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Abstract: Building level energy models are important to 
provide accurate prediction of energy consumption for 
building performance diagnosis and energy efficiency 
assessment of retrofitting alternatives for building 
performance upgrading. Simplified but physically 
meaningful models for existing buildings are preferable 
for practical applications. In this study, a hybrid building 
model is developed to describe building system for 
thermal performance prediction at building level. The 
model includes two parts. One part is the detailed 
physical models, which are the CTF models of building 
envelopes based on the easily available coincident 
detailed physical properties. The other part is the 
simplified 2R2C model for building internal mass, 
whose parameters are estimated and optimized using 
short-term monitored operation data. A genetic algorithm 
estimator is developed to optimize these parameters. The 
parameter optimization of the simplified model and the 
hybrid building model are validated in a high-rise 
commercial office building under various weather 
conditions. 
Key words: Hybrid building model, dynamic thermal 
performance, simplified model, building internal mass, 
parameter optimization   

 
1. INTRODUCTION 

For the diagnosis and evaluation purposes of 
building system, a reference building energy model is 
very important to accurately predict absolute 
performance data for performance benchmarking [1]. 
At the building level as a whole process, many 
researchers have developed different reference models, 
which can be categorized into physical models and 
data driven models and gray models. 

Available simulation models such as EnergyPlus 
[2] and DOE-2 [3] etc., are typical detailed physical 
models. However, a large number of parameters are 
needed as inputs for simulation, and the process of 
collecting physical descriptions is time consuming and 
probably does not cost effective. One is building 
envelope information, which is relatively easy to 
obtain according to design data or site survey. The 
other is the description of building internal mass, 
which includes internal partitions, floors, furniture etc. 
Obviously, it is unimaginable to describe the building 
internal mass physically piece by piece. To simplify 
the description process of building internal mass, a 
reference RTF (room transfer function) [4][5] is often 

used. However, the parameter selection is based on 
the actual building configuration which should be 
similar to the specified configurations of reference 
building. The estimation of cooling load may deviate 
greatly if the actual building configuration of concern 
differs greatly from the specified configuration of a 
reference building. As a matter of fact, such situation 
occurs often. 

Dynamic data driven models are capable of 
capturing dynamics such as mass dynamics to some 
extends and better suited to handle inter-correlated 
forcing functions or independent parameters [6][7]. 
However, it is generally necessary to acquire data 
over a long period of time in order to train the models 
for accurate prediction. Gray models assume the 
physical structure and their parameters have definite 
physical meanings. The parameters can be backed out 
with operation data. Braun and Chaturvedi [8], Liao 
and Dexter [9] developed a gray second-order physical 
model to simulate the dynamic behavior of existing 
buildings. The gray models can predict long term 
energy performance with short term operation data 
monitoring. Although gray models can represent the 
physical properties of building system and predict 
energy consumption, some easily available building 
information can be utilized to enhance the simplified 
models and reduce the number of parameters to be 
identified with operation data.   

This paper presents a hybrid building model to 
represent a building system for dynamic thermal 
performance prediction at building level for the 
performance diagnosis and evaluation of existing 
buildings. A parameter optimization method to 
identify partial parameters of the hybrid model 
(namely hybrid building model) is developed also. 
The hybrid model consists of detailed physical models 
of building envelopes and a gray model of building 
internal mass. The properties of building envelopes 
are relatively easily available to establish the detailed 
physical models of building envelopes to calculate the 
heat transfer using the traditional CTF method. 
Building internal mass, such as internal structures, 
partitions, and furniture etc., is difficult to describe. It 
is represented using a gray model with the physical 
structure of a 2R2C model and parameters to be 
optimized by minimizing the difference between 
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model prediction and measurement. Searching the best values of the 2R2C model parameters is a typical  
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Fig. 1 Schematics of the hybrid building energy model

nonlinear optimization process. Genetic algorithm [10] 
can quickly find a sufficiently good solution (i.e. near 
optimal solution), and is applied to search for optimal 
model parameters. As a practical application, a hybrid 
model was established for a high rising commercial 
office building, and the parameters of the simplified 
gray 2R2C model were optimized on the basis of the 
operation data in short period time. The hybrid model 
was verified in various other operation conditions. 
 
2. HYBRID BUILDING MODEL 

Figure 1 illustrates the hybrid building model. 
Building envelopes are mainly exterior walls and 
roof(s). Exterior walls should be considered 
respectively according to the orientations because the 
dynamic models of the exterior walls at different 
orientations have different forcing functions due to the 
changing position of the sun. Exterior walls and roofs 
are represented as detailed physical models using 
traditional CTF method with detailed physical 
property descriptions. Building internal mass includes 
floors, interior partitions, furniture etc. It is 
represented with a 2R2C model, which consists of two 
resistances and two capacitances. All resistances and 
capacitances are assumed to be time invariant. The 
windows have negligible energy storage and are 
represented with pure resistances (Rwin). The effect of 
varying wind velocity on heat transfer of building 
envelopes is not considered. 

The heat transfer of the building system is 
described using the following equations. The heat 
transfer through exterior walls and roof can be 
calculated as Equation (1) and (2) using traditional 
CTF coefficients [11]. The window heat transfer can be 
represented as a pure resistance model as Equation (3) 
in the discrete form. The simplified building internal 
mass model can be represented as Equation (4) and (5) 
in differential form. With assumed values of the 
parameters of the 2R2C model, the discrete nodal 

temperature can be calculated using Runge-Kutta 
algorithm. The convective heat transfer between 
internal mass and indoor air can be easily calculated 
as Equation (6) in the discrete form. With the heat 
transfer from the introduced fresh air as well as 
convective heat from occupants, lights and 
equipments etc, the estimated cooling energy 
consumption can be read as Equation (7) in the 
discrete form. 
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The properties of exterior walls and roof are 
relatively easy to obtain. They are used to calculate 
CTF coefficients for heat transfer calculation. The 
model parameters, Cim,1, Rim,1, Cim,2, Rim,2, of the 
building internal mass can be optimized by 
minimizing the difference between the measured 
cooling energy consumption and the model predicted 
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cooling energy consumption using operation data, while the CTF coefficients of building envelopes are  
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calculated in advance. The parameter optimization of 
the simplified 2R2C building internal mass is 
illustrated in the next section. 
 
3. PARAMETER OPTIMIZATION OF 2R2C 
MODEL USING GA 

The essential issue of the hybrid modeling is to 
find the proper values of the parameters of the 
simplified 2R2C building internal mass model. It is a 
typical nonlinear optimization problem to find the 
optimal model parameters. Sequential quadratic 
programming (SQP) [12] and conjugate gradient 
method [13] are commonly used optimization methods. 
However, both methods as well as other traditional 
optimization methods need initially guessed values of 
parameters. In most cases, the initial values affect 
their convergence speed. Genetic algorithm (GA) is a 
better optimization method especially when an 
optimal problem is not perfectly smooth and unimodal 
[10]. It can quickly find a sufficiently good solution 
with random parameter initialization. The random 
initial parameter does not affect convergence speed. 
The algorithm was used to search for global optimal 
solutions in air conditioning fields, and it performed 
very well [14][15]. In the study, GA is utilized to search 
for optimal parameters of the 2R2C model of building 

internal mass to minimize the errors between 
measured values and prediction of the building model. 

To find the optimal parameters of the simplified 
internal mass model, the cost function is constructed 
as Equation (8) by minimizing the difference between 
the measured cooling energy consumption and the 
predicted cooling energy consumption using the 
hybrid building model with Equation (1-7). The 
parameters to be optimized are the resistances and 
capacitances of the 2R2C model of building internal 
mass, which can give the best fitting with the 
operation data. The cost function (J) of such 
optimization employs the integrated root-mean-square 
error. 
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This is a typical nonlinear optimization problem. 

GA is employed to search for the optimal values. The 
operation data needed for parameter identification and 
optimization are as follows. The return and supply 
chilled water temperatures and the chilled water flow 
rate are needed to calculate the measured 
cooling/heating energy consumption. These data can 
be retrieved from BMS. To predict the building 
cooling/heating energy consumption using the hybrid 
building model, indoor air temperature and humidity, 
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outdoor air temperature and humidity, fresh air flow 
rate, solar radiation, occupancy and internal gains are 
needed. Indoor air temperature and humidity, outdoor 
air temperature and humidity can be retrieved from 
BMS. 

Figure 2 shows schematically the flowchart of the 
GA estimator developed for the parameter 
optimization of the 2R2C building internal mass 
model. It starts with random initial estimates of the 
individual capacitances and resistances within 
assumed ranges (The ranges will be addressed in 
Section 4). The component with grey background 
represents the procedure of a GA run. Multiple runs 
are allowed. Equation (9) represents the fitness 
function (f), which is the reciprocal of the cost 
function as Equation (8). 
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(Validation-winter case) 

In the genetic algorithm, the four parameters 
(Cim,1, Rim,1, Cim,2, Rim,2) constitute the chromosome of 
an individual, the assumed ranges of these parameters 
are the search space for these parameters. Initializing 
the four parameters produces the initial population to 
start a GA run. With the initial values of the four 
parameters of the simplified building internal mass 
model, the convective heat transfer between the 
internal mass and indoor air can be calculated as 
Equation (4, 5, and 6). The heat transfer through 
exterior walls and roofs are calculated as Equation (1 
and 2) using CTF method. The CTF coefficients are 
deduced on the basis of the detailed physical property 
description. With these heat transfer calculations, the 
total cooling energy consumption is calculated as 
Equation (7). By comparing the predicted cooling 
energy consumption and the measured cooling energy 
consumption, the cost function for optimization can be 
calculated as Equation (8). Then, the fitness functions 
of a generation are calculated, and the individual with 
the best fitness is recorded. 
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Termination of a GA run is decided if the number 
of the current generation is equal to a predefined 
maximum number. At least two runs of the GA 
process are necessary when running the GA Estimator. 
The criterion to stop the GA Estimator is based on the 
comparison of the best fitness values of two 
consecutive runs. If the relative difference between 
the two maximum fitness values is less that a 
threshold value (e.g., equals to 0.0001), the GA 
Estimator is stopped. A GA driver developed by 
Carroll [16] is revised and used in this study. 
 
4. MODEL VALIDATION 

The hybrid building energy model was validated 
in a real high rising commercial office building. The 
building consists of a main building of 50 floors with 
180 meter high, an attached building of 7 floors with 
about 28 meter high. All the buildings are air-
conditioned using all-air systems. The air conditioning 
area is about 12000 m2. The CTF models of building 
envelopes were developed based on the detailed 
physical property description of building envelopes. 
Two weeks’ operation data in summer season were 
used to optimize the parameters of the simplified 
2R2C model. The optimized parameters using GA 
estimator are: Cim,1=648729 J/(m2K), Cim,2=73793 
J/(m2K), Rim,1=0.299 m2K/W, Rim,2=0.0282 m2K/W. 

Using the optimized parameters of the simplified 
2R2C model, the cooling energy consumption was 
predicted with operation data such as indoor air 
temperature and outdoor air temperature etc. Figure 3 
shows the comparison between the model predicted 
cooling energy consumption and the actual measured 
cooling energy consumption. It shows that the model 
predicted cooling energy consumption well followed 
the dynamics profile of the actual measured cooling 
energy consumption. The relative error was about 8% 
for the data points of office hours. 

)
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To validate the wide applicability of the hybrid 
building energy model developed, the model was used 
to predict the cooling energy consumption in other 
two operation periods. One was also in summer 
season lasting for two weeks, the other was in winter 
season lasting for one week. Figure 4 presents the 
model predicted cooling energy consumption profile 
using the building energy model compared with the 
actual measured cooling energy consumption profile 
for the summer case. Figure 5 presents the model 
predicted cooling energy consumption and the actual 
measured cooling energy consumption for the winter 
case. The comparison shows that the model can 
dynamically predict cooling energy consumption, 
which agreed well with the actual measured cooling 
energy consumption. The relative error is about 10% 
for data points in office hours. 

The robustness of the model to predict the thermal 
performance owes to that the model represents the 
dynamic characteristics of the building system 
physically and the model parameters are partially 
determined using the building physical properties. At 
the same time, the accuracy of the hybrid building 
energy model owes partially to that part of the model 
parameters are identified using the actual monitored 
operation data by best fitting the model outputs with 
the operation data. The model can provide thermal 
performance prediction of good accuracy and 
robustness for practical applications. 
 
5. SUMMARY 

This paper presents a hybrid building model 
which consists of detailed physical models of building 
envelopes and the gray simplified model of building 
internal mass. Parameters of the detailed physical 
model are calculated based on detailed physical 
properties of building envelope. The parameters of the 
gray internal mass model can be identified and 
optimized effectively and efficiently with genetic 
algorithm using short-term monitored operation data. 

The hybrid building model and the parameter 
optimization of the simplified building internal mass 
model were verified in a high rising commercial office 
building under different operation conditions. Test 
results demonstrate that the model predicted the 
cooling energy consumption with about ten percent 
relative error by comparing to the actual measured 
cooling energy consumption. The model can also well 
predict the average indoor air temperature. Good 
robustness of the hybrid building model to predict 
building thermal performance owes to that the model 
captures the dynamic characteristics of the building 
system correctly. The model is not only partially 
represented by detailed physical properties of building 
envelopes, but also partially physically represented by 
the 2R2C building internal mass model while the 
parameters are backed out using the actual monitored 
operation data by best fitting the model output with 
the operation data. The hybrid building model benefits 

practical applications by providing thermal 
performance prediction of good accuracy and wide 
applicability. 
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NOMENCLATURE 
A  area (m2) 
b,c,d CTF coefficients 
C  thermal capacitance (J/(m2K) or 
J/K) 
df  difference between the two 
maximum fitness values 
f  fitness function 
J  objective function 
Q  energy consumption or 
transferred heat (kW) 
R  thermal resistance (m2KW-1) 
T  air temperature (℃ or K) 
t  time (second or hour) 

Greek symbols 
fε   threshold value (-) 

Δ   time interval 

Subscripts 
act  actual 
conv convective heat 
ei  associated with external wall at 
the i-th orientation 
est  estimated 
fr  fresh air 
im  associated with building internal 
mass 
in  inside, indoor air 
la  latent heat 
out  outside 
r  associated with radiative heat 
rf  associated with roof 
sol  associated with solar air 
temperature 
win  window 
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