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ABSTRACT 

Pressure-induced Growth and Remodeling of Arteries in a Porcine Aortic Coarctation 

Model. (December 2005) 

Jin-Jia Hu, B.S., National Taiwan University; 

M.S., National Taiwan University 

Chair of Advisory Committee: Dr. Jay D. Humphrey 

Hypertension is a risk factor for many cardiovascular and cerebrovascular 

diseases such as atherosclerosis and stroke. It is therefore important to understand the 

effect of hypertension on temporal growth and remodeling of arteries. In this study, 

experimental hypertension was induced in the mini-pig by aortic coarctation. Basilar 

arteries and aortas were collected for analysis over an eight week period of hypertension 

with specimens from normotensive animals serving as controls. Changes in mechanical 

properties of the basilar artery were evaluated by in vitro pressure-diameter tests on 

intact cylindrical segments at their in situ length. The basilar arteries from hypertensive 

animals became less distensible, reflecting increases in both structural and material 

stiffness, compared to their normotensive counterparts. The circumferential stress 

rapidly returned toward its homeostatic value by increasing the wall thickness within 

two weeks. Immunohistochemistry, which is capable of illustrating the localization and 

distribution of protein expression, was performed to examine changes in wall 

constituents in the aorta. The increased medial thickness observed in hypertensive pigs 

compared to normotensive pigs was due to hyperplasia of smooth muscle cells (SMCs) 

and accumulation of extracellular matrix proteins, which were accompanied by the 
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phenotypic modulation of SMCs. The increased interlamellar thickness, collagen fibers, 

and the thickness of elastic lamina found in the inner media of hypertensive animal may 

be associated with the gradient of stress decreasing into the outer media. SMC 

proliferation, if any, was found evenly distributed across the media, however. In cases 

showing increased proliferation and matrix protein synthesis, the SMC contractile 

markers were down-regulated whereas the SMC synthetic markers were up-regulated. 

While the aortic intima appeared normal in the normotensive animals, neointima 

formation, which may predispose the vessel to atheroma formation, was found in the 

hypertensive animals. Immunohistochemistry of Hsp47 and procollagen revealed that 

the endothelial cells (ECs) may produce collagen, specifically type I collagen in 

response to hypertension and contribute to the thickened intima. In addition, lectin 

staining for ECs markers and immunostaining for eNOS suggested that endothelial cells 

may transdifferentiate into intimal SMCs. These findings suggested an alternative role 

that ECs may play in hypertension-induced atherogenesis. 
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CHAPTER I 

INTRODUCTION 

 

The vasculature is capable of diverse morphological and functional changes in 

response to a variety of biochemical and biomechanical stimuli. Vascular adaptations, 

such as normal changes during development and aging, and pathological changes in 

atherogenesis, hypertension, and aneurysms, have caught much attention due to their 

importance in understanding the treatment of diseases and developing strategies for 

engineered vascular grafts. Among the stimuli, mechanical forces (stress and strain) are 

believed to play a major role in most of these adaptations. This thesis focuses on growth 

and remodeling (G&R) of arteries in a hypertension animal model. 

Changes in arterial mechanical properties can deteriorate the local functionality of 

the artery and lead to global vascular diseases. The passive mechanical property of an 

artery is determined mainly by its constituents (i.e., smooth muscle cells, collagen, and 

elastin). In the progression of hypertension, however, the spatial and temporal changes in 

these constituents remain largely unknown. 

A combination of histological, immunohistochemical, and mechanical analysis 

was employed in this study. Immunohistochemistry, which is capable of illustrating the 

localization and distribution of protein expressions, was performed to examine in situ 

changes of the constituents in the aorta. The mechanical properties of the basilar artery 

were evaluated by in vitro pressure-diameter tests on intact cylindrical segments at their 

____________ 
This dissertation follows the style of Hypertension. 
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in situ length. 

Chapter II reviews the histology of arteries and our current understanding of 

hypertension, it provides a brief introduction to differentiation markers for examining 

smooth muscle cell (SMC) phenotypic heterogeneity, and it summarizes the experimental 

model we used in this study. 

Chapter III focuses on histo-mechanical changes of the porcine basilar artery due 

to hypertension over 8 weeks of development. There have been few studies on the 

mechanical properties of cerebral arteries despite their importance in understanding the 

physiology of the cerebral circulation and investigating the pathogenesis of 

cerebrovascular lesions. Surprisingly, therefore, the effects of hypertension on 

mechanical properties in cerebral arteries remain unknown despite hypertension being a 

leading risk factor for stroke and aneurysms. 

In Chapter IV, a combined histological and immunohistochemical analysis was 

used to characterize G&R of the aorta in hypertension. Specifically collagen and elastin 

deposition, phenotypic changes of SMCs, and their turnover were analyzed. Medial 

SMCs bear part of the initially increased circumferential stress in hypertension. These 

cells may undergo hypertrophy and/or hyperplasia and may abnormally synthesize and 

release matrix proteins as well as matrix metalloproteinases (MMP) and tissue-inhibitors 

of MMPs (TIMP), which further regulate matrix protein turnover. Each of these processes 

plays an active role in G&R in the arterial wall. Despite controversial debates on SMC 

heterogeneity, it is essential to know the phenotype locally, specifically, the effect of 

altered stress on phenotypic change before we can better understand its functions. 
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In Chapter V we used immunohistochemistry to trace the source of matrix 

proteins accumulated in the neointima. Hypertension is one of many causes leading to 

neo-intimal thickening and a risk factor for atherosclerosis; how hypertension induces or 

aggravates atherosclerosis is still unknown, however. An understanding of how intimal 

thickening happens may provide clues to prevent atherosclerosis. 

Chapter VI introduces a uni-axial stretcher which was built for future 

investigation of G&R of the aorta subjected to tensile stress. This design excludes the 

influences of radial stress and distribution of tensile stress across the vessel wall. 

Finally, Chapter VII summarizes the major contributions of this study. 
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CHAPTER II 

BACKGROUND AND SIGNIFICANCE 

 

HISTOLOGY OF ARTERIES 

Arteries can be categorized primarily into two types based on their relative size 

and/or morphological characteristics: elastic arteries and muscular arteries. 

Elastic arteries are characterized by concentric elastic lamina occupying much of 

the tunica media; Verhoeff van Giesion (VVG) or elastic van Giesion (EVG) staining is 

most commonly used to demonstrate the elastic lamina in situ. Elastic arteries are 

relatively large in diameter and located close to the heart. The aorta, major trunks 

originating from the aortic arch and the terminal bifurcation of the abdominal aorta, and 

the pulmonary trunk belong to this type. The primary characteristic of muscular arteries is 

a relatively thick media composed of mainly smooth muscle cells (SMCs). These 

areteries are the main distributing branches of the vascular tree (e.g., the radial, femoral, 

coronary, and cerebral arteries). There is a gradual transition in structure and function 

between two types of arteries; some arteries exhibit features of both types. Nevertheless, 

the ratio of elastic fibers to the smooth muscle component decreases as the arteries 

become smaller. 

Regardless of type, all arteries consist of three concentric layers, called from the 

luminal side outward: the tunica intima, tunica media, and tunica adventitia. The tunica 

intima of elastic arteries consists of a single layer of flattened endothelial cells, which rest 

on basal lamina and line the lumen of the vessel, plus an underlying subendothelial 
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connective tissue whose thickness increases during aging and disease progression. The 

tunica intima in muscular arteries is generally thinner than that in elastic arteries. In 

healthy arteries, the intima probably offers negligible mechanical strength. The tunica 

media of elastic arteries consists of many fenestrated lamellae of elastin, known as elastic 

laminae, alternating with circularly oriented layers of SMCs. The number of elastic 

laminae increases during development. The elastic laminae also increase in thickness 

because of the continued deposition of elastin, which constitutes much of the tunica 

media1. The tunica media of muscular arteries is mainly composed of SMCs oriented 

concentrically around the lumen, but it also contains abundant collagen and elastin. The 

tunica adventitia is largely composed of collagen, with sparse elastic fibers, that remain 

slack at physiological pressures; however, it appears to protect the artery from 

overstretching at high pressure 2. 

Despite its heterogeneity in some cases, the arterial wall can be modeled as a 

mechanically homogeneous body probably because of the interlocked structure of elastin, 

muscle, and collagen. Indeed, by tracking the deformation of each elastic lamina at 

different locations across the wall thickness, Dobrin found that the media behaves 

mechanically as if its material properties were homogeneous3. 

 

HYPERTENSION 

Hypertension is a common disease in developed countries. Twenty-eight percent 

of Americans from 20 to 74 years of age are hypertensive4 and there were 35 million 

office visits for hypertension in 2000 alone5. It is a leading risk factor for many 
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cardiovascular diseases, including atherosclerosis, stroke, and aneurysms. It also leads to 

cardiac hypertrophy with heart failure, aortic dissection, and renal failure, and thus is a 

leading cause of death. 

Hypertension is defined as a persistent elevation of blood pressure. The vessel 

walls subject to high blood pressure undergo tremendous structural and functional 

changes. Specific manifestations may include wall thickening6, smooth muscle cell (SMC) 

hypertrophy and/or hyperplasia7, abnormal matrix protein turnover8, increased 

viscoelasticity9, increased vascular tone10, and altered reactivity and sensitivity to 

pharmacologic stimulation11. Changes in structural and mechanical properties of the 

vessel wall turn out to contribute to the persistence and progression of hypertension. 

Although pharmacologic treatment can control the blood pressure, reduction of blood 

pressure to its normal level does not usually reverse the structural changes. In order to 

prevent and cure hypertension, it is crucial to understand the mechanism by which the 

elevated pressure leads to these permanent structural and functional changes. 

The vasculature responds quickly to acute changes of physiological conditions 

such as blood flow or pressure. When the endothelium is subject to an acute change of 

blood flow, it releases many substances including vasoactive materials such as nitric 

oxide (NO) and endothelin (ET-1). Acting on SMCs, these vasoactive materials not only 

regulate the caliber of the vessel, they also act as growth promoters or inhibitors for 

long-term adaptation. Less is known about the mechanism underlying pressure-induced 

arterial responses although a myogenic response, which is pronounced in arterioles, can 

be demonstrated occasionally in arteries12. In addition to the direct effect of mechanical 
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strain on SMC growth13, it is believed that the paracrine/autocrine growth factors released 

during the early stage of pressure elevation trigger G&R if the pressure sustains. Many 

growth factors, including PDGF14, TGF-β15, IGF-I and IGF-I binding proteins16,17, and 

their associated receptors have been shown to be involved in the G&R of hypertensive 

vessels. 

Growth of SMCs has been found in human hypertension and experimental 

hypertension models, thus contributing to the wall thickening. Depending on the model of 

hypertension, however, the growth response of SMC in terms of hypertrophy and/or 

hyperplasia can be different within a given blood vessel7,18. Studies suggest that the 

increased turnover of endothelial cells in a coarctation model causes SMC hyperplasia 

but not hypertrophy18. 

Extracellular matrix remodeling is another adaptation process leading to wall 

thickening in hypertension. In a blood vessel, collagens and elastin are the two main 

extracellular matrix proteins, the absolute and relative quantities of which mainly 

determine the passive mechanical properties of the vessel2. In addition to causing wall 

thickening, the abnormal turnover of elastin and collagen changes the mechanical 

properties of the vessel, which further influence vascular physiology and the development 

and progression of vascular disease. In an aortic coarctation rabbit model 19,20, the gene 

expression for both collagen and elastin was found to increase in the adventitia and the 

outer media, which may be correlated to a differential distribution of stress across the 

vessel wall. Enzymes involved in the degradation of matrix proteins are called matrix 

metalloproteinases (MMPs). These enzymes have natural inhibitors called tissue 
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inhibitors of metalloproteinases (TIMPs), which tightly regulate the activity of MMPs. In 

an uninjured vessel, the turn-over of collagen and elastic fibers is low. When the balance 

between MMPs and TIMPs is altered in some pathology, however, matrix remodeling is 

triggered. Studies show that at least two MMPs increase their activity under high 

transmural pressure and the local distribution and activity of the MMPs may be more 

relevant to vessel wall remodeling than changes in the overall levels of MMPs21. 

 

SMC DIFFERENTIATION MARKERS 

SMCs are generally classified as in either a contractile or synthetic phenotype. 

Recent evidence, however, suggested that there exists a spectrum of phenotypically 

distinct SMCs in arterial media. Supported by different evidence, at least two hypotheses 

have been proposed to explain SMC heterogeneity in diseased arteries. Some suggest that 

smooth muscle cells retain remarkable plasticity even in mature animals and are capable 

of modulating their phenotypes in response to the environmental stimuli22; others claim 

that there are subpopulations of different SMC phenotypes coexisting in the media, and 

altered mechanical or chemical stimuli have different effects on different 

subpopulations23 (e.g. cause the expansion of a specific subpopulation). 

Generally, the appropriate phenotypic expression is essential for SMC to maintain 

and regulate vascular tone, and to repair the injured vessel wall. In hypertension, growth 

response of SMCs in terms of hyperplasia and/or hypertrophy and their matrix protein 

deposition play central roles in arterial G&R. These reactions are believed to be closely 

dependent on their phenotypes.  
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An increasing list of cell markers for SMC differentiation has been identified to 

study the functional and structural changes of SMC associated with its phenotypic 

changes in pathophysiological conditions24,25. The contractile markers include calponin, 

caldesmon, sm22, and myosin heavy chain isoforms and the cytoskeletal markers include 

desmin, vinculin, and meta-vinculin26,27. Since our focus is on how altered mechanical 

stress influences the SMC phenotypic heterogeneity in a time course, below I only briefly 

introduced the markers applied in this study. 

Calponin is a 34-kDa myofibrillar thin filament, actin-binding protein; it is 

implicated in an auxiliary regulatory role of SMC contraction. Calponin expression is 

restricted to SMCs and has been shown to be a marker of the contractile phenotype of 

developing smooth muscle28,29. 

Caldesmon is an 120-kDa actin binding protein and has been detected in smooth 

muscle and in a number of non-muscle cells30,31. In comparison to some traditional 

smooth muscle markers, it may be more sensitive and specific in differentiating tumors 

with different origins32,33. 

Smooth muscle myosin heavy chains (MHCs) exist in multiple isoforms. At least 

three types of MHC isoforms have been identified in rabbit: SM1(204 kDa), SM2 (200 

kDa), and Smemb (200 kDa)34. Due to the unavailability of antibodies to SM1 and SM2, 

in this study, we only performed immunohistochemistry for MHC and Smemb. 

Smoothelin is a 59-kDa cytoskeletal protein exhibiting a filamentous organization 

and uniquely expressed in fully differentiated (contractile) SMC35,36. Smoothelin shows 

up very late during differentiation in chick gizzard (ED 18) compared to SM α-actin (ED 
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2.5), sm22α (ED 4), calponin (ED 6), caldesmon (ED 6), and SM α-tropomyosin (ED 

6)22,37. It can be used to discriminate between SMCs and other SMC-like cells such as 

myofibroblasts and myoepithelial cells35. It does not belong to any classes of structural 

proteins previously described and may be a valuable addition to markers used for the 

assessment of the stage of SMC differentiation35,36. 

 

ANIMAL MODEL 

Because of the unclear etiology of hypertension, several animal models have been 

established to study hypertension, as, for example, spontaneously hypertensive rat (SHR) 

and aortic coarctation models; each model provides valuable but different insights into 

the mechanism of hypertension. Unfortunately, some results from past studies are 

controversial probably due to species-, tissue-, or model-related differences of the animal 

models. It is therefore challenging to compare findings in each study and also difficult, if 

not impossible, to derive a correlation among the structural, functional, and mechanical 

changes. Moreover, most studies only focus on changes at one time-of-development, not 

its time-course. There is a need for data of these changes during the progressing of 

hypertension (i.e., the kinetics). 

Since many observations of experimental hypertension are species-, tissues- and 

model- dependent, therefore, it is essential to study G&R of a specific artery in the same 

experimental model. It is equally important to correlate G&R with the altered mechanics 

of the same artery in the same experimental model. The novel mini-pig coarctation model 

developed by Dr. Fossum et al.38 was used in this study. 
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We choose to induce hypertension in the Yucantan micro-pig, which is more 

similar genetically to humans than rodents but less expensive than primates. Whereas 

blood pressure tends to increase with increasing weight gain in domestic pigs, using the 

micro-pig avoids this complication. The thoracic aortic coarctation model is chosen based 

on three reasons: First, the coarctation model admits a primary mechanical hypertension 

by gradually increasing the constriction with or without a simultaneous application of 

ACE-inhibitors. Second, the development of hypertension induced by aortic coarctation 

undergoes three phases: an acute mechanically-induced phase, a sub-acute 

rennin-dependent phase, and a chronic G&R phase; the time-course adaptation in each 

phase and the transition between phases can be delineated. Three, the hypertension 

develops at different rates in the vasculature distal and proximal to the occluder, again 

providing additional data on time-courses and stimuli. Additionally, the observed 

enlargement of the intercostal arteries after aortic constriction provides an opportunity to 

study arteriogenesis, a type of flow-induced G&R in vivo. 
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CHAPTER III 

HISTO-MECHANICS OF THE PORCINE BASILAR ARTERY IN 

HYPERTENSION 

 

INTRODUCTION 

 Hypertension afflicts nearly 50 million Americans and is a significant risk factor for 

many cardiovascular diseases, including aneurysms, atherosclerosis, heart failure, stroke, 

and end-stage renal failure. It is well known that hypertension induces, and is exacerbated 

by, significant changes in the structure and function of both conduit and resistance vessels. 

It is remarkable, therefore, that data are scant on the potential time-course of changes in 

the biomechanical properties of arteries of the brain and heart, two organs often affected 

by hypertension-induced alterations. Knowledge of arterial properties is essential for 

correlating changes in wall mechanics with mechanobiologically-induced changes in cell 

activity and modification of the extracellular matrix; likewise, arterial properties are 

essential for understanding changes in hemodynamics, particularly the propagation of 

pulse waves. In this paper, we report data on the histo-mechanics of the basilar artery 

throughout the development of hypertension over 8 weeks in a novel mini-pig model. 

Despite considerable biological variability, we show that significant biomechanical 

changes manifest rapidly (within 2 weeks) in both the structural and material stiffness of 

the basilar artery. 
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METHODS 

Animal Model. Our aortic coarctation model for studying hypertension in the 

mini-pig is described in detail elsewhere38. Briefly, a balloon-expandable occluder is 

pre-filled with a 50% dextrose solution, placed over a Gor-Tex soft tissue patch sheet, 

and secured with suture around the aorta proximal to the diaphragm. The occluder is 

connected via stiff tubing to a vascular access port that is placed subcutaneously in the 

neck, which allows the occluder to be inflated or deflated in the conscious animal. An 

indwelling pressure transducer is placed within the internal thoracic artery or right carotid 

artery and connected to an implanted telemetry unit. Arterial pressure and heart rate can 

then be recorded continuously, but are typically recorded for 30 s every 2 h. The mean 

arterial pressure is defined as the diastolic pressure plus one-third the difference between 

systolic and diastolic pressure, and a daily average mean arterial pressure is used to track 

the condition of each animal. 

To initiate hypertension, the aorta was coarcted approximately 1 week after 

surgery by adding small amounts of dextrose to the occluder over a 7 to 10 day period 

until the mean arterial pressure reached or exceeded 150 mmHg. Data were collected 

from a total of 37 mature (7 to 16 month old) male mini-pigs: 14 normotensive (NT) 

controls and 23 hypertensives (HT). Specifically, basilar arteries were harvested from 

true controls (n = 4) without an occluder, from normotensive animals at 2 (n = 2), 4 (n = 

2), 6 (n = 2), and 8 (n = 4) weeks following a sham surgery wherein an occluder was 

implanted but not inflated, and from hypertensive animals at 2 (n = 6), 4 (n = 5), 6 (n = 5), 

and 8 (n = 7) weeks after the animal reached its target mean arterial pressure ( > 150 
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mmHg). All animal care and use was approved by the University Laboratory Animal Care 

Committee at Texas A&M University. 

 
 
 

TABLE III-1. Number of Basilar Artery Data Available 

Number of data 2-week 4-week 6-week 8-week 

Hypertensive 6 5 5 7 

Normotensive 2 2 2 4 

Control 4 

 
 
 

Biomechanical Tests. Our biaxial test system is a modified version of one reported 

earlier39; it is well suited for performing cyclic pressurization tests on small vessels at 

multiple fixed axial extensions. Briefly, the basilar artery is excised from the isolated 

brain, perforating branches are ligated with 9-O or 11-O silk, and the vessel is cannulated 

with blunt-ended 26 G needles (Figure III-1). The cannulated vessel (~ 0.8 mm dia and 

1.2 cm long from left suture to right suture) is then placed within a test chamber filled 

with normal saline at room temperature and coupled to the loading frame, which consists 

of precision x-y-z stages mounted on sub-micron resolution x-translation stages that can 

extend the vessel under computer control (Figure III-2A). The vessel is pressurized under 

computer control using a syringe pump, and luminal pressure and axial load are measured 

on-line; resolution is 0.001 mmHg and 0.25 grams, respectively. Surface strains in the 

central region are inferred from the motions of multiple 50 micron diameter microspheres 

(Figure III-2B), which were affixed to the superior surface of the artery with glue and 
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tracked on-line at 30 Hz using a frame grabber board and custom correlation-based 

software. This approach allows circumferential and axial strains to be inferred equally, 

thus avoiding problems with edge detection when trying to track the diameter in the 

presence of loose adventitia or ligated perforating branches. Current video resolution for 

marker tracking is 4.75 micron/pixel. 

 

 

 

Figure III-1. Photograph of a porcine brain stem. The black-ink gel infusing into the 
basilar artery facilitated the identification and ligation of the perforating branches along 
the trunk.  
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Figure III-2. Schematic drawing of the experimental system. Panel (A) shows the entire 
setup, which consists of two x-y-z stages atop computer controlled translation stages, a 
syringe pump, a pressure transducer and load cell, and a CCD mounted on a dissection 
microscope to allow on-line imaging of microspheres that are affixed to the surface of the 
artery in a central region. Panel (B) illustrates the details of the canulation of the artery. 
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Figure III-3. A representative video image of a basilar artery with surface markers that are 
tracked on-line (note: the crosshair shows the computer-determined centroid of each 
marker). 
 
 
 

Two types of reference configurations were employed: the unloaded reference 

wherein the vessel was at zero pressure and zero axial force, and an initial reference 

wherein the vessel was stretched longitudinally to a prescribed length at zero pressure. 

Vessels were preconditioned by cyclic pressurization 5 times from 0 to either 80 or 120 

mmHg at the prescribed axial length. Data (pressure, axial load, and marker positions) 

were then collected for slow cyclic inflation tests at 2-3 different fixed axial lengths 

including the in situ length which was near the shortest length at which the vessel did not 



 

 

18

bend when pressurized at 80 mmHg. Typically axial extensions were about 1.15, 1.2, or 

1.25 relative to the overall unloaded reference length.  

Histology. Following biomechanical testing, arteries were immersed and fixed in 

a fresh 4% paraformaldehyde solution for 1 to 2 hours at room temperature. The artery 

was then dehydrated through a series of graded alcohols overnight, embedded in paraffin, 

and sectioned at 5 microns using a Leitz 1512 microtome. Sections were then mounted on 

Superfrost Plus slides and dried overnight. After being deparaffinized in pure xylene and 

rehydrated through a series of graded alcohols, sections were stained with either Verhoeff 

van Giesion (VVG) or picrosirius red (PSR) for measurement of wall dimensions and 

collagen content, respectively. 

Data Analysis. Biomechanical data were studied in terms of both the structural 

stiffness (i.e., pressure-strain relation) and the material stiffness (i.e., stress-stretch 

relation). Whereas the structural stiffness accounts for changes in wall thickness and is 

that stiffness which resists the distension pressure in vivo, the material stiffness addresses 

directly the stiffness of the constituents of the wall. Because of the finite deformations, 

Green strain at the adventitial surface was used to assess distensibility whereas the mean 

Cauchy (true) stress and left stretch were used to assess material behavior in the current 

configuration. Assuming locally homogeneous strain fields, Green strains can be 

estimated from the motions of 3 markers defining a triplet, but because of potential 

heterogeneities introduced by the ligated perforating branches, mean values of strain were 

determined at each pressure state based on a pseudo inverse (least squares) fit to the 

chosen surface markers; the markers, which introduced significant shear strain were 
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discarded in analysis assuming that the pressure inflation causes no shear. Once the 

motions are known, the deformation gradient and Green strain are determined easily (see 

Appendix A). Mean Cauchy stresses were computed as 

Pa
hθθσ =    and   

(2 )zz
f

h a h
σ

π
=

+
,     (1) 

where P is the distending pressure, a is the deformed inner radius, h is the deformed wall 

thickness, and f is the applied axial load. Herein, however, we focus on the mean hoop 

stress. 

The inner radius, wall thickness, medial cross-sectional area, and luminal area 

were also calculated in a fixed unloaded configuration using a custom image analysis 

program that objectively determines boundaries of interest in the histological sections. 

Briefly, image processing techniques such as threshold, median filter and a morphology 

remove algorithm, were used to determine the medial boundaries. The unloaded inner 

radius was then calculated by π2 Perimeter Inner =A  assuming that luminal surface 

is circular in vivo. The number of pixels surrounded by specific boundaries was used to 

calculate the medial cross-sectional area, MCSA. Units in pixels were converted to metric 

units (1.25 μm/pixel). Assuming that the vessel wall is incompressible, the inner radius 

and wall thickness at any pressure can be calculated respectively as 

2( )r
z

MCSAa Bλ
πλ

= −    and   rh B aλ= − ,     (2) 

where rλ  is the radial stretch ratio on the outer surface of the vessel, zλ  is the uniform 

axial stretch ratio, and B is the undeformed outer radius. 
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The collagen content was quantified from the PSR-stained specimens using an 

Olympus BX-51 microscope customized for circularly polarized illumination40. Briefly, 

one quarter-wave plate was mounted into the strain-free polarizing condenser (between 

the condenser and the polarizer) and oriented at 45o to the transmission axis of the 

polarizer. The other quarter-wave plate was inserted into the compensator slot in the 

nosepiece. Under circularly polarized light, which removes the dependence of brightness 

on fiber orientation, only fibrillar collagen (I & III) is visible due to its natural 

birefringence; other tissue components, including non-fibrillar collagen appears dark. The 

relative fibrillar collagen content was determined as the ratio of the bright area to the total 

area of the media, the latter determined under non-polarized illumination. A threshold 

was applied to the converted grey-scale image to obtain the collagen region. Sections 

from normal hearts, in which collagen content is reported to be 2-3% were used as a 

standard to determine independently the threshold41,42. 

Differences between groups (e.g., hypertension HT or normotension NT, and 2, 4, 

6 or 8 weeks of hypertension) were assessed via an Analysis of Variance (ANOVA) or an 

unpaired student t-test, with p < 0.05 at the 0.05 level deemed as significant. Results are 

reported as means ± standard deviation. 
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RESULTS 

 

 

Figure III-4. Telemetry-based 24-hour average mean arterial pressures (A) and pulse 
pressures (B) in the internal thoracic artery for the normotensive (NT) and hypertensive 
(HT) groups at each end-point: 2, 4, 6, and 8 weeks. The asterisks denote statistically 
significant differences (p < 0.05) at a given end-point. Total numbers are n = 10 (NT) and 
n = 24 (HT). 
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The 24-hour average mean arterial pressure was significantly different (p < 0.05) 

between the hypertensive and normotensive animals at each of the desired end-points: 2, 

4, 6, and 8 weeks (Figure III-4A). Notwithstanding a gradual, but significant, increase in 

pressure over time during hypertension, note that the overall averaged mean arterial 

pressures were 168 ± 16 for the HT animals and 129 ± 7 for the NT animals, which were 

significantly different (p < 0.05). The pulse pressure in the NT and HT animals differed 

significantly only at 6 wks (p = 0.015); however, if we grouped all NT and HT together  

the overall averaged pulse pressures were 40 ± 5 in NT and 51 ± 10 in HT, which were 

also significantly different (p=0.0012) (Figure III-4B). Recall that all pressures were 

measured in the internal thoracic artery or right carotid artery in conscious, unrestrained 

animals. 

Figure III-5 shows representative pressure-strain and pressure-axial force data 

from one NT basilar artery. Specifically, panel (B) reveals a characteristic nonlinear 

behavior and that there was only slight hysteresis following preconditioning. Although 

modest increases in axial extension (from 1.0 to 1.23) reduced the diameter at zero 

pressure, relative to the unloaded intact reference configuration, the pressure-strain 

responses were otherwise similar over this range of stretches. Panel (D) reveals that the 

axial force tended to be nearly constant during pressurization at the lower axial stretch, 

which suggests that this stretch is near the in vivo value (cf. Humphrey43; pp. 281-284). 

Subsequent results are presented for axial extensions near the in vivo value, which varied 

slightly from animal to animal and between NT and HT (albeit not a consistent, 

statistically significant difference). 
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Figure III-5. Representative pressure-strain (A, B, and C) and pressure-axial force (D) 
data from a single basilar artery from a 2 week hypertensive animal. Note the 
characteristic nonlinear response, slight hysteresis following preconditioning, and 
constancy of the axial force during pressurization at (near) the in vivo axial extension. 
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Figure III-5 (Continued) 
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Hypertension induced significant structural stiffening at each end-point, which is 

appreciated by comparing circumferential Green strains at in vitro distending pressures of 

20 to 80 mmHg at 2, 4, 6, and 8 weeks (e.g., Figure III-7A shows results at 80 mmHg). 

An ANOVA showed no significant differences in strain, at a common pressure, across the 

various end-points for either the NT or HT groups, hence we separately pooled the NT 

and HT data (Figure III-4B). Statistical comparisons showed significant differences in 

distensibility at all pressures except those less than 10 mmHg. Whereas the structural 

stiffness may depend on both wall properties and wall thickness, traditional stress-stretch 

curves reflect material stiffness independent of geometry. 

Basilar arteries represent a special class of muscular artery – the media consists 

primarily of smooth muscle cells, collagen fibers, and sparse elastin; there is a prominent 

internal elastic lamina but no external elastic lamina (Figure III-11). Whereas wall 

thickening in the aorta of HT animals was accompanied by marked neo-intimal 

thickening (see Chapter V), no such neo-intimal involvement was seen in the basilar 

arteries. Rather, thickening appeared to be primarily due to enhanced collagen deposition, 

particularly in the adventitia (Figure III-12), as well as increased collagen and cell 

hypertrophy or hyperplasia in the media. Indeed, quantification of the birefringence in 

sections stained with PSR revealed a 1.4 fold increase in medial collagen due to HT, 

which was statistically significant (p < 0.05). The internal radii and cross sectional area of 

media and lumen did not change significantly in HT pigs, however. 

Plots of circumferential Cauchy stress versus stretch reveal that there was also a 

marked increase in the material stiffness due to hypertension (Figure III-8A). Again, 
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however, it was not possible to delineate potential trends due to the increased duration of 

hypertension. Thus, similar to Figure III-7B, NT and HT data were separately pooled 

across end-points and compared (Figure III-8B). There was a significant increase in the 

material stiffness at all but the lowest pressures as well. Also note from Figure III-8 that 

the maximum achieved stresses were higher in the NT than in the HT vessels at a 

common distension pressure (e.g., 80 mmHg) because of an increase in wall thickness in 

 

 

 
 
Figure III-6. The circumferential strain-pressure curves of the basilar arteries at four time 
points (2, 4, 6, and 8 week), which illustrates the significant change in the structural 
stiffness due to hypertension. 
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Figure III-7. Comparisons of circumferential structural stiffness in normotensive (NT) 
and hypertensive (HT) vessels based on the distensibility (i.e., Green strain) at 
comparable pressures (A). Whereas distensibility is markedly less in HT than NT at each 
end-point (albeit not reaching significance at 6 weeks at p < 0.05 due to high variability), 
the trend towards a slight decrease in distensibility with increased duration of 
hypertension is not significant (panel a; data at 80 mmHg). Hence, consistent with Figure 
III-4, data are simply grouped as NT versus HT and shown to be significantly different at 
all pressures above 20 mmHg (B). 
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Figure III-8. Cauchy stress versus stretch for representative specimens at 2, 4, 6 and 8 
weeks, both normotensive control (NT) and hypertensive (HT). Despite considerable 
biological variability (A), these differences were statistically significant when contrasted 
between NT and HT independent of the end-point (B), consistent with Figure III-7B. 
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Figure III-9. Cauchy stresses at comparable pressures (e.g., 80 or 120 mmHg) differed 
between NT and HT (p < 0.05), but they did not differ between NT at 80 mmHg and HT 
at 120 mmHg during in vitro testing. This suggests that structural and morphological 
adaptations during hypertension tended to restore the stresses back towards normal 
values. 
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Figure III-9 (Continued) 
 

 

 

hypertension (see below). Comparisons of hoop stresses at 80 and 120 mmHg (Figure 

III-9) suggested however that wall stress were statistically similar (p = 0.06) between NT 

vessels at 80 mmHg (perhaps close to an in vivo working pressure) and HT vessels at 120 

mmHg (perhaps close to their in vivo working pressure). This observation was due, in 

part, to the increased thickness of the wall in HT, which resulted in a lower value of 

luminal radius:wall thickness a/h in HT at a given in vitro pressure (Figure III-10). 
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Figure III-10. Wall dimensions of the basilar artery from NT and HT pigs with 
pressure-dependent deformation taken into consideration (80 and 120 mmHg). The 
internal radius ir  (A), external radius or  (B), and cross section area of media and lumen 
(C) did not change significantly in HT whereas wall thickness h  (D) and ratio of 
internal radius to wall thickness h

ri  (E) were increased and decreased in HT, 
respectively. 
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Figure III-10 (Continued) 
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Figure III-11. VVG-stained cross sections of basilar arteries from NT and HT pigs; fixed 
in unloaded condition. Note the prominent presence of internal elastic lamina and 
absence of external elastic lamina. 
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Figure III-12. PSR-stained cross sections of basilar arteries from NT and HT pigs under 
circularly polarized light; fixed in unloaded condition. 
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TABLE III-2. Wall Dimensions of Basilar Arteries in Unloaded Condition 

2 week 4 week 6 week 8 week 
 

NT(n=2) HT(n=4) NT(n=2) HT(n=1) NT(n=2) HT(n=2) NT HT(n=3)
Ctrl(n=3)

Rinner(μm) 135.9±17.7 137.8±11.3 131.4±17.6 128.3 134.3±13.8 130.5±11.8 n/a 153.4±4.2 121.8±10.0 

H(μm) 25.8±2.6 29.3±6.6 25.5±1.5 25.2 25.9±6.6 27.6±0.9 n/a 35.6±2.6 27.6±5.2 

Rinner/H 5.3±0.2 4.8±0.6 5.2±0.4 5.1 5.8±0.5 4.7±0.3 n/a 4.32±0.20 4.6±1.3 

Asec(μm2) 15510±3498 28543±9297 23145±4320 22343 21359±6150 25084±2962 n/a 38294±4038 23338±3235 

Alum(μm2) 67561±18763 67123±12983 54528±17989 60251 61058±11205 58243±19062 n/a 84152±5245 55230±9614 
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DISCUSSION 

 Although hypertension is a major risk factor for various neurovascular diseases, 

including saccular aneurysms and stroke, there is surprisingly little information in the 

literature on changes in the biomechanical properties of cerebral arteries due to 

hypertension. Without information on wall properties, one cannot perform the stress 

analyses that are needed to study the associated vascular cell mechanobiology – we know, 

for example, that increased wall stress alters the production and degradation of 

extracellular matrix as well as the proliferation and apoptosis of vascular smooth muscle 

cells43. One reason for this lack of data may be due to the presence of many small 

perforating vessels and the associated difficulty of isolating cerebral arteries suitable for 

in vitro pressure-diameter tests. That is, whereas “ring tests” have proven useful in certain 

classes of pharmacologic studies (e.g., Winquist and Bohr44), pressure-diameter tests at in 

vivo axial extensions are preferred for biomechanical testing45,46. Excellent early papers 

by Nagasawa et al.47 and Hayashi et al.48 showed that human intracranial arteries tend to 

be stiffer than their extracranial counterparts, consistent with their higher collagen:elastin 

ratio. Yet, these investigators focused on the effects of age, not hypertension. 

The best study available on changes in the mechanical properties of cerebral 

arteries, measured via in vitro tests at the in situ length, is that by Hajdu and Baumbach49. 

Briefly, they compared pressure-diameter and circumferential stress-strain behaviors of 

the posterior cerebral artery in normotensive (Wistar-Kyoto) and spontaneously 

hypertensive (stroke-prone SHR) rats at 6 to 8 months of age. Very similar to findings 

herein (cf. their Figures 2a and 3a to the present Figures III-7B and III-8B), they report 
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significant decreases in distensibility at all but the lowest pressures and significant 

increases in the material stiffness due to hypertension. Indeed, if one accounts for 

differences in reference configurations (they appear to have used the in situ length at zero 

pressure whereas we use the unloaded reference), even the degree of changes are very 

similar. What is remarkable in comparing these two reports, therefore, is that their 

findings are for 6 to 8 month old spontaneously hypertensive rats, which presumably 

begin arterial adaptations early on in maturation, whereas our results show tremendous 

structural and material changes within 2 weeks of onset of hypertension in maturity. That 

is, although one might suggest that our findings imply a trend towards a gradual decrease 

in distensibility with duration of hypertension (Figure III-7A), there was a gradual 

increase in pressure at 6 and 8 weeks (Figure III-4A) – hence, it appears that the 

mechanical adaptations exhibited by the basilar artery were rapid and that once adapted, 

both structural and material properties tended to change little thereafter. It is of note, 

therefore, that similar rapid and sustained changes in structural stiffness were shown by 

Matsumoto and Hayashi50 in rat aorta over 2 to 16 weeks of hypertension in a Goldblatt 

model. This is, to our knowledge, the first such demonstration in maturity in an 

intracranial vessel within a strong autoregulatory system (Strandgaard and Paulson51). 

Although the contractile behavior of cerebral arteries is fundamental to 

autoregulatory control, most of such control resides in the smaller resistance vessels. 

Moreover, given that “Chronic hypertension is characterized by impairment in maximal 

dilator capacity of cerebral blood vessels” (Hajdu and Baumbach49), we focused on the 

passive properties. Consistent with prior results on extracranial conducting arteries (see 
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Matsumoto and Hayashi50; Rachev et al.52; Gleason and Humphrey53), our data suggested 

that wall adaptations tend to restore the mean hoop stress back towards a target value. For 

example, Figure III-9 reveals that circumferential wall stress in the hypertensive vessels 

at a higher pressure (say 120 mmHg) was similar to the stress in the normotensive vessels 

at lower pressure (say 80 mmHg); indeed, it is interesting that this value of comparable 

stress is ~120 kPa, which is not too different from that calculated in Humphrey and 

Wilson54 as a possible target value. A similar finding was not true with respect to 

circumferential wall strain, however, for the hypertensive vessels were significantly less 

distensible than the normotensive controls; that is, it does not appear that 

hypertension-induced adaptations tend to restore to normal the values of cyclic strain 

(relative to updated unloaded configurations) or the structural stiffness. It is, of course, 

the structural stiffness that governs the hemodynamics, thus despite the renormalization 

of wall stress due to structural changes, it would be expected that the hemodynamics 

would remain altered. In this regards, it is important to note that our selection of 80 

mmHg for NT and 120 mmHg for HT was arbitrary and meant only to be provocative; 

selection of other pairs of pressures could reveal an even closer result, but it is not clear 

what pressures should be compared. For example, do arterial adaptations correlate best 

with the diastolic, systolic, or mean blood pressure? Although there is a need for research 

into this issue, correlations should be based on the transmural pressure, not the luminal 

pressure. Unfortunately, determination of effects of perivascular tissue on the overall 

biomechanics of an artery remains a significant challenge. In the case of cerebral vessels, 

this issue is simplified slightly when vessels are surrounded largely by cerebrospinal fluid 
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(CSF); the pressure in the CSF is typically reported to be 5 to 10 mmHg55. Yet, it was 

because of the continuing lack of information on perivascular constraints that we 

restricted our attention to modest ranges of transmural testing pressures (up to 120 mmHg) 

in the passive state despite the much higher luminal pressures measured in vivo in the 

internal thoracic artery. 

Similar to other extracranial arteries, the media of the basilar artery appears to 

bear most of wall tensile stress during normalcy. Therefore, changes in mechanical 

properties were predictably due to significant changes in structure and composition of the 

media. Indeed, histological analysis showed that wall thickness, which contributes 

significantly to the structural stiffness, was increased in the media of HT pigs. Under the 

circularly polarized light, PSR-stained cross sections revealed the increased collagen 

deposition in terms of thickening of the fibers. In addition, the cell number per unit area 

of media increased in HT. This is consistent with a morphometrical study of cerebral 

arteries from rats (SHR and SHRSP), in which the wall hypertrophy was characterized by 

increased SMC layers in comparison to wild type controls (WKY)56. The complementary 

work on the histology elucidated the mechanics underlying the increased stiffness and 

may provide information on strategies of treating such mal-adaptation. 

In closing, we present here the first data on the time-course of changes in the 

histo-mechanical properties of a large cerebral artery during the early development of 

hypertension in maturity. In contrast to prior studies that employed rat models wherein 

hypertension initiates during development, our model examined adaptations during 

maturity that are more relevant to the human disease. Rapid and sustained changes 
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occurred in both the structural and material stiffness, due largely to an increased wall 

thickness and increased matrix deposition. There is a now a pressing need to determine if 

such changes can be reversed by lowering the blood pressure and, if so, how long does 

such reversal take or is there a narrow window of opportunity wherein reversal can be 

achieved. 



 

 

41

CHAPTER IV 

PHENOTYPIC MODULATION OF AORTIC SMOOTH MUSCLE CELLS IN 

HYPERTENSION: AN IMMUNOHISTOCHEMISTRY STUDY 

 

INTRODUCTION 

In both human and experimental hypertension, the arterial walls subjected to 

elevated blood pressure undergo tremendous growth and remodeling (G&R), the most 

conspicuous manifestation being thickening of the wall. Albeit adaptive, which is to say 

favorable by reducing circumferential wall stress towards normal values despite the 

persistence of the elevated pressure, such G&R may contribute to the progression of 

hypertension. 

The altered circumferential stress in early hypertension is often hypothesized to 

be a key initiator of G&R57-59. Medial smooth muscle cells (SMCs), embedded in an 

abundant extracellular matrix consisting of elastin, collagen, and many other proteins and 

proteoglycans, bear part of the initially increased circumferential stress in hypertension. 

These cells may undergo hypertrophy and/or hyperplasia and may abnormally synthesize 

and secrete/deposit matrix proteins (e.g. collagen and elastin) as well as matrix 

metalloproteinases (MMP) and tissue-inhibitors of MMPs (TIMP), which further regulate 

matrix turnover. Each of these processes plays an active role in G&R of the arterial wall 

and is believed to be closely associated with the phenotype of the SMCs. Nonetheless, the 

mechanism underlying stress-induced phenotypic changes is largely unknown. It is thus 

essential to know the phenotype locally, specifically, the effect of altered stress fields on 
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phenotypic change before we can better understand its functions. 

Marked spatial and temporal changes in the expression of multiple smooth muscle 

cell differentiation markers (e.g., myosin heavy chain isotypes60,61, calponin62, SM 2263, 

1E1264, smoothelin65) has been reported in arterial development. These changes reflect, in 

part, the transition from a developing vessel, with strongly proliferative and synthetic 

SMCs, to a mature vessel, with a contractile and quiescent character. Spatial variations in 

the expression of the connective tissues proteins (e.g. collagen and elastin) across the 

vessel wall have been demonstrated in experimental hypertension model19-21,66. Similarly, 

we hypothesize that the localization of phenotypically differential SMCs may exhibit 

pattern that may correlate with the altered stress/strain gradient or the growth factor 

concentration gradient due to hypertension. 

Because of the different growth responses of SMCs as well as the different 

deposition patterns of matrix proteins associated with animal models of hypertension and 

vascular bed18, it is essential to study G&R of a specific artery in the same animal model. 

In our hypertension model, the in situ expression of several standard SMC differentiation 

markers was investigated by immunohistochemistry. Temporal changes of SMC 

differentiation with advancing hypertension were evaluated. Finally, the spatial and 

temporal expressions of collagen and elastin were also examined by observation of 

picrosirius red-stained and VVG-stained sections under polarized and normal light, 

respectively. 
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METHODS 

Animal Model. Our aortic coarctation model for studying hypertension in the 

mini-pig is described in detail elsewhere38. Briefly, a balloon-expandable occluder is 

pre-filled with a 50% dextrose solution, placed over a Gor-Tex soft tissue patch sheet, 

and secured with suture around the aorta proximal to the diaphragm. The occluder is 

connected via stiff tubing to a vascular access port that is placed subcutaneously in the 

neck, which allows the occluder to be inflated or deflated in the conscious animal. An 

indwelling pressure transducer is placed within the internal thoracic artery or right carotid 

artery and connected to an implanted telemetry unit. Arterial pressure and heart rate can 

then be recorded continuously, but are typically recorded for 30 s every 2 h. The mean 

arterial pressure is defined as the diastolic pressure plus one-third the difference between 

systolic and diastolic pressure, and a daily average mean arterial pressure is used to track 

the condition of each animal. 

To initiate hypertension, the aorta was coarcted approximately 1 week after 

surgery by adding small amounts of dextrose to the occluder over a 7 to 10 day period 

until the mean arterial pressure reached or exceeded 150 mmHg. Data were collected 

from a total of 46 mature (7 to 16 month old) male mini-pigs: 20 normotensive (NT) 

controls and 26 hypertensive (HT). Specifically, aortas were harvested from true controls 

(n = 5) without an occluder, from normotensive animals at 2 (n = 4), 4 (n = 4), 6 (n = 3), 

and 8 (n = 4) weeks following a sham surgery wherein an occluder was implanted but not 

inflated, and from hypertensive animals at 2 (n = 7), 4 (n = 7), 6 (n = 6), and 8 (n = 6) 

weeks after the animal reached its target mean arterial pressure ( > 150 mmHg). All 
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animal care and use was approved by the University Laboratory Animal Care Committee 

at Texas A&M University. 

Preparation of Paraffin Sections. Segments of aorta 3+ cm proximal and distal to 

the occluder that was used to induce the coarctation, and hence hypertension, were 

dissected free of perivascular tissue. The segments were fixed by immersing in 4% fresh 

paraformaldehyde for one hour at room temperature, dehydrated through a series of 

graded alcohols overnight, and embedded in paraffin to enable examination of cross 

sections. Five micron serial sections were cut using a microtome. Finally, control tissues 

(e.g. spleen and skeletal muscle from normotensive pigs) where handled and processed in 

a similar way. 

Histology and Immunohistochemistry. Sections were deparaffinized in pure 

xylene, rehydrated through a series of graded alcohols and rinsed in phosphate buffered 

saline (PBS). Sections were stained with standard H&E for general morphology, 

Verhoeff-van Gieson (VVG) for elastin (Appendix D), and picro-sirius red (PSR) for 

collagen (Appendix E), or immuno-stained for a panel of antibodies (Table IV-1). 

Immunohistochemistry was carried out at room temperature in a humidity chamber to 

reduce evaporation. To unmask the antigen site, heat-induced epitope retrieval or 

enzymatic digestion was applied (Appendix F). The optimal retrieval methods were 

found for each antibody. After antigen retrieval, the slides were incubated with 3% H2O2 

for twenty minutes to block endogenous peroxidase and rinsed in PBS. Slides were 

incubated in blocking serum for 30 minutes to prevent non-specific staining. Optimal 

dilution for each antibody was found by titering. Sections were incubated with 
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appropriately diluted primary antibody for 1 hour at room temperature. After washing in 

PBS, the diluted biotinylated secondary antibody was applied to the sections, incubated 

for 30 minutes, and again washed in PBS. Sections were then incubated with 

streptavidin-peroxidase conjugate for 30 minutes, washed, and incubated with DAB 

substrate (Vector laboratories) for 3-5 minutes in dark until achieving the desired staining 

intensity. For simultaneous demonstration of two antigens in the same section, the section 

was incubated with the first primary antibody followed by ABC procedures with the 

addition of 0.02% NiCl2 to the DAB substrate. This stains the first antigen black. The 

section was then incubated with the second primary antibody followed by ABC 

procedures using the DAB reaction without NiCl2, giving a brown product. The slides 

were rinsed in tap water, couterstained with hematoxylin, dehydrated, and finally 

coverslipped with Permount (Fisher Scientific). Concerning the standardization and 

reproducibility for future image analysis, the sections were cut in the same thickness and 

stained in the same batch (or the same day if the former is not possible). 

Antibodies: Table IV-1 shows the antibodies, the vendors, the pretreatment needed 

to unmask the epitope, and the optimal dilutions. 
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TABLE IV-1. Primary Antibodies Used in Medial Immunohistochemistry 

Antibody Source Pretreatment dilution 

SMC differentiation markers 

  SM myosin heavy chain (SMMS-1) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:1000 

  Desmin (DE-R-11) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:200 

  Calponin (CALP) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:500 

  Caldesmon (N5/22) Chemicon 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:2500 

  Smoothelin (R4A) Abcam 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:50 

  SMemb (3H2) Abcam None 1:25,000 

Cell proliferation 

  Ki-67 (MIB-1) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:200 

Collagen synthesis 

  Hsp47 (M16.10A1) Stressgen 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:4000 

  Carboxyl-terminal propeptide of type I collagen

(SP1.D8) 
DSHB Trypsin, 20 min, RT 1:300 

  Amino-terminal propeptide of type I collagen 

(PCIDG10)  
Chemicon 

Pronase, 20 min, RT 1:750 

DSHB: Developmental Studies Hybridoma Bank, University of Iowa 
 

Apoptosis assay. The terminal deoxynucleotidyl transferase (TdT)-mediated 

deoxyuridine triphosphate (dUTP)-biotin nick end-labeling (TUNEL) was performed on 

paraffin sections for labeling of DNA fragmentation according to manufacturer's 

instructions (DeadEnd colorimetric TUNEL kit, Promega) with modifications67. Briefly, 

after deparaffinization and rehydration, slides were placed in a plastic jar containing 200 

ml EDTA solution (1 mM, pH=8). Following a brief period of equilibrium, the jar was 

irradiated in a microwave power-set at 20% for five minutes, which increased the 

temperature to 85-90oC. An extra 80 ml of distilled water at room temperature were 
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added to the jar immediately after the irradiation to cool the solution. Then the slides 

were transferred to another plastic jar containing 250 ml PBS at room temperature (rapid 

cooling). An EDTA solution (1 mM, pH=8) was superior to a citrate buffer (0.01 M, 

pH=6), which is recommended by various references in terms of background staining and 

strength of specific positive staining; this may be due to differences in fixation and 

processing procedures. Endogenous peroxidases were quenched by incubation with 3% 

H2O2 for twenty minutes and rinsed in DDW. The sections were immersed in TDT buffer 

(30mM Trizma base, pH 7.2, 140 mM sodium cacodylate, 1 mM cobalt chloride). TDT 

(0.3 e.u./ μl) and biotinylated dUTP in TDT buffer were then added to cover the sections, 

which were then incubated in a humid chamber at 37°C for 60 min. The reaction was 

terminated by transferring the slides to TB buffer (300 mM sodium chloride, 30 mM 

sodium citrate) for 15 min at room temperature. The sections were rinsed with DDW, 

covered with 2% bovine serum albumin (BSA) for 10 min at room temperature, rinsed in 

DDW, and immersed in PBS for 5 min. Sections were then incubated with 

streptavidin-peroxidase conjugate for 30 minutes, washed, and incubated with DAB 

substrate (Vector laboratories) for 5-10 minutes in the dark until desired staining intensity 

was reached. The exact same protocol was used on sections of lymph node as a positive 

control. 
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RESULTS 

Collagen and Elastin. Viewed under circularly polarized light, the PSR-stained 

sections revealed the lamellar structure of collagen in the media. Its thickness and the 

interlamellar distance increased in hypertensive media in comparison to that of the 

sham-operated or non-operated controls, which indicated more collagen deposition 

occurring in hypertension. This feature was more prominent in the inner media than in the 

outer media, however (Figure IV-1). Similarly, VVG staining (Figure IV-2) revealed that 

both the thickness of elastic lamina and interlamellar distances increased in the inner 

media of hypertensive animals in comparison to their counterparts in control animals. In 

the hypertensive intima and inner media, the intense elastin staining could be due to 

synthesis of elastin or fragmentation of existing elastin, and in these cases the internal 

elastin lamina was hardly defined. 

Apoptosis and Cell Proliferation. The antigen Ki-67 is present during all active 

phases of the cell cycle (G1, S, G2, and M), but absent in resting cells (G0); it is thus an 

excellent marker for cell proliferation activity. We found an increased number of nuclei 

staining for Ki-67 in the intima and media proximal to the occluder in many hypertensive 

pigs (Table IV-2, IV-3) compared to the sham-control or un-operated control animals. The 

TUNEL assay, which demonstrates in situ DNA fragmentation, a hallmark for apoptosis, 

similarly showed positive reaction in many hypertensive intima and some of adventitia 

(Figure IV-7) but no staining was found in the media. Together, therefore, 

immunostaining of Ki-67 and TUNEL indicated an increased turnover rate of endothelial 

cells. Note that in 8-week HT, there is still apoptosis undergoing in the endothelial cell 
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layer. 

On the other hand, in the media that showed significant amount of Ki-67 staining, 

the stained nuclei appeared to be distributed evenly across the vessel wall. The peak of 

cell proliferation seemed to appear in the early phase of hypertension (2-4 weeks). It is 

worth noting that proliferation of cells in media and intima appeared to be independent in 

most cases of the hypertensive animals, which suggested that the intimal cells may be 

from different cell types than the medial SMCs. However, Ki-67-stained cells can be 

found in the neointima whenever there is a neointima development (Figure IV-6B). 

The aortic SMC responded to hypertension by proliferating and increasing their 

deposition of ECM proteins. These seem to be independent of the radial position within 

the wall. 

Expression of SMC differentiation markers. Because of variations in animal size, 

the slightly different positions of the occluder, the degree of hypertension (average MAP 

= 168 ± 16, n=37) and their associated influences on the SMC phenotypes, it was 

challenging to compare the immuno-stained sections from animal to animal; i.e. larger 

animals have a larger aorta with a thicker aortic wall, and the relative composition of 

elastin and collagen changes as the aorta tapers. Therefore to evaluate the phenotypic 

changes of SMCs due to hypertension, I chose to focus on the area that showed marked 

changes in cell proliferation and collagen production, which were demonstrated by 

immunostaining for Ki-67 and procollagen, respectively (Figure IV-3). Serial sections of 

the same area immuno-stained for a battery of SMC differentiation markers were then 

compared to counterparts for the controls. 
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In cases showing increased medial SMC proliferation and collagen synthesis, the 

SMC contractile markers – calponin, caldesmon, and smoothelin – were down-regulated; 

in contrast, non-muscle MHC, the SMC synthetic marker, was up-regulated. Smoothelin 

was the only SMC contractile markers among the five that did not stain all the medial 

SMC (i.e., some medial SMCs were positive whereas others remained unstained), which 

suggested that there were distinct populations of medial SMCs. 

Desmin is an intermediate filament, a large family of cytoskeletal components. 

Immunohistochemistry for desmin revealed an inhomogeneous expression across the 

aortic wall. Generally, SMC from the inner media and sometimes from near the boundary 

of media and adventitia stained positive for desmin. In addition, the expression pattern of 

desmin along the circumference showed significant differences, which were most 

prominent when comparing anterior and posterior portions of the aorta. The staining 

intensity of desmin was also found to be less in the HT than in the NT. 
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Figure IV-1. Representative microphotography of PSR-stained aortic sections under 
circularly polarized light. The thickness of the collagen “layer” increased in the HT 
animal (left panel) compared to the sham-control animal (right panel). 
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Figure IV-2. Representative microphotography of VVG-stained sections of the aorta. 
Note the increased interlamellar spacing and elastic lamina thickness in the inner media 
of HT animals and lose of organization of elastic lamina possibly due to fatiquing 
effects68. 
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Figure IV-3. Immunohistochemical staining of formalin-fixed, paraffin-embedded (FFPE) 
porcine aorta with anti-procollagen (I) (A and B) and anti-Ki-67 (C and D) using 
ImmPRESS. Serial sections from HT animals (B and D) and NT animals (A and C). The 
lumen is at the right of the micrographs. 
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Figure IV-4. Immunohistochemical staining of FFPE porcine aorta with anti-calponin (A 
and B), anti-caldesmon (C and D), anti-smoothelin (E and F), and anti-non-muscle MHC 
(G and H) using ImmPRESS. Serial sections from HT animals (B, D, and F) and NT 
animals (A, C, and E). The lumen is at the right of the micrographs. 
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Figure IV-4 (Continued) 

 

 

 

 

 

  
Figure IV-5. Immunohistochemical staining of FFPE porcine aorta with anti-desmin (A 
and B) using ImmPRESS. Serial sections from HT animals (B) and NT animals (A). The 
lumen is at the right of the micrographs. 
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Figure IV-6. Immunohistochemical staining of FFPE porcine aorta with anti-ki-67 using 
ImmPRESS. 
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Figure IV-7. Detection of apoptosis by TUNEL assay. The aorta sections from HT 
animals showing apoptosis in intima (A) and adventitia (B). The lymph node from a NT 
pig was used as the control tissue to optimize the procedure of pretreatment. Cells 
undergoing apoptosis in the germinal center showed positive stain. 
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TABLE IV-2. Immunohistochemical Findings in Aortic Media of Hypertensive Pigs 
 

No Treatment IT 
Calponin 

(IM/MM/OM)

Caldesmon 
(IM/MM/OM)

Non-M MHC 
(IM/MM/OM)

Smlin 
(IM/MM/OM) 

Desmin 
(IM/MM/OM)

1 2H - +/+/+ ++/++/++ +/±/+  ±/±/± 

2 2H + +/+/+ ++/+/++ ±/±/±  +/±/± 

3 2H ± +/±/+ ++/+/++ ±/+/± ++/+/++ +/±/+ 

4 2H + +/+/+ +/+/+ +/±/± +/±/± ±/±/± 

5 2H - +/+/+ ++/++/++ +/+/+ ++/++/++ ±/±/± 

6 2H - ++/+/++ ++/+/++ +/+/+ +/+/+ +/±/± 

7 2H - ++/+/+   ++/++/++ +/+/± 

12 4H ± +/+/+ +/+/+ ±/+/+ ±/++/++ ±/+/± 

13 4H + +/+/+ +/+/+ ±/+/± ++/++/++ +/±/± 

14 4H ±   ±/+/± ++/+/+ +/±/± 

15 4H + +/+/+ ++/+/+ +/±/± ++/+/± ±/±/± 

16 4H ± +/+/+ ±/±/± ±/±/± +/++/+ +/±/± 

17 4H ± ++/+/+ ++/+/+ ±/+/+ +/++/± +/±/± 

18 4H ± ++/+/++ ++/+/++  ++/+/+ +/±/± 

23 6H - ++/+/+ ++/+/+ ++/++/++ +/+/± ±/±/- 

24 6H ± +/+/++ ±/±/+ +/±/± +/±/+ ±/+/± 

25 6H - ++/+/+ +/±/± +/+/+ ++/±/± +/-/- 

26 6H + ++/+/++ ++/+/++ ±/+/+ ++/+/+ +/±/± 

27 6H + ++/+/+ ++/+/++  +/±/± ±/-/- 

28 6H + ++/+/+ ++/+/+ ±/+/± ++/++/++ +/±/± 

32 8H + ±/±/± ±/±/± +/±/±  ±/±/± 

33 8H + +/+/+ ±/+/± ±/±/± ±/+/± +/±/± 

34 8H + ++/+/+ +/+/+ ±/+/+ ±/+/+ +/±+± 

35 8H + +/+/+ ++/+/+ ±/+/+ ±/+/± ±/±/± 

36 8H +   ±/±/± +/+/± +/±/± 

37 8H ± ++/+/++ +/+/+ +/+/+ ++/±/++ +/±/± 

Intensity of staining was scored from ++ (strong staining) to – (absence of staining) with the order: ++ > + 
> ± > -. IT: intimal thickening; Non-M MHC: non-muscle myosin heavy chain; Smlin: Smoothelin; IM: 
inner media; OM: outer media 
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TABLE IV-3. Immunohistochemical Findings in Aortic Media of Surgical and True 
Control Pigs 

 

No Treatment IT 
Calponin 

(IM/MM/OM)

Caldesmon 
(IM/MM/OM)

Non-M MHC 
(IM/MM/OM)

Smlin 
(IM/MM/OM) 

Desmin 
(IM/MM/OM)

1 2N - +/+/+ ++/++/++ +/±/±  ±/±/± 

2 2N -   ±/+/±  +/±/± 

3 2N +    ±/±/+ +/±/± 

4 2N - +/+/+ ++/++/++ ±/±/± +/++/++ +/±/± 

5 4N - +/+/+ +/+/+   +/±/+ 

6 4N - +/+/++ ++/++/++   ±/±/± 

7 4N -   +/+/+ +/++/+ +/±/± 

8 4N -   +/+/+ ++/++/++ +/±/± 

9 6N -    ++/++/++ ±/±/± 

10 6N - +/+/+ ++/++/++ ±/±/± ++/++/+  

11 6N - ++/+/++ ++/++/++ +/±/±  +/±/± 

12 8N -   ±/±/±  ±/±/± 

13 8N ±    ++/±/+ +/±/± 

14 8N + +/+/+ ++/+/+   +/+/+ 

15 8N ± +/+/+ +/+/± +/±/+ +/±/± +/±/± 

16 SC -     ±/-/± 

17 SC -     +/±/± 

18 SC -     ±/-/± 

19 UC -     +/±/± 

20 UC -     +/±/+ 

See footnotes to Table IV-3. 
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DISCUSSION 

We used a porcine aortic coarctation model to study pressure-induced G&R. The 

porcine aorta represents a better model for studying potential stress-induced G&R than 

rodent arteries since the many lamellae enable us to study possible spatial changes, or 

gradient expressions, across the vessel wall. The porcine vasculature is also more similar 

to that of humans in comparison with mouse or rat models69, whose aorta contains only 

4-6 elastic laminae. 

Sans and Moragas used mathematical morphologic analyses to study the structure 

of the human aortic media in normotensive and hypertensive patients70. Consistent with 

their finding, the interlamellar distance was larger in the inner media than in the outer 

media and this difference was even more exaggerated in hypertensive animals. The 

decreasing interlamellar distance from the inner to the outer media found in normotensive 

patients may indicate a stress gradient through the wall thickness, although the inclusion 

of residual stress in the stress calculation supports an even distribution of tensile stress43. 

On the other hand, while they did not find significant changes in elastic lamina thickness 

across the aortic wall, the elastic lamina in the inner media of HT appeared to be thicker 

than in the outer media and in counterparts in NT. The increased tensile stress due to 

elevated blood pressure may affect mostly the inner media and thus result in significant 

matrix protein deposition in this area. 

Examination of potential spatial and temporal changes in SMC differentiation in 

experimental hypertension can be valuable for tracing structural changes during vascular 

remodeling. Bearing in mind that the expression of a protein may be regulated by its own 
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specific mechanism, we used immunohistochemistry to examine the expression of a 

battery of SMC-specific markers, including calponin, caldesmon, non-muscle MHC, 

desmin, and smoothelin. Information from immunohistochemistry should be examined in 

parallel to histological staining such as VVG, however, which provides more structural 

details. Similarly, immunostaining for different antigens should be evaluated together to 

provide a more complete picture of phenotypical changes. 

We found an increased number of nuclei staining for Ki-67 in the intima and 

media in many HT pigs. Contrary to our hypothesis, the stained nuclei appeared to be 

distributed evenly across the vessel wall. This may suggest that the stress distribution 

across the aortic wall renormalized within the first two weeks of hypertension or that 

some autocrine mechanism makes medial SMCs respond in concert. The latter seems 

preferred because our findings on matrix deposition suggested a stress gradient through 

the aortic wall thickness. The first two weeks seemed to be a key period for hypertensive 

aortic G&R since the highest of cell proliferation (Ki-67) and collagen (I) production 

(SP1.D8) was observed in the 2-week HT. It has been shown that the growth response of 

SMC to hypertension can be hypertrophy and/or hyperplasia7. Further morphometrical 

analysis of nuclei number per unit area of cross section could determine if hypertrophy 

was also involved71. Orton and colleagues also showed hyperplasia in media cells; 

instead of using immunohistochemistry for Ki-67 or PCNA, they used 

bromodeoxyuridine (BrdU)-labeling to index cell proliferation72. Although extra work 

(i.e., intravenous injection) needs to be performed for BrdU labeling, it allows one to 

determine the kinetics by doing pulse-chase labeling and it also provides information 
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with regard to the direction of proliferation73. 

In a bovine pulmonary hypertension model, Wohrley and colleagues showed that 

proliferation occurred almost exclusively in meta-vinculin-negative SMCs, which 

suggests an expansion of a specific SMC phenotype74. Based on our data for Ki-67, 

procollagen (I), and the SMC differentiation markers, however, it seemed that SMCs 

expressing contractile proteins can also proliferate and actively synthesize extracellular 

matrix proteins. This phenomenon suggested that phenotypic modulation, defined as a 

transition between contractile and synthetic phenotypes, played a role in this adaptive 

process. 

In contrast to staining patterns for other SMC differentiation markers, some 

medial SMCs lacked expression of smoothelin and desmin; this may indicate subtle 

differences in SMC populations. Double-staining of immunohistochemistry for these two 

markers and Ki-67 may provide further information. On the other hand, to describe the 

possible spectrum of phenotypically distinct SMCs that may co-exist in the aortic media 

in our animal model, more specific SMC differentiation markers are desired (e.g., smooth 

muscle myosin heavy chain isotypes, SM1 and SM2). Alternatively, we may try markers 

(not necessarily SMC differentiation markers) reported to be responsive to stress/strain or 

growth factors. 

The expression pattern of SMC differentiation markers in the aortic media was 

varied slightly along the circumference. This may result from different circumferential 

strains/stresses along the circumference. Indeed, due to the tethering of the aorta to the 

spine, the aorta does not deform uniformly along the circumference in a cardiac cycle75. 
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In order to study the effect of the elevated blood pressure while eliminating the 

contributions of non-uniform expansion of the vessel, comparisons should focus on a 

specific portion of the aortic wall, e.g., the anterior wall, which has been shown to stretch 

maximally in a cardiac cycle. In addition, hypertension may cause more severe 

consequences in the anterior aortic wall than in the posterior wall. 

The staining intensity was stronger near the boundaries between the intima, media, 

and adventitia probably due to the longitudinal orientation of SMCs in these regions. 

Generally, proteins of contractile apparatus align along the long axis of spindle-shaped 

SMCs. Therefore, in the aortic cross section, SMCs with longitudinal orientations may be 

immunostained stronger for these proteins due to their higher density in the thickness of 

the sections. 

Quantification of possible patterns of in situ protein expressions will be elucidated 

further by digital image analysis of tissue sections in Dr. S. Liu’s group (Department of 

Computer Science) at Texas A&M University. The down- or up-regulation of SMC 

differentiation markers found by immunohistochemistry should be complemented with 

quantitative data from Western Blot and/or RT-PCR, which will be carried out in Dr. 

Wilson’s group (Department of Medical Physiology). Although immunohistochemistry 

reveals local distributions in proteins, in situ hybridization provides supplemental 

information with regard to the mRNA level of the protein as well as the type of cell 

contributing to the synthesis. Thus, combined immunohistochemistry and in situ 

hybridization may also prove helpful in the future. 

As the intensity of elevated pressure and the frequency of pulse cannot be 
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manipulated in this model, attention needs to be paid to variations between animals as 

well as the pressure profiles of each animal during the experiment. Constriction of 

occluder affects the local hemodynamics, causing turbulence (e.g. eddies) downstream of 

the occluder, which may also complicate the interpretation of results from distal sections. 

Because of the possible involvement of hormonal and nervous stimuli in an animal model, 

establishment of an ex vivo organ culture system may provide complementary data to 

describe pressure-induced G&R. 

The long-term objective of this study is to understand G&R of arteries in response 

to an altered mechanical environment and to elucidate the underlying mechanisms. 

Toward this end, there is a need to develop a mathematical model of pressure-induced 

G&R. The information obtained in this study can facilitate the development of such a 

model by kinetic analysis, which in turn may aid in the design of new treatment strategies 

to prevent maladapted G&R in hypertension and help provide directions for tissue 

engineering of vascular grafts. 
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CHAPTER V 

CHANGES IN INTIMA OF AORTA IN A PIG COARCTATION MODEL 

 

INTRODUCTION 

Although hypertension is a risk factor for atherosclerosis, the precise mechanisms 

by which hypertension induces or aggravates atherosclerosis remain unknown. Based on 

the response to injury hypothesis, atherosclerosis is regarded as a chronic inflammatory 

response by the arterial wall that is initiated by some form of injury to the endothelium76. 

Indeed, endothelial injury77 or dysfunction (e.g., altered NO production78 and an 

associated increased permeability79 and monocyte adhesion80) has been found in 

hypertension and likely plays an important role in the initiation of plaque formation. 

In a monkey aortic-coarctation model81, the arteries proximal to the coarcted site 

showed focal thickening of the intima. If further subjected to a hypercholesterolemic diet, 

the hypertensive monkey developed severe atherosclerotic lesions. It is worth nothing 

that the distribution of the atherosclerotic lesions appeared to be the same as that of the 

intimal lesions in the hypertensive only monkey. Using a combined hypercholesterolemia 

and hypertension rabbit model, Xu et al.82 reported that hypertension induced a 

differential distribution of gene expression for collagen I and III whereas hyperlipidemia 

alone associated with an upregulation of tropoelastin gene expression, which is closely 

associated with the formation of foam cell lesions.  

It is conceivable that the formation of a neointima may predispose atheroma 

formation. Nevertheless, a variety of events including bypass grafting surgery83, balloon 
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angioplasty84,85, and hypertension81 cause endothelial injury and intimal thickening. 

Unfortunately the reasons for such thickening are not well known. An understanding of 

how intimal thickening happens may provide clues to prevent atherosclerosis. 

We hypothesize that malfunctioning endothelial cells produce extracellular matrix 

proteins in the subendothelial space and thereby contribute to the intimal thickening. 

Moreover, the deposition of extracellular proteins under the endothelial layer may 

provide a suitable space for smooth muscle cell (SMC) migration and proliferation.  

Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperon involved 

in the intracellular processing, folding, and assembly of procollagens86. Residing in 

endoplasmic reticulum, Hsp47 transiently binds to newly synthesized procollagen and 

dissociates from it before it is transported to the Golgi complex. Hsp47 knockout mice, 

which are defective in collagen synthesis, display abnormally oriented epithelial tissues 

and ruptured blood vessels and die before 11.5 day postcuitos87. In humans and 

experimental models, regardless of the tissue site or organ, induction of Hsp47 expression 

is always noted in fibrotic processes. In the vascular system, Hsp47 is found in the 

fibrous cap of human atheroma along with the expression of procollagen type I; it is 

regulated by TGF-β1 or FGF-288. 

Soon after release into the extracellular space, first the amino propeptides and 

then the carboxyl propeptides are cleaved from procollagen type I89,90. Therefore, 

antibodies to the amino-terminus or carboxyl-terminus of procollagen type I, which only 

bind to intracellular procollagen type I, can be used to detect sites of active collagen type 

I deposition. This approach has been used to study vascular remodeling91. 
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Positive staining in immunohistochemistry for Hsp47 or procollagen type I also 

indicates sites of active collagen synthesis. Immunohistochemical examination of cross 

sections of the aorta proximal to the occluder used to induce hypertension, particularly 

for Hsp47 and procollagen type I, may provide insight into sources of the accumulated 

matrix proteins in the neointima. 
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METHODS 

Animal Model. Our aortic coarctation model for studying hypertension in the 

mini-pig is described in detail elsewhere38. Briefly, a balloon-expandable occluder is 

pre-filled with a 50% dextrose solution, placed over a Gor-Tex soft tissue patch sheet, 

and secured with suture around the aorta proximal to the diaphragm. The occluder is 

connected via stiff tubing to a vascular access port that is placed subcutaneously in the 

neck, which allows the occluder to be inflated or deflated in the conscious animal. An 

indwelling pressure transducer is placed within the internal thoracic artery or right carotid 

artery and connected to an implanted telemetry unit. Arterial pressure and heart rate can 

then be recorded continuously, but are typically recorded for 30 s every 2 h. The mean 

arterial pressure is defined as the diastolic pressure plus one-third the difference between 

systolic and diastolic pressure, and a daily average mean arterial pressure is used to track 

the condition of each animal. 

To initiate hypertension, the aorta was coarcted approximately 1 week after 

surgery by adding small amounts of dextrose to the occluder over a 7 to 10 day period 

until the mean arterial pressure reached or exceeded 150 mmHg. Data were collected 

from a total of 46 mature (7 to 16 month old) male mini-pigs: 20 normotensive (NT) 

controls and 26 hypertensive (HT). Specifically, aortas were harvested from true controls 

(n = 5) without an occluder, from normotensive animals at 2 (n = 4), 4 (n = 4), 6 (n = 3), 

and 8 (n = 4) weeks following a sham surgery wherein an occluder was implanted but not 

inflated, and from hypertensive animals at 2 (n = 7), 4 (n = 7), 6 (n = 6), and 8 (n = 6) 

weeks after the animal reached its target mean arterial pressure ( > 150 mmHg). All 
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animal care and use was approved by the University Laboratory Animal Care Committee 

at Texas A&M University. 

Preparation of Paraffin Sections. Segments of aorta 3+ cm proximal and distal to 

the occluder that was used to induce the coarctation, and hence hypertension, were 

dissected free of perivascular tissue. The segments were fixed by immersing in 4% fresh 

paraformaldehyde for one hour at room temperature, dehydrated through a series of 

graded alcohols overnight, and embedded in paraffin to enable examination of cross 

sections. Five micron serial sections were cut using a microtome. Finally, control tissues 

(e.g. spleen and skeletal muscle from normotensive pigs) where handled and processed in 

a similar way. 

Histology and Immunohistochemistry. Sections were deparaffinized in pure 

xylene, rehydrated through a series of graded alcohols and rinsed in phosphate buffered 

saline (PBS). Sections were stained with standard H&E for general morphology, 

Herovici’s polychrome stain for delineating collagens92 or immuno-stained for a panel of 

antibodies (Table V-2). Immunohistochemistry was carried out at room temperature in a 

humidity chamber to reduce evaporation. To unmask the antigen site, heat-induced 

epitope retrieval or enzymatic digestion were applied (appendix C). The optimal retrieval 

methods were tested for each antibody (Table V-2). After antigen retrieval, the slides 

were incubated with 3% H2O2 for twenty minutes to block endogenous peroxidase and 

rinsed in PBS. Slides were incubated in blocking serum for 30 minutes to prevent 

non-specific staining. Optimal dilution for each antibody was found by titering. Sections 

were incubated with an appropriately diluted primary antibody for 1 hour at room 
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temperature. After washing in PBS, the diluted biotinylated secondary antibody was 

applied to the sections, incubated for 30 minutes, and again washed in PBS. Sections 

were then incubated with streptavidin-peroxidase conjugate for 30 minutes, washed, and 

incubated with DAB substrate (Vector laboratories) for 3-5 minutes in dark until 

achieving the desired staining intensity. For simultaneous demonstration of two antigens 

in the same section, the section was incubated with the first primary antibody followed by 

ABC procedures with the addition of 0.02% NiCl2 to the DAB substrate. This stains the 

first antigen black. The section was then incubated with the second primary antibody 

followed by ABC procedures using the DAB reaction without NiCl2, giving a brown 

product. The slides were rinsed in tap water, couterstained with hematoxylin, dehydrated, 

and finally coverslipped with Permount (Fisher Scientific). Concerning the 

standardization and reproducibility for future image analysis, the sections were cut in the 

same thickness and stained in the same batch (or the same day if the former is not 

possible). 

Antibodies: Table V-1 shows the antibodies, the vendors, the pretreatment needed 

to unmask the epitope, and the optimal dilutions. 
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TABLE V-1. Primary Antibodies Used in Intimal Immunohistochemistry 

Antibody Source Pretreatment dilution 

SMC differentiation markers 

  SM myosin heavy chain (SMMS-1) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:1000 

  Desmin (DE-R-11) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:200 

  Calponin (CALP) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:500 

  Caldesmon (N5/22) Chemicon 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:2500 

  Smoothelin (R4A) Abcam 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:50 

  SMemb (3H2) Abcam None 1:25,000 

Cell proliferation 

  Ki-67 (MIB-1) Dako 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:200 

Collagen synthesis 

  Hsp47 (M16.10A1) Stressgen 1 mM EDTA, pH 8, MW 30%, 5 min*2 1:4000 

  Carboxyl-terminal propeptide of type I collagen

(SP1.D8) 
DSHB Trypsin, 20 min, RT 1:300 

  Amino-terminal propeptide of type I collagen 

(PCIDG10)  
Chemicon 

Pronase, 20 min, RT 1:750 

DSHB: Developmental Studies Hybridoma Bank, University of Iowa 

 

Lectin staining. Dewaxed, rehydrated sections were soaked in EDTA solution (1 

mM, pH=8.0) and cooked in pressure cooker for two minutes to unmask the epitope. 

After quenching the endogenous peroxidase and blocking non-specific binding sites, the 

sections were incubated with biotinylated lectin from Dolichos Biflorus (DBA)(Vector 

Laboratories, CA). The detection system was the same as that used in the 

immunohistochemistry. 
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RESULTS 

Neointima development. Whereas the intima in normotensive pigs (sham-operated 

and non-operated) did not show remarkable changes, prominent neo-intimal formation 

was found in the aorta proximal to the occluder in most hypertensive animals (Figure 

V-1). The formation of a neointima increased with the progression of the hypertension 

(Table V-1). In four among six 8-week hypertensive pigs, focal atheroma formation was 

also observed in the luminal surface (Figure V-2). The neointima seemed to develop 

irreversibly. 

Expression of Hsp47 and procollagen. From the immunohistochemistry of Hsp47 

(Figure V-3A, 3B), we found in the intimal lesions an active synthesis of collagen 

undergoing in the endothelial cells. Immunostaining with procollagen specifically 

localized the active sites of collagen synthesis to the endothelial cells (ECs). In parallel to 

Hsp47 expression, the procollagen type I appeared to be produced by the ECs. 

With the optimal dilution of primary antibodies, the staining intensity of 

procollagen was stronger in the aortic media proximal to the occluder in hypertensive 

animals than that in the normotensive animal. This variation of staining intensity was 

small among the hypertensive groups; the strongest staining was found in 8-wk 

hypertensive animals, however. 

Smooth muscle cell markers. A variety of SMC and EC markers were used to 

elucidate the origin of the intimal cells in our model. The staining intensity of calponin 

was stronger in aortic EC of HT pigs than in NT pigs. It appeared that intimal cells also 

stained for calponin (Figure V-4). Figure V-5 shows that the aortic ECs in both NT and 
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HT pigs did not stain for caldesmon. Also, while medial SMCs were all positive, the 

intimal cells did not stain for caldesmon. Figure V-6 revealed that smoothelin reactivity 

only existed in aortic medial SMCs, not in aortic ECs in either NT or HT and not in 

intimal cells in HT. The intimal cells expressed non-muscle myosin heavy chain (MHC), 

which was also found in the medial SMCs and EC (Figure V-7). 

Endothelial cells markers. Von Willebrand factor (factor VIII-related antigen) and 

CD-31 are generally employed as endothelial cell markers. Unfortunately, porcine aortic 

endothelial cells have been reported to not or weakly express von Willebrand factor93; 

their expression was inconsistently detected in our study (not shown). On the other hand, 

the anti-human CD-31 antibody (DakoCytomation, CA) did not cross react with porcine 

tissue (demonstrated using unfixed frozen section). Thus, DBA lectin staining and 

immunostaining for eNOS were used to identify the endothelial cells. Figure V-8A shows 

that eNOS-stained cells appeared to infiltrate into the thickened intima. The diffusing 

pattern of DBA staining similarly suggested that endothelial cells may have migrated into 

the subendothelial space (Figure V-8B). 
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Figure V-1. Herovici’s polychromic staining of aortic intima of NT (A) and HT (B) pigs. 
This staining has been claimed to be able to distinguish precollagen (blue) from mature 
collagen (red)92. 
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Figure V-2. Representative microphotography of VVG-stained sections of the aorta from 
an 8-week HT pig. Focal atheroma was found in the luminal surface. Note also that the 
inner media appeared to be very different from the outer media. 
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Figure V-3. Immunohistochemical staining of FFPE porcine aorta with anti-Hsp47 (A and 
B), anti-procollagen (C and D) using ImmPRESS. Serial sections from HT animals (B 
and D) and NT animals (A and C). The lumen is at the bottom of the micrographs. 
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Figure V-3 (Continued) 
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Figure V-4. Immunohistochemical staining of FFPE porcine aorta with anti-calponin (A 
and B), anti-caldesmon (C and D), anti-smoothelin (E and F), and anti-non-muscle MHC 
(G and H) using ImmPRESS. Serial sections from HT animals (B, D, F, and H) and NT 
animals (A, C, E, and G). The lumen is at the bottom of the micrographs. 
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Figure V-4 (Continued) 
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Figure V-4 (Continued) 
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Figure V-4 (Continued) 
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Figure V-5. Immunohistochemical staining of FFPE porcine aorta with anti-eNOS (A) 
using imPRESS and lectin staining for DBA using ABC (B). eNOS stained the 
endothelial cell; it revealed the infiltration of endothelial cells into the neointima. 
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TABLE V-2. Immunohistochemical Findings in Aortic Intima of Hypertensive Pigs 
 

No Treatment IT 
Ki-67 
(EC/IC)

TUNEL
(EC/IC)

Calp 
(EC/IC)

Cald 
(EC/IC)

Smemb 
(EC/IC) 

Smlin 
(EC/IC) 

Desm 
(EC/IC)

1 2H - -/na /na +/na -/na +/na /na -/na 

2 2H + +/+  +/+ -/- +/+  -/- 

3 2H ± -/-  +/- -/- +/+ -/- -/- 

4 2H + +/+  +/+ -/- +/+ -/- -/- 

5 2H - -/na /na +/na -/na +/na -/na -/na 

6 2H - -/na /na ±/na -/na +/na -/na -/na 

7 2H - -/na /na +/na  +/na -/na -/na 

12 4H ±   +/+ +/± +/+ -/- -/- 

13 4H +   +/+ +/± +/+ -/- -/- 

14 4H ±     +/± -/- -/- 

15 4H +   +/- +/- +/± -/- -/- 

16 4H ±   +/+ +/± ±/± -/- -/- 

17 4H ±   +/+ +/± ±/- -/- -/- 

18 4H ±   +/+ +/±  -/- -/- 

23 6H - -/na /na +/na +/na +/na -/na -/na 

24 6H ±   +/- +/- +/± -/- -/- 

25 6H - -/na /na +/na +/na +/na -/na -/na 

26 6H +   +/- +/± +/+ -/- -/- 

27 6H +   +/± +/+  -/- -/- 

28 6H +   +/± +/+ +/± -/- -/- 

32 8H +   +/- +/± +/±  -/- 

33 8H +   +/± +/± +/± -/- -/- 

34 8H +   +/+ +/+ ±/- -/- -/- 

35 8H +   +/± +/+ ±/- -/- -/± 

36 8H +     +/+ -/- -/- 

37 8H ±   +/- +/± +/+ -/- -/- 

Intensity of staining was scored from ++ (strong staining) to – (absence of staining) with the order: ++ > + 
> ± > -. IT: intimal thickening; Non-M MHC: non-muscle myosin heavy chain; Smlin: Smoothelin; EC: 
endothelial cell; IC: intimal cell. 
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TABLE V-3. Immunohistochemical Findings of Aortic Intima of Surgical and True 
Control Pigs 
 

No Treatment IT 
Ki-67 
(EC/IC)

TUNEL
(EC/IC)

Calp 
(EC/IC)

Cald 
(EC/IC)

Smemb 
(EC/IC) 

Smlin 
(EC/IC) 

Desm 
(EC/IC)

1 2N - -/na /na +/na +/na +/na  -/na 

2 2N - -/na /na     -/na 

3 2N + +/+     -/- -/- 

4 2N - -/na /na +/na +/na -/na -/na -/na 

5 4N -  /na +/na +/na   -/na 

6 4N -  /na +/na +/na   -/na 

7 4N -  /na   +/na -/na -/na 

8 4N -  /na   +/na -/na -/na 

9 6N - -/na /na    -/na -/na 

10 6N - -/na /na ±/na ±/na +/na -/na  

11 6N - -/na /na +/na +/na +/na  -/na 

12 8N - -/na /na   +/na  -/na 

13 8N ±      -/- -/- 

14 8N +   +/- +/±   -/- 

15 8N ±   ±/± ±/± +/± -/- -/- 

16 SC - -/na -/na     -/na 

17 SC - -/na -/na     -/na 

18 SC - -/na -/na     -/na 

19 UC - -/na -/na     -/na 

20 UC - -/na -/na     -/na 

See footnotes to Table V-1. SC: Control animals with telemetry implanted but not occluder. UC: 
Un-operated control animals. 
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DISCUSSION 

Wall stress and stretch higher than homeostatic levels, produced by persistent 

elevated intraluminal pressure, have been hypothesized to be major contributing factors 

to the localization of atherosclerotic lesions94. Increased wall stress and stretch cause 

endothelial injury, lipid accumulation, and SMC proliferation, all of which are essential 

steps in atherogenesis94. The intimal thickening observed in this study may likewise be 

due to the increased wall stress and stretch proximal to the occluder and may predispose 

atheroma formation. 

Consistent with intimal thickening found proximal to coarctations in human 

aorta95, a neointima also developed in the aorta proximal to the occluder in most HT pigs. 

In contrast to prior findings that the intimal SMCs were non-proliferating95, however, we 

found Ki-67 staining in the intimal cells. In another study, neointima formation was 

induced by balloon endothelial denudation, and numerous Ki-67 stained cells were found 

in the intima within two weeks although at four weeks they were seen only rarely in the 

surface layer of the intima85. The missing proliferating cells in the coarctation model95 

may be due to data collection at the wrong time; this emphasizes the importance of 

knowing time courses of these changes. 

That the endothelial cells in the intimal lesions stained with Hsp47 and 

procollagen indicated that the endothelium may be an active matrix producer contributing 

to neointima formation. It was shown as early as 1978 that pig aortic endothelial cells can 

synthesize, in addition to basement membrane type collagen (type IV), the interstitial 

collagens (type I and III)96. The type I collagen was found to promote phenotypic 
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transition of cultured SMCs from a contractile to a synthetic state97. That is, the 

subendothelial deposition of type I collagen created a suitable space for SMC migration, 

proliferation, and for their synthesis of matrix. Beside the possible contribution of EC 

released matrix proteins, the secretion of a soluble mediators by dysfunctioning, injured, 

or proliferating endothelial cells has also been found to stimulate intimal cell proliferation 

either directly or indirectly in the organ culture experiments98. 

To further clarify if the secreted collagen was laid down in the subendothelial 

space, the composition of the extracellular matrix in the neointima needs to be 

determined specifically by immunohistochemistry for collagen (type I and III). 

Numerous cells embedded with in large quantities of extracellular matrix proteins 

were observed in the neointima. The origin of the intimal cells has elicited numerous 

debates, and many hypotheses have been proposed99. In the previous chapter, 

immunohistochemistry was used to study SMC differentiation in the media. Referring to 

Tables IV-3 and IV-4, we found that endothelial cells also express calponin, SM22α, and 

non-muscle MHC which are differentiation markers for the contractile phenotype of SMC. 

Similar results have been reported by Borrione and colleagues who found that ECs 

expressed non-muscle MHC100. Other differentiation markers claimed to be exclusively 

expressed in SMCs (e.g. calponin, metavinculin, and MHC isoforms) have also been 

found in pericytes and platelets101,102. More interestingly, the intimal cells showed an 

expression pattern for SMC differentiation markers similar to that for the endothelial cells. 

The infiltration of eNOS-stained cells into subendothelial layer may suggest 

transdifferentiation of ECs into intimal cells, which has been demonstrated during 
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embryonic development103,104 and primary cultures of mature vascular endothelial 

cells105. 

In this study, an alternative hypothesis for the formation of a neointima has been 

introduced and validated in our coarctation model. The endothelial cells in HT may 

contribute to intimal thickening in two ways. They produce collagen type I, which 

appears to be released into the subendothelial space; on the other hand, they may 

transdifferentiate into SMCs in the neointima. 
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CHAPTER VI 

DESIGN OF A UNIAXIAL TISSUE CULTURE DEVICE 

 

INTRODUCTION 

 Circumferential tensile stress has been recognized to play a key role in growth 

and remodeling of arterial media; the media tends to restore the homeostatic stress by 

increasing its thickness when the stress field is altered. Stretching cultured SMCs has 

provided great insight into the possible mechanism106-108. Alternatively, experimental 

animal models of hypertension also give valuable information on the effects of tensile 

stress. An advantage of cultured cell systems is the easy access of cell lines, if primary 

culture is not required, and the ease of controlling culture conditions (e.g., media 

components, pH, and temperature). That the cells were grown on two-dimensional 

surfaces, however, is different from their in situ living environment with the exception of 

the endothelial cells. Animal models provide the most realistic environment to study cells, 

tissues, or organs. The main drawback of this system, however, is the complexity in the 

animal body; e.g., the neural-hormonal contributions sometimes complicate the data 

interpretation. Organ culture systems, in contrast, preserve cell-cell and cell-ECM 

interactions in controllable culture conditions, and thereby represent another outstanding 

tool for studying the mechanotransduction involved in medial growth and remodeling. 

We hypothesize that the circumferential stress is the main mechanical force 

causing medial thickening in hypertension. The isolated effect of circumferential stress 

on the G&R of a vessel wall is unclear despite intensive study of cultured vascular cells 
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under cyclic strains. To study the effect of circumferential stress alone, a uni-axial 

stretcher, which is capable of stretching aortic ring segments, was designed and built. 

Uni-axial stretching mimics the circumferential stretching in the vessel wall, 

albeit in the absence of axial loads. The oscillating movement, translated from a cam 

driven by a gear motor, provides the cyclic stretching to the attached aortic ring segment. 

The magnitude of the stretch is adjusted by the original length or the axis offset of the 

cam whilst the frequency of the stretching is maintained at 1 Hz by controlling the power 

input of the motor. The device can apply cyclic or static strains to the specimen to study 

the effects of pulsatility. 

With intact cell-cell and cell-ECM interactions, mechanotransduction can be 

examined more realistically. For example, one could focus on protein expression of egr-1 

and fos-1 to investigate the immediate mechanotransduction. Long-term organ culture 

can be maintained for studies of medial growth and remodeling, including cell 

death/proliferation and turnover of the structural proteins. The time course of the changes 

can be recorded. 
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METHODS 

Stretcher. The uni-axial stretcher (Figure VI-1) was built partly with reference to 

Yost109. It was made of materials proved to be non-toxic to cells and capable of 

autoclaving. Polycarbonate was chosen to build the chamber for its good optical qualities 

and high melting point. Poly-ether-etherketone (PEEK) and polytetrafluorethylene (PTFE) 

were also used to build the parts inside the chamber concerned with easy modification, 

longevity under cyclic heating and cooling, and their special material properties. The 

joints of the chamber were sealed with High Temperature RTV Silicone (Permatex part 

#81409) and Nylon screws were used to assemble the chamber; these were done to 

prevent cracking of the polycarbonate during autoclave. Four latches were used to tighten 

the lid. Between the lid and the chamber is an o-ring of 1/4” diameter. The gear motor 

can be removed so that the culturing chamber can be autoclaved easily; the moisture can 

shorten its life. The motor is driven by an AC power supply. 
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Figure VI-1. Experimental apparatus for uni-axial stretching of the aorta. 
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FUTURE WORK 
 

Preparation of frozen sections. The aortic ring segments will be fixed in fresh 4% 

paraformaldehyde at RT for one hour and soaked in 10% sucrose PBS solution until fully 

immersed. The tissues will then be embedded in optimal cutting temperature (OCT) 

compound in plastic molds and snap-frozen in isopentane cooled by liquid nitrogen. 

Sections (7 μm) will be cut in cryostat at -20°C and attached to the Superfrost Plus slides 

(Fisher Scientific). The slides will be air-dried for 20 minutes. Before immuno- or 

histological staining, OCT will be removed by washing in 70% alcohol for several times. 

Histology and immunohistochemistry. Immunohistochemistry for egr-1 and 

NFκ-B will be conducted to examine the in situ early gene activations at the onset of 

stretching. The matrix protein deposition and the potential changes in wall thickness will 

be evaluated by histological staining (H&E, PSR, and VVG). 

Elastin degradation. The culture medium will be analyzed for the metabolites of 

the matrix proteins to examine their turnover. Medium levels of elastin-peptides, a maker 

of elastolysis, will be determined using an inhibition type of enzyme-linked 

immunosorbent assay (ELISA). The assay is performed by incubating 110 μL each of 

antiserum and antigen dilutions (e.g., cultured medium and standards) in round-bottom 

microtiter wells to equilibrium (> 8 hr) at 4°C. The competition reaction mixture is then 

transferred to plates coated with human aortic elastin (100 ng/well) and incubated for 30 

min at 4°C. After rinsing away the unbound antibodies, the peroxidases-goat-antirabbit 

IgG is added and incubated for 1 hr. O-phenylenediamine is used as a substrate. The 

optical density at 492mm is read with a spectrophotometer. The concentrations of 
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elastin-peptide are calculated from a standard curve using quadratic regression analysis. 

Collagen synthesis and degradation: We will measure medium levels of 

carboxyterminal propeptide of procollagen type I (PIP) and  pyridinoline crosslinked 

telopeptide domain of collagen type I (CITP) as a marker of type I collagen synthesis and 

degradation, respectively. Medium levels of PIP and CITP is determined by the 

radioimmunoassay (RIA) methods using antisera specifically directed against the 

carboxy-terminal peptide procollagen type I and the carboxy-terminal telopeptide of 

collage type I, respectively. The assay is performed by incubating 100 μL aliquots of 

antigen dilution (e.g., cultured medium and standards) with 200 μL of tracer solution 

(125I-labeled PIP or 125I-labeled CITP, about 50000 cpm) and 200 μL of diluted antiserum 

against PIP (or CITP) in a microcentrifuge tube for 2 hours at 37°C. Then 500 μL of the 

solid-phase secondary-antibody suspension is added to each tube and vortex-mixed. After 

30 minutes at RT, the bound fraction is separated by centrifugation (2000g, 15 mins, 4°C). 

The supernatant containing the unbound tracer is decarded and the radioactivity of the 

precipitate containing the bound tracer is counted with a Gamma counter. 

Bromodeoxyuridine (BrdU) labeling: The aortic ring segment will be exposed to 

10-5 M BrdU in the medium for 3-6 hours. The tissue will then be either fixed 

immediately or fixed after another 24 hours of culturing in a new medium containing no 

BrdU. Either frozen sections or paraffin sections will be prepared. Possible incorporation 

of BrdU into the cells will be demonstrated by immunohistochemical staining for BrdU. 
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EXPECTED RESULTS AND LIMITATIONS 
 

Instead of trying to mimic the complicated physiological environment, the 

purpose of this novel device is to study the isolated effect of tensile stress on the G&R 

of the aorta. The center portion of the segment will be dissected for analysis while the 

area near the clamps is avoided. Due to the natural curvature of the arterial wall, 

stretching the aorta uni-axially in a plane may cause bending, that is the extension of 

tissue in the inner wall and compression in the outer wall. We will thus focus on the 

middle media, in which the geometry remains close to its normal state when the 

segment is stretched. Actually, it may be interesting to compare the G&R occurring in 

the inner and outer walls. Attention also needs to be paid to the absence of axial loading, 

which has been shown to play an important role in arterial G&R. Similarly, the 

flow-induced endothelial contribution to the G&R is also overlooked in this system. 

Nevertheless, the endothelial cells will be subjected to circumferential stretch and the 

effect of endothelial denudation can be tested. We have made every effort in designing 

this device (e.g., sealing the shaft), to minimize the chance of contamination, which is 

essential for long-term G&R. In addition, to maintain long-term viability of an organ ex 

vivo for G&R to happen, the culture conditions, especially culture medium, have to be 

well selected.  

This novel device can also be used to uni-axially stretch cell-seeded membranes 

with minor modifications, and will be proved to be useful in study mechanotransduction 

at both tissue and cellular levels. 
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CHAPTER VII 

CONCLUSIONS AND RECOMENDATIONS 

 

Through decades of research, we have gained much more understanding of the 

cardiovascular system, what it consists of, how it functions, and how it deteriorates due to 

aging or diseases. Not until recently, however, has the emergence of soft tissue 

biomechanics allowed us to investigate deeper the biological responses in such a dynamic, 

complicated mechanical environment. Indeed, a better description of the mechanical 

environment at cell, tissue, and organ levels is important to elucidate the mechanobiology 

involved in, say, hypertension-induced G&R. In this study, we found changes in 

mechanical property of the basilar artery as well as its histology due to the development 

of hypertension. With multiple cell markers, we revealed the SMC phenotypic 

modulation in the aortic media due to hypertension and its relation to cell proliferation 

and matrix protein deposition. The primary findings are listed as follows: 

1. The pressure-stretch curves for the basilar artery were influenced greatly by the 

choice of reference configuration. The axial stretch at which the cyclic inflation tests 

were carried out also affected the pressure-stretch curves (i.e., mechanical behavior). 

2. Although changes in inner radius, outer radius, media area and luminal area were not 

significant in hypertensive basilar arteries, the wall thickness and the ratio of inner 

radius to wall thickness were greater in the hypertensive basilar artery than in the 

normotensive artery. 
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3. Both structural stiffness and material stiffness were increased for hypertensive basilar 

arteries. The circumferential stress in the media of hypertensive basilar artery was 

normalized by two week after induction of hypertension, comparable to that of 

normotensive basilar artery. 

4. The increased aortic medial thickness observed in hypertensive animals compared to 

normotensive pigs was due to hyperplasia of SMCs and accumulation of extracellular 

matrix proteins, which were accompanied by a phenotypic modulation of SMCs. The 

increased interlamellar thickness, collagen fibers, and the thickness of elastic lamina 

found in the inner media of hypertensive animals may be associated with the gradient 

of stress decreasing into the outer media. SMC proliferation, if any, was found to be 

evenly distributed across the media, however. In cases showing increased 

proliferation and matrix protein synthesis, the SMC contractile markers were 

down-regulated whereas the SMC synthetic markers were up-regulated. 

5. The turnover rate of endothelial cells subjected to hypertension increased. 

Proliferation of intimal cells appeared to be independent to that of media SMC cells. 

6. The endothelial cells appeared to actively synthesize collagen in the hypertensive 

aorta. The neosynthesized collagen (I) may release into subendothelial space and 

contribute to the thickening of the intima. 

7. It appeared that the vascular remodeling of basilar artery and aorta has almost 

completed in two weeks either in study of mechanical properties of the basilar arteries 

or in study of spatial and temporal changes in SMC phenotypic heterogeneity. We 

may try a closer time point such as one-week and see if these changes happen as early 
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as one week. The medial degeneration-like lesions found in the same group of pig 

suggested that eight week is close to the limit of this model. 

Finally, although much has been learned in this study, the complexity of the 

response of different vascular beds due to hypertension is great, and much remains to be 

done. For example, listed here are five immediate needs that should be pursued:   

1. Information about the composition of the arterial wall and the potential staining 

patterns needs to be extracted from (immuno-)histological sections in both the basilar 

artery and aorta, which when coupled with stress-strain data could lead to a 

constituent-based constitutive relation for arterial mechanical behavior and could 

provide clues of targets for medical treatments. The time course of changes needs to 

be analyzed. 

2. The neointimal formation induced by hypertension may accelerate atherosclerosis if 

combined with other risk factors. More information about the origin of the neointimal 

cells and how they are activated is needed, bearing in mind that the underlying 

mechanism may vary depending on differences between injury-models. 

3. Migration of cells, either ECs or SMCs, requires degradation of the basement 

membrane. The turnover of basement membrane, which may involve MMPs, should 

be investigated for more clues in neointima formation. 

4. Besides the direct influence of stress, autocrine/paracrine regulations involving 

growth factors such as PDGF, TGF-β1, and FGF are likely to play a part in the medial 

G&R and the neointima formation. Knowledge of spatial and temporal expression of 
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the key growth factors due to the development of hypertension will prove useful in 

medical intervention. 

5. Our novel pig aortic coarctation model allows us to reverse the hypertension. Since 

the adaptation appeared to finish quickly, it is critical to know if the G&R is 

reversible by lowering the blood pressure. If not, the last minute before which the 

G&R is still reversible is of importance. 

Clearly, much awaits for us to discover. 
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APPENDIX A 

LEAST SQUARES SOLUTIONS FOR DEFORMATION GRADIENT 

 

Basically, tracking three markers provides sufficient information to determine a 

2-D deformation gradient F mapping a line element XΔ  in the referential configuration 

0β  to the corresponding line element xΔ  in the deformed configuration β , i.e. XFx Δ=Δ . 

Details can be found in Ling39. Briefly, in a triplet, A, B, and C refer to the markers in the 

reference configuration, whereas a, b, and c are in any deformed configuration. The 

three markers define two independent vectors (i.e., ABV , ACV  in the reference 

configuration, abv , and acv  in the deformed configuration). Assuming that the same F  

maps ABV  and ACV  in the reference configuration to abv  and acv  in the current 

configuration, respectively. That is, 
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These relations yield four equations of four unknown: 11F , 11F , 11F , 11F , which 

exists an exact solution. 

However, what if more than three markers are available for analysis? Least 

square solution which represents an approach to best-fit the data in an overdetermined 

system thus comes to our minds. We shall demonstrate its feasibility by looking at the 

following example. 

If the deformation gradient F  is independent of X  for the body of interest (i.e., 

homogeneous deformation), x  can be given by 

cFXx +=  

where vector c  represents a rigid translation of the whole body. Therefore, for marker A, 

we can express its deformed position vector in the matrix form as follows: 
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We can rearrange the matrix operation: 
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For instance, if we have six markers in track, we can expand the matrix easily. 

The subscript refers to the markers. 
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Basically, to be able to solve six unknowns (4 from F  and 2 from c ), it 

requires only six equations, that is, three markers. Apparently we have more than we 

need. Still we can get a least square solution by calculating the pseudo-inverse of [ ]A ; 

i.e., [ ] [ ][ ]bAY pinv= . 

Following is a Matlab® code for calculating the deformation gradient and the 
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associated principal Green strains based on position vectors of six markers in the 

deformed configuration and reference configuration. 

 
% R6r('reference_f','current_f', r1,r2,r3,r4,r5,r6, p1,p2,p3,p4,p5,p6) 
% For a homogeneous deformation => x = FX + c, where x is the position vector in the current 
configuration, 
% X that in the reference configuration, F the deformation gradient, and c a constant vector. 
 
function R6r(ref_file, cur_file, r1,r2,r3,r4,r5,r6, p1,p2,p3,p4,p5,p6) 
 
X=load(ref_file); 
X0=X(1,:); 
% 1st row in reference data 
ZeroF=X(1,26);  
% The force in the reference configuration should be zero; used as a simple calibration. 
 
A=zeros(12,6); 
 
A(1,1)=X0(2*r1-1);A(1,2)=X0(2*r1);A(1,5)=1.0; 
A(2,3)=X0(2*r1-1);A(2,4)=X0(2*r1);A(2,6)=1.0; 
A(3,1)=X0(2*r2-1);A(3,2)=X0(2*r2);A(3,5)=1.0; 
A(4,3)=X0(2*r2-1);A(4,4)=X0(2*r2);A(4,6)=1.0; 
A(5,1)=X0(2*r3-1);A(5,2)=X0(2*r3);A(5,5)=1.0; 
A(6,3)=X0(2*r3-1);A(6,4)=X0(2*r3);A(6,6)=1.0; 
A(7,1)=X0(2*r4-1);A(7,2)=X0(2*r4);A(7,5)=1.0; 
A(8,3)=X0(2*r4-1);A(8,4)=X0(2*r4);A(8,6)=1.0; 
A(9,1)=X0(2*r5-1);A(9,2)=X0(2*r5);A(9,5)=1.0; 
A(10,3)=X0(2*r5-1);A(10,4)=X0(2*r5);A(10,6)=1.0; 
A(11,1)=X0(2*r6-1);A(11,2)=X0(2*r6);A(11,5)=1.0; 
A(12,3)=X0(2*r6-1);A(12,4)=X0(2*r6);A(12,6)=1.0; 
 
Data=load(cur_file); 
 
[n,m]=size(Data);    % n= the number of rows, m= the number of columns 
 
for i=1:n 
    B(1)= Data(i,p1*2-1);B(2)= Data(i,p1*2); 
    B(3)= Data(i,p2*2-1);B(4)= Data(i,p2*2); 
    B(5)= Data(i,p3*2-1);B(6)= Data(i,p3*2); 
    B(7)= Data(i,p4*2-1);B(8)= Data(i,p4*2); 
    B(9)= Data(i,p5*2-1);B(10)= Data(i,p5*2); 
    B(11)= Data(i,p6*2-1);B(12)= Data(i,p6*2); 
     
    Y=pinv(A)*B;         %Y(1)=F11, Y(2)=F12, Y(3)=F21 ,Y(4)=F22, Y(5)=c1, Y(6)=c2 
  
    C(1,1)=Y(1)^2+Y(3)^2;                   %C_11 
    C(2,2)=Y(2)^2+Y(4)^2;                   %C_22 
    C(1,2)=Y(1)*Y(2)+Y(3)*Y(4);                 %C_12 
    C(2,1)=C(1,2); 
    Out(i,1)=0.5*(Y(1)^2+Y(3)^2-1.0);                   %E_11 
    Out(i,2)=0.5*(Y(2)^2+Y(4)^2-1.0);                   %E_22 
    Out(i,3)=0.5*(Y(1)*Y(2)+Y(3)*Y(4));           %E_12 
    Out(i,4)=Data(i,25);                                %Pressure 
    Out(i,5)=Data(i,26);    %Force 
     
    [V,D]=eig(C); 
    inv1(i)=trace(C)-2; 
    inv2(i)=det(C)-1;   
         
    Vec(i,1)=acos(V(1,1)); 
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    Vec(i,2)=asin(V(2,1)); 
    Vec(i,3)=acos(V(1,2)); 
    Vec(i,4)=asin(V(2,2)); 
    
    if (Vec(i,1)<0.7854)|(2.3562<Vec(i,1))   % theta < pi/4 or 3pi/4 < theta 
        Val(i,1)=D(1,1);     % axial 
        Val(i,2)=D(2,2);     % tangential 
    else 
        Val(i,2)=D(1,1); 
        Val(i,1)=D(2,2); 
    end 
end 
 
R1=(sqrt(Val(:,1)))';    % U = sqrt(C) 
R2=(sqrt(Val(:,2)))'; 
E1=((Val(:,1))'-1)/2;       % R^2 = 2E+1 
E2=((Val(:,2))'-1)/2; 
P=(Out(:,4))'; 
F=(Out(:,5))'-ZeroF; 
 
figure(1); 
 
subplot(3,3,3); 
plot(P,R1); 
axis([0 125 1 1.35]); 
xlabel('Pressure (mmHg)'); 
ylabel('Principal stretch 1'); 
ps1=[P;R1]; 
out_f1=strcat(cur_file,'.rr1');   % Name the output file 
dlmwrite(out_f1,ps1,'\t'); 
 
subplot(3,3,6); 
plot(P,R2); 
axis([0 125 1 1.35]); 
xlabel('Pressure (mmHg)'); 
ylabel('Principal stretch 2'); 
ps2=[P;R2]; 
out_f2=strcat(cur_file,'.rr2');   % Name the output file 
dlmwrite(out_f2,ps2,'\t'); 
 
subplot(3,3,2); 
plot(P,E1); 
axis([0 125 0 0.35]); 
xlabel('Pressure (mmHg)'); 
ylabel('Principal strain 1'); 
Strain1=[P;E1]; 
out_f3=strcat(cur_file,'.re1');   % Name the output file 
dlmwrite(out_f3,Strain1,'\t'); 
 
subplot(3,3,5); 
plot(P,E2); 
axis([0 125 0 0.35]); 
xlabel('Pressure (mmHg)'); 
ylabel('Principal strain 2'); 
Strain2=[P;E2]; 
out_f4=strcat(cur_file,'.re2');   % Name the output file 
dlmwrite(out_f4,Strain2,'\t'); 
 
subplot(3,3,1); 
plot(Out(:,4),Out(:,1)); 
axis([0 125 0.0 0.35]); 
xlabel('Pressure (mmHg)'); 
ylabel('Exx'); 
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subplot(3,3,4); 
plot(Out(:,4),Out(:,2)); 
axis([0 125 0 0.35]); 
xlabel('Pressure (mmHg)'); 
ylabel('Eyy'); 
 
subplot(3,3,7); 
plot(Out(:,4),Out(:,3)); 
axis([0 125 -0.15 0.15]); 
xlabel('Pressure (mmHg)'); 
ylabel('Exy'); 
 
subplot(3,3,8); 
plot(P,F); 
axis([0 125 0 5]); 
xlabel('Pressure (mmHg)'); 
ylabel('Force'); 
ps1=[P;F]; 
out_f1=strcat(cur_file,'.f');   % Name the output file 
dlmwrite(out_f1,ps1,'\t'); 
 
subplot(3,3,9); 
plot(Out(:,4),Vec(:,1)/3.14159*2); 
axis([0 125 0 2]); 
xlabel('Pressure (mmHg)'); 
ylabel('theta'); 
 
figure(2); 
 
subplot(2,1,1); 
plot(P,inv1); 
axis([0 125 0 1.5]); 
xlabel('Pressure (mmHg)'); 
ylabel('tr(C)-2'); 
ps1=[P;inv1]; 
out_f1=strcat(cur_file,'.inv1');   % Name the output file 
dlmwrite(out_f1,ps1,'\t'); 
 
subplot(2,1,2); 
plot(P,inv2); 
axis([0 125 0 1.5]); 
xlabel('Pressure (mmHg)'); 
ylabel('det(C)-1'); 
ps2=[P;inv2]; 
out_f2=strcat(cur_file,'.inv2');   % Name the output file 
dlmwrite(out_f2,ps2,'\t'); 
 
clear all; 
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APPENDIX B 

GENERAL INFORMATION OF EXPERIMENTAL ANIMALS 

 

TABLE B-1. Clinical Details of Hypertensive Pigs 

No 
Euth. Date 
(yy-mm-dd)

Treatment
Age 

(month)

Weight 

(kg) 

Averaged MAP 

(mmHg) 

Pulse Pressure

(mmHg) 

1 03-01-08 2H 10 37 158 52 

2 03-03-24 2H 9 37 158 57 

3 03-04-25 2H 12 30 152 36 

4 04-05-05 2H 7 40 156 56 

5 04-06-25 2H 8 42 155 40 

6 04-10-01 2H 10 36 153 51 

7 04-10-28 2H 11 50 145 46 

12 02-09-25 4H 11 41 182 62 

13 02-11-25 4H 13 46 167 38 

14 02-12-04 4H 15 41 167 49 

15 02-12-11 4H 9 41 179 57 

16 03-01-29 4H 11 31 173 66 

17 03-02-21 4H 12 36 153 44 

18 04-10-25 4H 11 48 175 60 

23 03-05-21 6H 7 32 147 44 

24 03-06-09 6H 9 40 179 37 

25 03-06-18 6H 10 33 174 49 

26 04-03-31 6H 9 50 188 58 

27 04-04-07 6H 10 52 161 58 

28 04-11-30 6H 12 34 154 49 

32 03-04-02 8H 13 34 159 41 

33 03-04-18 8H 11 40 185 41 
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TABLE B-1 (Continued) 

No 
Euth. Date 
(yy-mm-dd)

Treatment
Age 

(month)

Weight 

(kg) 

Averaged MAP 

(mmHg) 

Pulse Pressure

(mmHg) 

34 03-05-02 8H 11 42 174 56 

35 03-06-11 8H 9 34 205 67 

36 04-02-25 8H 9 104 203 69 

37 04-11-02 8H 13 50 161 60 
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TABLE B-2. Clinical Details of Surgical and True Control Pigs  

No Euth. Date Treatment
Age 

(month)

Weight 

(kg) 

Averaged MAP 

(mmHg) 

Pulse Pressure

(mmHg) 

1 02-08-29 2N 10 43 131 31 

2 04-06-14 2N 8 42 123 28 

3 04-06-16 2N 8 32 134 49 

4 04-08-31 2N 10 30 128 38 

5 02-11-13 4N 13 39 N/A 

6 04-02-11 4N 9 110 141 37 

7 04-06-21 4N 8 34 135 41 

8 04-08-04 4N 10 32 129 48 

9 03-02-12 6N 11 30 134 28 

10 04-06-30 6N 8 40 120 39 

11 05-03-12 6N 10 36 118 36 

12 03-03-26 8N 12 26 130 40 

13 03-05-07 8N 11 37 138 44 

14 03-08-28 8N 16 34 134 41 

15 03-11-21 8N 13 55 133 43 

16 04-02-18 SC 8 80 132 38 

17 04-03-03 SC 10 110 125 32 

18 04-03-10 SC 9 35 N/A N/A 

19 03-08-26 UC 10 40 140 33 

20 04-11-15 UC 12 32 N/A N/A 

SC: surgery control; UC: un-operated control; N/A: not available. 
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APPENDIX C 

PROTOCOL FOR VERHOEFF’S VAN-GIESON (VVG) STAIN 

 

Solutions: 
 
Verhoeff’s Elastic Stain: Stable for 2-3 weeks 
 
Prepare fresh each time. Add in order and mix between additions: 
A – 120 mL; B – 80 mL; C – 40 mL 
 
A. 2 % Hematoxylin in 95 % ethanol 
 

Hematoxylin 20 g
95 % ethanol 1000 mL

 
B. Acidified ferric chloride 
 

FeCl3•6H2O 12.4 g
Distilled water 495 mL
Conc. HCl 5 mL

 
C. Iodine: 2 % I2 in 4 % KI aq. solution   
 

I2 5 g
KI 10 g
Distilled water 250 mL

 
1 % Ferric Chloride: Dilute from 10% ferric chloride. (25:225) 
 
10 % Ferric Chloride (store in the refrigerator) 
 
FeCl3•6H2O 50.0 g
Distilled water 500 mL
 
5 % Sodium thiosulfate 
 
Sodium Thiosulfate 12.5 g
Distilled water 250 mL
 
Van Gieson’s solution 
 
1 % aqueous acid fuchsin 15 mL
Saturated aq. picric acid 235 mL
Add some solid picric acid to assure saturation. (allow to stand 24 hours before use) 
 
Procedure: 
 
1. Deparaffinize sections and hydrate to dH2O. 
2. Place sections in Verhoeff’s elastic stain for 60 min. 
3. Wash in a few changes of dH2O until the water becomes clear. 
4. Differentiate in 1% ferric chloride solution. (Generally 10 dips are sufficient for FRESH solutions.)  Check 

microscopically.  Elastic fibers are black and sharply fined; the background is gray.  If the 
sections are differentiated too far, restain. 

5. Rinse in dH2O twice to dilute the ferric chloride ASAP. 
6. Place in 5% sodium thiosulfate solution for 1 min. 
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7. Rinse in dH2O. 
8. Wash in running tap water for 5 min. 
9. Counterstain with van Gieson’s solution for 1 min (Note: Do not prolong staining as picric acid will 

differentiate the elastic stain further) 
10. Dehydrate rapidly in four changes of absolute alcohol (1st: 20 dips; 2nd: 30 dips; 3rd: 1 min; 4th: 1 min), 

clear in xylene, and mount in Permount. (Note: prolonged immersion in alcohol will slowly extract picric acid, 
but not acid fuchsine; end up losing one color)  

 
Result: 
 
Elastic fibers and nuclei – blue-black to black; collagen – red; other tissue elements – yellow. 
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APPENDIX D 

PROTOCOL FOR PICRO-SIRIUS RED (PSR) STAIN 

 

Solutions: 
 
0.2 % Phosphomolybdic Acid (stable for 6 months) 
 
Phosphomolybdic acid 0.5 g
Distilled water 250 mL
 
 
0.1 % picro-Sirius red in saturated picric acid solution 
 
Sirius red F3BA (C.I. 35780) 0.5 g
Saturated aq. picric acid 500 mL
Add some solid picric acid to assure saturation. (allow to stand 24 hours before use) 
 
 
Procedure: 
 
11. Deparaffinize sections and hydrate to dH2O. (Thorough washing of sections prior to staining is essential. 

Rehydration, i.e., adsorption of water molecules by the charged groups of tissue structures, causes swelling, which permits the 
large Sirius red F3BA molecule to penetrate connective tissue fibers) 

12. Place sections in 0.2% phosphomolybdic acid for 1 min. 
13. Rinse in dH2O. 
14. Place sections in 0.1% picro-Sirius red F3BA solution for 60 min. 
15. Dehydrate rapidly in four changes of absolute alcohol (1st: 20 dips; 2nd: 30 dips; 3rd: 1 min; 

4th: 1 min), clear in xylene, and mount in Permount. (Note: prolonged immersion in alcohol will slowly 
extract picric acid)  

 
Result: 
 
Stains fibrillar collagen (I) and (III): 
Under normal light – collagen: red 
Under polarized light – Collagen (I): yellow; collagen (III) green 
 
Note: For the study of collagens (II) and (III), it is essential to use an intense light. 
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APPENDIX E 

PROTOCOL FOR ANTIGEN RETRIEVAL 

 

Formalin fixation forms protein cross-links that usually mask the antigenic sites 

in the tissues, causing weak or false negative staining of immunohistochemistry. This 

issue can largely be resolved by performing antigen retrieval (AR) prior to incubation of 

primary antibody. For example, the sections can undergo heat-induced epitope retrieval 

(HIER) to unmask the antigenic sites. Unfortunately, no universal protocol works for all 

antigens; trial and error is thus necessary to determine the optimal AR condition for each 

antigen. Two types of procedures are regularly employed on formalin-fixed 

paraffin-embedded (FFPE) sections to reveal the antigenic sites: HIER and enzymatic 

digestion. 

HIER. Three retrieval solutions were tried: (1) 1 mM EDTA solution (pH=8.0), 

(2) 10 mM citrate buffer (pH=6.0), and (3) 10 mM Tris buffer with 1 mM EDAT 

(pH=9.0). Heat could either be provided by microwave or pressure cooker. Generally, 

2*5-minute microwaving or 2-minute pressure cooking will do the job. The slides were 

allowed to cool for 20 min after these treatments. 

Enzymatic digestion. Five enzymes were tried: (1) trypsin (Sigma) at 37°C, (2) 

pepsin (Dako) at 37°C, (3) pronase (Dako) at room temperature, (4) proteinase K (Dako) 

at room temperature, and (5) proteolytic enzyme (Dako) at room temperature. The 

incubation time must be determined for each antigen. 
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APPENDIX F 

PROTOCOL FOR IMMUNOHISTOCHEMISTRY 

 

1. Block endogenous peroxidase by incubating the sections in 0.3% H2O2 methanol 

solution for 20 minutes. 

2. Block nonspecific sites by incubating the sections in normal serum for 30 

minutes. 

3. Drain off the solution on the sections.  DO NOT rinse. (The interactions 

between blocking serum and the nonspecific sites are weak.) 

4. Incubate the sections for one hour with appropriately diluted primary antibody. 

5. Wash slides with PBS for several times. 

6. Incubate the sections for 30 minutes with universal biotinylated secondary 

antibody. 

7. Wash slides with PBS for several times. 

8. Incubate the sections for 30 minutes with streptavidin-horseradish peroxidase 

(HRP) conjugate (Vector Laboratories, CA). 

9. Wash the slides with PBS for several times. 

10. Incubate the sections in DAB substrate (Vector Laboratories, CA) until achieving 

desired stain intensity. Generally, 3-5 minutes are sufficient. 

11. Rinse the sections in tap water. 

12. Counterstain with Mayer’s Hematoxylin (5 dips). 

13. Dehydrate through graded alcohol series (95%→100%→100%→100%; 2 min 

for each step with agitation), clear in xylene (twice; 5 min each).  Coverslip 

with Permount (Fisher Scientific) Alternatively, apply Crystal/Mount (Biomeda) 

to the tissue section. Place the slides at 20-37°C for 1-2 hours.  Slides with 

hardened Crystal/Mount can be post-mounted and coverslipped in Permount. 
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