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ABSTRACT

Validation of Computer-Generated Results with Experimental Data Obtained for

Torsional Vibration of Synchronous Motor-Driven Turbomachinery. (May 2003)

Nirmal Kirtikumar Ganatra, Dipl., K. J. Somaiya Polytechnic, Bombay, India;

B.E., University of Bombay, India

Chair of Advisory Committee: Dr. John Vance

Torsional vibration is an oscillatory angular twisting motion in the rotating

members of a system. It can be deemed quite dangerous in that it cannot be detected as

easily as other forms of vibration, and hence, subsequent failures that it leads to are often

abrupt and may cause direct breakage of the shafts of the drive train. The need for

sufficient analysis during the design stage of a rotating machine is, thus, well justified in

order to avoid expensive modifications during later stages of the manufacturing process.

In 1998, a project was initiated by the Turbomachinery Research Consortium (TRC) at

Texas A&M University, College Station, TX, to develop a suite of computer codes to

model torsional vibration of large drive trains. The author had the privilege of

developing some modules in Visual Basic for Applications (VBA-Excel) for this suite of

torsional vibration analysis codes, now collectively called XLTRC-Torsion. This treatise

parleys the theory behind torsional vibration analysis using both the Transfer Matrix

approach and the Finite Element approach, and in particular, validates the results

generated by XLTRC-Torsion based on those approaches using experimental data

available from tests on a 66,000 HP Air Compressor.
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INTRODUCTION

Torsional vibration is an oscillatory angular motion that causes relative twisting

in the rotating members of a system. This oscillatory twisting motion gets appended to

the steady rotational motion of the shaft in a rotating or reciprocating machine. Systems

in which some driving equipment drives a number of components, thus enabling them to

rotate, are often subjected to constant or periodic torsional vibration. This necessitates

the analysis of the torsional characteristics of the system components.

Often, if the frequency of a machine's torque variation matches one of the

resonant torsional frequencies of the drive train system, large torsional oscillations and

high shear stresses can occur within the vibrating components. If a machine experiencing

such torsional vibration is continuously operated, an unwarranted fatigue failure of weak

system components is imminent. One of the major obstacles in the measurement and

subsequent detection of torsional vibration in a machine is that torsional oscillations

cannot be detected without special equipment. However, prediction of torsional natural

frequencies of a system and consequent design changes that avoid the torsional natural

frequencies from occurring in the operating speed range of a machine is necessary.

Oscillatory behavior of a system component experiencing torsional vibration, however,

may often be of little interest to the designer unless it affects the basic functions expected

of the system. The stresses occurring within components are of paramount importance as

The ASME Journal of Vibration and Acoustics was used as the format model.
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they determine the structural integrity and life of the machine. This helps determine the

allowable limit of the torsional vibration. Many a time, torsional vibration produces

stress reversals causing metal fatigue and gear tooth impact forces.

Turbomachinery drive trains driven by synchronous motors or diesel engines

generally experience torsional fluctuations that arise due to the torsional impulses

generated in the machine. These impulses, then, produce torsional vibrations in the

rotating machine components. When these vibrations encounter a torsional natural

frequency of the system, resonance occurs in the machine often leading to direct failure

of the weakest machine components. This torsional vibratory motion is usually limited

by the damping due to fluids such as oil or water in contact with the rotating members,

internal machine resistance, or resistance imposed by a torsional damper attached to the

machine.

When two or more different machines are coupled together, wherein one drives

another operating as a single unit, any deviation from pure rotation in one would be

transmitted to some extent to other components. It is important to note that the natural

frequencies of the coupled system will be different from that of each individual machine

taken into account. It does not matter whether each component is individually safe, since

perilous torsional vibrations can still originate as a result of the combination. One can,

thus, state examples of an engine-generator, motor-compressor or a motor-pump

combination. There will be potentially dangerous torsional vibrations in the combination,

at distinct speeds and loads in different parts of the combined equipment.
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Though the identification of the torsional vibration phenomenon is not new, it

still remains one of great importance when designing turbomachinery. It may be noted

that this problem persists since the available knowledge, though limited, is not fully put

to use and complex machineries are combinations of existing individual machines which

in combination may produce undesirable vibration characteristics.

Curbing dangerous shaft failures that occur due to torsional vibration are hardly

the main cause of concern for equipment manufacturers, for whom satisfactory operation

means a lot more than avoidance of such mechanical failures. Wear and tear of

components, excessive noise and vibration are some of the other undesirable effects that

may occur. The growing need for making machines more efficient and productive by

increasing speed and loads, while trying to significantly reduce weights for ease of

transportation and cut down on costs leads to a sizeable number of vibration problems.

High loads may also occur in covert forms such as machine start-ups and process

changes.

The torsional characteristics of a system greatly depend on the stiffness and

inertia in the train. While some properties of the system can be changed, generally the

system inertia cannot be altered as required. Consider the simple case of a pump, whose

inertia properties are greatly dependent upon the sizes and thicknesses of its impellers,

shafts, driving motors etc. This is important since a change in geometries and overall

sizes in order to favor torsional characteristics may obscure consideration of

characteristics like the pump hydraulics and lateral vibrations. Besides, the selection of

the driver, which is primarily based on the power and load requirements, can hardly be
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dictated based on torsional characteristics.. The typical engineering objectives of

torsional vibration analysis are listed below [1]:

1. Predicting the torsional natural frequencies of the system.

2. Evaluating the effect of the natural frequencies and vibration amplitudes of changing

one or more design parameters (i.e. "sensitivity analysis").

3. Computing vibration amplitudes and peak torque under steady-state torsional

excitation.

4. Computing the dynamic torque and gear tooth loads under transient conditions (e.g.,

during machine startup).

5. Evaluating the torsional stability of drive trains with automatic speed control.

Early predictions of torsional characteristics of a piece of machinery would

greatly reduce costs if the results of the analyses are judiciously utilized. This can be

effected by studying these results and incorporating the changes on paper early during

the design stage rather than embarking upon final testing of the product without these

considerations and suggesting expensive changes later. The software used for predicting

torsional natural frequencies and similar other characteristics should be capable of

modeling important properties of the system besides being cost effective in terms of time

[34]. It should also be able to incorporate various components like dampers, absorbers,

multiple shafts, branches, etc. that affect the dynamic performance of a system. This,

however, leads to a trade-off between the amount of time and money spent in generating

a model using the software and the degree of accuracy gained by making the model to

incorporate finer aspects of the system. Thus, a useful design tool for torsional analysis
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should allow quick generation of a model and provide precise results that are satisfactory

within pre-determined limits of accuracy [34].
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LITERATURE REVIEW

A review of the available literature on torsional vibration analysis identifies the

following:

1. History of torsional vibration analysis

2. Modeling of torsional system components

3. Transfer Matrix and Finite Element methods of torsional vibration analysis

4. Methods for prediction of machine life using cumulative fatigue theories

A chronological and informative discussion about the history of torsional

vibration analysis is presented in Wilson [2]. It recognizes that early failures in marine

and aeronautical drive trains presented the need for torsional vibration analysis.

A trial and error technique called the Holzer's method was developed in early

1900s' for determining the natural frequencies and mode shapes of torsional systems.

Assuming a trial frequency and starting at one end of the drive train, with this technique,

once can progressively calculate the torque and angular displacement of each station to

the other end. If the torque thus calculated is zero at the other end (the boundary

condition), the assumed frequency is the natural frequency and the corresponding angular

displacement defines the mode shape. The original method does not account for torsional

damping and hence can only be used for systems with negligible damping. Rotating

machinery seldom contains a large amount of torsional damping, but some special

couplings are designed to add damping. The numerous degrees of freedom to be

accounted for while analyzing actual machinery make the Holzer's method advantageous
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if all the degrees of freedom are to be accounted for with physical coordinates. However,

one can often neglect the higher damped modes as they are of lesser importance in

design even though the system may have many degrees of freedom. The Transfer Matrix

method, the application of which has been described in detail in Pestel and Leckie [3]

and Sankar [32], is an extension of the Holzer's method. The method is modified by

writing equations relating angular displacements to the internal forces in a matrix form

and using complex variables to handle the damping.

Using the modal approach as illustrated in Lund [4] and Childs [5-7], one can

efficiently analyze the transient response of drive trains with many degrees of freedom.

One can conceive the modal analysis as a linear transformation of the system equations

of motion from the "physical" or "actual" coordinates to "modal" or "principal"

coordinates. Once the equations have been transformed in this way, a truncated series of

these "modal" coordinates may be used to describe the dynamic behavior of the system

using information about modes from a prior natural frequency analysis. The main

advantage of using the modal approach is that the linear transformation can be "designed

to suit" such that it uncouples the system equations of motion. This method, thus, leads

to a substantial cutting down of computation time by decreasing the problem size by

using just a few low frequency modes for modal representation. However, the main

disadvantage of this method is that localized damping (e.g. at a shaft coupling) is not

correctly modeled.

Eshleman [8] applied the modal approach in order to determine the torsional

response of internal combustion engine drive trains that are subjected to constant and
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pulsating torques. Anwar and Colsher [9] extended the modal approach to incorporate

damping and backlash found in gears and couplings for torsional vibration analysis of

large systems. They have presented a detailed discussion on the analysis of startup of

drive trains employing a synchronous motor.

The torsional characteristics of the rotor system can also be modeled using the

Finite Element method. As in the transfer matrix method, a complex structure is regarded

as a finite assemblage of discrete continuous elements. The basic aim of the modeling is

to obtain the component equations of motion in the form of a large matrix. The Finite

Element method provides a systematic way of obtaining these equations, with virtually

no restrictions on the system geometry, in a form suitable for computer implementation.

The procedure for derivation of the element inertia and stiffness matrices has been

outlined right from the basics in Rao [10]. These element matrices are then assembled to

form the system inertia and stiffness matrices. Various methods for solving the system

equations thus obtained are discussed in Bathe [11]. Squires [12] elicits the Finite

Element method for determining torsional eigenvalues as well as eigenvectors, besides

describing the modal method in which he uses undamped modes with truncation to

determine the transient response.

Corbo and Malanoski [13] touch almost all possible aspects, viz. modeling for

torsional analysis, undamped and damped torsional natural frequency analyses,

considerations for Variable Frequency Drives (VFDs), forced response analysis, transient

analysis, etc. that should to be considered while designing rotating machinery in order to

avoid failures due to torsional vibration. Wachel and Szenasi [14] is another such
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comprehensive resource of useful information on modeling and analysis of drive trains

for torsional vibration. Corbo et al [15, 16] enumerate an explicit procedure for design

that can be used for avoiding problems arising due to torsional vibration in all forms of

synchronous motor-driven turbomachinery. Their procedure, which includes an

exhaustive practical example, lists detailed guidelines that a designer can follow while

performing synchronous motor startup analyses, determination of shaft size, surface

finish, stress concentration, notch sensitivity, design safety factors, etc. They advocate

the use of the strain life-theory of failure as opposed to the conventional stress-life

approach using Miner's rule to determine the life of the machine, defined in terms of the

number of startups the machine can survive. Shigley and Mischke [17] give a

generalized procedure for design of shafts under fatigue loading. The relations for

determining the values of various factors like those used to account for surface finish,

size, etc. in the determination of number of machine startups presented in this treatise

have also been taken from [17]. Material properties like modulus of elasticity, true stress

and strain at fracture during tensile test, elastic and plastic strain components for

different metals have been obtained from [18]. Lipson and Juvinall [19] present notch

sensitivity curves to be used under different types of fatigue loading. Notch sensitivity

curves for a stepped shaft element under torsional loading have been incorporated into

XLTRC-Torsion.
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ANALYTICAL MODELING OF THE DRIVE TRAIN

The primary objectives warranting rotordynamic modeling and analysis of a

system may be diversified based on the aspects of shaft dynamics that need to be

predicted. In case of torsional vibration, prediction of the system torsional critical

frequencies, determination of torsional mode shapes and prediction of the torque and

stress values reached in the shafts of the system rotor, which may then lead to useful

interpretation and appropriate design modification are the objectives usually sought.

Rotordynamic analyses can be classified as either linear or non-linear analyses, steady

state or transient analyses and static or dynamic analyses.

A turbomachinery drive train is often a complicated arrangement of the drive

unit, couplings, gearboxes, and one or more driven units, each of which can be

represented by masses/inertias and elastic components. Accounting for these components

into a model provides the facility for analyzing the model mathematically by considering

it as an equivalent system that can be subject to dynamic analysis. This equivalent

model, also called the lumped parameter model, comprises of lumped masses/inertias

connected by massless elastic springs that represent the flexibility of shafts and

couplings (Fig. 1). Usually, components of larger diameters may be considered rigid and

be represented as inertias, whereas long slender shafts may be represented as torsional

springs. The judgement of number of "stations" or segments into which a long shaft of

constant diameter may be lumped depends on the highest mode of interest. The usual

procedure for such “lumping” of shafts is to divide each shaft section into equal parts
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("beams") and lump their masses into disks at the end of each beam. As a general rule,

one takes the number of stations N to be at least one more than the number of natural

frequencies of interest.

Fig. 1   Lumped parameter model for torsional vibration analysis, Vance [1]

The equation for determining the torsional stiffness of a shaft section may simply be

written as

l

GJ
K

⋅=  lb�in/rad      (1)

The value of J, also known as the polar area moment of inertia, is generally easily

calculated. It is the area moment of inertia about the Z-axis (perpendicular to the section)
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and is mathematically represented in the general form as ∫=
A

dArJ 2 . Here, r is called the

instantaneous radius, while dA is the differential area. It can be noted that since

222 yxr += , one has the relation YYXX IIJ += , with XXI  and YYI being the area

moment of inertias about the X and Y-axes respectively on the sectioned plane.

One can, thus, write the equation for the polar area moment of inertia for a

circular cross-section with a concentric hole in the center as

32

)( 44
io dd

J
−⋅

=
π

 in4      (2)

The dissipation of vibration energy within the system is represented by viscous

dampers present in the model. The dampers that are denoted by Cn ( 11 −≤≤ Nn )

represent the energy dissipated in the relative twisting motion of the shafts, whereas

those denoted by Bn ( Nn ≤≤1 ) represent the energy dissipated in the bearings, fluid

impellers, etc. with an absolute angular velocity dependent torque. These viscous

dampers are assumed to produce a torque that is linearly proportional to the angular

velocity acting across the damper, but in the opposite sense.
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Fig. 2   A single branch system with a gear pair

If there are gear trains or similar speed modifying devices in the system (Fig. 2),

the effective stiffness and inertias of the model are altered. Conventionally, all

parameters are referred to the shaft speed of the driver station 1. The mass moment of

inertia and stiffness parameters of every other station are then calculated as,

nnn IGI ′⋅= 2      (3)

nnn KGK ′⋅= 2      (4)

Modeling for torsional analysis involves discretization of the rotor in a typical

Finite Element fashion.  Here it is important to recognize that the basic mechanism in the

case of torsional vibration is that of twisting of the shaft, and hence elementary one-

dimensional “beams” may be used for torsional analysis. Due to this, torsional analysis is

comparatively easier to perform than its lateral associate is. Complete torsional vibration

analysis involves determination of the torsional natural frequencies and mode shapes of
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the rotor, plotting the Campbell diagram based on the former results, performing a

steady-state forced response analysis on the system with the exciting torques at their

respective frequencies considered, and performing a transient analysis on the system to

determine time-transient response of the system to the exciting torques.

General Guidelines for Modeling of Rotors for Torsional Analysis [13]

Listed below are a few guidelines that lead to successful modeling of the rotor system:

1. Disk elements should be located axially at the center of gravity of the impeller

represented by them. Correct impeller inertias can be determined by using solid

modeling software.

2. For extremely rigid disk elements, one should assume the portion of the shaft lying

within that element to have zero deflection. One should, thus, calculate shaft element

lengths up to the face, and not the center of gravity, of such impellers.

3. For disk elements that are not extremely rigid, their stiffening effect on the shaft

carrying them is modeled by assuming that the shaft ends at the “point of rigidity”

[20] within the impeller (Fig. 3). The shaft is assumed to deflect in its normal fashion

till this point, whilst no deflection is assumed beyond that point. Equations for

locating the point of rigidity for several common configurations can be found in

Nestorides [20].
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Fig. 3   Point of rigidity. Corbo and Malanoski [13]

4. A shaft joined to a non-rigid coupling or an impeller by an interference fit should be

assumed to twist freely over a length equal to one-third of the overlap. The remainder

of the shaft should be assumed rigid.

5. A shaft joined to a non-rigid coupling or an impeller by a keyed joint should be

assumed to twist freely over a length equal to two-thirds of the overlap. The

remainder of the shaft should be assumed rigid.

6. Some solution algorithms may not take the inertia of the shaft into account. In such a

scenario, one should add one-half of the shaft inertia to each disk on the ends of the

shaft element. In cases where the shaft inertia is a sizeable number when compared

with the inertia of major disks in the system, one should divide the shaft element into
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a number of disks and smaller shaft elements. Each disk should then represent a

portion of the shaft inertia.

7. Couplings should be modeled as two disks with the coupling stiffness acting between

them. The inertia of each such disk should be kept equal to one-half of the coupling

inertia.

8. Flanges should be modeled as shaft elements with diameters equal to their bolt circle

diameters.

9. The accuracy of a model increases with the number of elements when a distributed

inertia is divided into a number of shaft and disk elements.

10. Although gear teeth have innate flexibility, usually they can be considered torsionally

rigid. Gear tooth flexibility plays a role only in the calculation of very high natural

frequencies or in systems having multiple gear meshes. Nestorides [20] gives

equations to help account for gear tooth meshes.

11. “Wet” inertias should be considered for elements such as impellers and propellers

that are operating in water. Although Corbo and Malanoski [13] state that they have

used dry inertias for pump impellers with considerable accuracy in predictions, it is a

general practice to assume “wet” inertias of impellers and propellers to be 20-25%

more than their actual inertias for torsional analysis.
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NUMERICAL SOLUTION TECHNIQUES

Presently, two analysis techniques are predominantly being used for analyzing

torsional vibration in drive trains, viz. the Transfer Matrix method and the Finite

Element method. A brief description of each of these methods has been presented in this

chapter.

Transfer Matrix Method

The traditional Holzer's method for calculation of the natural frequencies of a

system uses a numerical table for analysis. The Transfer Matrix method, which is an

extension of the Holzer's method, uses matrices for analysis of torsional vibration. This

method can be used to calculate the torsional natural frequencies of many different

eigenvalue problems.

The basic concept governing the Transfer Matrix method is to express the state

variables like torques and angular displacements at a station in the rotor model in terms

of the variables of the previous station. While doing this, one conventionally moves from

left to right, thus developing a chain-like relationship between variables of the

subsequent stations. It, thus, becomes easy to predict the equations for torque and

angular displacement at a particular station, if the same for the previous station in the

line are known. Then, if the matrices of all the stations are multiplied together

proceeding from left to right, the torque and the angular displacement at the rightmost

station can be expressed in terms of the variables of the leftmost station. The elements of
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the transfer matrices contain the eigenvalue. The boundary conditions at the rightmost

end are obtained if this eigenvalue is legitimate.

Generally, in the case of torsional vibration, the boundary condition for torque at

each end of the rotor is zero. For performing eigenvalue analysis, the amplitude of

angular displacement at the rotor ends is arbitrary, as the eigenvalues do not depend on

the amplitude of angular displacement. Having said this, the ratio of these amplitudes at

each end is characterized by the eigenvector corresponding to each eigenvalue. This

eigenvector can be used to determine the "mode shape" or the relative positions of the

model inertias at the occurrence of each eigenvalue.

Fig. 4   Torsional inertia and stiffness elements of the nth station, Vance [1]
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Figure 4 from Vance [1] shows the nth station of the model represented as

comprising of an inertia element and a stiffness element. The left end of the inertia

element has unprimed angular displacement and torque, while the corresponding

parameters on the right end are primed. One can, thus, write the equation for the torque

acting on the right of the nth inertia neglecting damping as obtained from Newton's

Second Law or Lagrange's equation as follows:

nnnn TIT +=′ θ&&      (5)

Substituting a solution of the form st
nn eat =)(θ  in the above equation and adding

the identity nn θθ =′ , one obtains transfer equations for the nth inertia in terms of the

eigenvalues s. Here, na  is the amplitude of the oscillation at the nth station and s is the

corresponding eigenvalue:
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Let us denote the 2 x 2 transfer matrix of inertia defined by Eq. (6) as [ ]nIT .

As the torsional stiffness element has been assumed massless, torques on its ends

are equal. Thus,

nn TT =+1      (7)

The torsional stiffness and internal damping resist the shaft torque. Hence,

)( 1 nnnn KT θθ −=′ +      (8)

Solving Eq. (8) for θn+1 allows this equation and Eq. (7) to be written as,
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Eq. (9) defines the shaft transfer matrix for the nth shaft as [ ]nsT .

Substitution of Expression (6) into Eq. (9) gives
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where, [ ] [ ] [ ]nInsnsI TTT =    (11)

is evaluated by matrix multiplication. Here [ ]nsIT  is the transfer matrix of the nth station.

Now let n = N in Eq. (6), let n + 1 = N in Eq. (10), so n = N - 1, and so on.

Successive substitutions are made until the left end of the drive train is reached where

n = 1.

Hence, [ ]
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Here, [ ] [ ] [ ] [ ]110 ......... sINsINI TTTT −=    (13)

Equation (13) is the overall Transfer Matrix for the drive train, which is of the

second order for torsional vibration, unregimented by the number of stations

incorporated into the model.

The Polynomial Transfer Matrix method by Murphy [21] treats the elements of

the transfer matrices as polynomials in s, while storing their coefficients as arrays in the

computer. On carrying out the polynomial multiplication in Eq. (13), one gets Eq.  (12).

The (2,1) element of [ ]0T  is the then taken as the characteristic polynomial of the system,
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the roots of which are the eigenvalues. Once the characteristic polynomial is determined

in this way, the eigenvalues can be computed by a rootfinder algorithm, one like the

Bairstow's method [22].

The eigenvectors corresponding to the calculated eigenvalues are obtained by

computing successive values of θn
` from Equations (12) and (13), substituting 1, 2, 3, ..

for N, and with s equal to the previously computed eigenvalue.

Finite Element Method

Besides the Transfer Matrix technique, the Finite Element method can also be

used to model the torsional characteristics of a turbomachinery drive train. The theory

underlying the Finite Element method is to assume that a complex structure is composed

of a finite assemblage of a number of discrete adjacent elements, with the goal of

obtaining the component equations of motion. The Finite Element method provides an

efficient method of formulating these equations with almost no limitations on the

geometry, concurrently being highly adaptable to computer programming.

Defining a Finite Element model means setting up the spatial locations of "nodal

points", where the angular displacements are to be determined and external torques

applied. The continuity of shaft properties is then used to tie the shaft elements at

appropriate node points. Point inertias are added at nodal points where necessary to

consummate the model. Then, the element mass and stiffness matrices are assembled to

obtain the global mass and stiffness matrices.
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Formulation of Element Inertia and Stiffness Matrices [10]

Let us assume a single, uniform shaft element with the following properties:

length L, mass density γ , shear modulus of elasticity G, area moment of inertia J about

the twist axis. Let us also assume a linear variation of the twist angle θ  between the two

ends of the element. Based on this linear variation, the angular displacement at any point

along the element would be

)()()()(),( 2211 txNtxNtx θθθ +=    (14)

The functions N1 and N2 are called shape functions or interpolation functions. The

shape functions are determined by assuming that they are the static angular displacement

patterns conforming to the boundary conditions. Based on )(),0( 1 tt θθ =  and

)(),( 2 ttL θθ = , the shape functions N1 and N2 must satisfy
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The generic differential equation of motion for the shaft may be stated as
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Since this is static displacement, the external forces F must add up to zero.

Besides, the time-dependent transient terms would also be zero. For a continuous

isotropic element, the product GJ is constant. Hence, the differential equation can now

be written as:
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Integrating the above equation twice, and setting it equal to Eq. (14) gives

212211 )()()()( CxCtxNtxN +=+ θθ    (18)

Applying the boundary conditions,

L

x
N −= 11 , 

L

x
N =2    (19)

Then, angular displacements in the element may be written as:
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Lagrange's equations of motion may be used to determine the equations of

motion for the element. These can later be interpreted into the mass and stiffness

matrices for the element. Since there are no non-conservative forces,
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where, T is kinetic energy

and V is potential energy.

The kinetic energy of the elemental piece is given by
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Substituting Expression (20) differentiated once with respect to time, one gets
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The potential energy (strain energy) for the elemental piece is
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Substituting Expression (20) differentiated once with respect to x,
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Using Equations (23) and (25) in Lagrange's equations, the following two equations of

motion result

0)()()(
6

 
)()

3

 
( 2121 =







−






+






+ t
L

GJ
t

L

GJ
t

IL
t

IL θθθγθγ
&&&&    (26)
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which in the matrix form may be written as [ ]{ } [ ]{ } 0)()( =+ tktm θθ&& ,

where the element stiffness matrix is[ ] 








−
−

=
11

11

L

GJ
k    (28)
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is called the "consistent" mass matrix since the same shape function is used to derive the

stiffness and mass matrices. It may be observed that the mass matrix has dynamic

coupling between the node points.
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An elucidation leads to the "lumped" mass matrix that has no mass coupling

between nodes with the assumption that the node points are so close that the lumped

mass matrix would sufficiently define the actual continuous mass distribution. The

method involves simply "lumping" or adding the off-diagonal terms in the consistent

mass matrix with the diagonal terms. This may be visualized as placing half of the total

shaft section inertia at each node point. The lumped mass matrix for the element may,

thus, be written as
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where the differential equations of motion for an element are
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If there are speed-modifying devices such as gear trains in the drive train, they

impose constraints on the shaft speeds of each element, which modify the effective

inertia and stiffness parameters in the model. Conventionally, all parameters are referred

to the shaft speed of the driver. Hence, the inertia and stiffness matrices of every other

element are calculated as,
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System Inertia and Stiffness Matrix

Several processes are involved in arriving at a final set of equations of motion for

a system based on Finite Element modeling. So far we have considered processes at the

element level for generating element matrices. The element matrices are assembled into

the system or global mass and stiffness matrices by a method commonly referred to as

the "direct stiffness" method.

The "direct stiffness" method for assembling the system matrices is based on the

fact that work and energy are scalar quantities so that, for example, the total strain energy

of a structure is the sum of the strain energy contributions of all of its elements. In

addition, the element displacements referred to global axes can be simply identified with

the appropriate system displacements.

The method of assembly of the element matrices into the system or global

matrices is as follows:

The end nodes of each shaft element are referred to by node number 1 and 2.

Each of these elements is connected to other elements sharing common nodes. Thus,

each element is connected to two global nodes that are labeled from one to the total

number of global nodes. The components of the element matrix are added to the global

matrix in the rows and columns that correspond to the global node numbers of the ends

of the element. For example, if the ends of an element correspond to the global node 4
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and 9, then the (1,1) component of the element matrix is added to (4,4) component of the

global matrix, (1,2) component is added to (4,9), (2,1) component is added to (9,4) and

(2,2) component is added to (9,9) component of the global matrix. This procedure is

applied to both the stiffness and mass element matrices in order to form the global

matrices.

The differential equation assuming a lumped parameter mass matrix for a

straight-line model can be written as
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which compares with the equation for a station using the lumped parameter model.

However, there is no exact correspondence between the two equations because of the

fact that lumped parameter equation is written after the station inertia's are lumped.

Solution Methods for the Eigenproblem [11]

The eigenvalues and eigenvectors, which are the undamped natural frequencies

and mode shapes respectively, can be found from the system stiffness and mass matrices

obtained above. The generalized eigenproblem associated with the above system is

φλφ IK =    (39)
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where K and I are, respectively, the stiffness matrix and inertia matrix of the Finite

Element assemblage. The eigenvalues jλ  and eigenvectors jφ  are the free vibration

frequencies squared, and corresponding mode shape vectors, respectively. The stiffness

matrix K has order n and is positive definite or positive semi-definite. The inertia matrix

obtained in a consistent mass analysis is always positive definite, whereas a lumped

inertia matrix is positive definite only if all diagonal elements are larger than zero, else it

is positive semi-definite.

Several methods for solution of eigenproblems are available including vector

iteration method, vector transformation method and polynomial iteration method. In each

of these three groups there are several specific methods. In the present work, the vector

transformation method of eigensolution based on the Generalized Jacobi's method is

employed. A major advantage of this procedure is its simplicity and stability. Also, the

transformation of the generalized eigenproblem to the standard form is avoided when

using this method.

However, the Jacobi solution method solves simultaneously for all eigenvalues

and corresponding eigenvectors. In torsional vibration analysis, we are interested in only

the first few natural frequencies, and the use of this method can be very inefficient, in

particular when the order of K and I is large, as compared to the Polynomial Transfer

Matrix method.

For the rotor system that is free-free at the ends, the stiffness matrix is not

positive definite. In order for the eigensolution based on Jacobi's method to work, it is
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required that both the stiffness and inertia matrix are positive definite. In order to solve

this problem, a procedure called shifting is used. In the solution, φλφ IK = , a shift ρ  on

K is performed by calculating

IKK ρ+=ˆ    (40)

The transformed eigenproblem is then

ψµψ IK =ˆ    (41)

To identify how the eigenvalues and eigenvectors of Eq. (37) are related to Eq. (38), the

latter is re-written in the form

ψδψ IK =    (42)

where µρδ −= . However, Eq. (39) is, in fact, the eigenproblem φλφ IK = . Since the

solution of this problem is unique, we have

ρµλ −= ii ; ii ψφ =    (43)

As an example to demonstrate the procedure of shifting, a simple two-element system is

modeled. The nodal inertias are assumed to be 1 in�lb�s2 attached at each node whereas

the element stiffness is assumed to be 1 lb�in/rad. The assembled system inertia and

stiffness matrix is given by
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The computed eigenvalues for this system are

[ ]310=λ
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and the eigenvectors are
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Applying a shift in the stiffness matrix as in Eq.  (37), where ρ  = 10, the transformed

stiffness matrix is
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which is positive definite. The calculated eigenvalues using the transformed stiffness

matrix are

[ ]131110=µ

so the eigenvalues for the original system as calculated from Eq. (40) are

[ ]310==− λρµ

Contrariety between Transfer Matrix and Finite Element Techniques

The first difference between the two techniques in question lies in the way in

which the equations of motion are derived for each technique. While the Transfer Matrix

technique relies on expressing the state variables like torques and angular displacements

at a station in the rotor model in terms of the variables of the previous station, the Finite

Element method is based on the formulation of shape functions and the principle of

virtual work. Hence, the latter can be readily applied to non-linear elements of higher

order, and would yield consistent mass formulation. In the Transfer Matrix method, an
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application specific, highly optimized algorithm takes complete benefit of the imposed

shortcomings in modeling for numerically solving the equations; however, typically only

single line models are allowed. The Finite Element method, on the other hand, uses

general-purpose sparse matrix solving algorithms that permit models of any complexity,

even multi-line models.

In practice, however, often the Transfer Matrix and Finite Element models are

identical, leading to similar results. It is easy to see that the size of the matrices needed

for the Finite Element method would be much greater than that of the matrices used by

the Transfer Matrix technique. Although the Transfer Matrix algorithm runs multiply

faster than the Finite Element one, its usage is often limited to simpler models, mostly

single-line. Contrary to this, the Finite Element algorithm, though slower, may be

applied to a wide variety of rotordynamic problems. In the present scenario of

continually computational power, the longer computational time taken by the Finite

Element methods may soon be offset.
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TIME-TRANSIENT ANALYSIS

In recent times, the use of synchronous motors has been continually increasing

considering the fact that they are highly economical to use as compared to other driving

equipment. The rising cost of power has led to a revival in the use of synchronous

motors despite the fact that synchronous motors are a major cause for exciting torsional

vibration in turbomachinery. The latter leads to inherent problems in synchronous motor

driven turbomachinery that require analysis, in lieu of which high stresses and fatigue

failures may occur over time in weak shaft members. Synchronous motor startups are

often highly detrimental to their driven members due to their high torque fluctuation and

must be thoroughly analyzed in order to avoid premature failures. The designer must

perform sufficient analysis to enable him to predict the torque and stress variation over

time in the machine elements during startup. This information can then be used per the

designer's discretion for designing a reliable member that can withstand the torque and

stress fluctuation for a reasonable length of time [23].

The transient torque and stress history can be predicted by numerically

integrating the equations of motion for a discrete mass-elastic shaft model, leading to

determination of the angular displacements at each time-step. With the introduction of

damping into the torsional equations of motion, the latter become coupled and, hence,

difficult to solve. The modal method is then used to reduce the number of degrees of

freedom of the system and uncouple the equations of motion even with damping. This

implementation of modal coordinates to transform the equations of motion can bring
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about a useful simulation of the transient angular displacements after numerical

integration of the equations [36], besides saving a lot on computation time. Proportional

damping can be used for drive trains that have an extremely small amount of damping. In

such cases, the coupled modal equations of motion are uncoupled by assuming the

damping matrix to be proportional to the inertia or stiffness matrix. This, in effect,

means that the modal cross-coupled damping terms are neglected. However, drive trains

having couplings with a high value of localized damping (e.g. Holset couplings) cannot

be analyzed using this method since the damping matrix in such cases cannot be assumed

proportional. Such systems then need to be analyzed by solving the coupled equations of

motion using physical coordinates rather than modal coordinates to account for the

”point” damping at the couplings.

There are several techniques to perform a transient analysis on a rotor model, viz.

numerical integration that generates a time-marching solution with a miniscule time step,

Duhamel’s integration that uses the “impulse response” functions of the rotor system,

and the harmonic balance technique that uses the Fast Fourier Transform (FFT) chiefly

for steady state responses. Of these, the numerical integration technique is the most

common and will be discussed in this chapter. The major classes of numerical

integration methods are as follows:

(a) Methods yielding implicit or explicit solution of the dynamic equations of

equilibrium

(b) Single step or multi step methods

(c) Conditionally or unconditionally stable methods
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(d) Component mode synthesis, which is a technique that is used to reduce the order

of the system, subsequently expediting the calculation.

Starting a Synchronous Motor [1]

Synchronous motors are like induction motors in that they both have stator

windings that produce a rotating magnetic field. Unlike an induction motor, the

synchronous motor is excited by an external DC source and, therefore, requires slip rings

and brushes to provide current to the rotor. In the synchronous motor, the rotor locks into

step with the rotating magnetic field and rotates at synchronous speed. If the synchronous

motor is loaded to the point where the rotor is pulled out of step with the rotating

magnetic field, no torque is developed, and the motor will stop. A synchronous motor is

not self-starting because torque is only developed when running at synchronous speed;

therefore, the motor needs some type of device to bring the rotor to synchronous speed.

Synchronous motors use a wound rotor, which contains coils of wire placed in the rotor

slots. Slip rings and brushes are used to supply current to the rotor.

A synchronous motor may be started by a DC motor on a common shaft. When

the motor is brought to synchronous speed, AC current is applied to the stator windings.

The DC motor now acts as a DC generator and supplies DC field excitation to the rotor

of the synchronous motor. The load may now be placed on the synchronous motor.

Synchronous motors are more often started by means of a squirrel-cage winding

embedded in the face of the rotor poles. The motor is then started as an induction motor

and brought to 95% of synchronous speed, at which time direct current is applied, and
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the motor begins to pull into synchronism. The torque required to pull the motor into

synchronism is called the “pull-in torque”.

The asymmetry of a synchronous motor during startup process produces pulsating

electromagnetic torques, which may be as high in magnitude as the average accelerating

torque. In an induction motor, the rotor is symmetrical and the flux linkage is

independent of the rotor position relative to the stator field, whereas in a synchronous

motor, the flux linkage (and thus, torque) between rotor and stator varies depending upon

whether the rotor poles are in phase with the stator field or have a phase difference of

90º. During sub-synchronous operation as in the case of motor startup, this produces

torque modulation at a varying frequency. These undesirable transient pulsating torques

may cause fatigue failures in the shafts of the system.  During startup, the

electromagnetic torque of a synchronous motor can be written as

pam TTT +=    (44)

where, Ta is the accelerating unidirectional average motor torque,

and,    Tp is the pulsating component of motor torque due to magnetic saliency

When the synchronous motor is started as an induction machine without field

excitation, the frequency of the pulsating component of torque varies as twice the slip

frequency of the motor sω

[ ])/(1 syncms f ωωω −=    (45)

[ ])/(122 syncmse f ωωωω −==    (46)



36

Thus, the excitation frequency eω  decreases linearly from twice line frequency at

standstill to zero when the motor reaches synchronous speed. Considering that the line

frequency is 60 Hz in the United States, the excitations begin at a frequency of 120 Hz

which linearly decreases to zero as the motor reaches synchronism. It should, thus, be

well noted here that a torsional natural frequency that is located below twice the line

frequency will create resonance when the motor speed passes through or is close to the

“encounter” speed. The motor “encounter” speeds in rpm at which one can expect the

torsional natural frequency iω  to be stimulated by the twice line frequency excitation can

be written as follows:









−⋅=

f
i

synres 2
160

ωωω    (47)

Modeling and Analysis

A mass-elastic model created for smaller equivalent systems with relatively fewer

degrees of freedom is typically used with the damping information and the forcing and

loading torques to generate a time-transient history of the instantaneous torques produced

in each shaft element during the startup process. As explained earlier, this is performed

by numerical integration of equations of motion for every inertia, at each time step, with

respect to time. The motor is considered at rest initially with the assumption that the

electromagnetic torque is suddenly applied. As each inertia of the system responds to the

unbalanced torque, the system accelerates. At every time step, instantaneous values of

average torque, pulsating torque, rotational speed, etc. are calculated and recorded and
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the integration proceeds. Thus, the motor startup is mathematically simulated and the

torques in each shaft are calculated at each time step. It should be recognized that it is

advisable to choose the time step for numerical integration to get accurate results for the

highest torsional natural frequency of interest.

However, for much larger systems, this method may often be tedious in the sense

it involves longer computational times and the demand for greater computational power

for performing the analyses faster. Heretofore, this was a major concern in analysis of

larger systems. Employing modal coordinates for larger systems can greatly reduce the

number of degrees of freedom and hence, significantly cut down on the required

computational time and resources. This is a viable option to integration using physical

coordinates, provided that the damping can be approximated as proportional.

Run-up Calculations

A preliminary run-up analysis is helpful to determine the total time for the

synchronous motor driven system to reach synchronism, and hence, predict the length of

time the numerical integration must proceed. The pulsating component of the motor

torque does not contribute to the acceleration of the system, and hence, only the average

drive and load torques are considered while performing the preliminary run-up

calculations. The equation governing the motion for the rotor system for the run-up

analysis can be written as:

αIT =∑    (48)

where, α is the angular acceleration of the drive train, rad/s2.
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One can numerically integrate this equation with the modified Euler's method,

and determine the angular acceleration and angular velocity at each time step. The time

taken for the angular velocity to reach the operating speed is considered the run-up time.

Transient Calculations

Once the run-up time has been calculated, the modal information with the drive

torques, the pulsating torque and load torques is used to perform the transient analysis.

The modal information embodies the eigenvalues and eigenvectors calculated using the

Transfer Matrix method described in the previous chapter. Additionally, damping

information must be included in the form of modal damping.

The rotor system behaves per the second order spring-inertia-damper equation of

motion:

[ ]{ } [ ]{ } [ ]{ } { }),( θθθθ &&&& tFKCI =++    (49)

The number of equations represented by Eq. (49) may be reduced by modal

decomposition by substitution of variables:

∑= )()(),( txtx q
jjm

φθ    (50)

In matrix form, this may be written as

{ } [ ]{ }qPm=θ    (51)

with [ ]mP  being the modal matrix whose columns are the mode shapes that are

normalized with respect to the inertia matrix.

The equations of motion then become
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[ ][ ]{ } [ ][ ]{ } [ ][ ]{ } { }),( θ&&&& tFqPKqPCqPI mmm =++    (52)

Pre-multiplying both sides of the Eq. (52) by the transpose of the modal matrix yields

[ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }),( θ&&&& tTPqPKPqPCPqPIP T
mm

T
mm

T
mm

T
m =++    (53)

This reduces to the uncoupled set of equations

[ ]{ } [ ]{ } [ ]{ } [ ] { }),( θ&&&& tTPqKqCqIden T
mm =++    (54)

The values of the modal damping factors ζ i  are usually found experimentally and

generally range from 2% to 4%, but other values may also be possible. The modal

damping factors may be determined by performing a damped analysis for determination

of damped frequencies and damped mode shapes described briefly later in this section.

Since inexactitude of the modal damping factor would greatly affect the resultant

stresses, a careful analysis of the rotor system to decide upon an accurate set of factors is

required. After citing many references, Corbo et al. [16] conclude that the minimum

amount of damping that could be expected for a typical geared machine consisting of a

motor, gearbox, and a compressor is 2% of the critical value. They recommend the use of

this value in absence of actual test data as they deem it to be conservative for such a

machine. However, they also caution the reader on the use of this generic damping ratio

by observing that common misinterpretations might yield incorrect damping coefficients

for individual shaft elements.

After the modal damping matrix has been defined, various methods can be used

to perform numerical integration of the Eq. (54) to yield a time history of the modal
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coordinates. For the purpose of accomplishing the above, the second order equation can

be reduced to first order by substituting

{ } { }vq =&    (55)

Thus, Eq. (54) then becomes

[ ]
[ ] [ ] { }







+

















−−
=









Tv

q

CKv

q

mm

0Iden0

&

&

   (56)

If the system is linearized to eliminate external torques, the damped frequencies

and damped mode shapes can be determined by writing Eq. (56) as
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Assuming a solution of the form,

{ } { } teq λψ=    (58)

where { }ψ  and λ  are in complex form, we get

{ } { } teq λψλ=&    (59)

{ } { } tev λϕλ=&    (60)

where { } { }ψλϕ = . Therefore, the modal damped equations of motion are transformed to
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Equation (61) is an eigen-problem that can be solved by an iterative computer

method like the QR algorithm to calculate the damped natural frequencies and mode
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shapes. Finally, the vector of the generalized coordinates { }q  is transformed back to the

physical coordinates { }θ  using the reverse transformation { } [ ] { }θT
mPq = .

One can also integrate Eq. (56) using the modified Euler method, fourth-order

Runge Kutta method, and similar techniques to obtain a time-transient history of the

modal coordinates. Then by applying the reverse transformation { } [ ] { }θT
mPq = , the time

transient history of the physical angular velocity and the physical angular displacement

for each station can be determined. Once this is done, the torque is calculated using its

proportionality to the difference between the calculated angular displacements and

velocities (with damping) of the adjacent stations.

( ) θθθ ∆=−= KKT 12    (62)

The stiffness K of the element is determined by the shear modulus and the

geometry of the element. The maximum shear stress is also calculated from basic torque

equation:

r

S

L

G

J

T =∆= θ
   (63)

where, T = torque applied to the shaft ends, in·lb

J  = polar area moment of inertia of the shaft cross-section, in4

G = shear modulus of the shaft material, psi

           ∆θ = difference in angular displacements between the shaft ends, rad

r = radius at which the shear stress S is calculated, in

L = length of the shaft element under consideration, in
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Hence, we get the maximum shear stress for a shaft element as

J

Td

L

Gd
S oo

22
=

∆
=

θ
   (64)

Here, the maximum radius of the shaft element is considered since the maximum shear

stress occurs on the outermost edge of the shaft.

Integration of the Torque Vector

Special consideration needs to be given when integrating using modal

coordinates if the forcing torque frequency is a function of running speed.  Illustrating

this is the torque model for a synchronous motor, in which many a time, a frequency-

dependent motor torque may be expressed as

)sin( Φ++= tTTT epam ω
   (65)

The frequency of the pulsating vector generating the oscillating torque must be

integrated with respect to time to determine its correct angular position teωβ =  within

the sinusoidal relation.

∫=
t

edt
0
ωβ

   (66)

In case of a synchronous motor, the analytical solution is given by [1]:
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For a non-synchronous motor, β  is determined by the trapezoidal technique as

explained in Orsey et al. [24]:
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Types of Forcing Torque

The software used for the present study, XLTRC-TORSION, can handle four

different types of torsional forcing function inputs: synchronous motor input, arbitrary

pulsating sinusoidal torque input, average torque input, and time dependent torque input.

With these four options, or combinations of these options, nearly all input torsional

forcing functions can be modeled. XLTRC-TORSION can handle as many input forcing

functions as needed. These input forcing functions may be applied at any station in the

drive train, and more than a single input may be attached to the same station.

Below is a brief description of each type of forcing function that can be input into

XLTRC-TORSION:

(a) Synchronous Motor Torque Input Option:

The synchronous motor torque option is used for analysis of synchronous motor

driven systems. This option requires the input of torque values for speeds below and up

to the synchronous operating speed.  The input torque for this option may be expressed

as a summation of an average torque and a pulsating torque as in Eq. (65). The pulsating

torque is modeled as a sine wave (pulsating torque is zero at time zero).  In order to

define the model with a cosine curve, a phase shift Φ  may be entered as input.

Two types of torque should be entered for each rpm as shown in Fig. 5: the

average drive torque and the amplitude of the pulsating torque. The torque values should
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be entered as a percentage of full load torque, and the program interpolates for unknown

values.
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Fig. 5   Synchronous motor torque input

(b) Arbitrary Pulsating Frequency Torque Input Option:

In case of synchronous motors, the pulsating component of the torque oscillates

at a frequency equal to twice the slip frequency of the motor, thereby, posing a linear

variation with rotor velocity as illustrated by Fig. 6.  However, in several cases, rotors

may have pulsating input torques that are some function of the running speed, not

necessarily linear. This may be simulated using the speed dependent pulsating torque

input option. If this option is used, Eq. (68) is used to integrate the sine function.  The
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input for this option is the similar to the synchronous motor torque input option with the

additional input of the frequency of the pulsating torque for each rotor speed.

0
20
40
60
80

100
120
140

0 500 1000 1500

Speed (RPM)

P
ul

sa
tin

g 
T

or
qu

e 
F

re
qu

en
cy

Fig. 6   Pulsating frequency of a synchronous machine
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Fig. 7   Arbitrary frequency as a function of rotor speed
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(c) Input Torque without a Pulsating Component Option:

Torques with no pulsating component (Fig. 7) may be entered using this input

option.  In this case, the only data that needs to be input is the average torque as a

function of rotor speed. This option is helpful while defining a non-harmonic load torque

as a function of the running speed, e.g. compressor load torque with respect to speed,

pump load torque-speed curve.

 (d) Torque as a Function of Time:

If the transient variation of the forcing torque is known as shown in Fig. 8, this

generic option may be used to define the torque acting on the system. The program

internally uses these input values directly, as the integration progresses through time, to

find the torque that corresponds to the current time.  If an intermediate time step lies

between two entered time values, the program interpolates for the unknown torque at that

time step. It is mandatory that one enters definite torque-time values till the run up speed

is reached, otherwise the program fails.
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Campbell Diagrams

Torsional interference diagrams or Campbell diagrams, as they are commonly

known, are extensively used in the design of rotating machinery. They help in deciding

and checking the operating speeds of the machine and the forcing function frequencies

that need to be moved away from the natural frequencies of the system in order to avoid

resonance. The known excitation frequencies are plotted on the abscissa, and natural

frequencies (lateral or torsional) and excitation frequencies are plotted on the ordinate

axis. Figure 9 illustrates this relation with the aid of a Campbell diagram that shows how

the excitation frequency passes through the natural frequencies during startup.
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Fig. 9   Torsional interference diagram (Campbell diagram)

If a "salient pole" synchronous motor is used to drive a machine, an excitation

frequency that is equal to twice the line frequency reduced proportionately by the slip

ratio would be a predominant forcing function frequency [1]. The motor slip ratio is

given by:

S

MS
R N

NN
S

−=    (69)

where, SN  = synchronous speed, rpm

MN  = motor speed (varies during the startup), rpm
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Thus, the excitation frequency would be:








 −=
S
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fe N

NN
Lπω 4  rad/s    (70)

where, fL = line frequency = 60 Hz in the United States.

Driving Torque Definition for Use in Transient Analyses

A study was conducted as a part of the directed studies course under the

supervision of Dr. John Vance to determine the appropriate definition of driving torque

to be used in transient analysis of drive trains driven by a synchronous motor. The two

definitions that needed to be compared were (i) definition of driving torque as a function

of the excitation frequency, and (ii) definition of driving torque as a function of the

angular position of the motor inertia. A simple case study of an air compressor train

modeled as a five-disk rotor was considered and recommendations were made based on

the results obtained from the subsequent analysis using both the definitions of driving

torque.

As discussed earlier, under the starting conditions, the synchronous motor

electromagnetic torque can be considered to be a sum of its average and pulsating

components. Thus, the generic definition of the driving torque of a synchronous motor

may be stated as [1]:

pulavg TTtT +=)(1    (71)
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In this equation, the pulsating torque Tpul can be defined in two different ways.

One definition assumes the pulsating torque to be a direct function of the excitation

frequency ωe, defined as [1]:

Rfe SLπω 4=    (72)

where SR is the motor slip ratio defined as 
s

ms
R N

NN
S

−=    (73)

Hence, the first definition of pulsating torque can be written as

)cos( tTT eoscpul ω=    (74)

Thus, the definition of the driving torque of a synchronous motor during startup may be

written as
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However, the pulsating torque component Tpul may also be stated as being a

function of the instantaneous angular position )(tα  of the rotating torque vector To that

generates the oscillating torque, i.e.

)](cos[ tTT oscpul α=    (76)

In Eq. (76), the instantaneous value of )(tα is given by [1]
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Thus, the other definition of the driving torque of a synchronous motor during

startup may be stated as
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The study was used to determine the appropriate definition of driving torque (Eq.

(75) or Eq. (78)), and make necessary recommendations based on the results.

Case Study of a Five-Disk Rotor

A “dummy” air compressor train shown in Fig. 10 was considered, which had

been modeled as having five lumped inertias/disks and assumed values as shown in Fig.

11. The motor, which was modeled as inertia 1, had a synchronous speed of 1800 rpm.

Fig. 10   “Dummy” air compressor train under study, with assumed values



52

Fig. 11   Geometry plot of a five-disk train

The first four undamped natural frequencies of the system were calculated as

13.94 Hz, 33.96 Hz, 96.08 Hz and 114.8 Hz (excluding the zero frequency rigid-body

mode). Only the first four natural frequencies needed to be considered as they lay below

2X-line frequency (120 Hz). The Campbell diagram showing the calculated natural

frequencies, the slip frequency and the motor speeds at which pulsation was expected is
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shown in Fig. 12. The corresponding encounter speeds were calculated as 78.98 rpm,

359.49 rpm, 1290.85 rpm and 1593.88 rpm.

Campbell Diagram (Torsional Interference Diagram)

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Speed (RPM)

Fr
e

qu
e

nc
y 

(H
z)

1X Motor 2X Motor

Rigid-body Mode Mode 1 = 13.74 Hz

Mode 2 = 33.94 Hz Mode 3 = 96.03 Hz

Mode 4 = 114.73 Hz Resonant Speed to 1st natural f requency = 1593.88 RPM

Resonant Speed to 2nd natural frequency = 1290.85 RPM Resonant Speed to 3rd natural frequency = 359.49 RPM

Resonant Speed to 4th natural frequency = 78.98 RPM Synchronous Speed = 1800 RPM

2X Slip (Drops from 120 Hz)

Fig. 12   Campbell diagram

The run-up plot of the motor is shown in Fig. 13. This plot indicates that the

motor would reach its synchronous speed of 1800 rpm in 26.95 seconds. This graph may

also be used to determine the motor speed reached at a particular time instant of interest.
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Fig. 13   Run-up plot of the motor

First, the transient torque plot for the motor inertia obtained by using the relation

for driving torque stated in Eq. (78) shown in Fig. 14 was considered. Some salient

characteristics could be stated by evaluating this torque plot:

� Transient response to the initial torque pulsation remains till the motor speed reaches

about 150 rpm.

� Resonant response is predicted around 17.8 seconds, which corresponds to a motor

speed of 1300 rpm. This value matches 1290.85 rpm as predicted by the Campbell

diagram.
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� Large resonant response is predicted around 22 seconds, which corresponds to a

motor speed of 1600 rpm. This speed matches 1593.88 rpm as predicted by the

Campbell diagram.

Fig. 14   Torque plot using definition of driving torque in Eq. (78),
with no damping considered
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The torque plot obtained using the driving torque definition in Eq. (75) is shown

in Fig. 15. A careful evaluation brings the following characteristics to the fore:

� Transient response to the initial torque pulsation is seen till the motor speed reaches

about 200 rpm.

� Resonant response is predicted around 7.5 seconds corresponding to 600 rpm. The

motor torque shows very large pulsation, which lasts till the motor speed reaches

about 825 rpm (1X motor frequency intersects the first natural frequency around this

period on the Campbell diagram).

� Resonant response is predicted around 23 seconds corresponding to 1625 rpm. The

motor torque again shows large fluctuations, which last till the synchronous speed of

1800 rpm is reached. This poorly matches 1593.88 rpm, as predicted by the

Campbell diagram.

� The maximum torque predicted in this case is almost one order of magnitude less

than that predicted in the previous case.
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Fig. 15   Torque plot using definition of driving torque in Eq. (75),
with no damping considered

Comparison of results of the above two cases showed that the resonant speeds

predicted by using Eq. (78) for driving torque were much closer in agreement with those

predicted by the Campbell diagram, only if the resonant speeds corresponding to 2X slip

frequency were considered. However, a closer look at Fig. 15 reveals that pulsation

around the region where 1X motor frequency intersects the natural frequency line,

though substantial, was absent in Fig. 14.

Now, in order to verify our results with damping, the following dummy values

were used for incorporating damping into our model:

� Motor HP = 6600

� Overall bearing HP loss = 2%
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� Overall shaft damping  = 2%

The Campbell diagram and the run-up plot of the motor remain unchanged. The

torque plots obtained by using Eq. (78) and Eq. (75) as definitions of driving torque are

shown in Figures 16 and 17 respectively.

Fig. 16  Torque plot using definition of driving torque in Eq. (78),
and considering damping
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Fig. 17  Torque plot using definition of driving torque in Eq. (75),
and considering damping

The following characteristics were noted by comparing the torque values and

resonant speeds in Figures 16 and 17:

• Predicted response to the initial pulsation lasts for a slightly longer time if driving

torque definition in Eq. (75) is used, as opposed to the definition in Eq. (78).

• The maximum predicted torque is much lower when Eq. (75) is used, than when Eq.

(78) is used.

• An additional response is predicted around 8.5 seconds when Eq. (75) is used. This

happens at a motor speed of around 600 rpm, as seen from Fig. 17. Again, this

corresponds to the 1X motor frequency intersecting the first natural frequency line.
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• Large response is predicted around 22 seconds (1600 rpm) with Eq. (78), and 24

seconds (1700 rpm) with Eq. (75). Again, the maximum torque values predicted

during this period are much lower when Eq. (75) is used.

• The torque values do not become negative when Eq. (75) is used (Fig. 17), but during

some portion of the plot in Fig. 16, where Eq. (78) is used, the torque values become

negative.

The observations made above confirmed that pulsation around the intersection of

the first natural frequency and 1X motor frequency was absent in Fig. 16, though results

of Fig. 16 gave a better correlation with the Campbell diagram, when compared with Fig.

17, where Eq. (75) had been used. The torque values during the pulsation around 22

seconds were also much lower when Eq. (75) was used for defining driving torque.

Analysis Summary

The driving torque definition that considers the instantaneous angular position of

the motor inertia, i.e. Eq. (78), gives better correlation with the Campbell diagram when

compared with Eq. (75), which considers the driving torque as a direct function of the

excitation frequency (ωe). However, an additional pulsation, corresponding to the

intersection of 1X motor frequency line with the first natural frequency line on the

Campbell diagram, with torque values lower yet substantial, is completely missed by the

driving torque definition in Eq. (78), but appears when Eq. (75) is used. There is no

reason to believe that any 1X excitation actually exists, if the excitation is from motor

slip (Eq. (69)). Hence, it may be recommended that the Eq. (78) should be used for the
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definition of driving torque for transient analysis and predicting the number of machine

startups (or for designing the shaft diameter for a predetermined number of startups),

with a higher factor of safety.
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A factor of safety of 1.35 has been recommended by Corbo et al. [15], whereas some

other references specify a highly conservative factor of safety of 2.0. However, a factor

of safety in the range 1.7 to 1.8 may be safely adopted for design as a compromise

between being too conservative and avoiding the risk of premature machine failures.
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CUMULATIVE FATIGUE ASSESSMENT AND

PREDICTING NUMBER OF STARTS

Unless properly analyzed and designed, machines employing synchronous motors

face the grave threat of significantly shortened lives due to failures. This is due to the

fact that synchronous motors present large fluctuating torques during machine startup.

The resultant torsional stresses on the shaft can be greater than the endurance limit of the

material of the shaft. With the shaft elements of the machines being subject to such high

stresses, it is essential to determine the number of startups the machine can survive.

XLTRC-TORSION incorporates the capability of predicting the life of a machine using

cumulative fatigue analysis.

Traditionally, in order to calculate the number of startups for a machine, either

the stress-life theory or strain-life theory has been used, the former having been used

more often than the latter. The present study, however, uses the strain-life approach

described in [15] as the stress-life approach yields highly conservative results, which are

often unwarranted. The stress-life approach using the S-N curve is based on the

assumption that life of a machine component depends upon the level of stress carried,

whereas the strain-life theory advocates that strain is the governing factor instead of

stress.

From elementary elasticity, the total strain on a part is the sum of the elastic and

plastic strains, both being related linearly to the life N on a log-log graph. In the High

Cycle Fatigue (HCF) regime, the elastic strain dominates the total strain, whereas in the
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Low Cycle Fatigue (LCF) regime, the plastic strain dominates. Shigley and Mischke [17]

assert that the partition between HCF and LCF regions may be made at the point where

both the plastic and elastic strains are equal.

It has been categorically stated in [15] that the traditional safety factor of 2.0 is

overly conservative, and hence, a lower value may safely be prescribed for the same.

Corbo et al. [15] claim that their method produces acceptable results, concomitantly

being conservative.

After the transient response analysis as detailed in the previous chapters has been

performed on the rotor model, the data on variation of torque with respect to time for

different stations is available. The method used for determining the maximum and

minimum torques during each torque cycle and counting the number of such torque

cycles can be briefly explained as follows:

The maximum torque during the motor startup is determined from the results of

the transient analysis. Then the torque troughs immediately preceding and following the

peak are determined. The lower of these two values is then selected. For example, if the

trough after the peak is lower, this trough is paired with the peak. Then all other torque

crests are paired with the troughs just following them.

One should run the code for prediction of fatigue life on a number of stations

which may be considered “weak” by judgement due to there being abrupt diametrical

steps, key-ways, etc., at or near the stations. The maximum and minimum torques

obtained earlier are converted into shear stress for each station under consideration using

the basic equation [15]:
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J

R
T ×=τ                (80)

J for a shaft station may be determined as follows:

4

32
dJ

π=  for a solid shaft with diameter d, and

( )44

32 io ddJ −= π
 for a hollow shaft with di and do as inner and outer diameters

Once the maximum and minimum values of shear stress are determined, one

should proceed to determine the cyclic shear stress as [15]:

( )minmax5.0 τττ −×=cyclic                (82)

The Coffin-Manson equation that governs the strain-life approach gives the value

of true strain )(Nε  corresponding to a life of N cycles [15]:

c
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bf NN
E

N ×+×







= '

'
)( ε

σ
ε                (83)

The values of true stress at fracture during tensile test 'fσ , true strain at fracture

during tensile test 'fε , elastic strain component b, and plastic strain component c and the

modulus of elasticity E for various steels can be obtained from [18]. XLTRC-TORSION

has the feature for accepting these values as input if one does not prefer the values being

plugged in by the software that uses saved tables taken from [18]. Values and equations

for determination of the various design factors have also been stored in XLTRC-Torsion

using applicable equations, charts and tables from [15-19, 25, 26, 29-31, 33, 35].

(81)
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The value of true stress S(N) corresponding to a life of N cycles can be obtained

by just multiplying )(Nε  with the modulus of elasticity E. Using this value, the

allowable shear stress for a life of N cycles may be determined as follows [15]:

SFNkfs

NkbNkaFShNS
N

×
×××=

)(

)()()(
)(τ                (84)

The values of the shear factor (FSh) and factor of safety (SF) have been taken as

0.577 (from Von-Mises theory) and 1.35 respectively as suggested in [15]. The value of

ka(N) may be determined using Eq. (85) [15]:
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The value of ka(106) can be determined from Eq. (87) [25]. The values of a and b

to be put into this equation are also provided in [25] for various surface finish methods.

bUTSaka ×=)10( 6    (87)

The value of ka(1000) in Eq. (86) is taken as 1.0.

The value of kb(N) in Eq. (84) may be calculated as follows [15]:

(86)
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The value of kb(106) for a shaft of diameter d is calculated from the following

empirical relationships:

Corbo et al [15]:
1133.0

6

3.0
)10(

−








= d
kb , for 0.11" ≤ d < 2" or d > 10"

Shigley & Mischke [17]: dkb 02125.0859.0)10( 6 −= , for 2" < d ≤ 10"

The value of kb(1000) in Eq. (89) is taken as 1.0.

The value of kfs(N) to be inserted into Eq. (84) is computed as [15]:
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The value of kfs(106) for a shaft of diameter d is computed from [17]:

)1(1)10( 6 −+= ktsqkfs   (93)

(89)

(90)

 (92)
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where, notch sensitivity q is obtained from the notch sensitivity curves [19]. The value of

kts is obtained from the following equation [26], for a stepped shaft that changes from a

greater diameter D to smaller diameter d, with a fillet radius r at the step:

42
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The value of kfs(1000) in the Eq. (92) is obtained from kfs(106) as follows [15]:

[ ] 5.06 )10()1000( kfskfs =   (95)

Once the values for all the parameters in Eq. (84) have been determined, the τ-N

graph can be plotted on a log-log scale. Conventionally, the value of τ corresponding to

N=1E+06 cycles is the shear endurance limit. The shear endurance limit is compared

with the cyclic shear stress values (τcyclic) determined earlier. Only those cycles having

τcyclic greater than the shear endurance limit are taken into further consideration. The

number of allowable cycles (Nj) for each such value of τcyclic is obtained from Eq. (84).

These values would be less than 106 as only those τcyclic greater than the shear endurance

limit are considered. One can then use methods like the bisection method, the Newton-

Raphson method to determine the number of cycles from τcyclic values.

The allowable number of starts (n) for the machine can finally be calculated from

the calculated Nj using [15]:
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This procedure outlined in [15] emphasizes the need for selecting shaft elements

with smaller diameters when compared with the whole rotor, sections with known high

stress concentration or keyways, and determining the τ-N curve for each such shaft

element of interest in order to perform life calculations. The minimum such obtained life

would be the number of startups that the machine can survive.



69

VALIDATION OF CODE-GENERATED RESULTS

WITH ANALYSIS AND TEST DATA

In order to verify the accuracy and reliability of the code, validation of the results

of the code with experimental data was necessary. Hence, data for an air compressor

driven by a 66,000 HP synchronous motor was requested from the industry. This data

was made available in the form of Microsoft Excel sheets containing graphs from actual

transient tests obtained by conducting strain gage tests. Additional information regarding

the model has been obtained from Corbo et al. [15, 16].

66,000 HP Air Compressor Train

Details regarding the air compressor train under study are given in Fig. 18.

Fig. 18  Air Compressor Train – Schematic
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Compressor:

Make: Sulzer

Fluid Handled: Air

Operating Speed: 4298 RPM

Motor:

Make: General Electric Corporation

Type: Four-pole, synchronous

HP: 66000

Synchronous Speed: 1800 RPM

Gearbox:

Make: Lufkin

Gear ratio: 2.388

Couplings (Motor shaft/Compressor shaft):

Make: Lucas

Type: Flexible diaphragm

Motorshaft coupling (Low-speed) torsional stiffness: 479.98E+6 lb-in/rad

Compressor shaft coupling (High-speed) torsional stiffness: 241.88E+6 lb-in/rad
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Analytical Model of the Drive Train

Data required for preparing an analytical model of the air compressor (Tables 1 to

4) was available from earlier reports [27, 28] presented to the Turbomachinery Research

Consortium (TRC) at Texas A&M University, College Station, TX. In all, four models

were made for the air compressor train – two for verification by the Transfer Matrix

method and two for verification by the Finite Element method. Each of these groups had

models of the drive train utilizing five inertias and seventy-four inertias. The five inertia

model was a simplified equivalent of the more detailed seventy–four inertia model and

was created in order to corroborate results with the model created by Corbo et al. [16],

who had used the five inertia model in order to be compatible with the limitations of

their transient response program. The five significant inertias included in the five inertia

model (Fig. 19) were: the motor rotor, the low speed coupling hub, the gear mesh (gear

and pinion), the high speed coupling hub and the air compressor rotor. The seventy-four

inertia model (Fig. 20), however, was more detailed and included changes in shaft

diameter and a segregation of the above inertias into smaller inertias per significant

changes in geometry. The shafts were assumed to behave as torsional springs.
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Table 1   Geometric data for the five inertia, Transfer Matrix model

 

INPUT TABLE OF BEAM AND STATION DEFINITIONS, MAX. TWO BEAM PER STATION ALLOWED

Station Length OD ID
Weight 
Density

Shear 
Modulus

Added Ip Gear Ratio
Torsional 
Stiffness

# in in in lb/in 3 psi lb-in 2 lb-in/rad
1 230.000 21.069 0.000 0.000 1.15E+07 1.30E+07 1.00 9.67E+08 Motor Rotor
2 59.055 11.619 0.000 0.000 1.15E+07 1.03E+06 1.00 3.48E+08 LS Coupling hub
3 90.500 16.303 0.000 0.000 1.15E+07 8.34E+06 1.00 8.81E+08 Gear Mesh
4 43.307 15.743 0.000 0.000 1.15E+07 2.87E+06 1.00 1.60E+09 HS Coupling hub
5 0.000 0.000 0.000 0.000 1.15E+07 2.68E+07 1.00 0.00E+00 Comp. Rotor
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Table 2   Geometric data for the seventy-four inertia, Transfer Matrix model

INPUT TABLE OF BEAM AND STATION DEFINITIONS, MAX. TWO BEAM PER STATION ALLOWED

Station Length OD ID
Weight 
Density

Shear 
Modulus

Added Ip Gear Ratio
Torsional 
Stiffness

# in in in lb/in 3 psi lb-in 2 lb-in/rad
1 3.000 2.000 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00 End of motor sh
2 1.000 3.000 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
3 17.000 4.000 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
4 0.500 4.800 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
5 0.500 5.600 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
6 3.300 5.600 0.000 0.283 1.15E+07 2.30E+04 1.00 0.00E+00 Exciter
7 0.200 5.800 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
8 0.800 8.300 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
9 3.600 5.300 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00

10 0.900 8.300 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
11 0.800 8.300 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
12 1.400 8.400 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
13 4.422 10.827 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
14 4.842 12.790 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
15 5.236 9.829 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
16 5.236 9.829 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
17 6.772 12.790 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
18 17.130 17.717 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
19 12.362 21.654 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
20 15.899 43.306 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
21 25.601 43.306 0.000 0.283 1.15E+07 2.35E+06 1.00 0.00E+00 Motor rotor
22 25.601 43.306 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
23 15.899 43.306 0.000 0.283 1.15E+07 2.35E+06 1.00 0.00E+00 Motor rotor
24 12.362 21.654 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
25 13.630 17.717 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
26 6.693 13.971 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
27 5.315 13.170 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
28 5.315 13.170 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
29 4.764 13.971 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
30 7.421 13.800 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
31 2.500 22.000 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
32 59.055 12.585 0.000 0.000 1.15E+07 9.94E+04 1.00 4.79E+08 Coupling Hub
33 1.500 20.500 0.000 0.283 1.15E+07 9.94E+04 1.00 0.00E+00 Coupling Hub
34 9.500 12.000 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00 Beg. Of gear sha
35 16.000 14.000 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
36 5.833 20.000 0.000 0.283 1.15E+07 0.00E+00 1.00 0.00E+00
37 17.500 22.434 0.000 0.283 1.15E+07 1.41E+06 2.39 0.00E+00 Gear+Pinion
38 16.875 10.250 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
39 2.500 10.000 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
40 6.375 9.500 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00       
41 1.250 18.000 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00 End of pinion sh
42 43.307 9.817 0.000 0.000 1.15E+07 2.70E+04 2.39 2.42E+08 Coupling Hub
43 1.260 9.646 0.000 3.313 1.15E+07 2.70E+04 2.39 0.00E+00 Coupling Hub
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Table 2   Continued

INPUT TABLE OF BEAM AND STATION DEFINITIONS, MAX. TWO BEAM PER STATION ALLOWED

Station Length OD ID
Weight 
Density

Shear 
Modulus

Added Ip Gear Ratio
Torsional 
Stiffness

# in in in lb/in 3 psi lb-in 2 lb-in/rad
44 8.583 9.843 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00 Beg of compress
45 12.047 9.843 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
46 5.315 12.399 0.000 0.451 1.15E+07 0.00E+00 2.39 0.00E+00
47 10.394 17.815 0.000 0.329 1.15E+07 0.00E+00 2.39 0.00E+00
48 16.043 18.408 0.000 0.283 1.15E+07 4.28E+05 2.39 0.00E+00
49 3.602 18.504 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
50 17.677 18.491 0.000 0.283 1.15E+07 3.35E+05 2.39 0.00E+00
51 4.921 17.688 0.000 0.292 1.15E+07 2.41E+05 2.39 0.00E+00
52 5.433 15.992 0.000 0.284 1.15E+07 0.00E+00 2.39 0.00E+00
53 12.953 17.979 0.000 0.349 1.15E+07 0.00E+00 2.39 0.00E+00
54 4.429 19.447 0.000 0.298 1.15E+07 4.18E+05 2.39 0.00E+00
55 7.736 15.881 0.000 0.289 1.15E+07 0.00E+00 2.39 0.00E+00
56 8.583 18.042 0.000 0.284 1.15E+07 0.00E+00 2.39 0.00E+00
57 18.287 21.411 0.000 0.294 1.15E+07 0.00E+00 2.39 0.00E+00
58 5.138 23.228 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
59 8.169 21.977 0.000 0.295 1.15E+07 9.51E+05 2.39 0.00E+00
60 15.650 19.213 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
61 13.662 19.230 0.000 0.305 1.15E+07 0.00E+00 2.39 0.00E+00
62 14.882 20.176 0.000 0.611 1.15E+07 0.00E+00 2.39 0.00E+00
63 10.059 18.465 0.000 0.283 1.15E+07 8.25E+04 2.39 0.00E+00
64 10.059 17.165 0.000 0.332 1.15E+07 1.79E+06 2.39 0.00E+00
65 14.705 16.377 0.000 0.284 1.15E+07 0.00E+00 2.39 0.00E+00
66 14.764 15.473 0.000 0.287 1.15E+07 0.00E+00 2.39 0.00E+00
67 7.421 13.641 0.000 0.431 1.15E+07 0.00E+00 2.39 0.00E+00
68 12.008 9.843 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
69 0.591 9.843 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
70 8.858 6.890 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
71 8.130 6.890 0.000 2.250 1.15E+07 0.00E+00 2.39 0.00E+00
72 2.840 6.890 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
73 1.378 7.898 0.000 0.489 1.15E+07 0.00E+00 2.39 0.00E+00
74 0.000 0.000 0.000 0.283 1.15E+07 0.00E+00 2.39 0.00E+00
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Table 3  Geometric data for the five inertia, Finite Element model

 

INPUT TABLE (CONICAL ELEMENTS)

Shaft 
element

Length OD left ID left OD right ID right
Weight 
Density

Shear 
Modulus

Gear 
Ratio  Element 

Stiffness 
# Node 1 Node 2 in in in in in lb/in3 psi in-lb

1 1 2 230.000 21.069 0.000 21.069 0.000 0.000 1.15E+07 1.000 9.67E+08
2 2 3 59.055 11.619 0.000 11.619 0.000 0.000 1.15E+07 1.000 3.48E+08
3 3 4 90.500 16.303 0.000 16.303 0.000 0.000 1.15E+07 1.000 8.81E+08
4 4 5 43.307 15.743 0.000 15.743 0.000 0.000 1.15E+07 1.000 1.60E+09

Global  Node

 

ADDED INERTIAS

Node #
Added 
Inertia

Gear Ratio 
of node

lb-in2

1 1.30E+07 1.00 Motor Rotor
2 1.03E+06 1.00 LS Coupling hub
3 8.34E+06 1.00 Gear Mesh
4 2.87E+06 1.00 HS Coupling hub
5 2.68E+07 1.00 Comp. Rotor
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Table 4   Geometric data for the seventy-four inertia, Finite Element model

INPUT TABLE (CONICAL ELEMENTS)

Shaft 
element

Length OD left ID left OD right ID right
Weight 
Density

Shear 
Modulus

Gear 
Ratio  Element 

Stiffness 
# Node 1 Node 2 in in in in in lb/in3 psi in-lb

1 1 2 3.000 2.000 0.000 2.000 0.000 0.283 1.15E+07 1.000 0.00E+00
2 2 3 1.000 3.000 0.000 3.000 0.000 0.283 1.15E+07 1.000 0.00E+00
3 3 4 17.000 4.000 0.000 4.000 0.000 0.283 1.15E+07 1.000 0.00E+00
4 4 5 0.500 4.800 0.000 4.800 0.000 0.283 1.15E+07 1.000 0.00E+00
5 5 6 0.500 5.600 0.000 5.600 0.000 0.283 1.15E+07 1.000 0.00E+00
6 6 7 3.300 5.600 0.000 5.600 0.000 0.283 1.15E+07 1.00 0.00E+00
7 7 8 0.200 5.800 0.000 5.800 0.000 0.283 1.15E+07 1.00 0.00E+00
8 8 9 0.800 8.300 0.000 8.300 0.000 0.283 1.15E+07 1.000 0.00E+00
9 9 10 3.600 5.300 0.000 5.300 0.000 0.283 1.15E+07 1.00 0.00E+00

10 10 11 0.900 8.300 0.000 8.300 0.000 0.283 1.15E+07 1.00 0.00E+00
11 11 12 0.800 8.300 0.000 8.300 0.000 0.283 1.15E+07 1.00 0.00E+00
12 12 13 1.400 8.400 0.000 8.400 0.000 0.283 1.15E+07 1.00 0.00E+00
13 13 14 4.422 10.827 0.000 10.827 0.000 0.283 1.15E+07 1.00 0.00E+00
14 14 15 4.842 12.790 0.000 12.790 0.000 0.283 1.15E+07 1.00 0.00E+00
15 15 16 5.236 9.829 0.000 9.829 0.000 0.283 1.15E+07 1.00 0.00E+00
16 16 17 5.236 9.829 0.000 9.829 0.000 0.283 1.15E+07 1.00 0.00E+00
17 17 18 6.772 12.790 0.000 12.790 0.000 0.283 1.15E+07 1.00 0.00E+00
18 18 19 17.130 17.717 0.000 17.717 0.000 0.283 1.15E+07 1.00 0.00E+00
19 19 20 12.362 21.654 0.000 21.654 0.000 0.283 1.15E+07 1.00 0.00E+00
20 20 21 15.899 43.306 0.000 43.306 0.000 0.283 1.15E+07 1.00 0.00E+00
21 21 22 25.601 43.306 0.000 43.306 0.000 0.283 1.15E+07 1.00 0.00E+00
22 22 23 25.601 43.306 0.000 43.306 0.000 0.283 1.15E+07 1.00 0.00E+00
23 23 24 15.899 43.306 0.000 43.306 0.000 0.283 1.15E+07 1.00 0.00E+00
24 24 25 12.362 21.654 0.000 21.654 0.000 0.283 1.15E+07 1.00 0.00E+00
25 25 26 13.630 17.717 0.000 17.717 0.000 0.283 1.15E+07 1.00 0.00E+00
26 26 27 6.693 13.971 0.000 13.971 0.000 0.283 1.15E+07 1.00 0.00E+00
27 27 28 5.315 13.170 0.000 13.170 0.000 0.283 1.15E+07 1.00 0.00E+00
28 28 29 5.315 13.170 0.000 13.170 0.000 0.283 1.15E+07 1.00 0.00E+00
29 29 30 4.764 13.971 0.000 13.971 0.000 0.283 1.15E+07 1.00 0.00E+00
30 30 31 7.421 13.800 0.000 13.800 0.000 0.283 1.15E+07 1.00 0.00E+00
31 31 32 2.500 22.000 0.000 22.000 0.000 0.283 1.15E+07 1.00 0.00E+00
32 32 33 59.055 12.581 0.000 12.581 0.000 0.000 1.15E+07 1.00 4.79E+08
33 33 34 1.500 20.500 0.000 20.500 0.000 0.283 1.15E+07 1.00 0.00E+00
34 34 35 9.500 12.000 0.000 12.000 0.000 0.283 1.15E+07 1.00 0.00E+00
35 35 36 16.000 14.000 0.000 14.000 0.000 0.283 1.15E+07 1.00 0.00E+00
36 36 37 5.833 20.000 0.000 20.000 0.000 0.283 1.15E+07 1.00 0.00E+00
37 37 38 17.500 22.434 0.000 22.434 0.000 0.283 1.15E+07 2.39 0.00E+00
38 38 39 16.875 10.250 0.000 10.250 0.000 0.283 1.15E+07 2.39 0.00E+00
39 39 40 2.500 10.000 0.000 10.000 0.000 0.283 1.15E+07 2.39 0.00E+00
40 40 41 6.375 9.500 0.000 9.500 0.000 0.283 1.15E+07 2.39 0.00E+00
41 41 42 1.250 18.000 0.000 18.000 0.000 0.283 1.15E+07 2.39 0.00E+00
42 42 43 43.307 9.814 0.000 9.814 0.000 0.000 1.15E+07 2.39 2.42E+08
43 43 44 1.260 9.646 0.000 9.646 0.000 3.313 1.15E+07 2.39 0.00E+00

Global  Node
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Table 4   Continued

INPUT TABLE (CONICAL ELEMENTS)

Shaft 
element

Length OD left ID left OD right ID right
Weight 
Density

Shear 
Modulus

Gear 
Ratio  Element 

Stiffness 
# Node 1 Node 2 in in in in in lb/in3 psi in-lb

44 44 45 8.583 9.843 0.000 9.843 0.000 0.283 1.15E+07 2.39 0.00E+00
45 45 46 12.047 9.843 0.000 9.843 0.000 0.283 1.15E+07 2.39 0.00E+00
46 46 47 5.315 12.399 0.000 12.399 0.000 0.451 1.15E+07 2.39 0.00E+00
47 47 48 10.394 17.815 0.000 17.815 0.000 0.329 1.15E+07 2.39 0.00E+00
48 48 49 16.043 18.408 0.000 18.408 0.000 0.283 1.15E+07 2.39 0.00E+00
49 49 50 3.602 18.504 0.000 18.504 0.000 0.283 1.15E+07 2.39 0.00E+00
50 50 51 17.677 18.491 0.000 18.491 0.000 0.283 1.15E+07 2.39 0.00E+00
51 51 52 4.921 17.688 0.000 17.688 0.000 0.292 1.15E+07 2.39 0.00E+00
52 52 53 5.433 15.992 0.000 15.992 0.000 0.284 1.15E+07 2.39 0.00E+00
53 53 54 12.953 17.979 0.000 17.979 0.000 0.349 1.15E+07 2.39 0.00E+00
54 54 55 4.429 19.447 0.000 19.447 0.000 0.298 1.15E+07 2.39 0.00E+00
55 55 56 7.736 15.881 0.000 15.881 0.000 0.289 1.15E+07 2.39 0.00E+00
56 56 57 8.583 18.042 0.000 18.042 0.000 0.284 1.15E+07 2.39 0.00E+00
57 57 58 18.287 21.411 0.000 21.411 0.000 0.294 1.15E+07 2.39 0.00E+00
58 58 59 5.138 23.228 0.000 23.228 0.000 0.283 1.15E+07 2.39 0.00E+00
59 59 60 8.169 21.977 0.000 21.977 0.000 0.295 1.15E+07 2.39 0.00E+00
60 60 61 15.650 19.213 0.000 19.213 0.000 0.283 1.15E+07 2.39 0.00E+00
61 61 62 13.662 19.230 0.000 19.230 0.000 0.305 1.15E+07 2.39 0.00E+00
62 62 63 14.882 20.176 0.000 20.176 0.000 0.611 1.15E+07 2.39 0.00E+00
63 63 64 10.059 18.465 0.000 18.465 0.000 0.283 1.15E+07 2.39 0.00E+00
64 64 65 10.059 17.165 0.000 17.165 0.000 0.332 1.15E+07 2.39 0.00E+00
65 65 66 14.705 16.377 0.000 16.377 0.000 0.284 1.15E+07 2.39 0.00E+00
66 66 67 14.764 15.473 0.000 15.473 0.000 0.287 1.15E+07 2.39 0.00E+00
67 67 68 7.421 13.641 0.000 13.641 0.000 0.431 1.15E+07 2.39 0.00E+00
68 68 69 12.008 9.843 0.000 9.843 0.000 0.283 1.15E+07 2.39 0.00E+00
69 69 70 0.591 9.843 0.000 9.843 0.000 0.283 1.15E+07 2.39 0.00E+00
70 70 71 8.858 6.890 0.000 6.890 0.000 0.283 1.15E+07 2.39 0.00E+00
71 71 72 8.130 6.890 0.000 6.890 0.000 2.250 1.15E+07 2.39 0.00E+00
72 72 73 2.840 6.890 0.000 6.890 0.000 0.283 1.15E+07 2.39 0.00E+00
73 73 74 1.378 7.898 0.000 7.898 0.000 0.489 1.15E+07 2.39 0.00E+00

0.00E+00

Global  Node
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Table 4   Continued

 

ADDED INERTIAS

Node #
Added 
Inertia

Gear Ratio 
of node

lb-in 2

ai_node aip ai_gr

1 0.00E+00 1.00
2 0.00E+00 1.00
3 0.00E+00 1.00
4 0.00E+00 1.00
5 0.00E+00 1.00
6 2.30E+04 1.00
7 0 1.00
8 0 1.00
9 0.00 1

10 0.00 1
11 0 1.00
12 0 1.00
13 0 1.00
14 0 1.00
15 0 1.00
16 0 1.00
17 0 1.00
18 0 1.00
19 0 1.00
20 0 1.00
21 2353800 1.00
22 0 1.00
23 2353800 1.00
24 0 1.00
25 0 1.00
26 0 1.00
27 0 1.00
28 0 1.00
29 0 1.00
30 0 1.00
31 0 1.00
32 99398 1.00
33 99398 1.00
34 0 1.00
35 0 1.00
36 0 1.00
37 1411042 2.39
38 0 2.39
39 0 2.39
40 0 2.39
41 0 2.39
42 27027 2.39
43 27027 2.39
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Table 4   Continued

 

ADDED INERTIAS

Node #
Added 
Inertia

Gear Ratio 
of node

lb-in2

44 0 2.39
45 0 2.39
46 0 2.39
47 0 2.39
48 427598 2.39
49 0 2.39
50 335463 2.39
51 240671 2.39
52 0 2.39
53 0 2.39
54 418022 2.39
55 0 2.39
56 0 2.39
57 0 2.39
58 0 2.39
59 951066 2.39
60 0 2.39
61 0 2.39
62 0 2.39
63 82525 2.39
64 1787700 2.39
65 0 2.39
66 0 2.39
67 0 2.39
68 0 2.39
69 0 2.39
70 0 2.39
71 0 2.39
72 0 2.39
73 0 2.39
74 0 2.39
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Fig. 19   Five inertia model of the air compressor train
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Fig. 20   Seventy-four inertia model of the air compressor train

Undamped Torsional Natural Frequency Calculation

An undamped torsional natural frequency analysis was run using the five inertia

model in the Transfer Matrix module. This analysis helped to determine the approximate

ranges where the torsional natural frequencies of the drive train would lie. One would

hope that an undamped natural frequency analysis of a more detailed model would reveal

the system natural frequencies close to the ones calculated using the equivalent model.
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Undamped torsional natural frequency analysis was run on the seventy-four inertia model

in the Transfer Matrix module and also on the Finite Element versions of the five and

seventy-four inertia models in the Finite Element module. Table 5 shows the calculated

and measured torsional natural frequencies of the system.

Table 5   Comparison of undamped torsional natural frequency results

XLTRC-Torsion

Transfer Matrix

Module

XLTRC-Torsion Finite

Element ModuleMode

5 Inertia 74 Inertia 5 Inertia 74 Inertia

Corbo

et al.

[15, 16]

Experimental

(Approx.)

I 13.74 13.97 13.41 13.98 14.00 13.00

II 33.94 33.68 33.95 33.78 34.00 37.00

III 96.03 111.87 96.04 111.94 111.90 119.93

IV 114.73 206.39 114.74 206.69 115.3 N/A

Information regarding the torsional natural frequencies of the third mode from

experimental measurements was not directly available. It was calculated from the

available torque-time graph (Fig. 21) at the place where a distinct pulsation was observed

near start, since that would be the point where the 2X line frequency corresponds to the

third natural frequency. The corresponding graph of motor startup was used to find the

actual speed reached at the time when the heavy pulsation was observed. Then, Eq. (97),

which was derived from Eq. (47), was used to calculate the corresponding torsional

natural frequency.
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where,

HzNatFreq = Torsional natural frequency in Hz

NatFreqN = Resonant speed corresponding to the torsional natural frequency

BLAC Synchronous Motor Startup  08-May-2001

-1.000E+07

-8.000E+06

-6.000E+06

-4.000E+06

-2.000E+06

0.000E+00

2.000E+06

4.000E+06

6.000E+06

8.000E+06

1.000E+07

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Time (s)

T
or

qu
e 

(in
-lb

)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

R
ot

or
 S

pe
ed

 (
rp

m
)

Motor Drive Shaft Torque 
(in-lb)

Rotor Speed (rpm)

Fig. 21   Run-up and transient torque graphs plotted using data from
experiments
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The first three natural frequencies were calculated at 23.3 s (1635 RPM), 18.5 s

(1250 RPM) and 1.5 s (1 RPM). Pulsation seen at other places on the graph was not

appreciable enough to determine higher modes.

It can be seen that undamped torsional frequency analysis on all the four models

gave good results for the first two modes. The actual third mode was under-predicted by

all the four models. Both Transfer Matrix and Finite Element methods applied to the

seventy-four inertia model gave results closer (within 6.7%) to the actual third mode

obtained from experiments. The results for the third mode obtained for the five inertia

model using both the methods under-predicted the third mode by a large amount. The

fourth mode could not be detected from the experimental data and hence no comparison

would be justified.

Campbell Diagrams

Using the results of the undamped torsional natural frequency analysis, Campbell

diagrams for the four models were plotted. They appear similar for the five inertia model

using results from the Transfer Matrix and Finite Element modules since their calculated

natural frequencies were fairly close. They show four resonant speeds corresponding to

their natural frequencies since all the four modes lie below the twice line frequency

excitation (120 Hz), which in turn decreases linearly until it becomes zero at

synchronous speed. However, the seventy-four inertia model analyzed in both the

Transfer Matrix and Finite Element modules estimated the fourth mode higher than 120

Hz and, hence, have only three resonant speeds where the dropping twice line frequency
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line intersects with the horizontal natural frequency lines. Figure 22 shows the Campbell

diagram from Corbo et al. [15], while Figures 23 to 26 show Campbell diagrams for the

four models.

Fig. 22   Campbell diagram from Corbo et al. [15]
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Campbell Diagram (Torsional Interference Diagram)
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Fig. 23   Campbell diagram for the five inertia model using
Transfer Matrix method
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Fig. 24   Campbell diagram for the seventy-four inertia model using
Transfer Matrix method
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Campbell Diagram (Torsional Interference Diagram)
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Fig. 25   Campbell diagram for the five inertia model using Finite
Element method
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Fig. 26   Campbell diagram for the seventy-four inertia model using
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Mode Shapes

The first four mode shapes calculated for all the four models are depicted in

Figures 27 to 30. It is clear that mode shapes for the first two modes for all the four

models corroborate well with each other and with the mode shapes calculated by Corbo

et al. [15]. It should be noted that though mode shapes for the third mode look similar for

all the models, they occur at different frequencies. Since the fourth mode eigenvalues for

the five inertia models are mutually closer, they show similar mode shapes, as is also true

for the seventy-four inertia models. Mode shapes calculated by Corbo et al. [15] are

shown in Figures 31 and 32 for ease of comparison with the mode shapes generated for

the four models being discussed.
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Fig. 31   Mode Shape for first mode (14.00 Hz) from Corbo et al. [15]

Fig. 32   Mode Shape for second mode (34.00 Hz) from Corbo et al. [15]
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Transient Analysis Results

Corbo et al. [16] have used the five inertia model for performing transient

analysis on the system in order be compatible with the limitations of the transient

analysis program they employed. Hence, transient analysis was performed using both the

five inertia Transfer Matrix and Finite Element models described earlier besides the

seventy-four inertia models in order to give a better picture of conformance of results.

Transient analysis was performed on the four models using the `Transient

Analysis' subroutine in both the Transfer Matrix and Finite Element modules of XLTRC-

TORSION. Using the yardstick given by Corbo et al. [16], a generic damping ratio of

0.02 was employed, besides neglecting gear backlash effects. The motor and compressor

(load) characteristic curves used for the analysis were taken as shown in Figures 33 and

34, while the input data for transient analysis is presented in Tables 6 to 9. Note that the

compressor was started with the valve closed, and hence, 100% full load torque does not

appear on the compressor (load) torque curve. If the compressor had been started with its

valve open, the full load torque would have been reached around the synchronous speed

of the motor.
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Fig. 33   Motor torque characteristic curve

Fig. 34   Compressor (load) torque characteristic curve
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Table 6   Transient analysis input data for the five inertia, Transfer Matrix model

Trans

1800 rpm Output station Titles to be placed on plots
60 Hz 1
0 rpm
3 inc. rigid body 

0.02 for all modes
2 -

Input torque 
options

Station number 
of torque input

Number of 
torque values Speed ratio full load torque phase shift

in-lb deg Add/delete to have as many rows as there are ' No. of torque sources'
1 1 16 1 2310000 0 <----1. Synchronous motor drive torque (option 1)
3 5 16 1 -2310000 0 <---- 2. Compressor Load torque (option 3)

Speed
Average Drive/   

Load torque
Pulsating 

torque

freq of motor 
pulsating 
torque time torque

rpm % of FLT % of FLT Hz sec in-lb
0 46.0 21.0

180 47.0 21.0
360 49.0 22.0
540 50.0 22.0
720 52.5 23.0
900 55.0 25.0
1080 56.5 27.0
1260 58.0 29.0
1440 58.5 33.5
1530 58.5 36.5
1620 56.5 40.0
1656 54.0 41.5
1674 50.0 42.5
1692 45.5 44.0
1710 41.0 45.0
1721 35.0 56.0

0 3.5
180 2.1
360 2.7
540 4.6
720 7.2
900 10.0
1080 12.5
1260 14.5
1440 15.5
1530 16.0
1620 16.5
1656 16.5
1674 16.5
1692 17.0
1710 17.0
1721 17.0

No of torque sources

No of modes for modal analysis

Synchronous speed

Modal Damping ratio, zeta

Line frequency
Initial angular velocity
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Table 7   Transient analysis input data for the seventy-four inertia, Transfer Matrix
model

Trans
1

1800 rpm Output station Titles to be placed on plots
60 Hz 27
0 rpm
3 inc. rigid body 

0.02 for all modes
2 -

Input torque 
options

Station number 
of torque input

Number of 
torque values Speed ratio full load torque phase shift

in-lb deg Add/delete to have as many rows as there are ' No. of torque sources'
1 21 16 1 2310000 0 <----1. Synchronous motor drive torque (option 1)
3 58 16 1 -2310000 0 <---- 2. Compressor Load torque (option 3)

Speed
Average Drive/   
Load torque

Pulsating 
torque

freq of motor 
pulsating 
torque time torque

rpm % of FLT % of FLT Hz sec in-lb
0 46.0 21.0

180 47.0 21.0
360 49.0 22.0
540 50.0 22.0
720 52.5 23.0
900 55.0 25.0
1080 56.5 27.0
1260 58.0 29.0
1440 58.5 33.5
1530 58.5 36.5
1620 56.5 40.0
1656 54.0 41.5
1674 50.0 42.5
1692 45.5 44.0
1710 41.0 45.0
1721 35.0 56.0

0 3.5
180 2.1
360 2.7
540 4.6
720 7.2
900 10.0
1080 12.5
1260 14.5
1440 15.5
1530 16.0
1620 16.5
1656 16.5
1674 16.5
1692 17.0
1710 17.0
1721 17.0

No of torque sources

No of modes for modal analysis

Synchronous speed

Modal Damping ratio, zeta

Line frequency
Initial angular velocity
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Table 8   Transient analysis input data for the five inertia, Finite Element model

TRANSIENT (START UP) ANALYSIS INPUT SHEET

Synchronous speed 1800 rpm Output Element # Titles to be placed on plot
Line frequency 60 Hz 1
Initial angular velocity 0 rpm
No of modes for modal analysis 3 inc. rigid body 
Modal Damping ratio, zeta 0.02 for all modes
No of Torque sources 2

Input Torque 
options

Node number of 
torque input

Number of 
torque values Speed ratio full load torque phase shift

in-lb deg
1 1 16 1 2310000 0
3 5 16 1 -2310000 0

Speed
Drive torque /   
Load torque

Pulsating 
torque

freq of motor 
pulsating 

torque time torque
rpm % of FLT % of FLT Hz sec in-lb

0 46.0 21.0
180 47.0 21.0
360 49.0 22.0
540 50.0 22.0
720 52.5 23.0
900 55.0 25.0
1080 56.5 27.0
1260 58.0 29.0
1440 58.5 33.5
1530 58.5 36.5
1620 56.5 40.0
1656 54.0 41.5
1674 50.0 42.5
1692 45.5 44.0
1710 41.0 45.0
1721 35.0 56.0

0 3.5
180 2.1
360 2.7
540 4.6
720 7.2
900 10.0
1080 12.5
1260 14.5
1440 15.5
1530 16.0
1620 16.5
1656 16.5
1674 16.5
1692 17.0
1710 17.0
1721 17.0
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Table 9   Transient analysis input data for the seventy-four inertia, Finite Element
model

TRANSIENT (START UP) ANALYSIS INPUT SHEET

Synchronous speed 1800 rpm Output Element # Titles to be placed on plot
Line frequency 60 Hz 27 Motor Rotor
Initial angular velocity 0 rpm
No of modes for modal analysis 3 inc. rigid body
Modal Damping ratio, zeta 0.02 for all modes
No of Torque sources 2

Input Torque
options

Node number of
torque input

Number of
torque values Speed ratio full load torque phase shift

in-lb deg
1 21 16 1 2310000 0
3 58 16 1 -2310000 0

Speed
Drive torque /
Load torque

Pulsating
torque

freq of motor
pulsating

torque time torque
rpm % of FLT % of FLT Hz sec in-lb

0 46.0 21.0
180 47.0 21.0
360 49.0 22.0
540 50.0 22.0
720 52.5 23.0
900 55.0 25.0
1080 56.5 27.0
1260 58.0 29.0
1440 58.5 33.5
1530 58.5 36.5
1620 56.5 40.0
1656 54.0 41.5
1674 50.0 42.5
1692 45.5 44.0
1710 41.0 45.0
1721 35.0 56.0

0 3.5
180 2.1
360 2.7
540 4.6
720 7.2
900 10.0
1080 12.5
1260 14.5
1440 15.5
1530 16.0
1620 16.5
1656 16.5
1674 16.5
1692 17.0
1710 17.0
1721 17.0



100

Note that the number of modal coordinates for transient analysis on all the four

modal models was kept equal to three (inclusive of the rigid-body mode) to be able to

compare the results with Corbo et al. [16]. The authors of [16] claim that the third

natural frequency seldom takes part in synchronous motor responses, especially when its

resonance point is at a very low speed. Hence, they have used two modes (three, if the

rigid-body mode is also counted) for performing transient analysis on their simplified

model with five inertias. Per [16], focusing the transient analysis for simulating the

transient responses at the first two modes, while giving prime consideration to the

fundamental mode, would be beneficial since they occur at much higher speeds during

startup.

(a) Run-up analysis results

A preliminary run-up analysis performed on all the four models indicated that the

synchronous speed of the motor would be reached around 27 seconds. This compares

very well with the experimental results that discovered synchronous speed of 1800 RPM

was reached around 28 seconds. Table 10 shows comparative evaluation of the

calculated and measured run-up times.
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Table 10   Comparison of estimated and actual run-up times

No. Configuration

Run-up time

(seconds)

1 Five inertia model, Transfer Matrix method 26.95

2 Seventy-four inertia model, Transfer Matrix method 26.89

3 Five inertia model, Finite Element method 27.74

4 Seventy-four inertia model, Finite Element method 26.86

5 Corbo et al. [15] (to 98% synchronous speed) 25.00

6 Actual (measured) 28.00

Figures 35 to 38 show the run-up curves for all the four models calculated using

XLTRC-Torsion, while Fig. 39 shows the run-up curve plotted using data from

experiments.
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Run-up Plot
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Fig. 35   Run-up curve for the five inertia, Transfer Matrix model
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Fig. 36   Run-up curve for the seventy-four inertia, Transfer Matrix model
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Fig. 37   Run-up curve for the five inertia, Finite Element model
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Fig. 39   Run-up curve plotted using data from experiments

(b) Transient torque analysis results

The graphs on the following pages show the results for the transient torque

analysis on all the four models, besides showing the torque-time graph plotted using data

from experiments. This treatise only incorporates results for the transient analysis on the

motor rotor, as comparison data was available only for the motor rotor.

In the torque-time graph (Fig. 40) for the motor rotor (Station no. 1) of the five

inertia, Transfer Matrix model, a significant response was observed at 21.9 s, when the

motor speed reaches 1593 RPM (obtained from the run-up graph in Fig. 35) as expected.

This correlates well with the intersection of the calculated first torsional natural

frequency (13.74 Hz) line with the constantly dropping 2X slip frequency line on the

Campbell diagram (Fig. 23). Maximum torque fluctuation on the graph was also seen
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around this region with maximum and minimum torque values reaching 9.72E+06 in·lb

and –7.75E+06 in·lb respectively. Notable response was also seen at 17.64 s that

corresponds to a motor speed of around 1290 RPM, which is the same as the predicted

resonant speed to the second torsional natural frequency of 33.94 Hz. Though not very

easy to demarcate, the region around 1 s (78 RPM) also shows an imperious response

that corresponds with the resonant speed to the fourth torsional natural frequency of

114.73 Hz.
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Fig. 40   Transient Torque plot for 5 inertia, Transfer Matrix model
at Station  No. 1 (Motor Rotor)
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Fig. 41   Transient Torque plot for 74 inertia, Transfer Matrix model
at Station  No. 27 (Motor Rotor)

The torque-time graph (Fig. 41) for the motor rotor (Station no. 27) of the

seventy-four inertia, Transfer Matrix model showed a significant response at 21.88 s

(1590 RPM). This corresponds with the resonant speed to the first torsional eigenvalue

of 13.97 Hz, thus showing good correlation with earlier predictions. Besides, this region

showed the maximum fluctuation of torque values on the graph with maximum and

minimum torque values of 1.03E+07 in·lb and –8.17E+06 in·lb respectively. It was also

easy to notice the conspicuous response at a motor speed of around 1294 RPM (17.64 s),

which is also the predicted resonant speed to the second torsional natural frequency of

33.68 Hz. The region around 1.7 s (121 RPM) shows noticeable response that
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corresponds with the resonant speed to the third torsional natural frequency of 111.87

Hz.

A significant response at 22.6 s (1593 RPM) was observed on the transient torque

plot (Fig. 42) for the motor rotor (Node no. 1) of the five inertia, Finite Element model,

which has a calculated first undamped torsional eigenvalue of 13.74 Hz. This region

showed the maximum fluctuation of torque on the graph with a maximum torque of

9.44E+06 in·lb and a minimum torque of –7.47E+06 in·lb. One can also notice the

response at a motor speed of 1290 RPM (18.1 s), which is also the resonant speed to the

second torsional natural frequency of 33.95 Hz, as predicted. The region around 1.2 s (79

RPM) also showed noticeable response that corresponds with the resonant speed to the

fourth torsional natural frequency of 114.74 Hz.
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Torque Plot
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Fig. 42   Transient Torque plot for 5 inertia, Finite Element model
at Node  No. 1 (Motor Rotor)
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Fig. 43   Transient Torque plot for 74 inertia, Finite Element model
at Node  No. 27 (Motor Rotor)
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The transient torque graph (Fig. 43) for the motor rotor (Node no. 27) of the

seventy-four inertia, Finite Element model showed a significant response at 21.8 s, when

the motor speed reaches 1590 RPM. This speed compares well with the resonant speed

to the first torsional mode at 13.98 Hz.  Maximum torque fluctuation on the graph was

also seen in this region with a maximum torque of 1.04E+07 in·lb and a minimum torque

of –8.17E+06 in·lb.  Significant response was also seen at the motor speed of 1293 RPM

(at 17.6 s), which is also the resonant speed to the second torsional natural frequency of

33.78 Hz. The region around 1.7 s (118 RPM) shows notable response that closely

corresponds to the resonant speed to the third torsional natural frequency of 111.94 Hz.
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Fig. 44   Transient Torque plot for the 66,000 HP Air Compressor
plotted using data from experiments
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Fig. 45   A closer view of the Transient Torque plot for the 66,000 HP
Air Compressor at resonant speed to the first torsional natural
frequency plotted using data from experiments

Results for the transient torsional analysis could then be readily compared with

the experimental results in Figures 44 and 45. The transient torque graph plotted using

data from experiments showed a significant response at 23.3 s, when the motor speed

reached 1635 RPM. Maximum torque fluctuation seen in this region lay between the

maximum and minimum values of 7.72E+06 in·lb and –5.51E+06 in·lb respectively.

This region of high fluctuation occurred about 1.6 s later than that predicted by all the

models, besides having lower values of the torque levels reached. Significant response

was also seen at the motor speed of 1250 RPM (at 18.5 s), which is also the resonant
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speed to the second torsional natural frequency of 37.00 Hz. The region around 1.7 s

(118 RPM) showed notable response that closely corresponded with the resonant speed

to the third torsional natural frequency of 111.94 Hz.  Corbo et al. [16] predicted the

resonant speed to the first torsional natural frequency to be occurring around 21.7 s (Fig.

50) at 1608 rpm, with maximum torque fluctuation between the approximate values of

1.11E+07 in·lb and –8.44E+06 in·lb. They predicted the second mode resonant speed at

1256 rpm (17.2 s).

A better picture of conformance of the models can be had from the Figures 46 to

49, which “zoom in” on the response torque in the regions of highest torque fluctuation,

which can be said to occur around the time when the motor speed coincides with the

resonant speed. Since the torque results in Corbo et al. [16] as shown in Fig. 50 are

provided in terms of “PU” (Per Unit, taking 1 PU = 2.31E+06 in·lb), other graphs were

set so as to coalesce with those. It may be seen that, overall, the shapes of the predicted

and actual torque curves look remarkably similar. Table 11 gives a summary of the

transient torsional analysis results.
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Torque Plot
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Fig. 46   A closer view of the Transient Torque plot for the 66,000 HP
Air Compressor at resonant speed to the first torsional natural
frequency predicted by the five inertia, Transfer Matrix model
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Fig. 47   A closer view of the Transient Torque plot for the 66,000 HP
Air Compressor at resonant speed to the first torsional natural
frequency predicted by the seventy-four inertia, Transfer Matrix
model
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Fig. 48   A closer view of the Transient Torque plot for the 66,000 HP
Air Compressor at resonant speed to the first torsional natural
frequency predicted by the five inertia, Finite Element model
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Fig. 49   A closer view of the Transient Torque plot for the 66,000 HP
Air Compressor at resonant speed to the first torsional natural
frequency predicted by the seventy-four inertia, Finite Element model
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Fig. 50   A closer view of the Transient Torque plot for the 66,000 HP
Air Compressor at resonant speed to the first torsional natural
frequency predicted by Corbo et al. [16]
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Table 11   Summary of results for the transient torque analyses

Criteria

5 Inertia

TM

74 Inertia

TM

5 Inertia

FE

74 Inertia

FE

Actual

(Meas.)

Corbo et

al. [15]

Max. Torque

(in·lb)

9.72E+06 1.03E+07 9.44E+07 1.04E+077.72E+06 1.11E+07

Min. Torque

(in·lb)

-7.75E+06 -8.17E+06 -7.47E+06 -8.17E+06-5.51E+06 -8.44E+06

Resonant Speed

to Mode I (RPM)

1593 1590 1593 1590 1635 1608

Time to reach

Resonant Speed

to Mode I (s)

21.90 21.88 22.60 21.80 23.30 21.70

Resonant Speed

to Mode II

(RPM)

1290 1294 1290 1293 1250 1256

Time to reach

Resonant Speed

to Mode II (s)

17.64 17.64 18.10 17.60 18.50 17.20
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Cumulative Fatigue Analysis

As discussed earlier, cumulative fatigue damage analysis can be used to predict

the number of starts a machine will survive. This is important especially in case of

machines driven by synchronous motors, which are ample sources of contrite excitation.

Cumulative fatigue analysis was performed on all the four models for the 66,000 HP air

compressor as well as on the actual results from experiments at weak links in the system.

The analysis was performed using the strain-life approach, since it is not overly

conservative as compared to traditional methods, besides being concomitantly safe

according to Corbo et al. [15].

Corbo et al. [16] had used the torque values that they had obtained from the

transient analysis of the five inertia model to a station with a diameter of 13.17” that

figured on their seventy-four inertia model. Their choice of this diameter was based on

the fact that it was the “weak link” in the drive train based on geometry and stress

concentration. While one may calculate torque values at a station using a simplified

equivalent model, it is necessary to perform fatigue analysis using the “actual” diameter

of the shaft. If simplification of the detailed model was accurate, one would obtain

similar torque values at the “weak link” had the transient analysis been performed using

the more detailed model. Since the motor rotor has an equivalent diameter of 21.069” in

the five inertia model, this treatise also presents results for fatigue analysis using that

diameter to confirm that using an equivalent diameter in place of an actual diameter in

such cases may yield incorrect results of predicted life. As expected, the predicted
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number of startups using the equivalent diameter of 21.069” looked dubiously high.

Fatigue analysis was then performed using the actual diameter of 13.17” and values of

design factors used by Corbo et al. [16] for direct comparison of results.

Fig. 51   Fatigue analysis results for 5 inertia, Transfer Matrix model
at station  No. 1 (motor rotor) with diameter = 21.069”
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Fig. 52   Fatigue analysis results for 5 inertia, Transfer Matrix model
at station  No. 1 (motor rotor) with diameter = 13.17”
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Figures 51 and 52 show the results of the fatigue analysis performed on the five

inertia, Transfer Matrix model using diameters of 21.069” and 13.17” respectively for

the motor rotor using results of the transient torque analysis. In order to harmonize the

results with Corbo et al. [16], following data were used for performing fatigue analysis:

Shaft Material: Steel 4340 (Hot Rolled and Annealed, BHN 243)

(a) Ultimate tensile strength = 120 ksi

(b) Modulus of elasticity = 29000 ksi

(c) True stress at fracture during tensile test= 200 ksi

(d) True strain at fracture during tensile test= 0.5108

(e) Elastic strain component “b” = -0.095

(f) Plastic strain component “c” = -0.54

Surface finish factor (ka) = 0.9

Size factor (kb) = 0.667

Factor of safety (SF) = 1.35

Shear factor (Fsh) = 0.577

Geometric stress concentration factor (kts) = 1.55

Notch sensitivity (q) = 0.91
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Fig. 53   Fatigue analysis results for experimental transients applied on
5 inertia, Transfer Matrix model at station  No. 1 (motor rotor) with
diameter = 13.17”
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Fatigue analysis was also performed on the five inertia, Transfer Matrix model by

using the transient torque data from experiments to station no. 1 with the modified

diameter of 13.17”. Results for the same are available in Fig. 53.

Results for the fatigue analysis performed at station no. 27 (diameter = 13.17”) of

the seventy four inertia, Transfer Matrix model using calculated transient torque data are

illustrated in Fig. 54. As with the case of the five inertia, Transfer Matrix model,

measured transient torques were also applied to station no. 27 and fatigue analysis was

performed. Results for the same can be discerned from Fig. 55.
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Fig. 54   Fatigue analysis results for 74 inertia, Transfer Matrix model
at station  No. 27 (motor rotor) with diameter = 13.17”
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Fig. 55   Fatigue analysis results for experimental transients applied on
74 inertia, Transfer Matrix model at station  No. 27 (motor rotor) with
diameter = 13.17”
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Fig. 56   Fatigue analysis results for 5 inertia, Finite Element model at
element  No. 1 (motor rotor) with diameter = 21.069”

Similar to the Transfer Matrix case, fatigue analysis was performed at element

no. 1 of the five inertia model in the Finite Element module, using both diameters of

21.069” and 13.17”. Calculated torque data obtained via transient torque analysis was

used for predicting the number of machine startups using both the diameters.

Corresponding results are available in Figures 56 and 57.
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Fig. 57   Fatigue analysis results for 5 inertia, Finite Element model
at element No. 1 (motor rotor) with diameter = 13.17”
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Fig. 58   Fatigue analysis results for 74 inertia, Finite Element model at
element No. 27 (motor rotor) with diameter = 13.17”

Figure 58 shows results obtained after using the seventy-four inertia, Finite

Element model for predicting the number of startups. The torque data obtained from

transient analysis was applied at element no. 1 using a diameter of 13.17” for consistency

with Corbo et al. [16].
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It is important to note that both the Transfer Matrix and Finite Element models

with equal number of inertias are dimensionally equivalent. Hence, prediction of life of

both the Finite Element models using test data would have been redundant since the

same code had been used for predicting the number of startups on all the models. Table

12 shows a summary of the results for the transient torque and fatigue analyses. The

value of the shear endurance limit, which is the allowable shear stress corresponding to

N= 1.0E+06 cycles, for all the four models was found to be 3232.87 lb/in2, whereas

Corbo et al. [15] estimate it to around 11194 lb/in2.

Table 12   Comparison of predicted lives calculated using fatigue analysis

No. Model used

Torque

Values Used

Station/

Element No.

Dia. of

Station/

Element

Predicted No.

of Startups

1 5 Inertia, TM Calculated 1 21.069” 42,929

2 5 Inertia, TM Calculated 1 13.17” 1,406

3 5 Inertia, TM Actual 1 13.17” 3,287

4 74 Inertia, TM Calculated 27 13.17” 1,244

5 74 Inertia, TM Actual 27 13.17” 3,287

6 5 Inertia, FE Calculated 27 21.069” 47,031

7 5 Inertia, FE Calculated 1 13.17” 1,510

8 74 Inertia, FE Calculated 1 13.17” 1,225

9 Corbo et al. [15] Calculated 1 13.17” 7,307

10 Corbo et al. [15] Actual 1 13.17” 34,482
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CONCLUSION

A comparative validation of results generated by computer codes using both the

Transfer Matrix and Finite Element approaches was made using experimental results.

Transient torque data for a 66,000 HP air compressor from the industry was requested

and utilized for this purpose. Four different analytical models were prepared for the same

rotor, two for analysis using the Transfer Matrix approach and two for analysis using the

Finite Element approach. Each such group included models with five and seventy-four

inertias for analysis. The following analyses were run on these four models: undamped

torsional frequency analysis, transient torque analysis and cumulative fatigue analysis.

Subsequent results were then compared to the experimentally measured data and results

of the analysis performed by Corbo et al. [16]. On the basis of this comparison, the

following conclusions have been drawn:

1. One can infer that undamped torsional frequency analysis on all the four models gave

good results for the first two modes when compared with the experimental data.

However, the actual third mode was higher than that predicted by all the four models,

with the seventy-four inertia model giving greater proximity (less than 6.7%) to the

third mode as compared to the five inertia model. Since the fourth mode could not be

clearly identified from the experimental data, no comparison was made with

experimental data.

2. Campbell diagrams plotted from the undamped eigenvalues looked similar for the

two five inertia models and the two seventy-four inertia models having four and three

“encounter” speeds respectively corresponding to their natural frequencies.
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3. Mode shapes for the first two modes predicted for all four models showed good

compatibility amongst themselves and with the results of Corbo et al. [15]. Though

eigenvectors for the third mode appeared similar for all the four models, it was noted

that they occurred at different frequencies. Mode shapes corresponding to the fourth

mode for models with equal number of inertias looked similar.

4. Preliminary run-up analysis on all the four models predicted the time to reach the

motor synchronous speed to be around 27 s, which compared well with the

experimental results that showed this time to be around 28 s.

5. Results for the transient torque analysis showed good conformance with the test data.

Large resonant response on the actual torque-time graph, corresponding to the

resonant speed to first natural frequency, was found to occur 1.6 s later than that

predicted by all the four models and Corbo et al [16], besides giving lower torque

values than predicted. The shapes of the predicted torque curves looked remarkably

similar.

6. The strain-life approach [15] was used for the cumulative fatigue analysis of the

weak links in the drive train in order to predict the number of startups for the

different configurations under study.

7. Cumulative fatigue analysis was performed on eight configurations, which were

essentially variations of the four analytical models discussed earlier. These results

were then compared with the number of machine startups predicted by Corbo et al.

[16]. Excepting configurations using the equivalent diameter of 21.069”, which was

used to prove that the actual diameter of a shaft element should be used instead of
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equivalent diameter for fatigue analysis, the predicted number of machine startups on

all the models, including the ones on which the actual torque data from experiments

were used, were much lower than that predicted in [16].

8. Shaft material properties, which influence the value of the shear endurance limit,

have not been vividly stated in Corbo et al. [16]. Hence, the material Steel 4340 (Hot

Rolled and Annealed, BHN 243), whose properties matched closest to the material

employed in [16], was used for analysis. It may be noted here that minor changes in

input values for fatigue analysis could account for major differences in the predicted

number of startups. Besides, due to the log-log nature of the strength vs. life curve,

small errors in calculated strengths would lead to large errors in life prediction.

Extreme care was, thus, exercised while selecting material properties before running

the fatigue analysis.

9. The method for prediction of machine life [15, 16] reveals characteristically large

changes in the predicted number of machine startups resulting from small alterations

to the values of elastic and plastic strain components for the material. Information

regarding the values selected for these components has not been provided by Corbo

et al. [15, 16].

10. It is safe to infer that except for a few differences with [15, 16] in the results for the

predicted life, the overall conformance of results generated by the computer codes

(XLTRC-Torsion) with the available analytical and experimental results is good, and

hence, acceptable.
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NOMENCLATURE

b = elastic strain component (slope of the elastic strain line)

bka = intercept of ka(N) vs N line on log-log scale

bkb = intercept of kb(N) vs N line on log-log scale

bkf = intercept of kfs(N) vs N line on log-log scale

c = plastic strain component (slope of the plastic strain line)

[ ]C = tri-diagonal damping matrix

[ ] [ ] [ ][ ]PCPCC T= = cross-coupled modal damping matrix

iC = coefficients in shape functions

LC = load coefficient

[ ]mC = diagonal matrix whose diagonal elements are iiως2

d = shaft section diameter, in

di = inside diameter, in

Do = outside diameter, in

E = modulus of elasticity of material, lb/in2

{ }F = complex amplitude of excitation torque

FSh = shear factor

{ })(tF = external torque vector

f = power source frequency, Hz

g = acceleration due to gravity, 386.06 in/s2
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G = shear modulus, lb/in2

Gn = speed ratio of station n to station 1 







=

1N

Nn .

[ ]I = diagonal matrix of polar moment of inertia

[ ]Iden = identity matrix

Ii  = modal inertia of the i th mode

In = effective inertia referred to the speed of station n, lb�in2

nI ′ = actual inertia of station n, lb�in2

J = polar area moment of inertia of section, in4

)(Nkfs = fatigue stress concentration for a life of N cycles

kts = geometric stress concentration factor

nK ′ = actual stiffness of station n, lb�in/rad

Kn = effective stiffness referred to the speed of station n, lb�in/rad

[ ]K = tri-diagonal stiffness matrix

[ ]mK = diagonal matrix whose diagonal elements are the square of

the system natural frequencies

K̂ = shifted stiffness, lb�in/rad

)(Nka = surface finish factor for a life of N cycles

)(Nkb = size factor for a life of N cycles

l = shaft section length, in
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mka = slope of ka(N) vs N line on log-log scale

mkb = slope of kb(N) vs N line on log-log scale

mkf = slope of kfs(N) vs N line on log-log scale

n = allowable number of starts for the machine

jN = number of cycles for each shear stress value j above the

shear endurance limit

iN = shape or interpolation function

N = life of machine, cycles

[ ]P = modal matrix

[ ]RP = modal matrix consisted of rigid body modes

[ ]OP = modal matrix consisted of oscillatory modes

[ ]mP = modal matrix whose columns are the mode shapes which

are normalized with respect to the inertia matrix

q = notch sensitivity

{ }q = vector of the generalized modal coordinates

R = radius of the shaft element under consideration (=d/2), in

)(NS = allowable tensile stress corresponding to a life of N cycles,

lb/in2

SF = factor of safety

T(t) = kinetic energy, lb�in
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{ } [ ] { })(tFPT T= = vector of modal external torque

Tm = motor excitation torque, lb�in

Ta = accelerating unidirectional (average) motor torque, lb�in

Tp = oscillating component of motor torque due to magnetic

saliency and non-uniform rotor windings, lb�in

LT = load torque, lb�in

V(t) = potential energy, lb�in

Greek Symbols

α = angular acceleration, rad/s2

γ = material density, lb/in3

'fε = true strain at fracture during tensile test

)(Nε = true strain corresponding to a life of N cycles

iς = modal damping factor for the i th normal mode

θ = angular displacement, rad

θ& = angular velocity, rad/s

θ&& = angular acceleration, rad/s2

{ }θ = vector of angular displacement

'fσ = true stress at fracture during tensile test, lb/in2

τ = torsional shear stress, lb/in2
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cyclicτ = cyclic shear stress, lb/in2

maxτ = maximum shear stress, lb/in2

minτ = minimum shear stress, lb/in2

)(Nτ = allowable shear stress corresponding to a life of N cycles,

lb/in2

Φ = phase, degrees (º)

)(x
j

φ = j th undamped normal mode

imφ = i th mode shape normalized with respect to the inertia matrix

Ω = excitation torque frequency, Hz

ωs = slip frequency, Hz

eω = motor excitation frequency, Hz

ωi = i th torsional natural frequency, Hz

ωm = motor frequency (varies from 0 to ωsync during start-up), Hz

ωsync = synchronous frequency, Hz

Subscripts

a, avg = average

cyclic = recurrent

e = excitation

f = at fracture
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L = due to load

m = modal

M = motor

max = maximum

min = minimum

osc = oscillating

O = oscillatory modes

p, pul = pulsating

sync, S = synchronous
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