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ABSTRACT 

 

 
Nonlinearly Consistent Schemes for Coupled Problems in Reactor Analysis.  

(December 2006) 

Vijay Subramaniam Mahadevan, B.Tech., Bharathidasan University 

Chair of Advisory Committee: Dr. Jean C. Ragusa 

 

Conventional coupling paradigms used nowadays to couple various physics 

components in reactor analysis problems can be inconsistent in their treatment of the 

nonlinear terms. This leads to usage of smaller time steps to maintain stability and 

accuracy requirements thereby increasing the computational time. These inconsistencies 

can be overcome using better approximations to the nonlinear operator in a time stepping 

strategy to regain the lost accuracy.  

This research aims at finding remedies that provide consistent coupling and time 

stepping strategies with good stability properties and higher orders of accuracy. 

Consistent coupling strategies, namely predictive and accelerated methods, were 

introduced for several reactor transient accident problems and the performance was 

analyzed for a 0-D and 1-D model. The results indicate that consistent approximations 

can be made to enhance the overall accuracy in conventional codes with such simple non-

intrusive techniques. 

A detailed analysis of a monoblock coupling strategy using time adaptation was also 

implemented for several higher order Implicit Runge-Kutta (IRK) schemes. The 

conclusion from the results indicate that adaptive time stepping provided better accuracy 

and reliability in the solution fields than constant stepping methods even during 

discontinuities in the transients. Also, the computational and the total memory 

requirements for such schemes make them attractive alternatives to be used for 

conventional coupling codes. 
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CHAPTER I 

INTRODUCTION 

Reliable and accurate simulations of physical phenomena often require the 

simultaneous description of several physics components. In most cases, these physics are 

coupled in a non-linear fashion, making it intricate to find the solution efficiently and 

accurately. There are several examples of physical phenomena that are non-linearly 

coupled thereby raising a need to develop stable and accurate schemes to find the 

solutions. Three examples of such phenomena are: 

� Radiation diffusion where the radiation energy is strongly coupled with 

the temperature field, 

� Nuclear reactor analysis where the neutronics and the power are strongly 

coupled with the thermal-hydraulics field, 

� Blood / Vein Fluid Structure Interaction (FSI) problems where fluid and 

structural vibrations are coupled together. 

For the past decade, high fidelity modeling of nonlinear multi-physics problems has 

been subdivided into several distinct domains of physics and solved individually as mono 

disciplinary blocks without rigorous coupling between the different physics. Although 

naïve, this is the most widely used coupling strategy for nonlinear multi-physics. This 

kind of modeling is based on coupling several existing specialized mono disciplinary 

codes with a "black-box" strategy, where the input of one code is the output of other, 

thereby producing solutions that are weakly coupled. This coupling strategy, denoted 

hereafter as Nonlinearly Inconsistent Coupling (NIC) is based on the explicit 

linearization of the problem.  

This conventional coupling strategy is based on a more commonly known technique 

called as the operator-splitting method. This method decomposes the system of PDEs into 

simpler sub-problems and solves the resulting system individually using specialized 

numerical schemes. This conventional strategy is non-iterative and hence the 

_______________ 

This thesis follows the style of Nuclear Science and Engineering. 
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nonlinearities in the system due to the coupling are not resolved, reducing the accuracy in 

the time stepping procedure to first order. Although it does allow parts of the problem to 

be treated implicitly and others explicitly, the lack of iterations over the nonlinear 

coupling terms leads to less accurate solutions. Despite these drawbacks, this is still one 

of the major coupling paradigms used today for solving nonlinear multi physics systems. 

The fundamental inefficiency and essential drawback of this strategy is that it does 

not resolve nonlinearities between physics over a time step and hence is inherently 

inaccurate. Such an inconsistent treatment of the nonlinear terms usually results in a loss 

of the convergence order in the final solution and requires the use of excessively small 

time steps due to stability constraints and loss of order of convergence. The direct 

implication of using smaller time steps to achieve a reasonable accuracy is that the 

computations need greater CPU time and resources. The attractive feature of such a naïve 

coupling strategy is that the legacy of many man-years of mono disciplinary code 

development and V&V (validation and verification) are preserved. 

As mentioned before, nuclear reactor analysis is a good example of highly non-linear, 

coupled multi physics problem and the nonlinearities are embedded at the heart of reactor 

design, analysis and safety calculations. It is then of prime importance to develop 

coupling strategies that can produce highly accurate solutions even in the complex 

scenarios usually encountered in reactor analysis safety. Often physical phenomena, such 

as the ones found in reactor accidents, involve rapidly varying transients which are 

represented by a stiff system of differential equations. Stiff problems are characterized by 

solutions having fast varying modes together with slower modes, requiring time 

integrators that can handle such disparate time scales. Such stiff problems necessitate the 

use of implicit time discretization for stability reasons, as will be seen in the next chapter. 

The physics of nuclear systems are usually sub-divided into 3 domains for extensive 

and rigorous calculations based on the nature of the physics. They are given as: 

� Neutronics - Deals with the neutron population distribution in the reactor core 

� Thermal hydraulics - Deals with the calculation of fluid density and temperature 

fields in the coolant 

� Heat transfer - Deals with the temperature fields within the nuclear fuel 
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It needs to be noted that even though these domains ‘seem’ distinct, these various 

physics are intertwined and rely heavily on the solution field of one another. The 

coupling of the various physics involved in reactor analysis hence requires stable and 

accurate schemes to yield reliable results and the nonlinearly inconsistent coupling (NIC) 

strategy will not yield very accurate results for complex scenarios such as accident 

behaviors, a Loss of Coolant Accidents (LOCA), a Main Steam Line Break (MSLB) and 

other safety analysis calculations performed in nuclear reactor analysis. 

Present and future simulations of nuclear reactors, either for the design of new cores 

or for core performance analysis will rely increasingly on multi-dimensional, multi-

physics computations. These coupled simulations should be performed in amenable wall-

clock times and should yield accurate solution. In that respect, the fundamental 

inefficiency of the current nonlinearly inconsistent coupling must be solved in an 

efficient way without affecting the current coupling of the existing codes, if possible. 

The current research devises simple, robust, and CPU-effective acceleration methods 

for the nonlinear coupling of neutronics and thermal-hydraulics so that the coupled 

simulations of transients and accidents can be performed with better confidence and with 

smaller computation effort. 

On the whole, the aim of the current research is to strive to do the following: 

� Analyze the current nonlinearly inconsistent coupling procedures and assess their 

stability and accuracy, 

� Propose improvements[1] to the nonlinearly inconsistent operator-splitting 

coupling paradigm in order to achieve a Nonlinearly Consistent Coupling (NCC) 

scheme, 

� Develop stable schemes that will have minimal impact on existing mono-

disciplinary codes but improve the nonlinear coupling by slightly modifying the 

interfaces between the codes (Non-intrusive modification), 

� Validate the accuracy improvements on real-life physical scenarios; Core 

transients[2], MSLB[3] benchmarks. 

Based on the above overall goals, this research thesis is then organized as follows: 

� Review the coupling strategies currently in use and put forth their deficiencies.  
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� Explain the basic theory for our new coupling strategy and how the deficiencies in 

current schemes can be overcome 

� Discuss some stable numerical schemes that correct the flaws in the current 

strategy and aid in achieving a higher order of convergence preserving stability 

for higher time steps 

� Apply these schemes to a nuclear reactor analysis transient problem, in both 0-D 

and  1-D scenarios 

� Measure and analyze the effectiveness of the proposed methods by discussing the 

implication of the results. 

Further in this chapter, a brief introduction to the numerical analysis of schemes being 

performed in this research will be discussed. 

I.1 Nonlinearities and time discretization schemes 

Multi-physical problems in mathematical terms are a coupled set of partial 

differential equations requiring both spatial and temporal discretization. After spatial 

discretization, this general system of nonlinear ordinary differential equations can be 

written as 

1 1 1 2

2 2 1 2

3 1 2

' ( , ,... )

' ( , ,... )

            

' ( , ,... )

n

n

n n

y f y y y

y f y y y

y f y y y

=

=

=

M
 (1.1) 

Where fi are nonlinear differential operator representing physical conservation laws, 

equilibrium conditions etc., and yi represent the unknown field variables. 

A single set of ordinary differential equations can then be formulated as an Initial 

Value Problem (IVP)  

    ' ( ) ( )y Ly N y b f y= + + = and  y(0)=y0 (1.2) 

where   y is the vector of unknowns,  

y’ represents time derivative of the unknown vector,  

L is a matrix representing a strictly linear operator, and  

N(y) is a vector representing a nonlinear operator  
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The matrices L and N(y) may result from spatial discretization of the partial 

differential equations in higher dimensions or due to coupling between the sub-problems 

obtained in an operator splitting methodology.  

For many physical systems, the nonlinear vector function N(y) may be factorized as 

G(y)y, where G(y) is a matrix whose elements depend on y. Using this factorization, 

Equation (1.2) can be re-cast as 

    ' ( )y Ly G y y b= + +  (1.3) 

Most coupled phenomena can be cast in the form of Equation (1.3). Generally 

speaking, Equation (1.3) is solved using many mature time integration techniques. Some 

of the more popular, time discretization schemes are the Backward Euler, Crank-

Nicholson, Implicit Runge-Kutta (IRK), linearly implicit Rosenbrock-Wanner family of 

methods (ROW) and Adams-Moulton (implicit multi-step) methods with either a constant 

time-step strategy or a variable step control with step-doubling or embedded strategy. 

Schemes of various orders of accuracy can be obtained depending on the implicit 

procedure chosen to solve the system of nonlinear equations.  

For instance, in order to advance the numerical solution in time from time tn
 to time 

t
n+1, the very popular θ discretization method can be used. When this scheme is applied to 

Equation (1.3), we obtain the following equation. 

1
1 1 1 1

1
( ) ] (1 ( ) ]

n n
n n n n n n n n

n n

y y
L y N y b L y N y b

t t

+
+ + + +

+

−
= θ [ + + + − θ) [ + +

−
 (1.4) 

with θ⊂  [0; 1]. For θ = 1, we obtain the backward Euler scheme (first-order in time if 

enough regularity is present in our problem) and for θ = 1/2, we obtain the Crank-

Nicholson scheme (second-order in time if enough regularity is present in our problem). 

Other time discretization schemes can be considered here instead of the θ-Scheme 

and a similar procedure can be followed to discretize Equation (1.2) depending on the 

need for higher orders of accuracy or increased stability as appropriate for the problem 

under investigation. But it is important to remember that the goal of this research is to 

improve the treatment of the nonlinear term N(yn+1) in Equation (1.4) and discretize 

Equation (1.2) in a consistent fashion so as to preserve the order of accuracy of the 

solution scheme.  
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I.2 Current coupling schemes  

In the domain of reactor physics, several mono-disciplinary codes have been 

developed for decades and their reliability are established. It is then of paramount 

importance that the research be aimed at developing algorithms which will re-use as 

much as possible from existing codes, rather than proposing the merging of codes into 

one monolithic meta-code. Such an effort will then produce more accurate results based 

on the existing codes without a need to replicate the code development cycle again and 

preserving all the time spent on these codes. It is then important to understand the “black-

box” approach that is usually employed for mimicking the coupling of multi-physics and 

the inherent deficiencies that are present with such a strategy before we delve in devising 

better strategies to solve coupled systems. 

A simple schematic showing the first order operator-splitting model for a coupled, 

two-physics system is shown below. So, for a transient problem, the solution procedure at 

every time step can be described by the following figure. 

In current coupling schemes as shown in Figure (1), the mono-disciplinary codes 

solve a given physics, and data between codes is exchanged at rendezvous points, usually 

at the end of each time interval. The concept of this model springs from the fact that the 

different physics have previously already been solved using dedicated, specialized codes 

and using suitable message passing paradigms such as Parallel Virtual Machine (PVM) or 

a Message Passing Interface (MPI), these codes can be made to communicate with one 

another to solve (inconsistently) the coupled physics problem.  

 

Figure 1: Operator-split model 

In the operator-split model, the mono-disciplinary codes that are coupled together, 

work on the principle of a lagged updation procedure. The solution from one physics 

code becomes the input of another physics code, without any iteration over the time step 
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or extrapolation in the exchanged values. In these schemes, the nonlinear problem is 

linearized and the nonlinearities over the time step are never converged and hence the 

terminology ‘Weakly coupled schemes’ is also usually used to refer to such a strategy. 

To be more specific, a weakly coupled system could be characterized by the condition  

i i
i

j i

f f
C

x x

∂ ∂
≤

∂ ∂
 (1.5) 

for some Ci << 1 and for every j ≠ i in the neighborhood of the exact solution. In this 

case, the value of fi depends mostly on xi and even a significant change in xj causes only a 

small change in fi. Even though this might not be true physically but the way the problem 

is solved in a weakly coupled system, fi is not sensitive enough to xj or in other words, the 

system is diagonally dominant. This is due to the aforementioned reason that over a time 

step, the coupling between the different physics is not completely resolved and hence the 

primary operator fi in a physics depends strongly only on the field variable xi. 

The idea behind this weak coupling is to use an inconsistent approximation for the 

nonlinear term at the end of the time step, N(yn+1). This approximation consists in treating 

N(yn+1) explicitly in time as follows, leading to the following substitution : 

1 1( )
( ) ( ) ( ) ( ) ( )

n
n n n n nN y

N y N y y y N y O y
y

δ+ +∂
= + − ≈ +

∂
 (1.6) 

or when using the factorized expression for N(y) as given in Equation (1.3), 

1 1 1 1( ) ( ) ( ) ( )n n n n nN y G y y G y y O yδ+ + + += ≈ +  (1.7)  

The nonlinear system has therefore been explicitly linearized but at the cost of a gross 

approximation wherein the nonlinearities are treated explicitly in time. Another way of 

looking at this approximation is to view it as a first-order prediction as below. 

y
n+1 ≈ yn+1,P = yn

 + O(∆t) (1.8)  

where the superscript P denotes the prediction. It is clear from Equation (1.8) that 

such a scheme will only lead to a global convergence rate of O(∆t), no matter what time 

integration techniques are used in each of the separate physics. We already emphasize 

that nonlinearly inconsistent schemes will require small time steps to achieve reasonable 

accuracy due to their convergence of O(∆t), hence taxing the CPU time and slowing 

down the engineering analysis work. 
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It is also important to know that there are several small digressions in the actual 

implementation of the weakly coupled schemes. Some of the various cases when two 

physics components, say Neutronics and Thermal-hydraulics are coupled, are shown 

below. 

� Both codes advance simultaneously from time t
n to t

n+1, and the data is 

exchanged at the end of the time step (simultaneous update procedure) 

which can be represented by a block Jacobi scheme 

� Or one code advances first and sends its results to the second code before 

the latter starts the calculations for the time-step (serial staggered 

procedures) which can be represented by a block Gauss-Seidel scheme 

The schemes above can be extended to couple more than 2 physics in a similar 

fashion. A descriptive figure to explain the above variations in the weakly coupled 

schemes is shown below for a Neutronics/Thermal-Hydraulics coupled nuclear reactor 

system. 

 

Figure 2: Conventional simultaneous update procedure 

 



 

 

9 

 

Figure 3: Conventional serial staggered procedure (Neutronics first) 

 

Figure 4: Conventional serial staggered procedure (Thermal hydraulics first) 

The inaccuracy in this type of conventional operator-splitting approaches which do 

not converge the nonlinearities at every time step, necessitating the use of very small time 

steps, can be analyzed using an illustrative example shown below. 

I.3 An illustrative example 

At this point in the discussion, we are going to present a simple derivation to illustrate 

the issues that were discussed earlier on in this section. 

Let y be the vector of unknowns in a nonlinear multi-physics problem. The system of 

nonlinear differential equations can be written as follows: 
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y’= f(t,y) (1.9) 

where f is a nonlinear vector-function.  

We can then split the standard problem into a linear term and a nonlinear term similar to 

Equation (1.3) as follows: 

y’ = f(t,y) = L(t) y + N(t,y) (1.10) 

For illustration, applying the implicit Crank-Nicolson discretization scheme to Equation 

(1.10),  

1 1 1 3[ ( , ) ( , )] ( )
2

n n n n n nt
y y f t y f t y O t

+ + +∆
= + + + ∆   

1 1 1 1 3[ ( )] [ ( )] [ ( , ) ( , )] ( )
2 2 2

n n n n n n n nt t t
I L t y I L t y N t y N t y O t

+ + + +∆ ∆ ∆
− = + + + + ∆  (1.11) 

Equation (1.11) is nonlinear in the unknown y
n+1 and has to be solved or 

approximated to some known precision to get the correct and accurate solution. Usually, 

a time explicit linearization of the nonlinear term is performed using a crude 

approximation 

1( ) ( ) ( )n nN y N y O t+ = + ∆  

yielding 

1 1 1 2[ ( )] [ ( )] [ ( , ) ( , )] ( )
2 2 2

n n n n n n n nt t t
I L t y I L t y N t y N t y O t

+ + +∆ ∆ ∆
− = + + + + ∆  (1.12) 

Typically, for linear system of differential equations, the above implicit Crank-

Nicholson scheme yields O(∆t
2) globally. Unfortunately, the approximation in Equation 

(1.12) is only O(∆t) globally in time and consequently reduces the overall global 

accuracy of the C.N scheme to O(∆t) from O(∆t
2). This observation is quite general and 

holds for any time integration technique for nonlinear systems for which the nonlinear 

terms have been explicitly linearized using the approximation in Equation (1.6), which is 

what most existing codes use. 

I.4 Drawbacks and remedies 

The standalone mono-disciplinary codes provide higher global convergence accuracy 

order in time while solving the system of nonlinear ODE for a decoupled system. But the 

above illustration elucidates that the conventional operator-splitting methodology yields 

only O(∆t) global accuracy in the solution fields. Hence, higher global orders of accuracy 
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e.g., O(∆t
2) or higher, could improve the efficiency and performance of current schemes 

by many fold. Also higher order accurate schemes are more intricate and can be very 

complicated to code. 

Unfortunately, end users are not necessarily aware of the huge price paid for the loss 

of one or more orders of convergence. The direct implication of the loss of an order of 

accuracy is that we need smaller time steps to reach reasonable levels of accuracy and to 

ensure that the scheme remains stable. Also the calculation and computation of such 

nonlinearly inconsistent schemes would then require comparatively more CPU time and 

resources to obtain reasonable levels of accuracy. This delays the actual engineering 

analysis and design process which are heavily dependent on the solution from such 

coupled systems for short transients or accident simulations. 

To workaround the problems we have outlined, simple and robust numerical schemes 

need to be derived which will be stable and accurate even for larger time steps in 

comparison to the current schemes. It has now become clear that the nonlinear equations 

resulting from the time discretization of nonlinear multi-physics systems should be 

solved or approximated in an efficient way. This nonlinear solve could be performed in 

different ways by using better approximations which will be covered in the following 

section. Also, if stable numerical schemes can be combined with adaptive step size 

control strategies, then the performance and the desired accuracy in the solution can be 

controlled and improved. Based on some previous work[4] even explicit time stepping 

would be a viable option if the necessary extended stability conditions and enough 

damping is included in the scheme. Such explicit schemes will eliminate the need to 

solve the nonlinear system iteratively and hence has the advantage of reducing the total 

number of function evaluations at the cost of few stabilizing small steps. 

Going further, with the observations made and understanding gained from the current 

schemes, we will look at devising new robust, stable and accurate schemes as mentioned 

before and look at the properties and implementation of each method in the next section. 
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CHAPTER II 

STABLE AND ACCURATE HIGHER ORDER 

NUMERICAL SCHEMES 

Nonlinear, coupled systems, as mentioned before, require stable schemes to yield 

accurate results. Optimizing such schemes to minimize the time taken for computation 

involves analysis and modification of existing schemes so as to preserve the effort 

towards the mature legacy codes that are primarily used to solve the mono-physics blocks. 

There are several parameters that need to be born in mind before deciding on the scheme 

to be used for computation. They are as follows: 

1. Stability – The numerical scheme under consideration should be 

unconditionally stable for all time steps so that we are not constrained by the 

step size used. This is important to reduce the overall computation time in 

obtaining the solution fields with a prescribed accuracy and limit the 

accumulation of round-off errors. 

2. Order of accuracy – The numerical scheme should have a high order of 

convergence which will enable the usage of larger time steps when necessary, 

given that the scheme is within the stability region. Higher order schemes can 

then be used to obtain the solution fields with a specified accuracy in 

significantly fewer steps than the lower order schemes. Also, the coupling 

scheme should not cause any loss of accuracy when linking the different 

physics solvers together while obtaining the solution fields. 

3. Computational cost – The numerical scheme should require minimal 

computational effort to evaluate the linear and the nonlinear operators at each 

time step as possible in order to reduce the calculation time. For instance, a 

higher order scheme requiring many 10000 flops/step will be less efficient 

than a slightly lower order scheme with 5000 flops/step. This is comparatively 

a minor factor but still plays an important role in deciding the best numerical 

scheme for the proposed problem. 
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4. Implementation ease – The numerical scheme should not be too cumbersome 

to implement since the aim of coupling different mono-physics codes is 

primarily to improve the interface driver. Hence complex schemes requiring 

extensive man hours to program, test and verify the changes are 

disadvantageous from a practical stand point. 

Bearing these parameters in mind, numerical analysis was done on various popular 

and mature methods that have been used previously in different coupled physics 

scenarios by Robert Lowrie[5]
 and Knoll et al.,[6]. 

Based on preliminary observations of the numerical schemes on a nonlinear problem 

of the form shown in Equation (1.3), the variable θ time discretization using constant 

stepping procedure along with several higher order explicit and implicit Runge-Kutta 

embedded adaptive time control schemes were chosen for solving the multi-physics 

problem in nuclear core analysis. We shall discuss about these methods in the next 

sections of this chapter. But first, let us review the concepts of accuracy and stability of 

numerical schemes. 

II.1 Numerical solution procedures for solving nonlinear systems 

The current techniques for nonlinear dynamical systems offer insights into the 

numerical behavior of the systems. This result is due to the combination of a well posed 

initial continuous differential problem and a discrete numerical scheme employed to 

resolve it. The numerical properties of time-stepping algorithms require an extension to 

classical analysis performed in the linear domain, especially when we deal with 

applications to a large class of nonlinear problems arising in coupled physics. Based on 

the consolidated work concerning the theory of nonlinear properties of numerical 

methods by several researchers like Hairer E, Wanner G on solving non-stiff and stiff 

ODEs[7,8], Dekker K, Verver J.D on Runge-Kutta solvers[9], the non-linear problem can 

be linearized about a given point and analyzed to obtain a global evaluation of the 

reliability and capability of the selected numerical scheme. Also, the restrictive nature of 

the nonlinear stability analysis procedures can limit discretization schemes that are not 

suited for stiff problems to use large time step values. 
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For illustrative purposes, let us consider a general nonlinear problem of the following 

form 

( ) ( ) ( , )
dy

Ly N y b t f y t
dt

= + + =  (2.1) 

where f(y,t) is continuous in the problem domain Df 

and L, N(y) are the linear and nonlinear operators of the problem. 

A numerical method may be applied in order to solve the nonlinear equation which in 

general leads to a family of equations f(yh) = 0. The subscript h indicates the dependence 

on a small parameter such as mesh size and that h ∈  (0, ∞). Then, we can define the 

convergence of the approximating solution yh* to y*, as 

0
lim || * * || 0

h
h

y y
→

− =  (2.2) 

We are interested in making the error in the solution ε = || y* - yn
h || minimal, in as few 

steps as possible for a given step size h. To accomplish this, we must numerically analyze 

the schemes under consideration and determine the accuracy and stability of our 

approximation schemes. 

II.2  Stability 

A numerical scheme is considered to be stable if applied for the linear IVP y’=λy with 

λ<0, for any step size h, it results in a non-increasing sequence of approximations i.e., 

y
n+1≤y

n. In other words, if the true solution remains bounded then the numerical solution 

should be bounded for all step sizes. 

In linear stability analysis, the ODE of the form 'y yλ=  where 0λ < is analyzed to 

find the stability region of a given numerical scheme. In the case of a nonlinear problem 

of the form given in Equation (2.1), we can linearize f in a neighborhood of the solution 

φ(t) as follows 

'( ) ( , ( )) ( , ( ))( ( ) ( )) ...
f

y t f t t t t y t t
y

ϕ ϕ ϕ
∂

= + − +
∂

 (2.3) 

Now let us introduce ( ) ( ) ( )y t t y tϕ− = to then get 

'( ) ( , ( )) ( ) ... ( ) ( ) ...
f

y t t t y t J t y t
y

ϕ
∂

= + = +
∂

 (2.4) 
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At first approximation we consider the Jacobian J(t) as constant and neglect the 

higher order error terms. Omitting the bars, we then arrive at, 

'( ) ( )y t Jy t=  (2.5) 

Now, we can apply the numerical scheme of interest to Equation (2.5) to obtain an 

equation of the form 

1 ( )
n n

y R hJ y+ =  (2.6) 

 where the function R(hJ) is the stability function of the numerical method.  

For illustration, let us apply the implicit Backward Euler scheme to Equation (2.5) 

and analyze the stability of the system. 

1 1 1 1( ) ( )
n n n n n n n

y y hJy I hJ y y y R hJ y+ + + += + → − = → =  (2.7) 

Where 1( ) ( )R hJ I hJ −= − . To have a stable numerical solution, |R(hJ)|<1. For this to 

be possible, the following condition needs to be satisfied. 

max

1
1

1 | |h λ
<

−
 (2.8) 

Where |λmax| is the largest Eigenvalue of the Jacobian matrix 

A similar procedure can be applied when using different numerical schemes to 

analyze and find the stability regions. By definition, a numerical method is called A-

stable if and only if the stability domain satisfies 

{ ;  Re 0 }
max

S C z h zλ−⊃ = = ≤  (2.9) 

For methods with this property the step size is never restricted by stability regardless 

of the stiffness ratio S=|λmax/λmin|, where λ is any Eigenvalue of (I – hJ). Taking A-

stability into account, one can develop several different schemes that are implicit since 

only these methods have a proper rational stability function.  

The stability analysis of explicit schemes have been performed by Dahlquist[10] and 

has been proven that these methods have a bounded stability region and hence do not 

satisfy A-stability. Such conditionally stable methods require extensive step-size 

restrictions to resolve all the modes in a problem, especially when it is stiff. On the other 

hand, the A-stable implicit schemes solve stiff differential equations efficiently without 

any step-size restrictions but require solution of nonlinear algebraic equations at each step 

repeatedly, which results in an increase of computational cost. Hence, if the solution 
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remains well behaved for arbitrarily large values of time steps, ample CPU time can be 

saved by using the implicit methods instead of the conditionally stable explicit schemes 

that require very small step-sizes throughout the transient period.  

In some situations, it may also be desirable to damp the very stiff components of the 

numerical solution. This leads to the concept of L-stability of numerical schemes apart 

from A-stability, which requires that ( ) 0R z →  as z → −∞ . The L-stability is important 

while solving fast changing transients, especially in stiff systems where the fast modes 

have to be damped to avoid unwanted oscillations. 

II.2.1 Stability of conventional schemes 

The introduction provided in Chapter I for the operator splitting technique offers 

several advantages over solving the monolithic block system of equations as a whole. If 

the split is accomplished as shown in Figures 2, 3 or 4, it provides good flexibility in the 

staggered and non-staggered procedures to use implicit or explicit schemes for either or 

all the physics. But, an important issue that needs to be addressed in such an operator 

split partitioning is the stability of the partitioned system. 

For illustration, let us assume that the system of nonlinear equation representing two 

coupled physics is split as 

1 2
1 1 2 2 1 2( , , ),  and  ( , , )

dY dY
f t Y Y f t Y Y

dt dt
= =  (2.10) 

Now let us apply the implicit C.N scheme to the above system of equations. 

 3

, 1 1, 2, 1 1, 1 2, 1[ ( , , ) ( , , )] ( )
2

i n n i n n n i n n n

h
Y Y f t Y Y f t Y Y O h+ + + += + + + , i=1,2 (2.11) 

To solve for the solution fields Yi,n+1 would require solving the nonlinear set of 

equations. Considering the Taylor series expansion of fi(tn+1, yi,n+1) about the known 

solution Yi,n, 

2

1 1 1 , 1 , , 1 ,

1

( ) ( )
( , ) ( , ) ( ) ( ) ...i n i n

i n n i n n i n i n j n j n

ji j
j i

f Y f Y
f t Y f t Y Y Y Y Y

Y Y
+ + + + +

=
≠

∂ ∂
= + − + − +

∂ ∂
∑  

But from the general system of equation given above, it can be seen that Yi,n+1–Yi,n = O(h); 

Then, replacing fi(tn+1, Yi,n+1) yields 
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1 1 1, 2, 1 1, 2,

3

1, 1 1, 1 1, 2, 1 1, 2,

1, 1 1, 2, 1 2,

1 2

2 1 1, 2, 2 1, 2,

2, 1 2, 2 1, 2,

1,

1

( , , ) ( , , )

( )( , ) ( , )
2 ( ) ( )

( , , ) ( , , )

( , )
2 (

n n n n n n

n n n n n n

n n n n

n n n n n n

n n n n

n

f t Y Y f t Y Y
h

Y Y O hf Y Y f Y Y
Y Y Y Y

Y Y

f t Y Y f t Y Y
h

Y Y f Y Y
Y

Y

+

+

+ +

+

+

+

+ + 
 

= + +∂ ∂ − + −
 ∂ ∂ 

+ +

= + ∂

∂

3

2 1, 2,

1 1, 2, 1 2,

2

( )( , )
) ( )n n

n n n

O hf Y Y
Y Y Y

Y
+

 
 

+∂ − + −
 ∂ 

 (2.12) 

After a little rearranging, the above equation in the general form becomes: 

11

2 3

, 1 ,
, 1 ,

1

( , ) ( , )
( ) ( ) ( )( )2 2

i n n i n n

i n
i ni n i n

j n j n
i

j j
j i

f t Y f t Y

f Yh h f YY Y I O hY YY Y

+−

+
+

=
≠

+ + 
  ∂ ∂= + − +   −∂   ∂
 

∑  

2
1 3

, 1 , , 1 ,

1

( , ) ( , ) ( )i n i n i i i n n i n n i j j

j
j i

Y Y h I hJ f t Y f t Y J Y O hγ γ δ
−

+ +
=
≠

 
  = + − + + +   
  

∑  (2.13) 

Where Ji,j = 
( )

i n

j

f Y

Y

δ

δ
is the Jacobian matrix. The above scheme would yield a O(h2) 

globally with an iterative procedure to converge the solution. 

Now if the nonlinearity is not converged iteratively, then the conventional scheme 

involves an explicit solution procedure which leads to conditional stability. Such an 

approximation involves the assumption that Ji,j = 0 for i≠j. Then the numerical stability of 

the applied numerical scheme is restricted by the stability condition 
2

| |
max

h
λ

<  

where
max

λ is the absolute maximum eigenvalue of the Jacobian matrix J and h is step size 

used by the scheme. 

In a simultaneous update procedure, the stability conditions may be more stringent 

due to explicit procedures in all physics but in staggered coupling strategy, some of the 

physics use an implicit nonlinear procedure. Hence, the stability conditions will depend 

on the nonlinear operator of the corresponding physics with an explicit approximation. 

II.3 Accuracy 

Numerical errors arise from two sources: round-off and truncation errors. Round-off 

errors arise from the limited precision of computer arithmetic. It can be defined as the 

difference between the calculated approximation of a number and its exact mathematical 
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value. The relative error of a single operation is at most equal to the unit round-off error 

u. This is a small number, but if the computer carries out millions of operations, the 

round-off errors can accumulate and become significant. Numerical software writers 

strive to ensure that this accumulation is kept under control by making sure that the 

number of operations performed in calculating the solution is minimal. This in turn 

means that a scheme with unconditional stability and higher orders of accuracy allows the 

use of bigger time steps leading to lesser computation and lesser round-off errors. 

The second source of error is called truncation error. This error arises when we make 

discrete approximations of continuous functions. This error can be, to a certain extent, 

limited by making the step-sizes in the discrete function as small as possible. The Taylor 

expansion series, which provides a means for creating approximate functions, also allows 

us to evaluate the truncation error. We often evaluate the quality of a numerical solution 

by estimating the error incurred with our functional approximations.  

The accuracy of a scheme to solve a nonlinear system is really just a matter of 

minimizing the error term in the Taylor approximation for the scheme. Because of its 

simplicity and its applicability, it can be extended to the general nonlinear problem 

shown in Equation (2.1). Numerically solving a differential equation requires an initial 

condition and an algorithm for extending the solution. The idea is to expand the solution 

space around the initial condition and use the Taylor series to guide the approximation of 

the solution.  

An important observation is that after each step of the numerical method a new initial 

value problem is approximated. This brings in the notion of a local error where after each 

step the incoming data is assumed to be exact. Therefore, accuracy is measured by 

comparing the numerical solution over one step with the corresponding Taylor series 

expansion of the exact solution as 

( 1)

1

( ) ( ) ( )
i

i

i

h
y t h y t f t

i

∞
−

=

+ = +
!

∑  (2.14) 

The above equation is accurate without any kind of approximations. But, calculation 

using the formula requires approximations since it is not practical to get all the terms till 

infinity. Then, Equation (2.14) can be approximated as 
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( 1) 1

1

( ) ( ) ( )
ip

i p

i

h
y t h y t f t

i
ε− +

=

+ = + +
!

∑     (2.15) 

Where the local error is 1 ( 1) 1

1

( ) ( )
i

p i p

i p

h
f t O h

i
ε

∞
+ − +

= +

= =
!

∑  (2.16) 

Error analysis tells us that if the right hand side function is sufficiently smooth (p 

times continuously differentiable), and if the scheme is stable, then the local truncation 

error at a fixed time increases as O(hp+1).  When a solution is calculated for n steps, the 

local truncation error accumulates in the solution, which can be measured to give the true 

order of the discretization scheme. Then for a given IVP of the form given in Equation 

(2.1), the approximation in Equation (2.16) yields a p order accurate scheme globally. 

1 1 1

1

 ( ) ( )
n

p p p p

i

i

T
Global error n O h O h

h
ε ε+ + +

=

= ≈ = =∑  

Where T is the total time of calculation. 

If we assume that the solution is smooth enough then the truncation error converges 

to zero with decreasing step size. This property is known as consistency and is essential 

for all nonlinearly convergent schemes. The new global error consists of the action of the 

numerical scheme on the previous error and the error committed in the approximation of 

the derivatives according to the scheme. Also, the concept of “stiffly accurate schemes” 

is often used in the context of finding the solution fields to very stiff problems. This 

means that the scheme does not lose its theoretical order of accuracy when the fast modes 

in a stiff system dominate and hence is consistently accurate. Such schemes are optimal 

for our problem under consideration, which is both stiff and nonlinear in nature. 

Summarizing the above, when a numerical method is used with a sufficiently large 

step size, the numerical solution may become unbounded, even though the exact solution 

is bounded. For certain methods applied to stiff problems, the step size necessary for 

stability may be excessively small in relation to the smoothness of the exact solution. 

This means stability rather than accuracy is restricting the step size. To ensure there is no 

restriction on the step size used, the numerical scheme needs to be stiffly accurate and 

both the A and L stability criteria needs to be met. Hence, for stiff systems, it is the 



 

 

20 

stability that is of prime importance and higher orders of accuracy are desired only when 

the former conditions are met. 

It is important to understand the stability properties of the numerical schemes being 

used to choose the right step-sizes to obtain convergent solutions with desired accuracy 

for coupled physics systems. We will now look at some nonlinear iterative procedures 

that will be used to resolve the nonlinearities at each step when using implicit time 

discretization schemes. 

II.4  Nonlinear iterative solution procedures 

It is important to have consistent and stable schemes for solving nonlinear transient 

problems. For illustrative purposes, let us consider the nonlinear IVP given in Equation 

(2.1) where the nonlinear operator needs to be calculated approximately. In order to 

achieve this, let us expand the nonlinear operator using Taylor series expansion as 

1 1 1 1

( )
( , ) ( , ) ( ) ...n

n n n n n n

N y
N t y N t y y y

y
+ + + +

∂
= + − +

∂
 

2

1 1 1

( )
( , ) ( , ) ( )n

n n n n

N y y
N t y N t y t O t

y t
+ + +

∂ ∂
→ ≈ + ∆ + ∆

∂ ∂
 

It is evident from the above equation that the nonlinear resolution is vital to achieve 

the right convergence order for the time integration scheme used. If the nonlinearities are 

not resolved completely, then the local error in the nonlinear expansion O(∆t
2) 

accumulates and destroys the convergence order gained using higher order time 

discretization schemes. Hence, it is important to iteratively converge the nonlinear 

problem in order to retain the accuracy in the solution. 

There are several popular iterative schemes that have been used successfully to solve 

nonlinear problems. For our purposes, we shall consider only those schemes that have the 

advantages of ease of implementation and good convergence properties. It should be 

remembered that it is important to resolve the nonlinearities at each time step due to the 

undesirable effect that any inconsistent approximation used can reduce the order of 

accuracy of the overall time discretization scheme. The following discussion will detail 

about the Picard and Newton iterative procedure that are used to solve the nonlinearities 

to obtain the converged solution. 
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II.4.1 Picard iterations 

Picard iteration also known as the fixed point iteration (FPI) method is a viable, easy 

method to implement but it is not very effective to iterate at every time step to converge 

the nonlinearities in order restore the convergence order.  Such a solution procedure will 

have a high CPU cost and therefore, may take longer in computation time. Hence, few 

modifications might be needed on top of the θ time discretization scheme and Picard 

iterations to make it a potential candidate among other numerical scheme for reactor 

analysis. 

In solving differential equations, Picard iteration is a constructive procedure for 

establishing the existence of a solution to a differential equation y’= f(t,y) that passes 

through the fixed point (to, yo). The method of successive approximations used in Picard 

iterations uses the equivalent integral equation for Equation (2.1) and an iterative method 

for constructing approximations to the solution. 

The solution to the IVP in Equation (2.1) is found by constructing recursively a 

sequence of functions as follows. 

1

1

1( ) ,    ( ) ( , ( ))
n

n

t

l l

o n o n

t

y t y and y t y f s y s ds
+

+
+= = + ∫  (2.17) 

Then the solution to Equation (2.1) is given by the limit 

1 1( ) lim ( )CV l

n n
l

y t y t+ +
→∞

=  (2.18) 

This is one of the simplest numerical techniques to implement and that explains the 

reason why fixed point iterations can be used in the current nonlinearly inconsistent 

coupling schemes. Also, acceleration schemes could be used to improve the convergence 

rate of the nonlinear iteration. A brief discussion on this is provided below. 

II.4.2 Newton methods 

The family of Newton-like methods is another appropriate choice for solving 

nonlinear problems. Unlike other methods, the Newton methods require the computation 

of the Jacobian matrix for the nonlinear system, which can be very expensive if 

calculated numerically. Unless the problem under consideration is simple enough, 

analytical Jacobians cannot be explicitly found and hence pose a severe problem. To 

circumvent this overhead, a modified Newton iteration called the Inexact Newton can be 
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utilized where the calculation of the Jacobi can be done only once in several m steps, if 

the variation of the Jacobian with respect to solution field is weak.  

One point iterations are those schemes where the solution yi+1 is related to yi in some 

way but independent of i itself. An important example of a one-point iteration is 

Newton's iterative method. For an IVP of the form Equation (2.l), a suitable time 

discretization can be applied first and then the resulting equation can be solved to get the 

solution at the end of the time step by Newton’s method.  

Newton's method is a generalized process to find an accurate root of a system of 

equations f(x)=0. Suppose that f is a C2 function on a given interval, then using Taylor's 

expansion near x,  

2( ) ( ) '( ) ( )f y y f y yf y O yδ δ δ+ = + +  (2.19) 

Now if we stop at first order then we obtain,  

( )
( ) 0 ( ) '( )

'( )

f y
f y y f y yf y y

f y
δ δ δ+ = ≈ + → = −  (2.20) 

or more generally 

             1

1l l
y y J f

−

+ = −  (2.21) 

where J is the Jacobian of f. 

Equation (2.21) is the recursive form of Newton’s iterative formula which can be to 

find the complete solution of the IVP. Also, it should be noted that the Newton’s iterative 

scheme is quadratically convergent. 

The Picard iteration procedure offers the advantage of being easy to implement and 

has a cheap computational cost per iteration but it has been known to fail or converge 

slowly. The Newton’s method on the other hand, is more expensive computationally but 

its higher convergence rate makes it an attractive alternative for strong nonlinear 

problems. 

Now, we will review the different time discretization schemes and methods that can 

be used to obtain the solution fields for the coupled, multi-physics transient problem. 

II.5 Time discretization strategies 

There are two types of discretization strategies that were tried out in the current 

research. They are given as: 
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1) Constant step – In this strategy, the time step sizes are maintained constant 

and do not change dynamically as the transient calculation proceeds. 

2) Adaptive step – In this strategy, the time step is predicted and controlled to 

yield solution within user specified tolerance. This methodology maximizes 

the performance of the time integration scheme by using larger time steps 

when allowed and reduce it when sudden discontinuities occur in the system. 

The details on these strategies are given below. 

II.5.1 Constant time-stepping strategy 

As briefly described before, the constant step strategy is straightforward and makes 

use of a constant time step to solve problems of type Equation (2.1). The advantage of 

using such a simple procedure is that it allows us to understand the intricacies involved in 

implementing a numerical scheme for a given problem since the effort needed is lesser 

compared to an adaptive stepping strategy. 

In the current research, only the θ discretization scheme has been implemented using 

both the Picard and Newton iterative solvers for converging the nonlinearities in each 

physics. We will also propose modifications to the classic C.N scheme which will 

improve the order of convergence of the scheme without the expensive iterative 

procedure at every time step. 

The order of a scheme in this strategy can be measured by computing a reference 

solution first using a very fine step size and then computing solutions with larger step 

sizes. Then the global error in the solution can be expressed as 

 ( ) || ( ) ||T p

ref hE h y y T Ch= − =  (2.22) 

Equation (2.22) can then be used to obtain the order of the scheme p and matched 

with the theoretical accuracy to find if the scheme is nonlinearly consistent for the 

problem at hand. 

II.5.2  Adaptive time-stepping strategy 

Adaptive time discretization is essential when constant time step methods cannot 

capture the irregular variations in the solution. For most stiff problems, as benchmarked 

by several researchers like Butcher and Hairer, an adaptive method would provide 

significant improvement on the number of steps for a given accuracy of the solution. 
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The adaptive algorithm basically consists of primarily two steps. 

1) Error estimation procedure 

2) A time step selection strategy based on the error estimate 

A brief overview of each of the steps is given below. 

II.5.2.1 Error determination procedure 

Typically, two different error determination strategies based on the error estimation 

principle are commonly used. The details of these strategies are given below. 

II.5.2.1.1 Time step doubling method 

This is a straightforward method and is usually effective when the number of function 

evaluations needed for a numerical scheme is low. Another advantage of this method is 

that the implementation requires the use of only one numerical method of a fixed order 

rather than 2 schemes of different orders as in the case of embedded scheme. 

The idea is that a solution is calculated using a step size 2h and then again using 2 

half steps of size h. The difference between the calculated solution values gives a 

measure of the local truncation error in the solution. The equations representing the error 

for a method of order p can be derived easily as follows.  

1

1  : ( )h h p p

n n
Step size h y y Ch O h

+

+ = + +  

1 1

2 1  : ( ) 2 ( )h h p p h p p

n n n
Step size h y y Ch O h y Ch O h

+ +

+ += + + = + +  

2 1

2  2 : (2 ) ((2 ) )h h p p

n n
Step size h y y C h O h

+

+ = + +  

Then, the local error estimate can be given as 

 
2

12 2  ( )
(2 1)

h h
p pn n

p

y y
Local Error Ch O hε ++ +−

= = +
−

 (2.23) 

II.5.2.1.2 Embedded methods 

This method has been used for a variety of problems in adaptive time stepping 

strategy and relies on using two schemes with different orders of accuracy to find the 

local truncation error. For example let us consider two schemes with orders p and p+1 

and let us denote the exact solution as y(tn+1). 

1 1

1 1 1 : ( ) ( )p p

n n
Lower Order y t y C h O h

+

+ += + +  
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2 1 2

1 1 2 : ( ) ( )p p

n n
Higher Order y t y C h O h

+ +

+ += + +  

Then the local error can be measured as 

 2 1 1

1 1  ( )p

n n
Local Error y y O hε +

+ += − =  (2.24) 

Once the local truncation error from either A or B method is measured, the next 

procedure would be to modify the time-step accordingly. 

II.5.2.2 Time-step control strategy 

Several step control procedures have been devised for nonlinear dynamical systems 

by researchers K. Gustafsson[11, 12], H. Watts[13] and G. Soderlind[14]. In the current 

research, the ideas proposed by Gustafsson have been taken as the basis to implement the 

step control procedures. Now some of the different options available in this procedure are 

shown and discussed below. 

II.5.2.2.1 Standard step size controller 

 

1

1

1

p

n n
h Sh

τ

ε

+

+

 
=   

 
 (2.25) 

Where   p is global order of the method, 

 ε  is the estimated local truncation error, 

 τ  is the user specified tolerance, 

 S  is a safety factorτ . 

II.5.2.2.2 PI step size controller 

The above standard controller does not resolve the instabilities. To overcome this, 

Gustafsson and Soderlind devised a new step size controller based on the Proportional-

Integral (PI) control. The controller is given as 

 1

1

I Pk k

n

n n

n n

h Sh
ετ

ε ε
−

+

   
=       

   
 (2.26) 

where the method specific parameters with typical values given by 
0.3

I

e

k
p

=  and 

0.4
I

e

k
p

= and pe is the local order of the method (i.e., pe=p+1). 
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II.5.2.3 Measuring order of accuracy 

Unlike the constant stepping strategy, the measurement of the order of accuracy for 

the adaptive stepping strategy is not as simple since the step sizes are all different. But 

since the step sizes are controlled based on the local truncation error, it provides us a way 

to relate the order of the method with the total CPU time needed to obtain the solution at 

time T. Assuming that each step requires about the same amount of calculation effort to 

compute the solution, we can then relate from the above standard step control mechanism 

that 

 

1

1 ep

Steps
τ

 
∝  
 

 (2.27) 

Hence, a plot of -log(τ ) (Y axis) and log(Steps) (X axis) will give a slope of pe. This 

procedure will be used to obtain the convergence order results for both the time-doubled 

and the embedded schemes in this research.  

II.5.3 Implications of the choice of integration method 

When a numerical solution to the general nonlinear problem is found, the step size 

will be chosen based on the modes that currently dominate the error estimates. Fast 

modes that have converged during the main transient period will move toward the 

asymptotic region and the contribution of the fast mode during longer periods will be 

negligible. Should such a mode be excited and become active again, the step size has to 

be decreased substantially in order to resolve the new transient. 

It is important that the integration method does not erroneously excite the modes that 

have converged. This makes the behavior of R(z) as z → −∞ of great importance. 

Although |R(z)| < 1 is enough for stability, this requirement is not entirely sufficient for 

good performance. The value of R(z) governs how much of a specific mode is propagated 

from step to step, and ( ) 0R z →  as z → −∞  (a property shared by all L-stable methods). 

If this is not the case, errors in the fast modes will propagate from step to step, and if 

|R(z)| gets close to 1, the errors may accumulate and eventually become large enough to 

cause a step rejection. It then takes a drastic step size decrease in order to continue the 

integration. The fast mode must be returned to the asymptotic region, i.e., where the local 

error is small enough, and control authority is regained. This behavior has been observed 
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in practical codes and has been referred to as the “Hump phenomenon” in Hairer and 

Wanner (1991, p. 113). 

Even when using stiffly accurate integration methods there may be error contributions 

from modes in the non-asymptotic region. This may be experienced as the true value of 

the order is different from the one expected. If the experienced variation is moderate, it 

may be modeled as changes in p although such a scheme has not been implemented in 

this research and is outside the scope of the document. 

Next, we will review some basic theory behind time discretization schemes used in 

combination with the adaptive time step control strategy to obtain the solution field with 

user desired accuracy. All methods chosen are nonlinearly consistent schemes and hence 

should perform well for stiff systems. 

II.6 Time discretization schemes 

 There are not many families of numerical schemes available for solving stiff 

problems efficiently and consistently. Some of the popular methods that can be used are 

the θ-discretization and Runge-Kutta family of methods. It is important to note that the 

conventional operator-split codes use θ-discretization to obtain the transient solution 

along with the constant time stepping strategy. Hence, we will follow the same path and 

try to improve the convergence of the conventional scheme by introducing better 

approximations in the scheme. For the adaptive time stepping strategy, the higher order 

variants of the RK scheme with good stability properties will be used. We shall now 

discuss each of the different methods in detail. 

II.6.1  Theta discretization scheme 

The theta method is a variable parameter (θ) time integration scheme, which permits 

the resulting difference equations to range from fully explicit to fully implicit. For a 

given value of the variable parameter θ, the solution of the time-dependent equations of 

the form given in Equation (2.1) reduces to a sequence of local problems in which the 

fixed term is composed of quantities computed from the solution of the previous time 

point. In each local problem, the unknown solution field is computed using a 
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conventional nonlinear iteration procedure with possibly an acceleration scheme applied 

on top of it.  

Now discretizing Equation (2.1) with a θ–scheme gives 

1
1   ( ) (1 ) ( )n n

n n

y y
f y f y

t
θ θ+

+

−
= + −

∆
 (2.28) 

where a backward difference approximation 1n n
y ydy

dt t

+ −
=

∆
 has been applied and 

1n n
t t t

+∆ = − .  

Equation (2.28) can be expressed in an alternate form, where the solution field at 

t=t
n+1 is expressed in terms of the solution field at t=t

n.  

1

1 1(  ( )) ( (1 ) ( ))l l

n n n n
I tG y y I tF y yθ θ+

+ +− ∆ = + − ∆  (2.29) 

Where F(yn+1) is expressed as 1

1 1( )l l

n n
G y y

+

+ +  where l is the nonlinear iteration index 

Equation (2.29) can also be expressed more concisely in the form, 1

1n n
y A By

−

+ = .  

Note that when θ=0, the θ–scheme gives the first order explicit Euler or the Forward 

Euler scheme. Since this scheme is explicit, we will not use this for the stiff coupled 

problem due to restrictive stability reasons. 

When θ=1, the θ–scheme represents the first order implicit Euler or Backward Euler 

scheme. From Equation (2.29), it can be seen that the implicit Euler then is of the 

form 1 1n ny A Iy+ −= . Since this scheme is both A and L stable, it is stiffly accurate and can 

yield an exact estimation of the solution. The only drawback is that this scheme is only 

first order globally O(h) and hence requires smaller steps to reach a desired accuracy.  

 Now when θ=1/2, the θ–scheme represents the implicit second order Crank-Nicolson 

scheme. It is important to note that the CN scheme is O(h2) which makes it a very 

attractive candidate for the purpose of creating higher order accurate, stable numerical 

schemes for coupled systems. Even though the CN scheme is A-stable, it is not L-stable 

and hence when the step sizes become larger, we can observe oscillations in the solutions 

that will be damped out very slowly. This region should be monitored and carefully 

avoided in order to obtain meaningful solution fields. 

In general, the order of accuracy of the θ discretization scheme can be expressed as 

O(h2) when θ=2 and O(h) otherwise. This is one of the simplest time discretization 
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schemes that are popular due to the fact that there is only one parameter involved in the 

definition of the scheme which controls the stability of the resulting scheme and the order 

of accuracy. Thus for θ≥1/2, we obtain stable implicit schemes which are easy to 

implement, with a few modification if necessary to find the solution. 

II.6.2 Runge-Kutta family of methods 

Runge(1895) and Kutta(1901) formulated the general scheme of methods which is 

now called as the Runge-Kutta method. The general definition of a RK scheme can be 

represented as follows. 

Definition 

A Runge-Kutta (RK) method with s stages is defined by 

1 1 ,

1

  ( , )
s

i n j n i j j

j

k f t hc y h a k− −
=

= + + ∑ , i = 1,2 …s 

 -1

1

s

n n j j

j

y y h b k
=

= + ∑  (2.30) 

In this general formula, ki represents the internal stage values and yn is the update at 

the nth step which is the numerical approximation to y(t) at t=tn. h denotes the step-size 

and the coefficients ai,j, bj, cj are constants which can be constructed to yield the desired 

approximation to the solution. 

Now if ai,j = 0 for j≥i, then the Runge-Kutta method is fully explicit (ERK). And if ai,j 

= 0 for j>i, then the method is called Diagonally Implicit RK (DIRK). Else the method is 

fully implicit (IRK). 

A simpler representation of the s stage RK method with the coefficients listed in the 

tableau was first introduced by Butcher. 

Butcher Tableau – General formulation 
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A RK method of order p can be compared to the actual Taylor series expansion, to 

derive the order conditions. For higher order methods, it gives the user great flexibility in 

deriving a scheme with optimal order and stability properties to fit the needs of the 

problem. This plasticity of the method and the ease of adjusting the coefficients to obtain 

embedded formulas make them attractive to the adaptive time-stepping problem at hand. 

Also, the implication of all this is that the coefficients can be adjusted for the embedded 

formulas to satisfy the following goals: 

1) Assured accuracy 

2) Minimal CPU time by using lesser stages and via adaptively using larger steps 

when necessary 

We shall discuss several higher order RK schemes and explain briefly on the 

accuracy and stability of the embedded schemes. 

II.6.2.1 Explicit RK schemes (ERK) 

Explicit methods are easy to implement and have cheap computational cost because 

the internal stages depend only on previous stages and hence require no nonlinear 

iterative procedure or matrix inversions. But since they have poor stability properties and 

are unable to resolve very fast changing modes (explicit schemes are not suitable for stiff 

equations). To solve this problem and to utilize the advantages of these one step schemes, 

modifications to the existing ERK schemes as shown by Eriksson et al., [4] can be made to 

extend the stability region to resolve the modes smoothly.  

One common procedure usually used to accomplish this is sub-stepping where a 

given step found adaptively can be divided into several smaller steps. This is in a way the 

same as using a smaller time-step although we do not explicitly store the solution fields at 

the intermediate stages. Another procedure that can be used to extend the stability region 

of a scheme for stiff problems is to introduce an additional damping term to resolve the 

fast modes (dominant eigenvalue). 

Based on these conclusions it seems feasible to efficiently use an explicit method, if it 

is adaptively stabilized with a relatively low number of small time steps, so that we gain 

the desired combination of a low cost per time step and with the possibility of using large 

time steps beyond rapidly changing transients. 
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In order to test the suitability of the explicit methods for the nonlinear, stiff nuclear 

reactor analysis problems, two classical Explicit RK (ERK) schemes ERK3, ERK4 of 

global order 3 and 4 respectively were chosen. These methods could be used with both 

the step-doubled and embedded strategies to adaptively control the time-steps used. More 

analysis on the usability of these schemes will be discussed in Chapter V. 

The RK coefficients for the explicit schemes are shown below. 

Explicit RK – Order 3 

0

1 1

2 2

1 1 2

1 2 1

6 3 6

−
 (2.31) 

Explicit RK – Order 4 

0

1 1

2 2

1 1
0

2 2

1 0 0 1

1 1 1 1

6 3 3 6

 (2.32) 

These schemes are very simple in nature and are inferior in terms of stability to the 

more established RK-Fehlberg (RKF) and Dormand-Prince (DOPRI) higher order 

schemes. Also, since the above methods are not truly embedded, the cost of evaluation in 

an adaptive time stepping scheme will be slightly higher than DOPRI. But, in the current 

research, the idea is to find out a strategy to adapt the above schemes to stably find 

accurate solutions which directly implies the usability of the other specialized RK 

schemes. 

II.6.2.2 Rosenbrock-Wanner (ROW) methods 

The main idea behind the family of Rosenbrock-Wanner methods is to linearize 

Equation (2.30) to obtain a new set of equations of the form 
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1
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= +∑   

Where αi,j, βi,j, bj are the method specific coefficients and J= 

1ny

f

y
−

∂

∂
is the Jacobian of 

f evaluated at the moment n-1. 

This can be interpreted as the application of one Newton iteration to each stage in 

Equation (2.30) with starting values k
(0)

i =0. Instead of continuing the iterations until 

convergence, we consider Equation (2.33) as a new class of methods whose stability 

properties have been analyzed and documented by Hairer and Wanner. 

The advantage of this method is obvious since the unknown ki can be found in one 

step by inverting the matrix I – hγi,iJ. Now if we find coefficients such that γi,i=γ, we can 

obtain a special class of methods called the Singly Diagonally Implicit RK scheme 

(SDIRK) which requires for instance only one LU-decomposition of the matrix per time 

step. 

For solving nuclear reactor transient problems, we have specifically chosen the 

Generalized A-stable RK methods of order four introduced by Kaps and Rentrop[15]. Now 

based on the order conditions, two different γ were chosen to obtain different stability 

properties while minimizing the local truncation errors. These generalized RK schemes 

are called the GRK4A and GRK4T schemes. 

The GRK4A scheme is A-stable but not L-stable but the GRK4T scheme is both A 

and L stable. Hence these schemes are expected to perform well for stiff problems if a 

suitable adaptive time stepping control procedure is chosen. The different coefficients for 

the above schemes which can be used to obtain the solution with a global accuracy of 

O(h4) are given below. 

The coefficients for the schemes given below can be used to calculate the 3rd order 

and 4th order accurate solution which can be used to estimate the local error. Since the 

scheme is embedded, the higher order solution evaluation does not involve any extra 
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function evaluation. Once Equation (2.33) is used to find the stage function values, the 

solution can be calculated as 

4

-1

1

n n j j

j

y y b k
=

= +∑  

And the local error using 

4
' 5

1

( ) ( )
n j j j

j

e b b k O h
=

= − +∑  

The coefficients for the GRK4A scheme are listed below. 

γ=0.395,   γ21=-0.767672395484,  

γ31=-0.851675323742, γ32=0.522967289188 

γ41=0.288463109545,  γ42=0.0880214273381, γ43=-0.337389840627 

α21=-0.438,  

α31=0.796920457938,  α32=0.0730795420615, 

b1=0.199293275701,         b2=0.482645235474, (2.34) 

b3=0.0680614886256, b4=0.25, 

b’1=0.346325833758, b’2=0.285693175712,   b’3=0.367980990530  

These coefficients yield a local truncation error ε ≤ 1.08/4! 

The coefficients for the GRK4T scheme are listed below. 

γ=0.231,   γ21=-0.270629667752,  

γ31=-0.3112844/3294,  γ32=0.00852445628482, 

γ41=0.282816832044,  γ42=-0.457959483281, γ43=-0.111208333333, 

α21=0.462,  

α31=-0.0815668168327,    α32=0.961775150166, (2.35) 

b1=0.217487371653,  b2=0.48622903799, 

b3=0.0,   b4=0.296283590357, 

b’1=-0.717088504499, b’2=1.77617912176,  b’3=-0.0590906172617 

These coefficients yield a local truncation error ε ≤ 0.461/4! 

An adaptive control strategy based on the local truncation error found out using these 

embedded schemes can then be used to solve the stiff coupled system. Although these 

schemes are stable, a curious phenomenon called the “Hump” occurs while calculating 
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the solution fields where the step sizes drop by a factor of 10-3 which further leads to 

huge number of step rejection. This phenomenon observed by Hairer can be overcome by 

imposing drastic step reductions when consecutive step rejections are encountered. The 

results obtained by this procedure have been discussed in Chapter V. 

II.6.2.3 Singly Diagonally Implicit RK (SDIRK) 

The SDIRK methods are a special class of DIRK methods where the order conditions 

and coefficients are calculated so as to obtain γi,i=γ, the free parameter. This leads to a 

simplified form of the DIRK method which requires the inversion of a single matrix       

(I – hγJ) per time step. 

In search of a higher order embedded IRK scheme, we have chosen the SDIRK(3,4) 

scheme proposed by Hairer (p.100) which is both A and L stable with an additional 

property of being stiffly stable. The coefficients for this scheme are shown below in the 

form of a Butcher tableau. 

This implicit scheme is of high order accuracy and is also a stiffly accurate. Hence, 

they provide another attractive alternate to finding the solutions for stiff, nonlinear 

systems. The local error for the scheme is then given as 
5
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 (2.36) 
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The actual nonlinear system to solve per time step can simply be written as 

 
5

1 ,

1

( , )
i n i n i j j

j

k f t hc y h a k−
=

= + + ∑ , i = 1…5 

Using the notation k := (k1; k2; : : : ; ks)
T, we can formulate the nonlinear system of 

equations as an s-dimensional fixed-point equations 

 k = F(k), 1 ,

1

( )  ( , )
s

i n i n i j j

j

F k f t hc y h a k−
=

= + + ∑  (2.37) 

It seems reasonable to assume that Picard iterations can be used to converge the 

nonlinearities and to obtain the accurate stage solution fields. But it has been known that 

sometimes fixed point iterations destroy the stability properties of the IRK schemes. 

Instead, Newton’s method is usually employed to resolve the nonlinearities in the SDIRK 

schemes. Using the simplified Newton’s procedure described by Hairer (Stiff ODE : 

Chapter IV.8), the solution reliability and accuracy can be improved drastically. The cost 

of computation in such a procedure/iteration/step is usually s function evaluations. Also, 

suggestions to improve the step estimation procedure by replacing the traditional local 

error term εn by a more stable estimate in the form of (I – hγJ)-1
εn where the term (I – 

hγJ)-1 acts as a filter to damp out the stiff parts. This additional error estimation does not 

cost much except for a linear solve since the LU decomposition of the matrix has already 

been calculated for the step. 

Based on the stability properties and the high global accuracy orders associated with 

this method, it is predicted that this scheme will perform well for the nonlinear, stiff 

nuclear transient problem. 

II.6.2.4 RADAU IIA 

Implicit RK schemes are stable schemes which contain a full coefficient matrix 

typically requiring more computational effort to solve the nonlinearities at each time step. 

Since the cost associated with such a procedure is very high when function evaluations 

are complex, the need to use efficient Newton procedures and step control strategies to 

resolve the problem is important. 

Butcher (1964) introduced the RK schemes based on RADAU quadrature formulas. 

He called them processes of type I, II or III based on certain order conditions being 
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satisfied by the coefficients. Several other researchers including Axelsson (1969) worked 

on producing schemes with strong stability properties. 

The RADAU scheme of type IIA is both A, L-stable. It has been theoretically proved 

that the s-stage RADAU-IIA scheme is of order 2s-1 with the stability function given by 

the (s-1, s) Pade’ approximation. 

We are interested in the embedded scheme of RADAUIIA or simply RADAU5 which 

contains 3 stages of computation per time step and is globally O(h5) accurate. The actual 

coefficients of this scheme are provided below in a Butcher tableau which is based on the 

code that was successfully implemented and tested by Hairer for several stiff problems.  

4 - 6 88- 7 6 296 -169 6 -2 3 6
                     

10 360 1800 225

4 6 296 169 6 88 7 6 -2 - 3 6
                     

10 1800 360 225

16 - 6 16 6 1
    1                                      

36 36 9

16 - 6 16 6
                        

36 36

+

+ + +

+

+ 1
             

9

 (2.38) 

Most of the questions regarding the correct implementation of the simplified Newton 

solver, the starting values and the stopping criteria for the iterations and the selection of 

step sizes have been discussed by Hairer (Stiff ODE - Chapter IV.8). Apart from the 

implementation details, he also points out some interesting conclusions on the RADAU5 

adaptive scheme. Some of those that are relevant to this research are mentioned below. 

RADAU5 is a good stiff integration and had very good stability properties. Since it is 

L-stable, the stability domain also covers the imaginary axis. This means that high 

oscillations in the solution may be damped by the numerical method. It is also interesting 

to note that the local error of RADAU5 schemes behaves as O(h6) globally for h≤є and 

for large h which means that for coarse tolerances, the scheme converges faster than the 

theoretical order of convergence. Also, the improvement in the estimation of the error 

based on the idea shown in the SDIRK scheme can lead to significantly precise solution 

fields which are always accurate to the user specified tolerance. 
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All of the properties mentioned for the GRK, SDIRK and RADAU5 schemes do seem 

attractive from the perspective of higher orders of accuracy and better stability properties. 

Also based on previous usage of these schemes to solve nonlinear stiff problems like the 

Van der Pol equation, the performance in comparison to any of the conventional schemes 

should be multi-fold. A detailed analysis of the gain will be discussed when the solution 

from the simulation to the coupled problem is shown in results section.  

II.7 Overcoming drawbacks in current schemes 

The current nonlinearly inconsistent coupling schemes have several disadvantages 

that have been discussed before. The aim of this research is to devise methods that are 

robust, stable and accurate along with the flexibility to reuse existing mono-physics 

legacy codes as much as possible to create a nonlinearly consistent (NC) coupling 

strategy. 

There are several strategies that can be used to obtain a consistent coupling. Some of 

those strategies are described below. 

II.7.1 Solution prediction 

A solution prediction is an idea derived from extrapolation. Instead of solving for an 

unknown quantity by iterative methods, it obviously makes sense to extrapolate the 

solution based on the history of solution and use the particular value as the starting point. 

In our current research, we will introduce 2 predictions; one with a 2nd order accuracy 

using Taylor series approximation and another with a 3rd order accuracy using step-

doubling strategy to improve the convergence order of the conventional schemes. These 

procedures however bear an assumption that the transient solution is smooth and the first, 

second derivatives are constant over a reasonably small time step. Now let us discuss 

each of these methods in detail. 

II.7.1.1 Second order prediction 

As mentioned before, the notion behind the solution prediction procedure is to 

approximate the solution value at t+h based on the history of the solution. Hence for a 

nonlinear problem of the form given in Equation (2.1), the Taylor series expansion for the 

nonlinear term N yields 

2( ) ( ) '( ) ( )y t h y t hy t O h+ = + +  
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This equation can then be simplified by applying BDF, to get 

2( ) ( ) ( ( ) ( )) ( )y t h y t y t y t h O h+ = + − − +  

2( ) 2 ( ) ( ) ( )py t h y t y t h O h+ = − − +  (2.39) 

We can see that with the prediction of the solution by extrapolation and by using it as 

the starting value, the order that is lost by not converging the nonlinearities in the 

conventional scheme by iteration can be restored. Hence, we can have a modified fixed 

point scheme which resembles PEC (Predict-Evaluate-Correct) schemes that require only 

one iteration with the nonlinear function resolved using the predicted value. 

The primary advantage of such a modification is that, for just 1 corrector iteration 

after a prediction, we gain an extra order without the drawback of having to resolve the 

nonlinearities iteratively. This proposed scheme in the current research for constant step 

strategy to find the solutions for multi-physics problems has been tested for transient 

reactor accidents. 

It should be obvious by now that this idea is an extension from multistep methods and 

more terms can be used to get prediction values of higher order and can be corrected to 

get overall higher orders of accuracy. But before considering the gain in the accuracy, it 

is also imperative to find the effect of such an approximation on the stability of the 

scheme being used. 

Due to the explicit linearization of the nonlinear term, this procedure will yield only 

conditional stability (
2

| |
max

h
λ

< ) which can severely restrict the usage of larger time 

steps for stiff problems. 

II.7.1.2 Third order prediction 

There is also a variant to the prediction scheme that can be used to obtain higher order 

of global accuracy O(h3) than the previously described local explicit extrapolation. This 

idea is based on the Time-doubling strategy previously discussed for the adaptive time 

stepping scheme. Here the solution at a particular time-step is calculated with 2 different 

step sizes : h and 2h with the 2nd order solution prediction applied at every step. The local 

error is then calculated and the solution is corrected accordingly[16] to yield the desired 

global cubic convergence. 
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For illustrative purposes, let us consider the second order accurate CN scheme over 

which the 3rd order prediction procedure is performed. Now, since this procedure is 

exactly the same as the step-doubling strategy in adaptive time stepping, we could use the 

estimate of the local error derived and shown in Equation (2.23). Then, based on that, the 

local error is given as  

 
2

3 42 2 ( )
6

h h

n n
y y

Ch O h+ +−
∆ = = +  (2.40) 

Where the value C remains approximately constant over the time step and the 

magnitude of which calculated using the actual Taylor series expansion gives the 

magnitude as y(3)(x)/3!. Now expanding Equation (2.38) using the value for C, we then 

get  

 , 3 4 4

2 2 2

''( )
( ) ( )

6

h c h h

n n n

f x
y y h O h y O h+ + += + + = + ∆ +  (2.41) 

It can be seen that the corrected solution is locally O(h4) and hence converges 

globally as O(h3). This procedure although simple does increase the CPU cost by 50% 

since we do achieve the accuracy of the smaller time step even without the 2h step size 

calculation. But again, similar to the second order prediction method, such a procedure 

only leads to conditional stability in the scheme. 

II.7.2.1 Picard iterations 

Fixed point or Picard iterations as mentioned before are nonlinear iterative schemes 

which can be used to converge the nonlinearities over the different physics when an 

operator split technique is used to couple multi-physics. Picard iterations can restore the 

convergence order of a higher order scheme and eliminates the loss of accuracy due to 

the crude explicit approximation N(yn+1)=N(yn); 

There are several disadvantages of using such a strategy to restore the accuracy which 

include the increase in computational and memory usage in the existing codes. But it is 

essential to stress that the stability of the higher order discretization scheme can be 

maintained using this procedure unlike the explicit linearization method where the 

solution is only conditionally stable. 
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II.7.2.2 Accelerated Picard iterations 

There are several acceleration techniques available to improve the speed of 

convergence of an iterative procedure. It should be remembered that the order of 

convergence does not change when acceleration techniques are used for a particular 

iterative scheme but the number of iterations to reach final convergence can be reduced 

significantly. 

For the numerical schemes and methods discussed in the preceding sections, a 

technique called the Aitken’s ∆2 process satisfies all the criteria. The Aitken’s method 

can be used to speed up convergence for any sequence that is linearly convergent. In 

order to proceed, we define the Aitken’s method. 

Given the sequence
0

{ }
n n

p
∞

=
, we define the forward difference formula as ∆pn = pn+1 – 

pn for n=1,2,3…Higher powers  ∆k pn are defined recursively by ∆k
 pn = ∆k-1 (∆ pn) for k 

≥2. When k=2 we have the useful formula  2
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n n n n n n

p p p p p p+ + +∆ = ∆ ∆ = − − −   

which simplifies to 2

2 12      2,  3,  ...
n n n n

p p p p for n+ +∆ = − + =   

Now assume that the sequence
0

{ }
n n

p
∞

=
 converges linearly to the limit p and 

that pn≠p for all n ≥ 0.  If there exists a real number A with |A| < 1 such that 

1lim n

n
n

p p
A

p p

+

→∞

−
=

−
 (2.42) 

then the sequence 
0

{ }
n n

q
∞

=
 defined by 

2 2

1

2

2 1

( ) ( )

( 2 )
n n n

n n n

n n n n

p p p
q p p

p p p p

+

+ +

∆ −
= − = −

∆ − +
 (2.43) 

converges to p faster than
0

{ }
n n

p
∞

=
,  in the sense that 

lim 0n

n
n

p q

p p→∞

−
=

−
  

II.7.2.2.1 Steffensen's acceleration 

When Aitken's process is combined with the fixed point iteration, the result is called 

Steffensen's acceleration[17].  Starting with p0, two steps of fixed point method are used to 

compute p1 and p2. Then Aitken's  ∆2 process is used to compute the accelerated value, qo.  
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2

0
0 0 2

0

( )p
q p

p

∆
= −

∆
 (2.44) 

Once qo is calculated, po = qo and the whole process is repeated again. This method is 

effective and is specific to Picard iterations. 

II.7.3 Implicit solution of the monolithic block 

Current operator-split strategies offer flexibility in the way the different physics are 

solved but involve complexities in terms of resolving the nonlinearities and finding a 

consistent solution. Instead, the coupled problem can be tackled as a whole using higher 

order implicit RK schemes which require the calculation of the Jacobian matrix. 

Jacobian matrix calculations can be expensive for higher dimensional problems and 

alternatives using Jacobian-free methods can be used in such cases. But in a simpler 

nonlinear problem, like in the case of a 0-D model in reactor analysis, the solution fields 

can be found out by solving the system of equations implicitly, eliminating the loss of 

convergence orders in the coupling strategy thereby creating a NCC strategy. 

II.7.4 Summary 

Summarizing the above discussion, current schemes perform a crude approximation 

for the nonlinear term and hence the solution is only first order accurate in time. Now, by 

including explicit solution prediction in the conventional staggered schemes, the lost 

order can be gained and we can create more accurate coupling at no extra cost. The only 

change is to modify the interface between the coupling blocks and perform the 

appropriate extrapolation to get the predicted values. 

Apart from this strategy, we can also aim to use Picard iterations with and without 

acceleration where the nonlinearities are completely converged at each time step. The 

Aitken ∆2 process is very efficient and requires storing only 2 preceding solution vectors, 

which is trivial, given the configuration of current computers. In the results, we will 

discuss the performance gain of such acceleration and the amount of CPU time saved 

with such a procedure. 

The advantages of using an adaptive time-stepping strategy provides better estimation 

of the solution accuracy and results in resolving the transient modes efficiently i.e., using 

small time steps during rapid transients and larger time step during slow transient period. 
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Also, the usage of higher order RK schemes detailed above provide several benefits over 

the classical θ-discretization scheme with a NCC strategy with respect to stability and 

stiff integration properties. Such specialized methods with a good step control method (PI) 

could lead to stable, consistent and highly accurate coupling solution procedures. 

Given the mathematical introduction to the various schemes that are to be used in 

multi-physics problems, especially in transient reactor analysis scenarios, let us delve into 

the physics and see how deeply the different physics in nuclear reactor analysis are 

coupled. 
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CHAPTER III 

NUCLEAR SYSTEM – A COUPLED 

MULTI-PHYSICS PROBLEM 

Nuclear systems are complex, stiff, nonlinear systems, which require stable numerical 

schemes to obtain high fidelity solution fields. The primary source of power production 

in a nuclear reactor is by means of the fission reaction that occurs in the fuel rods present 

in the core. But in order to determine the set of parameters, which will yield a safe, 

reliable, and economical reactor operation, it is vital to analyze the nuclear systems as a 

whole. The nuclear analysis of the core cannot be performed in an independent manner 

but rather it must interact strongly with other aspects of the core design. In reactor design, 

the core should be designed in such a way that it does not break any of the safety 

temperature limits on core components that might lead to failure and release of dangerous 

material into the coolant. 

In this section, an overview of the interaction between different physics in nuclear 

reactor analysis is discussed in brief which is important to solve the reactor transient 

problems effectively. 

III.1 Physics in nuclear systems 

Nuclear systems can be broadly subdivided into 3 different physics that interact 

strongly with one another. They are  

1) Neutron physics or ‘Neutronics’ 

2) Thermal-Hydraulic physics 

3) Heat-Conduction physics 

Let us now discuss each of the physics and analyze the interaction between each of them 

along with the effect it has in making accurate calculations. 

III.2 Neutronics 

Neutronics is the branch of physics that deals with the calculation of neutron flux and 

neutron reaction rates in the different materials inside the core. It is very important to 
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determine the amount of fission reaction occurring in the fuel by means of which we can 

calculate the energy produced in the core. These reaction rates need to be calculated 

accurately in order to determine the power produced in a nuclear reactor and to calculate the 

temperature solution fields, which are strongly coupled to power. 

The fission reaction that is responsible for producing power in the core is related to the 

neutron flux and the fission cross-section of the fuel material. The relation is given as 

 . ( , ) ( , )fission f g

Vol g

R R r E r E dEdVφ= ∑∫ ∫  (3.1) 

  where ∑f  is the fission cross-section of the fuel, and 

          
g

φ is the neutron flux for the energy group g. 

The core is composed of hundreds of different materials and isotopes, each with 

different cross-sections. The cross-section of a material is hugely affected by the 

temperature of the material and also dependent on the energy of the incident neutron. 

Different reaction rates other than those responsible for fission reaction can act as 

parasites and inhibit the rate of fission reaction in the material. Some others might be lost 

due to leakage from the core. The neutron flux at a particular point for a specific energy 

group is then obtained by writing a balance equation considering of all these different 

reaction rates. 

The neutron balance equation or the ‘neutron continuity equation’ accurately 

describes the neutron flux in the phase-space reactor domain.  
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 (3.2) 

We can see that the neutron flux is dependent on the position in the core and the 

energy of the neutrons and varies with time; the angular dependence has been eliminated 

by integrating the neutron transport equation over all angles. Apart from the absorption, 

fission reaction rates and leakage rates that we talked about earlier, the neutron balance 

also includes the neutron scatter reaction, which essentially changes the energy group of 

the neutron inside the spatial domain of interest. 



 

 

45 

Finding a numerical solution to the neutron flux from Equation (3.2) is very difficult, 

especially when the domain is large and heterogeneous along with lot neutron energy and 

delayed groups. The neutron continuity equation is exact without any approximations, but 

contains an additional independent variable, the neutron current J, which is not simply 

related to the scalar flux. In order to solve for the neutron flux in Equation (3.2), we can 

close the system by making the diffusion approximation given by Fick’s Law  

( , ,  ) ( , ,  ) ( , ,  )J r E t D r E t r E tφ= − ∇  (3.3) 

If we substitute Equation (3.3) in Equation (3.2), we then get the time-dependent 

Multi Group Diffusion (MGD) equation. 
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For clarity, the diffusion equation can be expressed in operator notation. In practice, 

Equation (3.4) would be discretized and the operators are denoted as matrices that are 

dependent on the cross-section of the materials as a function of time. 

The above equation can then simply written as 

1
( )p d

d
F M S

v dt

φ
φ= − +  (3.5)  

where  - Fp is the prompt fission source ; 

  - Sd is the delayed neutron source; 

- M is the net removal of neutrons (operator Mφ ) via absorption and 

scattering plus net leakage of neutrons to other points in the reactor; 

The delayed neutron source results from the radioactive decay of the precursors. 

Assuming that there are K precursor groups, with respective decay constants λk , we can 

then write the delayed neutron source as 

 
1

( , , ) = ( ) ( , )
K

d dk k k

k

S r E t E C r tχ λ
=

∑  (3.6) 

where χdk is the delayed neutron emission spectrum (different from the prompt 

neutron emission spectrum χp). The precursor concentrations are given by the precursor 

depletion equations as 
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k k dk f
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C r t dE v r E t r E t

t
λ φ

∞
∂

= − + Σ
∂ ∫  (3.7) 

We note that the delayed neutron source is not completely independent of the scalar 

flux at a particular time. The precursor equations are therefore coupled to the diffusion 

equation, and must be solved simultaneously to obtain the solution field for power profile 

in the core. 

Even though the Multi Group Diffusion equation shown in (3.5) is easier to solve 

than Equation (3.2), it still can be complex to solve for multi-dimensional problems. 

Hence stable and accurate spatial and temporal discretization schemes need to be used to 

solve for flux and precursor fields. 

For a 0-D model, the above system of equations can be collapsed into a simpler 

system allowing us to solve for the power and the precursor concentrations. The theory 

behind the derivation of the final 0-D Point Reactor Kinetics Equations (PRKE) are 

available in many introductory nuclear reactor theory textbooks[18] and hence will not be 

shown here. However, it is important to understand the definitions of the kinetics 

parameters since the analytical solution to PRKE for a constant reactivity case is easy to 

derive, which could be used to benchmark the solution procedure in the multi-

dimensional cases, if all the assumptions of PRKE are met. 

III.2.1 Point Reactor Kinetics Equations (PRKE) 

The point kinetics equations can be derived in a very general fashion without making 

questionable assumptions such as the one speed diffusion approximation and a time 

independent spatial flux shape. This is done directly by collapsing the multi-group 

transport equation itself leading to a more formal definition of the kinetics parameters 

namely ,   andβ ρΛ . Hence provided that the general expressions are used for these 

parameters, the PRKE can be regarded as having a much broader domain of validity 

The formal definitions and the point kinetics equations are shown below. 
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Mean generation time
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Reactivity
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 Where *φ is the adjoint flux or more generally neutron importance weight function 

The final PRK equations can then be written as 

1

( ( ) ( )) 1
( ) ( )

( ) ( ) ( )

K
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k k

k

SdP t t
P t t

dt t t t
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λ ζ
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−
= + +

Λ Λ Λ
∑  (3.11) 

 ( ) ( ) ( )k
k k

d
t P t t

dt

ζ
β λ ζ= −  (3.12) 

Where the modified precursor concentrations are ( )
k

tζ  

and Sext is the external source present in the system 

Eventhough the above equations are general, to simplify the numerical simulation, the 

kinetics parameters ,β Λ are taken to be constants instead of functions of time. The 

reactivity is calculated and updated to find the power and precursor solution fields during 

the transient. 

Now depending on whether the model under consideration is 0-D or 1-D, Equation 

(3.11, 3.12) or (3.5, 3.7) respectively can be discretized to obtain the flux profile and 

power profile as a function of time. Further detailed analysis and discretization of the 

kinetics equations for both the 0-D and 1-D scenarios are explained in the next chapter. 

III.3 Thermal hydraulics 

Thermal hydraulics is the physics dealing with the calculation of enthalpy and 

temperature fields of the coolant. The coolant flowing outside the clad of the fuel pin 

gains enthalpy by convection and traps the heat from the core, which is then used to 

generate power by way of an associated steam thermal cycle. The thermal hydraulics 

physics and heat conduction are nonlinearly coupled due to the heat transferred from the 
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fuel to the coolant by means of forced convection. The temperature of the coolant is 

directly dependent on the temperature of the outer clad surface, which in turn is a direct 

function of the fission reaction rate thereby making all physics coupled to one another. 

Before starting the discussion about the thermal hydraulics in nuclear analysis, it is 

important to understand that the current research has been suited particularly for a PWR 

system. Even though accommodating the changes to fit the scenarios of a BWR are not 

that complicated, they are outside the purview of this research but can be easily extended 

to. 

It was important to mention that the system we are dealing with is a PWR because of 

the fact that there is no phase change in the coolant and heat is transferred only as 

sensible heat in the coolant, which requires a secondary system to generate steam in order 

to produce power. Two-phase flow calculations are slightly more complicated than 

single-phase calculations since we need to use two sets of equations governing each 

phase and for each flow regime in the coolant. 

For all purposes in our current research in the 1-D model, we will assume a single 

channel flow in the core for thermal hydraulics and all calculations are performed at 

steady state only. This is based on the assumption that the short accident transients that 

we are of primary interest do not change the moderator temperature significantly since 

the response time for the convection process is larger than say for fuel conduction or 

fission reaction rate change. Hence, we will use the moderator profile at S.S and assume 

that the moderator properties remain invariant throughout the transient. 

Now for the steady state calculation, an energy balance over the channel yields the 

following enthalpy profile as a function of the linear power. 

 
'( )

( )
in

q z
h z h

m
= +

&
 (3.13) 

where m& is the mass flow rate across the channel 

Using the enthalpy of the bulk liquid, the temperature of the bulk coolant at steady 

state can then be easily found. We can see that we require only the linear heat rate profile 

in order to find the bulk coolant temperature. Hence, the single-phase hydraulics model is 

linear and only depends on the fission reaction rate in the fuel and the outer surface 

temperature of the fuel. 
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The single-phase forced convection can then be employed to find out the clad outer 

surface temperature. We can use the Newton’s law of cooling to find the heat transfer 

from the clad surface to the bulk coolant. 

''( ) ( ( ) ( ))
c wall bulk

q z h T z T z= −  (3.14) 

where Twall(z) is the temperature at the fuel pin outer surface 

and hc is convective heat transfer coefficient 

 By using the Dittus-Boelter correlation for a single-phase liquid, we can then find the 

heat transfer coefficient of the coolant using the following equation. 

 hc = 0.023 Re
0.8

Pr
0.4 f

H

k

D
 (3.15) 

  where Re is the Reynolds number given as 
f H

f

vDρ

µ
 

  Pr is the Prandtl number given as 
f f

f

Cp

k

µ
 

Once the heat transfer coefficient is found out, the outer clad temperature can be 

found using which the fuel temperature profile can be determined as will be seen in the 

heat conduction physics. 

Then the transient energy conservation equation over the moderator sub-channel 

yields the following equation which can then be discretized to find moderator transient 

solution field. 

,

( )
( ) ( ( ) ( )) ( ) ( ( ) )m

p m h th f m p m h m m in

dT z v
C A R T z T z C A T z T

dt H
ρ ρ= − − −  (3.16) 

Where Rth is the global exchange resistance between the fuel and fluid (W/m-C)-1 

v is the bulk coolant velocity , and Ah is the hydraulic area of coolant flow 

In the 0-D model, the energy balance equation can be collapsed with an assumption 

Tm = (Tm,out+Tm,in)/2 which can then be expressed as 

,( ) ( ) 2( ) ( )m
p m h th f m p m h m m in

dT v
C A R T T C A T T

dt H
ρ ρ= − − −  (3.17) 

From Equation (3.17), it can be seen that the moderator temperature solution field is 

coupled to the average fuel temperature (heat flux term) and the power (enthalpy change 

term). Hence, the hydraulics equations are nonlinearly coupled to the other physics. Now, 
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we will discuss about the heat conduction physics and see how a lumped model can be 

derived to combine the interdependence of these physics. 

III.4 Heat conduction 

Heat conduction physics deals with the conduction of the thermal energy that is 

stored in the fuel element to the coolant flowing around the fuel pin due to the 

temperature difference. The energy released by the nuclear fission reactions appears 

primarily as kinetic energy of various fission products. The bulk of this fission product 

energy is rapidly deposited as heat in the fuel material, very close to the location of the 

fission event. The heat is then transported via thermal conduction across the fuel element, 

across the gap separating the fuel from the clad, and then across the clad to the outer fuel 

pin surface. It is then transferred from the clad outer surface to the coolant by forced 

convection. The bulk motion of the coolant then carries the thermal energy up and out of 

the reactor core, either as sensible heat (i.e., coolant temperature rise in PWR) or as latent 

heat (i.e., thermally induced phase change by boiling in BWR). 

In thermal design, the total energy deposition over all materials is frequently 

reassigned to the fuel in order to simplify the analysis of the core. We can determine the 

volumetric fission heat source in the core q’’’(r) by multiplying the fission reaction rate 

density for each isotope wf(i), the recoverable energy released per fission event to find 

 
0

( , ) ( )  ( , ) ( , )i

p f f

iVol

J r t w i dE r E r Eφ
∞

= Σ∑∫ ∫  (3.18) 

Since the flux and the cross-section of the fuel vary across the reactor core, there will 

be a corresponding variation in the fission heat source in the core. 

Now using the Fourier’s law of thermal conduction, we can find the temperature field 

in the fuel by solving the general equation 

 ( ) . ( ) ( , )
p p

C T k T T J r t
t

ρ
∂

− ∇ ∇ =
∂

 (3.19) 

It should be noted that the thermal conductivity k is temperature dependent for all the 

fuel elements in consideration, which then makes this heat conduction equation nonlinear. 

In case of the gap or the clad, where the temperature variations are relatively small, the 

thermal conductivity can be assumed to be constant. 
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The heat conduction equation for a cylindrical fuel pin with a uniform volumetric 

heat source Jp in which axial heat conduction can be ignored takes the following form. 

 
1

( ) ( )
f f f p

d d dT
Cp T k T r J

dt r dr dr
ρ + =  (3.20) 

For the gap and the clad, the heat source term Jp will not be present. Based on this 

heat conduction model, the temperature profile T(r) in the fuel pin can be calculated and 

determined. Once the fuel temperatures are accurately calculated by solving Equation 

(3.19) for all the regions, we can calculate the average temperature in the fuel by using a 

weighted mean of the fuel centerline temperature and the fuel surface temperature. The 

average effective fuel temperature is then given by 

 ( ) ( ) (1 ) ( )
eff CL Surface

T t wT t w T t= + −  (3.21) 

 where w is the weight factor (usually 4/9) 

Once this calculation is repeated over the radial dimension, the average fuel 

temperature as a function of the axial position can be determined to get Teff(z). This gives 

the axial fuel temperature profile, which should follow the same shape as the power 

profile. 

III.5 Lumped model approach 

To simplify the interaction between the Heat conduction and the hydraulics physics, a 

lumped model approach can be tried. This model lumps the net thermal resistance in the 

fuel pin into a single parameter dependent on the average fuel temperature. This 

nonlinear equation can then be solved to determine the average fuel temperature in the 

pin at the specific axial position Teff(z). The associated equations are 
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mod '
2

f

eff p

R
T T J R q R
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− = =  (3.22) 

1 1 1
ln( )

2 2 2 4 ( )
clad
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R w
R

R h k R R h k Tπ π π π
= + + +  (3.23) 

With this simplification, the coupled transient heat conduction and hydraulics 

equations can be expressed as 

 ( ) ( )
f

p f p f f m th

dT
C J A H T T R H

dt
ρ = + −  (3.24) 
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 ,( ) ( ) 2( ) ( )m
p m h th f m p m h m m in

dT v
C A R T T C A T T

dt H
ρ ρ= − − −  (3.25) 

For the 0-D model in this research, this lumped model approach has been used 

extensively. The lumped temperature fields are linked to neutronics by means of the 

power density term Jp. This lumped model approach is based on solving the entire system 

of equations as a whole which is based on the monolithic coupling concept. 

Now let us try to understand the interaction between the different physics that is 

critical to linearize the nuclear system and to obtain accurate solution. 

III.6 Coupling between the different physics 

It is worthy to note that the hydraulics model described above is simple in theory and 

is dependent on only the power profile. But the heat conduction model is nonlinear in 

itself and is coupled to both the hydraulics and the neutronics. And the neutron flux and 

reaction rates depend strongly on the cross-sections of the materials, which in turn are 

dependent functions of the temperature of material. Hence, as more fission occurs in the 

core, more thermal power is generated and the temperature in the core increases. This 

results in drastic changes in the material cross-sections affecting the flux and power.  

The change in the macroscopic cross-section is partly due to the change in the 

microscopic cross-section and partly because of the change in the number density of the 

material with respect to temperature which in turn depends on the power distribution and 

hence the flux. These changes in cross-section are linked to the neutron flux deeply by 

means of reactivity represented by Equation (3.10). Such reactivity variation with 

temperature is the principal mechanism determining the inherent stability of a nuclear 

reactor with respect to short-term fluctuations in the power level. 

Hence the reactivity can essentially be described as a sum of two contributions: 

 ( ) ( ) ( )
total feedback external

t t tρ ρ ρ= +  (3.26) 

where ρexternal(t) is an external reactivity addition by means of either moving the 

control rods or by changing the flow rate of the moderator in the core etc. and is usually 

represented explicitly as a function of time. 

And ( )
feedback

tρ is the feedback reactivity contribution from the different mechanisms 

that will be discussed in detail later. 
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III.6.1  External reactivity 

The external reactivity is applied by means of moving the control rods in a systematic 

manner to control the change in reactivity to obtain the desired power level. Usually, the 

external reactivity applied is an explicit function of time in the form of a ramp or a step or 

a sinusoidal input. Due to the change in reactivity, the power will respond accordingly 

and hence we will observe changes in the power transient. Because of the increase or 

decrease in power, there is usually a feedback associated with the application of the 

external reactivity that stabilizes the power transient and brings the power back to a 

steady state. 

As mentioned previously, some of the forms of external reactivity functions that have 

been performed in this research are 

1) Ramp input 

 0( )
external

t atρ ρ= +  (3.27) 

where   a is the amplitude of the ramp reactivity in pcm/sec, and 

ρ0 is the initial reactivity 

2) Step input 

 0( ) ,       
external

t a t tρ = >  (3.28) 

where a is the amplitude of the step reactivity in pcm 

3) Pulse input 

 0( ) ( )
external

t a t tρ δ= −  (3.29) 

where a is the amplitude of the pulse input in pcm 

4) Sinusoidal input 

 0( ) sin( ),       
external

t a t t tρ ω= >  (3.30) 

where a is the amplitude of the sinusoidal input in pcm, and 

 ω is the frequency of oscillation in sec-1 

Based on these various mechanisms, we can simulate several transient scenarios in 

the computation of the solution in nuclear reactor analysis. Since the transient simulation 

nonlinearly couples all the involved physics, stable and accurate numerical schemes need 

to be developed in order to gain better insight on such scenarios. 
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III.6.2  Feedback reactivity 

The interaction between Neutronics, the Heat conduction and Thermal hydraulics 

physics in the nuclear core that brings inherent stability to the system is called the 

Feedback effect. If the resulting feedback produces negative reactivity, the power in the 

core will decrease as a result and if it is positive, then power increases. Now let us try to 

understand about each of the important components in the total feedback reactivity. 

III.6.2.1 Doppler feedback 

Of most concern in the study of short-term feedback is the effect of the core 

temperature on the multiplication of the core. This can be expressed in terms of a 

temperature coefficient of reactivity 
T

α (pcm/oC), which can be defined as 

 T

f
T

ρ
α

∂
=

∂
 (3.31) 

Based on the above definition, the Doppler reactivity is more commonly[3] written as 

 ,0( ) ( ( ) )
Doppler Doppler eff eff

t T t Tρ α= −  (3.32) 

If a reactor were to possess a positive
T

α , then an increase in temperature would 

produce an increase in power causing a further increase in temperature and so on. In this 

sense, the reactor would be unstable with respect to temperature variations. 

III.6.2.2 Moderator feedback 

As the fuel temperature increases, the temperature of the moderator at the surface of 

the fuel element also increases. The direct implication of such a change is that the 

moderator density decreases leading to lesser efficient moderation. This results in the 

incident neutrons being at higher energies on average leading to a decrease in the fission 

rate and hence power. This dependence of the reactivity on changes in moderator fuel and 

density can be given as 

 0
m

m
T

ρ
α

∂
= <

∂
 (In under-moderated conditions) (3.33) 

 0
m

m
T

ρ
α

∂
= >

∂
 (In over-moderated conditions) 

 where αm is the moderator temperature coefficient of reactivity in pcm/oC. 
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Using this definition, the moderator reactivity can be described as 

 mod mod mod mod,0( ) ( ( ) )t T t Tρ α= −  (3.34) 

III.6.3  Other feedback mechanisms 

The fuel and the moderator feedback are the primary effects that we are concerned in 

this research. But it should be remembered that the feedback effects are not limited to the 

above mentioned interaction. The other parameters that are responsible for producing 

feedback effects are  

� Presence of voids in the moderator (BWR),  

� Presence of Xenon –135 poison, which is one of the fission products, 

� Presence of Samarium-149, which is another poisonous fission product, 

� Presence of burnable poisons like Boron, dissolved in the moderator, or 

� Reduction of the cross-section of materials due to burn-up 

Every one of the above parameters contributes to the reactivity changes but the 

primary ones are due to the changes in fuel and moderator temperature. It is also 

important to note that in the current research, the void reactivity effect has not been 

considered but if needed, there would not be lot of modifications needed to include the 

effects.  

Now, the total feedback reactivity in the system is given as 

 mod( ) ( ) ( ) ( ) ( ) ( ) ( ) ...
feedback Doppler void boron Xe Sm

t t t t t t tρ ρ ρ ρ ρ ρ ρ= + + + + + +  (3.35) 

The strong interaction between the various physics provides the physical safety and 

also introduces the complexity to analyze the system numerically. This strongly coupled, 

nonlinear, multi-physics problem involving complex transient accidents need robust and 

stable temporal and spatial discretization schemes to find the solution fields. This 

discussion will be provided in the next chapter. 
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CHAPTER IV 

NEUTRONICS/HYDRAULICS COUPLED 

CODE IMPLEMENTATION 

Numerical schemes require efficient implementation of the code in order to improve 

to determine the true performance of the method. Several non-trivial decisions regarding 

the interaction of the modules in the code can change the results for the scheme 

significantly. Hence, code design needs to performed with care to replicate existing 

conventional coupling codes to make improvements and introduce new design strategies 

for higher order time adaptation schemes. 

For simplicity, the 0-D code was written in MATLAB whose performance was 

acceptable for the small system of equations we were dealing with. It also gave us the 

opportunity to use existing MATAB ODE solvers to test and benchmark the solution 

from other schemes. 

For the 1-D model, since spatial and temporal discretization create an overhead in the 

computation process, C#.NET, a language introduced by Microsoft running on the 

Common Language Runtime (CLR) was used in order to improve performance and 

reduce computational times. 

In the current section, we will go over some of the design choices and provide a basic 

overview of the code for both the 0-D and 1-D model. 

IV.1 Code design 

Coupling codes usually involve dedicated mono-physics solvers to handle each 

physics solution component separately and then use an interface to communicate with 

each other in a NIC strategy. This methodology derives its roots from the operator 

splitting technique where the single system of coupled equations is split into smaller 

problems which are attacked using specialized solvers. 

In the current research, this serves us as the basis to start our code design. The 

coupled reactor code analysis package on a broader view point will include the 

Neutronics solver, Thermal hydraulics solver and Heat conduction solver. These solvers 
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will then be called upon by the interface or driver module which is responsible for 

supplying the required solution fields from other physics at each time step. 

We will also need several utility functions that can handle the user input, data output 

and general linear algebra calculations that are essential to the working of the package. A 

detailed representation of the various modules that interact with the primary User 

Interface (UI) is shown in Fig. 5.  

User Interface
Output Data 

Dump

Interface Driver

Neutronics 

Solver

Linear 

Algebra 

handler

XS handler Input Manager

Math 

functions 

handler

Utility 

functions

Hydraulics 
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Conduction 
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Manager

Output 
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Input Data 

Store

2

1

3

1 – UI reads user input data

2 – UI calls interface driver to solve the transient problem

3 – UI dumps the solution to output file

C

A

B
E

D

 

Figure 5: Data flow model 
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There are 5 important modules in the code design. They are 

A. User Interface 

B. Core solver 

C. Input manager 

D. Output manager 

E. Math operation handler 

The details given above are primarily based on the 1-D code which is more object 

oriented in nature. But, the code design for the 0-D model in MATLAB also follows the 

same pattern although being much simpler in nature. 

In the following section, the internals of each of these modules will be discussed. 

IV.2  User Interface 

This is the primary interface to the user of the package. It allows the user to make the 

decision on the kind of transient to be applied (Ramp, Step or Sinusoidal etc.,) to the 

reactor configuration specified and several other functionalities of the package including 

Rod worth calculation, Adjoint flux calculation, Kinetics parameter calculations in 1-D 

model. In all these cases, the UI module interacts with the core solver to provide the 

necessary data to calculate the transient solution fields. Another functionality in the UI 

module is the plotting routines that give the user an idea of the average Power, flux and 

temperature distributions in the reactor. 

IV.3  Core solver 

This is the main code that is responsible for the calculation of transient solution. It 

includes the Interface driver, the solvers for Neutronics, Hydraulics and Heat conduction 

physics and several small utility functions. 

IV.3.1 Driver 

The core solver primarily contains the Interface driver module which acts as the key 

communicator between the various physics solvers. The interface is responsible for 

managing the time steps during transient calculation, making appropriate solution 

predictions for the different physics and calling the individual physics solvers in the order 

specified by the user. The details on whether feedback coupling is performed and whether 

a staggered or a simultaneous update operator-split coupling is used are handled by this 

driver. 
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In conventional coupling, an interface similar in nature is used to interface different 

codes. The proposed schemes to include Picard iterations and solution prediction that are 

handled by our current driver can efficiently be implemented in the same way for 

conventional interfaces also. This promises minimal change in existing coupling strategy 

with improvements in the solution field accuracy as will be shown in the results section. 

IV.3.2 Neutronics solver 

The neutronics solver is a dedicated solver for finding out the multi group flux 

solutions and the reaction rates (Power) in the reactor domain of interest. A Finite 

Element Discretization (FEM) is used to discretize space in this module. It can handle 

heterogenous configurations with varying refined meshes inside each physical mesh. The 

code uses piecewise linear basis functions and Gauss-Legendre quadrature for numerical 

integration. 

In the steady state calculation, a power iteration to calculate the fundamental mode 

(Keff) and its associated eigen vector (Flux) is performed. In the transient neutronics code, 

the system is always considered critical before transient happens. Hence, the total fission 

source F is normalized by Keff found out in S.S calculation. Then a null transient 

simulation leads to a constant power (Keff=1) as expected. 

At t=0+, a transient can be initiated by either moving the control rod in the reactor or 

by introducing a homogenous reactivity change by modifying the thermal absorption 

cross-section of the materials. This change in cross-section due to control rod is simulated 

using a separate cross-section library for rodded and unrodded materials. Then, the 

average cross-section in a mesh is computed using the weighted average formula given 

below. 

(1 )
r rodded r unrodded

H HΣ = Σ + − Σ  (4.1) 

And 

   

   
r

Rod height in mesh
H

Total height of mesh
=  (4.2) 

Once the cross-sections are calculated based on rod insertion height and temperature 

fields from other physics, the operator matrices to be solved are assembled accordingly 

and boundary conditions are applied. This assembly procedure needs to be done every 

time the cross-sections change during the transient. 
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In brief, the Neutronics solver is called by the interface driver with the fuel 

temperature and moderator density as input values. Using these, the cross-sections are 

found out from the table and matrices are constructed. Then an appropriate time 

discretization technique is used to solve the system to obtain the flux and precursor 

concentration values. Once this is done, the average power is computed and returned to 

the driver. 

It is also important to remember that in a multi-group scenario, the group flux 

equations are coupled to one another by the scattering matrix. To resolve this, an iterative 

procedure more commonly known as Thermal iterations is performed to obtain 

converged flux solutions. 

A detailed description of the spatial and temporal discretization procedure in 

neutronics is shown in Appendix (A). 

IV.3.3 Cross-section manager 

A dedicated cross-section manager module is implemented which is responsible for 

calculating the 2 groups material cross-sections for a given fuel temperature and 

moderator density. The cross-section table used in the current research is for the MSLB 

benchmark calculation[3] that provides data for several materials with K∞ ranging from 

0.8-1.3. A sample table for the material cross-section is shown in Appendix (B). The 

reactivity manager used by the Neutronics module calls the cross-section manager in the 

1-D model to obtain the modified cross-sections based on the input from other physics. 

This is the prime mechanism by which feedback from other physics is included in 

Neutronics. 

IV.3.4 Thermal hydraulics solver 

The hydraulics solver is responsible for calculating the moderator temperature and 

density based on the power profile calculated by Neutronics, supplied as input by the 

interface driver. The spatial meshes needed are already determined by the Neutronics 

module which is used by the other solvers as the basis. 

The functions of the hydraulics solver include the calculation of properties of the 

moderator at the specified temperature namely Density (ρ), Conductivity (k), Specific 

heat capacity (Cp) and Viscosity (µ). These properties are used to calculate the Heat 

transfer coefficient (HTC) using the Dittus-Boelter correlation for single phase fluid 
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which will be used to calculate the overall thermal resistance for heat transfer from fuel 

surface. 

A simple energy balance at S.S can be performed to obtain the average moderator 

enthalpies at each mesh which is then used to calculate the moderator temperature and 

density. This data is given back to the interface driver to be supplied to other solvers as 

parameters. 

In transient mode, the solver does not calculate the solution based on fuel temperature 

and power distribution since a simplifying assumption that moderator properties do not 

vary much during the short transient that are simulated in current research. Since it is not 

complicated to implement this feature, it could be added later to provide more accurate 

coupling between different physics. 

IV.3.5 Heat conduction solver 

The heat conduction solver is responsible for calculating the radial and axial fuel 

temperature distribution in a single fuel pin. Based on the power distribution and 

moderator temperature, thermal resistance supplied by the interface, the radial heat 

conduction equation can be solved. 

The radial discretization is performed using a Finite Difference (FD) technique in the 

fuel pin and the axial meshes calculated by Neutronics are used as is to find axial average 

temperature distribution. The number of regions in the fuel and clad can be controlled by 

user inputs. The dimensions of the fuel pin along with the convection coefficient of the 

gap are also specified by the user.  

Since the physics is inherently nonlinear in nature, a fixed point iteration is performed 

at each mesh to determine the converged radial temperature distribution in the fuel. The 

averaging of the fuel temperature is then performed using Equation (3.21) at each axial 

mesh based on the centerline and surface temperatures calculated from the radial 

discretization equation. 

IV.4  Input manager 

The input manager module is a simple data XML (Extensible Markup Language) 

reader which stores the user input data in an easily accessible data structure. This object 

is then propagated to the core solver to set all the required parameters for the calculation 

of the solution fields which include the reactor dimensions, tolerances for iterations, 
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maximum number of nonlinear iterations, interface iterations, material configuration, 

discretization details and run parameters. A sample Input file is shown in the Appendix 

(C). 

IV.5  Output manager 

The output manager module is a data writer which stores the solution field object 

structures to easily readable XML files that can be used later for analysis or plotting 

purposes. 

IV.6  Math operation handler 

The calculation of solution fields involves several matrix and vector operations. To 

handle these computations, the usage of an efficient and fast linear algebra package is 

important. Based on the performance of the LAPACK modules that are based on BLAS 

interfaces, an ‘Interop’ module to use CLAPACK routines from C# were implemented 

separately. In the 0-D model, the MATLAB code uses inbuilt matrix handlers based on 

LAPACK themselves eliminating the need for an additional module. 

IV.7 Time adaptation solvers 

The general design covered so far does not differentiate between constant time 

stepping and adaptive stepping strategies. Although major modifications are necessary in 

the code for the inclusion of time adaptation, the changes are concentrated on the driver 

module alone. This still opens up the possibility of usage of this strategy for coupling 

existing mono-physics codes in a consistent manner. 

Since adaptive solvers can be optimized a lot more flexibly than constant step solvers 

for the problem at hand, the implementation of the solver has to be based on standard 

designs. Initial design for the code was based on the inbuilt MATLAB solver ode23s by 

Shampine which uses the standard error controller to adapt the time steps. After 

simulating various reactor analysis problems, a more efficient implementation for the 

Implicit RK and one step Rosenbrock methods was written based on the freely available 

RADAU5 code by Hairer and Wanner. 

The implementation details of the RADAU5 code are described in Hairer[8]. Along 

with the standard controller, a PI controller was also implemented for the schemes under 

consideration. 
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IV.8 Pseudo code for reactor coupling 

The actual code for the 0-D and 1-D model contains more than 8000 lines of code and 

hence it is not feasible to include the whole code in the current thesis. Instead, for 

researchers who are interested in performing the coupling of multi-physics on their own, 

we shall provide a pseudo-code or more generally a flow chart as shown in Fig. 6, that 

can be used to write the code. 

 

Figure 6: Algorithm for the coupled physics Neutronics/Hydraulics code 
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The figure is self explanatory and should provide an overview of the coupling code 

written for this research. The code verification and testing for the 0-D and 1-D models 

was performed by comparing the numerical solution to analytical solutions from simple 

problems. The reliability in the code was established prior to generating the results for 

both the models in constant and adaptive time stepping. 

The results obtained are shown and discussed in the next chapter.  
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CHAPTER V 

RESULTS AND DISCUSSION 

In this chapter, the results obtained for the different models for nuclear reactor 

transient analysis solved using the numerical schemes discussed in Chapter II are shown 

and their implications are discussed. Also, the results for the adaptive time discretization 

schemes are elucidated with comparisons to MATLAB’s standard ODE solvers for the 0-

D model. It should be noted that an analytic solution exists only in the case of a constant 

external reactivity (Step) for 0-D and this gives a chance to benchmark the accuracy of 

the MATLAB solvers and solution from all other numerical schemes for 0-D and 1-D to 

the exact solution. Based on this, all further adaptive solution comparisons are made for 

the primary test cases, the Step and Ramp external reactivity additions to the system 

which can be simulated by changing the reactivity itself for the 0-D model and by 

changing the absorption cross-section as a function of space and time for the 1-D model. 

All schemes implemented have a certain theoretical order of accuracy which might 

degrade when used for stiff, nonlinear systems if the nonlinearities in the system are not 

properly converged. The results shown for the convergence order of these methods match 

the theoretical order when completely converged or when a suitable solution prediction is 

used but is lost otherwise. We shall also discuss this when the results from certain 

strategies are observed. 

V.1 0-D model 

For the 0-D PRKE-Single channel hydraulics model, let us first look into the kind of 

transients that are analyzed. As mentioned before, for the primary test cases, the order of 

convergence for the different numerical schemes is found. Fig. 7 and Fig. 8 show a 

sample transient for a step and ramp reactivity input of 1.2$ respectively. The feedback 

between neutronics and hydraulics is evident due to the power turn in the transient where 

the negative Doppler reactivity acts as a limiting factor and brings the power back down 

(Power turning) to a final steady state value. The transient solution shown in the figures 

were calculated using a Picard iteration scheme where all the nonlinearities are fully 
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converged. For calculations involving order of convergence in the constant-step strategy, 

we shall use this particular solution method with a very fine time-step at the end of the 

transient, as the “Reference” solution. 

 

  Figure 7: Step transient 

 

Figure 8: Ramp transient 

Now, the results for both the constant and adaptive time stepping strategies are given 

below. 
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V.1.1 Constant time-step strategy 

There are several discretization schemes that can be used to find out the solution in 

this strategy but we shall concentrate only on the theta discretization scheme. The 

primary idea behind usage of the B.E and C.N schemes is to make improvements in the 

existing conventional coupling strategy where the computational time required and the 

order of accuracy need to be improved. 

To analyze the efficiency of convergence with the modifications suggested in Chapter 

II, we need to compare the transient solutions from different schemes. The aim is to find 

out the optimal scheme which has the lowest overhead and with a solution that is closer 

to the reference than conventional method. 

Fig. 9 shows a calculation wherein at t=250 ms, a control rod is ejected. The ramp 

ejection duration is 250 ms with external reactivity amplitude of 1.2$. The reference 

computation for the transient was performed using a time step size of 0.5 ms. Three other 

computations were performed using a time step size of 10 ms with the following 

numerical schemes:  

1) Conventional coupling paradigm – Nonlinearities are not converged between 

the different physics  

2) Fixed-point iterations (i.e., conventional scheme iterated),  

3) Explicit higher order treatment of nonlinear terms (improved prediction) 

 

Figure 9: Comparison of power solution field between conventional 

and modified schemes 
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In Fig. 9, although not visible clearly, the FPI scheme with explicit solution 

prediction yields a solution that is much closer to the reference than the conventional 

scheme. An enlarged version of the power peak in Fig. 9 is shown in Fig. 10. 

 

Figure 10: Comparison of power solution field: Enlarged at power peak 

Fig. 10 shows that the conventional coupling scheme over predicts the power level by 

more than 10% whereas the other schemes are off by at most only 1%. Obviously, the 

improved prediction scheme was much cheaper than the Fixed-point iterative method 

because there are no iterations over all the physics within each time step calculation and 

hence the nonlinearities between the different physics are resolved by using explicit local 

extrapolation. The improvement in the solution field is impressive for the prediction case 

since the effort required to make the extrapolation is trivial but the effect of the 

modification, results in a solution closer to the reference even for a time-step that was 

much coarser (bigger by a factor of 20) than the one used to find the reference solution. 

But it should also be noted that the solution from improved predicted is more accurate 

than the conventional scheme only and not the converged solution itself. 

V.1.1.1  Order of convergence 

Apart from measuring the improvement in the solution from predictive methods, it is 

also clear that the predictive methods will restore the lost order of accuracy for the 
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coupled transient scenario even without outer iterations. To analyze this, a ramp transient, 

similar to the one plotted in Fig. 8 was simulated and the orders of accuracy of the 

various different schemes was found out. Remember that if the solution is not converged 

properly, then the observed order of convergence will be lower than the theoretical order. 

Table I: Order of accuracy for the numerical schemes 

Method Converged Predicted Accelerated Order 

Conventional 

Backward Euler 

Picard iterations 

Predicted FPI 

Improved-Acceleration 

Improved prediction  

(2nd Order) 

Improved prediction 

(3rd Order) 

No 

Yes 

Yes 

Yes 

Yes 

No 

 

No 

No 

No 

No 

Yes 

Yes 

Yes 

 

Yes 

No 

No 

No 

No 

Yes 

No 

 

No 

1.0448 

1.017 

1.9975 

1.9975 

1.9975 

1.9675 

 

3.1165 

 

 

Figure 11: Order of accuracy of numerical schemes in constant 

stepping strategy in 0-D 
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Fig. 11 presents the accuracy order obtained for the different possible combination of 

the schemes using Picard iterations, solution prediction and acceleration. The time step 

sizes used to calculate the convergence order is varied from 0.8 ms to 100 ms. Table I 

shows the results for the order of convergence (Slope) from the Fig. 12 for the various 

schemes listed. 

The super-convergence observed in some of the results is due to the fact being that 

the reference time step used is 0.5 ms and might not be accurate enough to yield the exact 

slope for the order of accuracy. As the reference time step is decreased, the order of 

convergence observed should tend towards the actual true order of the scheme. 

The conventional coupling scheme only yields first order accuracy, whereas fixed-

point iterations and improved prediction both yield the expected theoretical second order. 

Therefore these schemes are nonlinearly consistent. It is obvious that the improvement in 

number of iterations by Steffensen's acceleration technique does not change the order 

accuracy. Also, it is important to observe that whenever the nonlinearities are resolved 

and hence the Crank-Nicolson scheme yields second order convergence as long as the 

time steps used satisfy the L-stability criteria to avoid unwanted numerical oscillations. 

The solution prediction method, both the 2nd and 3rd order schemes provide 

tremendous improvement in the convergence as compared to the conventional scheme. 

The 2nd order prediction method only involves a trivial local extrapolation that can be 

handled in the driver, resulting in a superior convergence and higher accuracy even for 

the same time steps used for the converged solution.  

Further the 3rd order prediction with the time step doubling technique yields even 

better improvement over the 2nd order prediction. The extra effort for the 3rd order 

prediction is 50% more than the usual calculation with 2nd order extrapolation done at 

each smaller time step. Since we are achieving the accuracy of the smaller (half) step size 

in the end, this technique leads to a more accurate solution field as compared to any of 

the other schemes discussed before. Hence if we weigh the 50% increase in CPU time to 

the increase in the convergence order over the Picard iteration method, this solution 

procedure proves to be very effective and a promising step towards achieving high 

fidelity transient solution fields. 
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V.1.1.2  Convergence acceleration 

Another prime factor that has to be taken into account is the number of iterations 

needed to converge the nonlinearities between the physics. If there are only fewer number 

of iterations needed, then we could simply use the Picard iterations to find the solution 

since it is evident from Fig. 10 that the converged solution is always closer to the 

reference than the predicted solution since the nonlinearities are always resolved. 

Table II: Average Fixed Point Iterations (FPI) / step 

Step size Noacc-Nopred Noacc-Pred Acc-Nopred Acc-Pred 

4.00E-05 3.669 2.816 3.833 2.752 

8.00E-05 3.733 3.538 3.994 3.002 

0.001 3.74 3.684 3.995 3.505 

0.002 4.095 3.752 3.998 3.752 

0.004 4.765 4.22 4.5 4.48 

0.01 5.563 5.188 5.4 5.263 

0.02 6.7 6.425 5.875 6.075 

0.05 9.5 9.188 7.875 7.938 

0.1 15.25 15 11.13 10.5 

 

To illustrate the above factor, the number of Fixed Point Iterations/time step is plotted 

in Fig. 12 for different values of time steps and for each of the schemes mentioned above 

and is given in Table II. It is clear from the figure that using either solution prediction or 

Steffensen's acceleration definitely improves the number of fixed point iterations. Even 

though using only prediction does not yield considerable reduction in number of 

iterations, the synergistic effects of using both acceleration and prediction provides a 

reduction of more than 30% in the number of iterations per time step. On a large time 

scale, the total reduction in CPU time can then be considerable since on an average, only 

one third of iterations are needed to fully converge the nonlinearities between the 

different physics. Also from Fig. 12, it is clear that the usage of acceleration for finer 

time steps yields no perceptible improvement due to the fact that only lesser iterations are 

needed to converge while acceleration for coarser time steps results in a considerably 
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faster convergence, still retaining the order of accuracy. Hence, the acceleration 

techniques provide maximum boost in minimizing the number of iterations for bigger 

time steps and when used in conjunction with the solution prediction, the positive effects 

observed are very quite considerable in comparison to an un-accelerated, unpredicted 

converged Picard procedure.  

 

Figure 12: Efficiency of acceleration techniques 

V.1.2 Adaptive time-step strategy 

The results seen in the constant time-step strategy prove that the Backward-Euler and 

the Crank-Nicolson schemes are accurate for the stiff problems but the order of 

convergence is still low. The direct implication of this is that small time steps need to be 

used in the constant-step strategy to achieve minimal local truncation errors. Also, there is 

no confident method to monitor or control the truncation error that is accumulated in the 

solution fields. To overcome such a drawback and to have more control over the error in 

the solution, we need to choose the Adaptive time-step strategy with either step-doubling or 

higher order embedded methods involving stiffly accurate numerical schemes. We shall 

now discuss the results obtained using such a strategy for the primary test cases in the 

nuclear reactor accident transients. 
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V.1.2.1  MATLAB solvers – without feedback 

Before the actual performance of the adaptive techniques can be analyzed, it is vital to 

find out the performance of the schemes for a preliminary test problem. To simplify the 

nuclear system, we assume a no feedback scenario where the neutronics is not coupled with 

the hydraulics and hence the reactivity feedback effects are completely neglected. This 

decoupling makes the problem linear and gives us a chance to analyze and benchmark the 

most efficient numerical scheme to be used when the feedback is introduced back in the 

system. 

To obtain preliminary results and to make observations, a simple script in MATLAB 

was written to solve the PRKE equations to get the Power and 6 Precursor fields as a 

function of time for a given step or a ramp reactivity addition using the 7 different inbuilt 

ODE solvers.  

Table III below provides some basic details on the MATLAB ODE solvers. For further 

information about the schemes and the strategies used in all the solvers, the MATLAB 

function reference[19] can be used as a manual. 

Table III: MATLAB ODE solver details 

Solver Scheme details 

ode45 

ode23 

ode113 

ode15s 

 

ode23s 

ode23t 

ode23tb 

Explicit one step RK (4,5) formula, the Dormand-Prince pair 

Explicit RK (2,3) pair of Bogacki and Shampine 

Variable order Adams-Bashforth-Moulton PECE solver 

Variable order solver based on the numerical differentiation formulas 

(NDFs). This is also a multistep solver like ode113 

Modified one step Rosenbrock formula of order 2 

Implementation of the trapezoidal rule using a "free" interpolant 

An implementation of TR-BDF2, an implicit Runge-Kutta formula with 

a 1st stage TR and a second stage BDF2 

 

It is important to note that the MATLAB solver estimates the local error e in the 

solution field and checks if this truncation error is less than or equal to the acceptable error 
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which is a function of the relative tolerance RelTol and the specified absolute tolerance 

AbsTol. 

| e(i) | ≤ max(RelTol * Abs(y(i)), AbsTol(i)) 

Hence, when the RelTol or AbsTol is very crude, the explicit ODE solvers namely 

ode23, ode45 and ode113 yield unstable and physically meaningless solution fields. This 

is due to the fact that the crudeness in the tolerance allows the control of the time step to 

exceed the maximum stability step that is necessary to restrict the explicit schemes from 

becoming unstable. Hence, the tolerance is an important controlling factor to determine 

whether an explicit or an implicit scheme can be used to find the solution field. This 

disadvantage can be overcome by specifying a maximum time step ∆tmax (‘MaxStep’ in 

MATLAB)  which will restrict the time step in case of adaptive explicit time stepping 

thereby preserving stability and still achieving a one step solve over each step. The 

stability function for the explicit schemes usually provides us a good estimate of the step 

∆tmax value to be used. It should also be noted that when the ∆tmax becomes a restricting 

factor, the number of steps taken to calculate the transient solution field will not be 

superior to the constant step strategy, although the final solution will still be accurate to 

the user specified tolerance. Hence, at crude tolerances, it is best to use the implicit 

schemes and at finer tolerances, explicit schemes offer a more viable and attractive option 

compared to the CPU hogging higher order implicit schemes which require multiple sub-

steps inside a single step and an iteration on each step to solve the nonlinear problem. 

To illustrate the above mentioned point, two figures are shown below for a very crude 

tolerance of RelTol & AbsTol= 1E-1 with an external step reactivity addition of 200 pcm. 
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Figure 13: MATLAB solvers - unconstrained step-size 

    

Figure 14: MATLAB solvers - constrained step-size 

Fig. 13 shows the transient solution from the solvers with an unconstrained step-size 

where the ∆tmax was not a limiting factor and hence the only the implicit schemes provide 

a stable solution. But in Fig. 14, when ∆tmax=0.01s was an upper limiting factor for the 

adaptive control in all the explicit methods, the solution fields were convergent to the 

reference solution and the error with respect to the analytical solution was less than the 

user specified tolerance. This clearly proves that the explicit schemes are good candidates 

for solving such mildly stiff problems. If enough attention is paid on controlling the time 
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steps according to the stability and tolerance criteria, these methods could possibly even 

be used to calculate transient solutions which have local discontinuities e.g., a SCRAM 

event after relative power crosses the value 2.0. 

Apart from proving the viable usage of the explicit schemes in an adaptive strategy, 

the experiment also provided other interesting results for the system under consideration. 

In Fig. 15, we have shown a plot of the user specified tolerance vs the number of steps 

needed by each of the solvers to provide a convergent solution and the corresponding 

data is shown in Table IV. 

Fig. 15 shows that the number of steps for ODE solver 113 (variable order Adams-

Bashforth-Moulton PECE solver) and 15s (variable order solver based on the numerical 

differentiation formulas) are both very efficient when we are dealing with higher 

tolerances while they do comparably well for lower tolerances if the ∆tmax is adjusted to 

avoid the unstable region. Also, the ODE solvers 23 and 45 which are explicit, perform 

much better than the stiff solver 23s for fine tolerances. 

Table IV: Number of steps required to achieve specified tolerance 

Eps ODE23S ODE45 ODE23TB ODE23 ODE113 ODE15S ODE23T 

1.00E-01 16 105 105 105 109 109 105 

1.00E-02 18 105 105 105 109 109 108 

1.00E-03 22 105 106 105 109 111 124 

1.00E-04 32 105 113 108 110 118 134 

1.00E-05 54 105 135 120 113 128 157 

1.00E-06 107 107 205 153 118 141 236 

1.00E-07 223 114 325 230 122 160 389 

1.00E-08 473 127 600 402 143 191 761 

1.00E-09 1013 150 1266 812 155 238 1623 

1.00E-10 2177 190 2721 1745 172 307 3485 
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Figure 15: Plot of steps vs tolerance for MATLAB solvers 

Fig. 16 shows the actual error in the solution fields with respect to the analytical 

solution for a 6-delayed group PRKE system without feedback. The tolerance used for the 

run was Eps=1E-6 with a ∆tmax=0.01s for the explicit schemes. From the figure, we can 

clearly see that the stiff solvers ode23s, ode23tb and ode23t do not converge the solution to 

the right accuracy specified by the user during the crucial transient period but the solver 

ode15s provides an accurate and stable solution. Among the explicit solvers, ode113 and 

ode23 do converge very well and have a stable step-size control while the ode45 solver 

seems to calculate the local error in the solution wrongly which leads to smaller time-steps 

than needed thereby increasing the total CPU time actually necessary. Even though the 

solution from ode45 is always accurate to user specified tolerance, the step control 

mechanism has been poorly implemented which leads to the asymptotic ∆t value being 

used, as clearly seen from Fig. 17. 

Restrained region – Step 
controlled by stability 

criteria 

Asymptotic region – 
Step controlled by user 

specified tolerance 
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Figure 16: Plot of true error in solution from MATLAB solvers with Eps=1E-6 

 

Figure 17: Plot of ∆t for MATLAB solvers with Eps=1E-6 

Before delving into the various other explicit and implicit schemes that can be used in 

adaptive time stepping, it is vital to determine a reference to compare all other calculated 

solution when the coupling between the multi-physics is included.  This decision is based 

on several factors namely the number of steps necessary to reach specified accuracy and 

the function evaluation to achieve the same. The best candidate as concluded from Figs. 
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15, 16 and 17 is that ode15s outperforms the other stiff integrator and provides the 

solution as accurate as necessary without over-achieving unlike the ode45 solver.  

Now let us look at the several other schemes implemented with step doubling and 

embedded time-step control strategies with feedback coupling included in the system.  

V.1.2.2  Step doubling – with feedback 

This particular adaptive stepping strategy as mentioned before in Chapter II is one of 

the easiest methods to implement. Since it requires that the integrator be called 3 times per 

step to find the local truncation error, schemes with many function evaluations/step will not 

perform very well. Moreover implicit schemes that require non-linear iterations are not 

particularly suited for this technique due to the fact that a large number of function 

evaluations are necessary to converge. Based on these facts, explicit and linearly implicit 

one step Rosenbrock 2nd order scheme apart from the classic CN scheme with a 2nd order 

prediction have been chosen to solve for the solution fields.  

The results obtained using this strategy with tolerance = 1E-6, ∆tmax = 0.01 s, Λ=1E-5, 

for a step reactivity change of 1.2 $ and an end-time of 5 secs are shown below. 

Table V: Comparison of schemes for step-doubling strategy 

Method ERK3 ERK4 CN ROS2 

Steps 750 668 657 654 

Trials 244 163 0 344 

Fevals 6951 8300 5312 4640 

Jevals 0 0 0 163 

Average ∆t 6.674E-3 7.496E-3 7.621E-3 7.657E-3 

Order 3.2578 4.1455 2.0026 2.1116 

All schemes tested provided a convergent solution for the parameters chosen and the 

unstable regions were avoided by controlling the maximum allowed step size. The results 

shown above in Table V indicate that the explicit schemes perform poorly for the stiff 

problems (S=70450) compared to the implicit CN scheme. The ERK3, ERK4 schemes 

undergo many oscillations in the selection of step size since they are limited by the 
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stability criteria during the smoother regions of the transient. This leads to a significant 

increase in the number of function evaluations than the CN scheme.  

The ROS2 scheme has a comparable performance to the CN scheme and needs lesser 

number of function evaluations. Also, if the need to calculate the Jacobian matrix 

numerically can be eliminated using Jacobian-Free methods, the function evaluations can 

be reduced further. 

One important outcome of this experiment is that an oscillatory pattern in the 

selection of time steps for ERK3, ERK4 and ROS2 schemes was observed. This explains 

the high number of step rejections in these schemes while the CN scheme was more 

stable in the prediction of the step and had no unexpected rejections. This suggests that 

the CN scheme is more stable among all the schemes tested in the step-doubling strategy 

when the stiffness is large in the system. 

A similar run with decreased stiffness in the system using the parameters tolerance = 

1E-6, ∆tmax = 0.01 s, Λ=1E-4, for a step reactivity change of 1.2 $ and an end-time of 0.5 

secs provide the following results. 

Table VI: Alternate comparison of schemes for step-doubling strategy 

Method ERK3 ERK4 CN ROS2 

Steps 124 63 475 141 

Trials 0 0 0 0 

Fevals 861 620 1896 812 

Jevals 0 0 0 28 

Average ∆t 4.065E-3 1.613E-2 1.052E-3 3.571E-3 

 

Table VI suggests that the naïve higher orders ERK schemes do perform better than 

the implicit schemes for smaller transient durations. This occurs only when the step size 

is not limited by the stability but user specified tolerance alone since they exhibit poor 

performance when the stiffness in the system increases or during smoother transient 

periods. They might prove to be an alternate as long as the ‘Restrained region’ in Fig. 9 is 

completely avoided. 
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Now let us look at the results from the more popular embedded step-size control 

strategy. 

V.1.2.3  Embedded strategy – With feedback 

As mentioned before in Chapter II, the embedded strategy of adaptive discretization 

uses two different numerical schemes, one with a higher and another with a lower order 

of accuracy to calculate the local truncation error and to control the time-step accordingly. 

The theory behind the embedded scheme that is used to solve the reactor analysis 

problem has been tested for various stiff systems and hence gives us the basis to proceed 

further. Now, let us analyze the results from the different numerical schemes for a step 

transient with the all other parameters same as before. 

The ERK3 and ERK4 methods were used in the embedded strategy to obtain the local 

4th order truncation error and to control the time step. Although this methodology is not 

truly embedded in the sense that the stages do not coincide, which actually leads to higher 

number of function evaluations, it is nonetheless interesting to find out the performance 

of this method for the given problem. Also, an embedded SDIRK L-stable scheme of 

order 3(4) by Hairer (Stiff problems: p.100) was used to solve the system of nonlinear 

equations. Based on some previous work on PRKE[20] the Generalized RK schemes 

namely the GRK4A, GRK4T proposed by Kaps and Rentrop along with the popular 

RADAU5 stiff integrator scheme have been used. 

The results showing the number of steps, function and Jacobian evaluations for all the 

above schemes with tolerance = 1E-6, ∆tmax = 0.01 s, Λ=1E-5, for a step reactivity 

change of 1.2 $ and an end-time of 5 secs are shown in Table VII. 

Similar to the step-doubling strategy, the explicit ERK34 scheme do not produce 

good performance in terms of number of steps or the function evaluations needed. But the 

obvious winner among all the methods tried out, as seen from Table VII is the RADAU5 

embedded scheme which requires the least number of function and Jacobian evaluations 

and produces solution fields with user desired accuracy. It is also interesting to note that 

the order of convergence of the RADAU scheme behaves as O(h6) as mentioned by 

Hairer, when large step sizes are used i.e., when the user specified tolerance is coarse 

enough to use very large ∆t. But in the asymptotic limit, the RADAU scheme does yield 
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the theoretical order of accuracy proving that the nonlinearities present in the system are 

converged without losing the order (stiffly accurate). 

Table VII: Comparison of schemes for embedded step control strategy 

Method ERK34 GRK4A GRK4T RADAU5 SDIRK34 

Steps 1397 1916 1137 74 246 

Trials 13 2231 1810 3 13 

Fevals 8454 23841 15642 996 4000 

Jevals 0 1897 1133 67 237 

Average ∆t 3.581E-3 2.638E-3 4.397E-3 6.75E-2 2.03E-2 

Order 3.1272 4.0149 4.1351 4.9867 5.0789 

On the other hand, SDIRK34 embedded L-stable method needs fewer steps than ERK, 

GRK schemes and proved to be a good candidate in converging the solution accurately. 

The implicit iterations require additional function evaluations which increase the total 

cost of the embedded scheme. But the performance of SDIRK for the stiff coupled 

problem needs to be compared with RADAU5 for several other tests to decide on the 

optimal scheme for usage. It was also determined that this scheme exceeds the 

performance of RADAU5 for crude tolerances, in terms of the number of function 

evaluations needed to obtain the solution. 

Next, the Generalized RK schemes GRK4A, GRK4T need large number of steps and 

function evaluations. Also the cost of Jacobian evaluation proves to be an additional 

overhead to the total CPU time consumed by these methods. But the critical factor that 

renders these methods nonfeasible, as mentioned in Hairer [p.113], is the ‘Hump 

phenomenon’ observed in the GRK4x schemes where the step-size drops without any 

apparent exterior reason even though the actual solution does not have any discontinuities. 

To overcome this phenomenon, drastic step size reductions have to be used in the driver 

when the error asymptotes near the user specified tolerance. Both the Generalized RK 

schemes suffer from this deficiency and result in large number of step rejections which 

increases the overall cost of the method. This phenomenon prohibits the usage of this 

scheme for the stiff reactor problems. 
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Similar to the step doubling strategy, the stiffness in the system was decreased and 

the results from various schemes using the parameters tolerance = 1E-6, ∆tmax = 0.01 s, 

Λ=1E-4, for a step reactivity change of 1.2 $ and an end-time of 0.5 secs are shown 

below in Table VIII. 

Table VIII:  Alternate comparison of schemes for embedded step control strategy 

Method ERK34 GRK4A GRK4T RADAU5 SDIRK34 

Steps 129 87 75 25 78 

Trials 0 2 1 2 4 

Fevals 774 763 652 265 987 

Jevals 0 82 70 17 18 

Average ∆t 3.906E-3 5.76E-3 6.667E-3 2.01E-2 6.41E-3 

 

We can see that the ERK and GRK schemes compare well with RADAU5 

performance for short time scales unlike the previous scenario where the stability 

restrictions force the time steps used by the ERK schemes to be limited. 

V.1.2.4  Explicit vs Implicit RK schemes 

To explain the difference in the performance of the ERK schemes, a simple test with 

increased stiffness and longer durations was conducted and the ERK4 step doubled 

scheme was compared to RADAU5 scheme. Figure 18 shows that once the solution 

values become smoother, step sizes used by ERK4 schemes tend to be restricted by 

stability criteria while the stiff integrator RADAU5 consistently increases the step sizes 

thereby performing much better for this stiff scenario. 
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Figure 18: Plot of ∆t for RADAU5 & ERK4 solvers 

Hence, ERK schemes are good alternatives when the transient solution needs high 

accuracy calculations with short durations so as to maintain the time steps in the 

‘Asymptotic region’ rather than in the ‘stability restricted’ region. 

V.1.2.5  Litmus test 

To test and compare the performance of SDIRK34 and RADAU5 schemes, a 

transient problem with several SCRAM initiated events leading to local discontinuities in 

the solution was created. The parameters of the test are [Tolerance = 1E-6, Λ=1E-4, End-

time=5 secs]. And the reactivity changes during the transient are given along with the 

power transient solution using ode23s as a reference in Fig. 19 and Fig. 20. 
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Figure 19: Reactivity vs time – SCRAM discontinuity in 0-D model 

 

Figure 20: Power transient - SCRAM discontinuity in 0-D model 

The errors in the solution calculated using RADAU5 and SDIRK34 solver are shown 

below in Figs. 21 and 22 respectively. From the figures, it is clear that both RADAU5 

and SDIRK34 adaptive solvers resolve the discontinuities well once an increase in the 

estimated local error is observed. Although in comparison to the reference solution, the 
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local error obtained is slightly higher than the allowable tolerance at these discontinuities, 

the stiff solvers efficiently control time steps to obtain the maximum performance. 

 

Figure 21: Error in solution fields from RADAU5 – Litmus test 

 

Figure 22: Error in solution fields from SDIRK34 – Litmus test 

Table IX below presents the data on the number of steps and function evaluations 

needed by RADAU5 and SDIRK34 schemes to resolve the discontinuities. 
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Table IX: Comparison between RADAU5 and SDIRK34 

Method RADAU5 SDIRK34 

Steps 173 362 

Trials 84 11 

Fevals 2302 7776 

Jevals 92 353 

Average ∆t 2.89E-2 1.381E-2 

 

A plot of the ∆t values used by each of the solvers is shown in Fig. 23. 

 

Figure 23: Plot of step sizes used by different solvers for Litmus test case 

The RADAU5 scheme as given by Hairer is the best and optimal scheme among the 

methods tested. The number of steps and function evaluations are the least and are lower 

by a factor of 5 with respect to the SDIRK34 solver. Other alternate predictive step 

controllers like Gustafsson predictor which takes into account the number of Newton 

iterations taken to converge the solution for controlling the step might improve the 

performance for specific cases and scenarios. 
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V.1.2.6  Error analysis 

V.1.2.6.1 True error vs estimated error 

Based on the performance of the RADAU5 and SDIRK34 solvers, it is also essential 

to find out if the estimated error in the solver is equivalent to the true error in the solution. 

Such comparisons give us a complete picture on the efficiency of the adaptive solvers 

when finding solutions with discontinuities. Unfortunately, since an analytical solution is 

not available in the feedback scenario, we will resort to using the reference solution to 

calculate the true error. 

 

Figure 24: Actual error vs estimated error in the RADAU5 and SDIRK34 solvers 

Fig. 24 shows the actual errors and estimated errors from RADAU5 and SDIRK 

solvers. It compares the efficiency of the error estimation for these solvers which 

significantly affects the time steps chosen by the scheme. The plot shows that the SDIRK 

that is based on the RADAU5 scheme step control code is actually more accurate in 

estimating the local error than RADAU5 scheme. 

The effectivity is usually measured using the ‘Effectivity Index’ (EI) which is 

expressed as the ratio of estimated error to the true error. For a good error estimator, the 
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effectivity should be close to 1. From the above figure, the mean EI for both the schemes 

was found and is given below. 

EI(RADAU5) = 11.5357 and EI(SDIRK34) = 2.69242 

V.1.2.6.2 Component-wise errors 

From the above figure, it is quite clear that both the solvers converge quite well even 

in the presence of discontinuities and this result validates that the error estimators in the 

solvers are efficient. 

 

Figure 25: Error in RADAU5 solution fields – component-wise 

Fig. 25 shows a plot similar of the relative error in the calculated power, 1 delayed 

group precursor concentration (C) and temperature solution fields. The important factor 

to note in the figure is that for the same step size, the local error in each of the solution 

fields is very different. The error with RADAU5 scheme for Power and Precursor, Fuel 

temperature differs by an order of 2.5 on average i.e., the Precursor concentration is 250 

times more accurate than Power solution for the same step size and the moderator 

temperature is 104 times more accurate. The implication of this observation is that it 

would be wise to use different step sizes to find the solution of different components of 

the solution vector instead of using the same step size. This would reduce the total 
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number of overall calculations and function evaluations but definitely will involve 

complicated implementation techniques. 

The results shown in the tables and the discussion above are for a transient due to a 

step reactivity addition but similar runs for a ramp reactivity addition were performed and 

similar results were obtained. Hence, the results from the implemented schemes are 

consistent for the system and can be applied to different other types of transients that 

need to be simulated like a sinusoidal or a pulse reactivity change. 

V.1.3 Discussion 

The observations from the results for the 0-D transient problem clearly prove that the 

explicit schemes do not perform well for the nuclear reactor transient problems. The 

SDIRK34 and RADAU5 embedded strategies are efficient in obtaining the ODE solution 

adaptively and surpass the performance of most MATLAB inbuilt solvers. 

Among the two aforementioned methods tested for 0-D problem, RADAU5 scheme 

as implemented by Hairer needs the least number of steps, function and Jacobian 

evaluations. This scheme is very promising and the performance of the method needs to 

be analyzed further for complicated parabolic problems with a time dependent mass 

matrix, as is the case in the MGD 1-D transient problem. 

Now let us analyze the results from the 1-D model by carrying forward what has been 

learnt from the 0-D model. 

V.2 1-D model 

Based on the results from constant stepping in 0-D model, a solution prediction 

methodology was implemented for the 1-D model but the Steffensen's acceleration was 

not included due to the reason that the gain in CPU time is very dependent on the way the 

solution driver is programmed and the platform used to run the computer code. As 

mentioned before in Chapter IV, a code was written in C# instead of MATLAB thereby 

increasing the overall speed of obtaining the result.  

In the 1-D model, it is important to discretize the spatial variable thoroughly in order 

to eliminate the loss of order of convergence in the time integration due to a spatially un-

converged or weak solution. Hence, a fine Finite Element (FE) discretization of the axial 

fuel for neutronics with 100 meshes over the 400cm length of the pin and a 10 region fuel 
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pin radial discretization for the fuel conduction were used to calculate the solution in all 

the following cases. 

For the 1-D model, the homogenous reactivity addition is simulated by changing the 

thermal fission cross-section as a function of time, similar to the external reactivity 

function in the 0-D model. It is also imperative to note that the 1/v values for the chosen 

materials as a function of energy groups are in the order of .5456853E-07 sec/m for fast, 

and .2491910E-05 sec/m for thermal energy groups. This 1/v term, as seen in the time 

dependent MGD equation yields a small generation time (Λ) based on the relation in 

Equation (3.9), making the coupled system stiff. 

Multi-parameterized cross-section data was obtained from NEA[2] for Rod ejection 

benchmark problems and were used for simulating all 1-D transients. The 2 group cross-

section set provides the necessary data as a function of fuel temperature (Tf) and 

moderator density (ρmod). For feedback calculations, the cross-section was linearly 

interpolated between the table points to simulate the nonlinearly coupled behavior 

witnessed in reactor experiments as detailed in Chapter IV. The results obtained for the 1-

D model for constant time-step strategy are given below. 

V.2.1 Constant time-step strategy 

Before we check the order of accuracy of the B.E and C.N schemes in the 1-D model 

for the coupled physics problem, the individual physics need to be tested if they produce 

the theoretical convergence orders when there is no feedback. We know that both the 

neutronics and heat conduction physics are inherently nonlinear in the presence of 

feedback but in the absence of feedback, only the heat conduction physics is nonlinear 

while the neutronics equations are linear. A step by step sanity check for the order of 

convergence in each of the individual physics is discussed in the following section. 

V.2.1.1  No feedback – only neutronics 

In this experiment, the fuel and moderator temperatures are calculated initially and 

used only as a parameter to find the cross-sections during the transient. The homogenous 

reactivity addition of about 0.5$ was simulated by changing the thermal absorption cross-

section and the order of accuracy for the system is found and plotted in Fig. 26. It is 



 

 

92 

evident that the MGD model for neutronics without hydraulic feedback yields the 

theoretical order of convergence. 

 

Figure 26: Order of convergence – only neutronics in 1-D model 

V.2.1.2  No feedback – only hydraulics 

Similar to the no feedback scenario in the previous section, the order of convergence 

for the nonlinear heat conduction physics for the B.E, CN scheme with a fixed power 

shape (cosine) was found. The transient was simulated with a homogenous change 

(amplitude 2.0) to the power profile and the effective fuel temperature profile was found 

out. Fig. 27 shows the order of convergence of the temperature field for a ramp transient 

in power. It can be observed that the fuel temperature is O(h2) for the simulated transient 

when the C.N scheme is used and is O(h) for B.E. 

 Since the moderator temperature does not vary during the short durations for which 

the accident transients are simulated, the moderator transient solution field has been 

neglected in all calculations. This would be true even when the system is completely 

coupled to the neutronics which we shall discuss in the next section. 
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Figure 27: Order of convergence – only hydraulics in 1-D model 

V.2.1.3  Fully coupled system 

In the previous two sub-sections, we have checked the order of convergence of the 

individual physics for the B.E and CN constant time-stepping scheme in 1-D model. The 

results are consistent with the theoretical orders. Due to the fact that the physics 

components were decoupled, the solution prediction methodology was not necessary to 

converge the non-linearities between the physics. But when feedback is involved, the 

nonlinearities arising from the conventional operator-split coupling need to be resolved or 

else the order of accuracy O(h2) in the solutions from the C.N scheme will be degraded to 

a global accuracy of O(h) as shown in Chapter II.  

The results presented for this coupled 1-D model will involve various cases.  

Case 1 

A homogenous fuel pin with material number 3 from MSLB cross-section library 

(k∞=0.9317748), with 2-energy groups and 1-delayed group will be used in calculation. A 

control rod is inserted initially for 50 cm when the reactor is critical and is withdrawn 

slowly with a ramp change at t0+ seconds. This is a ramp reactivity addition from t=[0+, 

0.1] secs to the fuel pin. The flux shapes for the fast and thermal group initially and 

during the transient simulated for a period of 1sec is shown in Figs. 28 and 29 

respectively. It can be observed that the initial flux shape is peaked at the bottom with 
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vacuum boundary conditions changes to be peaked slightly closer to the middle as the 

transient progresses. This transient is simulated using the B.E discretization scheme with 

θ=1. 

 

Figure 28: Fast flux transient profile – 1-D (Case 1) 

 

Figure 29: Thermal flux transient profile – 1-D (Case 1) 
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The flux initially can be noticed to be lower and when the ramp reactivity is added, 

the gain increases the flux slowly during the transient period and reaches the maximum 

amplitude at 0.1 secs. Due to the feedback mechanisms, the power and the flux then start 

to decrease slowly during the remaining transient until an equilibrium condition is 

reached t>>0. This is clearer from Fig. 30 showing the power transient profile exhibiting 

the exact same behavior of the flux. 

 

Figure 30: Power transient profile: 1-D (Case 1) 

The above figures validate the theoretical behavior of the transient and so we now 

proceed to finding the order of convergence of different methods using the θ time 

discretization scheme. Then to obtain the reference solution for comparison, a fine 

∆t=1E-5 sec was used to obtain the solution at the end of the transient T = 1 sec. This will 

be used to measure the global error in the solution for different ∆t ranging from [1E-4, 

1E-3]. 

The conventional staggered scheme with both Neutronics first and Hydraulics first 

along with a non-staggered simultaneous procedure with no outer iteration over all the 

physics was tested to determine if the nonlinear inconsistency destroys O(h2) 

convergence. The results obtained for the global convergence order are plotted for the 
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C.N scheme in the conventional non-staggered update scheme and tabulated below for 

both B.E, C.N methods in all the above coupling strategies as shown in Table X. 

Fig. 31 shows that all the solution fields yield the same order of convergence 

consistently. This is true for all the schemes mentioned above and the order of 

convergence found for the transient solution fields namely 2 group flux, 1 delayed group 

precursor concentration and the fuel, moderator temperatures are listed below. 

Table X: Order of convergence for various method/coupling strategies 

Method/Coupling strategy Backward Euler Crank Nicolson 

Simultaneous update 1.0207 1.0268 

Staggered update – Neutronics first 1.0220 0.9976 

Staggered update – Hydraulics first 1.0220 1.0260 

 

 

Figure 31: Order of convergence for simultaneous update coupling – 1-D model 

The coupled system solution without FPI or prediction (conventional) yields a global 

O(h) accurate solution for all the variables similar to the results shown in Fig. 6. If we 

perform FPI over the system, all the nonlinearities will be resolved completely and the 
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order of convergence will be restored. But this is very expensive for even a 1-D model 

since the number of matrix inversions and floating point operations limit the number of 

iterations that can be performed to avoid the influence of round-off errors. Instead, to 

save both CPU time and to get a more accurate solution, a prediction procedure is 

performed and tested for the 1-D model, with all the other parameters remaining the same. 

The new results obtained for the convergence order using the C.N scheme are listed 

below. 

Table XI: Order of convergence using solution prediction 

Coupling strategy Operation Order of accuracy 

Simultaneous update FPI, No Pred 1.9875 

Simultaneous update  No FPI, Pred 1.0605 

Staggered update – Neutronics first No FPI, Pred 2.1827 

Staggered update – Hydraulics first No FPI, Pred 2.1846 

 

Results from Table XI show that the solution prediction method provides an 

improvement in the accuracy order for the conventional staggered coupling strategies, as 

we have seen in the 0-D model. But when a lagged simultaneous coupling is 

implemented, where each physics component is explicitly calculated using the value of 

other physics solution field at previous time step, the gain from the prediction 

methodology fails. 

The results do prove that conventional staggered coupling can be improved with 

minor modifications to approximate the nonlinear term in the IVP to obtain the real 

theoretical orders of convergence but the simultaneous update coupling are O(h) in 

accuracy, unless Picard iteration procedure is performed to converge the nonlinearities 

completely. But since the iterative nonlinear convergence procedure is expensive in terms 

of CPU time, alternates like the staggered coupling with prediction prove to be better 

candidates for improving existing multi-physics coupling strategies. 

The scenario where the simultaneous update procedure does not provide O(h2) when 

prediction is applied is surprising since the staggered update procedure produces higher 

accuracy with the same prediction procedure. To confirm the behavior of this particular 
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operator-split coupling strategy, further work needs to be performed in the future and the 

reasons need to be analyzed. 

Now, to test the consistency and improvement in the accuracy of the solution due to 

prediction in a staggered coupling strategy, a new scenario with alternate system 

properties were used. 

Case 2 

A heterogenous fuel pin assembly with different axial layers consisting of the 

material numbers 2, 3, 6 from MSLB cross-section library arranged as [2 2 6 3 3 3], with 

2-energy groups and 1-delayed group will be used in calculation. Similar to the Litmus 

test case in 0-D model, a SCRAM is applied at t=0.5 secs. 

Figs. 32 and 33 show the initial fast and thermal flux along with the transient 

variation in the profiles. As seen from the flux shape, the system undergoes severe 

changes in the course of the transient and the cross-sections as a function of the 

calculated fuel temperature and moderator density couple the neutronics and hydraulics 

physics intricately. 

 

Figure 32: Fast flux transient profile – 1-D (Case 2) 
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Figure 33: Thermal flux transient profile – 1-D (Case 2) 

Fig. 34 shows the transient plot of the SCRAM accident scenario for the reference 

solution. Fig. 35 shows the enlarged picture right after the SCRAM event occurred during 

the transient, calculated using the conventional staggered coupling without prediction, 

with prediction and the reference solution. 

 

Figure 34: SCRAM Power transient plot (Case 2) 
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Figure 35: Comparison of conventional vs predicted (Enlarged at SCRAM) 

The gain in accuracy and convergence using solution prediction is consistent with 0-

D results. From Fig. 35, it is evident that the predicted solution is closer to the reference 

than the solution from the conventional staggered scheme, even though the prediction 

time step is same as the conventional solution time step. Also, the average error in the 

conventional scheme can be observed to be higher (8%) than the 2nd order prediction 

solution (2.4%) by a factor of 3 which validates the efficient convergence and 

consistency of the scheme. 

The overall gain in CPU time and accuracy by making the simple local extrapolation 

in the solution as compared to full Picard iterations is tremendous. The obvious 

advantage of this procedure is that it impacts the driver very minimally and requires the 

storage of only 2 preceding solution vectors in memory. Considering the memory 

improvement in recent years, this requirement is trivial to implement in the existing 

conventional black-box drivers. The only disadvantage of such constant time-stepping 

strategies are that it requires a lot more steps to obtain a certain accuracy and the error 

can be reduced only as O(h2) for the C.N scheme. Hence the alternatives to decrease the 

man hours spent on calculation is to use higher order implicit schemes or an adaptive 

time-stepping procedure as performed in the 0-D model to obtain confident solutions to 

user specified accuracy. 
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V.2.2 Adaptive time-step strategy 

Based on the 0-D adaptive time-stepping results, the RADAU5, ERK34 embedded 

schemes were decided to be used to obtain the solution fields. The results obtained for the 

1-dimensional analysis of the adaptive time-stepping schemes have not been included in 

this thesis but a detailed analysis will be presented in a related technical paper.  

Nevertheless, the results from the constant stepping strategy do match the 0-D results 

for the same which implies that both the models exhibit similar behavior and that the 

NCC strategies devised to solve for the solution fields accurately are successful. Hence, 

the methods chosen are expected to work well in the 1-D adaptive time stepping case also 

and should provide considerable improvements in the CPU time and solution accuracy as 

observed before. 
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CHAPTER VI 

CONCLUSION 

The results obtained using the code written to implement the proposed strategies 

allowed us to test several alternatives to existing coupling strategies. Some of the key 

conclusions derived from the results are discussed below. 

VI.1 Operator splitting vs monolithic system of equations 

Conventional operator-split methods offer the advantage of being easy to implement 

with existing mono-disciplinary codes and allow the possibility of using solution 

prediction strategies or Picard iterations to regain the lost accuracy due to inconsistent 

coupling. The other parameters that need to be weighed between these two methods is 

that Picard iterations are costly in terms of CPU time since they require convergence at 

every time step. On the other hand, the explicit linearization using solution prediction 

provides only conditional stability to the scheme and hence cannot be used with larger 

time steps. Hence, a balance between these two approaches needs to be used while 

finding high fidelity solutions in reactor analysis problems. 

Instead of the operator-split method, a monolithic block of the system of equations 

can be solved at once to obtain all the solution fields implicitly, thereby eliminating the 

loss of accuracy due to inconsistency. But, such calculations involve the determination of 

the Jacobian matrix which can be expensive to compute numerically. An alternative 

approach then would be to use Jacobian free schemes which could facilitate the usage of 

the method without actually forming the exact Jacobian matrix but instead use Matrix-

Vector operations to approximate the matrix. 

VI.2 Restoring accuracy in conventional schemes 

Conventional operator-splitting methods provide a flexible way to treat the coupling 

of different physics in nuclear reactor analysis but due to the monodisciplinary nature of 

the existing codes and their solution procedure restrictions (CPU and hardware 

restrictions at the time of their development), the resulting coupling strategy was 

deficient and the accuracy in the solution was reduced to O(h) globally. The 

modifications in this scheme by including local solution extrapolation does yield 
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improvements in the order of accuracy (O(h2) or O(h3) globally, depending on the type of 

the predictive scheme) with very minor changes to the driver interfacing different physics 

component codes. But the improvement in accuracy also comes with the price of 

conditional stability of the numerical scheme used which could restrict the time steps 

used. 

Picard iterations with Steffensen’s acceleration restore the global order of accuracy of 

the time-stepping scheme and but require several iterations/step which is computationally 

costly when transient solutions for large periods are needed. 

Although both the above methods provide valuable improvement to the current 

conventional coupling methods, the optimal method for the problem in question needs to 

be chosen by weighing stability restrictions again increased computational time. 

VI.3 Constant vs adaptive time-stepping 

The results from the 0-D model are very conclusive and clearly show the 

advantageous of using adaptive time-stepping strategy over constant time-stepping. The 

reliability in the accuracy of the solution fields and the lower CPU time required to obtain 

the same are two crucial properties of this strategy. 

Existing coupling codes in the nuclear field use constant stepping strategy and it 

would require some effort to change the implementation to include adaptive stepping 

strategy. Instead, the benefits of the solution prediction method can be realized much 

more immediately rather than changing the driver to include adaptivity. 

VI.4 Method of choice for higher accuracy 

The higher order implicit RK embedded scheme namely the 3-stage, RADAU5 

scheme, exhibits stable behavior and is not restrained by the time steps chosen. Hence, 

the scheme offers the advantage of resolving the nonlinearities well in the reactor 

analysis problem during both the fast transient and the slowly varying period. This stiffly 

accurate scheme with a global convergence order of O(h5) provides good improvements 

in the results over the conventional θ-discretization scheme owing to a very efficient 

implementation.  

There are few changes required to be made in the mono-physics codes to include this 

time integration scheme if a monoblock coupling strategy is used. The results from 0-D 

where such a coupling was used prove the feasibility of RADAU5 scheme to solve even 
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higher dimensional problems if appropriate modifications in existing codes can be made. 

This could significantly offer an improvement in the solution accuracy and reliability in 

the codes for solving reactor analysis transient problems. 

VI.5 Future work 

The efficient schemes for multi-physics coupling is a fast growing topic currently and 

offer insights into the behavior of nonlinear time integrators. Several time stepping 

strategies and schemes were tested for the 0-D and 1-D model for nuclear reactor 

problems, there are always modifications and improvements that can be made to existing 

schemes. Some of the future work that could be performed to improve our initial findings 

are given below: 

1) Extension of the schemes to higher dimensional problems involving stronger 

coupling to the other physics. For instance, the improvement in solution for 3D 

reactor analysis problem using RADAU5 scheme will be more evident when there 

is a stronger coupling between neutronics and the hydraulics model. Based on the 

results obtained for the lower dimensional problems, the gain due to the scheme 

for such a complex problem will prove the coupling analysis performed here and 

will accelerate the move towards high fidelity modeling of reactor problems.  

2) Most implicit RK schemes require the computation of the Jacobian at every time 

step which has a huge computational cost, especially when the spatially 

discretized system is large. Then, it becomes necessary to attack the problem 

using Jacobian-free Newton-Krylov and Rosenbrock methods. Such schemes 

should increase the computational speed by several orders for higher dimensional 

problems. 

3) Existing mono-physics codes could be coupled with a custom written interface 

driver module to observe the real improvement in the accuracy of solution fields. 

For instance, a multi-dimensional transient code like <neutronics code > can be 

coupled and interfaced with RELAP3D and the solution fields for a rod ejection 

accident can be benchmarked. The analysis of the accuracy from such a 

calculation would validate the results obtained in the current research. 
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APPENDIX A 

 

Spatial and temporal discretization procedure for MGD equation in 1-Dimension 
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1. Equations 

 
The general form of the equations is: 

 
1 1

1
1

G G
g

g g r g g gs g g g g f g g
g gg

g g

D
v t

χ β ν
 
 
 ′ ′ ′ ′ ′ 
 ′ ′

′

→ → 
 
  , , → , 
  = =

≠

∂Φ
= ∇⋅ ∇ Φ − Σ Φ + Σ Φ + − Σ Φ

∂
∑ ∑  

 
1

for 1
L

g C g Gχ λ,
=

+ , = ..∑ l l l

l

 (1) 

 
1

for 1
G

g f g g
g

C
C L

t
λ β ν′ ′ ′

′
, ,

=

∂
= − + Σ Φ , = ..

∂
∑l

l l l
l  (2) 

 
 
on the reactor domain D,  

 
with initial data for the flux and precursors: 

 ( ) ( )00
g g

r rΦ , = Φ
r r

 (3) 

 ( ) ( )00C r C r, =
l l

r r
 (4) 

 
and boundary conditions for the flux: 

 ( ) 0 on
g

r t DΦ , = ∂
r

 (5) 

 
The precursors’ equations can be integrated in time:  

 ( ) ( ) ( ) ( ) ( )0

0

1

exp exp ( )
G

s t

s g f g g

g

C r t C r t t s r s dsλ λ β ν=

= , ,
=

, = − + − − × Σ Φ ,∑l l l l l

r r r
(6) 

 
Substituting back into the neutron balance equation yields: 

1 1

1
1

G G
g

g g r g g gs g g g g f g g
g gg

g g

D
v t

χ β ν
 
 
 ′ ′ ′ ′ ′ 
 ′ ′

′

→ → 
 
  , , → , 
  = =

≠

∂Φ
= ∇⋅ ∇ Φ − Σ Φ + Σ Φ + − Σ Φ

∂
∑ ∑  

                 ( ) ( ) ( ) ( )0

1 10

exp exp ( )
s tL G

g g f g g
gs

C r t t s r s dsχ λ λ λ β ν′ ′ ′

′

=

, , ,
= ==

 
+ − + − − × Σ Φ , 

  
∑ ∑∫l l l l l l
l

r r

 (7) 
 

The following data can generally be considered independent of space and time: 
g

χ , ,
l

 λ ,
l

 

g
β , ,

l
 

g
χ ,  

g
v .   
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A note on the steady state: 

1 1

0 1
G G

g g r g g gs g g g g f g g
g g

g g

D χ β ν
 
 
 ′ ′ ′ ′ ′ 
 ′ ′

′

→ → 
 
  , , → , 
  = =

≠

= ∇⋅ ∇ Φ − Σ Φ + Σ Φ + − Σ Φ∑ ∑
1

L

g Cχ λ,
=

+∑ l l l

l

 (8) 

1..for g G=  

and 
1

0 for 1
G

g f g g
g

C Lλ β ν′ ′ ′

′
, ,

=

= − + Σ Φ , = ..∑l l l
l                                

(9) 
 
Thus 

 
1

for 1
G

g f g g
g

C Lλ β ν′ ′ ′

′
,

=

= Σ Φ , = ..∑l l
l  (10) 

 
1 1

1
G G

g g r g g gs g g g g f g g
g g

g g

D χ β ν
 
 
 ′ ′ ′ ′ ′ 
 ′ ′

′

→ → 
 
  , , → , 
  = =

≠

−∇⋅ ∇ Φ + Σ Φ = Σ Φ + − Σ Φ∑ ∑  (11) 

 
1 1

for 1
L G

g g f g g
g

g Gχ β ν′ ′ ′

′
, , ,

= =

+ Σ Φ , = ..∑ ∑l l
l

 

 
Letting 

 
1 1

1 1
L L

g g g gg f g g f g g g f g g g g
χ β ν ν χ β ν χ β χ β

 
    
    
    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′    

    
 

, ,, , , , ,
= =

− Σ Φ + Σ Φ = Σ Φ − +∑ ∑l ll l
l l

 

 
g f g g

χ ν ′ ′,
= Σ Φ  (12) 

 
we obtain: 

 
1 1

for 1
G G

g g r g g gs g g g f g g
g g

g g

D g Gχ ν′ ′ ′ ′

′ ′

′

→ → 
 
  , , → , 
  = =

≠

−∇⋅ ∇ Φ + Σ Φ = + Σ Φ + Σ Φ = ..∑ ∑ (13) 

 

2. Finite element matrices 

In FEM, the flux is expanded on N  basis functions p  as follows: 

 ( ) ( ) ( )
1

N

g g i i

i

r t t p rφ ,
=

Φ , = ×∑
r r

 (14) 

 
Therefore,  

 ( ) ( ) ( ) ( )
1 1

1 1 1N N
g g i g i

i i

i ig g g

d d
t p r p r t

v t v dt v dt

φ φ, ,

= =

∂Φ
= × =

∂
∑ ∑

r r
 (15) 

 

 
1

N

g g r g g g g r g i g i

i

D D p φ
 → → → →   
    
    , , ,       =  

∇⋅ ∇ Φ − Σ Φ = ∇⋅ ∇ Φ − Σ∑  (16) 
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11 1

G N G

is g g g s g g g i
ig g

g g g g

p φ′ ′ ′ ′

′ ′

′ ′

, → , → ,
== =

≠ ≠

Σ Φ = Σ ×∑ ∑∑  (17) 

 

 
11 1

G N G

if g g f g g i
ig g

pν ν φ′ ′ ′ ′

′ ′
, , ,

== =

Σ Φ = Σ ×∑ ∑∑  (18) 

 
Let us project the balance equation on the basis functions. We therefore need to define 
the following matrices:  

� Mass matrix to be associated with the time differential: 

 gg

ij i j ggD
M p p δ

′

′= ∫  (19) 

(M is block diagonal on the energy groups)  
� Loss matrix (due to diffusion and removal): 

 gg

ij g i r g i j ggD
L D p p p δ

′

′

  
    ,   

= − ∇ ⋅ ∇ − Σ∫
ur ur

 (20) 

(L is block diagonal on the energy groups)  
� Scattering matrix: 

 
if

0 if

i jgg s g gD
ij

p p g g
T

g g

′ ′

′

, →

′

 Σ ≠
= 

=

∫  (21) 

(T is a full block matrix with blocks on the diagonal equal to zero because in the 
loss matrix we have the removal XS and not the total XS)  

� Prompt fission production matrix: 

 1gg

ij g i jg f gD
P p pχ β ν

 ′
 
 ′ ′ 
  ,

= − Σ∫  (22) 

(P is a full block matrix, block lines are equal to zero where the spectrum
g

χ  is 

zero)  
� delayed neutron fission matrix: 

 gg

ij g i jg f gD
D p pχ β ν

′

′ ′

,

, , ,
= Σ∫

l

l l
 (23) 

 
These matrices have a rank of G N×  (or L G N× × ) .  All these matrices, except the 

first one, are time-dependent. Using Green’s formula on the diffusion matrix, we can 
also get: 

 gg

ij g i j r g i j ggD
L D p p p p δ

′

′

 
 , 

= ∇ ⋅∇ + Σ∫
ur ur

 (24) 

 
Finally, the following notation will be used for the projected precursors: 

 ( ) ( ) ( )i i
D

c t C r t p r, = ,∫l l

r r
 (25) 

(
i

c ,l  is a vector) 

 
Putting everything together, we get, for any group g : 
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1 1

1
( ) ( ) ( ) ( ) ( ) ( )

g G G
gg gg g gg g gg g

g g

d
M L t t T t t P t t

V dt

φ
φ φ φ

′ ′ ′ ′

′ ′= =

= − + +∑ ∑  

 ( ) ( )0

1

exp
L

g c r tχ λ λ,
=

+ −∑ l l l l

l

r
 

 ( ) ( ) ( )0

1 1

exp exp
L G

s t gg g

s

g

t s D s dsλ λ λ φ
′ ′

′

= ,
=

= =

+ − ×∑ ∑ l

l l l

l

 (26) 

 
 
or 

 
1

1
( ) ( )

g G
gg gg g

g

d
M K t t

V dt

φ
φ

′ ′

′ =

= −∑  

 ( )0

1

exp
L

g c tχ λ λ,
=

+ −∑ l l l l

l

 

 ( ) ( ) ( )0

1 1

exp exp
L G

s t g g

g s g
g

t s F s dsχ λ λ λ β φ
′ ′

′

′

=
, = ,

= =

+ − ×∑ ∑l l l l l
l

 (27) 

 
where  

 ( ) ( ) ( ) ( )gg gg gg gg
K t L t T t P t

′ ′ ′ ′

= − −  (28) 

 

and g
F

′

 is described below. 
 
A note on vectors and matrices describing Equation (27). 

1) 
g

φ  is the column vector of nodal flux unknowns such that T

g gP φΦ =  ( P  is the 

column vector composed of basis functions);  

2) φ  is simply the column vector composed of 1( )T T T T

g Gφ φ φ, ..., , ...,  of length N G× ;   

3) M  is a time-independent mass matrix of rank N G× ;  it is block-diagonal where 

each block represents an energy group. Each block contains the spatial integrals 

i j
D

p p∫  and is not diagonal [except in the case of 1-D problems for which the 

spatial discretization used is either FD or linear Lagrange FEM with a Lobatto 
integration quadrature]; 

4) V  is a diagonal matrix rank N G×  containing the neutron velocities;  
5) L  is a time-dependent matrix of rank N G× ;  it is block-diagonal where each 

block represents an energy group. Each block contains the spatial integrals 

g i j r g i j
D

D p p p p
 
 , 

∇ ⋅∇ + Σ∫
ur ur

 (stiffness and mass matrices);  

6) T  is a time-dependent matrix of rank N G× ;  it is not block-diagonal and each 

block represents the scattering between one energy group to another energy group. 
The way we defined it, all diagonal blocks are zero [the within group scattering 
has been removed to form the removal cross-section found in matrix L ]. Each 

block contains the spatial integrals 
i js g gD

p p′, →
Σ∫  (mass matrix);  
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7) P  is a time-dependent matrix of rank N G× ;  it is not block-diagonal but can be 

full and each block represents the relation between the group of neutron inducing 
the fission and the group of the resulting fission neutrons. Each block contains the 

spatial integrals 1g i jg f gD
p pχ β ν

 
 
 ′ ′ 
  ,

− Σ∫  (mass matrix). We can go further and 

decompose this matrix as:  

(a) A block column matrix χ  of size [ ]N G N× ×  composed of the 

fission spectrum. Each block (size )N N×  is diagonal and contains the 

constant value 
g

χ .  If it helps to see it as a matrix, then that’s fine. To me, 

it may as well just be a constant scalar which is different for each energy 
group;  

(b) A block line matrix F
≈

 of size [ ]N N G× ×  composed of the total 

fission reaction rates weighted by the prompt neutrons fraction. Each 
block (size )N N×  is a mass matrix and contains 

1
g

i jg f gD
p pF β ν

′
 
 
 ′ ′ 
 

≈

,
= − Σ∫ . Since the total fission matrix is often used, we 

will denote it by: g

i jf gD
F p pν

′

′,
= Σ∫  (mass matrix);  

(c) from these definitions, we obviously have : 

[ ] [ ] [ ] [ ]N G N N G N GN N G
PFχ ≈

× × × × ×× ×
× =   

(d) Note that: 

 1gg g

g g
P Fχ β

 ′ ′
 
 ′ 
 

= −  (29) 

Note that: 

 gg g

g g
D Fχ β

′ ′

′

,

, ,
=l

l l
 (30) 

 
8) C - The projected precursor concentrations are column vectors:  

 
At steady state, we have 

 
1

G
g

g f g
g

Cλ β ν
′

′ ′

′
, ,

=

= Σ Φ∑l l l
 (31) 

hence,  

( ) ( ) ( )j j
D

c t C r t p rλ λ, = ,∫l l l l

r r

( ) ( )
1

G
g

i i jg f gD
ig

p r p rβ ν φ
′

′ ′

′
, ,

=

= Σ∑ ∑∫l

r r
 

 
1

G
g g

g
g

Fβ φ
′ ′

′

′
,

=

=∑ l
 (32) 

 
Note: This is how the initial value of precursors must be computed. 
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3. Time variation for the time-dependent matrices 

 

Over the time interval 1[ ]n nt t +; ,  we will assume a linear variation for ( )K t :  

 
1 1( ) ( ) ( )n n n nK t K u t K u t+ += +  (33) 

and for ( )F t  

 1 1( ) ( ) ( )n n n nF t F u t F u t+ += +  (34) 

 
where 

 
1

1
( )

n
n

n n

t t
u t

t t

+

+

−
=

−
 (35) 

 1

1
( )

n
n

n n

t t
u t

t t

+

+

−
=

−
 (36) 

 
 

Integrating the balance equation over 1[ ]n nt t +;  yields: 

 
1

1
( ) ( )

g G
gg gg g

g

d
M K t t

V dt

φ
φ

′ ′

′ =

= −∑  

 ( )0

1

exp
L

g c tχ λ λ,
=

+ −∑ l l l l

l

 (37) 

 ( ) ( ) ( )' '

0

1 1

exp exp
L G

s t g g

g s g
g

t s F s dsχ λ λ λ β φ′

′

=
, = ,

= =

+ − ×∑ ∑l l l l l
l

 

 
This can be rearranged as  

 

1

1

1

1
( ) ( )

n

n n
g g

n

tG
gg gg g

g t

M dtK t t
V

φ φ φ

+

 + ′ ′
 
 
 
  ′ =

− = −∑ ∫  

 ( )
1

0

1

exp

n

n

tL

g

t

dtc tχ λ λ

+

,
=

+ −∑ ∫l l l l

l

 (38) 

 ( ) ( ) ( )
1

' '

0

1 1

exp exp

n

n

tL G
s t g g

g s g
gt

dt t ds s F sχ λ λ λ β φ

+

′

′

=
, = ,

= =

 
+ − × 

  
∑ ∑∫l l l l l
l

 

 
 

4. Time variation for the flux 

 

 ( ) 1 1( ) ( )n n n n
t w t w tφ φ φ+ += +  (39) 

 

The functions ( )nw t  and 1( )nw t+  over the time interval 1[ ]n nt t +;  will be determined later.  
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Recalling that  

 
1 1( ) ( ) ( )n n n nK t K u t K u t+ += +  (40) 

 
and using the following definitions,  

 

1

( ) ( )

n

n

t

n q

n q

t

a u t w t dt

+

, = ∫  (41) 

 ( )( )
1

exp ( ) ( )

n

n

t

n n q

n q

t

b t t u t w t dtλ

+

, = − − ×∫
l

l
 (42) 

 ( )( )
1

exp ( ) ( )

n

n n

t t

n q

n q

t t

c dt ds t s u s w sλ

+

, = − − ×∫ ∫
l

l
 (43) 

we obtain: 

 

1

1 1 1

1 1 1 1( ) ( )

n

n

t

n n n n n n

n n n n n n n n

t

K t t dt a K a K a K a Kφ φ φ

+

+ + +   
   , + , , + + , +   

= + + +∫  (44) 

and 

 ( ) ( ) ( )
1

1

exp exp ( )

n

n

n

tG
s t g g

g s tg
g t

t s F s s ds dtχ λ β λ λ φ

+

′ ′

′

′

=

, =,
=

   − ×  
  

∑ ∫l l l ll
 

 

'

1
'

' ' 1

1

'
' ' 11

1 1 1

n
g

n
g

g n g n
G n n n n

g g
g n g ng

n n n n

c F c F

c F c F

φ
χ λ β

φ

  
  
  
  
   
  

+  
  ′
  
  

   

, , + 
 , + , 

, ,
, , + =

 , + + , + 

+
= ×

+ +
∑

l l

l l l
l l

 (45) 

 

In the above expression, the lower bound for the integration on s  was n
t . We need to 

finish the integration starting from 0s = .   

 ( ) ( ) ( )
1

0 ' '

'

1 0

exp exp ( )

n n

n

t tG
g g

g g

gt

t c s F s s ds dtχ λ λ β λ φ

+

′
, ,

=

   
− + ×  

    
∑∫ ∫l l l l l l

 

 ( ) ( )1 0

1 0

exp exp exp ( )

n
tG

n n g g

g g
g

t t c s F s s dsχ λ λ β λ φ
′ ′

′

′

 +   
    , ,    

=

   
= − − + − × + ×  

    
∑ ∫l l l l ll

 

 ( )1 exp n

g
t cχ λ,= − − ∆  l l l

 (46) 

 
where: 

 ( ) ( )0

1 0

exp exp ( )

n
tG

n n g g

g
g

c t c s F s s dsλ β λ φ
′ ′

′

′

 
 

, 
=

   
= − + ×  

    
∑ ∫l l l ll

 (47) 

 
The latter term can be computed by induction:  
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 ( ) ( )
1

1 1 0 ' '

'

1 0

exp exp ( )

n
tG

n n g g

g

g

c t c s F s s dsλ β λ φ

+

′

+ + 
  , 

=

   
= − + ×  

    
∑ ∫l l l l l

 

 ( )

( ) ( )

( ) ( )
1

0 ' '

'

' 1 0

' '

'

' 1

exp ( )

exp exp

exp ( )

n

n

n

tG
g g

g

g
n

tG
g g

g

g t

c s F s s ds

t t

s F s s ds

β λ φ

λ λ

β λ φ

+

,
=

 
 
 

,
=

   
+ ×  

   
= − ∆ −  

   
+ ×  

    

∑ ∫

∑ ∫

l l l

l l

l l

 

 ( ) ( )
1

' '

'

1

exp exp ( )

n

n

tG
n n g g

g

g t

t c s t F s s dsλ β λ φ

+

′

  
  ,   

=

   
= − ∆ + − ×  

    
∑ ∫l l l l

 (48) 

Finally, 

 ( ) ( )( ) ( )
1

1 ' '

'

1

exp exp ( )

n

n

tG
n n n g g

g

g t

c t c t s F s s dsλ β λ φ

+

′

+
,

=

   
= − ∆ + − − ×  

    
∑ ∫l l l l l
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'

1
'
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1

' ' 1
1

1 1 1
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n
g

n
g

g n g n
G

n n n n
n

g
g n g n
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b F b F
t c

b F b F

φ
λ β

φ

  
  
  
  

  
  ′  + 
 ′ 
  
    

, , + 
 , + , 

, , , + 
=  , + + , + 

+
= − ∆ +

+ +
∑

l l

l l l
l l

 (49) 

   

 

Putting everything together, the time integration equations  

 

1

1
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' 1

1
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n

n n
g g

n

tG
gg gg g

g t

M dtK t t
V

φ φ φ

+

 +
 
 
 
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1
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1
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t
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 (50) 
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1
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n

t tL G
g g

g g
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dt t ds s F sχ λ λ λ β φ

+
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′

′
, ,
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 
+ − × 

  
∑ ∑∫ ∫l l l l l
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become 
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gg
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φ
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1

1 exp
L

n

g t cχ λ,
=

+ − − ∆  ∑ l l l

l

 (51) 
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with n
c
l

 the precursors concentration at the beginning of the time step. Once the new flux 
1n

gφ
+

 is solved for, we can get the precursors at the end of the time step by using 
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g n g n
G n n n n

n n

g
g n g ng

n n n n

b F b F
c t c

b F b F

φ
λ β

φ

  
 ′ ′ ′
  
  
  

  
  ′  + ′ ′ ′′ 
  
  
    

 , , +
 

, + ,  +

,
 , , +=  

, + + , +  

+
= − ∆ +
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In other words, it is of the form: 

 ( )1 1

1
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L

n n n n n
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=
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where 
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'
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G
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G
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=
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c F c Fχ λ β φ, , + , + 
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 (54) 

 
If we let 

 ( )
1

1 exp
L

g n n

gS t cχ λ,
,

=

= − − ∆  ∑ l l l

l

 (55) 

 
we have to solve the multi-group fixed source problem: 

 1 1n n n n nA A Sφ φ+ + = +  (56) 

 

Once 1nφ +  is determined, we can then compute 1n
c

+

l
 by induction.  

 

5. Choice of time functions 

 
The time-weight functions must satisfy: 
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 ( )
1

( ) 1

n

n

t

n

t

w t dt tθ

+

= − ∆∫  (57) 

 

1

1( )

n

n

t

n

t

w t dt tθ

+

+ = ∆∫  (58) 

In order to get the Crank-Nicholson scheme, it is obvious to let 

 ( ) ( )n nw t u t=  (59) 

 1 1( ) ( )n nw t u t+ +=  (60) 

 

          i.e., ( )
1

1

1 1

n n
n n

n n n n

t t t t
t

t t t t
φ φ φ

+
+

+ +

− −
= +

− −
 (61) 

(A linear approximation between the beginning and end times) 
 
But, for any other value of θ ,  such a choice would lead to a discontinuous approximation 

in time. We have to take a more general approach to define the weight function in time. 
This is explained below.  
 

The conditions to be satisfied by ( )nw t  and 1( )nw t+  are: 

 

 

( )
1 1

1

1

1 1

1

( ) 1 ( ) 0

( ) 0     and    ( ) 1

( ) 1 ( )

n n

n n

n n

n n

n n

n n

t t

n n

t t

w t w t

w t w t

w t dt t w t dt tθ θ

+ +

+

+
+ +

+

 
 

= = 
 

= = 
 
 = − ∆ = ∆
 
 
∫ ∫

 (62) 

leading to the general form for the time functions: 
 

 ( ) ( )1 1( ) 1 ( ) 1 3 ( ) 2 1n n nw t u t u t θ+ + = − × − −  ( )1( ) 1 3 ( ) 2 1n nu t u t θ+ = × − −   (63) 

 ( ) ( )1 1 1( ) ( ) 2 3 1 3 ( ) 1 2n n nw t u t u tθ θ+ + + = × − + −   (64) 

 
We find  

� for 1 2θ = /  

 ( ) ( )n nw t u t=  (65) 

 1 1( ) ( )n nw t u t+ +=  (66) 

 
� and for 1θ =  

 ( )1 1( ) 1 ( ) 1 3 ( )n n nw t u t u t+ + = − × −   (67) 

 1 1 1( ) ( ) 4 3 ( )n n nw t u t u t+ + + = × −   (68) 
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6. Computation of the various coefficients 

 

 

1
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n

n

t

n q

n q

t

a u t w t dt

+

, = ∫  (69) 

 ( )( )
1

exp ( ) ( )

n

n

t

n n q

n q

t

b t t u t w t dtλ

+

, = − − ×∫
l

l
 (70) 

 ( )( )
1

exp ( ) ( )

n

n n

t t

n q

n q

t t

c dt ds t s u s w sλ

+

, = − − ×∫ ∫
l

l
 (71) 

 
where the linear variation over a time step of the properties is obtained using the 
functions 

 
1

1
( )

n
n

n n

t t
u t

t t

+

+

−
=

−
 (72) 

 1

1
( )

n
n

n n

t t
u t

t t

+

+

−
=

−
 (73) 

 
The flux variation over the time step has been approximated by 

 ( ) 1 1( ) ( )n n n n
t w t w tφ φ φ+ += +  (74) 

with 

 ( ) ( )1 1( ) 1 ( ) 1 3 ( ) 2 1n n nw t u t u t θ+ + = − × − −   (75) 

 ( ) ( )1 1 1( ) ( ) 2 3 1 3 ( ) 1 2n n nw t u t u tθ θ+ + + = × − + −   (76) 

 

6.1. an,q 

 
( )1 6 1 7 6

12 12
n n

a t t
θ θ

,

+ − −
= ∆ = ∆  (77) 

 1

6 1

12
n n

a t
θ

, +

−
= ∆  (78) 

 1 1

1 6

12
n n

a t
θ

+ , +

+
= ∆  (79) 

 1

6(1 ) 1 5 6

12 12
n n

a t t
θ θ

+ ,

− − −
= ∆ = ∆  (80) 

 
 
Note that:  

� 1 2
n n n n

a a t, , ++ = ∆ /         and 1 1 1 2
n n n n

a a t+ , + , ++ = ∆ /   

� 1 (1 )
n n n n

a a t θ, + ,+ = ∆ −  and 1 1 1n n n n
a a tθ, + + , ++ = ∆   
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6.2. bn,q 

By definition,  

 ( )( )
1

exp ( ) ( )

n

n

t

n n q

n q

t

b t t u t w t dtλ

+

, = − − ×∫
l

l
 (81) 

 

The various forms of ( ) ( )n qu t w t  are 3-rd order polynomials in time.  

 ( )( )
1

3exp ( )

n

n

t

n

n q

t

b t t P t dtλ

+

, = − − ×∫
l

l
 (82) 

Letting 

 n
t t

x
t

−
=

∆
 (83) 

 ( )
1

3

0

exp ( )
n q n

b t tx P tx t dxλ, = ∆ ∆ × ∆ +∫
l

l
 (84) 

 
We now need to find the integral of  

 ( )
1

0
exp withm

m
I x x dx tγ γ λ= = ∆∫  (85) 

By parts, we get: 

 1

1
exp for 1

m m
I mI mγ

γ
 
 − 

= − ≥  (86) 

Then, the coefficients we are looking for are 
 

 0

1 exp( )
I

γ

γ

− +
=  (87) 

 
[ ]

1 2

1 exp( ) 1
I

γ γ

γ

+ − +
=  (88) 

 

2

2 3

2 exp( ) 2 2
I

γ γ γ

γ

 
 
 

− + − +
=  (89) 

 

2 3

3 4

6 exp( ) 6 6 3
I

γ γ γ γ

γ

 
 
 

+ − + − +
=  (90) 

 

We now need to write the polynomials 3 3( ) ( )
n

P t P tx t= ∆ + .  Their coefficients in power of 
m

x  will be put in front of the previous integrals 
m

I  to form n qb , .l   

 2 3( ) ( ) 1 (1 6 ) (12 5) (3 6 )n nu t w t x x xθ θ θ= + − + − + −  (91) 

 1 2 3( ) ( ) (6 2) (5 12 ) (6 3)n nu t w t x x xθ θ θ+ = − + − + −  (92) 

 1 2 3( ) ( ) (2 6 ) (6 3)n nu t w t x x xθ θ+ = + − + −  (93) 

 1 1 2 3( ) ( ) ( 2 6 ) ( 6 3)n nu t w t x xθ θ+ + = − + + − +  (94) 
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Which then yields 

 [ ] ( )0 1 2 31 6 (12 5) 3 6
n n

b t I I I Iθ θ θ 
 ,  

= ∆ + − + − + −  (95) 

 1 1 2 3(6 2) (5 12 ) (6 3)n nb t I I Iθ θ θ 
 , +  

= ∆ − + − + −  (96) 

 ( )1 1 2 32 6 (6 3)
n n

b t I I Iθ θ 
 + ,  

= ∆ + − + −  (97) 

 ( ) ( )1 1 2 36 2 3 6
n n

b t I Iθ θ 
 + , +  

= ∆ − + −  (98) 

 
 

6.3. cn,q 

By definition,  
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The various forms of ( ) ( )n qu t w t  are 3-rd order polynomials in time.  
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Letting 
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We now need to find the integral of 
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1

0 0
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y
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m
J dy x y x dx tγ γ λ= − − = ∆∫ ∫  (105) 

 
By induction, we get: 
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 1

1 1
for 1

1
m mJ mJ m

mγ

 
 
 −
  

= − ≥
+

 (106) 

or,  

 0 2

1 exp( )
J

γ γ

γ

− + + −
=  (107) 

 
2

1 3

2 2exp( ) 2

2
J

γ γ γ

γ

− − − +
=  (108) 

 
2 3

2 4

6 6exp( ) 6 3

3
J

γ γ γ γ

γ

− − − + −
= −  (109) 

 
( )( )( )

3 5

24 24exp( ) 24 12 4

4
J

γ γ γ γ γ

γ

− − + − + + −
=  (110) 

 
 
Which then yields 
 

 [ ] ( )2

0 1 2 31 6 (12 5) 3 6
n n

c t J J J Jθ θ θ 
 ,  

= ∆ + − + − + −  (111) 

 2

1 1 2 3(6 2) (5 12 ) (6 3)n nc t J J Jθ θ θ 
 , +  

= ∆ − + − + −  (112) 
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c t J J Jθ θ 
 + ,  

= ∆ + − + −  (113) 
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 + , +  

= ∆ − + −  (114) 
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APPENDIX B 

 

Sample table for 2 group material cross-section data 
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* 

*  NEM-Cross Section Table Input  

* 

*    T Fuel        Rho Mod.      Boron ppm.    T Mod.     

         5                 6                  0      0 

*******           X-Section set #        1 

  1 

* 

*      Group No.  1 

* 

***************            Diffusion Coefficient Table    

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .1508746E+01  .1511112E+01  .1512206E+01  .1512700E+01 

  .1518247E+01  .1442037E+01  .1444304E+01  .1445194E+01  .1445690E+01 

  .1450740E+01  .1392654E+01  .1394824E+01  .1395713E+01  .1396108E+01 

  .1400958E+01  .1391094E+01  .1393265E+01  .1394155E+01  .1394650E+01 

  .1399403E+01  .1384241E+01  .1386413E+01  .1387202E+01  .1387698E+01 

  .1392449E+01  .1360958E+01  .1363033E+01  .1363924E+01  .1364319E+01 

  .1368548E+01 

* 

***************       Total Absorption X-Section Table    

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .1058338E-01  .1073651E-01  .1079159E-01  .1081860E-01 

  .1106677E–01  .1077265E-01  .1092982E-01  .1098688E-01  .1101492E-01 

  .1127017E-01  .1090575E-01  .1106592E-01  .1112498E-01  .1115302E-01 

  .1141525E-01  .1091032E-01  .1107151E-01  .1112957E-01  .1115860E-01 

  .1142085E-01  .1092912E-01  .1109030E-01  .1114936E-01  .1117740E-01 

  .1144162E-01  .1099822E-01  .1116148E-01  .1122057E-01  .1124962E-01 

  .1151338E-01 

* 

***************            Fission X-Section Table        

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .1983180E-02  .1975335E-02  .1972097E-02  .1970381E-02 

  .1953093E-02  .2013847E-02  .2005950E-02  .2002737E-02  .2001020E-02 

  .1983736E-02  .2036499E-02  .2028554E-02  .2025408E-02  .2023688E-02 

  .2006335E-02  .2037614E-02  .2029706E-02  .2026487E-02  .2024764E-02 

  .2007453E-02  .2040996E-02  .2033049E-02  .2029828E-02  .2028183E-02 

  .2010788E-02  .2053112E-02  .2045272E-02  .2042010E-02  .2040287E-02 

  .2022316E-02 

* 

***************            Nu-Fission X-Section Table     

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .5356767E-02  .5336368E-02  .5328014E-02  .5323575E-02 

  .5278625E-02  .5433965E-02  .5413659E-02  .5405386E-02  .5400952E-02 

  .5356086E-02  .5489179E-02  .5468777E-02  .5460499E-02  .5456064E-02 

  .5411287E-02  .5491165E-02  .5470871E-02  .5462597E-02  .5458158E-02 

  .5413298E-02  .5499056E-02  .5478661E-02  .5470388E-02  .5465954E-02 

  .5421083E-02  .5527800E-02  .5507508E-02  .5499132E-02  .5494696E-02 

  .5448120E-02 
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* 

***************            Scattering X-Section Table     

* 

****   From group 1 to 2 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .1339091E-01  .1330232E-01  .1326915E-01  .1325304E-01 

  .1310006E-01  .1515151E-01  .1505683E-01  .1502159E-01  .1500448E-01 

  .1484336E-01  .1655319E-01  .1645547E-01  .1641921E-01  .1640109E-01 

  .1623286E-01  .1659264E-01  .1649494E-01  .1645869E-01  .1644056E-01 

  .1627138E-01  .1679482E-01  .1669712E-01  .1665986E-01  .1664175E-01 

  .1647253E-01  .1752311E-01  .1742239E-01  .1738511E-01  .1736698E-01 

  .1718833E-01 

* 

*      Group No.  2 

* 

***************            Diffusion Coefficient Table    

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .3934076E+00  .3940181E+00  .3942747E+00  .3944050E+00 

  .3959027E+00  .3597593E+00  .3603187E+00  .3605462E+00  .3606666E+00 

  .3619079E+00  .3355342E+00  .3360643E+00  .3362854E+00  .3363927E+00 

  .3375699E+00  .3344979E+00  .3350412E+00  .3352591E+00  .3353698E+00 

  .3365476E+00  .3310488E+00  .3315824E+00  .3318037E+00  .3319111E+00 

  .3330892E+00  .3195803E+00  .3201075E+00  .3203192E+00  .3204300E+00 

  .3214827E+00 

* 

***************       Total Absorption X-Section Table    

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .9577228E-01  .9558064E-01  .9550184E-01  .9546290E-01 

  .9508551E-01  .9695843E-01  .9675865E-01  .9667581E-01  .9663488E-01 

  .9619936E-01  .9805718E-01  .9784644E-01  .9776057E-01  .9771180E-01 

  .9725226E-01  .9822100E-01  .9801108E-01  .9792421E-01  .9787637E-01 

  .9741169E-01  .9844869E-01  .9822893E-01  .9814298E-01  .9809416E-01 

  .9762637E-01  .9923134E-01  .9900244E-01  .9891636E-01  .9886842E-01 

  .9834462E-01 

* 

***************            Fission X-Section Table        

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .5002976E-01  .4993335E-01  .4989055E-01  .4987119E-01 

  .4967748E-01  .5036214E-01  .5025733E-01  .5021079E-01  .5019138E-01 

  .4996737E-01  .5067940E-01  .5056706E-01  .5052276E-01  .5049917E-01 

  .5026231E-01  .5075058E-01  .5063864E-01  .5059193E-01  .5056883E-01 

  .5032640E-01  .5082717E-01  .5071153E-01  .5066529E-01  .5064354E-01 

  .5039907E-01  .5109075E-01  .5096993E-01  .5092356E-01  .5089675E-01 

  .5062727E-01 

* 

***************            Nu-Fission X-Section Table     

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .1351354E+00  .1348949E+00  .1347893E+00  .1347420E+00 
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  .1342633E+00  .1358922E+00  .1356345E+00  .1355189E+00  .1354716E+00 

  .1349119E+00  .1366012E+00  .1363237E+00  .1362094E+00  .1361508E+00 

  .1355625E+00  .1367677E+00  .1364914E+00  .1363756E+00  .1363184E+00 

  .1357102E+00  .1369436E+00  .1366574E+00  .1365429E+00  .1364844E+00 

  .1358759E+00  .1375567E+00  .1372518E+00  .1371372E+00  .1370700E+00 

  .1363899E+00 

* 

***************            Xe X-Section Table             

* 

  .5000000E+03  .7602200E+03  .8672700E+03  .9218800E+03  .1500000E+04 

  .6413994E+03  .7114275E+03  .7694675E+03  .7724436E+03  .7813064E+03 

  .8100986E+03  .3239827E-02  .3230555E-02  .3226600E-02  .3224590E-02 

  .3204245E-02  .3240648E-02  .3231327E-02  .3227365E-02  .3225351E-02 

  .3203756E-02  .3252643E-02  .3243114E-02  .3239178E-02  .3237033E-02 

  .3215146E-02  .3259883E-02  .3250283E-02  .3246216E-02  .3244198E-02 

  .3222104E-02  .3264798E-02  .3255194E-02  .3251157E-02  .3249009E-02 

  .3226905E-02  .3280296E-02  .3270513E-02  .3266372E-02  .3264252E-02 

  .3240836E-02 

* 

***************            Inv. Neutron Velocities        

* 

  .5456853E-07  .2491910E-05 

* 
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APPENDIX C 
 

 
A sample Input.xml file used for 1-D calculations 
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<?xml version="1.0" encoding="utf-8"?> 

<InputDeck> 

    <BaseParams ReactorType="PWR"> 

        <Dimensions> 

            <Height>4</Height> 

            <Radius_Fuel>4.6955E-3</Radius_Fuel> 

            <Radius_Gap>4.791E-3</Radius_Gap> 

            <Radius_Clad>5.464E-3</Radius_Clad> 

            <Radius_WH>6.325E-3</Radius_WH> 

            <Assembly_Pitch>0.21504</Assembly_Pitch> 

            <NumHoles>225</NumHoles> 

            <NumWHoles>17</NumWHoles> 

            <NumAssemblies>177</NumAssemblies> 

        </Dimensions> 

        <Operation> 

            <Pressure>155.5E5</Pressure> 

            <Coolant_Inlet_Temp>291</Coolant_Inlet_Temp> 

            <Coolant_Velocity>5.03</Coolant_Velocity> 

            <InitialNPower>1.0</InitialNPower> 

            <BaseNPower>2772E6</BaseNPower> 

        </Operation> 

    </BaseParams> 

    <Physics> 

        <HeatConduction Tf_Init="650" TFuel_Max="2500"> 

  <HGap>11356</HGap> 

  <!—TfAvg = Tf_Param*Tf,center + (1-Tf_Param)*Tf,surface--> 

   <Teff_Param>0.3</Teff_Param> 

   <RhoFuel>10412.0</RhoFuel> 

   <RhoClad>6600.0</RhoClad> 

   <Discretization> 

    <NFuel>7</NFuel> 

    <NClad>0</NClad> 

   </Discretization> 

   <RunParams> 

    <OuterIter>500</OuterIter> 

    <Eps>1E-3</Eps> 

   </RunParams> 

        </HeatConduction> 

        <Neutronics> 

  <!-- For 0-D Calculations --> 

  <PRKE> 

   <GenerationTime>1E-4</GenerationTime> 

   <Feedback> 

    <AlphaD>-150E-5</AlphaD> 

    <AlphaM>-7E-5</AlphaM> 

   </Feedback>     

  </PRKE> 

  <OneDimension FluxInit="flat"> 

   <!—- Lattice arrangement --> 

   <LatticeGeometry>1 2 1</LatticeGeometry> 

   <!-- Energy Groups --> 

   <NGroups>2</NGroups> 

   <!-- Last Fast Group --> 

   <LFG>0</LFG> 

   <!—- Cross-section tables --> 

   <XSData External="true"> 

    <XSUnroddedFile>MSLB_XS </XSUnroddedFile> 
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    <XSRoddedFile>MSLB_XSR </XSRoddedFile> 

   </XSData> 

   <Delayed Groups="1"> 

    <DGroup dgid="1" beta="0.00471" lambda="0.1" /> 

   </Delayed> 

   <Discretization> 

    <!-— Physical refinement --> 

    <Refinement>50 40 50</Refinement> 

    <Order>1</Order> 

   </Discretization> 

   <RunParams> 

    <OuterIter>1000000</OuterIter> 

    <ThermalIter>500</ThermalIter> 

    <Eps_K>1E-12</Eps_K> 

    <Eps_S>1E-10</Eps_S> 

    <Eps_Thermal>1E-8</Eps_Thermal> 

    <SORParam_Thermal>1.0</SORParam_Thermal> 

    <Thermal_Rebalance>false</Thermal_Rebalance> 

   </RunParams> 

  </OneDimension> 

        </Neutronics> 

        <ThermalHydraulics TmodInit="310"></ThermalHydraulics> 

    </Physics> 

    <RunParams> 

        <IsAdaptive>false</IsAdaptive> 

        <IncludeFeedback>true</IncludeFeedback> 

        <IsCriticalStart>true</IsCriticalStart> 

        <IsPredictive>true</IsPredictive> 

        <OnlyTH>false</OnlyTH> 

        <IncludeModFB>true</IncludeModFB> 

        <Staggered>true</Staggered> 

        <NeutronicsFirst>true</NeutronicsFirst> 

        <Theta>0.5</Theta> 

        <DelT>1E-3</DelT> 

        <Total_Duration>1</Total_Duration> 

        <OuterIter>1</OuterIter> 

        <Eps>1E-3</Eps> 

        <Output_Frequency>2</Output_Frequency> 

        <!-- Format for printing output --> 

        <OutputFileFormat>2Group.out</OutputFileFormat> 

        <Transient> 

  <RodHeightInitial>50</RodHeightInitial> 

  <!—-Format : Type, Start time, End time, Amplitude (pcm)--> 

<Reactivities> 

      <Reactivity type="Step" start="0" amp="-50" /> 

      <Reactivity type="Ramp" start="0" end="0" amp="10" /> 

  </Reactivities> 

        </Transient> 

    </RunParams> 

</InputDeck> 
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