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Abstract: A combined production system based on 
microturbine holds the promise of increasing energy 
utilization efficiency and improving environmental 
quality due to its many attractive merits as a distributed 
energy source technology. To analyze and evaluate the 
energy saving potential and economical benefits of 
microturbine and its combined production system, a 
simple mathematical model of microturbine is proposed. 
Part-load characteristics of main components are also 
considered for analyzing the unit’s performance under 
off-design situations. The proposed model is validated 
by operational data of a commercially available micro- 
turbine from a reference. The result shows that the 
proposed mathematical model can preferably represent 
the quasi-static operational features of microturbine.  
Keywords: Mathematical model; Microturbine; 
Numerical simulation 
 
1. INTRODUCTION 

Due to significantly increasing energy utilization 
efficiency, decreasing energy use costs, reducing 
pollutants emission, and improving environmental 
quality, combined heating and power (CHP) or 
combined cooling, heating and power (CCHP) has 
been widely focusing on recent years. There are 
many research contributions in this field [1-5]. CHP 
or CCHP systems are economically attractive for 
many types of buildings, such as commercial build- 
ings, official buildings, hospitals, college campuses, 
and other buildings which simultaneously have dema- 
nds for power, heating, cooling and/or other services. 
Many applications had been reported, such as in 
supermarket [6], campuses [7], government facilities 
[8], and medical complex [9]. 

As the main component of CHP or CCHP 
system, features of distributed power generation 
equipments, mainly including efficiency, costs, 
pollutants emission level, available thermal energy 
quality, modulability etc., have significant effect on 
the performance of cogeneration or trigeneration 
systems. Microturbine is a kind of new emerging gas 
turbine technology with the features of high rotating 
speed, low pressure ratio, and modest turbine inlet 
temperature. Compared with the other DG 
technologies, microturbine has the advantages of 
lower initial capital and maintenance costs, modest 
pollutants emission, higher reliability and relatively 
lower noise level due to its relatively fewer moving 
parts.  

To accurately analyze and assess the energy 
saving potential and the economic feasibility of 
microtubine for distributed power generation and 
combined production use, optimize operation modes 
of cogeneration or trigeneration system, a simple but 
enough accurate performance model of microturbine 
is desired. Many researchers have engaged on 
developing mathematic model for gas turbine and 
many models were developed. A good review about 
that was given by Jurado [10]. But among these 
existing models, some of them are detailed first 
principle models based upon fundamental mass, 
momentum and energy balances, and thus are very 
complicated and time-consumed in computation. 
These models are not suitable for hourly energy 
consumption analysis of equipment operation though 
they can be used for design of gas turbine. To 
simulate the dynamic characteristics of microturbine 
and design control system for it, some non-linear 
models were developed by Jurado [10-11] and Zhu 
[12]. However, these models are mainly interested in 
electric-mechanical behavior and care few about 
energy conversion and utilization process. 

A piecewise linear model was presented to 
evaluate the economic and energy saving 
characteristics of a cogeneration system comprised of 
microturbine and desiccant air conditioning units [13]. 
In this model, performance characteristics of 
microturbine were supposed to be influenced only by 
its inlet air temperature and other influence factors 
were neglected. Much useful research work has been 
done by Zaltash and his cooperators in developing 
models for building cooling, heating and power 
system [14~16]. Based on experimental data of a 
commercially available microturbine, a semi- 
empirical model was developed by Labinov [15]. In 
his model, the efficiencies of turbine, compressor and 
recuperator were regards as constants and 
thermophysical properties of air and flue gas were 
assumed to be not change, which is not the case in 
practice.  

The purpose of this study is to build a simple 
mathematic model for single-shaft microturbine. With 
this model, it can help designer, operator and 
manager not only to understand the performance 
characteristics of microturbine under various 
operation conditions and thus finally promote the 
improvement of unit’s efficiency, but also to analyze 
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and assess the energy saving and economic feasibility 
of cogeneration or trigeneration, determine its 
optimal equipment configuration and operation mode 
when it is coupled with mathematic models of other 
combined production equipments. 
 
2.THERMODYNAMIC CYCLE OF SING- 
LE SHAFT MICROTURBINE 

Fig.1 and Fig.2 are respectively the schematic 
and thermodynamic cycle of microturbine. After 
cooling the electrical generator, the temperature of 
ambient air rises up from T0 to T1 and the pressure of 
it drops from P0 to P1. Then, it is compressed by 
compressor to state point 2 with temperature and 
pressure of T2 and P2 respectively. To improve 
thermal efficiency and save fuel, compressed air 
enters into recuperator, where it is preheated from 
temperature T2 to temperature T3 by hot exhaust gas 
from turbine. Because of the hydraulic resistance of 
recuperator, air pressure simultaneously drops from 
P2 to P3. After recuperator, preheated air goes into 
combustion chamber, where it combusts with fuel 
pressurized by fuel compressor and is heated by 
chemical energy of fuel released during combustion 
process from temperature T3 to temperature T4. Hot 
combustion gas with temperature T4 and pressure P4 
is fed into turbine. In that component, it expands 
from state point 4 to point 5 and expansion work is 
output. Exhaust gas of turbine with temperature T5 
and pressure P5 enters recuperator again. After 
releasing part of its remaining heat into incoming air, 
its temperature drops from temperature T5 to T6. At 
the same time, its pressure decreases from P5 to P6 
due to hydraulic resistance of recuperator. After that, 
exhaust gas is finally released into ambient air if 
there is no thermally activation equipment being 
sequently installed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Schematic of single-shaft microturbine 
1. Compressor  2. Recuperator  3. Combustion 
chamber  4. Turbine  5. Generator 6. Controller  7. 
Fuel compressor  8. Cooling fan  9. Regulating valve 
10. Power sensor  11. Thermostat  12. Rotation speed 
sensor 

In Fig.2, there are two empty dots, point 2′  

and point 5′ , which are not the state points of 
thermodynamic cycle but two supplement points. 
Point 2′  and point 2 have the same pressure but 
different temperature. Point 2 is the final state of 
compressed air after undergoing an actual polytropic 
compression process with a pressure rising from P1 
to P2 while point 2′  is the final state of air after 
undergoing an ideal isentropic compression process 
with the same initial and final pressures. Similarly, 
point 5 is the air state point after undergoing an actual 
polytropic expansion process while point 5′  is that 
after undergoing an ideal isentropic expansion 
process with the same initial and final pressures. 
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Fig.2 Thermodynamic cycle of microturbine 
 
3.MATHEMATICAL MODEL OF MICRO 
-TURBINE 

Each thermodynamic process of microturbine is 
analyzed based on assumptions as followed. 

(1) Air and combustion products are treated as 
perfect gases. 

(2) System operates under normal operating 
conditions. Start-up, shut-down, and other fast 
dynamic processes are not included. 

(3) Thermodynamic and flow processes progress 
along the steady state performance curves, that is, 
quasi-static processes are considered. 
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(4) Energy storage and transport delay in various 
components of microturbine are all neglected, thus, 
steady state equations are applied. 

(5) Flow in unit is regards as a one-dimensional 
flow process. Flowing kinetic energies of air and 
combustion gas is treated as negligible. 
 
3.1 Incoming Duct (process 0-1) 

The thermodynamic process of incoming duct 
can be represented by Eq.(1) and Eq.(2). 

)( 0110 hhGQ a −=−                         (1) 

10,

2

1001 2 −
−−=

a

aGPP
ρ

ξ                       (

whe

2) 

re, ξ  is the flow resistance factor of duct; aρ  

is average density of air in duct; P  is air pressure  ；
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ss 

sor is defined as 

10−Q  is heat added in the proce of 0 to 1; aG  is 
ass flow rate; h  is specific enthalpy of air. 

Subscript 0 or 1 denot s air state shown as Fig.2 and 
subscript 0-1 denotes the thermodynamic process 
from state 0 to state 1. Nomenclatures in later 
equations have similar mean. 
 
.2 Compressor (process 1-2) 

air m
e

32,

2

3223 2 −
−−=

a

aGPP
ρ

ξ                      (8) 

65,

2

6565 2 −
−+=

g

gG
PP

ρ
ξ                      (9) 

 
3.4 Fuel Compressor (process 8—9) 3

When the pressure of fuel distribution net is not 
high enough, microturbine need equip fuel 
compressor to pressurize fuel and supply fuel into 
combustion chamber. Thermodynamic process of fuel 
compressor is similar to that of air compressor. 
Compression ratio of fuel compressor is defined as 

Pressure ratio of compres

1

22 PPr ==                          
1 PPr

Cπ 3) 

where, is rel
res

  (

rP  ative pressure. Isentropic efficiency 
of comp sor is defined as 

8

9

r

r
FC P

P
=π                               (10) 

12

12
,

hh
SC

−
= ′η             

hh −
               (4) 

where,  is 
ing 

Isentropic efficiency of fuel compressor is defined as 
2′h the specific enthalpy of air after 

89

89
, hh

hh
SFC −

−
= ′η                          (11) undergo isentropic compression process, which 

can be calculated using relative pressure. If MC ,η  
denotes the mechanical efficiency of compresso  
practical power to drive compressor can be 
determined by following equation. 

Power consumed by fuel compressor is calculated by 
followed equation. r, the

MFC

f
FC

hhG
W

,

89 )(
η

−
=                       (12) 

MC

a
C

hhGW 12 )( −
=               

,η
          (5) 

 
.3 Recuperator (process 2—3 and 5—6) 

 to reduce 

 
3.5 Combustion Chamber (process 3—4) 

During the process of fuel combusting with air, 
the chemical energy of fuel is released though 
oxidization action. Under adiabatic condition, energy 
released during combustion process is completely 
absorbed by combustion products consequently 
increasing their temperature. The maximum 
temperature the products can achieve is called as 
theory combustion temperature. The theory 
combustion temperature can be computed according 
to the law of energy conservation. That is 

3
In microturbine, recuperator is used

fuel consumption and improve thermal efficiency 
though preheating incoming air by hot exhaust from 
turbine. Recuperation efficiency of recuperator is 
defined as 

25

23 TT −
=σ

TT −
                             (6) 

where, T is
tor

 air temperature. Heat recovered by 
recupera  can be calculated by following equation. 

RgaR hhGhhGQ η)()( 6523 −=−=           (7) 
oa HH PrRe =                             (13) 

where,  and  denote total enthalpy 
values of reactants and products respectively. In this 
paper, natural gas is used as fuel of microturbine. 
Thermophysical properties of methane are used as a 
replacement of that of natural gas.  and  
can respectively be computed by using Eq.(14) and 
(15). 

aHRe oHPr

aHRe oHPr

Rηwhere,  is adiabatic efficiency 
de 

pre

which indicates 
magnitu of heat loss of recuperator into ambient air; 

gG  is the mass flow rate of combustion gas. Outlet 
ssure of incoming air and inlet pressure of exhaust 

gas are determined by Eq.(8) and (9) respectively. 
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In Eq.(14) and Eq.(15),  denotes the 
standard formation enthalpy; 

0
298h

M is molecular mass; 
 is constant pressure specific heat; PC α is air 

excess factor. Coupling Eq.(13) to (15), theory 
combustion temperature, , can be computed 

via iteration. Because  is computed under the 
assumption of complete combustion, to consider the 
effect of incomplete combustion, a combustion 
efficiency, which indicates the completeness of 
combustion, is defined as 

idealT ,4

idealT ,4

ideal
CC T

T
,4

4=η                            (16) 

Besides energy conservation, mass is also 
conservation during combustion. That is 

fag GGG +=                           (17) 
Air excess factor of combustion chamber is 
determined by followed equation. 

a

f

f

a

M
M

G
G

52.9
1

=α                        (18) 

Outlet pressure of combustion chamber is 
calculated by Eq.(19). 

43,

2

4334 2 −
−−=

g

gG
PP

ρ
ξ                     (19) 

 
3.6 Turbine (process 4—5) 

Turbine is the component where hot combustion 
gas expands to drive turbine rotating and to output 
mechanical work. Ability of microturbine outputting 
work is affected by expansion ratio and isentropic 
efficiency of turbine, which are defined as Eq.(20) 
and Eq.(21) respectively. 

5

4

5

4

P
P

P
P

r

r
T ==π                          (20) 

54

54
,

′−
−

=
hh
hh

STη                          (21) 

where,  is the specific enthalpy of flue gas 
undergoing isentropic expansion process, which can 
be worked out with relative pressure. If 

5′h

MT ,η  is 
used to express mechanical efficiency of turbine, 
practical output power of turbine can be calculated by 
using Eq.(22). 

MT

g
T

hhG
W

,

54 )(
η

−
=                        (22) 

 
3.7 Exhaust Gas Duct (process 6—7) 

Due to hydraulic resistance of exhaust gas duct, 
backpressure of turbine will increase and net power 
output of microturbine will decrease. Flow process of 
flue gas in exhaust gas duct can be represented by 

following equation. 

76,

2

7667 2 −
−−=

g

gG
PP

ρ
ξ                    (23) 

3.8 Generator 
A large fraction of shaft work inputted into 

generator is converted into electricity by generator 
and the remaining part is dissipated into surrounding 
by waste heat. If Gη  represents the efficiency of 
generator, power output of it is  

)( CTGG WWW −=η                       (24) 
Waste heat produced by generator which is finally 
removed by incoming air, can be calculated by 
Eq.(25).  

))(1(10 CTG WWQ −−=− η                  (
 

25) 

.9 Controller 
 converts the variable-frequency 

pow

3
Controller

er from the generator into constant-frequency 
power the users demanded. Due to the existence of 
electrical resistance, a part of electricity is dissipated 
in the process of power conversion. Heat generated in 
the process of conversion is removed by cooling fans. 
If CNη  represents the conversion efficiency of 
con r, the output of controller is 

GCNCN WW
trolle

η=                            (26) 
 

.10 Work and Heat Balance of Microturbine 
can be 

deter

3
The net power output of microturbine 
mined by the following equation. 

CFFCCNnet WWWW −−=                   (27) 

where,  and a
pressor and c

FCW CFW  re power consumptions of 
fuel com ooling fans respectively. The 
overall thermal efficiency and the specific fuel 
consumption of microturbine are respectively defined 
as 

ff

net
overall QG

W
=η                          (28) 

net

f

W
G

SFC =                            (29) 

where, is higher heating value (HHV) of fuel, 
 50

. PART-LOAD PERFORMANCE OF MICRO- 

 of load and/or ambient condition, 
micr

fQ  
which is 050kJ/kg for natural gas in this research. 
 
4
TURBINE 

Due to change
oturbine often runs under off-design situation. 

Therefore, it is significant to study part-load behavior 
of microturbine. However, the understanding of 
part-load behavior, especially some quantitative rules, 
is far from enough due to its complexity. In addition, 
related experimental data is rather scarce for the 
commercial sake. All these reasons make it difficult 
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. VALIDATION OF MATHEMATICAL MODEL 
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Fig.3 Comparison among experimental data, 

W meters in Table 1, the commercial 
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Fig.4 is th  the 

5
To verify the accuracy of the mathematic
el proposed above, operation data of a 

commercial available microturbine from reference 
[15] is used to validate the model.The commercial 
available micro- turbine is a three-phase 
480-VAC/30-kW unit with a maximum net power 
output of 28 kW. The maximum rotation speed of 
microturbine is 96000 rpm and maximum inlet 
temperature of turbine is 1116 K. The overall thermal  
efficiency of unit based on higher heating value 
(HHV) of fuel is approximately 23.6% under 
standard operation condition. Information provided 
by the microturbine manufacturer and some other 
simulation conditions are given in Table1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

simulation results and revised simulation 
results 
ith para

oturbine is simulated by using the proposed 
mathematical model in this paper. Fig.3 shows the 
comparison of fuel consumptions between experi- 
mental measurements and simulation results. From 
Fig.3, it can be found that the simulation results and 
experimental results have identical variation trend. 
With increase of power output, fuel consumption of 

microturbine increases in a fairly linear fashion. 
However, it can also be noted from Fig.3 that the 
simulation results are all lower than the practical fuel 
consumptions. Reason resulted in this phenomenon is 
that the fuel used in simulation is slightly different 
from that used in experiment. The fuel used in 
simulation is pure methane while that in experiment 
is natural gas, only about 90% of which is methane. 
Therefore, the practical fuel consumption is larger 
than the simulated result. A remedy is made on 
simulation results through dividing it by 0.9. Revised 
simulation results are plotted on Fig.3, too. Fig.3 
shows that revised simulation results are well 
accordant with experimental results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Comparison between measured and 
simulated rotation speeds 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Comparison between measured and 
simulated exhaust gas temperatures 

e comparison between the practical and
simulated rotation speeds. Fig.4 shows that simulated 
rotation speed is very consistent with practical 
rotation speed. Comparison of measured and 
simulated exhaust gas temperatures are shown in 
Fig.5. Fig.5 illustrates that simulated results accords 
with experimental results under design or near-design 
load condition. However, there exists a relatively 
larger error between measured results and simulated 
results under lower load condition than that under 
design load condition. Measured data is smaller than 
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the not enough accurate part-load performance model 
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. CONCLUSION 
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Table 1 Designed parameter of microturbine and simulation condition 
 

Parameter Description Value Parameter Description Value 

40T  
Designed inlet 
temperature of turbine
（K） 

1116 0Cπ  Designed compressor 
pressure ratio  3.4 

0CG  Designed compressor air 
flow rate（kg/s） 0.31 netW  Net power output of 

microturbine（kW） 128±  

0n  Designed engine speed
（r/min） 96000 totalη  Thermal efficiency of unit

（based on HHV） 8.16.23 ±  

CNη  Efficiency of controller 94% CFW  Power of cooling fan
（kW） 0.122 

0,SCη  Isentropic efficiency of 
compressor 79% 0,STη  Isentropic efficiency of 

turbine 80% 

0σ  Recuperation efficiency 
of recuperator 80% CCη  Combustion efficiency 98% 

SFC ,η  Efficiency of fuel 
compressor 80% Gη  Efficiency of generator 96% 

Rη  Adiabatic efficiency of 
recuperator 98% MC ,η  Mechanical efficiency of 

compressor 100% 

MT ,η  Mechanical efficiency of 
turbine 100% MFC ,η  Mechanical efficiency of 

fuel compressor 100% 

10T  Designed ambient 
temperature（K） 288 10P  Designed ambient 

pressure（Pa） 101325 
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