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ABSTRACT

Model Reduction of Systems Exhibiting Two-Time

Scale Behavior or Parametric Uncertainty. (December 2006)

Chuili Sun, B.S., Tsinghua University;

M.S., Tsinghua University

Chair of Advisory Committee: Dr. Juergen Hahn

Model reduction is motivated by the fact that complex process models may pre-

vent the application of model-based process control. While extensive research on

model reduction has been done in the past few decades, model reduction of systems

exhibiting two-time scale behavior as well as parametric uncertainty has received little

attention to date. This work addresses these types of problems in detail.

Systems with two-time scale behavior can be described by differential-algebraic

equations (DAEs). A new technique based on projections and system identification

is presented for reducing this type of system. This method reduces the order of the

differential equations as well as the number and complexity of the algebraic equations.

Additionally, the algebraic equations of the resulting system can be replaced by an

explicit expression for the algebraic variables such as a feed-forward neural network

or partial least squares. This last property is important insofar as the reduced model

does not require a DAE solver for its solution, but system trajectories can instead be

computed with regular ordinary differential equation (ODE) solvers.

For systems with uncertain parameters, two types of problems are investigated,

including parameter reduction and parameter dependent model reduction. The pa-

rameter reduction problem is motivated by the fact that a large number of parameters

exist in process models while some of them contribute little to a system’s input-output
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behavior. This portion of the work presents three novel methodologies which include

(1) parameter reduction where the contribution is measured by Hankel singular val-

ues, (2) reduction of the parameter space via singular value decomposition, and (3)

a combination of these two techniques.

Parameter dependent model reduction investigates how to incorporate the influ-

ence of parameters in the procedure of conventional model reductions. An approach

augmenting the input vector to include the parameters are developed to solve this

problem.

Finally, a nonlinear model predictive control scheme is developed in which the

reduced models are used for the controller.

Examples are investigated to illustrate these techniques. The results show that

excellent performance can be obtained for the reduced models.
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NOMENCLATURE

Roman Letters

A,B,C,D matrices for linear models in state space domain

Ā, B̄, C̄, D̄ matrices for linear models after a transformation

f, g, h functions for nonlinear models in state space domain

f̄ , ḡ, h̄ functions for nonlinear models after a transformation

G matrix of transfer functions

n number of states

P projection matrix

T transformation matrix

t time

u inputs

WC controllability gramian or covariance matrix

WO observability gramian or covariance matrix

W̄C controllability gramian or covariance matrix after a transformation

W̄O observability gramian or covariance matrix after a transformation

x states

x̄ states after a transformation

y outputs

z algebraic variables
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Greek Letters and Symbols

δ impulse function

λ eigenvalue

< set of real numbers

Σ balanced gramian matrix

σ singular value

θ parameters

σ̄ maximum singular value

|| . . . || Euclidean norm

|| . . . ||H Hankel norm

|| . . . ||∞ infinity norm

Superscripts and Subscripts

0 initial state

i general index

ss steady state

T transpose

−1 inverse

−T tranpose of the inverse
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ANN artificial neural network

lim limit

min minimum

CSTR continously stirred tank reactor

DAE differential algebraic equation

MIMO multi input, multi output

MINLP mixed integer nonlinear programming

MPC model predictive control

NMPC nonlinear model predictive control

ODE ordinary differential equation

PCA principal component analysis

PDE partial differential equation

POD proper orthogonal decomposition

PLS partial least squares

SCM sensitivity covariance matrix

SISO single input, single output

SV D singular value decomposition
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CHAPTER I

INTRODUCTION

A. Motivation of Model Reduction

Model-based process control has become increasingly popular in the chemical

process industries over the past few years [1]. Several factors have motivated this

development, one of which is that highly accurate models can now be solved with

modern dynamic simulators and powerful optimization algorithms. However, with

the increasing accuracy of the models, the complexity of these models increases and

computational requirements grow. Many dynamic models derived from first principles

require extensive computation effort which makes their use questionable for real time

model-based controllers. This presents a need for model reduction techniques. The

objective of model reduction for the purpose of controller design is to reduce a high-

order model to a lower order system which retains most of the input-output behavior.

B. Current Status of Model Reduction

Research on model reduction has been conducted for several decades. Initially,

model reduction focused on linear models consisting of ordinary differential equations

[2]–[7]. And the model reduction theory for linear systems is well-established. A

survey of several different approaches for linear model reduction can be found in [8]–

[10].

Besides the development of linear model reduction techniques, more recent work

on model reduction has dealt with nonlinear models described by ordinary differential

The journal model is IEEE Transactions on Automatic Control.
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equations [11]–[18] or partial differential equations [19]–[27]. Unlike for linear systems,

no complete theory of model reduction for nonlinear systems exists and most of the

steps for model reduction are still a subject of research for nonlinear models.

There exist many different model reduction techniques, for instance, balancing

[7], [9], lumping [28]–[30] and singular perturbation [31], [32]. Some techniques, such

as model reduction by truncation, singular perturbation, Hankel norm approximation,

balancing, are reviewed in [33].

C. Objective of This Research

For systems with two-time scales, both differential equations and algebraic equa-

tions are necessary to describe the system behavior, resulting in differential-algebraic

equation (DAE) systems. Usually, the number of algebraic equations in such models

far exceeds the one for differential equations. This clearly presents a need for model

reduction techniques that take the algebraic equations into account in addition to the

differential equations.

For systems with parameter uncertainties, it is important to consider the parame-

ter uncertainties during the model reduction procedures, otherwise, the uncertainties

in the parameters can have a detrimental effect on the model. At the same time,

most process systems include a large number of process parameters, however, some

of them only provide a marginal contribution to the input-output behavior of the

system. Therefore, reduction of these parameters will not affect the system much. It

needs to be investigated how to select the relatively unimportant parameters and how

to reduce them. This part of the work can be devided into two parts: the work for

model reduction with parameter uncertainties and the work of reducing the parameter

space.
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Considering these objectives, model reduction techniques for DAE systems and

systems with parameter uncertainties are investigated in this work. Creating a frame-

work for nonlinear DAE model reduction is an important and challenging problem.

The presented technique integrates the essential components for ODE model reduc-

tion techniques while it is extended to be applicable to DAE systems. This research

lies at the interface of model reduction, differential-algebraic equation systems, and

system identification. Several issues will be addressed in this part of research: (1)

reducing the size of the model; (2) be applicable to linear as well as nonlinear systems;

(3) retain important input-output information; (4) simplify to already existing meth-

ods under special circumstances, e.g. for linear systems consisting of only ordinary

differential equations.

The work for parameter reduction follows similar concerns as the one for state

reduction. Those parameters with more importance to the system will be retained

while those with less importance can be neglected. The goal of the reduction pro-

cedure is to determine which parameters can be replaced by constant values, even

if these are not accurately known, as compared to other parameters which have to

be estimated from data. In order to determine the relative importance among all

parameters, parameter sensitivity analysis is applied.

For the work of model reduction with parameter uncertainties, it is important to

develop a way to incorporate the parameter uncertainties into the model reduction

procedure.

D. Dissertation Outline

Chapter II will review model reduction techniques as well as some related issues,

including system identification and parameter selection. The emphasis is on proce-
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dures that use some type of balancing for the reduction, since this is the main focus

of this dissertation.

Chapter III introduces a new technique for reducing differential-algebraic equa-

tion (DAE) systems. This method reduces the order of the differential equations as

well as the number and complexity of the algebraic equations. Additionally, the al-

gebraic equations of the resulting system can be replaced by an explicit expression

for the algebraic variables such as a feedforward neural network. This technique is il-

lustrated with a case study where responses of several different reduced-order models

of a distillation column with 32 differential equations and 32 algebraic equations are

compared.

The usage of Partial Least Squares (PLS) in model reduction is investigated in

Chapter IV. PLS can be implemented on both DAE systems and ODE systems where

a residualization method is used to derive a DAE system. Detail procedures for the

PLS implementations are presented.

Chapter V introduces and evaluates three techniques to assess the importance of

each parameter to the overall input/output description of the process under study, in-

cluding a method based on Hankel singular values, a method via parameter sensitivity

analysis and a method which combines the former two methods. Detail descriptions

of these methods are presented for linear systems. And extensions to nonlinear sys-

tems are also addressed. Comparisons of the performance for all three methods are

presented via three examples.

Chapter VI presents a technique to incorporate uncertain parameters during

model reduction. This technique is capable of dealing with parametric uncertainty in

the procedure of model reduction by augmenting the vector of inputs to the system

with the uncertain parameters and by performing model reduction on the augmented

system. A comparison between the presented technique and a conventional approach
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is made via two examples.

Chapter VII evaluates the performance of reduced order models by implementing

nonlinear model predictive control scheme in which the control move is computed

based on the reduced order models.

Chapter VIII summarizes the presented results and identifies future extensions

of this research.
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CHAPTER II

REVIEW OF MODEL REDUCTION AND RELATED ISSUES

Because this research involves several issues related to model reduction, this

chapter will give a comprehensive review for these topics, including a brief review of

model reduction techniques, a more detailed review of one specific reduction tech-

nique, i.e., balancing, a review of some related issues for parameter estimation and

selection, as well as a review on system identification.

A. Review of Model Reduction

1. Overview of Model Reduction

Model reduction is a useful tool to reduce complex systems for purposes such as

controller design, online optimization as well as for getting a better understanding of

a system’s behavior [34]. Generally, the model reduction problem can be formulated

as follows: given a full order model S, find a lower order model Sr, which is close to

S in some sense [35]. For linear systems, some norms are usually applied to define

this approximation, for instance, the H∞ norm: ||S − Sr||∞, or the hankel norm:

||S − Sr||H . For nonlinear systems, it is not easy to evaluate these norms. One way

to evaluate the approximation is to compare the systems’ responses by simulations,

which is also applied in this research work.

For the past three decades, various model reduction techniques have been pro-

posed. Some of them are briefly listed as follows:

• balancing [36], which exploits the balancing idea, to obtain a balanced realiza-

tion. In this balanced realization, the controllability and observability gramians

are identical and diagonal. Next a truncation or a residualization method is ap-
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plied to reduce the system.

• singular perturbation approximation [37], which is applicable to systems which

exhibit multi-time scale behavior. Singular perturbation approximates the

model by setting the derivatives of very fast modes equal to zero.

• optimal Hankel norm approximation [38], which finds a reduced model to mini-

mize the Hankel norm of the error between the original model and the reduced

model.

• proper orthogonal decomposition [39]–[41], which applies singular value decom-

position to obtain an orthogonal basis for snapshots of the system and retain

the most important direction in state space.

• aggregation [42], [43], which selects a set of state variables from the original

system using weighting factors and minimizes the selected index. This methods

takes relatively low computational effort.

• Padé approximation [44], which is generally used for linear systems. The Padé

approximation of the system’s transfer function can be truncated to create a

low-order transfer function of some different system which matches some number

of derivatives of the original system’s transfer function.

Most of these methods are for linear systems, and only some of them have been

extended for nonlinear cases. While the theory for model reduction of linear systems

has advanced significantly, reduction of nonlinear models is still an active area of

research [45]–[47] with many unsolved problems [10]. A comprehensive literature

review of model reduction was developed by Hahn [48]. The remainder of this section

will give a brief review of several important model reduction techniques.
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2. Overview of Balancing

For control-relevant reduction of linear systems, balanced model reduction has

been a popular approach due to the fact that the modes that contribute the most to

the input-output behavior of the system are identified and can then be retained in a

subsequent model reduction step.

a. Balancing for Linear Systems

For a stable, linear, time-invariant system

ẋ = Ax + Bu

y = Cx

(2.1)

it is possible to compute the linear controllability gramian, WC , and the linear ob-

servability gramian, WO, by the following formulae [49]

WC =

∞∫

0

eAtBBT eAT tdt, WO =

∞∫

0

eAT tCT CeAt

dt (2.2)

The entries in the gramians provide a measure for the degree of controllability

and observability of each state, i.e., the degree to which a state is influenced by the

inputs and the effect that changes in this state have on the outputs. The eigenvalues

of the quantity WCWO can be computed and denoted as {λi ≥ 0, i = 1, · · · , n}. The

square roots of these eigenvalues are called Hankel singular values [35], denoted as

{σi ≥ 0, i = 1, · · · , n}.
The gramians can be used to compute a linear state transformation x̄ = Tx,

such that the original system is transformed

˙̄x = TAT−1x̄ + TBu = Āx̄ + B̄u

y = CT−1x̄ = C̄x̄

(2.3)
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into a balanced realization. One property of a balanced realization is that its control-

lability and observability gramians are equal and diagonal, where the entries along

the diagonal are the Hankel singular values. These Hankel singular values provide a

measure for the importance of the states to the input-output behavior of the system.

Balanced model reduction first transforms a system into a balanced form and

then reduces the states corresponding to the smallest Hankel singular values, i.e.,

the states that contribute the least to the input-output behavior of the system. The

reduction itself can be performed either by truncation where the reduced states are

cut off [9], [35] or by residualization which corresponds to setting the time derivative

of the less important states equal to zero [9]. For balanced truncation method, the

error bound of balanced model reduction is given by [38]

σm+1 ≤ ‖G(s)−Gr(s)‖∞ ≤ 2
n∑

j=m+1

σj (2.4)

where Gr(s) refers to a system that has been balanced and only retains states 1

through j, and m is the number of retained states.

b. Balancing for Nonlinear Systems

The theory behind extending balancing from linear models to a certain class of

nonlinear systems was first introduced by Scherpen [18]. However, the main drawback

of her procedure is its extensive numerical requirement even for small systems [16],

[17], [50]. An approximation to balancing of nonlinear systems has been introduced by

Lall and coworkers via the concept of empirical gramians [13]. However, their proce-

dure is restricted to nonlinear control affine systems and it also requires modifications

for systems where an equilibrium point other than the origin is used [12]. In order to

address these points, controllability and observability covariance matrices have been

proposed by Hahn and Edgar as an extension of the empirical gramians [12]. These
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covariance matrices can be used to compute a balancing-like transformation followed

by a model reduction step via truncation or residualization.

Since it is not possible to compute nonlinear gramians for general systems de-

scribed by

ẋ = f(x, u)

y = h(x)

(2.5)

the concepts of controllability/observability covariance matrices have been introduced

[12]

WC =

p∑
i=1

r∑

l=1

s∑
m=1

1

rsc2
m

∞∫

0

Φilm(t)dt (2.6)

WO =
r∑

l=1

s∑
m=1

1

rsc2
m

∞∫

0

TlΨ
lm(t)T T

l dt (2.7)

where Φilm(t)=(xilm(t) − xilm
0 )(xilm(t) − xilm

0 )T , Ψlm
ij (t)= (yilm(t) − yilm

0 )T (yjlm(t) −
yjlm

0 ), T n= {T1, . . . ,Tr; Ti ∈ <n×n, T T
i Ti = In , i = 1, .., r}, M = {c1, . . . ,

cs;ci ∈ < , ci > 0 , i = 1, . . . , s}, En = {e1, . . . , en ; standard unit vectors

in <n}, r is the number of matrices for the excitation/perturbation directions, s is

the number of different excitation/perturbation sizes for each direction, and p is the

number of inputs/states of the system.

Both controllability and observability covariance matrices are symmetric and

positive semi-definite, which guarantees the existence of a state transformation [35]

x̄ = Tx that makes them diagonal and equal in the directions in state space which



11

are contained in both covariance matrices corresponding to Σ1:

TWCT T =




Σ1 0 0 0

0 I 0 0

0 0 0 0

0 0 0 0




(2.8)

(T−1)T WOT−1 =




Σ1 0 0 0

0 0 0 0

0 0 Σ3 0

0 0 0 0




(2.9)

The transformed system is then given by

˙̄x = Tf(T−1x̄, u) = f̄(x̄, u)

y = h(T−1x̄) = h̄(x̄)

(2.10)

A decision about the states to be retained in the reduced-order model can be

made based upon the magnitude of the diagonal entries of the transformed covariance

matrices. The reduction itself can then be performed by truncation

˙̄x1 = PTf(T−1x̄, u)

x̄2 = x̄2,ss

y = h(T−1x̄)

, x̄ =




x̄1

x̄2


 , P = [ Ik×k 0 ] (2.11)

where k refers to the number of retained states, P is the projection matrix, which has

to be chosen to have appropriate dimensions for reducing the number of differential

equations in the model.

One drawback of this technique is that the steady state behavior is not retained

in the reduced system. To overcome this disadvantage, balanced residualization has
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been introduced [48] where the derivatives of the less important states are set equal

to zero

˙̄x1 = P1Tf(T−1x̄, u)

0 = P2Tf(T−1x̄, u)

y = h(T−1x̄)

(2.12)

where x̄ =




x̄1

x̄2


 , P1 = [ Ik×k 0 ], P2 = [ 0 I(n−k)×(n−k) ], n: number of states,

k: number of retained states

3. Singular Perturbation Method

Singular perturbation method has been used extensively over the last few decades.

Since model reduction of DAE (differential and algebraic equation) systems is inves-

tigated in this work and one possible approach for obtaining a DAE system is from

singular perturbation, some basic concepts will be reviewed here.

The singular perturbation technique was developed for systems which include

both fast and slow modes. For these systems, the slow modes dominate while the fast

modes can be neglected. This technique identifies those fast modes and eliminates

them to produce a reduced-order system [51], [52].

The basic idea for singular perturbation is as follows:

Consider a linear, time-invariant system which described by




ẋ

ż


 =




A11 A12

A21 A22







x

z


 +




B1

B2


u

y =

[
C1 C2

]



x

z


 + Du

(2.13)

where x ∈ <r),z ∈ <n−r.
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In case of z describing fast and stable modes, this system can be approximated

by setting ż to zero. This yields the following system

ẋ = A11x + A12z + B1u

0 = A21x + A22z + B2u

y = C1x + C2z + Du

(2.14)

And z can be represented as z = −A−1
22 (A21x + B2u). Therefore, (2.14) can be

rewritten as:

˙̄x = Āx̄ + B̄u

y = C̄x̄ + D̄u
(2.15)

where Ā = A11 − A12A
−1
22 A21, B̄ = B1 − A12A

−1
22 B2, C̄ = C1 − C2A

−1
22 A21, D̄ =

D − C2A
−1
22 B2

For this reduced system, one important property is that there is no steady state

error compared with the full order system [33].

4. Singular Value Decomposition

Singular value decomposition (SVD) is an eigenvalue-like decomposition for rect-

angular matrices. Its mathematical formulation is as follows [53]: let A be a general

real m × n matrix, the SVD of A is the factorization A = UΣV T , where U ∈ <m×m

and V ∈ <n×n are orthogonal, and Σ is a unique diagonal matrix with real, non-

negative elements (which are so called singular values) σi, i = 1, · · · , min(m,n)

in descending order: σ1 ≥ σ2 ≥ · · ·σmin(m,n) ≥ 0. If A is complex, then its SVD

is A = UΣV H , where U and V are unitary, and Σ is as before with real diagonal

elements. The σ′is are called the singular values, the first [min(m, n)] columns of

V are the right singular vectors and the first [min(m, n)] columns of U are the left

singular vectors.
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The direction corresponding to the largest singular values exhibits the largest

variation. Therefore, SVD can identify dimensions based on their importance. And

fewer most important dimensions can be used to approximate the original data.

5. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a projection-based approach for non-

linear model reduction, also referred to as principal component analysis, or Karhunen-

Loève expansion [24], which has also received extensive attention. POD can generate

low order models for dynamical systems when combined with Galerkin projection

procedure [39], [54]–[56]. POD is closely related to balancing and it is often used

for order reduction of systems of differential equations, especially for distributed sys-

tems [24], [57]. While POD is easy to implement, it is not possible to make similar

statements about control-relevance of the reduced model as can be done for balanced

model reduction since POD does not take the state-to-output behavior into account.

POD makes use of simulation or experimental data of the states, so called “snap-

shots”, measured at N discrete points in time. Each snapshot is represented by an

n×1 vector x(ti) and the snapshot matrix is

X = [x(t1), x(t2), · · · , x(tN)] ∈ <n×N (2.16)

which allows construction of the correlation matrix M :

M = XXT ∈ <n×n (2.17)

The principal directions of the data set can be extracted via singular value de-

composition of M

M = UΣV ∗, U = [u1, u2, · · · , un] ∈ <n×n, V = [v1, v2, · · · , vn] ∈ <n×n (2.18)
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where Σ is a diagonal matrix containing the singular values of M and U consists of

the corresponding directions.

From the results returned by singular value decomposition it is possible to choose

T = U and perform truncation as shown in (2.11). The main difference between

balancing and POD is that the transformation matrix T is determined from the input-

to-state and state-to-output behavior for balanced reduction whereas POD computes

T by extracting the main directions in which the system evolves in state space.

B. System Identification

This part gives a brief review on system identification [58]–[60] which stands for a

class of black box modeling methods. System identification can be used to determine

the system’s input-output relationship by fitting experimental data, which does not

look into the details of what is going on inside the system.

Three main components are necessary for system identification: input-output

data, candidate model structures, and a performance criterion. Generally, the system

identification process starts from planning an experiment to collect input-output data.

The data then need to be preprocessed, e.g., removing outliers, filtering and scaling

data. A candidate model structure is selected to obtain a best model in the sense

of the criterion based on the input output data. The last step is model validation,

which is to make the model useful in practice.

Two system identification techniques are briefly reviewed here: artificial neural

networks and partial least squares.
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1. Artificial Neural Network

An artificial neural network (ANN) [61]–[63] is a type of models mimicking the

biological structures of the brain system. ANN is a powerful tool to map nonlinear

relationships between process variables, which can be used for system identification.

By use of process data, ANN can be trained to represent a nonlinear relationship and

therefore can be used to predict process outputs via this relationship. This property

is used in this research work. A simple feedforward neural network with one hidden

layer shown as Fig. 1 [64] is a typical structure for this function.

 

Fig. 1. A three layer feedforward neural network.

2. Partial Least Squares

PLS is a linear system identification method that determines a latent space with

orthogonal principle factors to approximate the original input-output space. If an

independent matrix X and a dependant matrix Y are given then a PLS model of the

form X = TPT +E, Y = UQT +F , can be constructed where T and U are the score
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matrices, P and Q the loading matrices, and E and F are the residual matrices of

X and Y , respectively. PLS extracts latent variables (also called principle factors)

by analyzing the sample covariance matrix (XT Y )(Y T X). These latent variables can

not only capture the variance of X, but also maximize the covariance between each

X score and the corresponding Y score. The latent variables are orthogonal and

therefore independent of one another. In most cases, the first few latent variables can

capture the most useful information between X and Y . The NIPALS algorithm [65]

is an efficient way to compute the PLS latent variables sequentially.

a. Data Preprocessing

To apply PLS, it is useful to scale the data sets to simplify the calculations. The

scaled form of a specific variable x is given by

x̂ =
x− x̄

std(x)
(2.19)

where x̄ is the mean value of the variable xand std (x) refers to the standard deviation.

All variables in the independent and dependent block are preprocessed in this

way and all variables involved in the PLS procedure are scaled.

b. Calibrating a PLS Model

The main idea of PLS is to find an inner relationship between X and Y . This

relationship can be approximated by their score matrices T and U with U = B*T ,

where B is the regression matrix. The NIPALS algorithm is applied to construct a

PLS model via an iterative procedure.
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c. Data Prediction

Prediction of the dependent matrix from the independent matrix is the most

important part of PLS. This is performed by multiplying the independent matrix

by the regression coefficient matrix B which is obtained in the calibration step, i.e.,

Y = B * X.

C. Parameter Selection

Parameter reduction is a topic that is directly tied to first-principles modeling.

The reason for this is that an existing model is used as the starting point and the

number of parameters in this model is lowered during the process. The goal of the

reduction procedure is to determine which parameters can be replaced by constant

values, even if these are not accurately known, as compared to other parameters which

have to be estimated from data. While techniques used for parameter reduction are

often based on statistical techniques, i.e. singular value decomposition, the applica-

tion of the methods is distinctly different from chemometric techniques as the goal is

to keep the structure of the model intact.

While an extensive body of literature exists on model simplification and reduc-

tion (e.g. to name just a few selected papers: [4], [12], [13], [36]), the number of

publications on reducing the number of parameters in a model is much more limited.

One application of parameter reduction can be found in [66] where sensitivity analysis

and principle component analysis are used to reduce the number of parameters in a

model representing a complex metabolic network.

Parameter reduction is also closely related to parameter estimation [67]–[72]. For

parameter estimation, only those parameters with greater estimability can be esti-

mated from process data. Parameters with little contribution to the input-output
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behavior can be neglected, as they can usually not be estimated in a realistic sce-

nario. The difference between parameter estimation and parameter reduction lies

in the fact that the former topic is to collect process information and develop al-

gorithms to estimate parameters as accurate as possible, while the latter does not

involve the estimation itself, but determines the relative importance of parameters

and then reduces the less important ones. A common task for parameter estimation

and parameter reduction is parameter selection. This topic has been extensively in-

vestigated in the literature using the concept of the Fisher information matrix [6],

[73]–[77].

1. Sensitivity Analysis

Sensitivity analysis is a powerful tool for parameter selection, which investigates

the effect that changes in the parameters have on the outputs of a system [78].

For a general ODE system given by

ẋ = f(x, θ, u)

y = h(x, θ, u)
, θ ∈ <k (2.20)

the sensitivity function (SF) of each parameter can be defined as

SF (θj) =
∂y

∂θj

(2.21)

In order to obtain a general quantity, such that the values of sensitivity functions

for each parameter can be compared, the dimensionless sensitivity function can be

computed by

DSF (θj) =
∂y

∂θj

· θj,0

y0

=
∂ ln y

∂ ln θj

(2.22)

This quantity is equivalent to the sensitivity function in (2.21) when all variables

are normalized.
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CHAPTER III

DAE MODEL REDUCTION VIA PROJECTIONS AND NEURAL NETWORK

A. Overview

Differential-algebraic equation (DAE) systems are very common for describing

process models, especially for models derived from first principles. They consist of

differential as well as algebraic equations, resulting in differential-algebraic equation

(DAE) systems [79], [80]. In these models, the differential equations, such as dynamic

mass or energy balances, are used to describe the dynamic behavior while the alge-

braic equations represent phenomena at a faster time scale, such as thermodynamic

equilibrium calculations. DAE can also result from singular perturbations of ordinary

differential equation (ODE) systems [81], where the states are separated into slow and

fast ones. Models described by DAE systems are often of high order resulting in dif-

ficulties for online control due to the extensive computational effort. Reducing the

size of the model while retaining important system properties for controller design is

the main goal of control-relevant model reduction.

While initial work on model reduction focused on linear systems, more recent

research has dealt with nonlinear models described by sets of ordinary differential

equations (ODE) [11], [13], [48] or partial differential equations (PDE) [19], [21]. At

the same time, model reduction of DAE systems has received considerably less at-

tention [10]. One may be inclined to argue that model reduction of DAE systems

could consist of reduction of the differential equations by already existing techniques

Part of this chapter is reprinted from Journal of Process Control, Vol. 15, No. 6,
C. Sun and J. Hahn, Reduction of stable differential algebraic equation systems via
projections and system identification, pp. 639-650, Copyright (2005), with permission
from Elsevier.
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while the algebraic equations remain untouched. However, the number of algebraic

equations in most models far exceeds the one for differential equations. This is one

important aspect that must be taken into account when investigating methodologies

for model reduction of DAE systems. The only approach for model reduction of non-

linear DAE systems for controller design before this research work was the technique

presented by Löffler and Marquardt [82]. They generated state trajectories, computed

a covariance matrix from data, extracted the principal components of the covariance

matrix, and performed a projection on the original system. However, their method

does not take the different character of the differential and the algebraic equations

into account and different choices for generating the data set can lead to different

principal directions.

A new technique is presented in this part of the work for reducing nonlinear

DAE systems for controller design. The method reduces the order of the model

by eliminating differential equations as well as the number and complexity of the

algebraic equations via a procedure combining projections and neural network. This

technique addresses both reduction of the algebraic and the differential equations and

results in a system where the algebraic equations can be represented by an explicit

expression, e.g., a feedforward neural network. This last property is important insofar

as the reduced model does not require a DAE solver for its solution but can instead

be computed by regular ODE solvers.
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B. Model Reduction of DAE Systems

This research work focuses on DAE systems of the following form

ẋ = f(x, z, u)

0 = g(x, z)

y = h(x)

(3.1)

where x ∈ <d, represents a vector containing dynamic states of the system and

z ∈ <(n−d), refers to the variables computed from the algebraic equations, where n

is the total number of differential states and algebraic variables. It is assumed that

∂g/∂z 6= 0, restricting this work to DAE systems with an index of at most 1 [79],

[83]. However, this is not a serious drawback, since any process found in nature can

be modeled by DAE systems of index 1 or lower. A second assumption for this work

is that only one equilibrium point exists within an operating region for a constant

input to ensure that the information contained in the covariance matrices represents

the behavior of the system over the operating region.

The presented model reduction procedure combines elements from balanced model

reduction with system identification techniques in order to reduce the differential

as well as the algebraic equations while retaining control-relevant properties of the

model. In a first step of the procedure, transformations are applied to both differ-

ential and algebraic equations. The transformation for the differential equations is

computed via balancing of the covariance matrices or via POD, while the transforma-

tion matrix for the algebraic equations is obtained by singular value decomposition

of the state covariance matrix computed for different excitations of the system. In a

second step, both differential and algebraic equations of the transformed system can

then be reduced via a truncation procedure. The model is further reduced by replac-
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ing the algebraic equations with an identified model, i.e. a neural network is trained

in order to represent the relationship between the remaining differential equations,

i.e., the inputs to the neural network, and the remaining algebraic variables which

are the outputs of the neural network.

The strong points of this procedure are that (1) the initial order reduction only

retains states or variables with a significant contribution to the control-relevant input-

output behavior of the system, (2) due to this initial step only states which contribute

to the observed behavior are used for the system identification, (3) correlations among

the states used for system identification have been eliminated in the order reduction

step, (4) the implicit algebraic equations are replaced by an explicit expression simpli-

fying the effort required for numerical solution, and (5) the method offers the potential

to significantly reduce the number of differential as well as algebraic equations of a

model.

A detailed description of the individual steps to be performed is presented in the

following subsections.

1. Computation of Transformations

a. Computation of Transformations via Balancing/SVD

For ordinary differential equation (ODE) systems, the procedure of computing

the transformation matrix via balancing of controllability and observability covari-

ance matrices was presented in Hahn and Edgar [12]. However, since this procedure

was derived for ODEs, it is not directly applicable to DAE systems due to the na-

ture of the algebraic equations: a DAE system consisting of d differential equations

and (n − d) algebraic equations will only evolve in a subspace of dimension d, as

the algebraic equations can not represent dynamic behavior. Therefore, it is not
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meaningful to compute the controllability and observability covariance matrices for

the entire systems (differential states and algebraic variables) due to the reason that

both covariance matrices are defined for dynamic states only. Instead the following

observations are made:

• The DAE system can be excited by changes in the inputs and a covariance

matrix can be computed from the resulting trajectories. The controllability

covariance matrix, WC , for the states given by the differential equations is part

of the computed covariance matrix.

• While a covariance matrix for the algebraic variables can also be computed from

the state trajectories generated by excitations with the inputs, it is important

to point out that this does not correspond to the controllability covariance

matrix. The reason is that the algebraic variables do not exhibit dynamic

behavior, e.g., they do not increase the rank of the covariance matrix for the

differential and the algebraic equations if the algebraic equations are linear.

Instead the covariance matrix for the algebraic variables serves as an indicator

of the correlation among the algebraic variables and can thereby be used for

reducing the number of algebraic variables.

• The observability covariance matrix, WO, can also only be computed for states

given by the differential equations. A perturbation of the algebraic variables

would have the effect that the differential equations would also need to be

perturbed in order to have consistent initial conditions. It can be shown that

this will not increase the rank of the covariance matrix beyond the number of

the states for a linear system.

Therefore, a modified version of the balancing procedure is presented for ap-

plication to DAE systems: (1) the system is originally at steady state and is then
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excited by changes in the inputs along the lines of the computation procedure for the

controllability covariance matrix; data are collected along the trajectories generated

by these excitations and a covariance matrix

W =




W11 W12

W21 W22


 ,

W11 ∈ <d×d, W12 ∈ <d×(n−d),

W21 ∈ <(n−d)×d, W22 ∈ <(n−d)×(n−d).
(3.2)

is computed, where W11 is equal to WC , the controllability covariance matrix of the

differential states and W22 is the covariance matrix of the algebraic variables; (2)

the observability covariance matrix, WO, is computed for states described by the

differential equations as shown in equation (2.2); (3) the transformation T1 for the

states, x, is computed from balancing WC and WO; (4) a singular value decomposition

of W22

W22 = U2Σ2V
∗
2 (3.3)

is used to compute the transformation T2 for the algebraic variables, z, where T2 = U2.

b. Computation of Transformations via POD

It is possible to use the same state trajectories for the correlation matrix as were

used in the previous subsection, since the trajectories in both cases are generated

by excitation of the system with the available inputs. The correlation matrix M is

partitioned into four submatrices similar to what has been done for the matrix W in

(3.2):

M =




M11 M12

M21 M22


 ,

M11 ∈ <d×d, M12 ∈ <d×(n−d),

M21 ∈ <(n−d)×d, M22 ∈ <(n−d)×(n−d).
(3.4)

Transformations can be computed by applying singular value decomposition to
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M11 and M22, respectively, as shown in (3.5):

M11 = U1Σ1V
∗
1 , M22 = U2Σ2V

∗
2 (3.5)

The unitary matrix U1and U2 serve as transformations T1 and T2 for the differ-

ential states and algebraic variables, respectively.

c. Transformed System

Regardless if the transformations have been computed from balancing, POD, or

some other methods, the transformations T1 and T2

x̄ = T1x ⇒ x = T−1
1 x̄

x, x̄ ∈ <d
,

z̄ = T2z ⇒ z = T−1
2 z̄

z, z̄ ∈ <n−d
(3.6)

can be applied to the original model ((3.1)), resulting in the transformed system

˙̄x = T1f(T−1
1 x̄, T−1

2 z̄, u) = f̄(x̄, z̄, u)

0 = g(T−1
1 x̄, T−1

2 z̄) = ḡ(x̄, z̄)

y = h(T−1
1 x̄) = h̄(x̄)

(3.7)

where f̄ , ḡ, h̄ represent nonlinear functions of the transformed system.

This transformed system has the same number of differential and algebraic equa-

tions as the original system and identical input-output behavior. However, the dif-

ferential states as well as the algebraic variables are ordered in descending order

with their importance to the control-relevant behavior of the model. Essentially, the

system (3.7) is in a set of coordinates suitable for reducing the size of the model.
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2. Order Reduction of Differential Equations

Once the system is transformed into a form suitable for model reduction, the

number of differential equations is reduced by truncation while the algebraic variables

remain unchanged, resulting in

˙̄x1 = P1f̄(x̄, z̄, u)

x̄2 = x̄2,ss

0 = ḡ(x̄, z̄)

y = h̄(x̄)

, x̄ =




x̄1

x̄2


 , P1 = [Ik×k 0] (3.8)

where x̄1 contains the states of the reduced system, x̄2 represents the states that are

reduced and k is the number of differential equations in the reduced-order model.

The error bounds resulting from the truncation of the differential equations for a

system of linear DAEs are derived as follows. While a linear system can only approx-

imate the nonlinear model locally, the following presentation serves as an illustration

that the proposed model reduction takes the interaction of the differential and the

algebraic equations into account. It can also be seen from that the transformation

T1, while being applied to the differential equations only, is dependent upon the dif-

ferential equations, the algebraic equation as well as terms coupling the equations.

Consider a stable linear DAE system of the following form

ẋ = Ax + Azz + Bu

z = Ex

y = Cx

(3.9)

where x is the vector of states and z represents a vector of algebraic variables.

Since the algebraic equations are given by an explicit expression for this system,
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it is possible to substitute z with the expression z = Ex to obtain an ODE system

ẋ = (A + AzE)x + Bu

y = Cx
(3.10)

As this system consists of stable linear ODEs, the controllability and observability

covariance matrices reduce to the linear controllability and observability gramians,

given by

WC =

∞∫

0

e(A+AzE)tBBT e(A+AzE)T tdt, WO =

∞∫

0

e(A+AzE)T tCT Ce(A+AzE)tdt (3.11)

The balancing procedure determines a transformation T1 which makes the con-

trollability and observability gramians of the balanced system equal and diagonalizes

them:

W̄C = T1WCT T
1 = W̄O = (T−1

1 )T WOT−1
1 = Σ =




σ1 0 · · · 0

0 σ2 · · · 0

...
...

. . .
...

0 0 · · · σn




(3.12)

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the Hankel singular values of the system (3.10).

With the transformation x̄ = T1x, the balanced system is given by

˙̄x = (Ā + AzE)x̄ + B̄u

y = C̄x̄
(3.13)

where Ā = T1AT−1
1 , AZE = T1AZET−1

1 , B̄ = T1B, C̄ = CT−1
1

The state vector of the balanced system can be partitioned into two parts: states

x̄1which contribute the most to the input-output behavior and less important states
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x̄2. Accordingly, the system matrices can be partitioned:

Ā =




Ā11 Ā12

Ā21 Ā22


 , AZE =




(AZE)11 (AZE)12

(AZE)21 (AZE)22




B̄ =




B̄1

B̄2


 , C̄ = [ C̄1 C̄2 ]

(3.14)

Truncation of the system (3.13) results in

˙̄x1 = [A11 + (AZE)11]x̄1 + B1u

y = C1x̄1

(3.15)

where A11,(AZE)11 , E11, B1 and C1 have appropriate dimensions.

Because this procedure is identical to balanced truncation for the system (3.10),

the error between the original system (3.9) and the reduced system (3.15) is bounded

by [38]

σk+1 ≤ ‖G(s)−Gr(s)‖∞ ≤ 2
n∑

j=k+1

σj (3.16)

where the σj represent Hankel singular values described in (3.12).

It can be concluded from the presented case that this reduction procedure as

well as the error bounds depend not only on the matrices A, B, C, but also on AZ

and E. Therefore, the algebraic equations, i.e. given by E in this case, as well as

part of the interaction between the differential and the algebraic equations, i.e. given

by AZ , have been taken into account for the reduction. Note that AZ and E affect

the reduction even if the only goal is to reduce the differential equations of a DAE

system.
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3. Reduction of Algebraic Equations

The reduction of the algebraic equations has to be specifically addressed for

nonlinear DAE systems since the number of algebraic equations resulting from first-

principles modeling usually far exceeds the number of differential equations. Similar

to what can be observed for the differential states, there are some algebraic variables

that dominate the observed behavior of the system, e.g., some variables will hardly

move even for significant changes in the inputs or some variables are linearly depen-

dent and do not need to be modeled separately. The described computation of the

transformation T2 for the algebraic variables ensures that the dominant components

are contained in the first few algebraic variables of the system and that variables

that are almost linearly dependent on these first few variables will be of lesser impor-

tance. It is then possible to reduce the number of algebraic equations via a truncation

method with m algebraic variables retained in the model. The exact value of m has

to be determined from the singular values contained in Σ2 from (3.3) (if balancing is

applied) or (3.5) (if POD is applied). Combined with truncation of the differential

equations, the reduced system is given by

˙̄x1 = P1f̄(x̄, z̄, u)

x̄2 = x̄2,ss

0 = P2ḡ(x̄, z̄)

z̄2 = z̄2,ss

y = h̄(x̄)

,

x̄ =




x̄1

x̄2


 , P1 = [ Ik×k 0]

z̄ =




z̄1

z̄2


 , P2 = [ Im×m 0]

(3.17)

In this system, the differential states and algebraic variables of lesser impor-

tance have been truncated and replaced by constant values while the most important

components of the model are retained. The resulting model (3.17) contains fewer

differential and fewer algebraic equations than the original system (3.1).
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4. Further Reduction of Algebraic Equations via System Identification

So far, the number of differential and algebraic equations has been reduced by the

described technique. While the model reduction procedure could stop at this point, it

is possible to obtain a more suitable system of even smaller size and lesser complexity.

The reason for this is that the truncated differential states and algebraic variables

can be removed from the algebraic equations and that the algebraic equations can be

(locally) approximated by an explicit expression. Consider (3.18), which is part of

the DAE system (3.17)

0 = P2ḡ(x̄, z̄) (3.18)

where x̄ =




x̄1

x̄2


 and z̄ =




z̄1

z̄2


 , which allows to rewrite (3.18) as

0 = P2ḡ(




x̄1

x̄2,ss


 ,




z̄1

z̄2,ss


) (3.19)

Since x̄2,ss and z̄2,ss are constant vectors and P2 is a constant matrix, this can be

rewritten as

0 = ĝ(x̄1, z̄1) (3.20)

where ĝ represents a new nonlinear function containing the variables x̄1 and z̄1 only.

Essentially, the set of states, x̄1, can be viewed as the inputs to the algebraic

equations shown in (3.20), and the set of algebraic variables, z̄1, represent the outputs.

Since the purpose of the algebraic equations is to represent this relationship between

x̄1 and z̄1, it is possible to identify the effect of x̄1 on z̄1 and determine a suitable

mathematical expression describing this behavior. The relationship between x̄1 and

z̄1 needs to be retained in the reduced model to achieve a good approximation of the

behavior of the original system. However, equation (3.20) is an implicit expression

for z̄1 which may be non-trivial to solve. It would be desirable to replace this implicit
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equation for the algebraic variables with an explicit expression. Since the inputs and

the outputs of the algebraic equations are dependent in a static manner, it is sufficient

to identify this static relationship between x̄1 and z̄1 as shown in (3.21)

z̄1 = g̃(x̄1) (3.21)

resulting in the following system:

˙̄x1 = P1f̄(x̄, z̄, u) = f̂(x̄1, z̄1, u)

x̄2 = x̄2,ss

z̄1 = g̃(x̄1)

z̄2 = z̄2,ss

y = h̄(x̄) = ĥ(x̄1)

(3.22)

where f̂ , g̃, ĥ represent nonlinear functions of the reduced system.

Equation (3.22) represents an approximation to the system shown in (3.17) and

the relationship between x̄1 and z̄1 is shown in Fig. 2, in which z̄1 is the output of

an identified model which receives x̄1 as the input. z̄1 on the other hand serves as an

input to the differential equations.

1z 1x

y

)(ˆ

),,(ˆ

1

111

xhy

uzxfx

=

=&

)(~ 11 xgz =

u

 

Fig. 2. Relationship between remaining differential states and algebraic variables.

It has to be noted that the relationship between x̄1 and z̄1 is usually nonlinear.

One type of model that is able to take this property into account is a feedforward
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neural network. The inputs of the neural network are given by x̄1 while the vector

z̄1 serves as the outputs for approximating the set of equations 0 = ĝ(x̄1, z̄1) by

z̄1 = g̃(x̄1). The number of nodes in the hidden layer is a parameter that has to be

determined for using this type of neural network for system identification. In the case

where the dimension of x̄1 and z̄1 is significantly smaller than the number of states of

the original system, the neural network will be small and can be easily trained. The

data set used for training the neural network is a series of the state trajectories, but

transformed into a new set of coordinates by the transformations T1 and T2. The first

k differential states in the transformed system are extracted as the inputs of the ANN

while the first m algebraic variables are the target outputs. The resulting reduced

system is given by

˙̄x1 = f̂(x̄1, z̄1, u)

z̄1 = g̃(x̄1), (here : z̄1 is expressed by use of x̄1 via an ANN )

y = ĥ(x̄1)

(3.23)

5. Summary of the Model Reduction Procedure

A summarizing description of the model reduction procedure is provided in this

subsection.

In a first step, transformations are computed for both differential states and

algebraic variables either via balancing or POD and these transformations are applied

to the system. The resulting model has the same order and identical input-output

behavior to the original system. However, it has the advantage that the important

parts of the model can more easily be identified and extracted. Model reduction

is performed in a subsequent step by truncation of the differential and algebraic

equations. Further reduction of the complexity of the algebraic equations is obtained

by system identification. In this work a feedforward neural network is used for system
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identification because this type of model structure can accurately represent data from

nonlinear systems and routines for its training, validation, and implementation are

readily available. However, other models are equally valid and can be incorporated

into the model reduction procedure without modifications. A flowchart summarizing

the individual steps of the reduction procedure is presented in Fig. 3.

C. Case Study: Distillation Column

1. Model Description

Consider a distillation column with 30 trays for separation of a binary mixture

of cyclohexane and heptane. The column has 32 differential states (concentrations

of component A: cyclohexane) and symmetric product compositions. The Wilson

equation is used for computation of the vapor-liquid equilibrium, resulting in a model

with 32 differential equations and 32 algebraic equations. The feed stream is intro-

duced in the middle of the column on stage 17 and has a composition of xF = 0.5 and

a temperature of 361.4 ˚C. The distillate and bottom purities are xD= 0.973, and

xB = 0.027, at temperatures of TD = 354.2 ˚C and TB = 370.1 ˚C, respectively.

The concentration and temperature distributions along the height of the column are

shown in Fig. 4, where the first elements represent the states corresponding to the

condenser and the 32nd elements refer to those of the reboiler. The reflux ratio is set

to 3.0 and serves as the manipulated variable while the concentration of the distillate

is the output of the system. The equations for this model are given in Appendix A.

2. Data Sets Collection

Four data sets were collected for comparing reduced-order models derived from

balancing and POD, both of which include reduction of the algebraic equations via



35

Original System (Eq. 3.1)

Compute covariance

matrices (similar to Eq. 2.5 & 2.6)

Balancing  to get transformation

matrix T
1
 (for DE part)

SVD to get transformation

matrix T
2
 (for AE part) (Eq. 3.3)

Transformed System (Eq. 3.7)

Reduced System (Eq. 3.17)

Determine the size of reduced system based on
singular values

1i+>> σσ
i

Final Reduced System (Eq. 3.23)

Generate snapshots and construct

correlation matrix (Eq. 2.15 & 2.16)

SVD to get  transformation

matrix T
1
 (for DE part) (Eq. 3.5)

SVD to get transformation

matrix T
2
 (for AE part) (Eq. 3.5)

PODBalancing

)()(

)()(

2

1

tzTtz

txTtx

=
=

Identify relationship between     and

)(g~ 11 xz =
1x 1z

Fig. 3. Flowchart of the model reduction procedure for DAE systems.
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Fig. 4. Concentration and temperature distributions in the distillation column.

neural networks. One of the data sets consists of the snapshots for POD, two sets

are required for computing covariance matrices for balancing, and the fourth is the

training set for the neural network. Only state trajectories resulting from input ex-

citations are required for the snapshots, which makes it a computationally efficient

procedure. Balancing requires one data set describing the input-to-state behavior and

one for the state-to-output behavior of the system. A covariance matrix for the data

set generated by input excitations of ±10% around the nominal value is computed

and the differential states were perturbed by ±10% to obtain the observability covari-

ance matrix. A comprehensive data set is required for training the neural network

since extrapolation does not hold for identified models. This is achieved by exciting

the system with pulse inputs where the system can reach its new steady state before

it is forced back to the original state. A combination of different excitation magni-
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tudes, directions, and durations has to be used in order to ensure that all the main

components of the system behavior are reflected in this data set.

3. Order Reduction of Both Differential and Algebraic Equations

The transformation matrices have been computed for the differential states and

the algebraic variables via balancing or POD. When balancing is applied for the

reduction of the differential equations, the main criterion to determine the number of

states to be retained is based on the magnitude of the Hankel singular values of the

balanced covariance matrices. Sorted by the magnitude from large to small, the first

10 Hankel singular values are shown in Fig. 5 and Table I lists the values of the first

6 as well as their corresponding percentages. For this example, truncated systems

that contain 2, 3 and 5 states were investigated. For model reduction via POD, the

number of the remaining differential states is determined based on the singular values

contained in the matrix Σ1 (see equation 3.3) and reduced systems with 2, 3 and 5

remaining differential equations were investigated. The singular values in the matrix

Σ2 (see equations 3.3 and 3.5) indicate that a system with 3 algebraic variables is

sufficient for models reduced by either balancing or POD.

Table I. Hankel singular values

State 1 2 3 4 5 6

Singular

Value

0.048 0.0023 0.0002 0.00006 0.000009 0.000006

% of sum 94.9% 4.5% 0.4% 0.12% 0.0178% 0.0119%

Since the only difference between balancing and POD is the procedure used for

computing the state transformation for the differential equations, the performance of
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Fig. 5. Hankel singular values of the distillation column model.

these two methods is first compared where the algebraic equations remain untouched.

The results are shown in Fig. 6, where the performance of the reduced systems

using different reduction methods but also different number of states remaining in

the model are compared. Since the simulation results of the reduced systems for the

different cases were close to each other, the residuals between the results returned

from the reduced order models and the full-order system are shown in Fig. 6 instead

of the absolute values. Note that the scale of the y-axis is 10−4, indicating excellent

performance for all of the reduced-order models except one. Since there is a relatively

large residual for the model with two states reduced by POD, the corresponding

curve is only partially shown in Fig. 6. One observation from this figure is that

balancing can result in a better approximation than POD if the same number of

states is retained. This result is expected since balancing takes the input-to-state and
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differential equations.

the state-to-output behavior into account whereas POD neglects the state-to-output

behavior. It has also been illustrated that systems with more states more closely

approximate the original system. However, there is always a tradeoff between the

quality of the approximation and the required computational effort, as is illustrated

in Table II. Based on Fig. 6 and Table II, it can be concluded that the reduced

system with 3 differential equations results in a very good approximation to the

original system with a relatively small computational burden.
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Table II. Comparison of CPU times for reduced-order models

States 2 3 5 32

Time (Seconds) 0.06 0.07 0.14 0.4

4. Further Reduction of Algebraic Equations via Neural Network

The neural network toolbox in MATLAB was used for this work and the chosen

neural net contains 1 hidden layer and 1 output layer, with 5 nodes in the hidden

layer and 3 nodes in the output layer. Hyperbolic tangent functions were used in

the hidden layer and linear functions in the output layer. The network was trained

using the Levenberg-Marquardt algorithm [84], [85]. After order reduction has been

performed as described in subsection 4.3, the remaining differential states serve as the

inputs to the neural network while the outputs are given by the remaining algebraic

variables.

Three cases are compared to illustrate the performance of the presented method

for model reduction of DAE system: (1) a linearized system with 32 differential

equations and 32 algebraic variables; (2) only the differential equations are reduced

by balanced truncation while the algebraic equations remain unchanged, resulting

in a reduced system with 3 differential equations and 32 algebraic variables; (3) the

system is reduced by the presented procedure, i.e., differential equations as well as

algebraic equations are reduced by truncation and the effect that the states have

on the remaining algebraic variables is identified by a neural network. This last

reduced system contains 3 differential equations and a neural network with three

inputs and three outputs. Fig. 7 shows a comparison of the performance of these

three reduced-order systems for step changes in the input of -10% and +10%. Several
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observations can be made based upon Fig. 7: (1) the upper and the lower trajectories

are not symmetric, which illustrates the nonlinearity of the original system; (2) the

performance of the linearized system is not as good as the ones using a nonlinear

reduced model; (3) the reduced model including a neural network provides a good

approximation to the full-order system. Although the reduced DAE system is a fairly

small model, it exhibits better performance than case 1 and performance comparable

to model 2 and to the original system.

D. Summary and Discussion

This chapter presents a new approach for the reduction of stable nonlinear DAE

systems. The investigated technique performs order-reduction of the differential equa-
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tions and reduces the size and complexity of the algebraic equations. The procedure

for reducing the differential equations can be performed by balancing or POD, while

a variety of identified model structures can be used for simplification of the algebraic

equations. During the procedure, the interplay between the states and the algebraic

variables has been taken into account as it is reflected in the computed projections.

The procedure has been illustrated by applying it to a model of a distillation

column. A comparison of the results obtained from POD and balancing indicates

that balancing performs better than POD since the input-to-state and the state-to-

output behaviors are simultaneously taken into account while POD only uses the

input-to-state behavior. The algebraic equations were further reduced by identifying

a feedforward neural network resulting in a model of significantly smaller size that is

also easier to simulate since the algebraic variables can be computed via an explicit

expression.



43

CHAPTER IV

DAE MODEL REDUCTION VIA BALANCING AND PARTIAL LEAST

SQUARES (PLS)

In the previous chapter, a technique combining projections and neural network

was presented for DAE model reduction. The neural network was applied to approxi-

mate a nonlinear static relationship between differential states and algebraic variables.

This operation can achieve a good approximation so that the reduced model has a

satisfactory performance. Due to the nonlinearity nature, the neural network may be

hard to train when the system is large scale. For those systems with a low to medium

degree of nonlinearity and relatively larger size, some linear methods, e.g. partial

least squares (PLS) as introduced by Wold [86], can also provide good performance

for multivariate approximations [87].

In this chapter, a combination of balancing and PLS is investigated for nonlinear

model reduction of DAE systems. Also, this method is studied on the residualization

model derived from large scale ODE systems, which is actually a special DAE system.

By combining a model-based method, i.e. nonlinear balancing, with a linear statistical

approach, i.e. PLS, it is possible to reduce both size and complexity of a strongly

nonlinear model while retaining the control-relevant input-output behavior.

A. Model Reduction via Balancing/PLS for ODE Systems

1. Model Reduction Procedure

As shown in Chapter II, reduced systems derived from balanced truncation can-

not retain the steady state behavior, therefore, balanced residualization methods have

been introduced. Balanced residualized models described by (2.12) can be rewritten
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as

˙̄x1 = f̄1(x̄1, x̄2, u)

0 = f̄2(x̄1, x̄2, u)

y = h̄(x̄1, x̄2)

(4.1)

While a residualized system will have better steady-state performance than a

truncated system, it is only a reduced model in the sense that some differential equa-

tions have been replaced by algebraic ones, resulting a differential algebraic equation

(DAE) system, where the retained states x̄1 are described by differential equations

while the reduced states x̄2 can be represented as a vector of algebraic variables. A

DAE solver is required to solve this type of model. However, solving a DAE system

often requires a larger computational effort than solving an ODE system with the

same number of states, which would defeat the purpose of nonlinear model reduction.

Therefore, further reduction may be required for nonlinear balanced residualization.

The vector x̄1 from (4.1) contains states that are the most important ones for

the input-output behavior of the system and x̄2 is only used as a correction term for

the steady state behavior. As x̄2 only contributes to a lesser degree to the process’

behavior it can be further reduced without significantly affecting the input-output

behavior of the system.

Consider the implicit algebraic equation 0 = f̄2(x̄1, x̄2, u) in (4.1). x̄2 is dependent

on x̄1 and on the input u in a static manner. Sincef̄2 is nonlinear, it is hard to obtain

an explicit expression for x̄2. However, a system identification technique can be

applied to approximate x̄2 given x̄1 and u

x̄2 = ĝ(x̄1, u) (4.2)

where ĝ represents an identified expression, e.g. an artificial neural network (ANN)

or a partial least squares (PLS) model. In this work, PLS is used to obtain this
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approximation, as it is often sufficient to represent these states of lesser importance

by a linear approximation. The reduced system is given by

˙̄x1 = f̄1(x̄1, x̄2, u)

x̄2 is predicted by PLS using (x̄1, u) as inputs

y = h(x̄1, x̄2)

(4.3)

If the number of states to be reduced is large, then it can happen that the large

number of resulting algebraic equations can cause numerical problems. However, as

many of the algebraic variables do not contribute to the control-relevant behavior,

it is possible to use a combination of residualization and truncation to address this

situation and compute a reduced-order model of the following form:

˙̄x1 = P1Tf(T−1x̄, u)

0 = P2Tf(T−1x̄, u)

x̄3 = x̄3,ss

y = h(T−1x)

(4.4)

where x̄ =




x̄1

x̄2

x̄3




, P1 = [ Ik×k 0 0 ], P2 = [ 0 Im×m 0 ], k: number of retained

differential equations, m: number of retained algebraic variables

Following the same approximation procedure as in (4.2) and (4.3), the reduced

system can be described by

˙̄x1 = f̄1(x̄1, x̄2, u)

x̄2 is predicted by PLS using (x̄1, u) as inputs

x̄3 = x̄3,ss

y = h(x̄1, x̄2)

(4.5)
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Note that in the approximations (4.3) and (4.5), x̄2 also depends on the input u

and, therefore, the independent matrix consists of x̄1 and u.

2. Implementation of PLS

To compute a PLS model which approximates x̄2 given values of x̄1 and u, the

independent matrix is required to contain x̄1 and input u, and the dependent matrix

consists of x̄2. The training data set can be collected by the following procedure:

Step 1: Simulate the original model

Uniformly distributed random perturbations of the inputs u are used to excite

the original model starting from the steady state operating point. The values of the

inputs and the states are recorded along each trajectory. For convenience of notation,

the data matrix of states is represented by A and the input matrix is referred to as

B in the following.

Step 2: Obtain the training data

Since x̄1 and x̄2 are states/variables of the transformed system, the data collected

in step 1 also need to be transformed:

Ā = TA (4.6)

where T is the transformation matrix.

If the number of retained states is chosen to be equal to k, then the first k rows

of Ā correspond to the data for x̄1, denoted as X̄1 and the following (n− k) rows in

(2.12) or m rows in (4.4) are data for x̄2, denoted by X̄2.

The independent matrix X and dependent matrix Y before scaling are con-
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structed as in (4.7), respectively.

X =




X̄1

B


 Y = [X̄2] (4.7)

Step 3: Scale the training data

X and Y are scaled to have zero mean and unit variance as shown in (2.19).

For convenience of notation, the scaled matrices are still denoted as X and Y in the

following.

After obtaining the training data set, the NIPALS algorithm is applied to con-

struct the PLS model including the regression matrix, referred to as R. By use of the

regression matrix, the reduced systems corresponding to (4.3) and (4.5) are given by

(4.8) and (4.9), respectively.

˙̄x1 = f̄1(x̄1, x̄2, u)

x̄2 = R ∗ [x̄1, u]

y = h(x̄1, x̄2)

(4.8)

˙̄x1 = f̄1(x̄1, x̄2, u)

x̄2 = R ∗ [x̄1, u]

x̄3 = x̄3,ss

y = h(x̄1, x̄2)

(4.9)
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B. Model Reduction via Balancing/PLS for DAE Systems

1. Model Reduction Procedure

As in Chapter III, the DAE systems can be reduced as (3.22)

˙̄x1 = P1f̄(x̄, z̄, u) = f̂(x̄1, z̄1, u)

x̄2 = x̄2,ss

z̄1 = g̃(x̄1)

z̄2 = z̄2,ss

y = h̄(x̄) = ĥ(x̄1)

(4.10)

where f̂ , g̃, ĥ represent nonlinear functions of the reduced system.

Instead of using neural network to do the system identification, here, the rela-

tionship between z̄1 and x̄1 can be approximated by PLS

˙̄x1 = f̂(x̄1, z̄1, u)

z̄1 is predicted by PLS using x̄1 as input

y = ĥ(x̄1)

(4.11)

Note that z̄1 only depends on x̄1 and does not depend on the input u as the

original system was a regular DAE system. Therefore, the input u does not need

to be included in the independent matrix when computing the PLS model for DAE

systems.

2. Implementation of PLS

The procedure to implement PLS for model reduction of the alebraic equations

of a DAE system is similar to the one for ODE systems. Only minor modifications

need to be performed for DAE systems for obtaining the training data set.
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The state matrix A and input matrix B can be collected by simulating the

original DAE system. Note that the matrix A not only consists of the matrix for the

states but also includes the algebraic variables. The matrix A can be split into block

matrices

A =




A1

A2


 (4.12)

where A1: data for states, A2: data for algebraic variables

The transformed data matrices can be computed by:

Ā1 = T1A1, Ā2 = T2A2 (4.13)

If the number of retained states is k, then the first k rows of Ā1 are the data

matrix of x̄1, denoted as X̄1. Similarly, if the number of retained algebraic variables

is m, then the first m rows of Ā2 correspond to the data matrix of z̄1, denoted as

Z̄1. X̄1 and Z̄1 are in fact the independent matrix X and dependent matrix Y before

scaling is applied. The final reduced system is given by (4.14) where the regression

matrix R is computed via PLS.

˙̄x1 = f̂(x̄1, z̄1, u)

x̄2 = x̄2,ss

z̄1 = Rx̄1

z̄2 = z̄2,ss

y = ĥ(x̄1)

(4.14)

where x̄ =




x̄1

x̄2


, z̄ =




z̄1

z̄2



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C. Case Studies

Two examples are presented in this section to illustrate the use of PLS for nonlin-

ear model reduction. One example is a catalytic fixed-bed reactor, described by 120

ODEs while the other example is a distillation column, consisting of 32 differential

equations and 32 implicit algebraic equations.

1. Example 1: Catalytic Fixed-Bed Reactor

The reactor system is a multi-tubular reactor with a highly exothermic reac-

tion that synthesizes phthalic anhydride from o-xylene [88]. Two partial differential

equations are used to describe the mass and energy balances along the length of

the reactor. A finite difference method is applied to discretize the partial differen-

tial equations into a set of ODEs consisting of 120 states, 60 of which describe the

concentrations and 60 represent the temperatures at the discretization points. The

steady state concentration and temperature distribution along the reactor length is

shown in Fig. 8. It can be observed that there is a “hot spot” in the reactor, which is

commonly found in exothermic processes. As the temperature at this hot spot is of

primary interest, a measurement is located at the position where the hot spot occurs.

The inlet temperature serves as the input variable.

a. Data Set Collection

The reduced reactor system is described by (4.4) and (4.5). It has been deter-

mined from the magnitude of the singular values that 25 states are sufficient for a

good approximation of the original systems, i.e., k = 25. Therefore, the reduced

system consists of 25 differential equations. Ten additional states are approximated

via PLS, i.e., m = 10, to obtain a good approximation at steady state. The other 85
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Fig. 8. Steady state of reactor.

states are truncated, i.e., kept as constants. Due to the high degree of nonlinearity for

the reactor model, only perturbations of the input up to ±5% are acceptable for the

stability of the operating point. The training data set is collected and preprocessed

as described in subsection A-2.

b. PLS Implementation

After the PLS model is obtained by use of the training data set, this model is

evaluated on test data which is generated by exciting the system with a series of

random input perturbations. The prediction error of the PLS model, i.e., the error

between the original value of one dependent variable and the corresponding predicted

value, is shown in Fig. 9. Note that this dependent variable corresponds to a variable

of the transformed system. The upper graph in Fig. 9 is the absolute value and
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Fig. 9. Prediction performance of PLS model for reactor system.

the lower graph shows the prediction error. Based on the small prediction error, it

can be concluded that the PLS model provides a good fit and can be used for model

reduction of the reactor system.

c. Performance of Reduced System

To show the performance of the reduced system via the presented technique, a

comparison between the reduced system derived from truncation (model 1) and a

reduced system resulting from residualization via PLS (model 2) is given in Fig. 10.

In this figure, the step responses of these reduced systems and the original system

with an input perturbation of 3% are compared. The graph in the upper subplot

depicts the outputs of the original system and the lower graphs represent the residuals
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Fig. 10. Comparison of reduced reactor systems’ step responses.

between this output and the outputs of the reduced systems. It can be seen that the

performance of model 2 is much better than that of model 1, especially with regard to

the steady state behavior. These results illustrate that while PLS is a linear system

identification technique, it can return excellent results if it is included in a model

reduction procedure that combines PLS and nonlinear balancing.

2. Example 2: Distillation Column

The distillation column model investigated in Chapter III is revisited here, which

is a DAE system consisting of 32 differential equations and 32 algebraic equations.
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Fig. 11. Prediction performance of PLS model for distillation system.

a. Data Set Collection

Based on the singular values it is determined that 3 states are sufficient for

approximating the 32 differential equations and 3 algebraic variables are retained,

i.e., k = m = 3. The data set is collected by exciting the distillation column with a

series of input perturbations of up to ±15%.

b. PLS Implementation

Similar to the reactor model, the prediction error is shown in Fig. 11. This

error is sufficiently small so that the PLS model can be used to predict the retained

algebraic variables from the values of the states of the reduced-order model.
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c. Performance of Reduced System

Given a -10% input perturbation, the step responses of three systems are com-

pared: 1) a reduced system where only the differential equations are reduced via

balanced truncation (model 1); this method is computationally efficient but will have

steady state offset; 2) a reduced system where only the differential equations are re-

duced via balanced residualization (model 2); the procedure will result in no steady

state offset but is computationally not the most efficient; 3) a reduced system where

both differential and algebraic equations are reduced, and the retained algebraic vari-

ables are approximated by PLS (model 3). A comparison is shown in Fig. 12. The

performance for model 3 is significantly better than that of model 1 and comparable

with model 2. Moreover, a comparison of the computation times is provided in Ta-

ble III, where the computational effort of all of the reduced systems is significantly

smaller than for the original system (model 4). Additionally, model 3 is easier to solve

than model 2 while it has a comparable degree of accuracy. It can be concluded that

a combination of PLS and balancing performs very well for model reduction of DAE

systems and represents a good trade-off between accuracy and the computational

effort required for its solution.

Table III. Comparison of CPU times for reduced-order models

Model 1 2 3 4

Time (Seconds) 0.13 0.23 0.15 0.43
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D. Summary and Discussion

This chapter presents a new technique for nonlinear model reduction by using

a combination of nonlinear balancing and partial least squares (PLS). The reduction

procedure can be applied for model reduction of nonlinear ODE and DAE systems.

The technique has been illustrated in two case studies, where the reduced-order mod-

els were significantly smaller and faster to solve than the original model, while they

provide an excellent approximation to the input-output behavior of the original sys-

tem.
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CHAPTER V

PARAMETER REDUCTION FOR STABLE DYNAMICAL SYSTEMS BASED

ON HANKEL SINGULAR VALUES AND SENSITIVITY ANALYSIS

Chemical process models consist of not only process variables but also process

parameters. The previous work on model reduction is mainly focusing on reducing

the number of process variables and little attention has been given to reducing the

number of parameters. This chapter addresses the problem of reducing insignificant

or redundant information in parameter sets associated with fundamental models of

dynamical systems. Whilst these parameters are important for describing physical

or chemical relationships between the process variables, some of them only provide

a marginal contribution to the input-output behavior of the system. Consequently,

the identification of the latter parameters is difficult on the basis of recorded process

data. Since this important issue has not attracted considerable attention over the

past decade, this part of work introduces and evaluates three techniques to assess the

importance of each parameter to the overall input/output description of the process

under study.

A. Overview

Chemical processes usually contain a large number of parameters, all of which

are only known to a certain degree. However, it is not always necessary to identify the

values of all of the parameters from data for building a model to be used for monitoring

and control. Instead, a reduction of the parameter set can be performed such that

Part of this chapter is reprinted from Chemical Engineering Science, Vol. 61, No.
16, C. Sun and J. Hahn, Parameter reduction for stable dynamical systems based
on Hankel singular values and sensitivity analysis, pp. 5393-5403, Copyright (2006),
with permission from Elsevier.
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only a limited number of them need to be estimated. This paper addresses this point

and presents three new techniques for reducing the parameter set of fundamental

models.

The first methodology is based upon identifying the contribution that a parame-

ter has to the input-output behavior of a system. The importance of each parameter

is measured by the Hankel singular values of the balanced system if the parameter is

used as input. Explicit bounds on the strongest contribution that a parameter has,

even if it is time-varying, can be computed for the linear case and used as a measure

for reducing/retaining a specific parameter. The advantages that this technique has

are that (a) the physical meaning of the parameters is retained in the reduction and

(b) explicit bounds for the contribution of a parameter to the system behavior can

be computed for linear systems. The disadvantage is that this method can be very

conservative.

The second technique is based upon determining “interactions” between param-

eters via singular value decomposition of a sensitivity covariance matrix. Unlike the

first technique, the emphasis on the reduction for this method is on reducing the

dimension of the parameter space of the system. The result can be a significantly

smaller parameter set to be retained in the model. The disadvantage is that the

physical interpretation of the parameters is lost during the procedure.

As the first methodology can be very conservative, while the second technique

looses the physical interpretation of the parameters, a combination of the two tech-

niques is presented. In a first step the contribution of individual parameters to the

system behavior is evaluated. Only the parameters that have significant contribu-

tions will then be used for reduction of the parameter space. This combination allows

that many parameters can still retain their physical interpretation, while at the same

time a reduction of the parameters comparable to that of the second method can be
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achieved.

B. Parameter Reduction for Linear Systems

This section presents three new approaches for reducing the parameter set of

models. The advantages and drawbacks of each technique are discussed in detail.

The state space realization of a stable linear system with parameters can be

expressed as

ẋ = Ax + Aθθ + Bu

y = Cx + Cθθ + Du
(5.1)

where x ∈ <n refers to a vector of the states of the system, u ∈ <l is a vector of

inputs, y ∈ <m represents a vector containing the measured variables, and θ ∈ <s

refers to the parameters of the system. Without loss of generality, suppose that all

variables have been normalized. Also, assume that the eigenvalues of the matrix A

have negative real parts resulting in a stable system.

1. Method I: Parameter Reduction Based on Hankel Singular Values

As the value of parameters can lie anywhere within their uncertainty intervals,

or may in some cases even change with time within this interval, it is possible to

treat the parameters as additional inputs to the system. As such they influence the

input-output behavior of a system.

In (5.1), there are s parameters θj, j = 1, . . . , s, which allows to rewrite (5.1) as

ẋ = Ax +
s∑

j=1

Aθ,jθj + Bu

y = Cx +
s∑

j=1

Cθ,jθj + Du
,

Aθ = [ Aθ,1 Aθ,2 · · · Aθ,s ]

Cθ = [ Cθ,1 Cθ,2 · · · Cθ,s ]
, (5.2)

For linear systems, the contributions of inputs and each parameter for input
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output behavior can be superposed. Therefore, (5.2) is equivalent to a series of state

space representations

ẋ1 = Ax1 + Bu

y1 = Cx1 + Du
(5.3)

ẋ2 = Ax2 + Aθ,1θ1 ,

y2 = Cx2 + Cθ,1θ1

(5.4)

...

ẋs+1 = Axs+1 + Aθ,sθs

ys+1 = Cxs+1 + Cθ,sθs

(5.5)

where xi, i = 1, · · · , s + 1 represents the state vector resulting from the inputs or

one parameter at a time, and yi, i = 1, · · · , s + 1 refers to the corresponding output

vector.

This decomposition is shown in Fig. 13. It follows that x =
s+1∑
i=1

xi and y =
s+1∑
i=1

yi.

Therefore, the system (5.1) can be regarded as a sum of these s+1 subsystems. For

each subsystem, the controllability gramian WC, i, i = 1, . . . , s+1, can be computed.

WC, 1 corresponds to the controllability gramian representing the input-to-state be-

havior for excitation with the inputs u (subsystem (5.3)). WC, 2 to WC, s+1 on the other

hand contain information about the input-to-state behavior if the system is only ex-

cited by variations in one of the parameters at a time (subsystems (5.4)-(5.5)). Based

on (2.2), the controllability gramian for the original system, WC , is a sum of the

controllability gramian for each subsystem, WC, i ,i = 1, . . . , s+1, if the parameters

are also viewed as inputs to the system

WC =
s+1∑
i=1

WC, i (5.6)

Since the observability gramian WO, does not depend upon the input or the
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parameters, the observability gramian of the original system is the same as that of

each subsystem. Therefore, the observability gramian only needs to be computed

once for this investigation.

The Hankel singular values for each subsystem can be computed based on WC, i

,i = 1, . . . , s+1, and WO. These Hankel singular values can be used to determine

the contribution of individual states to the input-output behavior of each subsystem.

Based upon the error bound for model reduction of a balanced system shown in (2.4),

it can be concluded that the contributions of inputs to the input-output behavior are

bounded by

σ1, u ≤ ‖Gu(s)‖∞ ≤ 2
n∑

i=1

σi, u (5.7)

where Gu(s) denotes the difference between the original system and the system with

the input removed from the original system, σi,urefers to the i-th Hankel singular

value of the subsystem (5.3).

Similar bounds can be established for the contribution of each parameter to the

input-output behavior of the system

σ1, θj
≤

∥∥Gθj
(s)

∥∥
∞ ≤ 2

n∑
i=1

σi, θj
(5.8)
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where Gθj
(s) denotes the difference between the original system and the system with

the parameter θj removed from the original system, σi,θj
refers to the i-th Hankel

singular value of each subsystem in (5.4)-(5.5).

It should be noted that the contribution that individual states make to the

input-output behavior are not as important for this work as the overall contribution

of inputs to the system. Accordingly, the error bounds presented in (5.7) and (5.8)

refer to the error that will incur if the inputs or individual parameters are eliminated

from the system. Following this argument, a parameter θj can be safely assumed to

be constant if

σ1, u >> 2
n∑

i=1

σi, θj
(5.9)

The reason behind this argument is that the maximal error that is incurred by

setting a parameter to its constant value is significantly smaller than the smallest

error that can result from neglecting the effect that changes in the inputs have on the

system. It should be noted that this is a very conservative condition. In most cases,

the parameters that satisfy σ1, u ≈ 2
n∑

i=1

σi, θj
can also be reduced. This point can be

verified by checking the performance of the reduced system a posteriori.

Based upon the presented argument, it is possible to compute explicit upper

and lower error bounds for reducing the parameter set. The overall error bound

is not given by the sum of the individual bounds as parameter may interact with

one another, resulting in an error bound which is likely smaller than the sum of

the error bounds. Instead the upper and lower bounds can be computed as follows:

Suppose there are k parameters reduced in a model. Without loss of generality, these

parameters are referred to as {θr, r = 1, 2, . . . , k}. The error bound for neglecting
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these parameters for the input-output behavior of the system can be given by

σ1, θr ≤ ‖Gθr(s)‖∞ ≤ 2
n∑

i=1

σi, θr (5.10)

where σi,θr represents the i-th Hankel singular values corresponding to a system ex-

cited by changes in these k parameters.

The strong points of this type of procedure for reducing the set of parameters

are that

• The physical meaning of the parameters is retained during the procedure as it

is apparent which parameters have been reduced based on the corresponding

Hankel singular values.

• Explicit error bounds can be given for the effect that neglecting changes in the

parameters have on the input-output behavior of the system.

• The computed error bounds are not just valid for the steady-state behavior, but

will also hold if the parameters vary with time within their uncertainty range.

A drawback of this method is that it can be very conservative, especially if the

condition given by (5.9) is used for determining which parameters to neglect.

2. Method II: Parameter Reduction Based on Sensitivity Analysis

a. Sensitivity Covariance Matrix

Define the sensitivity functions for the parameters: xθ = ∂x
∂θ
∈ <n×s, uθ = ∂u

∂θ
∈

<l×s, yθ = ∂y
∂θ
∈ <m×s. By differentiating (5.1), the parameter variation system can

be obtained (Tomovic and Vukobratovic, 1972)

ẋθ = d
dt

(
∂x
∂θ

)
= ∂

∂θ

(
dx
dt

)
= ∂

∂θ
(ẋ)

= ∂
∂θ

(Ax + Aθθ + Bu) = Axθ + Aθ + Buθ

(5.11)
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yθ =
∂y

∂θ
=

∂

∂θ
(Cx + Cθθ + Du) = Cxθ + Cθ + Duθ (5.12)

It is apparent that if the original system (5.1) is stable, then the system given by

the parameter variation equation is also stable, since the location of the eigenvalues

of the matrix A also determines stability of the system given by (5.11) and (5.12).

It is assumed that inputs do not depend on parameters, thus uθ = 0. Solving

these differential equations with initial conditions of zero, the solution is given by [89]

xθ = −A−1Aθ + eAtA−1Aθ (5.13)

yθ = −CA−1Aθ + CeAtA−1Aθ + Cθ (5.14)

With a change of notation, (5.14) results in

yθ = yθ,ss + CeAtM (5.15)

where M = A−1Aθ andyθ,ss = −CA−1Aθ + Cθ is the final steady state value of yθ.

And the following quantity is defined for ease of notation

ȳθ = yθ − yθ,ss = CeAtM (5.16)

The Sensitivity Covariance Matrix (SCM) can then be computed from the fol-

lowing expression

∞∫
0

ȳT
θ ȳθdt =

∞∫
0

(
CeAtM

)T (
CeAtM

)
dt

= MT

(∞∫
0

eAT tCT CeAtdt

)
M = MT WOM ∈ <s×s

(5.17)

where Wo is the observability gramian.

This covariance matrix contains information about the influence the parameters

have on the outputs of the system. It should be noted that it not only contains

information about the effect of individual parameters on the system but also contains
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information about “interactions” of parameters. Also, this quantity is related to the

observability gramian of the linear system, Wo.

b. Parameter Reduction Procedure

The information contained in the SCM allows to extract the principle directions

in the parameter space that will give the largest contribution to the parameter-output

behavior. Extracting the most important directions in the parameter space, unlike

the approach presented in Section 3.1, allows to take the “interactions” among the

parameters into account, i.e. if the effect of changes in two parameters cannot be

uniquely attributed to one of the two, and can result in a significantly reduced pa-

rameter set. This section describes how the information contained in the SCM can

be extracted and interpreted.

Since the sensitivity covariance matrix defined in (5.17) is a positive semi-definite

matrix, all eigenvalues are non-negative real numbers. Furthermore, due to its sym-

metry, this matrix can be diagonalized by an orthogonal matrix even if multiple

eigenvalues exist [49]. Therefore, singular value decomposition can be applied to this

sensitivity covariance matrix

SCM = T T ΛT (5.18)

where T ∈ <s×s, an orthogonal matrix; superscript T indicates the transpose; and

Λ =




λ1

λ2

. . .

λn




, λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 are eigenvalues of SCM.

Starting from (5.18), it can be shown that

Λ = (T−1)T SCM(T−1) (5.19)
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A new parameter space can be obtained by a coordinate transformation θ̄ = Tθ,

where θ̄ is a parameter vector in the new parameter space. Since T is invertible,

θ = T−1θ̄. Substituting into (5.1), the system in the new parameter space is given by

ẋ = Ax + Aθθ̄ + Bu

y = Cx + C̄θθ̄ + Du
(5.20)

where Aθ = AθT
−1, Cθ = CθT

−1. In this system, M̄ = A−1Aθ = A−1AθT
−1 = MT−1,

where M̄ is the quantity in the new system corresponding to M in (5.14).

The sensitivity covariance matrix for this system where the parameter space has

been transformed is given by

SCM = M̄T WOM̄ = (T−1)T MT WOMT−1 = (T−1)T SCM(T−1) (5.21)

Compared to (5.19), it is obvious that SCM = Λ. Therefore, SCM is a diagonal

matrix where the diagonal entries are the eigenvalues of the SCM in a descending

order. Since the diagonal entries of SCM provide a measure of the importance of

the corresponding parameters in the new parameter space, the parameters can be

classified as belonging to an important and a less important category. The trans-

formed parameter vector θ̄ can be partitioned into two parts, θ̄1 and θ̄2, as shown

in (5.22). θ̄1 represents the more important parameters, which should be retained

during parameter reduction and θ̄2are of lesser importance and will be reduced.

θ̄ =




θ̄1

θ̄2


 (5.22)

One important task is the determination of the number of parameters in θ̄1 and

θ̄2. It is possible to use a trial and error procedure where a trade-off between the

number of parameters to be retained and the quality of the approximation is found.
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A good rule of thumb is to determine if there exist gaps in the magnitude of the

eigenvalues of the SCM and then test several responses where the cut-off between

retained/reduced parameters is placed at these gaps. However, this can only be used

as an a priori rule and in practice it is always necessary to evaluate the performance

of the system of reduced parameters.

System (5.20) can be rewritten as

ẋ = Ax +

[
Aθ1 Aθ2

]



θ̄1

θ̄2


 + Bu

y = Cx +

[
C̄θ1 C̄θ2

]



θ̄1

θ̄2


 + Du

(5.23)

where the parameters can be reduced by truncation of the parameter vector θ̄.

ẋ = Ax + Āθ1 θ̄1 + Bu

y = Cx + C̄θ1 θ̄1 + Du
(5.24)

c. Analysis of Error Bounds for Parameter Space Reduction

While the coordinate transformation of the parameters θ̄ = Tθ does not result

in an error, the truncation (going from (5.23) to (5.24)) will result in the new system

approximating the original one. The error resulting from parameter reduction can be

quantified by the H∞ norm as follows:

∥∥Ḡ(s)− Ḡr(s)
∥∥
∞ = λ

1
2
max{[Ḡ(jω)− Ḡr(jω)]H [Ḡ(jω)− Ḡr(jω)]} (5.25)
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where

Ḡ(jω)− Ḡr(jω) = C(jωI − A)−1[ B Aθ1 Aθ2
] + [ D Cθ1 Cθ2

]

−{C(jωI − A)−1[ B Aθ1 0 ] + [ D Cθ1 0 ]}

= C(jωI − A)−1[ 0 0 Aθ2
] + [ 0 0 Cθ2

]

(5.26)

and λ
1
2
max represents the square root of the largest eigenvalue.

Therefore, the truncation error results in

∥∥Ḡ(s)− Ḡr(s)
∥∥
∞ = λ

1
2
max{[Ḡ(jω)− Ḡr(jω)]H [Ḡ(jω)− Ḡr(jω)]}

= λ
1
2
max{[C(jωI − A)−1[ 0 0 Aθ2

] + [ 0 0 Cθ2
]]H

[C(jωI − A)−1[ 0 0 Aθ2
] + [ 0 0 Cθ2

]]}

= λ
1
2
max





0 0 0

0 0 0

0 0 [C(jωI − A)−1Aθ2 + Cθ2]
H [C(jωI − A)−1Aθ2 + Cθ2]





= λ
1
2
max{[C(jωI − A)−1Aθ2 + Cθ2]

H [C(jωI − A)−1Aθ2 + Cθ2]}

(5.27)

It should be noted that expression (5.27) has to be evaluated over the entire

frequency range to determine the error bound, unlike the error bound for the first

technique which was given by (5.10).

The strong points of this second technique are that

• it is possible to determine not just if a parameter has an important effect on

the system response, but also if the effects of variations in several parameters

can be uniquely attributed to the individual parameters.

• the reduced set of parameter can be significantly smaller than the original set.

The main drawback is that the physical meaning of the parameters is lost during

this procedure.
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3. Method III: Combination of Method I and II

As Methods I and II both have their advantages and drawbacks, it is possible

to combine them to avoid some of the disadvantages. A third technique is proposed

here which performs the following steps:

(1) The sensitivity of the outputs with respect to changes in the parameters is

investigated via the Hankel singular value-based technique. This investigation will

keep all the parameters at their nominal values if changes in them will not result in

significantly different behavior of the outputs.

(2) Compute the SCM for the reduced set of parameters from (1) and perform

parameter space reduction.

The advantages that this combination of the techniques offers are that, the phys-

ical meaning of all reduced parameters in step (1) are retained (as stated in the

discussions for Method I), while it is possible to substantially reduce the number of

parameters due to the reduction from step (2).

C. Extension to Nonlinear Systems

As any system is nonlinear to some degree, it is important to extend the param-

eter reduction techniques to nonlinear systems. While the extension itself is made in

this work, no proofs are provided for the nonlinear case, as several of the arguments

made in Section 3 are based upon existing Results from linear systems theory, e.g.

the theory and application of nonlinear balancing is not at a state where a meaningful

proof of the extension of the first method can be provided. Due to this the extension

of the methods to nonlinear system can only be guaranteed to work locally and that

the presented error bounds are not guaranteed to be valid for the nonlinear case over

an operating region.
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1. Method I: Parameter Reduction Based on Hankel Singular Values

Linear gramians are used to compute Hankel singular values for linear systems. In

the case of nonlinear systems, covariance matrices [12] can be computed numerically

based on the system trajectories. The controllability covariance matrices for inputs

and each parameter are obtained by exciting the system with various input signals.

To compute the observability covariance matrix, all inputs and parameters are set

to their nominal values while each state is given an initial condition perturbation.

The controllability and observability covariance matrix can be balanced [11] and the

Hankel singular values corresponding to the system with inputs and excited by each

parameter can be computed. The less important parameters can be reduced based

on the same criterion described for linear systems.

2. Method II: Parameter Reduction Based on Sensitivity Analysis

In this subsection, the sensitivity analysis-based method for nonlinear systems is

presented. The nonlinear systems under investigation are given by

ẋ = f(x, θ, u)y = g(x, θ, u) (5.28)

with x(0) = x0.

Similar to the linear systems, the parameter variation system is given by

ẋθ =
d

dt

(
∂x

∂θ

)
=

∂

∂θ

(
dx

dt

)
=

∂

∂θ
(ẋ) =

∂

∂θ
(f(x, θ, u)) = Jf,xxθ+Jf,uuθ+Jf,θ (5.29)

yθ =
∂y

∂θ
=

∂

∂θ
(g(x, θ, u)) = Jg,xxθ + Jg,uuθ + Jg,θ (5.30)

where Jf,x, Jf,u, Jg,x, Jg,u are Jacobian matrices of the vector functions f , g and with

respect to the state and input vectors, Jf,pJg,p are Jacobian matrices of the vector

functions f , g with respect to the parameter vector θ.
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Since all Jacobian matrices are functions of x, u and θ, it is necessary for (5.28)

and (5.29) to be solved simultaneously. The set of equations need to be integrated

over the time interval [0 T ], with initial conditionsx(0) = x0 and xθ(0) = 0 and uθ

held at zero.

The sensitivity covariance matrix can then be computed from

SCM =

∞∫

0

ȳT
θ ȳθdt =

∞∫

0

(yθ − yθ,ss)
T (yθ − yθ,ss)dt (5.31)

After the sensitivity covariance matrix has been obtained, the parameter reduc-

tion procedure can be implemented similar to the linear system case: (1) singular

value decomposition is applied to compute an invertible transformation matrix T ; (2)

the linear transformation relationship θ̄ = Tθ is introduced, such that the system in

the new parameter space is given by

ẋ = f(x, T−1θ̄, u)

y = g(x, T−1θ̄, u)
(5.32)

In this new parameter space, the parameters are sorted based on their relative

importance, from large to small. Therefore, θ̄ can also be partitioned into two parts,

similar to what was done in (5.22). The last step is to truncate the less important

states θ̄2 via a projection matrix P leading to the reduced system

ẋ = f(x, PT−1θ̄, u)

y = g(x, PT−1θ̄, u)

θ̄2 = θ̄2, ss

(5.33)

where P = [ Ik×k 0k×(s−k) ], k is the number of parameters retained.
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3. Method III: Combination of Method I and II

The combination method is also applicable to nonlinear systems. The elements

introduced in Section 4.1 and 4.2 can be combined in the same manner as described

for linear systems.

D. Performance Evaluation

Evaluating the performance of systems where the parameter set has been reduced

is an important step of the parameter reduction procedure. While the error bounds

presented in Section 3 allow an a priori estimate of the error resulting from the pro-

cedure, it should be noted that these can be very conservative bounds. Additionally,

these error bounds are not guaranteed to hold for nonlinear systems. To address these

points, any parameter reduction procedure needs to include performance evaluation

of the reduced system.

Two approaches are presented in this work for performance evaluation. One

approach is based upon frequency response analysis, which is only applicable to linear

systems. The other one analyzes responses in the time domain based on Monte Carlo

simulations. This second method can be used for linear as well as for nonlinear

systems.

1. Frequency Domain Analysis

Transfer functions can be used to describe the effect that changes in the in-

puts/parameters of the system have on the outputs. These transfer functions can be

bundled in a matrix of transfer functions, where the original inputs and the parame-

ters serve as the inputs of the transfer functions. The relative error due to parameter
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reduction is then given by

∆ =
‖G(s)−Gr(s)‖∞

‖G(s)‖∞
(5.34)

The individual components of Eq. (5.34) can be evaluated by (Skogestad and

Postlethwaite, 1996)

‖G(s)‖∞ = σ̄[G(jω)] (5.35)

where σ̄[G(jω)] represents the largest singular value of G(jω) over the entire spectrum

of frequencies.

Therefore, once the reduced system is obtained, the singular values for both

G(jω) and [G(jω) − Gr(jω)] can be computed. The relative error ∆ can then be

computed by evaluating the largest singular value of the numerator and the denomi-

nator in Eq. (5.34).

2. Time Domain Analysis Based on Monte Carlo Simulations

As frequency response analysis cannot be applied to nonlinear systems, a Monte

Carlo-based technique [90] is presented here. This method is based upon varying the

inputs and the parameters of the system, computing the trajectories of the outputs in

the time domain, and comparing the results of the systems with reduced parameter

sets to the behavior of the original process. A variety of different inputs and changes in

the parameters has to be considered for this technique. This is achieved by randomly

varying the inputs and the parameters within their bounds and computing a large

number of trajectories (usually greater than 1000). The average error introduced by

reduction of the parameter set can then be computed from this run.

Since Monte-Carlo-based techniques rely on stochastic variations of some of the

variables/inputs, it is important to also determine confidence intervals for the average

error introduced by the reduction procedure. This is done by repeating the Monte
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Carlo simulations several times and determining a mean of the average error as well

as a standard deviation of the average error

Err =
σ

Mean(|y|) (5.36)

where σ =

√
1

N−1

N∑
k=1

[(y(k)− yr(k))]2 is the standard deviation. Mean(|y|) = 1
N

N∑
k=1

|y(k)|
is the mean of absolute value of the responses of the original system, y represents the

output of the original system and yr refers to that of the reduced system, and N is

the sample length for one simulation.

Choosing the number of simulations used for each Monte Carlo simulation as well

as the number of repeated Monte Carlo simulations is a key component influencing

this evaluation method. In general, it can be said that if both numbers are sufficiently

large then the standard deviation will be small.

A detailed procedure is as follows:

(1) Generate random values of inputs and the parameters;

(2) Excite the system and collect the system’s trajectories;

(3) Compute the error as in (5.36);

(4) Repeat the above procedure some times, for instance, 5000 times. Then there

are 5000 errors recorded.

(5) Choose some threshold values, for instance, 0.0005, 0.001, 0.005, 0.01, 0.05

(these values are used in this work).

(6) Compute the percentages that the errors are less than the threshold values,

for example, if there are 3000 errors are less than 0.0005, then the percentage corre-

sponding to the threshold value 0.0005 is 60%. For each threshold value, there is one

percentage.

The above procedures are regarded as one monte carlo experiment.
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Fig. 14. Monte Carlo simulation method

(7) Do several such monte carlo experiment, for instance, 10, and recording the

percentages for each threshold value in each experiment.

(8) For each threshold value, collect all the percentages in each experiment,

compute the mean and standard deviation for these percentages, then the confidence

interval can be expressed in the form of Mean ± Standard deviation.

This procedure is shown in Fig. 14.

E. Case Studies

Three examples are studied to illustrate the presented techniques. The first ex-

ample is a randomly generated linear system where the performance is evaluated based

upon frequency domain analysis. The second example is a system of two continuously

stirred tank reactors in series, which is a system consisting of four nonlinear differen-

tial equations. A third model of a signal transduction model is also investigated in

order to show that the presented methods are applicable to larger size systems. Monte

Carlo simulations are used for performance evaluation for the latter two systems.
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1. Example 1: A Randomly Generated Linear System

This example is used to illustrate the parameter reduction techniques for linear

systems. This system is randomly generated with 1 input, 1 output, 40 states and

100 parameters. Results of parameter reduction are presented for all three methods.

For Method I, the Hankel singular values corresponding to each parameter and

input can be computed. A comparison between the error bounds computed by twice

the sum of total Hankel singular values for each parameter and the largest Hankel

singular value of the input is shown in Fig. 15. In this figure, each stem represents

the value of 2
n∑

i=1

σi,pj
for each parameter. The dashed line indicates a threshold value,

σ1,u. The parameters in the areas above the dashed line are important and should

be retained. Those in the areas deep below the dashed line only have a very small

contribution to the system behavior and are considered relatively unimportant. Those

located in the middle area are to be further investigated. A trial and error procedure

is necessary to determine how many parameters should be retained considering both

performance and size of the parameter set. Based on the relative error ∆ defined in Eq.

(5.34), a preliminary criterion can be applied to determine the number of parameters

to be retained. In order to illustrate this concept, the graph of the relative errors ∆

for several reduced systems is shown in Fig. 16-a. This figure contains four plots,

each of which represents one case: 10, 12, 15 or 20 parameters which are reduced. It

can be observed that the more parameters are reduced, the larger the relative error

becomes. If the relative error is assumed to be smaller than 0.15, then 20 parameters

can be reduced, however, if more stringent condition needs to be satisfied, then fewer

parameters should be reduced to guarantee the performance.

For Method II, the logarithm of the eigenvalues of the sensitivity covariance

matrix is shown in Fig. 17. Based on the distributions of eigenvalues, the number
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Fig. 15. Hankel singular values for parameters (Method I), for example 1.

of retained parameters can be roughly determined, to be in the range of 15 to 25.

Similar to Method I, the relative errors for several reduced systems are shown in

Fig. 16-b, with 85, 84, 82 and 78 retained parameters. Compared to Fig. 16-a, it

can be concluded that the reduced system with 85 reduced parameters by use of the

sensitivity analysis-based method can have a comparable performance to that of the

reduced system by using Hankel singular values with only 12 reduced parameters. It

should also be noted that the relative errors are smaller at low frequencies while much

larger in high frequencies. This is important insofar as parameters usually only change

slowly with time and retaining the low frequency behavior is more important than

achieving a good approximation in the high frequency range. The overall performance

of this method is very good for this example.
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methods, for example 1. (a) Method I; (b) Method II; (c) Method III.
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The same guidelines are followed for Method III. In the initial screening step,

only those parameters that satisfied the condition of σ1,u

/
2

n∑
i=1

σi,pj
≥ 10 are to

be reduced. Thus an initially reduced system can be obtained with 10 parameters

reduced (refer to Fig. 2-a). Parameter reduction via Method II is then performed on

this reduced set of parameters. To give a comparison with Method II, the relative

errors of reduced system are presented in Fig. 16-c. From Fig. 16-b and Fig. 16-c,

it can be seen that the error resulting from the initial screening step is the main

error resource, while in the high frequencies, the error resulting from the sensitivity

analysis step is more important. Overally, if the same number of parameters reduced,

the performance of Method III is a slightly worse than Method II for this example.

However, by combining the two methods it is possible to keep the physical meaning
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of at least some of the parameters intact.

2. Example 2: Two CSTRs in Series

This example deals with a system of two continuously stirred tank reactors in

series which was studied in [91]. The model equations are shown in Appendix B. This

system has one input, the coolant flow rate and one output, the effluent concentration

from the second tank. This model contains four states, which are the temperatures

and concentrations of the products in each tank. The system also contains 14 param-

eters,

θ = [q, CAf , Tf , Tcf , V1, V2, ρ, ρc, Cp, Cpc,−∆H,
E

R
, hA1, hA2]

T (5.37)

some of which are physical constants, which depend upon the properties of the streams

while some others are equipment related or even related to the operating conditions.

The operation conditions and nominal values of parameters are given in (Henson and

Seborg, 1990).

The three presented methods are implemented on this example problem. A

comparison of Hankel singular values based upon covariance matrices computed for

the system excited by the input and the parameters is shown in Fig. 18. In this

figure, the sequence of parameters is consistent with that of the vector θ. Based on

this figure, it can be concluded that the relative importance of the parameters is

E

R
> Tf > Tcf > CAf > −∆H > q > ρ = Cp > ρc = Cpc > V1 > hA1 > V2 > hA2

(5.38)

It also can be seen that there are three parameters, hA1, V2 and hA2, whose

Hankel singular values are very small and can be neglected.

The sensitivity covariance matrix is obtained for method II based on the system

trajectories. The eigenvalues of the sensitivity covariance matrix in descending order
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Fig. 18. Hankel singular values for parameters (Method I), for example 2.

are shown in Fig. 19.

For method III, the initial screening step, based on the Hankel singular values,

determined that only hA1, V2 and hA2 are to be reduced. They keep their nominal

values in the later procedures. Parameter space reduction is then performed on the

11 remaining parameters.

Model performance evaluation for this nonlinear example is conducted in the time

domain by use of Monte Carlo simulations. Each Monte Carlo experiment included

simulating the system with variations in the inputs and the parameters 5,000 times.

The variations of the inputs and parameters are generated randomly in their ranges

based on a uniform distribution. The errors between the original system and reduced

systems can be computed as defined in (5.36). Based upon the results for 5000
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Fig. 19. Eigenvalues of sensitivity covariance matrix (Method II), for example 2.

simulations, the percentage of the errors below threshold values of 0.0005, 0.001,

0.005, 0.01 and 0.05 is recorded. While this Monte Carlo run determined value, it is

important to repeat this experiment several times to statistically evaluate the results.

For this work, the experiment has been repeated 10 times and standard deviations

of the mean value of the error bound have been obtained. For example, for each

experiment, the percentages of the error below 0.01 for the system reduced by the

combination method were determined to be 0.9936, 0.9938, 0.9936, 0.9928, 0.9936,

0.9926, 0.9932, 0.9950, 0.9938 and 0.9932, respectively resulting in a percentage of

0.9935±0.00066. This procedure was repeated for each threshold value and each

reduction technique. Fig. 20 shows a comparison of the statistical results for the

three methods for the four cases where 4, 5, 6 and 7 parameters are to be retained.
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7 parameters retained. Legend: solid line, Method I; dashed line, Method II;

dotted line, Method III

From these figures, it can be concluded that all three methods achieve a satis-

factory performance for the reduced system. Additionally, it can be seen that if the

same number of parameters needs to be retained, that the sensitivity analysis method

and the combination method have a better performance than Method I (Hankel sin-

gular value-based technique). This point is also illustrated by Fig. 21, in which the

relative errors for three methods are plotted for one Monte Carlo experiment. It can

also be concluded for this example that Method II and Method III have comparable

performance.
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Fig. 21. The relative error set in one Monte Carlo simulation, for example 2.

3. Example 3: Model of a Signal Transduction Pathway in Hepatocytes

This example describes the JAK/STAT pathway used for signal transduction in

hepatocytes in response to injury or inflammation [92]. This model consists of 32

states, 39 parameters, 1 input (the concentration of interleukin 6) and 1 output (the

concentration of SOCS). While the values of all 39 parameters are taken from the

literature [93], these value will have to be confirmed in experiments when different

types of cells and experiments are used. Since it is highly unlikely that all 39 parame-

ters can be estimated from available experimental data, it is important to reduce the

number of parameters, such that only the more significant ones are retained in the

model.

In a first step, Method I was applied to this system. A comparison of the Hankel

singular values corresponding to each parameter is shown in Fig. 22-a. Based on
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Fig. 22. Hankel singular values for parameters (Method I) and eigenvalues of sensitiv-

ity covariance matrix (Method II), for example 3. (a) Comparison of Hankel

singular values in Method I; (b) Eigenvalues of sensitivity covariance matrix

in Method II.

this comparison, the parameters can be sorted by their relative importance to the

experimental measurements:

kr0 > kr2 > gp80 > kf0 > kf2 > kr3 > kf3 > k4 > kf9 > k10 > kr9 >

k6 > k16 > kf15 > kr15 > kf5 > k18b > k18a > k22 > kf21 > k20 >

kr7 > kf7 > k23 > kr21 > kr5 > kf1 > kr1 > k12 > kf11 > kr11 >

k14 > k19 > kr8 > kf8 > kr13 > k17 > kf13 > k0

(5.39)

The set of parameters to be reduced can be taken from this list. For example, if

5 parameters need to be reduced, then the 5 least important parameters kf8, kr13,

k17, kf13, k0 should be removed from the model.

The second technique was also applied to this model, where the sensitivity co-
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variance matrix is obtained from simulations of system trajectories. The eigenvalues

of the sensitivity covariance matrix are shown in descending order in Fig. 22-b.

The initial screening step of the third technique determined that only kr13,

k17, kf13, k0 are to be reduced based upon the Hankel singular values. These

parameters are set constant to their nominal values and parameter space reduction

is then performed on the 35 remaining parameters.

To show the performance of these methods, the same evaluation procedure as in

the example 2 was conducted. Fig. 23 shows the comparison of the statistics results

for the three methods for the six cases where 3 to 8 parameters are retained.

Several observations can be made from this figure: (1) it can be concluded that

all three methods achieve a satisfactory performance for the reduced system at a

larger threshold value; (2) not surprisingly, the performance is getting better with
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an increasing number of retained parameters; (3) the performance of Method II and

III is quite similar and both result in better approximations for the same number

of retained parameters. This point is also illustrated in Fig. 24, where the output

responses are compared for the original system and systems reduced by these three

methods (6 parameters are retained). Also Fig. 25 shows the relative errors for three

methods for one Monte Carlo experiment.

F. Summary and Discussion

Three techniques for reducing the parameter set of fundamental models are pre-

sented in this chapter. The methods are originally developed for linear systems and

their extension to nonlinear systems is presented.
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One technique focuses on determining the relative importance of parameters for

the system behavior based on Hankel singular values computed for each parameter.

The parameters corresponding to large values for the sum of the Hankel singular val-

ues are classified as important parameters. The less important parameters can then

be reduced directly from the original system. The second technique is based on pa-

rameter space reduction, which allows reduction of a significant number of parameters

while retaining most of the system behavior. This method is based on analysis of the

sensitivity covariance matrix. The relative importance of parameters are investigated

via the eigenvalues of the sensitivity covariance matrix. A linear transformation of the

parameter space is performed and the less important directions in parameter space

are reduced. Considering the advantages and drawbacks of these two methods, a
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combination method of these two is also developed in this work. An initial screening

step similar to analysis via Hankel singular values is applied followed by a reduction

of the parameter space spanned by the remaining parameters.

All three techniques are illustrated via three examples. While each method can

result in a good approximation, the number of parameters reduced via Method II and

III is significantly larger than for the first technique if comparable performance is to

be achieved. Both Method II and the combination method exhibited comparable per-

formance in the shown examples, where the combination technique has the advantage

that the physical interpretation of some parameters is retained in the model.
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CHAPTER VI

MODEL REDUCTION IN THE PRESENCE OF PARAMETRIC

UNCERTAINTIES

This chapter describes how to extend a certain class of existing model reduction

techniques to take into account uncertainty in model parameters. The key idea of

this extension is that the reduced-order model should not only contain the model

parameters, but that the reduction procedure itself has to be geared for dealing with

parametric uncertainty. This goal is achieved by augmenting the vector of inputs to

the system with the uncertain parameters and by performing model reduction on the

augmented system. It is shown that error bounds for the reduced order model can be

computed if the underlying system is linear with respect to the states, parameters, and

inputs. A comparison between the presented technique and a conventional approach

is made via two examples.

A. Overview

For systems with parameter uncertainties, the most important parameters can be

determined and retained in the systems after the parameter reduction step. When this

parameter-reduced system needs to be reduced due to large number of states, those

retained parameters of the original model can usually still be found in the reduced

system since the structure of the model is retained in the reduced-order model. If

the values of parameters change then this change can be directly incorporated in the

reduced-order model. However, while the parameters itself are still contained in the

Part of this chapter is reprinted from Journal of Process Control, Vol. 16, No.
6, C. Sun and J. Hahn, Model reduction in the presence of uncertainty in model
parameters, pp. 645-649, Copyright (2006), with permission from Elsevier.
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model, it is usually not taken into account if the effects that changes in the parameters

have on the model behavior are retained. This chapter will address this deficiency

and show how a certain class of model reduction procedures can be extended so that

the effects that changes in the parameters have on the model behavior are retained.

The result is a model reduction procedure that will be especially useful for systems

that contain uncertainties in the model parameters.

B. Problem Statement

This presented approach deals with stable systems described by explicit nonlinear

ordinary differential equations of the following form

ẋ = f(x, θ, u)

y = g(x, θ, u)
(6.1)

where x represents a vector of the states, u is an input vector, and θ represents a

vector containing the model parameters. The focus of this work will be on model

reduction techniques based upon a coordinate transformation

x̄ = Tx (6.2)

followed by truncation of less important states:

˙̄x1 = PTf(T−1x̄, θ, u)

x̄2 = x̄2,ss

y = g(T−1x̄, θ, u)

(6.3)

where x̄ =




x̄1

x̄2


, P =

[
I 0

]
.

This class of nonlinear model reduction techniques includes proper orthogonal
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decomposition (POD) [24], [40] and nonlinear balanced truncation [11], [14]. The

linear counterparts [36] form a special case of this problem formulation.

It should be noted that the reduced-order model shown in equation (6.3) still

contains the terms f(. . . ), g(. . . ), and that the parameters, θ, are also retained in

the truncated system. One may be inclined to assume that if the values of any of

the parameters change, it may be sufficient to include a change in these parameters

in equation (6.3). However, this reasoning would disregard that the model reduction

procedure may have dramatically changed the effect that changes in the parameters

have on the system behavior. The explanation for this can be found in equation (6.2)

where the transformation matrix T is computed such that the states are arranged with

regard to their contribution to a certain behavior that one wants to retain. For POD,

T is computed such that the states are arranged with regard to their contribution to

the effect that the inputs u have on the states (u → x). For balancing, T is chosen

such that each state contributes more to the input-output behavior (u → y) than any

subsequent ones. However, neither of these commonly used procedures makes use of

the parameters for computing T . In fact, if a reduced model contains uncertainty in

the parameters, then the reduced model is only appropriate for its use if

• the uncertainty is very small, or if

• the uncertainty has little effect on the behavior of the process, or if

• it happens that the effect that changes in the parameters have involved a “sim-

ilar” subspace as the one retained by the reduction procedure.

It should be noted that the last case can happen by pure chance, but neither

balancing or POD (as they are commonly applied) directly address this point.

The purpose of this work is to show how balancing and/or POD can be extended

such that the effect that uncertainty in the parameters have on the model will be
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retained. This is achieved by incorporating parametric uncertainty into the procedure

used for computing the state transformation T .

C. Extension to Existing Approaches

The effect that changes in the parameters have on the transformation matrix T

can be addressed by lumping the inputs and the parameters into a new vector

ũ =




u

θ


 (6.4)

where the system has to be formulated such that the bounds for the inputs and the

parameters

umin ≤ u ≤ umax, θmin ≤ θ ≤ θmax (6.5)

have the same magnitude after reformulation.

The original system can then be rewritten as

ẋ = f(x, ũ)

y = g(x, ũ)
(6.6)

where ũ represents a vector of inputs to the system. The correlation matrix for POD

or the empirical gramians for balancing can then be computed for the system given

by equation (6.6) instead of the original system (6.1). The state transformation T is

then computed from the correlation matrix or by balancing the empirical gramians.

Lumping the parameters and the inputs together in one vector will ensure that the

state transformation T will depend upon the effect that changes in the parameters

θ have on the system in addition to capturing the effect that excitations with the

inputs u have.

While this extension is straightforward, it can nevertheless have a significant
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effect on the quality of the reduced model if it contains uncertainty in the model pa-

rameters. This is achieved by retaining the directions in state space that are important

for representing the effect that changes in the parameters have on the response of the

system in addition to retaining directions in state space important for representing

the effect of changes in the inputs.

D. Discussion

It is possible to derive error bounds for balanced truncation using the presented

procedure for linear systems under parametric uncertainty. It should be noted that

the error bounds that are computed for systems where parametric uncertainty is

neglected during the procedure are not valid if the parameters are not known exactly.

A linearized version of system (6.1) is given by

ẋ = Ax + Bu + Eθ

y = Cx + Du + Fθ
(6.7)

Lumping the inputs and the parameters together results in the system

ẋ = Ax + B̃ũ

y = Cx + D̃ũ
(6.8)

with

B̃ =

[
B E

]

D̃ =

[
D F

] (6.9)

The empirical controllability gramian for a nonlinear system reduces to the linear

controllability gramian, W̃C , for this type of system which is computed by solving the
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following Lyapunov equation [35]

AW̃C + W̃CAT = −B̃B̃T = − [ B E ]




BT

ET


 = −BBT − EET (6.10)

Note that if the uncertainty in the parameter had been neglected for the reduction

procedure then the controllability gramian would have been computed from (6.11):

AWC + WCAT = −BBT (6.11)

The observability gramian is unaffected by the presented procedure and can be

computed by solving the following Lyapunov equation:

AT WO + WOA = −CT C (6.12)

The coordinate transformation T which takes uncertainty in the model parameter

into account is then computed from balancing W̃C and WO, whereas the conventional

approach balances WC and WO and neglects the effect of model uncertainty. Accord-

ingly, the Hankel singular values will also be different for both reduced systems.

Applying the linear transformation x̄ = Tx, the transformed system is given by

˙̄x = TAT−1x̄ + TBu + TEθ = Āx̄ + B̄u + Ēθ

y = CT−1x̄ + Du + Fθ = C̄x̄ + Du + Fθ
(6.13)

and model truncation results in

˙̄x1 = A11x̄1 + B1u + Ē1θ

y = C1x̄1 + Du + Fθ
(6.14)
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where

Ā = TAT−1 =




Ā11 Ā12

Ā21 Ā22


 , B̄ = TB =




B̄1

B̄2




C̄ = CT−1 =

[
C̄1 C̄2

]
, Ē = TE =




Ē1

Ē2




(6.15)

The error for the reduced order system that includes uncertainty in the model

parameters is given by

‖G(s)−Gr(s)‖∞ =

∥∥∥∥ C̄(sI − Ā)−1[B̄ Ē]− C̄1(sI − Ā11)
−1[B̄1 Ē1]

∥∥∥∥
∞

(6.16)

and whose bound can be computed to be [38]

‖G(s)−Gr(s)‖∞ ≤ 2
n∑

j=k+1

σ̃j (6.17)

where the σ̃js represent the Hankel singular values corresponding to the system given

by equation (6.8).

It should be noted that if a conventional balancing procedure, rather than the

extension presented here, is used that it is not possible to derive a closed form solution

for the upper bound if uncertainty is present in the model parameters.

E. Case Studies

1. Example 1: Two Nonlinear Reactors in Series

This section presents a comparison between the extended approach and the reg-

ular balancing procedure for a system of two CSTRs with uncertainty in a model

parameter. The process model was the same example as in Chapter V. This model

has four states, one input which is the coolant flow rate qc and one output, the effluent

concentration from the second tank. The value of the parameter E/R is assumed to
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be not precisely known. The input has a nominal value of qc0 = 100L/ min and can

be changed by ±10 L/min and the parameter’s value is (E/R)0 = 104K ± 10K.

The reason for choosing a relatively small system for this first example is that it

is possible to present the state transformation matrices, and that significant changes

can already be seen for the two techniques even when only a small number of states

is reduced.

The percentages of the changes of the inputs and parameters are ±1%. Covari-

ance matrices are computed for this operating region, first using the conventional

approach and then by making use of the presented extension. The transformation

matrix computed from the conventional approach results in

T1 =




0.2492 -1.8592 0.3931 -1.0448

-0.1318 -26.4654 -0.6511 -7.9172

-0.0265 -5.8592 -0.5379 -23.6948

-2.7405 -44.6690 0.3459 -10.4925




(6.18)

whereas the one computed by the presented method is

T2 =




-0.1866 -7.7041 0.0069 -1.7991

0.2088 3.4629 0.0403 -0.1640

-0.0197 2.3825 0.0497 0.3556

0.0645 -0.4507 0.0151 5.7952




(6.19)

It can be seen that the transformation matrices shown in equations (6.18) and

(6.19) are significantly different as they retain different directions in state space. Using

either transformation, the system was reduced to 3 states, resulting in the reduced

system (I) using conventional balancing and the reduced system (II) for the extended

version presented in this paper.

A comparison of the performance in the time domain has been made. A series
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Fig. 26. Input and parameter perturbations (scaled value).

of combinations of random input and parameter perturbations are used to excite the

systems within a portion of the operating region. The reason for varying the input

and the parameter over time is to show a range of different conditions rather than

one scenario. These perturbations are shown in Fig. 26. The output responses for

the original system and two reduced systems are shown in Fig. 27-a. Fig. 27-b

presents the residuals computed from the response of the original system and both

reduced systems in order to show the comparison more clearly. It can be concluded

from the example that model reduction techniques that take uncertainty in the model

parameters into account can result in significantly better performance if the values of

parameters of the system are not precisely known.

Additional simulations where the operating region encompasses the entire ±1%

change of the inputs and parameters have also been performed. The performance for
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Fig. 27. Comparison of performance for conventional techniques and extended version.

the extended method was virtually identical to the one presented here, however, the

response of the system reduced by the conventional technique degraded so strongly,

that the figure has not been included.

2. Example 2: Catalytic Fixed-Bed Reactor

The reactor example used in Chapter IV is revisited. The difference is that the

linearized version of this model is investigated here in order to compute the error

bounds shown in equation (6.16).

The value of the heat of reaction is assumed to be not precisely known for this

case study. The input has a nominal value of u0 = 625K and the parameter’s nominal

value is H0 = 1285409 kJ/kmol.
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The percentages of the changes of the inputs and parameters are taken to be

within ±10% around the nominal value. As the system is linearized, it is possible

to compute linear controllability and observability gramians for this process. This is

done once for the system with just one input and additional for the system where both

the input and the parameter are viewed as inputs to the system. It is possible in both

cases to reduce the system from originally 120 states to 7 states while retaining an

excellent approximation of the original system. The two reduced models are named

Reduced System (I) and (II), respectively.

Fig. 28 illustrates the approximation error given by expression inside of the H∞

norm in (6.16) for both a conventional balancing technique and for the extended

methods introduced in this work over a range of frequencies. It can be seen that the

presented approach results in a significantly smaller error at any frequency. Fig. 29

shows a comparison of simulation results for the original system, the system reduced

by the conventional approach (I), and the model reduced by the technique presented

in this work (II), for varying inputs and changes in the value of the parameter. It

can be concluded that the results obtained by the presented technique can result in

a significantly more accurate reduced model if uncertainty is present in the model

parameters.

F. Summary and Discussion

This chapter presented an extension to a certain class of model reduction pro-

cedures, i.e. POD and balancing, for cases where the model contains uncertainty

in the model parameters. It was shown that simply retaining the variables repre-

senting model parameters may not necessarily be sufficient for addressing parametric

uncertainty. Rather, the uncertainty has to be directly incorporated into the model
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reduction procedure. The presented extension addresses this issue by augmenting

the input vector with the parameters. The resulting augmented vector can then be

used for exciting the system and computing empirical gramians (balancing) or the

correlation matrix (POD).

An error bound for the performance of the reduction procedure, when an exten-

sion to balanced truncation is used, has been derived for linearized systems where

uncertainty in the model parameters is present. Additionally, the performance of

incorporating parametric uncertainty into the model reduction procedure has been

illustrated in two case studies for varying inputs to the system and changes in the

parameter.
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CHAPTER VII

APPLICATION OF NONLINEAR MODEL PREDICTIVE CONTROL BASED

ON REDUCED ORDER MODELS

The most important property for a reduced model is to represent the input-

ouput behavior of a model correctly, when it is applied within a controller. In order

to test this a model predictive control (MPC) algorithm was used to compute control

moves. MPC is an important control strategy in industry, in which a process model

is used to predict process behavior [94]. Through an online optimization procedure,

a sequence of control moves is selected to minimize a cost function based on the

reference trajectory over a prediction horizon, possibly subject to constraints on the

manipulated inputs and outputs. Generally, MPC consists of three components:

process models, reference trajectories and recessive online optimization. Based on

the type of the process models, MPC can be classified into linear model predictive

control (LMPC) and nonlinear model predictive control (NMPC). LMPC has been

exclusively developed in the past three decades [95], however, LMPC is precluded in

processes sufficiently nonlinear. With the development of more accurate nonlinear

process models, NMPC is gaining wider acceptance. On the other hand, with the

complexity of the nonlinear process models, the difficulty to implementing NMPC

increases due to the computational effort. That’s why model reduction is motivated.

Therefore, this chapter gives some applications of NMPC based on the reduced order

models to show that model reduction is an efficient strategy to overcome this problem

of NMPC.
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A. Overview of NMPC

Since the main focus of this work is to show the performance of NMPC based

on the reduced order models instead of the theoretical development of NMPC, the

principles of NMPC are only briefly reviewed.

1. The Optimization Problem

The optimization problem for NMPC is [94], [96]:

min
u(k|k),u(k+1|k),··· ,u(k+M−1|k)

J = φ[y(k+P |k)]+
P−1∑
j=0

L[y(k + j|k), u(k + j|k), ∆u(k + j|k)]

(7.1)

where M is the control horizon, P is the prediction horizon, u(k + j|k) is the input

values which is calculated by use of information available at time k, y(k + j|k) is the

output values which is calculated by use of information available at time k, ∆u(k +

j|k) = u(k+j|k)−u(k+j−1|k), φ and L are possibly nonlinear functions. Quadratic

functions of the following form is are commonly used for φ and L:

φ = [y(k + P |k)− ys(k)]T Q[y(k + P |k)− ys(k)] (7.2)

L = [y(k + j|k)− ys(k)]T Q[y(k + j|k)− ys(k)]+

[u(k + j|k)− us(k)]T S[u(k + j|k)− us(k)]+

[∆u(k + j|k)]T R[∆u(k + j|k)]

(7.3)

where ys(k), us(k) are steady state targets for y and u, respectively. Q, R and S are

positive definite weighting matrices.

The sequence of control moves are obtained by solving this optimization prob-

lem: u(k|k), u(k + 1|k), · · · , u(k + M − 1|k) . Among this sequence of control

moves, only the first one is implemented u(k) = u(k|k). Then the next set of pro-
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cess measurements are obtained and the process parameters are updated. Another

optimization problem will then be solved to compute the next control move.

2. Process Constraints

Because there exists actuator limitation as well as operational limitations, input

and output constraints are often present in MPC algorithms [94]:

umin ≤ u ≤ umax
(7.4)

∆umin ≤ u ≤ ∆umax
(7.5)

ymin ≤ y ≤ ymax
(7.6)

where (·)min
, (·)max

refer to the minimum and maximum values.

3. Disturbance Estimation

Due to the presence of unmeasured disturbance and modeling errors, the con-

troller can exhibit steady state offset. To overcome this problem, integral action is

incorporated to generate the output targets ys(k) with disturbance estimation. One

way to estimate the disturbance is as follows, which is also used in this work.

d̂ =
1

Nd

Nd∑

k=1

(yk,m − ŷk,p) (7.7)

where Nd represents a design horizon for the purpose of smoothing out the influence

of measurement noise. yk is the measurement value and ŷk is the estimated output.

If there is only one measurement, then d̂ is a scalar at one time point, otherwise, d̂ is

a vector.
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4. The Algorithm Used in This Work

Based on the disturbance estimation, the optimization problem is modified as

follows.

ys(k) = ysp(k)− d̂(k) (7.8)

where ysp(k) are set points for the output variables.

The penalty on the inputs is eliminated (S=0), resulting in the quadratic function

L:

L = [y(k + j|k)− ysp(k) + d̂(k)]T Q[y(k + j|k)− ysp(k) + d̂(k)]+

[∆u(k + j|k)]T R[∆u(k + j|k)]
(7.9)

The quadratic function φ becomes:

φ = [y(k + P |k)− ysp(k) + d̂(k)]T Q[y(k + P |k)− ysp(k) + d̂(k)] (7.10)

The cost function J can then be rewritten as:

J =
P−1∑
j=0

[y(k + j|k)− ysp(k) + d̂(k)]T Q[y(k + j|k)− ysp(k) + d̂(k)]

+
Pc−1∑
j=0

∆u(k + j|k)T R∆u(k + j|k)

(7.11)

Generally, the last item uses the control horizon instead of the prediction horizon,

that is:

J =
P−1∑
j=0

[y(k + j|k)− ysp(k) + d̂(k)]T Q[y(k + j|k)− ysp(k) + d̂(k)]

+
Mc−1∑
j=0

∆u(k + j|k)T R∆u(k + j|k)

(7.12)

This is the cost function used in this work.
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Fig. 30. Block diagram of NMPC based on reduced order models

5. NMPC Scheme Based on Reduced Order Models

Since the purpose of implementing NMPC here is to test the reduced order

models, a NMPC scheme based on reduced order models is developed. The main

difference between the general NMPC and the NMPC based on the reduced order

models is that in the optimization procedure, the output of the reduced order models

will be used instead of the output of the full order model. The block diagram of this

NMPC scheme is shown in Fig. 30.

B. Case Studies

Two examples are used to illustrate the implementation of NMPC, one is for an

ODE system and the other is for a DAE system. The close loop performances are

compared.

1. Example 1: Catalytic Fixed-Bed Reactor

This example is used to investigate a NMPC controller implemented on an ODE

system. This reactor system is the same as the one used in Chapter IV. With the
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Fig. 31. Temperature vs. time for set point change and disturbance rejection

NMPC controller included, the system forms a close-loop system. The close-loop

responses are computed and a comparison of the output performance is conducted.

Two models are compared in the following. One is a nonlinear model of the

process itself, with 120 states, which will be the reference trajectory, since it contains

no model mismatch and no other model can result in better controller performance.

The other is a nonlinear reduced model with 20 states. Fig. 31 represents the trajec-

tories generated by a set point change to 650K for the temperature at the hot spot.

In addition to this, the reactor temperature is affected by an output disturbance of

2.6K. Fig. 32 represents the optimal control moves computed for this case study for

each of these two models. This example tests both set point tracking and disturbance

rejection. From Fig. 31, it can be seen that the reduced order model can achieve a

very comparable performance to the full-order system.
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Table IV. Comparison of CPU times for closed-loop control of fix-bed reactor model

Model Full-order system Reduced system

Time (Seconds) 221.8 127.6

The computation times for these two controllers are given in Table IV. It can be

concluded that the controller based upon the reduced-order model results in similar

performance as the one based upon the full-order model. However, it is apparent that

the reduced-order controller requires much less computation time in order to achieve

this performance, which shows the advantage of the reduced order models in process

control.



110

0 50 100 150 200 250 300 350 400 450 500

0.97

0.972

0.974

0.976

0.978

0.98

0.982

0.984

0.986

0.988

0.99

Time in [min]

D
is

ti
lla

te
 C

on
ce

nt
ra

ti
on

Full Order System
Linearized System
Reduced System
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2. Example 2: Distillation Column System

A NMPC controller implemented on a DAE system is investigated here. The

distillation column model with 32 differential equations and 32 algebraic equations

which is studied in Chapter III is revisited.

The open loop response has been studied in Chapter III, shown in Fig. 7. From

this figure, it can be concluded that the reduced order model has a similar performance

to the original model and much better than the linearized model.

The achievable closed-loop response of this model is studied here, in a similar

fashion as was done for the reactor example.

Three different models are compared in the following. The first one is a nonlinear

model of the process itself, which will be the reference trajectory, since it contains

no model mismatch and no other model can result in better controller performance.
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The second model is a linearized version of the original nonlinear model. The third

model is a nonlinear reduced model via the technique presented in Chapter III. Fig.

33 represents the trajectories generated by a set point change to 0.98 for the distillate

concentration. In addition to this, after 250 minutes of operation, the distillate con-

centration gets hit by an output disturbance of 0.08. Fig. 34 represents the optimal

control moves computed for this case study for these three models. This example

also tests set point tracking and disturbance rejection. It can be seen that both the

linearized model and the reduced model result in a controller that closely matches

the performance achieved by a controller based upon the full-order nonlinear model.

And it is also obvious that the nonlinear reduced order model performs better than

the linearized model, which illustrates that the NMPC based upon the reduced order

models is outperforms the LMPC based upon the linearized model.
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Table V. Comparison of CPU times for closed-loop control of distillation column model

Model Full-order system Linearized system Reduced system

Time (Seconds) 264.1 66.2 81.8

The computation times for the three controllers are given in Table V. Similar

to the reactor system, the controller based upon the reduced-order model results in

similar performance as the one based upon the full-order model. Also the controller

based on the reduced-order model requires much less computation time in order to

achieve this performance.

C. Summary and Discussion

This chapter tested the performance of reduced order models in a NMPC frame

work. The principles of NMPC were briefly reviewed in this chapter and two examples

are investigated to illustrate the implementation of NMPC. One example is a catalytic

fix-bed reactor system which is an ODE system. The other is a distillation column

model which is a DAE system. Both examples show that NMPC based on the reduced

order models can achieve a very close performance with the one based on the nonlinear

full-order system. The computational effort decreases significantly when the reduced

order system is used. Additionally, the distillation column example also shows the

reduced order system performs better than the linearized system.
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CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

This research presents new techniques for the reduction of nonlinear systems ex-

hibiting two-time scale behavior and systems with parameter uncertainties. Systems

with two-time scale behavior are described by differential algebraic equations (DAE).

The proposed reduction method for this type of system is based on a combination

of projection methods and system identification techniques. This approach performs

order-reduction of the differential equations and reduces the size and complexity of

the algebraic equations. The procedure for reducing the differential equations can be

performed by balancing, while a variety of identified model structures can be used for

simplification of the algebraic equations. During the procedure, the interplay between

the states and the algebraic variables has been taken into account as it is reflected

in the computed projections. The case studies shows that the reduced system via

this presented technique can achieve a satisfactory performance while it has a much

smaller size.

For systems with parameter uncertainties, two main problems are studied in this

work. The first one is parameter reduction. Three techniques for reducing the param-

eter set of fundamental models are presented in this work, one of which focuses on

determining the relative importance of parameters for the system behavior based on

Hankel singular values computed for each parameter. The parameters corresponding

to large values for the sum of the Hankel singular values are classified as important

parameters. The less important parameters can then be reduced directly from the

original system. The second technique is based on parameter space reduction, which

allows reduction of a significant number of parameters while retaining most of the

system behavior. This method is based on analysis of the sensitivity covariance ma-
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trix. The relative importance of parameters are investigated via the eigenvalues of

the sensitivity covariance matrix. A linear transformation of the parameter space is

performed and the less important directions in parameter space are reduced. Consid-

ering the advantages and drawbacks of these two methods, a combination method of

these two is also developed in this work. An initial screening step similar to analysis

via Hankel singular values is applied followed by a reduction of the parameter space

spanned by the remaining parameters. It shows that all three methods can result

in good approximations. On the other hand, both the second and the third method

perform better than the first method whose advantage is that the parameters retain

their physical meanings throughout the reduction procedure. The latter two methods

exhibit comparable performance, however, the last method has a potential advan-

tage over the second method since the physical interpretation of some parameters is

retained in the model.

A second problem for systems with parameter uncertainties is to derive a pro-

cedure for state reduction where parameter uncertainties are taken into account. A

technique involving lumping of the system inputs and the parameters into an aug-

mented input vector is presented to address this problem. This approach takes into

account uncertainties in regarding parameters as one kind of process inputs. The

resulting of the reduced-order models perform much better than if the parameter

uncertainties were ignored.

As a last contribution, the closed-loop behavior of systems after reduction was

also investigated in this work. It has been illustrated that the controllers based on

the reduced models can achieve performance comparable to those based on the full

order models and at the same time require significantly less computation time.
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A. Contributions

Specifically, the contributions of this dissertation are listed in chronological order:

1. Revised the MATLABTM code for computing empirical gramians or covariance

matrices, which increases the computation speed by about a factor of 50-60.

For instance, originally a computation of observability gramian requires 315.3

seconds, now it only takes 5.4 seconds.

2. This research proposed and implemented a new approach based on a combina-

tion of projection methods and system identification techniques for DAE model

reduction. Artificial neural network or partial least squares were applied to do

the system identification.

3. A partitioning of covariance matrices for differential states and algebraic vari-

ables was proposed.

4. An error bound for the model reduction of linear DAE system was derived.

5. The application of Partial least squares was investigated in both ODE and DAE

model reduction.

6. A new approach based on Hankel singular values was proposed and implemented

for parameter reduction and the error bound for reducing parameters was pre-

sented.

7. A new technique based on the combination of Hankel singular values and pa-

rameter sensitivity analysis was investigated.

8. This research investigated the problem of model reduction with parameter un-

certainties. A technique lumping the inputs and parameters as an augmented

input vector was presented.
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9. A nonlinear model predictive control strategy was applied to test the perfor-

mance of the reduced order models.

10. Robust nonlinear model reduction routine programs were developed in the

MATLABTM environment. A documentation is included in Appendix C.

B. Future Work

Several extensions of the presented work are possible.

1. For DAE model reduction, further investigation should focus on required mod-

ifications for fully implicit DAEs or higher index DAEs.

2. For DAE model reduction, an optimization algorithm should be developed to

find optimal transformation matrices T1, T2 to minimize ‖S1 − S2‖∞, where S1

represents a quantity for the original system and S2 for the reduced system.

3. Nonlinear transformations should be investigated. That is, the linear transfor-

mation x̄ = Tx used in this work should be further extended to x̄ = h(x).

4. Model reduction techniques for DAE or PDE systems with uncertain parameters

should be investigated.

5. Applications to controller and observer design should be investigated for systems

with reduced parameter sets.
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APPENDIX A

DISTILLATION COLUMN MODEL

The following equations describe the distillation column used for separation of a

binary mixture.

Component balances (differential equations):

Condenser:

dxA,1

dt
=

1

ACond

V (yA,2 − xA,1)

Trays in the rectification section (i= 2, . . . , 16):

dxA,i

dt
=

1

ATray

[L1(xA,i−1 − xA,i)− V (yA,i − yA,i+1)]

Feed tray:

dxA,17

dt
=

1

ATray

[FxA,Feed + L1xA,16 − L2xA,17 − V (yA,17 − yA,18)]

Trays in the stripping section (i= 18, . . . , 31):

dxA,i

dt
=

1

ATray

[L2(xA,i−1 − xA,i)− V (yA,i − yA,i+1)]

Reboiler:

dxA,32

dt
=

1

AReboiler

[L2xA,31 − (F −D)xA,32 − V yA,32]

Implicit algebraic equations:

For condenser, all trays, and reboiler:

0 = [xA,iγA,iPSatA,i + (1− xA,i)γB,iPSatB,i − P ]/P, i = 1, · · · , 32
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Further equations:

V = L1 + D

L2 = F + L1

L1 = RR×D

PSatA,i = exp[a1 + a2/Ti + a3 log(Ti) + a4T
a5
i ], i = 1, · · · , 32

PSatB,i = exp[b1 + b2/Ti + b3 log(Ti) + b4T
b5
i ], i = 1, · · · , 32

γA,i = exp
{
− log [xA,i + L12(1− xA,i)] + (1− xA,i)

[
L12

xA,i+L12(1−xA,i)
− L21

L21xA,i+(1−xA,i)

]}

i = 1, · · · , 32

γB,i = exp
{
− log [( 1− xA,i) + L21xA,i] + xA,i

[
L21

L21xA,i+(1−xA,i)
− L12

xA,i+L12(1−xA,i)

]}

i = 1, · · · , 32

yA,i = xA,iγA,iPSatA,i/P, i = 1, · · · , 32
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Variable description:

ACond total molar holdup in the condenser

ATray total molar holdup on each tray

AReboiler total molar holdup in the reboiler

F feed flowrate

D distillate flowrate

RR reflux ratio

L1 flowrate of the liquid in the rectification section

L2 flowrate of the liquid in the stripping section

V vapor flowrate in the column

xA,i liquid composition of component A on the i−th stage

xA,Feed feed composition of component A

yA,i vapor composition of component A on the i−th stage

Ti temperature of i−th tray

αA,B relative volatility

γA,i activity coefficient of component A

γB,i activity coefficient of component B

PSatA,i saturated vapor pressures of component A

PSatB,i saturated vapor pressure of component B

P pressure

L12, L21 Wilson activity coefficient model parameters

a1, a2, · · · , a5 parameters from DIPPR Database (empirical fit) for component A

b1, b2, · · · , b5 parameters from DIPPR Database (empirical fit) for component B
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Table VI. Operating conditions and parameter values

F 0.4 mol/L xA,Feed 0.5 D 0.2 mol/L RR 3.0

ACond 0.5 ATray 0.25 AReboiler 1.0 P 101000 Pa

a1 51.087 a2 -5226.4 a3 -4.2278 a4 9.7554e(-18)

a5 6.0 b1 87.829 b2 -6996.4 b3 -9.8802

b4 7.2099e(-6) b5 2.0 L12 1.618147 L21 0.502535
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APPENDIX B

CONTINUOUS STIRRED TANK REACTOR IN SERIES

This model consists of four nonlinear ordinary differential equations [91]:

dCA1

dt
=

q

V1

(CAf − CA1)− k0CA1 exp(− E

RT1

)

dT1

dt
=

q

V1

(Tf − T1) +
(−4H)k0CA1

ρCp

exp(− E

RT1

)+

ρcCpc

ρCpV1

qc

[
1− exp(− UA1

qcρcCpc

)

]
(Tcf − T1)

dCA2

dt
=

q

V2

(CA1 − CA2)− k0CA2 exp(− E

RT2

)

dT2

dt
=

q

V2

(T1 − T2) +
(−4H)k0CA2

ρCp

exp(− E

RT2

)+

ρcCpc

ρCpV2

qc

[
1− exp(− UA2

qcρcCpc

)

] [
(T1 − T2 + exp(− UA1

qcρcCpc

)(Tcf − T1)

]
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APPENDIX C

NONLINEAR MODEL REDUCTION ROUTINES IN MATLAB

Balancing is an important approach for model reduction of controlled systems

which consists of two steps: the first step is to find a transformation that balances the

controllability and observability gramians [9] in order to determine which states have

the greatest contribution to the input-output behavior. The next step is to perform

a Galerkin projection onto the states corresponding to the largest singular values

of the balanced gramians for the region of interest in state-space [13]. In order to

perform model reduction via balancing, three components are required: a controlla-

bility gramian, an observability gramian, and a transformation matrix which balances

the system. For control-affine nonlinear systems, it is possible to compute empirical

gramians instead of linear gramians. For general nonlinear systems, covariance matri-

ces should be used. The MATLAB code presented on this web page includes routines

for computing empirical gramians or covariance matrices and a routine for computing

the transformation matrix that balances the system. The algorithms used to compute

these quantities were presented in [12], [48]. Detailed descriptions of these routines

are presented. Additionally, several examples are given as a demonstration on how

to use these routines.

A. Descriptions of Routines

1. Routine for Computing Controllability Gramian or Covariance Matrix

function yhat = ctrl gram cov (OdeFcn, Tspan, ParaVector, Cm, flag)

This function computes the controllability gramian or the controllability covari-

ance matrix for stable dynamical systems by making use of data collected along system
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trajectories. To use this function, the following input arguments are required:

• OdeFcn: the ode function of the system written by MATLAB. The form can

be: Function xdot = OdeFcn(t, x)

• Tspan: [start time, end time, sampleLength], which is used for integration of

the OdeFcn. The end time should be long enough for the system to get close

to a steady state. This value can be estimated by simulating the system and

checking how long it takes to reach the steady state.

• ParaVector: system parameters, including InputNumber p, StateNumber n,

OutputNumber k, Orientation Number r (generally r=2) and length q

• Cm: CmValue, and s = size(Cm), the perturbation size of inputs.

• flag == 0, gramian; flag ∼= 0, covariance matrix

• The output argument yhat represents the controllability gramian (flag = 0) or

the controllability covariance matrix (flag ∼= 0)

This routine applies impulse input perturbations for computing empirical con-

trollability gramians or applies step input perturbations for computing controllability

covariance matrices.

2. Routine for Computing Observability Gramian or Covariance Matrix

function xhat = obsv gram cov (OdeFcn, Tspan, ParaVector, Cm,

OutputIndex, xss, flag)

This function computes the observability gramian or observability covariance

matrix for stable dynamical systems by making use of data collected along system

trajectories. To use this function, the following input arguments are required:
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• OdeFcn, Tspan, ParaVector, Cm, flag: these arguments are the same as those

in the function ctrl gram cov.

• OutputIndex: the indices of output corresponding to states. Here, assume the

outputs are one or more of the state exactly, for instance, if there is one output

which is the first state, then the OutputIndex is 1. And if there are two outputs,

one output is the first state and the other is the fifth state, then the OutputIndex

term should be [1 5].

• xss: the initial condition of the states.

• The output argument xhat represents the observability gramian (flag = 0) or

covariance matrix (flag ∼= 0)

This routine applies initial condition perturbations in each state to compute the

empirical observability gramian or the observability covariance matrix.

3. Routines for Unscaled Systems

Routine 1 and 2 are designed to compute gramians or covariance matrices for

scaled systems. For unscaled systems, the following two routines can be used:

function yhat = ctrl gram cov unscaled (OdeFcn, Tspan, ParaVector,

Cm, uss, xss, flag)

function xhat = obsv gram cov unscaled (OdeFcn, Tspan, ParaVector,

Cm, OutputIndex, uss, xss, flag)

The only difference between the routines for scaled systems and unscaled sys-

tems lies in the input arguments. For ctrl gram cov unscaled, uss and xss are needed

which represent the input values at steady state and the initial conditions. For

obsv gram cov unscaled, uss and xss are also needed.
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4. Routine for Computing the Transformation Matrix for Balancing

function [Trans, invTrans, Wc, Wo, svd Wc, svd Wo] = bal realization(yhat,

xhat, n)

This function computes the transformation matrix that balances the system and

also computes the balanced gramians (or the balanced covariance matrices) and the

Hankel singular values, when the controllability and observability gramian or covari-

ance matrix are known. The input argument yhat represents the (empirical) con-

trollability gramian or covariance matrix, xhat refers to the (empirical) observablility

gramian or covariance matrix, and n is the number of states. The output arguments

are as follows:

• Trans: the transformation matrix

• invTrans: the inverse of the transformation matrix

• Wc: balanced controllability gramian/covariance matrix

• Wo: balanced observability gramian/covariance matrix

• svd Wc: singular values

• svd Wo: singular values

B. Model Reduction Procedure

1. Compute Necessary Quantities for Model Reduction

Gramians (or covariance matrices) and the transformation transformation are

required for balanced model reduction. These quantities can be computed by use

of the above mentioned routines. The routines for unscaled systems are mainly for
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verifying these routines by comparison against the MATLAB commands for linear

systems. In practice, the routines for scaled systems are applied as it needs to be taken

into account that a state changing by orders of magnitude can be more important

than a state which hardly changes, even though its steady state may have a smaller

absolute value. One important problem to discuss here is how a scaled system is

obtained.

For a general nonlinear system

ẋ = f(x, u)

y = g(x, u)
(C.1)

Let xss, ussrepresent the steady state values of x and u. Introduce two quantities:

Tx = diag(xss)and Tu = diag(uss), then the scaled system is:

ẋ = f(x, u)

y = g(x, u)





x̃=T−1
x x,ũ=T−1

u−→





˙̃x = T−1
x f(Txx̃, Tuũ)

y = g(Txx̃, Tuũ)
(C.2)

2. Balanced System

With the balancing transformation matrix T (= “Trans”), the balanced system

is given by:

ẋ = f(x, u)

y = g(x, u)





x̄=Tx−→





˙̄x = Tf(T−1x̄, u)

y = g(T−1x̄, u)
(C.3)

Generally the scaled system is used for the computation of T resulting in:

˙̃x = T−1
x f(Txx̃, Tuũ)

y = g(Txx̃, Tuũ)





x̄=T x̃−→





˙̄x = TT−1
x f(TxT

−1x̄, Tuũ)

y = g(TxT
−1x̄, Tuũ)

(C.4)
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3. Model Reduction Implementation

After obtaining a balanced system, it needs to be determined how many states

can be reduced and which reduction method to use. The former problem can be

solved by a trial and error procedure while taking into account the magnitude of the

Hankel singular values of the states to be reduced. The answer to the latter question

is that balanced truncation is the method of choice for nonlinear systems as other

techniques, e.g. balanced residualization, can lead to systems which may be smaller

but significantly harder to solve.

The state vector of a balanced system can be divided into two parts: relatively

important states x̄1 and relatively unimportant states x̄2. The reduced model is:

˙̄x1 = PTf(T−1x̄, u)

˙̄x2 = x̄2ss

y = g(T−1x̄, u)

(C.5)

where P =[Ik 0], k is the number of retained states.

Or for the scaled system, the reduced model is:

˙̄x1 = PTT−1
x f(TxT

−1x̄, Tuũ)

˙̄x2 = ˙̄x2ss

y = g(TxT
−1x̄, Tuũ)

(C.6)

C. Demonstration Examples

Several case studies are presented in this documentation. The procedure is

mainly demonstrated on the first example and lesser detail is provided for the re-

maining two examples.
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1. Example 1: a Linear System

This example is included to show that the presented method will simplify to

linear balanced truncation if the system under study is linear. Also, this example can

be used to illustrate the procedure.

a. Model Description and Input Arguments Determining

ẋ = Ax + Bu , x ∈ <n

y = Cx + Du

where, A =




-2.0000 0 0

1.0000 -1.1000 0

0 0.1000 -1.0000




, B =




2

0

0




, C = [0 0 1], D = [0].

If the initial value for input uss = 2, then xss = −A−1Buss =




2.0000

1.8182

0.1818




.

Therefore, the quantities for scaling the system are:

Tx = diag(xss) =




2.0000 0 0

0 1.8182 0

0 0 0.1818




and Tu = diag(uss) = [2].

The scaled system is then given by Ã = T−1
x ATx =




-2.0000 0 0

1.1000 -1.1000 0

0 1.0000 -1.0000




,

B̃ = T−1
x BTu =




2

0

0




, C̃ = CTx = [ 0 0 0.1818], D̃ = [0].

The code to obtain the scaled system from the unscaled system is:
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———————————————————–

tx = diag(xss);

tu = diag(uss);

Abar = inv(tx)*A*tx;

Bbar = inv(tx)*B*tu;

Cbar = C*tx;

Dbar = [0];

sysbar = ss(Abar,Bbar,Cbar,Dbar);

———————————————————–

This system has 1 input, 1 output, and 3 states. Therefore, p = 1, n = 3, k =

1. Select r = 2, q = 1000. Then “ParaVector” = [1 3 1 2 1000]. uss = 2, xss = [2.0

1.8182 0.1818]T , and “OutputIndex” = 3.

The step response of this system is shown as Fig. 35.

From Fig. 35, it can be seen that it requires about 6 seconds for the system to

get close to steady state, therefore, the variable of “end time” can be 6 if the “start

time” is 0. “SampleLength” can be 0.1. Therefore, “Tspan” = [0 6 0.1].

b. Model Reduction Demonstration

(i) Compute empirical controllability gramian

The input arguments are:

“ParaVector” = [1 3 1 2 1000], “Tspan” = [0 6 0.1], “Cm” = 0.1, s = size(Cm)

= 1, flag = 0.

Then the controllability gramian can be computed as:

yhat = ctrl gram cov (OdeFcn, Tspan, ParaVector, Cm, flag) for the scaled

system.

yhat = ctrl gram cov unscaled (OdeFcn, Tspan, ParaVector, Cm, flag) for the
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Step Response
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Fig. 35. Step response of example 1

unscaled system.

If the controllability covariance matrix is desired, then the “flag” needs to be set

to any integer other than 0, for instance, “flag” = 1.

The result of the (empirical) controllability gramian for the unscaled system is

Ctrl gram unscaled =




1.0053 0.3232 0.0109

0.3232 0.2911 0.0190

0.0109 0.0190 0.0019




By use of the MATLAB command “gram”, the controllability gramian for the
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unscaled system is [command: gram(sys(A,B,C,D), ‘c’)]

Ctrl gram unscaled matlab =




1.0000 0.3226 0.0108

0.3226 0.2933 0.0191

0.0108 0.0191 0.0019




The result of the (empirical) controllability gramian for the scaled system is

Ctrl gram scaled =




0.9995 0.3561 0.1199

0.3561 0.3525 0.2299

0.1199 0.2299 0.2295




And by use of the MATLAB command “gram”, the controllability gramian for

the scaled system is [command: gram(sys(Ã, B̃, C̃, D̃), ‘c’)]

Ctrl gram scaled matlab =




1.0000 0.3548 0.1183

0.3548 0.3548 0.2309

0.1183 0.2309 0.2309




It can be seen that Ctrl gram unscaled and Ctrl gram unscaled matlab return

results that are very close to one another. There only exist a very small difference be-

tween them. Similarly, the results returned by Ctrl gram scaled and Ctrl gram scaled matlab

are also very close.

(ii) Compute observability gramian

With all input arguments already known, the observability gramian is:

xhat = obsv gram cov (OdeFcn, Tspan, ParaVector, Cm, OutputIndex, xss, flag)

for scaled system, or

xhat = obsv gram cov unscaled (OdeFcn, Tspan, ParaVector, Cm, OutputIndex,

uss, xss, flag) for unscaled systems.
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The result returned for the observability gramian for the unscaled system is

Obsv gram unscaled =




0.0005 0.0009 0.0079

0.0009 0.0021 0.0235

0.0079 0.0235 0.5528




By use of the MATLAB command “gram”, the observability gramian for unscaled

system is [command: gram(sys(A,B,C,D), ‘o’)]

Obsv gram unscaled matlab =




0.0005 0.0010 0.0079

0.0010 0.0022 0.0238

0.0079 0.0238 0.5000




The result of observability gramian for the scaled system is

Obsv gram scaled =




0.0019 0.0034 0.0029

0.0034 0.0071 0.0078

0.0029 0.0078 0.0184




And by use of the MATLAB command “gram”, the observability gramian for

the scaled system is [command: gram(sys(Ã, B̃, C̃, D̃), ‘o’)]

Obsv gram scaled matlab =




0.0019 0.0035 0.0029

0.0035 0.0072 0.0079

0.0029 0.0079 0.0165




It can be seen that Obsv gram unscaled is quite close to Obsv gram matlab con-

sidering the assumptions made above. The same is true for the commands Ob-

svl gram scaled and Obsv gram scaled matlab.

(iii) Compute balanced transformation matrix

After the controllability gramian yhat and observability gramian xhat are ob-
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tained, the transformation matrix can be computed by the following command:

[Trans, invTrans, Wc, Wo, svd Wc, svd Wo] = bal realization(yhat, xhat, n)

The result returned for the transformation matrix for the unscaled system is:

Trans unscaled =




-0.0760 -0.1808 -2.6316

0.0886 0.0983 -2.9249

0.0471 -0.1658 1.4489




By use of the MATLAB command “balreal”, the transformation matrix for the

unscaled system is [command: balreal(sys(A,B,C,D))]

Trans unscaled matlab =




-0.0773 -0.1845 -2.5300

0.0887 0.0859 -2.7758

0.0434 -0.1528 1.3434




These quantities are very close.

Also, for the scaled system, the result is:

Trans scaled =




-0.1071 -0.2322 -0.3396

-0.1256 -0.1270 0.3753

-0.0666 0.2114 -0.1839




By use of the MATLAB command “balreal”, the transformation matrix for the

scaled system is [command: balreal(sys(Ã, B̃, C̃, D̃))]

Trans scaled matlab =




-0.1093 -0.2372 -0.3253

0.1254 0.1105 -0.3569

0.0614 -0.1965 0.1727




These quantities are also very close despite the signs. The signs are not a problem

as long as they are consistent in the whole procedure.
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By comparing the results computed by the presented code with those computed

directly by MATLAB, it can be seen that our code is applicable to linear system and

the nonlinear gramians have reduced to linear gramians in as the system under study

is linear. One point which should be mentioned is that the code for unscaled systems

is used to compute these quantities and compared them with the results returned by

MATLAB. However, it is important to scale the system so that the importance of

each state can be compared based on a uniform standard. Therefore, the code for a

scaled system should generally be used to compute gramians.

(iv) Generate the reduced order system

If the odefile of the scaled system is as follows,

———————————————————–

function xdot = lin example scaled(t,x)

global ud uss xss a b c d;

x = diag(xss)*x;

u = diag(uss)*ud;

xdot = a*x + b*u;

xdot = diag(1./xss)*xdot;

———————————————————–

then the reduced order system can be obtained by modifying the above ode

function:

———————————————————–

function xdot = lin example scaled red(t,x)

global ud uss xss a b c d red n Trans invTrans n;

x=diag(xss)*invTrans*x;

u = diag(uss)*ud;

xdot = a*x + b*u;
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xdot = diag(1./xss)*xdot;

xdot(1:red n,1) = Trans(1:red n,:)*xdot;

xdot(red n+1:n,1) = zeros(n - red n,1);

———————————————————–

In this ode function, Trans refers to the balanced transformation matrix, invTrans

is its inverse, red n is the number of retained states.

(v) Test the reduced order systems by comparing step response with the full-order

system

It should be noted that when the reduced-order system is integrated, the initial

value should be transformed by use of the balanced transformation matrix (initvalue

= Trans*ones(n,1);). And the output should be transformed back to the original

coordinate (y = (invTrans*y’)’).

For instance,

———————————————————–

% retaining 2 states

red n = 2;

% initial states

initvalue = Trans*ones(n,1);

% integrate the reduced system

[t, y] = ode15s(’lin example scaled red’,[0 10], initvalue);

y = (invTrans*y’)’;

———————————————————–

A comparison between the reduced system and the full order system is shown in

Fig. 36.
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Fig. 36. Demo 1 result

2. Example 2: Distillation Column Model

Consider a distillation column with 30 trays for the separation of a binary mixture

[48]. The column has 32 states and is assumed to have a constant relative volatility

of 1.6, and symmetric product compositions. The feed stream is introduced at the

middle of the column on stage 17 and has a composition of xF = 0.5. Distillate and

bottoms purities are xD = 0.935 and xB = 0.065, respectively. The reflux ratio is set

to 3.0 and can be controlled and the purity of the distillate is measured.

The input arguments are:

“Tspan” = [0 125 1], “ParaVector” = [1 32 1 2 1000], cm = 0.1, uss = 3,
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Fig. 37. Demo 2 result

OutputIndex = 1, flag = 0.

Svd scaled =




0.11599

0.0048545

0.0007854

0.00012426

2.1448e-005

others




The result is shown in Fig. 37.
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3. Example 3: a CSTR System

This example is a system of two CSTRs in series, which was presented in the

nonlinear process control book edited by Henson and Seborg [97]. The model has four

states, one input which is the coolant flow rate qc and one output, the effluent con-

centration from the second tank. The input has a nominal value of qc0 = 100L/ min.

Since this system is not control-affine, the empirical gramian cannot be obtained.

In this case, the covariance matrices are computed.

The input arguments are:

“Tspan” = [0 10 0.1], “ParaVector” = [1 4 1 2 1000], cm = 0.01, uss = 100, xss

= [ 0.0882 441.2193 0.0053 449.4746]T , OutputIndex = 3, flag = 1.

The results for the scaled system are:

Ctrl covariance scaled =




4.3026 -0.1809 7.8843 -0.1515

-0.1809 0.0078 -0.3192 0.0060

7.8843 -0.3192 15.3951 -0.3073

-0.1515 0.0060 -0.3073 0.0063




Obsv covariance scaled =




0.0000 0.0011 0.0000 0.0002

0.0011 0.0425 0.0000 0.0087

0.0000 0.0000 0.0000 -0.0000

0.0002 0.0087 -0.0000 0.0029




Trans scaled =




0.0241 1.2795 -0.0073 0.3472

0.0732 2.5367 0.0236 0.2518

0.1291 1.9599 -0.0054 1.0097

0.1708 1.7444 -0.1017 -2.5225



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Fig. 38. Demo 3 result

Svd scaled =




0.0134

0.0028

0.0007

0.0001




The result is shown in Fig. 38.

D. Summary

This Appendix presents a tutorial on how to perform nonlinear model reduction

via balanced truncation using the Matlab routines. Basic principles and descriptions

of routine functions are presented. Several case studies are used to demonstrate these

routine functions, both for linear and nonlinear systems.
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