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Abstract 

Chilled water cooling coils are important 
components in air handling unit systems. Generally 
the cooling coil removes both moisture and sensible 
heat from entering air. Since the sensible and latent 
heat transfer modes are coupled and the saturation 
humidity ratio vs. temperature curve on the 
psychrometric chart is non-linear, it is very difficult 
to solve cooling coil heat transfer differential 
equations across the entire coil. However, the 
sensible and latent heat transfer modes can be 
decoupled using a constant sensible heat ratio (SHR) 
and the saturation humidity ratio vs. temperature 
curve can be treated as linear in a small area 
corresponding to a finite element of the coil. This 
paper presents the decoupled cooling coil model 
using the finite element method with an application 
to the simulation of a particular cooling coil case.  
 
 
 

Introduction 

Modeling of chilled water coils plays an 
important role in analyzing air handler operation as 
well as in fault detection and diagnosis. The cooling 
coil performance can be simulated using either a 
steady state model or a dynamic model for different 
applications. A steady state model is sufficient to 
simulate the cooling coil thermal performance in 
most circumstances (Chow 1997).  

 
Basic steady state heat and mass transfer 

differential equations or governing equations are used 
in steady state cooling coil models. The transfer of 
heat and mass in a cooling coil includes air side 
sensible and latent heat transfer (from moist air to 
coil surface) and water side heat transfer (from coil 
surface to chilled water).   The governing equations 
were discussed in detailed by Mirth and Ramadhyani 
(1993) and by Khan (1994). Since the sensible and 
latent heat transfer modes are coupled and the 

saturation humidity ratio vs. temperature curve on the 
psychrometric chart is non-linear, it is very difficult 
to solve these differential equations along the entire 
coil. An analytical model was developed and a 
numerical method was used to obtain solutions of 
these governing equations.  

 
The simple analytical models use the heat 

exchanger analogy method, which is suitable for coils 
with only sensible heat transfer. The heat exchanger 
analogy method is well known as documented by 
Incropera and DeWitt (2002) with the detailed 
solution for coils with only sensible heat transfer 
given by ASHRAE (2000). However, some 
assumptions must be applied to simplify these 
coupled heat transfer differential equations to match 
the standard format in the heat exchanger analogy 
method. Mirth and Ramadhyani (1994) compared 
several simple analytical models.   

 
Elmahdy and Mitalas (1977) developed a single-

potential model that uses an enthalpy difference as 
the sole driving force to calculate the total heat 
transfer. This model assumes that the slope of the 
enthalpy-saturation temperature curve is constant 
along the entire coil and the Lewis number is unity. 
The single potential model is recommended by 
ASHRAE (ASHRAE 2000, Bourdouxhe et al. 1998).  

 
McQuiston (1975 and 1978) developed a dual-

potential model that uses temperature difference 
which drives the sensible heat transfer and humidity 
ratio difference which drives the latent heat transfer. 
This model assumes that the entire cooling process 
line is a straight line on the psychrometric chart 
corresponding to the SHR being constant along the 
entire coil. The SHR is used to decouple the sensible 
and latent heat along the entire coil in this model.  

 
It is well known that a cooling coil may operate 

at partially wet conditions, being dry at the inlet and 
wet at the outlet of the coil. The SHR then varies 
from unity to a much smaller value as the air passes 
through the coil.  On the other hand, the saturation 
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specific heat varies with the wet bulb temperature 
due to the nonlinear enthalpy-saturation temperature 
curve on the psychrometric chart (ASHRAE 2001). 
Figure 1 shows the saturation specific heat versus the 
wet bulb temperature. The saturation specific heat 
varies from 0.5 to 1.1 Btu/lb-F in a wet bulb 
temperature range between 40ºF and 80ºF. 
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Figure 1: Saturation specific heat of moist air 

 

The numerical method does not use these 
assumptions. Khan (1994) used a numerical model to 
analyze the cooling coil performance at partial load 
conditions. A cooling coil is divided into a number of 
control volumes and the differential equations are 
converted into finite-difference equations in each 
control volume. Since these finite difference 
equations are deduced directly from the complicated 
governing equations rather than using the existing 
heat exchanger analogy method, the simulation 
process is complicated.  

 
In this paper, a numerical cooling coil model is 

developed using the existing heat exchanger analogy 
theory. First the basic cooling coil heat transfer 
differential equations are given. Then the sensible 
and latent heat transfer modes in a cooling coil are 
decoupled assuming a constant value of SHR and 
slope of the saturation humidity ratio vs. temperature 
curve within each element. Now both the sensible 
and the latent heat transfer modes have a standard 
format in the heat exchanger analogy method and the 
SHR value controls the element conditions, whether 
completely wet, completely dry or partially wet. 
Finally the element equations are deduced from the 
decoupled differential equations for the sensible heat 
transfer and latent heat transfer separately. Since both 
the SHR and the curve slope are determined by the 
unknown conditions of the air, coil surface and 
chilled water, an iterative method must be used.  It 
first assumes SHR and curve slope values and then 

determines the air, coil and chilled water conditions. 
The SHR and curve slope values are then changed to 
values corresponding to the conditions calculated and 
the calculation is repeated until the values converge 
for all elements. 

Modeling  

Cooling coil governing equations 

Figure 2(a) illustrates a schematic of a cooling 
coil with fins. The coil can be simplified as a 
counterflow heat exchanger, as shown in Figure 2(b). 
Sensible and latent heat transfer occurs between the 
moist air and the unfinned tube surface on the air side 
and heat transfer occurs between the unfinned tube 
surface and the chilled water.  
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Figure 2: Cooling coil model 
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Dry air and water vapor are treated as a mixture 
of ideal gases and the heat and mass transfer 
coefficients are treated as constants in the derivation 
of the governing equations. 

  
The air loses sensible heat when in contact with a 

surface cooler than the air. The sensible heat transfer 
in a differential surface area dA can be expressed as: 

 
dAttUdtcmdq saaapaaas )( −⋅=−=  (1) 

 
where am is the dry air mass flow rate,  paC  is the 
humid air specific heat, and aU is the overall sensible 
heat transfer coefficient between the moist air and the 
coil surface based on the coil surface area. 

 
The removal of latent heat through condensation 

occurs only on the portion of the coil where the 
surface temperature is lower than the dew point of the 
air passing over it. The latent heat transfer on dA can 
be expressed as: 

 
dAwwhKdwhmdq sagMagaal )( −⋅⋅=−= (2) 

 
where gh  is the latent heat of vaporization and MK is 
the overall mass transfer coefficient between the 
moist air and the coil surface based on the coil 
surface area. 

 
The saturation humidity ratio at the coil surface 

is a function of the surface temperature based on the 
saturation humidity ratio vs. temperature curve, given 
by ASHRAE (2001). 

 
)( sss tww =  (3) 

 
The water side heat gain is expressed as: 
 

dAttUdtcmdq wswwpwww )( −==  (4) 
 

where wm is the chilled water mass flow rate, pwC  is 
the chilled water specific heat and wU is the overall 
heat transfer coefficient between the coil surface and 
the chilled water based on the coil surface area. 

 
Finally the water side heat gain should be 

balanced with the total heat transfer, the sum of 
sensible heat and latent heat transfer on the air side if 
the enthalpy of condensate removed is neglected. 

 
alasw dqdqdq +=  (5) 

 

Equations (1) to (5) are basic differential 
equations, which completely describe the cooling coil 
heat and mass transfer processes. The five unknown 
variables, air drybulb temperature ( at ), air humidity 
ratio ( aw ), coil surface temperature ( st ), coil surface 
humidity ratio ( sw ) and the water temperature ( wt ) 
can be obtained by solving the five equations above.  

 

Simplification for a finite element  

Unfortunately, it is very hard to solve those 
differential equations across the entire coil due to the 
coupled and nonlinear heat and mass transfer 
processes. However, for a small piece of the cooling 
coil, it is reasonable to assume that the sensible heat 
ratio is constant. As a result, the heat transfer and 
mass transfer can be decoupled by using a constant 
sensible heat ratio.  Then 

 
aleasew dqbdqadq ⋅=⋅=  (6) 

where: 
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The decoupled sensible heat transfer equation 

can be obtained by substituting Eq. (1) into Eq. (6). 
 

apaaeasew dtcmadqadq )( ⋅−==  
dAttUa saae ))(( −⋅=  (7) 

 
The decoupled sensible heat transfer equivalent 

mass flow rates and heat transfer coefficients can be 
defined as:  

 
aea mam ⋅=′  (8a) 

aea UaU ⋅=′  (8b) 

ww mm =′  (8c) 

ww UU =′  (8d) 
 
The decoupled sensible heat transfer differential 

equations are deduced from Eqs. (4) and (7). 
 

dAttUdtcmdq saaapaaw )( −′=′−=  (9) 
dAttUdtcmdq wswwpwww )( −′=′=  (10) 
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Decoupled differential equations (8) and (9) 
describe the sensible heat transfer process in a 
cooling coil driven by the temperature difference 
with an assumed constant SHR. Since these equations 
have the standard format of the heat exchanger 
analogy theory, the element equations can be easily 
obtained using the heat exchanger analogy method 
(see Appendix). 

 
Similarly the decoupled latent heat transfer 

differential equations on the air side can be obtained 
by substituting Eq. (2) into Eq. (6). 

 

apa
pa

g
aew dwc

c
h

mbdq )( ⋅−=  

dAwwhKb sagMe ))(( −⋅=  (11) 
 

However, the driving force on the air side of Eq. 
(11) is the humidity ratio and the driving force on the 
water side in Eq. (4) is the temperature. In order to 
convert the temperature to the humidity ratio, the 
saturation humidity ratio vs. temperature curve, 
which is described by Eq. (3), should be used.  

 
Along a small portion of the coil, the saturation 

humidity ratio vs. temperature curve can be 
simplified as a straight line. This straight line passes 
through the coil surface entering and leaving points. 
The slope of the straight line can be expressed as: 

 

es

es

lses

lses
e tt

ww
tt
ww

,

,

,,

,,tan
−

−
=

−

−
=α  (12) 

 
where esw , and lsw , are determined by est , and 

lst , using Eq. (3). The coil surface humidity ratio is a 
linear function of the surface temperature.  

 
eseessa wttw ,, tan)( +−= α  (13) 

 
Equation (12) is also used to convert the chilled 

water temperature to the fictitious chilled water 
humidity ratio. 

 
eseesww wttw ,, tan)( +−= α  (14) 

 
The water side heat transfer can be rewritten by 

substituting Eqs. (13) and (14) into Eq. (4). 
 

wpw
e

ww dwcmdq ⋅= )
tan

1(
α

 

dAwwU ws
e

w )()
tan

1( −⋅=
α

 (15) 

The equivalent decoupled latent heat transfer 
mass flow rates and heat transfer coefficients can be 
defined as:  

pa

g
aea c

h
mbm ⋅=′′  (16a) 

gMea hKbU ⋅=′′  (16b) 

e
ww mm

αtan
1

=′′  (16c) 

e
ww UU

αtan
1

=′′  (16d) 

 
The decoupled latent heat transfer differential 

equations are deduced from Eqs. (11) and (15). 
 

dAwwUdwcmdq saaapaaw )( −′′=′′−=  (17) 
dAwwUdwcmdq wswwpwww )( −′′=′′=  (18) 

 
Decoupled differential equations (17) and (18) 

describe the latent heat transfer process in a cooling 
coil driven by humidity ratio difference with two 
parameters assumed constant: SHR and the slope of 
the saturation humidity ratio vs. temperature curve. 
Similarly, the element equations can be easily 
obtained using the heat exchanger analogy method 
(see Appendix). 

 

Simulation Procedure 

Heat transfer area and heat transfer coefficients 
on both the air side and water side are given in a 
cooling coil simulation. The leaving water 
temperature and the leaving air dry bulb temperature 
and humidity ratio need to be simulated based on the 
given supply water temperature and mass flow rate, 
and the supply air temperature, humidity ratio and 
mass flow rate. 

 
The cooling coil performance can be easily 

simulated for a given sensible heat ratio and coil 
surface saturation humidity ratio vs. temperature 
slope using the finite element method developed and 
shown in the Appendix. However, the sensible heat 
ratio and coil surface saturation humidity ratio slope 
are unknown parameters before simulation. So the 
trial and error method has to be used in simulation. 
The simulation should use the following procedure.  

 The cooling coil is discretized into a number 
of elements, each with four nodes, as shown in 
Figure 1c, where ten elements are used.  

 The initial SHR and coil surface saturation 
humidity ratio vs. temperature curve slope 
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values can be assumed for all finite elements 
in the first trial.  

 The sensible and latent heat transfer modes are 
decoupled using Eqs. (8) and (9). 

 The node temperature and humidity ratio on 
both the air side and water side are calculated 
with these initial SHRs and curve slopes using 
the method in the Appendix. 

 The SHR of each element can be updated 
based on calculated air and water node 
conditions along the entire coil using Eq. (6). 

 The coil surface temperature at each node can 
be calculated using the SHR as well as air and 
chilled water temperatures at each node. 
Finally the coil surface saturation humidity 
ratio vs. temperature curve slope at each 
element is updated based on the calculated coil 
surface temperatures at both the entering node 
and the leaving node of each element using Eq. 
(12).  

 The simulation is repeated until all SHR and 
slope changes are sufficiently small.   

Initialize SHR 
and tan    
for all elements

Decouple sensible 
and latent heat transfer
using Eqs. (8) and (9) 

Obtain trial node temperatures
and humidity ratios 
at both air and water side 
using FEM given in the appendix   

Calculate coil surface 
temperature 
using air temperature 
and water temperature 
for each node  

       Change of SHR 
and tan    is small enough
       for all elements? 

Output results

Divide a coil
into a number 
of elements

Update SHR
Eq. (6)  

Update tan  
Eq. (12)

 
Figure 3: Flow chart of decoupled cooling coil 

model 

Figure 3 presents the flow chart of the trial and 
error process. 

Application and Results 

The simulation is done on a cooling coil with a 
UA value of 12,000 Btu/h-F on the air side and a UA 
value of 60,000 Btu/h-F on the water side. The air 
flow rate is 4,500 CFM, which is less than the design 
airflow of 6,000 CFM, and the water flow rate is 20 
GPM. The chilled water supply temperature is 42ºF 
and the supply air temperature is 86ºF with a 
humidity ratio of 0.0121 lb/lb. The mass transfer 
coefficient is calculated with the Lewis number of 1 
and the coil is a counter flow configuration. The 
entire coil is separated into ten elements in the 
simulation, as shown in Figure 1c. 

 
Figure 4 shows the simulated cooling process 

with node temperatures and humidity ratios in the 
coil on the psychrometric chart. The process is 
described by the air, chilled water and coil surface 
conditions. The coil surface temperature at the 
entering air node is higher than the entering air dew 
point due to the partial load, so the coil surface is dry 
at this node. It can be seen that the air humidity ratio 
does not change in this area.  
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Figure 4: Cooling process in a coil  

using node conditions 

 

The decoupled sensible heat transfer is shown 
using temperatures in Figure 5 and the decoupled 
latent heat transfer is shown using humidity ratio in 
Figure 6. Since the SHR value varies with location, 
the temperature and humidity ratio distributions are 
different. At the air entrance, the cooling coil 
operates as a dry coil, so the air temperature changes 
rapidly but the humidity ratio does not change. 
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Figure 5: Temperature change  

due to sensible heat transfer 
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Figure 6: Humidity ratio change  

due to latent heat transfer 
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Figure 7: SHR distribution over the coil 
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Figure 8: Slope change over the coil 

 

Figure 7 shows the SHR distribution over the 
entire coil and Figure 8 shows the slope of the 
saturation humidity ratio vs. temperature curve over 
the entire coil. It can be seen that the actual variable 
SHR and slope of the coil surface saturation humidity 
ratio vs. temperature curve are considered in the 
model. The simulation result will be close to the 
actual cooling process. 

 

Conclusions 

A decoupled cooling coil model has been 
developed for the finite element method using the 
element sensible heat ratio. The element equation for 
both sensible and latent heat transfer has a standard 
format for all coil conditions. The variable element 
SHR determines the coil condition, whether it is 
completely dry, completely wet or partially wet. The 
actual SHR and coil surface saturation temperature 
curve are considered in the model, making the model 
more accurate than models that assume constant SHR 
across the coil. 

 
The decoupled chilled water cooling coil model 

can also be used to develop the simulation engine for 
fault detection and diagnosis in air handling units. 
More detailed work on this topic will be done in the 
future.  

Nomenclature 

A  - coil surface area, m2 

a  - decoupled sensible heat transfer factor 

b  - decoupled latent heat transfer factor 

pc  - constant pressure specific heat 
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gh  - specific enthalpy for saturated water vapor, 
J/kg 

MK - mass transfer coefficient, kg/m2-s 

m  - mass flow rate, kg/s 

q  - heat transfer rate, W 

t  - temperature, ºC 

SHR - sensible heat ratio 

U  - heat transfer coefficient, W/m2-ºC 

w  - humidity ratio of moist air 

 

Subscripts: 

a - dry air for mass flow rate and humid air for 
specific heat 

al - air latent heat 

as - air sensible heat 

e -element or entering 

l -leaving 

s -coil surface 

w -chilled water 

 

Superscripts: 

' - decoupled equivalent sensible heat transfer 

" - decoupled equivalent latent heat transfer 
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Appendix: Finite element method based on 
effectiveness-NTU method 
 
1. Differential equations for heat exchanger 
Water side:  
 

dAttUdtcmdq wswwpwww )( −==  (A1) 
 
Air side 
 

dAttUdtcmdq saaapaaa )( −=−=  (A2) 
Heat balance 
 

awt dqdqdq ==  (A3) 
 
2. Effectiveness-NTU method 
 

wa

wa

UU
UU

U
+
⋅

=  (A4) 

paaa cmC =  (A5) 

pwww cmC =  (A6) 
),min(min wa CCC =  (A7) 
),max(max wa CCC =  (A8) 

max

min

C
C

Cr =  (A9) 

ESL-IC-05-10-46

Proceedings of the Fifth International Conference for Enhanced Building Operations, Pittsburgh, Pennsylvania, October 11-13, 2005



 8

minC
UANTU =  (A10) 

),( rCNTUf=ε   (A11) 
)( ,,min iwiat ttCq −= ε  (A12) 

 
3. Element equations 
Figure A1 shows the schematic of an element and the 
variable locations. 
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Figure A1: Schematic of an element  

 
The node heat flux inside an element without mass 
loss ( aiaoa mmm == ,, and wiwow mmm == ,,  ) on both 
sides can be expressed as:  
 

e
iapaa

e
ia tcmQ ,, −=  (A13) 

)( ,,min,,
e

iw
e

ia
e

iapaa
e

oa ttCtcmQ −−= ε  (A14) 

)( ,,min,,
e

iw
e

ia
e

iwpww
e

ow ttCtcmQ −−= ε  (A15) 
e

iwpww
e

iw tcmQ ,, −=  (A16) 
 
The node heat flux inside an element with mass loss 
( iaoa mm ,, ≠ or iwow mm ,, ≠  ) on either side can be 
expressed as the following equations, where the 
average mass flow rates are used to calculate the 
overall heat flux term ( minCε ).  
 

e
iapaia

e
ia tcmQ ,,, −=  (A17) 

)( ,,min,,,
e

iw
e

ia
e

iapaoa
e

oa ttCtcmQ −−= ε  (A18) 

)( ,,min,,,
e

iw
e

ia
e

iwpwow
e

ow ttCtcmQ −−= ε  (A19) 
e

iwpwiw
e

iw tcmQ ,,, −=  (A20) 
 
Generally the basic element equations can be written 
in matrix format. 
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4. Integrate equations over the entire coil 
The total heat flux to a node is contributed by all 
elements, which include this node. Finally the 
integrated node heat flux equation can be obtained 
using the superposition method.   
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5 Boundary conditions 
Since no net heat flux flows into or out of the interior 
nodes, the heat flux can be set to zero. However, the 
entering and leaving nodes have different boundary 
conditions. 
 
Entering nodes 
For the water and air entering node, the temperatures 
( iat , and iwt , ) are given.  
 
It is assumed that the node number in the integrated 
equations is m . In order to force constant 
temperatures at this node, the following changes can 
be done on the integrated equation. 
 

∞=mmk  (A23) 
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Leaving nodes 
For the water and air leaving node, heat balance is 
applied to determine the temperature. It is assumed 
that the node number in the integrated equation is n . 
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Since the temperature is unknown, heat balance can 
be satisfied by changing the matrix and setting the 
heat flux to zero. 
 

0=nQ  (A26) 
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