were also performed (Figure 12). When a different return duct leakage rate was applied to the base case (a 10% return duct leakage rate), there was a 9.7% decrease for a 5% return duct leakage rate, a 12.6% increase for a 15% return duct leakage rate, and a 30.1% increase for a 20% return duct leakage rate from the ESL model. For EnergyGauge, there was a 3.1% decrease for a 5% return duct leakage, a 3.0% increase for a 15% return duct leakage, and a 6.0% increase for a 20% return duct

leakage from the base case (a 10% return duct leakage rate). The return duct leakage variations showed significant differences between the ESL model and EnergyGauge.

When the ceiling insulation level was changed from the base case (R-19) in the simulations (Figure 13), the ESL model showed a 2.8% increase for R-10 ceiling insulation, a 0.9% increase for R-15 ceiling insulation, a 0.9% reduction for R-25 ceiling insulation, and a 1.4% reduction for R-30 ceiling insulation. EnergyGauge shows a 3.1% increase for R-10 ceiling insulation, a 1.1% increase for R-15 ceiling insulation, a 1.3% reduction for R-25 ceiling insulation, and a 2.1% increase for R-30 ceiling insulation.

Figure 8. Duct insulation.

Figure 9. Supply duct area (% of conditioned space).

Figure 10. Return duct area (% of conditioned space).

Figure 11. Supply duct leakage (% of conditioned space).

Figure 12. Return duct leakage (% of conditioned space).

Figure 13. Ceiling insulation.

3.2. Comparison of Duct Model without Radiant Barrier

Figures 14 to 19 show the annual cooling energy use (kWh) and percentage difference (%) using the ESL model versus EnergyGauge, both without radiant barriers.

When compared to the base case where the duct insulation level (supply and return) was R-6 (Figure 14), the results showed a 5.5% increase for an R-4 duct insulation level, a 2.5% reduction for an R-8 duct insulation level, a 4.0% reduction for an R-10 duct insulation level, and a 4.9% reduction for an R-12 duct insulation level using the ESL model. When using EnergyGauge, the results showed a 2.0% increase for an R-4 duct insulation level, a 1.1% reduction for an R-8 duct insulation level, a 1.8% increase for an R-10 duct insulation level, a 2.3% increase for an R-12 duct insulation level.

When the supply duct surface area was changed from the base case, which is 30% of conditioned space (330 ft²) in the simulations (Figure 15), the ESL model showed a 3.1% decrease for a 20% supply duct area (220 ft²), a 1.6% decrease for a 25% supply duct area (275 ft²), a 1.6% increase for a 35% supply duct area (385 ft²), and a 3.3% increase for a 40% supply duct area (440 ft²). EnergyGauge shows a 1.5% decrease for a 20% supply duct area, a 0.7% decrease for a 25% supply duct area, a 0.8% increase for a 35% supply duct area.

The comparisons of variations in the return duct surface area (Figure 16) compared the return duct surface area from the base case, where the return duct surface area is 6% of conditioned space area (55 ft²), reveal that the annual cooling energy shows a 0.5% reduction for a 2% return duct area (22 ft²), a 0.2% reduction for a 4% return duct area (44 ft²), a 0.5% increase for an 8% return duct area (88 ft²), and a 0.9% increase for a 10% return duct area (110 ft²) from the ESL model. EnergyGauge shows reductions of a 0.2% for a 2% return duct area and a 0.1% for a 4% return duct area, and increases of a 0.3% for an 8% return duct area and a 0.4% for a 10% return duct area.

The comparisons of the supply duct leakages (Figure 17) show a 5.3% reduction for a 5% supply duct leakage, a 5.9% increase for a 15% supply duct leakage, and a 12.5% increase for a 20% supply duct leakage from the base case (10% supply duct leakage) using the ESL model. EnergyGauge shows a 6.5% reduction for a 5% supply duct leakage, a 7.5% increase for a 15% supply duct leakage, and a 15.9% increase for a 20% supply duct leakage from the base case.

For different return duct leakages (Figure 18), the ESL model shows a 11.8% reduction for a 5% return duct leakage, a 16.9% increase for a 15% return duct leakage, and a 44.2% increase for a 20% return duct leakage, as compared to the base case which is a 10% return duct leakage. EnergyGauge shows a 3.8% reduction for a 5% return duct leakage, a 3.6% increase for a 15% return duct leakage, a 7.0% increase for a 20% return duct leakage. The simulations of return duct leakage variations also show significant differences between the ESL model and EnergyGauge for the simulation results with radiant barriers (Figure 12). When a different ceiling insulation level (Figure 19) is applied to the base case (R-19 ceiling insulation), there was a 4.5% increase for R-10 ceiling insulation, a 1.5% increase for R-15 ceiling insulation, a 1.4% decrease for R-25 ceiling insulation, and a 2.2% decrease for R-30 ceiling insulation from the ESL model. For EnergyGauge, there was a 4.5% increase for R-10 ceiling insulation, a 1.5% increase for R-15 ceiling insulation, a 1.8% decrease for R-25 ceiling insulation, a 1.8% decrease for R-25 ceiling insulation, and a 2.9% decrease for R-30 ceiling insulation from the base case.

Figure 14. Duct insulation.

Figure 15. Supply duct area (% of conditioned space).

Figure 16. Return duct area (% of conditioned space).

Figure 17. Supply duct leakage (% of conditioned space).

Figure 18. Return duct leakage (% of conditioned space).

Figure 19. Ceiling insulation.

4. Comparisons of Saving Differences from Radiant Barrier of the ESL Model and EnergyGauge

Figures 20 to 37 show the percentage of savings with and without the radiant barrier using the ESL model and EnergyGauge program for various configurations.

In the case of the duct insulation (Figures 20 to 22), the results of the ESL simulation model show a 9.4% saving for R-4 duct insulation, an 8.0% saving for R-6 duct insulation, a 7.3% saving for R-8 duct insulation, a 6.9% saving for R-10 duct insulation, and a 6.7% saving for R-12 insulation after the radiant barrier is applied to the simulation model, while the results from EnergyGauge show a 4.9% saving for R-4, a 4.8% saving for R-6, a 4.7% saving for R-8, a 4.6% saving for R-10 and R-12 duct insulation level after the radiant barrier is applied.

The results of different supply duct surface area show a 7.2% saving for a 20% supply duct area (220 ft²), a 7.6% saving for a 25% supply duct area (275 ft²), an 8.0% saving for a 30% supply duct area (330 ft²), a 8.4% saving for a 35% supply duct area (385 ft²), and an 8.8% saving for a 40% supply duct area (440 ft²) after radiant barrier is applied to the ESL model. EnergyGauge shows a 4.7% saving for 20% and 25% supply duct areas, a 4.8% saving for 30% and 35% supply duct areas, and a 4.9% saving for a 40% supply duct areas (Figures 23 to 25).

When increasing the return duct surface area (Figures 26 to 28), the ESL model shows a 7.8% saving for a 2% return duct surface area (22 ft²), a 7.9% saving for a 4% return duct surface area (44 ft²), an 8.0% saving for a 6% return duct surface area (55 ft²), an 8.2% saving for an 8% return duct surface area (88 ft²), and a 8.3% saving for a 10% return duct surface area (110 ft²). EnergyGauge shows a 4.7% saving for a 2% return duct area and a 4.8% saving for 4%, 6%, 8% and 10% return duct surface area.

Using different supply duct leakages (Figures 29 to 31), the ESL model shows an 8.0% saving for all supply duct leakages, and EnergyGauge shows a 0.7% saving for a 5% supply duct leakage, a 1.4% saving for 10% and 15% supply duct leakage, and a 0.7% saving for a 10% supply duct leakage.

Increasing return duct leakage (Figures 32 to 34) with radiant barriers produces a 5.7% saving for a 5% return duct leakage, a 8.0% saving for a 10% return duct leakage, a 11.3% saving for a 15% return duct leakage, and a 17.0% saving for a 20% return duct leakage from the ESL model. EnergyGauge shows a 0.7% saving for a 5% return duct leakage, a 1.4% saving for 10% and 15% return duct leakage, and a 2.0% saving for a 20% return duct leakage.

In the case of different ceiling insulation levels (Figures 35 to 37), the ESL shows a 9.4% saving for R-10 ceiling insulation, an 8.4% saving for R-15 ceiling insulation, a 8.0% saving for R-19 ceiling insulation, a 7.5% saving for R-25 ceiling insulation, and a 7.2% saving for R-30 ceiling insulation. EnergyGauge shows a 6.0% saving for R-10 ceiling insulation, a 5.2% saving for R-15 ceiling insulation, a 4.8% saving for R-19 ceiling

insulation, a 4.2% saving for R-25 ceiling insulation, and a 3.9% saving for R-30 ceiling insulation.

Figure 20. Cooling energy differences and % savings from varying duct insulation with radiant barrier and without radiant barrier - ESL model.

Figure 22. Comparison of cooling savings from varying duct insulation with radiant barrier and without radiant barrier for the ESL model and EnergyGauge.

Figure 24. Cooling energy differences and % savings from varying supply duct area (% of conditioned space) with radiant barrier and without radiant barrier – EnergyGauge.

Figure 25. Comparison of cooling savings from varying supply duct area (% of conditioned space) with radiant barrier and without radiant barrier of the ESL model and EnergyGauge.

Figure 27. Cooling energy differences and % savings from varying return duct area (% of conditioned space) with radiant barrier and without radiant barrier – EnergyGauge.

Figure 28. Comparison of cooling savings from varying return duct area (% of conditioned space) with radiant barrier and without radiant barrier of the ESL and FSEC models.

Figure 29. Cooling energy differences and % savings from varying supply duct leakage with radiant barrier and without radiant barrier - ESL model.

Figure 30. Cooling energy differences and % savings from varying supply duct leakage with radiant barrier and without radiant barrier – EnergyGauge.

Figure 31. Comparison of cooling savings from varying supply duct leakage with radiant barrier and without radiant barrier of the ESL and FSEC models.

Figure 32. Cooling energy differences and % savings from varying return duct leakage with radiant barrier and without radiant barrier - ESL model.

Figure 33. Cooling energy differences and % savings from varying return duct leakage with radiant barrier and without radiant barrier – EnergyGauge.

Figure 34. Comparison of cooling savings from varying return duct leakage with radiant barrier and without radiant barrier of the ESL and FSEC models.

Figure 35. Cooling energy differences and % savings from varying ceiling insulation with radiant barrier and without radiant barrier - ESL model.

Figure 36. Cooling energy differences and % savings from varying ceiling insulation with radiant barrier and without radiant barrier – EnergyGauge.

Figure 37. Comparison of cooling savings from varying ceiling insulation with radiant barrier and without radiant barrier of the ESL and FSEC models.

5. Summary

5.1. Comparison of the Results of the Duct Model with Radiant Barrier

Comparison of the results of the duct model with radiant barrier shows acceptable agreements for the parameters of duct insulation, supply duct surface area, return duct surface area, supply duct leakage and ceiling insulation. However, in the case of various return duct leakage, the ESL model shows more sensitivity to leakage than EnergyGauge.

	ESL model	EnergyGauge	Comments (within +/- 5%)
Duct Insulation (R-4 \rightarrow R-12)	+3% → -3.6%	+1.8% → -2.1%	Acceptable agreement
Supply duct area (% of conditioned space) (20% → 40%)	-2.3% → 2.3%	-1.4% → 1.4%	Acceptable agreement
Return duct area (% of conditioned space) $(2\% \rightarrow 10\%)$	-0.3% → 0.5%	-0.2% → 0.4%	Acceptable agreement
Supply duct leakage (% of conditioned space) (5% → 20%)	-5.3% → 12.5%	-6.6% → 16.2%	Acceptable agreement
Return duct leakage (% of conditioned space) (5% → 20%)	-9.7% → 30.1%	-3.1% → 6.0%	ESL's model shows more sensitivity than EnergyGauge
Ceiling insulation (R-10 → R-30)	2.8% → -1.4%	3.1% → -2.1%	Acceptable agreement

Table 2. Comparisons of the results of the duct model with radiant barrier.

5.2. Comparison of the Results of the Duct Model without Radiant Barrier

Comparison of the results of the duct model without radiant barrier also shows acceptable agreements for the parameters of duct insulation, supply duct surface area, return duct surface area, supply duct leakage and ceiling insulation. However, in the case of various return duct leakage, the ESL model shows more sensitivity to leakage than EnergyGauge.

	ESL model	EnergyGauge	Comments (within +/- 5%)
Duct Insulation (R-4 \rightarrow R-12)	+5.5% → -4.9%	+2.0% → -2.3%	Acceptable agreement
Supply duct area (% of conditioned space) (20% → 40%)	-3.1% → 3.3%	-1.5% → 1.5%	Acceptable agreement
Return duct area (% of conditioned space) $(2\% \rightarrow 10\%)$	-0.5% → 0.9%	-0.2% → 0.4%	Acceptable agreement
Supply duct leakage (% of conditioned space) (5% → 20%)	-5.3% → 12.5%	-6.5% → 15.9%	Acceptable agreement
Return duct leakage (% of conditioned space) (5% → 20%)	-11.8% → 44.2%	-3.8% → 7.0%	ESL's model shows more sensitivity than EnergyGauge
Ceiling insulation (R-10 → R-30)	4.5% → -2.2%	4.5% → -2.9%	Acceptable agreement

Table 3. Comparisons of the results of the duct model without radiant barrier.

5.3. Comparison of the Results of Saving Difference of the ESL Model and

EnergyGauge

The results of savings from simulations with and without radiant barriers indicate that ESL's model shows more savings for all parameters. In terms of sensitivity of the results, the ESL model shows more sensitivity for all parameters except for supply duct leakage. For the supply duct leakage, both models show small changes. The ESL model shows more energy savings.

	ESL's model	EnergyGauge	Comments
Duct Insulation (R-4 \rightarrow R-12)	-9.4% → -6.7%	-4.9% → -4.6%	ESL's model shows more sensitivity and more energy savings
Supply duct area (% of conditioned space) (20% → 40%)	-7.2% → -8.8%	-4.7% → -4.9%	ESL's model shows more sensitivity and more energy savings
Return duct area (% of conditioned space) (2% \rightarrow 10%)	-7.8% → -8.3%	-4.7% → -4.8%	ESL's model shows more sensitivity and more energy savings
Supply duct leakage (% of conditioned space) (5% → 20%)	-8.0% → -8.0%	-4.9% → -4.5%	Both models don't show sensitivity. ESL model shows more energy savings
Return duct leakage (% of conditioned space) (5% \rightarrow 20%)	-5.7% → - 17.0%	-4.0% → -5.6%	Both models show sensitivity. ESL model shows more energy savings
Ceiling insulation (R- 10 \rightarrow R-30)	-9.4% → -7.2%	-6.0% → -3.9%	Both models show sensitivity. ESL model shows more energy savings

Table 4. Comparison of the results of savings differences between the ESL model and EnergyGauge.

5.4. Known differences between the ESL Model and EnergyGauge

A review of the results with FSEC on May 11, 2007, revealed the following differences between the ESL model and EnergyGauge:

- 1. The FSEC model assumes that the ducts are an R-input +1 to account for the fact that ducts often sit on top of the attic insulation, and therefore not all the duct is exposed to the attic condition.
- 2. For the ceiling insulation, the FSEC model makes an adjustment for heat transfer across the low-density insulation to account for changing insulation conductivity with the mean temperature differences across the insulation.
- 3. The FSEC model has a full air conditioner model (versus an adjustment to the A/C efficiency) to consider the impact of the duct loss on DOE-2 simulation, which includes changes to the air delivery temperature.
- 4. The FSEC model uses a different formula for calculating the penalty from return duct losses that reduces the impact of the losses based on empirical results from in-situ field tests.

References

ASHRAE (American Society of Heating, Refrigerating, and Air-conditioning Engineers). 2004. Method of test for determining the design and seasonal efficiencies of residential thermal distribution systems (ASHRAE Standard 152-2004). Atlanta, GA: American Society of Heating, Ventilation and Air-conditioning Engineers.

Florida Solar Energy Center (FSEC) 2005. EnergyGauge USA v2.42. Cocoa, FL: Florida Solar Energy Center.

Huang, J. 2001. Lawrence Berkeley National Laboratory, Berkeley, CA, personal communication (October).

James J. Hirsh & Associates (JJH) 2004. DOE-2.2 Building Energy Use and Cost Analysis Program. Camarillo, CA: James J. Hirsh & Associates.

Kim, S. 2006. An Analysis of International Energy Conservation Code (IECC)-Compliant Single-Family Residential Energy Use. Ph.D. Dissertation, Department of Architecture, Texas A&M University, College Station, Texas.

Parker, D.S., J. R. Sherwin and M. T. Anello. 2001. FPC Residential Monitoring Project: New Technology Development - Radiant Barrier Pilot Project (FSEC-CR-1231-01). Cocoa, FL: Florida Solar Energy Center.

Parker, D. S. 2005. Technical Support for Development of an Attic Simulation Model for the California Energy Commission (FSEC-CR-1526-05). Cocoa, FL: Florida Solar Energy Center.

Palmiter, L., and P.W. Francisco. 1996. A practical method for estimating the thermal efficiency of residential forced-air distribution systems. Proceedings of the 1996 ACEEE Summer Study on Energy-Efficient Buildings: 96-112.

Appendix

Tables A.1 to A.3 show the simulation results of various conditions.

		Cooling kWh (ESL)	Cooling kWh (FSEC)	Saving_Cooling (ESL)	Saving_Cooling (FSEC)
	R-4	5395	5054	3.8%	1.8%
	R-6 (Base case)	5198	4963		
Duct insulation	R-8	5103	4913	-1.8%	-1.0%
	R-10	5048	4881	-2.9%	-1.7%
	R-12	5012	4858	-3.6%	-2.1%
	20%	5080	4893	-2.3%	-1.4%
Supply dust area (9/ of	25%	5139	4928	-1.1%	-0.7%
conditioned space)	30% (Base case)	5198	4963		
	35%	5258	4998	1.2%	0.7%
	40%	5319	5033	2.3%	1.4%
	2%	5183	4953	-0.3%	-0.2%
Deturn durt sees (0/ of	4%	5193	4960	-0.1%	-0.1%
conditioned space)	6% (Base case)	5198	4963		
	8%	5213	4974	0.3%	0.2%
	10%	5223	4981	0.5%	0.4%
	5%	4924	4634	-5.3%	-6.6%
Supply Duct Lookago	10% (Base case)	5198	4963		
Supply Duct Leakage	15%	5503	5341	5.9%	7.6%
	20%	5847	5766	12.5%	16.2%
	5%	4694	4811	-9.7%	-3.1%
Roturn Duct Lookago	10% (Base case)	5198	4963		
Return Duct Leakage	15%	5855	5113	12.6%	3.0%
	20%	6761	5261	30.1%	6.0%
	R-10	5343	5119	2.8%	3.1%
	R-15	5245	5016	0.9%	1.1%
Ceiling insulation	R-19 (Base case)	5198	4963		
	R-25	5152	4900	-0.9%	-1.3%
	R-30	5126	4860	-1.4%	-2.1%

Table A. 1. Comparison of Duct Models with Radiant Barrier.

Table A. 2. Comparison of Duct Models without Radiant Barrie	er.
--	-----

		Cooling kWh (ESL)	Cooling kWh (FSEC)	Saving_Cooling (ESL)	Saving_Cooling (FSEC)
	R-4	5957	5315	5.5%	2.0%
	R-6 (Base case)	5647	5212		
Duct insulation	R-8	5505	5154	-2.5%	-1.1%
	R-10	5423	5117	-4.0%	-1.8%
	R-12	5370	5091	-4.9%	-2.3%
	20%	5474	5133	-3.1%	-1.5%
Supply duct area (9/ of	25%	5559	5173	-1.6%	-0.7%
conditioned space)	30% (Base case)	5647	5212		
contanionica opacoj	35%	5738	5252	1.6%	0.8%
	40%	5832	5291	3.3%	1.5%
	2%	5619	5199	-0.5%	-0.2%
Deturn duct sees (0/ of	4%	5638	5208	-0.2%	-0.1%
conditioned space)	6% (Base case)	5647	5212		
	8%	5676	5226	0.5%	0.3%
	10%	5696	5234	0.9%	0.4%
	5%	5350	4871	-5.3%	-6.5%
Supply Duct Leakage	10% (Base case)	5647	5212		
Supply Duct Leakage	15%	5980	5602	5.9%	7.5%
	20%	6353	6039	12.5%	15.9%
	5%	4979	5013	-11.8%	-3.8%
Return Duct Leakage	10% (Base case)	5647	5212		
Netum Duct Leakage	15%	6599	5399	16.9%	3.6%
	20%	8141	5576	44.2%	7.0%
	R-10	5900	5445	4.5%	4.5%
	R-15	5729	5290	1.5%	1.5%
Ceiling insulation	R-19 (Base case)	5647	5212		
1	R-25	5568	5117	-1.4%	-1.8%
	R-30	5524	5059	-2.2%	-2.9%

ĭ—		%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%	8
FSEC	Savings from RB	-4.9	-4.89	-4.79	-4.69	-4.69	-4.79	-4.79	-4.89	-4.89	-4.99	-4.79	-4.89	-4.89	-4.89	-4.89	-4.99	-4.89	-4.79	-4.59	-4.09	-4.89	-5.39	-5.69	-6.09	-5.29	-4.89	-4.29	-3.9%
	Cooling kWh without RB	5315	5212	5154	5117	5091	5133	5173	5212	5252	5291	5199	5208	5212	5226	5234	4871	5212	5602	6039	5013	5212	5399	5576	5445	5290	5212	5117	5059
ESL	Cooling kWh with RB	5054	4963	4913	4881	4858	4893	4928	4963	4998	5033	4953	4960	4963	4974	4981	4634	4963	5341	5766	4811	4963	5113	5261	5119	5016	4963	4900	4860
	Savings from RB	-9.4%	-8.0%	-7.3%	-6.9%	-6.7%	-7.2%	-7.6%	-8.0%	-8.4%	-8.8%	-7.8%	-7.9%	-8.0%	-8.2%	-8.3%	-8.0%	-8.0%	-8.0%	-8.0%	-5.7%	-8.0%	-11.3%	-17.0%	-9.4%	-8.4%	-8.0%	-7.5%	-7.2%
	Cooling kWh without RB	5957	5647	5505	5423	5370	5474	5559	5647	5738	5832	5619	5638	5647	5676	5696	5350	5647	5980	6353	4979	5647	6659	8141	5900	5729	5647	5568	5524
	Cooling kWh with RB	5395	5198	5103	5048	5012	5080	5139	5198	5258	5319	5183	5193	5198	5213	5223	4924	5198	5503	5847	4694	5198	5855	6761	5343	5245	5198	5152	5126
		R-4	R-6	R-8	R-10	R-12	20%	25%	30%	35%	40%	2%	4%	6%	8%	10%	5%	10%	15%	20%	5%	10%	15%	20%	R-10	R-15	R-19	R-25	R-30
		Duct insulation					Supply duct area (% of conditioned space)					Return duct area (% of conditioned space)					Supply Duct Leakage				Return Duct Leakage				Ceiling insulation				

Table A. 3. Savings Differences with and without Radiant Barriers for the ESL Model and EnergyGauge.

Page 41