

Building Commissioning in the USA

National Institute of Standards and Technology

Hannah Friedman, Cost-Benefit Subtask Leader Portland Energy Conservation, Inc.

Asian Pacific Conference on Building Commissioning November 7, 2006

Acknowledgement

Slides are derived from PECI's "State of the Industry" presentation and US Team contributions

TAMU

Presentation Outline

- The U.S. Market
 - What is Building Commissioning
 - Potential
 - Current Practice
 - Market Drivers / Barriers
- Overcoming Barriers
 - -US Team Research

Building Commissioning

- Building Commissioning (Cx) is a quality assurance process that spans the entire design and construction process, helping ensure that the new building/system performance meets owner expectations
- Retrocommissioning (RCx) is a systematic process for improving an existing building's performance by identifying and implementing relatively low-cost operational and maintenance improvements, helping to ensure that the building's performance meets owner expectations

Benefits of Commissioning

- Energy savings
- Cost reductions
- Environmental benefits
- Peak load reduction
- Increased worker productivity, sindoor air quality, and additional comfort-related benefits

Early Cx and RCx Research, Guides, and Demonstration Projects:

- Government DOE / EPA, NIST
- National Labs: LBNL, ORNL
- Universities: Texas A&M
- ASHRAE First HVAC Cx Guideline (1989)
- Utilities: BPA 1st demo. project & utility guide (1992)
 SMUD– hosted first NCBC (1993)
 SCE– first study: 7 buildings (1994-'95)
- Cx Mission Driven Non-profit: PECI
- States: Oregon, Florida, Tennessee

Potential Energy Savings from Cx and RCx

- Commercial buildings >2300 m² (25,000 sq ft) pay USD\$50 billion/yr for energy
- Cx energy savings range: 6% 9%
 - California Market Characterization Study (2000)
- RCx energy savings range: 7% 30%
 - LBNL study: The Cost-Effectiveness of Commissioning New and Existing Commercial Buildings: Lessons from 224 Buildings (2005)

Current Practice

- 1998 survey-based market penetration study for California: estimates
 - Cx: Fewer than 5% of new buildings
 - RCx: Approximately 0.03% of existing buildings
- Commissioning is still not common practice
 - Hesitant market demand by building owners
 - Improve supply of Cx services, particularly for existing buildings (retrocommissioning)

What is Driving the Market?

- Public benefits funds \$\$
 - California Public Interest Energy Research Program (PIER)
 - Utility programs and non-profit organizations
- Energy Efficiency Mandates
 - California, New York, Vermont, Minnesota, City of Portland Oregon
- Building Energy Codes include Cx
 - California, State of Washington, Massachusetts

Market Drivers (continued): LEED Green Building Rating System

Total U.S. LEED

Certified: 205

172

152

20

552

Market Drivers: Collaborative Cx Research

IEA Annex 40 (2000-2005) / IEA Annex 47 (in progress)

State Collaborative for Cx Research

- LBNL Semi-Automated Functional Testing Data Analysis Tool
- Automated Building Commissioning Analysis Tool (ABCAT)
- Functional Testing Guide and curriculum development
 - www.peci.org/ftguide

Barriers to Cx

Misconceptions in the marketplace

- Cx is already part of the construction process already paid for
- Buildings are already energy efficient
- Cx is not cost-effective

Gaps in knowledge/resources/tools

- Data showing Cx really works and benefits persist
- Standardized Cx services, skilled & qualified providers
- Improved information flow (design to operation)
- Robust, automated tools

Overcoming Barriers

- 1. Reduce loss of project knowledge
- 2. Provide tools/ resources to providers
- 3. Educating/informing decision makers

Improving Information Flow

Embedded Commissioning

A framework for building delivery

- Management processes of commissioning <u>and</u> exchange of building life-cycle information
- Persistently verify and validate design intent within building-lifecycle

Carnegie Mellon

Improving Information Flow

- Develop MODEL BASED tools
 - Develop <u>process</u> and <u>product models</u> to represent and manage Cx data
 - Develop methods to exchange data for interoperability

Diagnostic Tools and Resources

- Standardize Cx Services
 - Process tools and templates for uniform reporting
 - Owner education: what to ask for / what to expect
- Increase training opportunities for Cx providers and building operators
 - Technical Transfer NCBC, ICEBO, ACEEE

Diagnostic Tools and Resources

- Automated fault detection and diagnostics
 - PACRAT, ENFORMA, [APAR, VPACC]
- Guidelines and enabling tools
 - Design Review Checklist Tool (EDR, 2007)
 - Data management, EIS, Cx process tools
- Prototypes, system/whole building level
 - Tools for Air-Handlers [CITE-AHU,LBNL tool]
 - TAMU tools

New Development

Johnson Controls: Control Loop Cx Software

- testing to verify connections, capacity, direction
- tuning PI control parameters
- troubleshooting problem loops having excessive nonlinearity
- validation of control performance

Ensuring Persistence of Benefits

- Good information flow
- Documentation & training
- Performance monitoring
 - Monitoring-based Cx (MBCx)
 - California Public University System
- Continuous Commissioning[®]
 - Texas A&M Energy Systems Laboratory

Educating / Informing Decision Makers

- Gather improved cost-benefit information
 - Annex 47 cost-benefit data collection and rigorous case studies
 - Market research for communicating Cx benefits to decision-makers

Conclusions

Cx as "standard practice" is a goal, not yet reality

- Supply side needs:
 - Increase \$ available for research and incentives until cost-benefit data is established
 - Create new tools, training, resources
 - Improving information flow, automating the process
 - improving cost-benefit
 - Methods to quantify non-energy benefits (NEBs)
 - Continue to leverage LEED, energy-efficiency orders and directives

Conclusions (continued)

Demand side needs:

- Reliable cost-benefit information for various building types, including NEBs
- Confidence in persistence of benefits
- A source of skilled commissioning providers, guidelines

WEB Resources

- Annex 40: www.commissioning-hvac.org
- Annex 47: www.iea-annex47.org
- ASHRAE Guideline 0-2005 www.ashrae.org
- Building Cx Association: www.bcxa.org
- CCC Sample Documents and Library: www.cacx.org
- Energy Design Resources www.energydesignresources.com
- National Institute of Building Sciences:
 Total Building Cx Guidelines
 http://sustainable.state.fl.us/fdi/edesign/resource/totalbcx/
- NCBC Proceedings: www.peci.org/ncbc
- PECI Resource Library: www.peci.org
- USGBC LEED Rating System www.usgbc.org