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Abstract: As thermal inertia is the key factor for the lag 
of thermoelectric utility regulation, it becomes very 
important to forecast its short-term load according to 
running parameters. In this paper, dynamic radial basis 
function (RBF) neural network is proposed based on the 
RBF neural network with the associated parameters of 
sample deviation and partial sample deviation, which 
are defined for the purpose of effective judgment of new 
samples. Also, in order to forecast the load of sample 
with large deviation, sensitivity coefficients of input 
layer is given in this paper. To validate this model, an 
experiment is performed on a thermoelectric plant, and 
the experimental result indicates that the network can be 
put into extensive use for short-term load forecasting of 
thermoelectric utility.  
Key words: dynamic RBF neural network; load 
forecasting; partial sample deviation; input layer 
sensitivity coefficient; thermoelectric boiler 
 
1. INTRODUCTION 

For a running thermoelectric utility, because of 
its thermal inertia and the various factors for 
determining the quantity of heat and power supplied 
to consumers, its regulation becomes very 
complicated, so its short-term load must be forecasted 
accurately according to associated parameters. 

Short-term load forecasting is aimed at 
predicting a system load for a period of minutes, 
hours, days or weeks. Short-term load forecasting 
plays an important role in the real-time control and 
the security functions of an energy management 
system. Throughout the last decades, considerable 
research efforts have been devoted to short-term load 
forecasting and the enhancement of its overall 
accuracy. So far, a variety of models that have 

surfaced in the field of short-term load forecasting 
include the exponential smoothing model, state 
estimate model, multiple linear regression model and 
stochastic model [1-4]. Generally, these techniques are 
based on statistical methods and extrapolated past 
load behavior while taking into account the effect of 
other influencing factors such as weather and day of 
week. However, the techniques used for these models 
employ a great number of complex and non-linear 
relationships between the load and the factors. A 
large amount of computational time is required and 
may lead to numerical instabilities. Some deficiencies 
in the presence of an abrupt change in weather or 
environmental variables are also believed to affect 
the load forecasting. 

As a result of the development of artificial 
intelligence (AI), many artificial neural networks 
(ANNs) have been proposed and applied to solve 
short-term load forecasting problems [5-7]. It is known 
that ANNs do not require any implicitly defined 
relationship between input and output variables. The 
corresponding mapping between input and output is 
obtained employing a training algorithm. The ANNs 
modeling needs only the selection of input and 
corresponding output variables, thus avoid the 
difficulties with conventional modeling processes. 
Peng et al. [8] proposed a minimum distance based 
strategy to identify the appropriate historical patterns 
of load and temperature for training the network. A 
partially connected network consisting of main and 
supporting blocks is also proposed, which makes use 
of model reference and functional relationships 
between input and output variables. With the 
development of genetic algorithm (GA), Dipti 
Srinivasan [9] presents an ANN evolved by a genetic 
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algorithm for short-term load forecasting. Also, 
Ruey-Hsun Liang [10] proposes an ANN combined 
with a fuzzy system, the objective of which is to 
study a self-organizing fuzzy-neural network.
However, the structures of these two types of ANN 
are very complex. 

All these prior works focus on the application of 
back propagation training algorithms to train and 
update the model parameters, and those models have 
a set of problems which include the dependence on 
initial parameters and long training time. On the other 
hand, for a radial basis function (RBF) neural 
network, because of the initial center of its training 
center is the subset of samples space, the training 
time is very short than that of back propagation 
training algorithm[11]. 

In this paper, dynamic radial basis function 
(RBF) neural network is proposed based on RBF 
neural network to address the first problem, and for 
the validation of this model, an experiment is carried 
out in a thermoelectric plant. 

 
2. DYNAMIC RBF NEURAL NETWORK 
MODEL 
 
2.1 Definitions of SD , PSD  and  SCIL

A dynamic RBF neural network is a RBF neural 
network whose nodes of hidden layers can be 
increased dynamically and automatically when there 
is a large deviation between a new sample and the 
training samples. This model is supported by 
judgment and programming mechanism, and 
definitions of sample deviation ( ), partial sample 
deviation (

SD
PSD ) and sensitivity coefficients of input 

layer ( ). To definite , SCIL SD PSD  and , a 

new sample , training samples , and a 

training sample  with its output  must be 

given firstly: 
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Where N  is the dimension of training space. 

( )
1 2

1, 2, ,

[ , , , , , ]k

k N

X X X X X
=

N=

L

L L
       (3) 

( )
1 2

1, 2, , ;

[ , , , , , ]

1,2, ,
k k k kj kJ

k N j

Y y y y y

J=

=

=L

L L

L
       (4) 

Where  is the dimension of output layer. J

With a new sample  and a training sample 

, the parameters of  and 

newX

kX SD PSD  are defined 

as follows: 
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Where kmx  and  are described in equations (2) 

and (1). 
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The sensitivity coefficients of input layer are the 
partial derivatives of node of output layer with 
respect to that of input layer, which can be described 
as: 
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The sensitivity coefficients of input layer can be 
calculated by perturbing each node of input layer, one 

at a time, by a small amount ( kmxδ ), keeping the 
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other nodes of input layer constant and evaluating the 
change in the calculated value of the nodes of output 

layer, kjyδ . The sensitivity coefficient of input layer 

is then 

( 1,2, ; 1,2, , )
mj kj km kj kmSCIL y x y x

m M j J

δ δ= ∂ ∂ =

= =L L
     (11) 

kmxδ  is a small value such as 10kmx  or 100kmx . 

2.2 Judgment mechanism for a new sample newX  

The following two inequations are criterions for 

the judgment of a new sample : newX

1 2min( , , , , , ) 0.2k NSD SD SD SD >L L    (12) 

( )0.5, 1,2, ,mPSD m M> = L       (13) 

If a new sample  consists with any one of the 

inequations above-mentioned, that means there is a 
large deviation between the new sample and training 
space, the new sample should be added to training 
space in order to update the network. 

newX

 
2.3 Programming mechanism 

To practise a dynamic RBF neural network, not 
only lies on the judgment of a new sample, but also 
on the network structure predefined. During 
programming, the structure of a dynamic RBF neural 
network should be defined initially. In the short-term 
forecasting neural network of this paper, a three-layer 
network is used with 18 input nodes, 50 hidden nodes 
and one output node. The input nodes are crucial 
running parameters which include temperature of 
feedwater, pressure of feedwater, flow of feedwater, 
temperature of main steam, pressure of main steam, 
flow of main steam, water flow of desuperheater, 
inlet steam pressure of reheater, inlet steam 
temperature of reheater, outlet steam pressure of 
reheater, outlet steam temperature of reheater, water 
flow of reheater attemperator, oxygen percentage of 
flue gas, temperature of exhaust flue gas, inlet air 
temperature of air heaters, inlet air flow of forced 
fans, speed of coal feeder and water flow of 

continuous blowdown. And output node is load of 
thermoelectric utility. All these parameters must be 
normalized before use. Among hidden nodes, 7 nodes 
are activated at first while others will always be in 
dormancy only if a new sample consists with any one 
of inequations (12) and (13). 

When forecasting a short-term load of a new 
sample, judgment should be made firstly, if it does 
not consist with any one of inequations (12) and (13), 
the forecasting procedure will be performed based on 
RBF neural network, otherwise, the sensitivity 
coefficients of input layer and the partial sample 
deviation will be employed to forecast the load: 
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where  is the most similar sample in training 

space to new sample . 

kjy

newX

After the forecasting, the new sample will be added 
to training space together with one hidden node be 
activated, and train the network again for next 
forecasting. 
 
2.4 Evaluation of results 

To test the performance of the network, the relative 
percentage error ( ) is used and defined as 
follows: 

RPE

100i i

i

actual forecast
RPE

actual
−

= ×     (15) 

in the formulation,  is the actual load of 

sample  and 

iactual

i iforecast  is the forecasted load of 

that sample. 
3. RESULTS 

To demonstrate the effectiveness of the 
proposed approach, short-term load forecasting was 
performed on a thermoelectric plant. A great mount   
of data are collected every hour, and 15 groups of 
data are selected as samples for the test. Samples 1 to 
9 are employed for training the network, and others 
are used for verifying the result given by the network.  
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Tab. 1  of samples 10 to 15 SD

samples 10 11 12 13 14 15 

1 0.053 0.046 0.061 0.036 0.242 0.238 

2 0.037 0.056 0.055 0.023 0.234 0.232 

3 0.049 0.062 0.065 0.034 0.23 0.228 

4 0.031 0.076 0.071 0.033 0.233 0.231 

5 0.036 0.065 0.074 0.028 0.256 0.252 

6 0.031 0.083 0.058 0.024 0.197 0.182 

7 0.038 0.083 0.073 0.033 0.246 0.243 

8 0.035 0.047 0.039 0.036 0.24 0.234 

9 0.019 0.054 0.058 0.024 0.249 0.245 

 
Tab. 2 Number of PSD  greater than 0.5 

samples 10 11 12 13 14 15 

1 0 0 0 0 2 2 

2 0 0 0 0 3 3 

3 0 0 0 0 2 2 

4 0 0 0 0 3 3 

5 0 0 0 0 3 3 

6 0 0 0 0 1 1 

7 0 0 0 0 3 3 

8 0 0 0 0 3 3 

9 0 0 0 0 2 2 

 
Tab. 3 RPE  (%) of different forecasting methods 

samples RBF neural network RBF neural network with  

  and  SCIL PSD
Dynamic RBF neural 

network 

10 1.801 1.801 1.803 

11 1.796 1.796 1.781 

12 2.273 2.273 2.276 

13 1.406 1.406 1.409 

14 6.426 3.459  

15 6.851 3.588 2.189 

 
According to equations (6) and (8),  and SD

PSD  of samples 10 to 15 are calculated, which are 
shown in table 1 ( ) and table 2 (the number of SD
PSD  greater than 0.5).   

As is shown in Table 1, the sample deviations of 
samples 10 to 13 are all less than 0.2, however, 
among the deviations of samples 14 and 15, only (14, 
6) and (15, 6) are less than 0.2. And in Table 2, the 
partial sample deviations of samples 10 to 13 are all 
less than 0.5, while the partial sample deviations of 

samples 14 and 15 are all great than 0.5. So samples 
14 and 15 are not similar samples to that of training 
space, and one of them should be added to training 
space to update the original network. 
Figure 1 is the load curve gained by using RBF 
neural network model. The forecasting 
resultsobtained by RBF neural network model, RBF 
neural network model with  and SCIL PSD  and 
dynamic RBF neural network model are shown in 
Fig.2, Fig.3 and Fig.4 respectively. Table 3 compares 

ESL-IC-06-11-107 

Proceedings of the Sixth International Conference for Enhanced Building Operations, Shenzhen, China, November 6 - 9, 2006 



ICEBO2006, Shenzhen, China                          HVAC Technologies for Energy Efficiency, Vol. IV-6-5 

the  of results obtained by different models. As 
is indicated, the  of samples 10 to 13 are very 
small while that of samples 14 and 15 are quite 
different by using various models. It can be seen that 
the two samples’  are largest based on RBF 
neural network model due to large  and 

RPE
RPE

RPE
SD PSD , 

and by using  andSCIL PSD , their  becomes 
smaller and acceptable, the most should be 
emphasized is that the  of sample 15 gets very 
small after the addition of sample 14 to original 
training space. 

RPE

RPE

 
Fig. 1 Loads curve with RBF neural network 

 
Fig. 2 Forecasting results with 

 
Fig. 3 Forecasting results with  and  PSD SCIL

 
Fig. 4 Forecasting results with dynamic  

RBF neural network 
 
4. CONCLUSIONS 

In this paper, dynamic neural network is proposed 
together with three significant parameters which are 
defined as sample deviation, partial sample deviation 
and sensitivity coefficient of input layer. To evaluate 
this model, an experiment was performed on a 
thermoelectric utility. The result indicates that sample 
deviation and partial sample deviation are two crucial 
parameters for the judgment of a new sample. Based 
on the judgment, partial sample deviation and 
sensitivity coefficient of input layer, the load of a new 
sample with large sample deviation or partial sample 
deviation can be forecasted correctly. The most 
significant is that the model can learn new knowledge 
by the addition of a new sample which has a large 
deviation or partial sample deviation to original 
training space. This model can also be employed for 
the forecasting of utility efficiency, unburned carbon 
in ash and other short-term forecastation. 
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