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ABSTRACT 
 

Distribution and Abundance of Endangered Florida Key Deer on Outer Islands. 

(December 2006) 

Dominique Elijah Watts, B.S., New Mexico State University  
 

Chair of Advisory Committee:  Dr. Roel R. Lopez 
 
 

Status assessments are compulsory to efficacious management of large-mammal 

populations, particularly for endangered species such as the Florida Key deer 

(Odocoileus virginianus clavium).  However, a dearth of data regarding basic 

demographic parameters has limited status assessment and management of Key deer on 

outer islands.  Traditional survey techniques for Key deer on Big Pine and No Name 

keys include road-counts, strip-counts, and mark-recapture methods.  However, practical 

limitations render traditional survey techniques impractical for application on outer 

islands.  Thus, assessment of current status and appropriate management is limited by a 

paucity of information regarding Key deer on outer islands.  The purpose of my study 

was to evaluate the utility of infrared-triggered cameras and forward-looking infrared 

thermography (FLIR) to monitor occupancy and abundance of Key deer on outer islands, 

and to obtain baseline information regarding current distribution and abundance of Key 

deer in these areas.  In addition, I wanted to further evaluate the advantages and 

disadvantages inherent in using baited camera-stations to estimate abundance of large 

mammal populations.  I compared 3 frequently applied methods to estimate abundance 

from camera-based survey data.  All outer islands exhibited estimated abundances 

considerably below carrying capacities, with larger populations occurring closer to Big 
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Pine Key.  Results indicated that other islands and complexes such as Ramrod Key, 

Water Key, and the Annette complex maintain only small sub-populations (e.g., ≤5 

individuals) and other previously inhabited island complexes (i.e., Johnson complex and 

Summerland Key) no longer maintain sub-populations.  Additionally, I compared 

abundance estimates from FLIR-based surveys to camera-based estimates.  Although no 

test of accuracy was possible, camera-based survey methods consistently produced 

higher estimates of Key deer abundance on outer islands.  Results indicate that aerial 

FLIR-based survey methods may be unreliable for the survey of large mammals in 

tropical habitats or areas exhibiting dense vegetation, and camera-based surveys should 

be the preferred method to survey Key deer abundance on outer islands.   
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CHAPTER I 
 

INTRODUCTION 

 This chapter provides a general outline of my thesis including background 

information and a breif review of research objectives.  My thesis consists of 2 primary 

chapters (i.e., Chapter II and Chapter III).  Each of these chapters represents an 

independent, but related, research paper and a reasonable amount of repetition should be 

expected among chapters.  Chapter IV provides conclusions and management 

implications of the research presented in my thesis. 

 

BACKGROUND 

 The Florida Key deer (Odocoileus virginianus clavium) was listed as an 

endangered species by the United States Fish and Wildlife Service (USFWS) in 1967.  

Key deer are endemic to the Florida Keys, where historic range likely extended from 

Key Vaca to Key West (Klimstra et al. 1978).  Current Key deer distribution is restricted 

to the Lower Florida Keys, where deer inhabit approximately 20–25 islands from the 

Johnson keys to Sugarloaf Key.  The majority of these islands are contained within the 

boundaries of the National Key Deer and Great White Heron National Wildlife refuges 

(Klimstra et al. 1974, Folk 1991, Lopez 2001).   

 By the late 1940s, habitat loss and unrestricted harvest had reduced the Key deer 

population to a roughly estimated 25–50 individuals (Dickson 1955).  A cartoon drawn 

by Jay “Ding” Darling in 1934 was instrumental in acquiring national attention and  

________ 
This thesis follows the format of the Journal of Wildlife Management. 
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legislation to protect Key deer.  The establishment of the National Key Deer Refuge 

(1957), curtailment of illegal hunting, and improved habitat conservation on Big Pine 

and No Name keys allowed the population on these 2 islands to increase to an estimated 

300–400 individuals by 1974 (Klimstra et al. 1974).  The population continued to 

increase, growing by approximately 240% between 1971 and 2001 (Lopez et al. 2004).  

An estimated 75% of the current Key deer population resides on Big Pine and No Name 

keys with the remaining deer distributed throughout the outer islands in small local sub-

populations where information regarding Key deer is lacking (Lopez 2001).  In my 

thesis, I refer to all islands within the known distribution of Key deer, excluding Big 

Pine and No Name keys, as outer islands. 

 In metapopulation theory, landscapes are viewed as networks of habitat 

fragments where local sub-populations exist and are connected by dispersal (Levins 

1969, Hanski and Simberloff 1997, Meffe and Carroll 1997, Hanski 1998).  

Consequently, metapopulation theory is useful when describing Key deer ecology as this 

subspecies literally occupies a network of oceanic islands linked by dispersal (Lopez 

2001).  Dispersal is crucial to the stability and persistence of local sub-populations by 

decreasing extinction risk through re-colonization (Akcakaya 2000).  The spatial 

arrangement and isolation of habitat patches influence despersal rates (Harrison et al. 

1988, Kindvall and Ahlén 1992, Hanski et al. 1995, Stith et al. 1996, South 1999).  

Dispersal rates also are influenced by population density and often exhibit a positive 

correlation with increasing population density at source populations (Albon et al. 1992). 

Studies have demonstrated density dependence in white-tailed deer populations 
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(McCullough 1979, Halls 1984) and analysis of abomasal parasite counts suggest that 

Key deer on Big Pine and No Name keys are at or near carrying capacity (Nettles et al. 

2002).  Thus, outer islands, particularly those close to Big Pine Key, are likely to 

experience increased immigration.  Hanski (1998) concluded that the persistence of 

metapopulations is influenced by the number of sub-populations present.  The size and 

composition of sub-populaitons also can greatly influence their persistence (May 1973, 

1974, Schoener and Spiller 1987, Pimm et al. 1988, Hanski et al. 1994) with smaller 

sub-populations exhibiting an increased probability of extinction due to factors such as 

environmental and demographic stochasticity (Caughley 1994).  Carrying capacity, 

habitat characteristics, and juxtaposition in relation to source populations vary 

considerably among outer islands (Lopez 2001, Harvison et al. 2006).  Thus, it is 

unlikely that the distribution and abundance of Key deer in these areas is spatially or 

temporally constant, but likely varies with dispersal rates, habitat changes, and the 

availability of suitable drinking water.  Model-based research by Harveson et al. (2006) 

provides insight into colonization rates on outer islands and Key deer metapopulation 

dynamics.   

 Status assessments are compulsory to efficacious management of large mammal 

populations, particularly for endangered species such as the Florida Key deer.  However, 

a dearth of data regarding basic demographic parameters has limited status assessment 

and management of Key deer on outer islands.  Information regarding the spatial 

distribution, abundance, and population trends of Key deer on outer islands is necessary 

for current status assessment and continued management of this endangered species.  
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Traditional survey techniques for Key deer on Big Pine and No Name keys include road-

counts, strip-counts, and mark-recapture methods (Silvy 1975, Lopez 2001, Roberts et 

al. 2006).  However, practical limitations (e.g., dense foliage, lack of roads, remote 

locations, etc.) render traditional survey techniques impractical for application on outer 

islands.  In addition, these methods can be labor-intensive, incur significant financial 

costs, and may be subject to significant bias (Lancia et al. 1996, Jacobson et al. 1997, 

Roberts et al. 2006).  Application of radio-telemetry methodology (White and Garrott 

1990) to estimate Key deer abundance is inhibited by the high cost and effort associated 

with conducting these methods on outer islands.  Other commonly applied methods to 

estimate abundance of large mammals, such as track and fecal pellet counts (Neff 1968, 

Fuller 1991), are likely to produce dubious abundance estimates as a result of numerous 

confounding factors in the study area including low detection probabilities and low deer 

densities.  Thus, assessment of current status and appropriate management of Key deer 

on outer islands is limited by a paucity of information regarding Key deer in these areas.  

 

RESEARCH OBJECTIVES 

 The overall objective of my study was to obtain baseline data regarding the 

current distribution and abundance of Key deer inhabiting outer islands and to evaluate 

the efficacy of contemporary survey techniques to obtain this information.  My study 

addressed 2 primary recovery and restoration actions identified in the South Florida 

Multi-Species Recover Plan (USFWS 1999): 
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1. Develop method to survey deer on outer keys where conventional methods 

(i.e. spotlight counts) are difficult to implement.  Obtain current deer density 

estimates for each island complex (USFWS 1999). 

2. Establish a standardized method for future monitoring.  Ideally, 

recommended survey techniques would be easy to apply, cost effective, and 

detect biologically significant changes in Key deer densities (USFWS 1999). 

 Data from this study will facilitate appropriate management and conservation of 

endangered Key deer throughout their range.  Additionally, this information will be 

useful to the USFWS during status assessment and evaluation of the proposed re-

classification of Key deer from endangered to threatened.    
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CHAPTER II 

ABUNDANCE AND CURRENT DISTRIBUTION OF ENDANGERED KEY 

DEER ON OUTER ISLANDS  

SYNOPSIS  

Status assessments are compulsory to efficacious management of large mammal 

populations, particularly for endangered species such as the Florida Key deer.  

Assessment of current status and appropriate management of Key deer is limited by a 

paucity of information regarding Key deer on outer islands.  Traditional survey 

techniques for Key deer on Big Pine and No Name keys include road-counts, strip-

counts, and mark-recapture methods.  However, practical limitations and financial 

considerations render traditional survey techniques impractical for application on outer 

islands.  Infrared-triggered cameras may provide a practical alternative to estimate Key 

deer abundance and monitor population trends on these islands.  I used digital infrared-

triggered cameras to estimate Key deer abundance on 20 outer islands using natural 

marks (e.g., antler configuration) to identify individual males.  These individuals served 

as a marked subset of the sub-population on their respective islands.  I compared 3 

frequently applied methods to estimate abundance from camera-based survey data.  

Abundance estimates for primary natural sub-populations ranged from 15–16 for Howe 

Key, 5–10 for Knockemdown complex, and 13–17 for Little Pine Key.  Differences 

among abundance estimators became more pronounced for sub-populations such as 

Newfound Harbor complex (36–150) where model assumptions were violated.  Results 

indicate that other islands and complexes such as Ramrod Key, Water Key, and the 
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Annette complex maintain only small sub-populations (e.g., ≤5 individuals) and other 

previously inhabited island complexes (e.g., Johnson complex and Summerland Key) no 

longer maintain sub-populations.  All outer islands exhibited Key deer abundances well 

below carrying capacities estimated by Lopez (2001), with larger populations occurring 

closer to Big Pine Key.  Examination of relative abundance among islands raises 

questions as to the factors which may be limiting Key deer densities in these areas.  

Although no test of accuracy was possible, camera-based survey methods produced 

reasonable estimates of Key deer abundance on outer islands when model assumptions 

were not perceptibly violated.  However, sub-population estimates using camera-based 

survey methods may be subject to inherent biases associated with small sample sizes and 

behavioral characteristics of individual Key deer.  Managers should be cognizant of 

potential biases and these estimates should be used with prudence in management and 

status assessment of Key deer. 

 

INTRODUCTION 

The endangered Florida Key deer (Odocoileus virginianus clavium), the smallest 

subspecies of North American white-tailed deer, is endemic to the Lower Florida Keys 

(Lopez 2001).  Key deer exhibit a restricted distribution within a highly fragmented 

landscape consisting of 20–25 small oceanic islands.  Big Pine Key (2,428 ha) is the 

largest of the Lower Keys and is the core of the Key deer range (Lopez 2001, Harveson 

et al. 2006).  An estimated 75% of the total population resides on Big Pine and No Name 

keys, with the remaining deer inhabiting outer islands which vary considerably in size 
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and habitat quality (Lopez 2001).  Hereafter, I refer to all islands within the distribution 

of Key deer, excluding Big Pine and No Name keys, as outer islands.   

Information regarding the spatial distribution and population trends of Key deer 

on outer islands is necessary for status assessment and appropriate management.  

However, status assessment and appropriate management are currently limited by a 

paucity of information regarding Key deer abundance and demographic structure on 

outer islands.  Estimation of Key deer abundance on outer islands is challenging due to 

several confounding factors: (1) Key deer inhabiting outer islands are secretive and 

difficult to observe; (2) outer islands exhibit dense tropical vegetation that severely 

limits methods based on direct observation; (3) outer islands lack urban infrastructure 

(e.g., road systems) and many are completely devoid of roads, being accessible only by 

boat; (4) collection and analysis of quantitative data is problematic as sub-populations 

occupying outer islands are small yielding small sample sizes; and, (5) trapping to 

facilitate traditional mark-resight techniques is likely to be expensive and labor 

intensive. 

Traditional survey techniques for Key deer on Big Pine and No Name keys 

include road-counts, strip-counts, and mark-recapture methods (Silvy 1975, Lopez 2001, 

Roberts et al. 2006).  However, practical limitations and financial considerations render 

traditional survey techniques impractical for application on outer islands.  Also, Roberts 

et al. (2006) concluded that traditional techniques (e.g., road counts) used on Big Pine 

and No Name keys are subject to biases associated with convenience sampling and 

behavior of Key deer along roadways.  Application of radio-telemetry methods to 
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estimate abundance of large mammals (White and Garrott 1990) is inhibited by the high 

cost and effort associated with the application of these methods on outer islands.  Other 

potential estimation techniques for outer islands such as track and fecal pellet counts 

(Neff 1968, Fuller 1991, Langdon 2001) are likely to produce dubious abundance 

estimates as a result of numerous confounding factors in the study area including low 

detection probabilities and low deer densities. 

Infrared-triggered cameras may provide a practical and accurate alternative to 

estimate Key deer abundance and monitor population trends on outer islands.  Infrared-

triggered cameras have been used widely in wildlife research and management.  Camera-

based surveys have been used to detect and monitor occupancy of rare mammalian 

species in remote locations (Bull et al. 1992, Foster and Humphrey 1995, Zielinski and 

Kucera 1995, Foresman and Pearson 1998), and to estimate abundance of rare or illusive 

large mammals (Mace et al. 1994, Karanth and Nichols 1998, Sweitzer et al. 2000, 

Martorello et al. 2003, Silver et al. 2004).  Camera-based surveys have also been used to 

survey large mammals in densely vegetated habitats where visual observation is 

inadequate to facilitate traditional survey methods (Seydack 1984, Karanth and Nichols 

1998, Carbone et al. 2001).  The purpose of my study was to evaluate the utility of 

camera-based surveys to monitor occupancy and abundance of Key deer on outer islands 

and obtain baseline information regarding the current distribution and abundance of Key 

deer in these areas.  In addition, I wanted to further evaluate the advantages and 

disadvantages inherent in using baited camera-stations to estimate abundance of large 

mammal populations (Mace et al. 1994, Jacobson et al. 1997, Koerth et al. 1997). 



    10

STUDY AREA 

 The study area is located in the Lower Florida Keys, Monroe County, Florida, 

USA.  It encompasses all islands within the known distribution of Key deer, the majority 

of which are contained within the boundaries of the National Key Deer and Great White 

Heron National Wildlife refuges.  Local geology is dominated by 2 Pleistocene 

formations: Miami limestone (oolite) and older Key Largo limestone below (Hoffmeister 

and Multer 1968, Halley et al. 1997).  Topographic relief is extremely low and most 

islands are nearly flat with elevations <2 m.  Soils vary from exposed oolitic bedrock to 

marl deposits and peat (Dickson 1955).  Climate is subtropical marine with mean 

January temperatures of 21oC, mean July temperatures of 29oC, and average annual 

rainfall of 98.8 cm (National Oceanic and Atmospheric Administration data, 2006).  

Rainfall is highly seasonal, generally consisting of a 5 month wet season from late May 

to October, and a long dry season from November through May.  Scattered 

thunderstorms and tropical storms are responsible for wet season precipitation.   

Island complexes are groups of islands in close proximity to one another 

separated by shallow waters which can be functionally considered a single island (Folk 

1992, Harveson et al. 2006).  Klimstra et al. (1974) identified 15 island complexes where 

Key deer dispersal is relatively unrestricted and observed Key deer or their sign (e.g. 

tracks, pellets, evidence of browsing) on all 15 complexes.  My research occurred on the 

same 15 island complexes, primarily on the following outer islands and island 

complexes:  Annette complex, Big Torch Key, Cudjoe Key, Howe Key, Johnson 

complex, Knockemdown complex, Little Pine Key, Little Torch Key, Middle Torch 



    11

Key, Newfound Harbor complex, Ramrod Key, Sugarloaf Key, Summerland Key, and 

Water Key (Figure 2.1). 

Vegetation is principally West Indian in origin (Dickson 1955, Long 1974) and is 

greatly influenced by elevation (Folk 1991, Lopez 2001).  Vegetative communities near 

sea level are primarily comprised of black mangrove (Avicennia germinans), white 

mangrove (Laguncularia racemosa), red mangrove (Rhizophora mangle) and other 

halophytes, which are successively replaced by buttonwood (Conocarpus erectus), 

hammock, and pineland communities with increasing elevation (Lopez 2001).  Outer 

islands typically exhibit dense tropical vegetation which considerably impedes visibility 

and movement in these areas.  Lopez (2001) reported Key deer on Big Pine Key used 

upland habitats (i.e., pineland and hammock) and avoided lowland habitats (i.e., 

buttonwood and tidal areas).  However, lowland habitat types occur at comparatively 

higher proportions on outer islands and Key deer on these islands frequently use 

buttonwood and seasonally tidal areas (unpublished data).  Key deer habitat on outer 

islands was defined as pineland, hammock, buttonwood forest, seasonally tidal, and 

developed areas (i.e., all available habitat excluding continually tidal areas). 
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Figure 2.1.  Map of the Lower Florida Keys, Florida, USA, including all islands 

within the known distribution of the endangered Florida Key deer.

METHODS 

Data Collection 

Klimstra et al. (1974) recorded observations of Key deer or their sign on outer 

islands and this information served as a basis for comparisons of Key deer distribution.  

Regular exploratory treks were conducted on all outer islands to examine the current 

distribution of Key deer.  Islands were intensively searched for indications of Key deer 

presence (e.g., tracks, pellets, etc.) and areas of high use (e.g., trails, waterholes, etc.).  
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Presence or absence of Key deer sign was recorded for each survey unit to provide 

distribution data for comparison with historic island occupancy.    

Silvy (1975) reported seasonal ranges of Key deer to be 79–275 ha prior to 

considerable urbanization on Big Pine Key and No Name keys.  Lopez (2001) reported 

significantly smaller seasonal ranges for Key deer (males: 102–309 ha, females: 36–112 

ha) and suggested that seasonal ranges of Key deer have decreased as a result of 

urbanization and domestication on these 2 islands.  However, outer islands have 

undergone comparatively less urbanization, and I suggest that Key deer inhabiting these 

areas are likely to exhibit seasonal ranges similar to pre-urbanization ranges observed by 

Silvy (1975).   

Total Key deer habitat on island complexes was overlaid with a 50-ha grid to 

generate ≤50 ha survey units.  Camera-stations were placed at a density of 1 camera 

station per survey unit.  Assuming seasonal ranges comparable to those observed by 

Silvy (1975), camera density provided approximately 1.5–5.5 camera-stations per Key 

deer home range and offered complete coverage of Key deer habitat on each island 

complex.  A minimum of 2 camera-stations were placed on each complex to account for 

long narrow islands or complexes consisting of several small islands.  Preliminary 

testing indicated that placement of camera-stations in areas of high use was crucial to 

acquiring sufficient photographic captures of Key deer.  Camera-stations were 

subjectively placed within sample units at sources of freshwater, along trails, in areas 

where Key deer or their sign were observed, or along likely travel corridors when no 

presence was detected.  Camera-stations were baited once during setup with <3.8 l of 
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domestic feed (e.g., sweet feed or cracked corn) to entice exploration by Key deer 

passing in close proximity to the camera-station and maximize photographic captures.  

Camera-stations were not re-baited and bait was spread sparsely over a large area (50–

100 m2) around the camera station.   

 Camera-stations were operated simultaneously on each island complex for 20 

consecutive 24-hour periods (days).  Commercially available Cuddeback digital 

infrared-triggered cameras (Non-typical Inc., Park Falls, Wisconsin, USA) were used to 

photograph Key deer.  This system is a self-contained digital camera utilizing a passive 

infrared sensor.  Cameras were mounted on vegetation or constructed platforms 

approximately 30 cm above ground and set to manufacturer-recommended settings for 

local environmental conditions.  Picture delay was set to 1 minute and video mode was 

used to record 10–20 seconds of video after the initial photograph.  Video was used to 

increase accuracy during identification of individuals and to document neonates which 

might not be recorded in initial photographs.  Date and time were automatically recorded 

on each digital photograph.  

Data Analysis 

 Digital photographs were scrutinized to identify individual Key deer by antler 

configuration.  Preliminary data indicated that marked individuals lingered at recently 

baited camera-stations a maximum of 47 minutes.  Multiple photographs of 

indistinguishable deer within a ≤1-hour period at a single camera-station were excluded 

during analysis to minimize double-counting animals.  Thus, valid photographic captures 

were identified and individually identifiable adult male Key deer served as marked 



    15

individuals.  Photographic captures were grouped into 4 categories (Jacobson et al. 

1997): (1) individually identifiable adult males, (2) adult females, (3) indistinguishable 

antlered males (e.g., spikes), and (4) sub-adults.  Valid captures were calculated 

separately for each camera-station and pooled for each island complex.  In addition to 

adult males, collared females from a concurrent study on Cudjoe and Sugarloaf keys 

served as marked females for analysis of sightability.  However, collared females were 

treated as un-marked adult females during calculation of sub-population abundance.     

Using the same 20-day survey data, 3 frequently used methods to calculate 

abundance from camera surveys were compared.  Methods described by Jacobson et al. 

(1997) were used to calculate abundance estimates for a 20-day survey period.  A 2-

sample Peterson model (Seber 1982) was used to calculate a second abundance estimate 

using a 10-day mark and 10-day re-sight period.  Baily’s binomial model (Bailey 1952) 

was used as it is more robust to small sample sizes (Seber 1982).  Resultant abundance 

estimates were then fit to a Poisson distribution and simulations were used to develop 

corrected population estimates using sightability of known deer on Cudjoe and Sugarloaf 

keys (70–100%).  Finally, a third abundance estimate was obtained using methods 

developed by Minta and Mangel (1989) which uses the capture frequencies of marked 

individuals to estimate capture frequencies of non-marked individuals by means of 

bootstrap methods.  Minta-Mangel estimates were calculated using Program 

NOREMARK (White 1996).  Lower bounds of confidence intervals were adjusted to 

account for the minimum number known alive on each island complex where applicable, 

and all fractions were rounded up to the nearest whole number. 
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Total sampling effort was defined as the sum of all 24-hour periods (days) 

cameras were operated on an island complex.  Photographic capture rate was defined as 

the number of valid photographic captures of Key deer per day summed for all camera 

stations on an island complex.  Catch per unit effort (CPUE) was defined as C/X, where 

C is the total valid photographic captures and X is the total sampling effort for each 

island complex.     

Model Assumptions 

 Methods developed by Jacobson et al. (1997) are solely designed to estimate 

population size and rely heavily on closure assumptions.  The Peterson model also relies 

heavily on assumptions of geographic and demographic closure.  Using methods 

presented here it is difficult to formally address closure assumptions.  However, 

geographic closure can reasonably be assumed as individual islands represent 

functionally closed island populations during the survey period and entire island 

complexes were sampled simultaneously.  The short duration of the total survey (i.e., 20 

days) reasonably satisfies demographic closure assumptions and also allows the 

assumption of mark retention for the entirety of the survey.  The use of cameras also 

allows assumption of little or no disturbance to natural activities which are commonly 

associated with live-capture studies.  When estimating the density of animals in an area, 

studies typically add a boundary strip to the area defined by grids in order to account for 

captured animals that commonly occur outside the grid area (Otis et al. 1978, White et 

al. 1982).  However, this method was not applied as I assume complete camera coverage 

of Key deer habitat on each island complex. 
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Sightability in any sample is a function of an individual animal and varies over 

the population according to sex, age, and other factors (Pollock 1982, White et al. 1982).  

Model assumptions such as equal sightability among all individuals, independence of 

sightings, and population closure are rarely met in toto (Arnason et al. 1991) and studies 

using photographs to obtain information regarding abundance commonly assume equal 

detectability among individuals (Cutler and Swann 1999).  Baiting may introduce bias 

which affects the accuracy and precision of abundance estimates (White et al. 1982).  

Cumulative photographic capture rate was examined to test for bait induced bias.   

It is impossible to test the assumption of equal sightability among survey periods 

using a 2-sample Peterson model with any statistical power (Krebs 1999).  Sighting 

histories were developed for all individually identifiable Key deer on outer islands using 

each day as a sampling period (n =20).  The assumption of equal sightability of Key deer 

by day was tested using a Zero-Truncated Poisson Test for Equal Sightability (Caughley 

1977).  Expected values were derived from observed data and expected values <1.0 were 

amalgamated into a single category (i.e., ≥ 9 captures).  A Chi-square goodness-of-fit 

test was conducted on these data to test the null hypothesis of equal sightability among 

Key deer by day.  To evaluate sightability among sexes and the validity of using only 

males as marked individuals on outer islands, capture histories for individually 

identifiable males on all outer islands and collared females on Cudjoe and Sugarloaf 

keys were analyzed using Program MARK (White and Burnham 1999).   

 One method to improve the accuracy of abundance estimates is to replicate 

surveys (White and Garrott 1990).  Practical limitations, the need to obtain baseline data 
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for all outer islands within the alloted timeframe of the study, and setbacks due to 

hurricanes prohibited replication of surveys on individual islands.  However, 2 surveys 

were conducted on Sugarloaf Key to gain insight into the precision of camera-based 

estimates of Key deer abundance. 

 

RESULTS 

Key deer or their sign were detected on 13 of 15 historically occupied island 

complexes.  In addition, Key deer presence was documented on Spanish Harbor Key.  

No evidence of Key deer presence was detected on Summerland Key or Big Johnson 

complex.  Results of camera-based island occupancy surveys were equivalent to sign 

surveys used by Klimstra et al. (1974).  Additionally, cameras detected Key deer 

presence in 2 survey units where sign surveys did not produce indications of presence.    

Cameras obtained 649 valid photographic captures of Key deer on outer islands.    

Sixteen of 19 (84.2%) known individually identifiable Key deer inhabiting outer islands 

were photographically captured by Day 10.  Seventy percent of known Key deer on 

Sugarloaf and 100% of known deer on Cudjoe were photographically captured by Day 

10.  Cumulative capture rate for new individually identifiable Key deer reached 

asymptote around Day 9 and only 2 previously unidentified Key deer were captured after 

day 10 (Fig. 2.2).  One of 2 new marked deer appearing after Day 10 was likely to have 

immigrated from south Big Pine Key to Newfound Harbor complex.  Individually 

identifiable (‘marked’) Key deer were regularly captured throughout the 20-day survey 

period at multiple camera stations.  Mean capture of ‘marked’ individuals during re-
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capture sessions was 2.7 and 2.4 for males and females respectively.  Number of re-

captures for individual ‘marked’ Key deer ranged from 1–7.  Results of Zero-Truncated 

Poisson Tests of Equal Sightability indicated that sightability by day was not equal 

among all individual marked Key deer (P <0.001).  Results of model selection using 

Program MARK indicated no significant difference in sighting probabilities by day 

between sexes (male = 0.244, SE = 0.031; female = 0.224, SE = 0.019). 

 

 
 

 

 

 

 

Figure 2.2.  Number of previously unrecorded individually identifiable Key deer (y-

axis) captured by day using digital infrared-triggered cameras on outer islands, 

Lower Florida Keys, Florida, USA, 2005. 



    20

Estimated abundance and density of Key deer varied considerably among outer 

islands (Table 2.1).  Absence of mature males on several islands prohibited calculation 

of abundance.  For these island complexes, the minimum number known alive should be 

considered a conservative sub-population estimate and these sub-populations are 

assumed to consist of ≤5 individuals.  The Peterson estimator produced negatively 

biased pre-adjustment estimates (i.e., below MNKA) on Cudjoe Key due to ‘trap-happy’ 

male Key deer.  Conversely, estimators may have over-estimated abundance on 

Newfound Harbor complex.  Bias was likely due to violations of closure assumptions, 

‘trap-shy’ marked individuals during re-capture sessions, an unusually high density of 

Key deer due to proximity to Big Pine Key, and anthropogenic factors described in more 

detail below.  

Cumulative capture rate indicated baiting had a considerable effect on the 

number of photographic captures of Key deer (Fig. 2.3).  Photographic captures were 

highest during the first 2–4 days of each survey and declined considerably until 

becoming more stable around 5–6 days.  Newfound Harbor complex was excluded from 

cumulative results for several reasons: (1) Newfound Harbor complex is a primary 

dispersal area for south Big Pine Key, (2) Newfound Harbor has an unusually high 

density of Key deer due to anthropomorphic factors (e.g. camp grounds, ornamental 

plants), and (3) Newfound Harbor is used as a corridor to Little Palm Island where Key 

deer feed on ornamental plants, utilize freshwater resources, and are regularly fed by 

island occupants. 
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Table 2.1.  Estimated abundance of Key deer sub-populations on outer islands, Lower 

Florida Keys, Florida, USA, 2005, derived from digital infrared-triggered camera data.   

Peterson 
estimate 

(adjusted) 

Minta-
Mangal 
estimate 

Area 
(ha) 

Jacobson 
estimate 

aIsland complex MNKA CPUEb

Annette complex 222 NCc NCc NCc 1 0.05 

Cudjoe 1,319 9 8 11 7 0.99 

Howe 373 15 16 16 9 1.80 

Johnson complex 154 0 0 0 0 0.00 

Knockemdown complex 582 5 9 10 3 0.27 

Little Pine 381 17 12 13 4 0.67 

Newfound Harbor complex 76 36 93 150 6 4.15 

Ramrod 374 NCc NCc NCc 1 0.35 

Sugarloaf (survey 1) 1,399 27 22 69 5 0.59 

Sugarloaf (survey 2) 1,399 23 30 25 5 0.64 

Summerland 436 0 0 0 0 0.00 

Big Torch 626 17 29 NCa 4 0.17 

Little Torch 305 8 5 NCa 3 0.20 

Middle Torch 410 3 4 3 3 0.05 

Water 92 NCc NCc NCc 1 0.10 

 
 

 

 

a MNKA, absolute minimum number of individual Key known to be alive during survey.   
b CPUE (catch per unit effort), defined as the total number of valid photographic captures divided by the 
total number of camera days (i.e., number of cameras multiplied by 20 days).  
c NC, estimate was not calculable due to insufficient captures of individually identifiable Key deer during 
capture or re-capture periods. 
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 Figure 2.3.  Cumulative capture rate for Key deer on all outer islands (excluding 

Newfound Harbor complex) and Newfound Harbor complex using digital infrared-

triggered cameras, Lower Florida Keys, Florida, USA, 2005.   

 
 
 

 
 

 

DISCUSSION 

 Jacobson et al. (1997) reported 100% and 88% of known deer were 

photographically captured during a 14-day period and 100% and 82.3% where captured 

during the first 10 days of the survey.  Similar results during this study (84.2% by Day 

10), observed cumulative photographic capture rate of new individuals, and 

photographic captures of marked deer at multiple camera stations indicate that the 

majority of Key deer inhabiting outer islands were recurrently photographically 
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captured.  Thus, camera density on islands appears to have been sufficient.  Higher 

camera density might result in capture of all individuals but may not be practical.  Data 

analysis also indicated closure assumptions were reasonably met.  Misidentification of 

individuals during analysis, particularly marked individuals, could potentially bias 

survey results.  However, marked individuals in this study offered distinctly 

recognizable characteristics which permitted accurate identification during analysis.   

Karanth (1995), Jacobson et al. (1997) and Koerth (1997) noted that 

heterogeneous sightability of different age and sex classes could bias abundance 

estimates based on photographic data.  Tests of equal sightability by survey period (i.e. 

10 days) could not be conducted with any statistical power.  However, results of Zero-

Truncated Poisson Test of Equal Sightability indicated that sightability of Key deer by 

day was heterogeneous among individuals.  Although it is difficult to relate sightability 

by day to sightability by survey period (10 days), these results indicate model 

assumptions of homogeneous sightability among individuals may have been violated.  

However, the mean number of captures during re-capture sessions (males: 2.7, females: 

2.4) and results of model selection using Program MARK indicate sightability of Key 

deer is not a function of sex.  Equivalent detection probabilities between sexes indicated 

the use of male Key deer as marked individuals in sub-populations is permissible, thus, 

minimizing the need for expensive and labor intensive capture operations. 

Baiting offered advantages and disadvantages to camera-based surveys and the 

effects of baiting should be thoroughly examined prior to implementation of camera-

based surveys.  Jacobson et al. (1997) and Koerth et al. (1997) used bait at camera 
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stations to increase photographic captures of white-tailed deer.  However, the Jacobson 

estimator relies heavily on assumptions of equal sightability among all individuals 

throughout the survey period (e.g., 20 days in this study).  A decline in cumulative 

capture rate indicated baiting affected sightability of Key deer through the survey period.  

Bias associated with heterogeneous sightability among all individuals is likely to be 

exacerbated as “trap-happy” individuals could significantly influence results if camera 

stations are regularly baited.  Thus, baiting should not be employed when collecting data 

for use with methods described by Jacobson et al. (1997).  Another possible method to 

minimize the effects of baiting using the Jacobson estimator would be to exclude the 

period where influence of bait was most significant (e.g., Days 1–5 in this study).  

Conversely, the 2-sample Peterson model is not affected by differential sightability 

between marking and re-sighting sessions provided that sightability is homogeneous 

within the re-sight session and observation in the first session is independent of 

observation in the second.  Cumulative capture rates indicated the effects of baiting Key 

deer dissipated by Day 5 allowing increased captures during ‘marking’ periods (i.e., 

increased marked individuals) without violating model assumptions. 

Three frequently applied methods to estimate abundance from camera-based 

survey data were compared in this study.  All 3 estimators produced reasonable results 

(i.e., compared to sign observed) when model assumptions were not perceptively 

violated.  However, abundance estimators produced spurious results for sub-populations 

where assumptions of homogeneous sightability were violated.  Islands such as 

Newfound Harbor complex were likely biased high due to low sightability of ‘marked’ 
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Key deer during re-capture sessions and violations of closure assumptions.  Conversely, 

on Cudjoe Key, 2 males were captured on as many as 5–7 occasions during the 10-day 

recapture session whereas other ‘marked’ Key deer were typically captured on 2–3 

occasions during this same time period.  Thus, estimates of abundance on Cudjoe Key 

would be expected to be negatively biased.  All 3 estimators used to develop abundance 

estimates are subject to inherent biases associated with small samples sizes and 

sightability of individual deer.  Sightability of individual Key deer is an inherent 

problem when estimating Key deer abundance using camera-based methods.  Methods 

developed by Minta and Mangel (1989) address variation in sightability among 

individual Key deer and I recommend application of this method when estimating 

abundance of Key deer on outer islands.    

This study provides current information regarding the distribution and status of 

Key deer inhabiting these areas.  Data indicate the distribution of Key deer may have 

constricted since the early 1970s.  Absence of Key deer on previously occupied islands 

such as Big Johnson and Summerland keys may be an indication of declines on outer 

islands.  Big Johnson likely serves as a sink or dispersal area for the sub-population on 

Little Pine Key.  Thus, the current absence of Key deer on Big Johnson Key is indicative 

of sub-population declines on Little Pine Key and the same holds true for source 

populations near Summerland and Ramrod keys.  However, meta-populations are 

dynamic and the absence or low density of Key deer on specific outer islands may be the 

result of natural fluctuation in meta-population structure.   



    26

This study is the first effort to estimate abundance of Key deer sub-populations 

on outer islands.  Model-based research by Harveson et al. (2006) concluded that 

distance from source populations and island size significantly effects Key deer 

abundance on outer islands, and the results of this study support their conclusions.  

Natural (i.e., excluding translocations) Key deer abundance was greatest on island 

complexes closest to Big Pine Key (e.g., Howe Key, Little Pine Key, and Big Torch).  

Estimates for other island complexes such as Ramrod Key, Water Key, and Annette 

complex indicate that these islands maintain only small sub-populations (i.e., ≤5 

individuals) which are likely seasonal or ephemeral in nature.  All outer islands, with the 

exception on Newfound Harbor complex, exhibited Key deer abundances well below 

carrying capacities estimated by Lopez (2001).  The effects of recent hurricanes on 

vegetation and freshwater quality are possible explanations for the observed constriction 

of distribution and low abundances.  Examination of relative abundance among outer 

islands raises questions as to the factors which may be limiting Key deer abundance in 

these areas.  Islands such as Sugarloaf and Cudjoe have sufficient habitat and would be 

expected to maintain higher Key deer densities than were observed.  It is important to 

note that estimates presented here include translocated Key deer on Cudjoe and 

Sugarloaf and natural Key deer numbers were likely low ( ≤5–10 individuals) prior to 

translocations.  It is likely that Key deer naturally occur at densities below carrying 

capacity on outer islands and the high densities observed on Big Pine and No Name keys 

are the product of anthropogenic influence.  However, primary factors effecting the 
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distribution and abundance of Key deer throughout their range (e.g., fresh water) warrant 

further investigation.   

 

MANAGEMENT IMPLICATIONS 

Reclassification of Key deer from endangered to threatened has recently been 

proposed as a result of increased Key deer densities at the core of their range (i.e., Big 

Pine and No Name keys; Lopez et al. 2004).  Attempts to establish viable sub-

populations (Parker 2006) address other recovery criteria regarding increased Key deer 

abundance on outer islands.  Other recovery criteria such as evaluation of status and 

trends of Key deer on islands will also play an important role in the decision making 

process.  Information from this study will be useful during evaluation of the proposed 

reclassification of Key deer. Data from this study also will facilitate appropriate 

management and conservation of the endangered Key deer throughout their range. 

A primary concern of wildlife managers is the costs associated with the 

monitoring of wildlife populations.  Use of natural markings is preferred to active-

marking techniques for Key deer due to the temporal and financial costs associated with 

maintaining marked segments of sub-populations on 20–25 outer islands.  Similar 

sightability among male and female Key deer and use of natural marks minimized 

temporal and financial costs associated with conducting surveys of abundance on outer 

islands.  In addition, this method alleviates the need to capture and mark Key deer.   

Use of digital infrared-triggered camera equipment offered several advantages 

over traditional film-operated systems.  Roberts et al. (2006) reported that film-operated 
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camera surveys cost approximately $85 per week (11 cameras) excluding vehicle, fuel, 

and camera equipment.  Comparatively, cost associated with operation of 11 digital 

cameras for up to 30 days is approximately $55 excluding boat, fuel, and equipment.  

Digital cameras also minimize disturbance to study subjects and significantly reduce 

trips in the field by requiring significantly less maintenance (e.g. changing film).  This 

may be a significant advantage for diffident species such as large felids.  In addition, 

digital systems can minimize data loss associated with loss of available film caused by 

non-target species as reported by Karanth (1995), Koerth et al. (1997), and Kawanishi 

(2002).    

Digital camera-based surveys offer an accurate and practical method to monitor 

island and habitat occupancy, offering insight into the status and trends of Key deer 

throughout their range.  Results indicate camera-based surveys may provide a practical 

method to monitor Key deer abundance and population trends on outer islands.  In 

addition, camera-based surveys could provide a method to evaluate the efficacy of 

management actions on outer islands such as translocations and habitat manipulation.  

However, sub-population estimates may be subject to inherent bias associated with small 

sample sizes and behavioral characteristics of individual Key deer.  Differences between 

the 2 surveys conducted on Sugarloaf Key suggest it may be advantageous to conduct 

multiple surveys to address the precision of abundance estimates.  Managers should be 

cognizant of potential biases and sub-population estimates should be used with prudence 

in management of Key deer.  Further validation of camera-based surveys is desirable. 
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CHAPTER III 

COMPARISON OF INFRARED-TRIGGERED CAMERAS AND AERIAL 

THERMAL-IMAGING TO ESTIMATE ABUNDANCE OF ENDANGERED KEY 

DEER ON OUTER ISLANDS  

 
SYNOPSIS 

Status assessments are compulsory to efficacious management of large mammal 

populations, particularly for endangered species such as the Florida Key deer.  

Assessment of current status and appropriate management of Key deer is limited by a 

paucity of information regarding Key deer on outer islands.  Traditional survey 

techniques for Key deer include road-counts, strip-counts, and mark-recapture methods.  

However, practical limitations and financial considerations render traditional survey 

techniques impractical for application on outer islands.  I compared surveys using 

forward looking infrared-thermography (FLIR) technology and digital infrared-triggered 

cameras to estimate Key deer abundance on outer islands.  Utility of aerial FLIR-based 

surveys appears to be limited by low sightability due to dense tropical vegetation.  

Although no test of accuracy was possible, camera-based survey methods consistently 

produced higher estimates of Key deer abundance on outer islands.  However, sub-

population estimates using camera-based survey methods may be subject to biases 

associated with small sample sizes and behavioral characteristics of individual Key deer.  

Managers should be cognizant of potential biases inherent in methods to estimate 

abundance of Key deer on outer islands and these estimates should be used with 

prudence in management of this endangered species. 
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INTRODUCTION 

The endangered Florida Key deer (Odocoileus virginianus clavium), the smallest 

subspecies of North American white-tailed deer, is endemic to the Lower Florida Keys.  

Key deer exhibit a restricted distribution within a highly fragmented landscape 

consisting of 20–25 small oceanic islands.  Big Pine Key (2,428 ha) is the largest of the 

Lower Keys and is the core of the Key deer distribution (Lopez 2001, Harveson et al. 

2006).  Approximately 75% of the total population resides on Big Pine and No Name 

keys, with the remaining deer inhabiting outer islands which vary considerably in size 

and habitat characteristics (Lopez 2001).  Here, I will refer to all islands within the Key 

deer range, excluding Big Pine and No Name keys, as outer islands.  Information 

regarding the spatial distribution and population trends of Key deer on outer islands is 

necessary for status assessment and appropriate management.  However, status 

assessment and appropriate management are currently limited by a paucity of 

information regarding Key deer on outer islands.   

 Traditional survey techniques for Key deer on Big Pine and No Name keys 

include road counts, strip counts, and mark-recapture methods (Silvy 1975, Lopez 2001, 

Roberts 2006).  Practical limitations and financial considerations render traditional 

survey techniques impractical for application on outer islands.  Additionally, Roberts et 

al. (2006) concluded that traditional survey methods are subject to bias derived from 

convenience sampling.  Application of radio-telemetry methods to estimate Key deer 

abundance (Silvy 1975, Lopez 2001) is inhibited by the high cost and effort associated 

with conducting these methods on outer islands.  Other potential estimation techniques 
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for outer islands, such as track and fecal pellet counts (Neff 1968, Fuller 1991, Langdon 

2001), are likely to produce dubious abundance estimates as a result of numerous 

confounding factors in the study area including low detection probabilities and low deer 

densities.  Infrared-triggered cameras have been used widely in wildlife research and 

management and may provide a practical method to monitor Key deer on outer islands.  

Accuracy of camera-based surveys may be subject to bias associated with small sample 

sizes and heterogeneous sightability among individual Key deer.  In addition, camera-

based surveys require approximately 21–30 days to complete per island complex and it 

may not be practical to survey all outer islands annually.    

Forward-looking infrared thermography (FLIR) detects thermal radiation from 

objects and converts this radiation into visible images allowing differentiation between 

objects of different temperatures.  Thus, FLIR technology can be used to detect the 

presence of large mammals which emit thermal radiation at higher intensity that 

background objects.  Boonstra et al. (1994) gives a more detailed description of FLIR 

technology.  Forward looking infrared-thermography technology has been used to survey 

large mammal populations (Croon et al. 1968, Havens and Sharp 1998, Wiggers and 

Beckerman 1993, Dunn et al. 2002) and may provide a practical and accurate alternative 

to estimate Key deer abundance and monitor population trends on outer islands.  Primary 

sub-populations occur on Big Torch, Cudjoe, Howe, Little Pine, Big Knockemdown, 

Little Knockemdown, and Sugarloaf keys.  However, many outer islands exhibit small 

Key deer sub-populations (e.g., ≤5 individuals) which are difficult to accurately estimate 

using camera-based surveys.  FLIR-based surveys may provide an alternative method to 
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survey these small sub-populations accurately.  Aerial FLIR-based surveys also could 

provide a temporally effective method to obtain sub-population estimates offering 

managers the ability to annually survey all outer islands and make status assessments 

immediately following natural disasters such as major hurricanes or disease outbreaks. 

Limitations and local conditions may restrict the utility of FLIR for the survey of 

large mammals in tropical and sub-tropical conditions.  Wyatt et al. (1980) indicated that 

surveys using thermal contrast alone may be insufficient for the survey of large 

mammals.  Inadequate differences between ambient and biological temperatures can 

significantly limit aerial detection of large mammals using FLIR technology.  Exposed 

ground and rocks, and thermal radiation from vegetation also may cause false detections 

and this problem may be exacerbated in warmer climates such as the tropics.  

Additionally, dense vegetation may limit the utility of FLIR technology for the survey of 

large mammals (Garner et al. 1995, Dunn et al. 2002), particularly in tropical and sub-

tropical environments where dense vegetation is generally pervasive.  FLIR technology 

has been most successfully applied in open vegetation types or controlled environments 

(Croon et al. 1968, Wiggers and Beckerman 1993, Naugle et al. 1996).  Havens and 

Sharp (1998) reported positive results using FLIR to survey large mammal populations 

in wooded areas in southern Florida, USA.  This study suggests FLIR-based surveys 

might provide a functional method to survey Key deer.  The purpose of this study was to 

compare camera-based and FLIR-based methods to survey Key deer sub-populations on 

outer islands and further investigate the utility of FLIR in sub-tropical environments.    
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STUDY AREA 

 The study area is located in the Lower Florida Keys, Monroe County, Florida, 

USA.  It encompasses all islands within the known distribution of Key deer (Figure 3.1), 

the majority of which are contained within the boundaries of the National Key Deer and 

Great White Heron National Wildlife refuges.  Local geology is dominated by 2 

Pleistocene formations: Miami limestone (oolite) and older Key Largo limestone below 

(Hoffmeister and Multer 1968, Halley et al. 1997).  Topographic relief is extremely low 

and most islands are nearly flat with elevations <2 m.  Soils vary from exposed oolitic 

bedrock to marl deposits and peat (Dickson 1955).  Climate is subtropical marine with 

mean January temperatures of 21oC, mean July temperatures of 29oC, and average 

annual rainfall of 98.8 cm (National Oceanic and Atmospheric Administration data, 

2006).  Rainfall is highly seasonal, generally consisting of a five month wet season from 

late May to October, and a long dry season from November through May.  Scattered 

thunderstorms and tropical storms are responsible for wet season precipitation.   

Vegetation is principally West Indian in origin (Dickson 1955, Long 1974) and is 

greatly influenced by elevation (Folk 1991, Lopez 2001).  Vegetative communities near 

sea level are primarily comprised of black mangrove (Avicennia germinans), white 

mangrove (Laguncularia racemosa), red mangrove (Rhizophora mangle) and other 

halophytes, which are successively replaced by buttonwood (Conocarpus erectus), 

hammock, and pineland communities with increasing elevation (Lopez 2001).  Outer 

islands typically exhibit dense tropical vegetation that considerably limits visibility and 

the applicability of traditional methods to survey large mammals (Lancia et al. 1996, 
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Jacobson et al. 1997, Jachmann 2002).  Vegetation density is decreased in February 

during leaf-off offering a period of increased visibility for aerial surveys.  Lopez (2001) 

reported Key deer on Big Pine Key used upland habitats (i.e., pineland and hammock) 

and avoided lowland habitats (i.e., buttonwood and tidal areas).  However, lowland 

habitat types occur at comparatively higher proportions on outer islands and Key deer on 

these islands frequently use buttonwood and seasonally tidal areas (unpublished data).  

Key deer habitat on outer islands was defined as pineland, hammock, buttonwood forest, 

seasonally tidal, and developed areas (i.e., all available habitat excluding continually 

tidal areas). 

 
Figure 3.1.  Distribution of the endangered Florida Key deer, Lower Florida Keys, 

Florida, USA.
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METHODS 

Aerial-FLIR Surveys  

Aerial-FLIR surveys were conducted on from a Bell Ranger 206L-4 helicopter 

using a handheld ThermaCAM® B-20 (FLIR Systems, North Billerica, Massachusetts, 

USA) with a 24° lens.  At least one survey was conducted on Annette complex, Cudjoe 

Key, Howe Key, Knockemdown complex, Little Pine Key, Knockemdown, Sugarloaf 

Key, Torch complex, and Water Key.  Surveys were conducted during early morning to 

maximize thermal contrast between Key deer and background (Havens and Sharp 1998).  

Flights were conducted at an altitude of 90–100 m as preliminary tests indicated this 

elevation offered optimal FLIR ground-swath width without flushing Key deer and 

double counting (Naugle et al. 1996).  The ThermaCAM® FLIR system provided a 24° x 

18° field of view resulting in a ground swath approximately 28-m wide (vertical swath 

varied with camera pitch).  North-south transects were flown at approximately 16–24 

km/hour (9–13 knots) and transects offered complete coverage of islands.  The FLIR 

unit was operated by an experienced observer during all preliminary testing and surveys.  

Observer door was removed and panning technique was employed to improve detection 

of deer in wooded areas and discrimination of large mammal species (Havens and Sharp 

1998).  Number and location of Key deer thermal signatures were recorded by a second 

observer in the helicopter.  FLIR-based population estimates represent minimum counts 

of Key deer on their respective islands.       

 

 



    36

Camera-based Surveys 

Island complexes were divided into 50-ha survey units and intensively searched 

for indications of Key deer presence and areas of high use.  Cameras were placed in 

areas of high use at a density of 1 camera per survey unit.  Assuming seasonal ranges 

comparable to those observed by Silvy (1975), placement provided approximately 1.5–

5.5 camera units per Key deer home range and offered complete coverage of Key deer 

habitat on each island complex.  Commercially available Cuddeback digital infrared-

triggered cameras (Non-typical Inc., Park Falls, Wisconsin, USA) were used to 

photograph Key deer.  Camera density was 1 camera/sample unit (~50 ha) offering 

complete coverage of Key deer habitat on each island complex.  Cameras were 

subjectively placed within sample units at sources of freshwater, along trails, in areas 

where Key deer or their sign were observed, or along likely travel corridors.  Camera-

stations were baited once at initial setup with <3.8 l of domestic feed (e.g., sweet feed, 

cracked corn) to entice exploration by Key deer passing in close proximity to the camera 

station and maximize captures of individually identifiable Key deer.  Cameras were 

operated simultaneously on each island complex for 20 consecutive 24-hour periods 

(days).  Date and time were automatically recorded on each digital photograph.   

A 2-sample Peterson model (Seber 1982) was used to calculate abundance 

estimates using a 10-day mark and 10-day re-sight period.  Bailey’s binomial model 

(Bailey 1952) was used as it is more robust to small sample sizes (Seber 1982).  

Resultant abundance estimates were then fit to a Poisson distribution and simulations 

were used to develop corrected population estimates using sightability of known deer on 
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Cudjoe and Sugarloaf keys (70–100%).  Lower bounds of confidence intervals were 

adjusted to account for the minimum number known alive on each island complex and 

all fractions were rounded to the nearest whole number.  Sightability of Key deer using 

cameras was analyzed using Program MARK (White and Burnham 1999) and Zero-

Truncated Poisson Test of Equal Sightability (Caughley 1977).  For a more detailed 

discussion of camera surveys see Chapter II. 

Camera-based surveys were completed in close temporal proximity to FLIR 

surveys and I assume demographic and geographic closure between camera-based and 

FLIR-based surveys.  Observed dispersal, movements, and mortality factors of Key deer 

on Big Pine Key (Lopez 2001, Lopez et al. 2003) support this assumption.  Closure 

assumptions were further supported by monthly survival rates and locations of radio-

collared Key deer on Cudjoe and Sugarloaf during this timeframe (100%; Parker 2006). 

 

RESULTS 

Aerial-FLIR surveys occurred on 28 February-March 1, 2005 and 9–10 February, 

2006 between 0630 and 0900 hours.  Total area surveyed was approximately 3,472 ha 

yielding a total of 26 thermal signatures of Key deer in 2005 and 4,076 ha yielding a 

total of 27 thermal signatures in 2006.  Temperatures ranged from 15–24°C during 

surveys and were within the limitations of the FLIR system.  Key deer thermal 

signatures were clearly visible and distinguishable under local conditions when Key deer 

were located in open areas.  However, thermal signatures were more difficult to detect in 

dense vegetation.  Aerial-FLIR surveys recorded 4 thermal signatures of Key deer on 
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Cudjoe where an absolute minimum of 7 deer were known to be present during the 2005 

survey.  Similarly, 7 thermal signatures of Key deer were recorded on Sugarloaf in 2005 

and 6 thermal signatures in 2006 where an absolute minimum of 12 Key deer were 

known to be present during surveys.  Cudjoe was not surveyed in 2006 due to flight zone 

restrictions.   

Cameras obtained 649 valid photographic captures of Key deer on outer islands.    

Sixteen of 19 (84.2%) known individually identifiable Key deer inhabiting outer islands 

were photographically captured in 2005–2006.  Cumulative capture rate for new 

individually identifiable deer reached asymptote around Day 9 and only 2 previously 

unidentified deer were captured after Day 10.  Marked Key deer were regularly captured 

throughout the 20-day survey period at multiple camera stations.  Mean capture of 

marked individuals during re-capture sessions was 2.7 and 2.4 for males and females 

respectively.  Number of captures for individual marked Key deer ranged from 1–7 

captures and results of Zero-Truncated Poisson Test of Equal Sightability indicated 

sightability by day was not equal among all individual Key deer (P <0.001).  Results of 

model selection using Program MARK indicated no significant difference in sightability 

by day between sexes (male = 0.244, SE = 0.031; female = 0.224, SE = 0.019). 

Population estimates differed considerably between camera and FLIR survey 

methods (Table 3.1).  Camera-based surveys consistently produced higher abundance 

estimates than FLIR counts.  G-test results using camera derived estimates as expected 

values indicated that the number of deer observed using FLIR methods was significantly 
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higher (P = 0.012) than population estimates derived from camera surveys using the 

Peterson estimator.   

 

 

 

 

Table 3.1.  Comparison of abundance estimates using infrared-triggered cameras 

and number of Key deer observed using aerial forward-looking infrared-

thermography methods, Lower Florida Keys, Florida, USA.   

Deer 
observed 

using FLIR 
(2005) 

Deer 
observed 

using FLIR 
(2006) 

Camera-
based 

estimate 
2005-2006 

Total area 
surveyed 

(ha) 
aIsland complex MNKA

Cudjoe 1,319 4 NSb 8      7 

Howe 373 11 6 16      9 

Knockemdown 582 NSb 5 9      3 

4 Little Pine 382 7 12      4 

Sugarloaf 1,399 7 6 25     12 

Torch 1,341 NSb 3 38     10 

 

 

a MNKA, absolute minimum number of individual Key known to be alive. 
b NS, no survey was conducted.   

 

DISCUSSION 

Because these surveys were conducted on sub-populations of unknown size, it is 

not possible to compare accuracy between the 2 techniques.  Camera-based surveys were 

a more cost effective method to obtain estimates of Key deer abundance on outer islands.  

The number of infrared-triggered cameras necessary for camera-based surveys varies 

with island size and cost per camera unit varies among manufacturers.  A minimum of 9 

cameras was needed to survey the largest island (i.e., Sugarloaf).  In this study, initial 
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investment for camera-based surveys was considerable-- approximately $330 per camera 

unit.  However, once purchased the long-term cost of operation per survey was 

negligible-- approximately $5 per camera unit.  Cost of the ThermaCAM® B-20 FLIR 

system was $28,000.  Surveying all outer islands required approximately 8–10 hours of 

helicopter flight time, the cost of which would have varied from $350–600 per hour 

depending on type of helicopter used.  Cost estimates do not include technician salaries. 

 Forward-looking infrared thermography technology is currently of limited use in 

Key deer management.  I suggest that camera-based surveys, despite the amount of field 

work and time required, should be the preferred method to survey outer islands.  Utility 

of FLIR-based surveys appears to be limited by low sightability due to dense tropical 

vegetation.  Physiological characteristics such as small body size and behavioral 

characteristics such as secretive and solitary tendencies also may appreciably reduce 

sightability of Key deer using FLIR technology.  Surveys based on FLIR technology are 

typically conducted under the assumption of complete or nearly perfect detection (e.g., 

Havens and Sharp 1998, Wiggers and Beckerman 1993, Dunn et al. 2002).  Thus, FLIR-

based surveys require that all Key deer be detected as this method represents a minimum 

count.  However, results of camera-based surveys and failed observation of known Key 

deer numbers (50–57% of minimum known) indicate that only a small proportion of Key 

deer present on islands were detected using FLIR methods.  It may be desirable to apply 

a correction factor for FLIR-based surveys of large mammals in tropical and sub-tropical 

environments or other areas exhibiting dense vegetation.   



    41

 Sightability of Key deer using FLIR technology may have been limited by local 

ambient temperatures.  Havens and Sharp (1998) concluded that FLIR-based surveys 

offered adequate sightability of large mammals at 25°C.  Temperature during FLIR 

surveys were within the limitations of the FLIR system.  Thermal contrast also was 

improved due to full or partial cloud cover during surveys.  Key deer sighted using FLIR 

were clearly visible, also indicating ambient temperature was not a limiting factor.  

Although conducting FLIR surveys at night (Wiggers and Beckerman 1993, Garner et al. 

1995, Graves et al. 1972) or pre-dawn (Havens and Sharp 1998) could provide improved 

thermal contrast of large mammals, night flights were not possible during this study due 

to flight restrictions.  The utility of FLIR-based survey also may have been limited by 

the capabilities of the camera equipment used in this study and other FLIR systems 

might produce improved results.  Further research is necessary to address sightability, 

correction factors, and limitations of specific equipment in sub-tropical and tropical 

environments. 
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 CHAPTER IV 
 

CONCLUSIONS AND IMPLICATIONS 

 
The purpose of this chapter is to summarize current methods to survey Key deer 

on outer islands.  This chapter provides a general summary of the research presented in 

this thesis.  Additionally, this chapter provides management recommendations regarding 

estimating Key deer sub-population abundances on outer islands.   

 

CAMERA-BASED SURVEYS 

Camera-based surveys offer a practical and accurate method to monitor the 

spatial distribution on Key deer throughout their range.  Results of this study indicate 

camera-based surveys may provide a practical method to estimate and monitor Key deer 

abundance and population trends on outer islands.  In addition, camera-based surveys 

can provide a method to evaluate the efficacy of management actions on outer islands 

such as translocations and habitat manipulations.  Similar sightability among male and 

female Key deer and use of natural marks minimized the temporal and financial costs 

associated with conducting surveys of abundance on outer islands.  In addition, methods 

presented here alleviate the need to capture and mark individuals, thereby minimizing 

invasive and potentially harmful management actions. 

Camera-based surveys should be conducted in August-September allowing 

maximal discrimination of antler configuration, assumption of mark retention, and 

minimization of behavioral bias due to rutting behaviors.  Although baiting may not be 

necessary, it is acceptable to bait camera stations at initial camera station setup only if 
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the Peterson or Minta-Mangal estimators are used to estimate abundance.  However, I 

recommend that camera stations not be re-baited during surveys as this may introduce 

further behavioral bias into population estimates.  Surveys should be conducted for 20 

consecutive days as this timeframe allows collection of sufficient data and capture of 

most individual Key deer.  I recommend the addition of multiple recapture sessions to 

address inherent variability and address the accuracy of Key deer abundance estimates 

for individual islands.  Camera density should be a minimum of 1 camera per 50 ha of 

Key deer habitat.   

All methods used to develop abundance estimates presented in Chapter II are 

subject to biases associated with small samples sizes and sightability of individual deer.  

Sightability of individual Key deer is an inherent problem when estimating Key deer 

abundance using camera-based methods.  Methods developed by Minta and Mangel 

(1989) address variability in individual sightability and I recommend the Minta-Mangal 

estimator be used when estimating Key deer abundance on outer islands.  Additionally, I 

recommend further validation of camera-based survey methods for Key deer.  Managers 

should be cognizant of potential biases inherent in camera-based estimates of Key deer 

abundance and derived estimates should be used with prudence in management of Key 

deer.  A single estimate of population size provides little information about the status of 

a population (Lancia et al. 1996).  Thus, I recommend camera-based surveys be 

conducted annually to monitor population status and trends on outer islands. If annual 

surveys are not feasible, I recommend the development of a rotational survey scheme 
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which focuses on primary sub-populations such as Cudjoe, Howe, Little Pine, and 

Sugarloaf. 

 

FLIR-BASED SURVEYS 

I tested the utility of forward looking infrared-thermography (FLIR) technology 

to estimate abundance of Key deer on outer islands using aerial survey methods.  Utility 

of FLIR-based aerial surveys appears to be limited by low sightability due to dense 

tropical vegetation.  Although no test of accuracy was possible, results indicate that 

FLIR-based aerial survey methods are unreliable for the survey of large mammals in 

tropical habitats.  Thus, FLIR-technology is currently of limited use in Key deer 

management and camera-based surveys should be the preferred method to survey Key 

deer abundance on outer islands.  Physiological characteristics such as small body size 

and behavioral characteristics such as secretive and solitary tendencies also may 

appreciably reduce sightability of Key deer using thermal imaging.  Results of known 

Key deer locations and survey method comparisons indicate that FLIR drastically 

underestimates Key deer abundance on outer islands.  It may be desirable to apply a 

correction factor for FLIR-based surveys of large mammals in tropical and sub-tropical 

environments or other areas exhibiting dense vegetation.  Use of aerial FLIR-based 

methods should be avoided when attempting to estimate Key deer abundance on outer 

islands.  If aerial FLIR-based methods are used, I strongly recommend the development 

and application of correction factors for this type of survey. 
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MANAGEMENT IMPLICATIONS 

Reclassification of Key deer from endangered to threatened has recently been 

proposed as a result of increased Key deer densities at the core of their range (i.e., Big 

Pine and No Name keys; Lopez et al. 2004).  Attempts to establish viable sub-

populations (Parker 2006) address other recovery criteria (USFWS 1999).  Other 

recovery criteria such as the evaluation of status and trends of Key deer on islands will 

also play a key role in the decision making process.  Information from this study will be 

useful during evaluation of the proposed reclassification of Key deer.  Data from this 

study also will facilitate appropriate management and conservation of the endangered 

Key deer metapopulation throughout their range.   

Results of occupancy surveys using traditional and camera-based methods 

indicate that the distribution of Key deer has decreased slightly since the early 1970s.  

Absence of Key deer on previously occupied islands such as Big Johnson and 

Summerland keys may be an indication of population declines on outer islands.  The 

effects of recent hurricanes and changes in freshwater quality are possible explanations 

for the observed constriction in distribution.  However, metapopulations are dynamic 

and the absence of Key deer on specific outer islands may be the result of natural 

fluctuation in meta-population structure.  Factors effecting the distribution and 

abundance of Key deer throughout their range (e.g., fresh water) warrant further 

investigation. 

Relative abundance among islands raises questions as to the factors limiting Key 

deer abundance on outer islands.  Abundance estimates for all islands were well below 
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respective carrying capacities calculated by Lopez (2001).  Islands such as Sugarloaf and 

Cudjoe have sufficient habitat and would be expected to maintain higher Key deer 

densities than observed.  Furthermore, the absence of Key deer on previously occupied 

islands such as Big Johnson and Summerland keys is indicative of sub-population 

declines in nearby source populations.  Research using models by Harveson et al. (2006) 

concluded that distance from source populations and island size significantly affects Key 

deer abundance on outer islands, and the results of this study support these conclusions.  

Larger natural populations of Key deer typically occurred on islands closest to Big Pine 

Key. 

I recommend further evaluation of camera-based and other contemporary survey 

methods to estimate abundance of Key deer on outer islands.  Future research needs 

include investigation of the general ecology of Key deer inhabiting outer islands.  

Primary emphasis should be applied to survival, fecundity, and recruitment on outer 

islands as these would be expected to have significant impacts on small local sub-

populations.  Dispersal rates (i.e., immigration and emigration) among outer islands also 

are important to the persistence of Key deer sub-populations and warrant further 

investigation. 
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