Typical Problems of AHU and Air Movement in Buildings

Tsinghua University Oct. 2006

Contents

Supply More Than Needed

- TP1: Oversize of fresh air supply
- TP2: CAV serving big space
- TP3: Continuously running in partial time occupied zones

Wrong Air Handling Process and Control

- TP4: Dislike fresh air?
- TP5: Reheat of VAVBOX at partial load time in summer

Unexpected Air Movement in Buildings

- TP6: Chimney effect leading to fresh air intake in high-rise buildings
- TP7: Local air exhaust increasing cooling load

Solution: VFD

Proceedings of the Sixth International Conference for Enhanced Building Operations, Shenzhen, China, November 6 - 9, 2006

4

Electricity saved

■ 50Hz→30Hz

■ 100m³/h.p→50m³/h.p

electricity of fans saved:

working hours per day: 15.5h, saved: 1727kWh/d operating days per year: 250d, saved: 430,000kWh/a

electricity saved through reducing the cooling load.

load: 14.1kJ/kg; volume saved:37790m³/h; average COP: 4.82 Operating days: 120 saved: 68,500kWh/yr.

TP2

Example: a shopping mall B

- Gross area:510,000m²,
- Cooling area:380,000m²
- Air-conditioning style: all-air systems

Number of AHU: 530

Power (kW)	30	15	12	11	8.8	7.5	7.2	5.5	3.6	3	2.4	2.2	1.8	1.6	0.8
number	33	8	12	229	12	128	4	52	12	5	3	15	6	4	7

Status

- Electricity used by fans is very large ,near 2/3 of the total consumption of air-conditioning.
- The volume of air supply can't go with the change of load.
- When several people in mall, fans have to run with full load.

Proposed solution

Add VFD to change the volume of air supply to meet the change of load.

Proposed solution—VFD

Power of Fan

Power saved

TP3

Example: government bldg. C Status

- Some special areas in the building, such as meeting room, dinning-room, gymnasium hall, etc..
- Their AHUs need to run 24h continuously even when there is no people at all.

Solution

AHU for dinning-room operations according to the dinner time.

- On: half or one hour before dinner
- Off: at the end of dinner.

Solution

Meeting-room

- Half an hour before meetings, turn off the damper of the fresh air and turn on the fan, using return air to lower temp. quickly.
- When meeting is on ,open the damper to 20% to send fresh air
- And change the frequency of fan to 30Hz to avoid noise and save energy

Electricity saved

Aim at different functional rooms, set different strategies and write these to BAS

In building C, by the methods mentioned above, we can save 67,000kWh/yr with a low cost.

Temp. and Volume

HUNISMAN HALL AHU01

Proceedings of the Sixth International Conference for Enhanced Building Operations, Shenzhen, China, November 6 - 9, 2006

15

Why not use fresh air in off-season? Fresh air has a Low T at night We can close the cooling coil

TP5

TIME	OA TEMP/°C	OA RELATIVE HUMIDITY	SUPPLY AIR TEMP°C	RETURN AIR TEMP°C	COOLING LOADw/m ²	VALVE%
13:30	24.4	0.25	13.9	25.0	71.4	0.39
14:30	24.4	0.26	13.9	25.0	74.2	0.74
15:30	25.0	0.27	15.0	25.0	67.4	1
16:30	25.0	0.27	15.6	25.0	68.4	1
17:30	25.0	0.3	15.6	25.0	63.4	1
19:30	21.7	0.5	13.9	23.9	60.7	0.88
20:30	21.1	0.54	13.9	23.9	59.7	0.31
21:30	20.0	0.59	13.9	23.9	55.3	0.29
22:30	18.9	0.67	13.9	23.3	49.9	0.27
23:30	18.3	0.72	13.9	23.3	47.1	0.25
0:30	17 .2	0.76	13.9	23.3	47.1	0.23
1:30	16.7	0.81	13.9	23.3	47.1	0.22
2:30	17.8	0.77	13.9	23.3	47.1	0.22
3:30	17.2	0.77	13.9	23.3	47.8	0.22

TP5

TAG	ROOM	OCCUPANCY	TEMP F	SETTING F	FLOW CFM	MINFLOW	DAMPER %	REHEAT VALVE		
2-1	250	YES	73	73	796	800	33.6	20		
2-2	247	YES	71.5	72	500	500	42.4	24.8		
2-3	235	YES	71.8	72	656	650	56. 8	27.2		
2-4	228	YES	71.8	72	0	500	99. 2	54.8		
2-5	228	YES	72	72	0	600	100	66. 4		
2–6	203	YES	71.8	72	592	600	28	2.8		
2-7	203	YES	72.2	72	424	450	38. 4	4.8		
2-8	203	YES	71.5	72	400	400	41.2	6.8		
2–9	213	YES	72	72	220	200	50. 4	14.8		
10	213	YES	72. 2	72	208	200	49. 2	2		
11	220	YES	72. 8	72	0	650	100	0		
12	220	YES	72	72	268	250	49.2	6.8		
13	220	YES	71.8	72	352	350	43.6	2		
14	220	YES	72	72	0	200	100	19. <mark>2</mark>		
Proceedings of the Sixth International Conference for Enhanced Building Operations, Shenzhen, China, November 6 - 9, 2006										

TP6

Example: E

Low rise: 1~17F; high: 18~28F

Due to heat pressure, large amounts of heat and humidity air enters the building from high rise, and then out through the lower. The volume is about 74,400m³/h.

 Therefore, unexpected fresh air make the cooling load rise sharply. (load for fresh air amounts to 51.8%),

Contents

Supply More Than Needed

- TP1: Oversize of fresh air supply
- TP2: CAV serving big space
- TP3: Continuously running in partial time occupied zones

Wrong Air Handling Process and Control

- TP4: Dislike fresh air?
- TP5: Reheat of VAVBOX at partial load time in summer

Unexpected Air Movement in Buildings

- TP6: Chimney effect leading to fresh air intake in high-rise buildings
- TP7: Local air exhaust increasing cooling load

Solutions

To low the load of fresh air:

- Shut the windows during the operation time.
- Reduce volume of air entering from unconditioning areas, such as staircases, corridors, washing rooms, et.
- To low the loss of energy supplied to the air-conditioning areas:
 - Shut the doors of staircases to slow up the volume air caused by heat pressure.
 - Prevent the handled air into the un-conditioning area from the air-conditioning areas.

Thank you