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ABSTRACT 

 

The Significance of Organic Carbon and Sediment Surface Area to the Benthic 

Biogeochemistry of the Slope and Deep Water Environments of the Northern Gulf of 

Mexico.  (August 2003) 

Melanie J Beazley, B.B.A., University of Mississippi; B.S., Arkansas State University 

Chair of Advisory Committee:  Dr. John W. Morse 

 The bioavailability of metabolizable organic matter within marine sediments is 

one of the more important driving mechanisms controlling benthic pelagic communities.  

Interactions between organic material and mineral surfaces within the sediment, such as 

adsorption, can cause organic matter to be unavailable for degradation by organisms; 

therefore for this study we have used the relationship of organic carbon-to-sediment 

surface area as an indicator of available organic carbon in northern Gulf of Mexico 

sediments.  We have determined that these sediment interactions demonstrate a 

significant association with benthic fauna abundances; however they are not the most 

dominant environmental variables.  It may be the combination of biogeochemical 

parameters, such as organic carbon content, sediment surface area, grain size, water 

depth and other geophysical variables, that is the ultimate control on the bioavailability 

of metabolizable organic matter in the northern Gulf of Mexico. 
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INTRODUCTION 

 There is great debate in the literature concerning the factors that control the 

preservation of organic matter in marine sediments.  It has been determined that burial of 

organic matter is directly associated with the global cycles of carbon, oxygen and sulfur 

(Berner, 1982) and therefore of great significance.  Though considerable research has 

been done on the preservation of organic matter, the mechanisms for its preservation still 

remain unclear (Keil and Cowie, 1999; Hartnett et al, 1998; Canfield, 1994; Lee, 1994; 

Hedges et al., 1999). 

Organic matter enters the world’s oceans from two primary sources:  marine 

primary productivity and terrestrial river runoff.  Rivers adjacent to continental margins 

deposit 0.01 to 1 cm (Berner, 1980) of organic-rich sediment onto deltas and continental 

shelves and slopes each year.  These areas are also rich with primary productivity due to 

the increased flux of nutrients from rivers and coastal upwelling.  It is along these 

continental margins that over 90% of the organic matter in all of the oceans reside 

(Berner, 1980; Hedges and Keil, 1995).  Therefore, the sediments of deltas, shelves and 

slopes adjacent to continents provide excellent test sites to study the mechanisms of 

preservation of organic matter in marine sediments. 

Organic material is produced in marine surface waters by the photosynthetic 

processes of phytoplankton.  This primary production is grazed upon by herbivorous 

zooplankton which release biochemical compounds and excreta to the water column.  

______________    

This thesis follows the style and format of Geochimica et Cosmochimica Acta. 
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As the detritus sinks through the water it is subject to break down, or remineralization, 

by bacterial activity releasing dissolved nutrients to the water. The original organic 

material produced in the surface waters is repeatedly recycled and sinks in the particulate 

form to the sea bottom. The amount of organic material that reaches the sediment is 

proportional to the depth of the water column and the amount of primary production in 

surface waters.  The percentage of organic matter that makes it to the sediments is 

generally <10% depending on the depositional conditions (Mayer, 1993).  The chemical 

composition of this material is complex being composed of carbohydrates, amino acids, 

carboxylic acids and other organic macromolecules (Keil et al., 1998)).  The biochemical 

structures determine how “labile” it is to degradation.  The more labile materials are 

easier for organisms to digest and therefore these materials are recycled faster than the 

less labile fractions.  The organic material that reaches the sediment becomes the energy 

source for benthic organisms including bottom-feeding fish and deposit-feeders at or 

near the sediment-water interface.  Once deposited in the sediment, organic material is 

consumed and recycled by heterotrophic macrofauna, meiofauna, and bacteria. 

The organic material that is transported to the oceans by rivers is a complex 

mixture of humic substances derived from plant and animal detritus.  Much of this 

material consists of non-labile lignin structures which can be deposited on river deltas 

and fans.  Due to high sedimentation rates, deposited organic material may have 

insufficient time to be completely oxidized under aerobic conditions before being buried 

by continuing sedimentation. 
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Once organic matter reaches the sediment, whether from marine or terrestrial 

sources, it will be exposed to degradation processes and can be completely respired back 

to CO2, transformed to by-products, or preserved in the sediment.  Several factors affect 

the preservation of organic material in marine sediments including, but not limited to, 

bottom-water oxygen levels (Canfield, 1994) organic matter origin (Hedges et al., 1988) 

water column depth (Suess, 1980), geopolymerization (Berner, 1980), microbial 

dynamics (Lee, 1992), and adsorption to mineral surfaces (Mayer, 1994a; Mayer, 

1994b).  The purpose of this study is to examine one of these preservation factors: the 

adsorption of organic matter on the surfaces of minerals within the marine sediment.   

 During the past decade there has been increased interest in the study of organic 

matter associated with the surfaces of marine particles.  Marine sediments are composed 

of a wide assortment of minerals of varying sizes which have been transported from the 

continents due to weathering or have been formed in situ by chemical reactions in 

sediment pore spaces.  The size of the grains is one determination on the amount of 

mineral surface area.  These surfaces exhibit an imbalance in charge which makes them 

especially effective for adsorption of dissolved organic material (Langmuir, 1997).  

Reactive sites are the locations for exchanges of ions and molecules between the solid 

and liquid porewater phases.  The ion exchange capacity of a mineral may be negative or 

positive and either permanent or dependent on porewater conditions, such as pH 

(Langmuir, 1997).  In addition to ionic bonding between organics and mineral surfaces 

there are other chemical mechanisms such as covalent bonding, hydrogen bonding and 

weak van der Waals attractions (Mayer, 1993).  Due to the heterogeneity of marine 
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sediments and the organic matter it contains, delineating specific mechanisms of mineral 

adsorption in marine systems is difficult at best.   

One method for examining the extent of organic matter adsorption onto mineral 

surfaces is to determine the relationship of organic material to the surface area of the 

sediment (Keil et al., 1994a; Keil et al., 1994b; Mayer 1994a; Mayer, 1994b).  Over 90% 

of the organic matter in sediments has been found to be intimately associated with the 

mineral phase (Keil et al., 1994a); therefore it is possible to correlate the organic matter 

content with the surface area and grain size of sediment constituents.  Mayer (1994a) 

examined the organic carbon-to-surface area (OC/SA) relationship of sediments from 

continental shelves around the world.  He found a general linear relationship in which he 

termed a ‘monolayer-equivalent’ (ME) level of 0.5-1.0 mg-OC m-2 in non-deltaic shelf 

sediments, which corresponded to a monolayer of organic coating covering the mineral 

surfaces.  Deltaic sediments had values of 0.2 mg-OC m-2, which was lower than ME 

levels (Mayer, 1994a; Mayer, 1994b).  Carbonate sediments had higher than ME levels 

and deep-sea sediments had lower than ME levels (Mayer, 1994b).  He also determined 

that the organic matter was primarily associated with the mineral surfaces and could not 

be physically separated, suggesting adsorption.  The monolayer-equivalent level was 

also confirmed by Keil et al. (1994a) for sediments off the shore of Washington state.   

Mayer (1994a) examined the topography of the mineral surfaces and found that 

the roughness of the surface contributed greatly to the surface area.  The majority of the 

surface area was found within mesopores (<10 nm width) on the surfaces of the 

minerals.  He hypothesized that organic matter might be contained within mesopores and 
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was therefore unavailable for enzymatic attack during the biological oxidation of organic 

matter. 

Ransom’s results (Ransom et al., 1997; Ransom et al., 1998) contradicted the 

monolayer hypothesis.  Transmission electron microscopy (TEM) showed that organic 

matter was present in patchy, discontinuous smears on particle surfaces.  Adsorption was 

associated with clay minerals and did not occur as monolayer coatings or filled 

mesopores.  She found that the organic content was controlled primarily by interaction 

with clay minerals, and that different clays had variable retention capabilities.   

Mayer (1999) countered that visible microscopy lacked the resolution for 

inspecting monolayers and developed a technique using gas adsorption to determine the 

extent of mineral surface coverage.  His results indicated that organic matter was not 

adsorbed in a monolayer but in patches thicker than a single layer.   

If adsorbed organic material is protected from degradation, it is probable that 

desorption will make labile material available for oxidation.  Laboratory experiments 

indicate that desorbed organic matter is labile when exposed to bacteria (Keil et al., 

1994b).  This suggests that the adsorption of organic material to mineral surfaces 

protects organic matter and slows remineralization reactions within sediments (Keil et 

al., 1994b; Mayer, 1994a).  The stabilization of organic matter by mineral matrices is 

found in terrestrial soil environments as well.  Baldock and Skjemstad (2000) 

determined that although protection is not permanent, it can slow the rate of 

decomposition protecting the organic matter from oxidation.  The “protective capacity” 

of the soil depends on the specific chemical and physical structure of the minerals and 
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organic matter.  Different minerals have different organic matter stabilization 

capabilities.  They determined that organic carbon in soils correlated positively with clay 

content and was protected from biological attack especially in the presence of CaCO3 or 

Al and Fe oxides.  The adsorption of organics on mineral surfaces in soils is not only a 

function of mineral structure but also of the chemical structure of the organic matter 

itself (Keiser and Guggenberger, 2000).  In marine sediments, carbon-rich fractions of 

organic material were found in larger grain sizes and nitrogen-rich fractions were found 

in smaller clay-sizes (Keil et al., 1994a).   

Recent studies (Bergamaschi et al., 1997; Volkman et al., 2000) indicate that 

hydrodynamic controls affecting grain size distributions in marine sediments are a 

principal factor in determining sediment organic carbon content.  Using TEM, energy-

filtering TEM (EFTEM) and electron energy loss spectroscopy (EELS), Furukawa 

(2000) found that organic matter in clay-rich sediments is closely associated with clay 

aggregates.  It occurs in high concentration at the edge of clay plates and in some cases 

is incorporated into the structural matrix of the mineral.  In addition, organic material 

was found specifically on minerals, such as smectitic clays, which contained calcium 

edges.  He could not distinguish if this was due to chemical bonding, depositional 

dynamics or smectite mesopores.   

Over the past decade the study of organic matter preservation in the presence of 

mineral matrices has been the subject of intense study.  Much progress has been made in 

understanding how the interaction of organics and minerals affect not only preservation 

but also bioavailability to organisms.  The aim of this research is to determine how 
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associations of organic material with mineral surface area affect the biogeochemistry of 

benthic sediments in the continental slope and deep water environments of the northern 

Gulf of Mexico (GOM). 
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EXPERIMENTAL 

Deep Gulf of Mexico Benthic Ecology Program 

 Previous studies have demonstrated the importance of mineral surface area and 

grain size to the preservation of organic carbon in marine sediments.  The aim of this 

study is to continue this investigation in the northern Gulf of Mexico.  The Gulf of 

Mexico is a region with a high diversity of sedimentary environments.  It offers an 

opportunity to study a wide variety of sediments, including those on the continental 

shelf, the deep abyssal plain and in proximity to the Mississippi River Trough and the 

Florida Escarpment.  The study was conducted in conjunction with the Deep Gulf of 

Mexico Benthic Ecology (DGoMB) program contracted by the Minerals Management 

Service.   

The objective of the DGoMB program is to “provide a better understanding of: 1) 

the present condition of biological communities in the study area, 2) the distribution 

patterns of deep-sea biota, 3) the biological and physical processes that control the 

environmental setting, and 4) the effects that these processes have on the character of 

benthic and benthopelagic communities” (Rowe and Kennicutt II, 2001).  As part of this 

investigation specific objectives include the study of the role of organic carbon and 

sediment surface area in controlling biological processes and availability of organic 

matter within sediments. 

The DGoMB program will span 4.5 years and include data collected from 53 

sites throughout the Gulf of Mexico.  The sites were chosen based on water depth, 
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nutrients, productivity, hydrocarbon seeps, temporal changes and the presence or 

absence of basins, canyons and steep escarpments. 

This research is unique in that it includes a full suite of concurrent chemical, 

physical, geological and biological data, greatly enhancing data synthesis and 

interpretation.  

Hypotheses 

 The null hypotheses developed for the DGoMB (Rowe and Kennicutt II, 2001) 

program were revised to reflect the aim of this study to determine if organic matter-to-

surface area (OC/SA) is an important biogeochemical factor in describing Gulf of 

Mexico biological and physical patterns. 

 H01:  There is no variation in OC/SA with water depth. 

 H02:  There is no variation in OC/SA along an east to west gradient. 

 H03:  There is no variation in OC/SA among different sampling dates. 

 H04:  There is no variation in benthic organism abundance with OC/SA. 

Study Sites  

 The sites selected for this study (Table 1; Figure 1) were based on water depth 

and proximity to the Mississippi River Trough, the Florida Escarpment, hydrocarbon 

seeps, and high production areas.   

Sample Collection   

 Samples were collected during the summers of 2000, 2001, and 2002 on cruises 

aboard the R/V Gyre.  Sediment cores (20 cm in length) were collected at each station 

using a 0.2 m2 GOMEX boxcore.  The top 2 cm of sediment and porewater was 
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collected and immediately frozen.  A total of 23 sample sites were chosen with five of 

the sites visited in two different years.  

 
 
Table 1.  Sample sites (D = depth, P = productivity, S = seeps, T = temporal, E = escarpment). 

Station Latitude N Longitude W 
Depth 

(m) Year Characteristic 
AC1 26°23.2813’ 94°33.2633’ 2450 2000 D 
B2 26°33.3750’ 92°13.4716’ 2630 2000 D 

Bush Hill 27°47.8935’ 91°28.2050’ 548 2001 P,S 
HiPro 28°33.0955’ 88°34.7428’ 1574 2001 P 

MT1(a) 28°32.4666’ 89°49.5011’ 481 2000 D,T 
MT1(b) 28°32.1101’ 89°49.5365’ 490 2001 D,T 
MT3(a) 28°13.0561’ 89°29.6289’ 988 2000 D,T 
MT3(b) 28°13.4727’ 89°30.7579’ 980 2001 D,T 

MT4 27°49.7018’ 89°9.8829’ 1401 2000 D 
MT5 27°19.5819’ 88°40.1733’ 2290 2000 D 

MT6(a) 27°0.0892’ 87°59.2938’ 2750 2000 D,T 
MT6(b) 26°59.4407’ 88°0.8396’ 2740 2001 D,T 

NB4 26°14.9693’ 92°23.4231’ 2050 2000 D 
RW1 27°29.9333’ 96°0.2164’ 213 2000 D 
RW2 27°15.2852’ 95°44.6402’ 950 2000 D 
RW3 27°0.2956’ 95°30.0541’ 1325 2000 D 
RW4 26°44.9468’ 95°14.6826’ 1580 2000 D 
RW5 26°30.0261’ 95°0.1315’ 1620 2000 D 
RW6 26°0.0142’ 94°29.9381’ 3015 2000 D 

S36(a) 28°55.0080’ 87°40.0627’ 1832 2000 D,P 
S36(b) 28°54.7195’ 87°40.7206’ 1849 2001 D,P 
S42(a) 28°15.0602’ 86°25.1562’ 772 2000 D,E 
S42(b) 28°15.2223’ 86°25.7206’ 773 2001 D,E 

S43 28°30.1434’ 86°4.8562’ 360 2000 D,E 
S44 28°44.9996’ 85°44.8622’ 212 2000 D,E 
S1 24°59.8793’ 92°0.7778’ 3527 2002 D 
S4 24°14.6713’ 85°28.2728’ 3408 2002 D 
W5 26°16.5781’ 93°21.7309’ 2740 2000 D,S 

      
(a) = year 2000; (b) = year 2001 
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Experimental Methods 

Surface area 

 Solid sediment was freeze-dried and outgassed at 150°C for several hours prior 

to analysis.  Surface area determinations were made by nitrogen adsorption at 77.35 K 

on a Micromeritics ASAP 2010 Analyzer using multi-point BET (Brunauer-Emmett-

Teller) adsorption isotherms (Brunauer et al., 1938; Mayer, 1994a).  Replicate samples 

of alumina silica standards had a standard deviation of ± 1%. 

Organic and inorganic carbon 

 Solid sediment was prepared for carbon analysis by drying at 100°C and 

grinding with a mortar and pestle.  Total carbon was determined by combusting samples 

at 950°C for 10 minutes with a carbon furnace (UIC, Inc.) and measuring the released 

CO2 with an attached coulometer (UIC, Inc.).  Samples were prepared for organic carbon 

analysis by drying at 100°C, grinding with a mortal and pestle, and acidifying with 1N 

HCl.  Samples were then dried at 100°C prior to combustion.  Inorganic carbon and 

organic carbon was determined by difference adjusting for CaCl2 formation.  Replicate 

samples of soil standards (Leco) had a standard deviation of ± 3%.   

Weight percent calcium carbonate (wt % CaCO3) was determined from % 

inorganic carbon using Equation 1:   

           wt % CaCO3 = (100/12) *  % inorganic carbon.     (1) 

Percent organic carbon (wt % OC) on a carbonate-free basis was calculated using 

Equation 2:   

          wt % OC (carbonate-free) =   wt % OC / (1-(wt % CaCO3 / 100)).    (2) 
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Grain size 

 Grain size analysis was performed according to the method described by Sweet 

et al. (1998).  The sediment sample (~15-20 grams) was treated with ~50-100 mL of 

30% hydrogen peroxide for 12 hours prior to analysis to oxidize organic matter.  The 

sample was washed with distilled water to remove soluble salts and 400 mL of sodium 

hexametaphosphate solution (~5.5 g/L) was added to disperse the sample, followed by 

shaking for ~24 hours on a shaker table.  

 The sample was sieved through a 62.5 µm screen to separate the sand fraction 

and dried for 24 hours.  The standard Folk settling method (Folk, 1974) was utilized to 

determine the silt and clay fractions (8φ and 4φ dry weights).  

Stable carbon isotopes 

Stable carbon isotope ratios were analyzed using a Finnigan MAT 252 Isotope 

Ratio Mass Spectrometer on acidified (1N HCl) freeze-dried samples that had been dry 

combusted to CO2 under vacuum with CuO using the method described by (Boutton, 

1991).  The 13C/12C ratio of the organic carbon is reported relative to the PDB standard 

(VPDB) in per mil (‰).  Replicate samples of glucose standards had a standard 

deviation of ± 0.1%. 

Microelectrode profiles  

 Microelectrode profiles of the redox species O2-, Mn2+, Fe2+ and ΣH2S were 

produced using a reference and counter (Pt wire) electrode in conjunction with a 

working electrode (Au/Hg) according to the method described by Brendel and Luther 

(1995).  The microelectrodes used in this project were manufactured by encasing a 
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100µm gold wire in a borosilicate glass tube and filling the tube with an epoxy.  The tip 

of the electrode was then polished and plated with mercury to create the amalgam.  To 

strengthen the amalgam, the tip was placed into a 1.0M solution of NaOH while 

applying a voltage of -9.0V.  The strengthening of the amalgam comes from the 

polarization which facilitates the diffusion of mercury up the gold wire.  Methods of 

square wave voltammetry (SWV), linear sweep voltammetry (LSV), and cyclic wave 

voltammetry (CWV) were used to quantify the redox species.  Standards used were 

analytical grade Fe (NH4) (SO4)2·6H2O (Baker), MnCl2·6H2O (Baker), and a standard 

solution of 0.001 M Na2S·9H2O (Aldrich). Measurements were made at depth intervals 

of 2 mm. 

Macrofauna abundance 

 The top 15 cm of sediment from each of five replicate boxcores was sieved 

through a 300 µm sieve and fixed in 10% formalin with seawater.  The macrofauna were 

sorted under dissecting microscopes into major taxonomic groups.  The abundance 

values used in this study were the average of the five replicate boxcores. 

Meiofauna abundance 

 The top 3 cm of sediment from five replicate boxcores was sampled for 

meiofauna abundance.  The samples were fixed in 7% MgCl2 and preserved in 5% 

formalin and the Ludox centrifugation technique (deJong and Bouwman, 1977) utilized 

to extract the meiofauna.  Samples were sieved through 300 µm and 63 µm screens and 

counted into major taxonomic groups.  The abundance values used in this study were the 

average of the five replicate boxcores. 
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Bacteria abundance 

 Sediment cores from five replicate boxcores were subsampled and fixed in 2% 

formaldehyde.  Bacteria abundance was determined using a dual staining technique and 

standard epifluorescence microscopy (Relexans et al., 1996; Schmidt et al., 1998).  The 

bacterial abundance in the top 1 cm of sediment was used in this study. 
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RESULTS 

Surface Area and Grain Size 

 BET surface areas ranged from 8.92 to 49.7 m2g-1 (Table 2; Figure 2) across the 

sites in the Gulf of Mexico with a mean of 32.1 ± 9.75 m2g-1.  These surface areas were 

indicative of sediments with high silt and clay (<63 µm) size fractions.  The high relative 

standard deviation indicated the inhomogeneity of sediments across the Gulf of Mexico.  

Three stations, S42, S43 and S44, along the Florida Escarpment in shallow (<1000 m) 

sediments had small surface areas (8.92-17.8 m2g-1) indicating the dominance of >63 µm 

size fraction.  These samples contained 56 to 72 wt % CaCO3 and 17.7 to 56.7 wt % 

sand fraction.  Highest surface areas (>40.0 m2g-1) were found at RW2, RW3, MT1(b), 

MT5 and HiPro, which all contained >90% silt and clay fraction except MT5.  The 

majority of the samples (70%) had surface areas with a mean of 32.9 m2g-1 and a relative 

standard deviation of 4.4%.  Surface areas generally increased with increasing wt % <63 

µm (Table 2; Figure 3), with the exceptions at MT5 and MT6.  This may be due to 

extensive patches of iron stone that were observed at these stations, which may have 

been retained by the 63 µm sieve and counted in the sand fraction.  Such large sediment 

pieces would have been removed prior to surface area analysis in order to maintain a 

homogenous sample.  The grain size analysis is illustrated in Figure 4 by a tertiary 

diagram.  The majority of the samples were composed of a clay-silt mix, with the 

exceptions of S43, S44, MT5 and MT6(a), which contained higher sand fractions.    
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Table 2.  Surface area and grain size analyses. 
Station Depth (m) % Sand % Silt % Clay SA (m2g-1) Wt % CaCO3 

AC1 2450 5.0 34.5 60.4 31.4 29 
B2 2630 3.6 42.7 53.8 33.5 23 

BushHill 548 4.9 37.5 57.6 33.4 15 
HiPro 1574 2.5 44.5 52.9 48.1 6.7 

MT1(a) 481 2.5 40.3 57.2 33.4 5.3 
MT1(b) 490 1.5 25.7 72.8 40.9 5.4 
MT3(a) 988 3.0 42.6 54.4 34.2 8.1 
MT3(b) 980 3.5 38.0 58.5 39.3 8.4 

MT4 1401 9.0 45.5 45.5 34.9 20 
MT5 2290 64.3 15.3 20.4 42.6 8.0 

MT6(a) 2750 38.1 21.5 40.4 26.4 32 
MT6(b) 2740 21.2 32.3 46.5 35.0 19 

NB4 2050 17.2 35.0 47.9 30.5 34 
RW1 213 7.9 33.1 59.1 34.9 20 
RW2 950 6.9 37.6 55.5 49.7 11 
RW3 1325 7.8 31.3 60.9 39.5 24 
RW4 1580 8.2 31.1 60.7 35.8 30 
RW5 1620 8.0 28.0 64.0 34.8 30 
RW6 3015 4.5 34.2 61.3 33.1 26 

S36(a) 1832 7.6 41.2 51.1 36.9 25 
S36(b) 1849 4.7 39.6 55.7 30.1 24 
S42(a) 772 20.5 31.4 48.1 17.8 57 
S42(b) 773 17.7 33.8 48.5 17.3 56 

S43 360 36.3 37.5 26.2 11.7 70 
S44 212 56.7 27.0 16.3 8.92 72 
S1 3527 21.2 27.7 51.1 25.3 39 
S4 3408 14.9 27.0 58.1 39.2 16 
W5 2740 6.4 33.6 59.9 21.4 29 

(a) = year 2000; (b) = year 2001 
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Figure 3.  Comparison of sediment wt % <63 µm to surface area.  Surface areas generally 
increased with increasing wt % <63 µm at most stations with the notable exceptions of MT5 and 
MT6. 
  

 

 

 

 

 

 

 

 

 

Figure 4.  Grain size tertiary diagram. 
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Organic Carbon 

 Weight percent organic carbon (wt % OC) in the top 2 cm of sediment ranged 

from 0.37 to 1.3 wt % (Table 3; Figure 5) with a mean of 0.80 ± 0.27 wt %.  The lowest 

values of organic carbon were found in sediments at depths >2000 m and along the 

Florida Escarpment at depths of 200 to 750 m.  Stations with >1.0 wt % OC include 

MT1, MT3, HiPro, S36, and Bush Hill.  

 Mayer (1994a, 1994b) established the dependence of organic carbon on surface 

area in marine environments across a broad range of sediments throughout the world, 

including the Mississippi Delta region.  Using a linear regression he determined a 

significant relationship between organic carbon and surface area (OC/SA) of 0.5 to 1.0 

mg-OC m-2.  Though it has been determined that this does not represent a monolayer of 

organic coating, it does suggest an adsorptive association of organic carbon with 

sediment minerals.  For Mississippi Delta sediments Mayer determined a lower OC/SA 

value of 0.26 mg-OC m-2 (Mayer, 1994a), which he attributed to high riverine input.  

OC/SA values determined for this study ranged from 0.11 to 0.52 mg-OC m-2 with a 

mean of 0.27 ± 0.11 mg-OC m-2 (Table 3; Figure 6).  The OC/SA values near the 

Mississippi River mouth region (~0.30 mg-OC m-2) were in agreement with those 

determined by Mayer.   

 The OC/SA values determined for this study were well below those determined 

by Mayer and were representative of delta and deep-sea sediments due to low organic 

carbon content.  Of particular note the lowest OC/SA values (0.11 mg-OC m-2) were at 

MT5 and MT6, which fall off the surface area-grain size trend (Figure 3).  There was a 
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general positive relationship between wt % OC and surface area, but was not significant 

to P < 0.05 for all stations in the northern GOM.  When these two stations were omitted 

from the regression the relationship became significant to P < 0.05.  This suggests that 

the relationship between wt % OC and surface area at the sites in the northern GOM is 

valid for OC/SA values above 0.11 mg-OC m-2.   

 

Table 3.  Carbon and surface area data for the Gulf of Mexico sample set.   

Station Depth (m) 
wt  

%Total C 

wt % 
Inorganic 
Carbon wt % CaCO3 wt % OC SA (m2g-1) 

OC/SA  
(mg m-2) δ13COC(‰) 

AC1 2450 4.3 3.4 29 0.88 31.4 0.28 -27.0 
B2 2630 3.5 2.7 23 0.74 33.5 0.22 -22.6 

Bush Hill 548 2.7 1.8 15 1.0 33.4 0.29 -21.8 
HiPro 1574 1.8 0.80 6.7 1.0 48.1 0.21 -23.6 

MT1(a) 481 1.9 0.64 5.3 1.3 33.4 0.39 -22.5 
MT1(b) 490 1.9 0.65 5.4 1.3 40.9 0.31 -23.5 
MT3(a) 988 2.2 1.0 8.1 1.2 34.2 0.35 -21.1 
MT3(b) 980 2.2 1.0 8.4 1.2 39.3 0.30 -21.2 

MT4 1401 3.3 2.4 20 0.80 34.9 0.23 -25.1 
MT5 2290 1.4 1.0 8.0 0.45 42.6 0.11 -26.6 

MT6(a) 2750 4.2 3.9 32 0.37 26.4 0.14 -21.5 
MT6(b) 2740 2.7 2.3 19 0.40 35.0 0.11 -23.6 

NB4 2050 4.8 4.1 34 0.63 30.5 0.21 -30.0 
RW1 213 3.4 2.4 20 0.95 34.9 0.27 n.d. 
RW2 950 2.0 1.3 11 0.71 49.7 0.14 -20.6 
RW3 1325 3.7 2.9 24 0.78 39.5 0.20 -22.5 
RW4 1580 4.4 3.6 30 0.80 35.8 0.22 -31.5 
RW5 1620 4.3 3.6 30 0.73 34.8 0.21 -33.5 
RW6 3015 3.9 3.2 26 0.72 33.1 0.22 -25.0 

S36(a) 1832 4.1 3.1 25 1.1 36.9 0.28 n.d. 
S36(b) 1849 4.1 2.9 24 1.2 30.1 0.39 -21.8 
S42(a) 772 7.5 6.9 57 0.62 17.8 0.35 -24.9 
S42(b) 773 7.4 6.7 56 0.66 17.3 0.38 n.d. 

S43 360 9.0 8.4 70 0.61 11.7 0.52 -26.6 
S44 212 9.1 8.7 72 0.46 8.92 0.52 n.d. 
S1 3527 5.2 4.7 39 0.49 25.3 0.20 -20.6 
S4 3408 2.5 2.0 16 0.55 39.2 0.14 -24.6 
W5 2740 4.5 3.5 29 0.94 21.4 0.44 -26.7 

(a) = year 2000; (b) = year 2001       
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Calcium Carbonate 

 Weight percent calcium carbonate (wt % CaCO3) in the Gulf of Mexico sediment 

samples ranged from 5.3 to 72 wt % (Table 3; Figure 7) with a mean of 27 ± 18 wt %.  

Stations nearest the Mississippi River (MT1, MT3, MT5, and HiPro) had the least wt % 

CaCO3 (< 10 wt % CaCO3), which could be due to dilution effects by transported river 

sediment.  Stations along the Florida Escarpment (S42, S43, and S44) had the greatest wt 

% CaCO3 (>50 wt % CaCO3), due to the carbonate shelf off the western coast of Florida.  

Calcium carbonate content within GOM sediments could also be attributed to calcareous 

foraminifera which are ubiquitous in the GOM.   

Stable Carbon Isotopes 

  Stable carbon isotope ratios (δ13COC) ranged from -20.6 to -33.5‰ (Table 3; 

Figure 8) with a mean of -24.5 ± 3.45‰.  Three stations, RW4, RW5, and NB4, had 

δ13COC values of -30.0 to -33.5‰, indicative of contribution from a hydrocarbon source.  

MT1, MT3, Bush Hill, HiPro and S36 had δ13COC values (~-22‰), which were more 

typical of marine sources.  Similar values have been documented for this area (Sackett 

and Thompson, 1963; Gearing et al., 1977; Goñi et al., 1998).  The waters near the 

Mississippi River and the Desoto Canyon are characteristically high in nutrients and 

support high primary production.  The δ13COC confirmed that primary production at the 

surface was probably the main source of organic matter to the sediment and not river 

transport.   
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 AC1, RW6 and W5 had δ13COC values (-27.0, -25.0, and -26.7‰) indicative of 

terrestrial origin (~ -24 ‰; Gearing et al., 1977); however they were located in deep 

canyons far away from shore.  These sediments may have been deposited from a 

terrestrial source during glacial periods when sea level was lower.  Also the sediments 

may have slumped from the slope of the canyon or have a mixed hydrocarbon signature.  

MT4 and MT5 also had lower δ13COC values (-25.1 and -26.6‰) and were located in the 

deep Mississippi Canyon.  These sediments could also be a result of transport of ancient 

terrestrial deposits. 

 Stations S42 and S43 were in shallow waters and close to shore, thus their 

terrestrial δ13COC values (-24.9 and -26.6‰) were expected.   

Microelectrode Profiles 

 The redox species O2-, Mn2+, Fe2+ and ΣH2S were measured to 10-15 cm depth in 

sediment cores using microelectrodes at six of the stations:  MT3, MT6, S36, S42, S1, 

and S4 (Figures 9 & 10).  At MT3 oxygen concentrations depleted to zero at the 

sediment-water interface where sulfide and manganese began to increase.  Manganese 

concentrations were elevated between 3 and 8 cm and then began to decline.  Iron was 

not detected at MT3.  At station MT6 oxygen concentrations were high at the sediment-

water interface and steadily declined to zero at 8 cm depth.  Sulfide increased at 2 cm 

and remained constant downcore.  Iron and manganese were not detected.  At S36 

oxygen concentrations were high at the sediment-water interface (~200 µM) and 

declined to zero at a depth of 4 cm.  Sulfide was first observed at 1 cm and increased 

slightly and remained constant downcore with low concentrations of around 2 µM.  Iron 
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and manganese were not detected.  At S42 oxygen penetrated to 4 cm with low sulfide 

concentrations beginning at 3 cm and persisting downcore.  Iron and manganese were 

not detected.  At site S1 oxygen concentrations were high at the sediment-water interface 

and steadily declined to near 10 µM and remained constant downcore.  Iron, manganese 

and sulfide were not detected.  At site S4 oxygen concentrations began near 45 µM at 

the sediment-water interface and declined downcore to around 2 µM.   

  

 

 

 

 

 

 

 

 

 

 

Figure 9.  Microelectrode profiles of redox species at Stations S1 and S4 taken in Year 2002. 
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Figure 10.  Microelectrode profiles of redox species at Stations MT3, MT6, S36 and S42 taken 
in Year 2001. 
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Faunal Abundances 

 Faunal abundances are summarized in Table 4 for each station. 

Table 4.  Faunal abundances. 

Station 
Water 

Depth (m) 
Total Macrofauna 
Abundance (n m-2) 

Total Meiofauna 
Abundance (n m-2) 

Total Bacteria 
Abundance (n cc-1) 

AC1 2450 286 129974 8.28E+08 
B2 2630 276 139907 1.27E+09 

Bush Hill 548 691 407852 1.08E+09 
HiPro 1574 1220 343118 5.88E+08 

MT1(a) 481 3855 430412 6.78E+08 
MT1(b) 490 3407 326113 1.13E+09 
MT3(a) 988 2419 395478 1.26E+09 
MT3(b) 980 875 490517 1.08E+09 

MT4 1401 1099 246058 6.47E+08 
MT5 2290 448 128964 7.10E+08 

MT6(a) 2750 253 72647 6.43E+08 
MT6(b) 2740 289 82665 5.88E+08 

NB4 2050 453 148409 6.62E+08 
RW1 213 1276 411809 1.07E+09 
RW2 950 730 219457 8.10E+08 
RW3 1325 528 248752 5.88E+08 
RW4 1580 526 232842 5.05E+08 
RW5 1620 480 170633 8.80E+08 
RW6 3015 282 144453 9.83E+08 

S36(a) 1832 2173 450026 1.53E+09 
S36(b) 1849 1353 349936 1.11E+09 
S42(a) 772 688 209608 8.65E+08 
S42(b) 773 924 282929 2.03E+08 

S43 360 1260 276279 1.01E+09 
S44 212 1154 254813 1.45E+09 
S1 3527 354 70038 1.16E+09 
S4 3408 143 50761 1.05E+09 
W5 2740 274 104552 6.79E+08 
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Macrofauna 

 Macrofauna abundance (G. Rowe, personal communication) ranged from 143 to 

3855 n m-2 with a mean of 990 ± 935 n m-2 (Figure 11).  Highest abundances were at 

MT1, MT3, S36, HiPro, RW1, S43 and S44.  These were all shallow (<1000 m) stations, 

except S36 and HiPro.  Lower abundances occurred at deeper depths (>2000 m) with the 

lowest abundance in 3400 m of water at site S4.  Polychaetes, nematodes and amphipods 

accounted for 75% of the macrofauna across the Gulf of Mexico.    

Meiofauna 

 Meiofauna abundance (P. Montagna, personal communication) was determined 

in the top 3 cm of sediment for the Gulf of Mexico stations (Figure 12).  Meiofauna 

abundance ranged from 50,761 to 490,517 n m-2 with a mean of 243,536 ± 129,423 n m-

2.  Highest abundances were at MT1, MT3, S36, HiPro, RW1, and Bush Hill.  With the 

exceptions of S36 and HiPro these were all shallow water (<1000 m) stations.  Lower 

abundances occurred at >2000 m water depth with the lowest at site S4.  Meiofauna 

were primarily nematodes (68%), harpacticoid copepods (12%) and copepod nauplii 

(11%).  
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Bacteria  
  
 Bacteria abundance (J. Deming, personal communication) was determined for the 

top 1 cm of sediment for the Gulf of Mexico stations (Figure 13).  Bacteria abundance 

ranged from 2.03E+08 to 5.32E+09 bacteria per cc sediment with a mean of 8.95E+08 ± 

3.06E+08 bacteria per cc sediment.  High abundance sites included MT3, S36, B2 and 

S1, which ranged in depths from 988 to 3500 m.  Lowest bacteria abundances were 

observed at S42, RW4, HiPro and MT6.    
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STATISTICAL ANALYSIS 

 Statistical analysis of the data collected was conducted to test the four null 

hypotheses for all stations included in this study.  The stations were then separated into 

five subsets based on geographical location, water depth and high primary production.  

Statistical analysis was again performed to test the null hypotheses (H01 and H04) for 

each of the subsets to determine if there were significant differences between the subsets 

and all the northern GOM sites.  The four null hypotheses are listed below.  

 H01:  There is no variation in OC/SA with water depth. 

 H02:  There is no variation in OC/SA along an east to west gradient. 

 H03:  There is no variation in OC/SA among different sampling dates. 

 H04:  There is no variation in benthic organism abundance with OC/SA. 

 Standard regression analysis was chosen to test H01, H02 and H04.  The analysis 

determined if there was a relationship between OC/SA and water depth and an east/west 

gradient (using longitude as the independent variable) and if OC/SA was related to the 

abundance of benthic fauna.  The analysis assumed independent residuals with a normal 

distribution and constant variance. Correlation analysis was also used to determine the 

degree of association between the fauna abundances and OC/SA.  The parametric 

Pearson’s product-moment correlation was utilized and assumed continuous bivariate 

data and normal distribution.  OC/SA, meiofauna and bacteria abundances were 

normally distributed; however, macrofauna abundance had to be logarithmically 

transformed to achieve normal distribution.   The Wilcoxon’s signed ranks test was used 

to test H03.  Due to the small number of data pairs (5) it could not be assumed that the 
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data was continuous, normally distributed with homogeneous variances.  Significance 

levels were defined by the following P-values:  (1) significant, P<0.05, (2) moderately 

significant, P<0.01, and (3) highly significant, P<0.001.  

Gulf of Mexico  

 Standard linear regression analysis was performed to test the relationship 

between OC/SA and water depth.  The results of the linear regression (Figure 14) 

indicated a moderately significant relationship between OC/SA and water depth (r2 = 

0.31, P = 0.002, F = 12.0).  The best-fit line explained 31% of the variation in OC/SA.  

The P-value of 0.002 indicated that the null hypothesis had a 0.2% chance of being true.  

Therefore, the null hypothesis (H01) must be rejected, indicating there was significant 

variation in OC/SA with water depth in the sample set. 

 

 

  

 

 

 

 

 

Figure 14.  Linear regression analysis of OC/SA and water depth for the GOM sample set. 
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 Standard linear regression analysis was performed to test the relationship 

between OC/SA and an east to west gradient.  Longitude values were used to 

numerically represent the east to west gradient in the northern GOM.  The results of the 

linear regression analysis (Figure 15) did not indicate a significant relationship between 

OC/SA and longitude (r2 = 0.10, P = 0.10, F = 2.96).  The best-fit line explained only 

10% of the variance in OC/SA.  The null hypothesis had a 10% chance of being accepted 

as indicated by the P-value of 0.10.  Therefore the null hypothesis (H02) must be 

accepted, indicating there was no variation in OC/SA along an east to west gradient in 

the sample set. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15.  Linear regression analysis of OC/SA with an east/west gradient. 

 

  

 

 

y = -0.01x + 1.22
R2 = 0.10
P = 0.10
F = 2.96

0

0.1

0.2

0.3

0.4

0.5

0.6

85 87 89 91 93
longitude W

O
C

/S
A 

(m
g 

m
-2

)

95% Confidence limits



 

 

39

 The nonparametric Wilcoxon’s signed ranks test was performed to test if OC/SA 

varied between sampling years.  Samples were recovered from five stations (MT1, MT3, 

MT6, S36 and S42) in two separate years.  The results of the Wilcoxon’s test indicated 

that the null hypothesis (H03) must be accepted (Z = -0.271, P = 0.786).  The P-value 

indicated that the null hypothesis had a 79% chance of being true, therefore there was no 

significant difference in OC/SA between sampling years.  

 Correlation analysis and standard regression analysis were performed to test the 

relationship between fauna abundances and OC/SA.  The results of correlation analysis 

indicated a moderately significant positive correlation between OC/SA and macrofauna 

abundance (r = 0.519, P = 0.005, d.f. = 28).  The results of the regression analysis 

(Figure 16) indicated a moderately significant exponential relationship between 

macrofauna abundance and OC/SA (r2 = 0.26, P = 0.005, F = 9.6).  The best-fit line 

explained 26% of the variation in macrofauna abundance.  The P-value of 0.005 

indicated that the null hypothesis had a 0.5% chance of being true.    Therefore, the null 

hypothesis (H04) must be rejected, indicating there was a significant relationship between 

macrofauna abundance and OC/SA in the sample set. 
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Figure 16. Regression analysis results of macrofauna abundance and OC/SA for the GOM 
sample set. 
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Figure 17. Regression analysis results of meiofauna abundance and OC/SA for the GOM sample 
set. 
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bacteria abundance and OC/SA (r2 = 0.08, P = 0.14, F = 2.29).  The best-fit line 

explained only 8% of the variation in bacteria abundance.  The P-value of 0.14 indicated 

that the null hypothesis had a 14% chance of being true.  Therefore, the null hypothesis 

(H04) must be accepted, indicating there was no significant relationship between bacteria 

abundance and OC/SA in the sample set.   
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Figure 18.  Regression analysis results of bacteria abundance and OC/SA for the GOM sample 
set. 
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biogeochemical parameters at these stations.  All the data collected for this study of the 

northern GOM was analyzed as a whole to determine if relationships existed among the 

different variables throughout the northern GOM.  Regression analysis was chosen as the 

primary statistical tool because we wanted to determine what variable(s) accounted for 

the greatest variance among the biogeochemical constituents in the northern GOM. In 

particular this study was focused on the variable OC/SA and its relationship to the other 

biogeochemical parameters at these sites.  In addition, other variables such as water 

depth, organic carbon, calcium carbonate and grain size were also tested to determine 

significant relationships.   
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 The regression analysis performed for all variables is summarized in Table 5.  

The analysis assumed independent residuals with a normal distribution and a constant 

variance.  All results indicated were significant with a P-value < 0.05.   

 The regression analysis indicated several significant relationships among the 

different parameters in the northern GOM sample set.  One of the important 

relationships considered was the association of organic carbon with water depth.  It has 

been generally shown that the amount of organic matter that reaches the sediment is 

inversely proportional to water depth.  This generalization was also observed for 

northern GOM sediment samples as indicated by the slightly significant linear decrease 

of wt % OC with increasing water depth (Figure 19).  The linear relationship of wt % 

OC and water depth became more significant when wt % OC was calculated on a 

carbonate-free basis.  The regression analysis demonstrated that wt % OC was positively 

related to the smaller grain sizes and was inversely proportional to wt % CaCO3. 
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Figure 19.  Plots of (a) wt % OC, and (b) wt % OC (carbonate-free) as a function of water depth 
for the GOM sample set. 
 
 
 
  It is generally accepted that benthic faunal abundances are closely associated 

with water depth and organic carbon content in the sediment.  As demonstrated in 

Figures 20-22, macrofauna and meiofauna abundances had significant relationships with 

both water depth and wt % OC.  However, bacteria abundance showed no association 

with either wt % OC or water depth.   
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Figure 20.  Macrofauna abundance as a function of (a) water depth and (b) organic carbon for the 
GOM sample set. 
 

 

 

 

 

 

 

 

 

 

 

Figure 21.  Meiofauna abundance as a function of (a) water depth and (b) organic carbon content 
for the GOM sample set.  
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Figure 22. Bacteria abundance as a function of (a) water depth and (b) organic carbon content for 
the GOM sample set. 
 
 
 
 As indicated in Table 5 there were several significant relationships observed 

between the parameters at the northern GOM sample sites and it would be difficult to 

determine which specific independent variable was the most important.  To help 

statistically determine among the independent variables which was the best predictor of 

faunal abundance, stepwise multiple linear regression analysis was utilized.  The 

procedure examined all possible combinations of independent variables to produce the 

better fit and identify the most important independent variable(s).  The independent 

variables included water depth, wt % OC, OC/SA, and wt % CaCO3; the dependent 

variables were macrofauna, meiofauna and bacteria abundances.  The results indicated 

that for the northern GOM sample set:  (1) wt % OC and water depth were the best 
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OC – 66,812 water depth, DW = 1.6, r2 = 0.82, F = 55.7, P = 0.000); and (2) none of the 

independent variables were good predictors of bacteria. 

Western Stations  

 A subset of stations located in the far western northern GOM is listed in Table 6.  

These sites are influenced by westward currents which deposit sediment transported 

from the Mississippi River.  Stations RW1-RW5 represented a depth transect with 

depths ranging from 213 to 1620 m.  Station AC1 was located in the Alaminos Canyon, 

B2 and NB4 represented basin and non-basin sites, W5 and RW6 were located within 

submarine canyons, and S1 was located on the abyssal plain at a depth of 3527 m.  

 Wt % OC at these stations ranged from 0.49 to 0.95 wt % with a mean of 0.76 wt 

% which was below the sample mean of 0.80 wt %.   The stations with the highest wt % 

OC included RW1 (0.95 wt %, 213 m), AC1 (0.88 wt %, 2450 m), and W5 (0.94 wt %, 

2740 m).  High organic matter content was expected at the shallow RW1 site; however, 

it was not expected at stations deeper than 2000 m.  Sites AC1 and W5 were both 

located in deep canyons and the high wt % OC could be due to sediment slumping from 

the canyon edges to the canyon floor. The lowest wt % OC was observed at S1 (0.49 wt 

%), which was expected for a deep station (3527 m).  Sediment at these sites was 

composed of >90% silt and clay fractions as indicated by the high surface areas.  S1 had 

a lower surface area (25.3 m2g-1) and a higher sand fraction (21.2 wt %), probably due to 

the high concentrations of calcareous foraminifera which are ubiquitous throughout the 

GOM.  This interpretation is supported by a high wt % CaCO3 (39 wt %).  W5 also had a 

lower surface area (21.4 m2g-1), however this was not associated with a high sand 
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fraction (6.4 wt %), and the wt % CaCO3 (29 wt %) was comparable to other stations in 

the western GOM.     

 
Table 6. Western stations. 

Station 
Depth 

(m) 

wt 
% 

OC 
SA   

(m2g-1) 
OC/SA   

(mg m-2) 
Wt % 

CaCO3 
δ13COC 

(‰) 

Total 
Macrofauna 
Abundance 

(n m-2) 

Total 
Meiofauna 
Abundance 

(n m-2) 

Total Bacteria 
Abundance   

(n cc-1) 
RW1 213 0.95 34.9 0.27 20 n.d. 1276 411809 1.07E+09 
RW2 950 0.71 49.7 0.14 11 -20.6 730 219457 8.10E+08 
RW3 1325 0.78 39.5 0.20 24 -22.5 528 248752 5.88E+08 
RW4 1580 0.80 35.8 0.22 30 -31.5 526 232842 5.05E+08 
RW5 1620 0.73 34.8 0.21 30 -33.5 480 170633 8.80E+08 
NB4 2050 0.63 30.5 0.21 34 -30.0 453 148409 6.62E+08 
AC1 2450 0.88 31.4 0.28 29 -27.0 286 129974 8.28E+08 
B2 2630 0.74 33.5 0.22 23 -22.6 276 139907 1.27E+09 
W5 2740 0.94 21.4 0.44 29 -26.7 274 104552 6.79E+08 

RW6 3015 0.72 33.1 0.22 26 -25.0 282 144453 9.83E+08 
S1 3527 0.49 25.3 0.20 39 -20.6 354 70038 1.16E+09 

 

 

 OC/SA values ranged from 0.14 to 0.44 mg-OC m-2 with a mean of 0.24 mg-OC 

m-2, which was 12% lower than the sample mean of 0.27 mg-OC m-2.  The δ13COC values 

ranged from -20.6 to -33.5‰.  RW2, RW3, B2, and S1 had δ13COC values which were 

more enriched in 13C (-20.6 to -22.6‰) and were representative of marine origin.  RW4, 

RW5 and NB4 had δ13COC values -30.0 to -33.5 ‰, which possibly indicated a 

hydrocarbon source.  The canyon sites at AC1, RW5 and W5 had more depleted δ13COC 

values (-25.0 to -27‰) possibly indicating ancient terrestrial transport.  No significant 

linear relationship was observed between δ13COC and water depth contrary to previous 

studies.   
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 Macrofauna and meiofauna abundances at the western stations were below the 

sample means by 66% and 28%, respectively, and declined significantly with water 

depth.  RW1 had abundances that were approximately 25% greater than the mean as 

expected at a shallow water site.  Bacteria abundances showed no trend with water depth 

and were 4% below the sample mean, except at B2 and S1, which were both 

approximately 30% greater than the mean.  Station S1 (3527 m) had a 22% increase in 

macrofauna abundance and 16% increase in bacteria abundance compared to the next 

deepest station, RW6.  Sediment oxygen concentrations at S1 penetrated to 10 cm 

subsurface as indicated by microelectrode redox profiles.      

 The macrofauna taxonomic groups (N = 38) in the western stations were 

composed primarily of nematodes (36%) and polychaetes (27%), which were similar to 

the sample means.  Amphipods comprised <1% of the macrofauna, which differed from 

the sample mean of 22%.  Of note was the large abundance of copepods (21%) and 

harpacticoids (15%) at S1, which compared to ~2% and ~6%, respectively at the other 

western stations and northern GOM sites.  The copepod abundance could be due to 

contamination from surface phytoplankton introduced during sieving.  Meiofauna 

taxonomic groups (N = 17) were comprised primarily of nematodes (66%), harpacticoids 

(12%), and copepod nauplii (12%), which reflected the sample means. 

 Standard linear regression analysis was performed to test the relationship 

between OC/SA and water depth at the western stations.  The results of the linear 

regression (Figure 23) indicated no significant relationship between OC/SA and water 

depth (r2 = 0.04, P > 0.05, F = 0.40).  The best-fit line only explained 4% of the variation 
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in OC/SA and the null hypothesis had a 55% chance of being true.  Therefore, the null 

hypothesis (H01) must be accepted, indicating there was no significant relationship 

between OC/SA and water depth in the sample subset. 

 

   

 

 

 

 

 

 

   
Figure 23.  Linear regression analysis of OC/SA and water depth for the western GOM stations.  
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relationship between faunal abundances and OC/SA.  Macrofauna abundance and 

OC/SA were logarithmically transformed to normally distribute the data and correlation 

analysis indicated no significant correlation between OC/SA and macrofauna abundance 

(r = -0.309, P = 0.354, d.f. =11).  The results of the regression analysis (Figure 24) 

indicated no significant relationship between macrofauna abundance and OC/SA (r2 = 

0.02, P > 0.05, F = 0.23).  The best-fit line explained only 2% of the variation in 

macrofauna abundance and the null hypothesis had a 65% chance of being true.  

Therefore, the null hypothesis (H04) must be accepted, indicating there was no 

y = 0.02x + 0.20
R2 = 0.04
P = 0.55
F = 0.40

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0 1 2 3 4

depth (km)

O
C

/S
A 

(m
g 

m
-2

)

95% Confidence limits



 

 

52

significant relationship between macrofauna abundance and OC/SA in the sample 

subset. 

 
 
 

 

 

 

 
 
 
 
 
 
Figure 24.  Linear regression analysis of macrofauna abundance and OC/SA for the western 
GOM stations. 

 

 

 

 
 
 

 

 

 

 

 

Figure 25.  Regression analysis results of meiofauna abundance and OC/SA for the western 
GOM stations. 
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 No significant correlation was indicated between OC/SA and meiofauna 

abundance (r = -0.132, P = 0.699, d.f. = 11).  The results of regression analysis (Figure 

25) did not indicate a significant relationship between meiofauna abundance and OC/SA 

(r2 = 0.04, P > 0.05, F = 0.40).  The best-fit line explained only 4% of the variation in 

meiofauna abundance and the null hypothesis had a 54% chance of being true.  

Therefore, the null hypothesis (H04) must be accepted, indicating there was no 

significant relationship between meiofauna abundance and OC/SA in the sample subset. 

 

 
 

 

 

 

 

 

 

Figure 26.  Regression analysis results of bacteria abundance and OC/SA for the western GOM 
stations. 
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abundance and null hypothesis had a 67% chance of being true.  Therefore, the null 

hypothesis (H04) must be accepted, indicating there was no significant relationship 

between bacteria abundance and OC/SA in the sample subset.   

 Table 7 summarizes the regression analysis results for the biogeochemical 

parameters of the western GOM sample subset.  Few significant relationships were 

observed at these stations.  Macrofauna and meiofauna had highly significant 

logarithmic relationships with water depth (Figure 27); however, bacteria did not 

demonstrate any significant association with water depth.  Wt % OC was observed to be 

positively associated with the small grain sizes.  

 

Table 7. Summary of regression analysis results for the western GOM stations.     

  Independent variable  

Dependent 
variable Water Depth wt % OC OC/SA wt % CaCO3 wt % > 63µm wt % < 63 µm 

  r2 F r2 F r2 F r2 F r2 F r2 F 

wt % OC         0.58** 12.2 0.57** 12.1 

OC/SA             

Macrofauna 0.96** 233           

Meiofauna 0.92** 105     0.41* 6.1     

Bacteria                         
All results indicated are significant (P < 0.05) and linear, except * exponential and ** logarithmic. 
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Figure 27.  Plots of (a) macrofauna, (b) meiofauna and (c) bacteria abundance as a function of 
water depth for the western GOM stations. 
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within the Mississippi River Trough and were located in proximity to the Mississippi 

River discharge area.  Water depths ranged from 481 m at MT1 to 2750 m at MT6.  The 

mean wt % OC for this area was 0.87 wt %, which was higher than the sample mean of 

0.80 wt %.  MT1 and MT3 display the greatest wt % OC (1.3 and 1.2 wt %, 

respectively) in all the northern GOM samples, which was probably due to high primary 

productivity in the surface waters as indicated by the δ13COC.   

 Sediment at sites nearest the Mississippi River mouth (MT1, MT3, and MT4) 

had high silt and clay fractions (>90 wt %) which was supported by high sediment 

surface areas (>33 m2g-1).  This was probably due to high silt and clay fractions  

 

Table 8.  Mississippi Canyon stations. 

Station 
Depth 

(m) 

wt 
% 

OC 
SA       

(m2g-1) 
OC/SA   

(mg m-2) 
Wt % 

CaCO3 
δ13COC 

(‰) 

Total 
Macrofauna 
Abundance 

(n m-2) 

Total 
Meiofauna 
Abundance 

(n m-2) 

Total 
Bacteria 

Abundance 
(n cc-1) 

MT1(a) 481 1.3 33.4 0.39 5.3 -22.5 3855 430412 6.78E+08 
MT1(b) 490 1.3 40.9 0.31 5.4 -23.5 3407 326113 1.13E+09 
MT3(b) 980 1.2 39.3 0.30 8.4 -21.2 875 395478 1.26E+09 
MT3(a) 988 1.2 34.2 0.35 8.1 -21.1 2419 490517 1.08E+09 

MT4 1401 0.80 34.9 0.23 20 -25.1 1099 246058 6.47E+08 
MT5 2290 0.45 42.6 0.11 8.0 -26.6 448 128964 7.10E+08 

MT6(b) 2740 0.40 35.0 0.11 19 -23.6 289 72647 6.43E+08 
MT6(a) 2750 0.37 26.4 0.14 32 -21.5 253 82665 5.88E+08 

(a) = year 2000; (b) = year 2001 
 

 

transported from the Mississippi River.  MT5 displayed a higher sand fraction (64.3 wt 

%) without a corresponding lower surface area (42.6 m2g-1), which could possibly be due 

to the iron stone that was observed in sediments at MT5.  MT6 also displayed a higher 

sand fraction for both years sampled (~30 wt %), with a corresponding slightly lower 
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surface area (~30 m2g-1) and higher carbonate content (~25%), possibly due to 

foraminifera.  

 OC/SA values ranged from 0.11 to 0.39 mg-OC m-2 with a mean of 0.24 mg-OC 

m-2, which was 12% below the sample mean of 0.27 mg-OC m-2.  Mean wt % CaCO3 for 

this transect was 13 wt %, which was half the sample mean of 26 wt %.  The δ13COC 

values for stations closest to the river mouth (MT1 and MT3) had enriched δ13COC 

values of -23.5 to -21.0‰, representative of marine origins.  MT4 and MT5 had more 

depleted δ13COC values of -25.1 and -26.6‰, respectively, which became more enriched 

at MT6 (~-22‰). Macrofauna and meiofauna abundances were 46% and 11% above the 

sample mean, respectively.  Bacteria abundance was 6% above the sample mean.  

Macrofauna taxonomic groups (N = 40) at the Mississippi Canyon stations were 

composed primarily of amphipods (44%), polychaetes (21%) and nematodes (14%).  Of 

note, was the large abundance of amphipods (75%) at MT1.  Meiofauna taxonomic 

groups (N = 20) were comprised primarily of nematodes (66%), harpacticoids (11%), 

and copepod nauplii (9%), which reflected the sample means. 

 Sediment pore water oxygen concentrations at MT3 were observed to deplete to 

zero at the sediment-water interface probably due to high sedimentation rates caused by 

river transport and high biological activity within the sediment.  Sulfide and manganese 

increased within the top 2 cm of sediment as evidence of sulfate and manganese 

reduction.  Sulfide concentrations were low (~2 µM), and obviously not at toxic levels to 

organisms since fauna abundance was so high in the top 2 cm.   In contrast oxygen 

penetrated to 8 cm at MT6 and sulfide was detected at 4 cm, which was expected for a 
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deep station.  Sedimentation rates were low and oxygen was able to penetrate further 

into the sediment.  Organic matter had more time to be consumed, which was evident by 

the low organic carbon content (0.37 wt %), which was the lowest of all the GOM sites. 

 Standard linear regression analysis was performed to test the relationship 

between OC/SA and water depth at the Mississippi Canyon stations.  The results of the 

linear regression (Figure 28) indicated a highly significant relationship between OC/SA 

and water depth (r2 = 0.89, P = 0.000, F = 48.3).  The best-fit line explained 89% of the 

variation in OC/SA and the null hypothesis had a 0.0% chance of being true.  Therefore, 

the null hypothesis (H01) must be rejected, indicating there was a significant relationship 

between OC/SA and water depth in the Mississippi Canyon sample subset. 

 
 
 
 
 

 

 

 

 

 

   
Figure 28.  Linear regression analysis of OC/SA and water depth for the Mississippi Canyon 
stations. 
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 Correlation analysis and standard regression analysis were performed to test the 

relationship between fauna abundances and OC/SA for the Mississippi Canyon sample 

subset.  Bacteria abundance was logarithmically transformed to achieve normal 

distribution.  A moderately significant positive correlation was indicated between 

OC/SA and macrofauna abundance (r = 0.861, P = 0.006, d.f. = 8).  The results of the 

regression analysis (Figure 29) indicated a highly significant exponential relationship 

between macrofauna abundance and OC/SA (r2 = 0.85, P = 0.0011, F = 34.6).  The best-

fit line explained 85% of the variation in macrofauna abundance and the null hypothesis 

had a 0.11% chance of being true.  Therefore, the null hypothesis (H04) must be rejected, 

indicating there was a significant relationship between macrofauna abundance and 

OC/SA in the Mississippi Canyon sample subset. 

 
 
 
 

 

 

 

 

 

 
Figure 29.  Linear regression analysis of macrofauna abundance and OC/SA for the Mississippi 
Canyon stations. 
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 A highly significant positive correlation was indicated between OC/SA and 

meiofauna abundance (r = 0.960, P = 0.000, d.f. = 8).  The results of regression analysis 

(Figure 30) indicated a highly significant exponential relationship between meiofauna 

abundance and OC/SA (r2 = 0.92, P = 0.0002, F = 71.3).  The best-fit line explained 92% 

of the variation in meiofauna abundance and the null hypothesis had a 0.02% chance of 

being true.  Therefore, the null hypothesis (H04) must be rejected, indicating there was a 

significant relationship between meiofauna abundance and OC/SA in the Mississippi 

Canyon sample subset. 

 No significant correlation was indicated between OC/SA and bacteria abundance 

(r = 0.576, P = 0.135, d.f. = 8).  The results of regression analysis (Figure 31) did not 

indicate a significant logarithmic relationship between bacteria abundance and OC/SA 

(r2 = 0.35, P = 0.12, F = 3.23).  The best-fit line explained 35% of the variation in 

bacteria abundance and the null hypothesis had a 12% chance of being true.  Therefore, 

the null hypothesis (H04) must be accepted, indicating there was no significant 

relationship between bacteria abundance and OC/SA in the Mississippi Canyon sample 

subset. 
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Figure 30.  Regression analysis results of meiofauna abundance and OC/SA for the Mississippi 
Canyon stations. 

 
 
 
 
 
 
 
 
 
 
  

 

 

Figure 31.  Regression analysis results of bacteria abundance and OC/SA for the Mississippi 
Canyon stations. 
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linear association was observed between wt % OC and water depth as demonstrated in 

Figure 32.  Highly significant exponential relationships were observed for macrofauna 

and meiofauna abundances with both water depth (Figure 33) and wt % OC (Figure 34).  

Bacteria was only moderately significantly associated with wt % OC (Figure 34). 

 

Table 9. Summary of regression analysis results for the Mississippi Canyon stations.    

  Independent variable  

Dependent 
variable Water Depth wt % OC OC/SA wt % CaCO3 wt % > 63µm 

wt % < 
63 µm 

  r2 F r2 F r2 F r2 F r2 F r2 F 

wt % OC 0.96 147 -- -- -- -- 0.58** 8.2 0.92** 71.5   

OC/SA 0.89 48 -- -- -- --   0.86** 35.8   

Macrofauna 0.92* 66.3 0.86* 37.1 0.85* 34.6 0.56** 7.7 0.69** 13.3   

Meiofauna 0.90* 56.5 0.92* 66.8 0.92* 71.3 0.51* 6.3 0.75** 18.1   

Bacteria   0.52* 6.59             

All results indicated are significant (P < 0.05) and linear, except * exponential and ** logarithmic.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32.  Plot of wt % OC as a function of water depth for the Mississippi Canyon stations. 
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Figure 33.  Plots of (a) macrofauna, (b) meiofauna, and (c) bacteria abundances as functions of 
water depth for the Mississippi Canyon stations. 
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Figure 34.  Plots of (a) macrofauna, (b) meiofauna, and (c) bacteria abundances as functions of 
wt % OC for the Mississippi Canyon stations. 
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which was the best predictor of biological abundance, stepwise multiple linear 

regression analysis was utilized. The independent variables included water depth, wt % 

OC, OC/SA, wt % CaCO3, wt % >63 µm and wt % <63 µm and the dependent variables 

were macrofauna, meiofauna and bacteria abundances.  The results of the stepwise 

multiple regression analysis indicated that at the Mississippi Canyon stations:  (1) water 

depth was the best predictor for macrofauna abundance (y = 3577 – 1318 water depth, 

DW = 1.97, r2 = 0.75, P = 0.005, F = 18.0); (2) OC/SA was the best predictor for 

meiofauna abundance (y = -70,617 + 1,411,232 OC/SA, DW = 1.39, r2 = 0.92, P = 

0.000, F = 71.3);  and (3) wt % OC was the best predictor for bacteria abundance (y = 

4.4E+08 + 4.5E+08 wt %OC, DW = 1.56, r2 = 0.50, P = 0.049, F = 6.06). 

 

Eastern Stations 

 
Table 10.  Eastern stations. 

Station 
Depth 

(m) 

wt 
% 

OC 
SA   

(m2g-1) 
OC/SA    

(mg m-2) 
Wt % 

CaCO3 
δ13COC 

(‰) 

Total 
Macrofauna 
Abundance 

(n m-2) 

Total 
Meiofauna 
Abundance   

(n m-2) 

Total 
Bacteria 

Abundance 
(n cc-1) 

S44 212 0.46 8.92 0.52 72  1154 254813 1.45E+09 
S43 360 0.61 11.7 0.52 70 -26.6 1260 276279 1.01E+09 

S42(a) 772 0.62 17.8 0.35 57 -24.9 688 209608 8.65E+08 
S42(b) 773 0.66 17.3 0.38 56  924 282929 2.03E+08 
HiPro 1574 1.0 48.1 0.21 6.7 -23.6 1220 343118 5.88E+08 
S36(a) 1832 1.1 36.9 0.28 25  2173 450026 1.53E+09 
S36(b) 1849 1.2 30.1 0.39 24 -21.8 1353 349936 1.11E+09 
(a) = year 2000; (b) = year 2001 

 

 
 The eastern stations included sites located in the far eastern region of the 

northern GOM (Table 10).  Stations S36 and S42 were sampled in two separate years as 
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indicated.  Water depths at these stations ranged from 212 to 1849 m with a mean wt % 

OC of 0.80 wt %, which equaled the sample mean. Stations S42 to S44 were located on 

the eastern side of the Desoto Canyon along the Florida Escarpment at depths of 212 to 

773 m.  Sites S36 and HiPro (1574 and 1849 m) were located on the western rim of the 

Desoto Canyon and were influenced by high primary productive surface waters and 

possibly by Mississippi River discharge.  Wt % OC was greatest at S36 and HiPro (>1.0 

wt %) with high surface areas (>30 m2g-1) and corresponding high silt and clay fractions 

(>92 wt %).  S36 had greater wt % CaCO3 (25 wt %) compared to HiPro (6.7 wt %) 

possibly due to foraminifera.  Stations S42 to S44 had low surface areas (<20 m2g-1) and 

corresponding high sand fractions (~20-50 wt %) with high calcium carbonate content 

(>50 wt %).  S44 (212 m) had the greatest wt % CaCO3 of all GOM stations at 72 wt %.   

 The δ13COC values were more depleted (-24.9 to -26.6‰) at stations on the 

eastern side of the Desoto Canyon indicating a terrestrial source and more enriched (-

21.8 to -23.6‰) at stations on the western rim indicating a marine source. The stations 

on the eastern side were in shallow water and had much lower organic carbon content 

(<0.66 wt %).   

 OC/SA values ranged from 0.21 to 0.52 mg-OC m-2, which were the highest in 

the GOM sample set and were 33% greater than the sample mean of 0.27 mg-OC m-2.  

The mean calcium carbonate content of 54 wt % was twice the sample mean of 27 wt %. 

 Macrofauna and meiofauna abundances were both 24% above the sample mean 

and bacteria abundance was 8% higher.  The macrofauna taxonomic groups (N = 38) 

were comprised primarily of nematodes (35%) and polychaetes (32%).  Meiofauna 
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taxonomic groups (N = 21) were comprised primarily of nematodes (66%), harpacticoids 

(11%), and copepod nauplii (11%), which reflected the sample means.  Sediment oxygen 

concentrations at stations S36 and S42 were observed to penetrate down past the top 2 

cm and sulfide was detected ~0.5 cm at S36 and ~3 cm at S42. 

 Standard regression analysis was performed to test the relationship between 

OC/SA and water depth for the eastern GOM sample subset.  The results of the 

regression analysis (Figure 35) indicated a significant logarithmic relationship between 

OC/SA and water depth (r2 = 0.68, P = 0.022, F = 10.8).  The best-fit line explained 68% 

of the variation in OC/SA and the null hypothesis had a 2.2% chance of being true.  

Therefore, the null hypothesis (H01) must be rejected, indicating there was a significant 

relationship between OC/SA and water depth in the eastern GOM sample subset. 

  

 

 

 

 

 

  
 
 
 
  
 
Figure 35.  Linear regression analysis of OC/SA and water depth for the eastern GOM stations. 
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 Correlation analysis and standard regression analysis were performed to test the 

relationships between fauna abundances and OC/SA for the eastern GOM stations.  No 

significant correlation was indicated between OC/SA and macrofauna abundance (r = -

0.238, P = 0.607, d.f. = 7).  The results of the linear regression analysis (Figure 36) did 

not indicate a significant relationship between macrofauna abundance and OC/SA (r2 = 

0.06, P = 0.61, F = 0.30).  The best-fit line explained only 6% of the variation in 

macrofauna abundance and the null hypothesis had a 61% chance of being true.  

Therefore, the null hypothesis (H04) must be accepted, indicating there was no 

significant relationship between macrofauna abundance and OC/SA in the eastern GOM 

sample subset. 

 

 

 

 

 

 

 

 

 
 
Figure 36.  Linear regression analysis of macrofauna abundance and OC/SA for the eastern 
GOM stations. 
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Figure 37.  Regression analysis results of meiofauna abundance and OC/SA for the eastern GOM 
stations. 
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abundance and the null hypothesis had a 57% chance of being true.  Therefore, the null 

hypothesis (H04) must be accepted, indicating there was no significant relationship 

between bacteria abundance and OC/SA in the eastern GOM sample subset. 

  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 38.  Regression analysis results of bacteria abundance and OC/SA for the eastern GOM 
stations. 
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Table 11.  Summary of regression analysis results for the eastern GOM stations. 

  Independent variable  

Dependent 
variable Water Depth wt % OC OC/SA wt % CaCO3 wt % > 63µm 

wt % < 63 
µm 

  r2 F r2 F r2 F r2 F r2 F r2 F 

wt % OC 0.96 107     0.84* 26.0 0.82* 23.2 0.82* 23.2 

OC/SA 0.68** 10.9     0.70* 15.2 0.72** 13.0 0.70 11.8 

Macrofauna             

Meiofauna 0.65 0.03 0.65 .03         

Bacteria                         

All results indicated are significant (P < 0.05) and linear, except * exponential and ** logarithmic. 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 39.  Plots of (a) wt % OC vs. water depth, and (b) wt % OC vs. wt % CaCO3 for the 
eastern GOM stations. 
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High Production Stations 

 

Table12.  High Production stations. 

Station 
Depth 

(m) 
wt 

%OC 
SA    

(m2g-1) 
OC/SA     

(mg m-2) 
wt % 

CaCO3 
δ13COC 

(‰) 

Total 
Macrofauna 
Abundance 

(n m-2) 

Total 
Meiofauna 
Abundance 

(n m-2) 

Total 
Bacteria 

Abundance    
(n cc-1) 

MT1(a) 481 1.3 33.4 0.39 5.3 -22.5 3855 430412 6.78E+08 
MT1(b) 490 1.3 40.9 0.31 5.4 -23.5 3407 326113 1.13E+09 
BushHill 548 1.0 33.4 0.29 15 -21.8 691 407852 1.08E+09 
MT3(b) 980 1.2 39.3 0.30 8.4 -21.2 875 490517 1.08E+09 
MT3(a) 988 1.2 34.2 0.35 8.1 -21.1 2419 395478 1.26E+09 
HiPro 1574 1.0 48.1 0.21 6.7 -23.6 1220 343118 5.88E+08 
S36(a) 1832 1.1 36.9 0.28 25 n.d. 2173 450026 1.53E+09 
S36(b) 1849 1.2 30.1 0.39 24 -21.8 1353 349936 1.11E+09 

(a) = year 2000; (b) = year 2001 
 

 
 The High Production sample subset included stations in the GOM located in 

waters known for high surface primary production (Table 12).  Stations MT1, MT3, and 

S36 were sampled in two separate years as indicated.  MT1 and MT3 were located near 

the Mississippi River mouth; HiPro and S36 were also in proximity to the river and were 

possibly influenced by its discharge.  Bush Hill was located to the west of the 

Mississippi Canyon stations and was also influenced by sediment transport from the 

river.  In addition, Bush Hill was located near a well-documented chemosynthetic 

community.   Water depths at these stations ranged from 481 to 1849 m with a mean wt 

% OC of 1.1 wt %, which was 35% greater than the sample mean of 0.80 wt %. Surface 

areas were high (>30 m2g-1) with corresponding high silt and clay content (>90 wt %) 

and low calcium carbonate content (<25 wt %).  OC/SA values ranged from 0.21 to 0.39 

mg-OC m-2 with a mean of 0.32 mg-OC m-2, which was 16% higher than the sample 
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mean of 0.27 mg-OC m-2.  The δ13COC values ranged from -21.1 to -23.6‰, 

representative of marine origin.  Macrofauna abundances were 68% greater than the 

sample mean and the taxonomic groups (N = 38) were comprised primarily of 

amphipods (36%), polychaetes (25%) and nematodes (18%).  Meiofauna abundances 

were 48% greater than the sample mean, with taxonomic groups (N = 22) comprised 

primarily of nematodes (64%), harpacticoids (12%), and copepod nauplii (9%).  Bacteria 

abundances were 17% greater than the sample mean.  

 Standard linear regression analysis was performed to test the relationship 

between OC/SA and water depth at the High Production stations.  The results of the 

linear regression (Figure 40) indicated no significant relationship between OC/SA and 

water depth (r2 = 0.03, P = 0.67, F = 0.20).  The best-fit line only explained 3% of the 

variation in OC/SA and the null hypothesis had a 67% chance of being true.  Therefore, 

the null hypothesis (H01) must be accepted, indicating there was no significant 

relationship between OC/SA and water depth at the High Production sample subset. 
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 Figure 40.  Linear regression analysis of OC/SA and water depth for the High Production 
stations. 
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had a 26% chance of being true.  Therefore, the null hypothesis (H04) must be accepted, 

indicating there was no significant relationship between macrofauna abundance and 

OC/SA at the High Production sample subset. 
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Figure 41.  Linear regression analysis of macrofauna abundance and OC/SA for the High 
Production stations. 
 
 
 
 
 

 

 

 

 

 

 
Figure 42.  Regression analysis results of meiofauna abundance and OC/SA for the High 
Production stations. 
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y = 31782Ln(x) + 436369
R2 = 0.013
P = 0.79
F = 0.08

0
100000

200000
300000

400000
500000

600000
700000

0.2 0.25 0.3 0.35 0.4 0.45
OC/SA (mg m-2)

m
ei

of
au

na
 a

bu
nd

an
ce

 (n
 m

-2
) 95% Confidence limits

y = 8703x - 750
R2 = 0.20
P = 0.26
F = 1.53

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0.2 0.25 0.3 0.35 0.4 0.45

OC/SA (mg m-2)

m
ac

ro
fa

un
a 

ab
un

da
nc

e 
(n

 m
-2

) 95% Confidence limits



 

 

76

meiofauna abundance and the null hypothesis had a 79% chance of being true.  

Therefore, the null hypothesis (H04) must be accepted, indicating there was no 

significant relationship between meiofauna abundance and OC/SA at the High 

Production sample subset. 

 
 
 
 

 

 

 

 

 

 

Figure 43.  Regression analysis results of bacteria abundance and OC/SA for the High 
Production stations.  

 
 
 
 No significant correlation was indicated between OC/SA and bacteria abundance 

(r = 0.155, P = 0.713, d.f. = 8).  The results of regression analysis (Figure 43) did not 

indicate a significant relationship between bacteria abundance and OC/SA (r2 = 0.06, P = 

0.58, F = 0.35).  The best-fit line explained that only 6% of the variation in bacteria 

abundance and the null hypothesis had a 58% chance of being true.  Therefore, the null 

hypothesis (H04) must be accepted, indicating there was no significant relationship 

between bacteria abundance and OC/SA at the High Production sample subset. 

y = 3E+08Ln(x) + 1E+09
R2 = 0.06

P = 0.58, F = 0.35

0.E+00

5.E+08

1.E+09

2.E+09

2.E+09

3.E+09

0.2 0.25 0.3 0.35 0.4 0.45

OC/SA (mg m-2)

ba
ct

er
ia

 a
bu

nd
an

ce
 (n

 c
c-1

)

95% Confidence limits



 

 

77

 The summary of the regression analyses determined for the variables at the High 

Production sample subset is presented in Table 13.  As the results indicate there was 

only one significant relationship among the different parameters at the High Production 

stations.  There was a significant linear association between macrofauna abundance and 

wt % OC as observed in Figure 44.   

 

Table 13. Summary of regression analysis results for the High Production stations.   

  Independent variable  

Dependent 
variable 

Water 
Depth wt % OC OC/SA wt % CaCO3 

wt % > 
63µm 

wt % < 63 
µm 

  r2 F r2 F r2 F r2 F r2 F r2 F 

wt % OC             

OC/SA             

Macrofauna   0.53 6.7         

Meiofauna             

Bacteria                   

All results indicated are significant (P < 0.05) and linear, except * exponential and ** logarithmic. 
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Figure 44.  Macrofauna abundance at the High Production stations plotted as a function of wt % 
OC.  
 
 
 
Abyssal Plain Stations  

 The Abyssal Plain stations are presented in Table 14 and include sites located at 

>2000 m water depth and along the abyssal plain of the northern GOM.    Water depths 

ranged from 2050 to 3527 m and sediment wt % OC from 0.37 to 0.72 wt % with a mean 

of 0.52 wt % which was 43% less than the sample mean of 0.80 wt %.   

 
 
Table 14.  Abyssal Plain stations.  

Station 
Depth 

(m) 

wt 
% 

OC 
SA 

(m2g-1) 
OC/SA 

(mg m-2) 
Wt % 

CaCO3 
δ13COC 

(‰) 

Total 
Macrofauna 
Abundance 

(n m-2) 

Total 
Meiofauna 
Abundance 

(n m-2) 

Total 
Bacteria 

Abundance 
(n cc-1) 

NB4 2050 0.63 30.5 0.21 34 -30.0 453 148409 6.62E+08 
MT5 2290 0.45 42.6 0.11 8.0 -26.6 448 128964 7.10E+08 

MT6(b) 2740 0.40 35.0 0.11 19 -23.6 289 82665 5.88E+08 
MT6(a) 2750 0.37 26.4 0.14 32 -21.5 253 72647 6.43E+08 
RW6 3015 0.72 33.1 0.22 26 -25.0 282 144453 9.83E+08 
S4 3408 0.55 39.2 0.14 16 -24.6 143 50761 1.05E+09 
S1 3527 0.49 25.3 0.20 39 -20.6 354 70038 1.16E+09 
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 OC/SA values ranged from 0.11 to 0.21 mg-OC m-2 with a mean of 0.16 mg-OC 

m-2, which was 51% lower than the sample mean of 0.27 mg-OC m-2.  Surface area, wt 

% CaCO3 and δ13COC values for the abyssal stations were all within 7% of the sample 

means.  NB4 had the most depleted δ13COC (-30.0‰), which indicated a possible 

hydrocarbon source.  S1 had the most enriched δ13COC (-20.6‰), which was 

representative of marine origin.  The other stations ranged from -21.5 to -26.6‰.  

Microelectrode probes indicated oxygen penetration to 10 cm in the sediments at S1 and 

S4 and no sulfide concentration.   

 Macrofauna abundance was 3 times below the sample mean with taxonomic 

groups (N = 35) comprised primarily of nematodes (36%) and polychaetes (23%).  

Meiofauna abundance was 84% below the mean with taxonomic groups (N = 14) 

comprised primarily of nematodes (62%), harpacticoids (13%), and copepod nauplii 

(13%).  Bacteria abundance was 8% below the sample mean.  

 Standard regression analysis was performed to test the relationship between 

OC/SA and water depth at the Abyssal Plain stations.  The results of the linear 

regression (Figure 45) indicated no significant relationship between OC/SA and water 

depth (r2 = 0.02, P = 0.76, F = 0.11).  The best-fit line explained only 2% of the variation 

in OC/SA and the null hypothesis had a 76% chance of being true.  Therefore, the null 

hypothesis (H01) must be accepted, indicating there was no significant relationship 

between OC/SA and water depth in the Abyssal Plain sample subset. 
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Figure 45.  Linear regression analysis of OC/SA and water depth for the Abyssal Plain stations. 
 
 
 
 Correlation analysis and standard regression analysis were performed to test the 

relationship between fauna abundances and OC/SA.  No significant correlation was 

indicated between OC/SA and macrofauna abundance (r = 0.148, P = 0.751, d.f. = 7).  

The results of the regression analysis (Figure 46) indicated no significant relationship 

between macrofauna abundance and OC/SA (r2 = 0.02, P = 0.75, F = 0.11).  The best-fit 

line explained only 2% of the variation in macrofauna abundance and the null hypothesis 

had a 75% chance of being true.  Therefore, the null hypothesis (H04) must be accepted, 

indicating there was no significant relationship between macrofauna abundance and 

OC/SA at the Abyssal Plain sample subset. 
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Figure 46.  Linear regression analysis of macrofauna abundance and OC/SA for the Abyssal 
Plain stations. 
 
 
 
 

 

 

 

 

 

 

Figure 47.  Regression analysis results of meiofauna abundance and OC/SA for the Abyssal 
Plain stations. 

 
 
 
 No significant correlation was indicated between OC/SA and meiofauna 

abundance (r = 0.411, P = 0.359, d.f. = 7).  The results of regression analysis (Figure 47) 
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= 0.17, P = 0.36, F = 1.01).  The best-fit line explained 17% of the variation in 

meiofauna abundance and the null hypothesis had a 36% chance of being true.  

Therefore, the null hypothesis (H04) must be accepted, indicating there was no 

significant relationship between meiofauna abundance and OC/SA in the Abyssal Plain 

sample subset. 

 

 

 

 

 

 

 

 

 

Figure 48.  Regression analysis results of bacteria abundance and OC/SA for the Abyssal Plain 
stations. 

 
 
 
 No significant correlation was indicated between OC/SA and bacteria abundance 

(r = 0.463, P = 0.295, d.f. = 7).  The results of regression analysis (Figure 48) indicated 

no significant logarithmic relationship between bacteria abundance and OC/SA (r2 = 

0.23, P = 0.27, F = 1.53).  The best-fit line explained 23% of the variation in bacteria 
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hypothesis (H04) must be accepted, indicating there was no significant relationship 

between bacteria abundance and OC/SA in the Abyssal Plain sample subset. 

 The regression analysis results for the Abyssal Plain stations are presented in 

Table 15.  As the results indicate very few significant relationships were observed at the 

Abyssal Plain sites.  Bacteria abundance increased significantly with increasing water 

depth and wt % OC decreased significantly with increasing grain size.   

 
 
Table 15.  Summary of regression analysis results for the Abyssal Plain stations.    

  Independent variable  

Dependent 
variable Water Depth wt % OC OC/SA wt % CaCO3 wt % > 63µm 

wt % < 63 
µm 

  r2 F r2 F r2 F r2 F r2 F r2 F 

wt % OC         0.66** 9.8   

OC/SA       0.59* 7.3     

Macrofauna             

Meiofauna             

Bacteria 0.68  10.7                    
All results indicated are significant (P < 0.05) and linear, except * exponential and ** logarithmic. 
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Summary of Statistical Results 

 A summary of the statistical analysis results used for testing the null hypotheses 

is presented in Table 16.  As a reminder the null hypotheses are listed below.   

 H01:  There is no variation in OC/SA with water depth. 

 H02:  There is no variation in OC/SA along an east to west gradient. 

 H03:  There is no variation in OC/SA among different sampling dates. 

 H04:  There is no variation in benthic organism abundance with OC/SA. 

 

 

Table 16. Summary of statistical analyses of the null hypotheses. 

  H01 H02 H03 
H04 

(macrofauna)
H04 

(meiofauna) 
H04 

(bacteria) 
GOM R A A R R A 

Western GOM A -- -- A A A 
Mississippi 

Canyon R -- -- R R A 
Eastern GOM R -- -- A A A 

High Production A -- -- A A A 
Abyssal Plain A -- -- A A A 

A = null hypothesis accepted; R = null hypothesis rejected 
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 OC/SA varied significantly with water depth across the northern GOM sample 

set, as well as at the Mississippi Canyon sites and the eastern GOM subset.  No 

significant variations in OC/SA with water depth were observed at the western GOM, 

High Production, or the Abyssal Plain sample subsets.  OC/SA did not significantly vary 

in an east-to-west gradient across the northern GOM sites and among different sampling 

years.  

 OC/SA was significantly related to macrofauna and meiofauna abundance for the 

northern GOM sample set and the Mississippi Canyon sample subset.  No associations 

were observed for the other subsets.  In contrast, OC/SA was not significantly related to 

bacteria abundance for any areas of the northern GOM sample set.  
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DISCUSSION 

 Past research has indicated that organic matter within marine sediments may be 

correlated with sediment surface area to determine the degree of association between 

organic matter and mineral surfaces.  A strong positive correlation between organic 

carbon and surface area has been attributed to the adsorption of organics to the surfaces 

of mineral grains (Mayer, 1994a; Mayer, 1994b).  This relationship of OC/SA was 

examined for deep-sea sediments in the northern GOM and the values were determined 

to range from 0.37 to 0.52 mg-OC m-2, which was well below the typical continental 

margin levels of 0.5-1.0 mg-OC m-2 determined by Mayer (1994a, 1994b). However, 

they were consistent with values determined by Mayer (1994b) for Pacific Ocean and 

Atlantic Ocean deep sea sediments, which had values of 0.1 to 0.4 mg-OC m-2.  OC/SA 

values at the eastern GOM sites were highest (~0.50 mg-OC m-2) due to the low surface 

area of carbonates and were lowest at the Abyssal Plain sites due to low loadings of 

organic carbon.   

 The linear relationship between organic carbon and surface area at the northern 

GOM sites was statistically insignificant (r2 = 0.11, P = 0.085), which was consistent 

with deep sea sediments (Mayer, 1994b).  However, the weak OC/SA relationship was 

in sharp contrast with sediments from other geographical areas where organic matter is 

more plentiful, such as the Peru Margin.  A strong positive correlation of organic carbon 

and sediment surface area has been observed in sediments of the Peru Margin (Hedges 

and Keil, 1995; Bergamaschi et al., 1997), which contain in excess of 6 wt % OC, 

indicating that surface area was an important variable to organic carbon in these 
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sediments.  These findings suggest that in areas where organic matter is low (<1 wt 

%OC), surface area is not a dominant factor to organic carbon content.  In sediments 

with <3 wt % OC, <15% of the mineral surfaces are coated in organic material (Mayer, 

1999).  Moreover, the organics are found in localized patches, specifically along the 

edges of clay plates (Furukawa, 2000).  This suggests that in areas of low organic 

loadings organic carbon would have a stronger correlation with clay content than with 

surface area.  This was seen at the northern GOM study sites where a strong positive 

exponential relationship was observed between organic carbon and clay content (r2 = 

0.39, P = 0.0003, F = 16.9), suggesting that sediment mineralogy has a more dominant 

influence on organic matter than surface area at the northern GOM sites.   

 The low OC/SA values determined for this study indicated that organic carbon is 

very limiting for stations in the northern GOM.  Previous studies have considered the 

OC/SA association in relation to adsorption (Keil et al., 1994a; Keil et al., 1994b; Mayer 

1994a; Mayer, 1994b); however, none have examined the relationship between OC/SA 

and benthic faunal abundance.  Since the availability of organic matter in the sediment is 

one of the more important factors to the organisms, this study addressed the relationship 

between OC/SA and faunal abundance.  There was a significant relationship observed 

between OC/SA and macrofaunal and meiofaunal abundances, however the associations 

were not strong (r2 = 0.27 and 0.29, respectively).  This suggests that OC/SA was a 

factor affecting faunal abundance, though not the most dominant.  Water depth and wt % 

OC were observed to have stronger correlations with faunal abundance than OC/SA.  



 

 

88

Statistical analysis indicated that wt % OC was the most significant variable associated 

with faunal abundance across the northern GOM stations.  

 The strong correlation between macrofauna and meiofauna (r = 0.839, P = 0.000) 

at these stations suggested a trophic coupling between the two fauna.  The only location 

this correlation was not observed was at the High Production stations where organic 

carbon content was high.  At these stations macrofauna were positively correlated with 

organic carbon, indicating possibly that macrofauna were using the organic material in 

the sediment as a main food source and not grazing on the meiofauna.  The δ13COC 

values at these stations indicated that the organic matter was predominantly from a 

marine source (~ - 22‰), which would be more labile to marine organisms than 

terrestrial material.  The δ13COC values were consistent with those determined from 

previous studies for this area (Sackett and Thompson, 1963; Gearing et al., 1977; Goñi et 

al., 1998).  There were no correlations observed between the larger fauna and bacteria.  

This could indicate that the macrofauna and meiofauna were not grazing on the bacteria 

or that the bacteria were not limiting and in plentiful supply. 

 The stations near the Mississippi River were observed to have higher wt % OC, 

OC/SA and faunal abundances, demonstrating the influence of the river on organic 

matter in the northern GOM.  Stations at similar water depths in other areas of the 

northern GOM did not exhibit the same high values.  This was in sharp contrast to the 

western GOM and Abyssal Plain stations where wt % OC, OC/SA and faunal 

abundances were much lower.   
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CONCLUSION 

 The availability of metabolizable organic matter is one of the more important 

factors that control benthic communities.  The results of this study confirmed that wt % 

OC was the most significant variable associated with macrofauna and meiofauna 

abundances at stations sampled across the northern GOM.  The relationship of OC/SA 

was also determined to be an important factor to the faunal abundances, particularly in 

the Mississippi Canyon sample subset.   Macrofauna and meiofauna abundances tended 

to vary together with OC/SA, possibly indicating a trophic relationship.  Bacteria did not 

correlate with the other fauna or with OC/SA.   

 The results also illustrated the complexity of the northern GOM with variable 

relationships at different locations.  This demonstrated the necessity of considering not 

only the whole northern GOM as one system, but also of recognizing its individual 

environments as important to benthic biological patterns.  

 In conclusion, the interactions of organic matter with mineral surfaces in deep-

sea sediments within this study of the northern GOM demonstrated a significant 

association with benthic communities; however, wt % OC was the more important 

environmental variable.   
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