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ABSTRACT 

Electronic Noise in Nanostructures: 

Limitations and Sensing Applications. (December 2006) 

Jong Un Kim, B.S.; M.S.; Ph.D.; Seoul National University;  

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Laszlo B. Kish 

 

Nanostructures are nanometer scale structures (characteristic length less than 100 nm) such as 

nanowires, ultra-small junctions, etc. Since nanostructures are less stable, their characteristic 

volume is much smaller compared to defect sizes and their characteristic length is close to 

acoustical phonon wavelength. Moreover, because nanostructures include significantly fewer 

charge carriers than microscale structures, electronic noise in nanostructures is enhanced 

compared to microscale structures. Additionally, in microprocessors, due to the small gate 

capacitance and reduced noise margin (due to reduced supply voltage to keep the electrical field 

at a reasonable level), the electronic noise results in bit errors. On the other hand, the enhanced 

noise is useful for advanced sensing applications which are called fluctuation-enhanced sensing. 

In this dissertation, we first survey our earlier results about the limitation of noise posed on 

specific nano processors. Here, single electron logic is considered for voltage controlled logic 

with thermal excitations and generic shot noise is considered for current-controlled logic. 

Secondly, we discuss our recent results on the electronic noise in nanoscale sensors for SEnsing 

of Phage-Triggered Ion Cascade (SEPTIC, for instant bacterial detection) and for silicon 

nanowires for viral sensing. In the sensing of the phage-triggered ion cascade sensor, 

bacteriophage-infected bacteria release potassium ions and move randomly at the same time; 

therefore, electronic noise (i.e., stochastic signals) are generated. As an advanced model, the 

electrophoretic effect in the SEPTIC sensor is discussed. In the viral sensor, since the 

combination of the analyte and a specific receptor located at the surface of the silicon nanowire 

occurs randomly in space and time, a stochastic signal is obtained. A mathematical model for a 

pH silicon nanowire nanosensor is developed and the size quantization effect in the nanosensor 

is also discussed. The calculation results are in excellent agreement with the experimental results 

in the literature.  
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CHAPTER I 

INTRODUCTION 

Nanotechnology is generally regarded as technology dealing with nanostructures whose 

characteristic size is between 1 and 100 nanometers (nm). Here, a nanometer is one billionth of a 

meter. There are several kinds of nanostructures such as quantum dots (QD), quantum wires, 

nanowires, ultrasmall junction, and carbon nanotubes and so on. Electronic band structures are 

modified in quantum dots and wires due to size quantization effect [1]. The size quantization 

effect makes the energy gap larger between the lowest conduction and the highest valence bands 

(or levels) and space-dependent density of state. From the electronic transport point of view, the 

size quantization effect results in two (or one)-dimensional transport. Another important 

electronic phenomenon at nanostructures is single electron tunneling; only a single electron can 

tunnel through an ultrasmall junction at a time [2]. A junction connected between a 

nanostructure and an electrode or nanostructures can be the ultrasmall junction, and the 

capacitance of the ultrasmall junction for the single electron tunneling has to be small enough for 

the electrostatic energy to be greater than thermal energy [3]. 

 The characteristic length of nanostructures is approximately equal to the size of a set of 

hundreds of chemical molecules or of a single biological macromolecule such as a bacterial cell, 

DNA, and protein and so on. Moreover, when nanostructures on a substrate are submerged in a 

sample solution, only a single bacterium or virus can affect the surface of the nanostructures [4]. 

Therefore, the sensitivity of nanoscale sensors, so called nanosensors, is enhanced so incredibly 

that nanosensors can detect a single biomolecule behavior [4,5].  

 There are two approaches to fabricate nanostructures: top-down and bottom-up [6]. The 

conventional semiconductor processes are used in the top-down approach, while self-assembly, 

colloidal chemistry, and vapor-liquid-solid techniques are used in the bottom-up approach. There 

are many methods to synthesize nanostructures, especially quantum dots in the bottom-up 

approach, e.g., chemical reactions in colloidal solutions, long time annealing in solid state, 

chemical vapor deposition on solid surface, and wet or dry etching of thin film on solid surface, 

and so on. The bottom-up approach provides relatively economical and convenient synthesis of 

nanostructures as compared with the top-down approach. However, the alignment of 

nanostructure is a serious problem for applications of nanostructures.  
________________ 
This dissertation follows the style of Fluctuation and Noise Letters. 
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 Conventional semiconductor processes are applied to nanostructure fabrication in the top-

down approach. Usually, the fabrication of a quantum well is the starting point of the 

nanostructure fabrication. By use of molecular beam epitaxy or metal organic chemical vapor 

deposition technique, an ultra-thin single crystalline layer can be deposited on a bulk substrate. 

The development of these advanced epitaxy techniques makes it possible to fabricate single 

crystalline layer with a very fine boundary. Then, by e-beam lithography or photolithography 

process we can remove a part of the single crystalline layer and fabricate nanostructure. 

However, the top-down approach requires very expensive equipment.  

 Silicon-based integrated circuit (IC) industry has been developed according to Moore’s law 

saying that every third (or second) year the size of a transistor shrinks four times smaller and the 

number of transistors per unit area increases by four times. The number of transistors per a chip 

has been doubled every second year from the 1970s to 2002. Intel introduced a new central 

processing unit (CPU) fabricated in a 90 nm process in 2004 [7], and Samsung Electronics 

started mass-production of a 1 Gbit dynamic random access memory (DRAM) chip using a 90 

nm processes in 2005 [8]. That is, DRAM and CPU already include nanostuctures. Kish reported 

that the Johnson-Nyquist noise increases with shrinking the size of a metal-oxide-semiconductor 

field effect transistor (MOSFET) and that the noise limits the operation frequency of a chip as 

well as the number of transistors per chip at a given power [9, 10]. It suggests that electronic 

noise can restrict the hardware and operation conditions of nanoscale digital processors. Here, 

we expand his work in MOSFET processors to other nanoscale digital processors-single electron 

logic (SEL) and current-controlled digital processors. While two digital levels in MOSFET 

processors depend on many electrons, SEL processors depend on a single electron. Therefore, a 

single electron has to be controlled by the gate voltage of a transistor in SEL processors. 

Although MOSFET and SEL processors are voltage-controlled digital processors, current-

controlled processors can be available in nanoscale digital processors. The effect of the Johnson 

Nyquist noise on current-controlled digital processors is similar to the effect on MOSFET 

processors. Thus, the shot noise effect will be discussed in current-controlled digital processors.  

 In general, a sensor consists of three parts, i.e., detection, signal amplification and signal 

analysis. When we call a sensor a nanosensor, the characteristic size of the detection part of the 

nanosensor is nanoscale. As mentioned before, since the nanoscale detection part is affected by a 

single or several analytes (biomolecule), the sensitivity of the nanosensor is enhanced. Moreover, 

whenever a single biomolecule affects the nanoscale detection part of the nanosensor, the 
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detection part generates different types of stochastic signals from that of a background signal. 

Since a single biomolecule moves randomly in an analyte solution, the signals from the detection 

part include random fluctuations. Therefore, the signals from the nanosensor are stochastic 

signals. The properties of the stochastic signals reflect the random motion of analytes as well as 

the interactions between a single analyte and the detection part. Kish said about the properties 

that it is gold in the trash [11]. Fluctuation-enhanced sensing is one of signal analysis methods. 

The simplest version of the fluctuation-enhanced sensing is to analyze stochastic signal on the 

basis of power density spectra.  

 We demonstrated that the fluctuation-enhancing sensing method was useful to detect a 

bacterium with a sensing of phage-triggered ion cascade (SEPTIC) nanosensor [12]. Patolsky et 

al. reported that single viruses are detected by silicon nanowire (SiNW) nanosensors [13]. The 

signals generated by the SINW nanosensors are stochastic signals as expected. Here, we develop 

models for SEPTIC nanosensors and for SiNW nanosensors. 

 In chapter II, we take into consideration thermally-assisted tunneling effect in SEL 

processors and shot noise in current-controlled digital processors [14]. The influence of the 

electronic noise on the nanoscale digital processors is discussed. In chapter III, we introduce 

SEPTIC and SiNW nanosensors, discuss the physical sources of the fluctuation in the SEPTIC 

sensors, and develop a classical model for pH SiNW nanosensors. We summarize the electronic 

noise in nanostructures with respect to the limitation of nanoscale digital processors and the 

sensor applications and discuss further works in chapter III.  
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CHAPTER II 

LIMITATION OF NANOSCALE DIGITAL PROCESSORS 

Since 1999, IC microprocessors such as DRAM and CPU already include nanostructures as 

mentioned before. As the size of MOSFETs in the IC processors has shrunk, the number of 

transistors per unit area has increased exponentially and the operation frequency of the 

processors have increased at the same time. In 2002, Intel Pentimum IV included about one 

millions transistors and its operation frequency was 2 GHz [9].  

 Threshold level is required in digital processors since digital processors work in on and off 

levels since crossing the threshold level means switching between two levels. The two-level 

problem in digital processors is similar to the stochastic resonance problem. Moreover, problems 

on threshold-level-crossing in Gaussian noise are at the core of many stochastic phenomena. The 

Johnson-Nyquist noise, i.e., thermal noise and shot noise are Gaussian noise. Gingl, Kish and 

Moss reported that error rate and energy dissipation play a determining role in stochastic 

resonators [15]. It suggests that error rate and energy dissipation in nanoscale digital processors 

can also be important factors on threshold-level-crossing since nanoscale digital processors have 

electronic noise which is one of Gaussian noise. Since nanoscale digital processors usually will 

contain millions of transistors or more, energy dissipation in nanoscale processors becomes 

significant. 

 Kish took account of the Johnson-Nyquist noise effects on MOSFET processors [9]. The 

Johnson-Nyquist noise causes bit-flip errors in MOSFET processors. Taking these bit-flip errors 

into consideration, Kish found the safe thermal noise margin that threshold voltage has to be 12 

times bigger than root-mean-square (RMS) thermal noise voltage. He also reported that the 

number of transistors per unit area and the operation frequency cannot increase at the same time 

at a given finite power dissipation in the MOSFET processors.  

 Single electron transistor (SET) is one of the next generation nanoscale transistors. It has two 

single electron junctions and one quantum dot as shown in Fig. 2.1. Two pre-requirements for 

the satisfactory on/off switching operation of a single ultrasmall junction are related to the 

capacitance, C , and the tunneling resistance, TR , of the junction [16,17]. In the first place, the 

tunneling resistance of the ultrasmall junction has to be greater than the resistance quantum 

≅= 2qhRK  25.8 kΩ , where h  is the Plank constant and q is the elementary charge, since the 

energy uncertainty associated with the tunneling lifetime, CRTT =τ , should be much smaller 
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than the electrostatic charging energy CqEC 22= . The other requirement is that the electrostatic 

charging energy has to be greater than thermal energy. The first condition leads to the observable 

discrete energy levels for single electron tunneling, and the second one to the blockade of the 

thermally assisted tunneling. The single electron tunneling has been observed at low 

temperatures (< 77 K) [18], where both requirements are easily satisfied by today's technology.  

 In single electron logic (SEL) processors, logic levels depend on whether a single electron 

exists (or passes). Averin and Likharev [17], and Korotkov [19] proposed SEL gates and 

circuitry. They used the SET as the basic component of these circuits. However, at non-zero 

temperature, thermally assisted tunneling takes place even at such voltages where the device 

would have closed at zero temperature, which apparently leads to bit-flip errors [17].  

 MOSFET-based and SEL processors are voltage-controlled digital processors. Although 

voltage-controlled digital processors are popular now, we can also use current-controlled digital 

processors for nanoscale processors. The influence of the Johnson-Nyquist noise on current-

controlled digital processors is similar to voltage-controlled digital processors. However, since 

shot noise takes place with the electric current flowing in electronic devices, it can be important 

in current-controlled digital processors. 

 Here we consider two kinds of nanoscale digital logic processors―SEL and current-

controlled digital processors. Neither of the processors is fabricated and available now. However, 

if single electron transistors are used as the basic components of nanoscale processors, both 

processors may be applied. In section 2.1, we introduce SEL processors and obtain the error-free 

performance condition at room temperature in the SEL processors. In section 2.2, we evaluate 

the error rate of a current-controlled digital processor where shot noise is dominant and discuss 

the limitation of the current-controlled digital processors. The same results in this chapter are 

reported in Ref. [14] 

 

2.1. SINGLE ELECTRON LOGIC PROCESSORS 

As mentioned before, two logic levels in SEL processors can be distinguished on the basis of 

whether a single electron passes through a single electron transistor (SET) shown in Fig. 2.1. The 

SET is a basic component in the SEL processors. However, SETs can also be substituted for 

MOSFETs as basic components in voltage- or current-controlled processors. Figure 2.1 shows  
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Figure 2.1. Schematic diagram of a symmetric single electron transistor. It consists of two single 

electron junction, one quantum dot and a single gate. 
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symmetric SET. It has two symmetric single electron junctions and one quantum dot. A single 

electron tunnels through single electron junction. The tunneling is controlled with gate voltage.  

 

2.1.1. Error-free performance condition 

 Firstly, we consider a SET with double single electron junction, including a gate capacitor 

and a QD, with low impedance driving and outputting, i.e., 111
2

11
1

1
21 ,,,,, −−−−−−〈〈 GKG CCCRZZZ ωωω , 

as shown in Fig. 2.1. Under these low-impedance conditions, the single electron tunneling rate 

through each junction is expressed as follows [20]: 
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where Γ
r

 and Γ
s

 are the single electron tunneling rates through the junction in a left-to-right and 

a right-to-left directions, respectively. The subscript number represents the different junctions, 

and the subscripts r and l represent the direction that an electron tunnels from left to right and 

from right to left, respectively. R  is the tunneling resistance, TkB1=β , and n is the number of 

the excess charges on the QD. The tunneling-related energies in Eq. (2.1) are defined by 
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and the dimensionless energies η ’s are defined by 
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Figure 2.2. Stability diagram of a single electron transistor with asymmetric junctions. The point O 

represents ‘off’ state, and the black dot does ‘on’ states. 
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  ( ) ( ) ( ) ( )lrlri
Tk

qnVVEqnVVEqnVV
B

Gi
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Here, ∑C  is the sum of the capacitances, GCCCC ++=∑ 21 . Equation (2.1) shows that the 

tunneling rate depends only on the dimensionless energy, iη , and the tunneling resistance at 

fixed temperature. At a given tunneling resistance and temperature, Eq. (2.3) allows us to draw 

the different regimes of working, as shown in Fig. 2.2 as a function of the source-drain voltage, 

V  and the gate voltage, GV . The maximal error rate, one-bit-flip-error/year/system, is used as 

the condition of the error-free performance on Fig. 2.2. The dotted lines represent the boundaries 

between the ‘on’ and ‘off’ states at zero temperature, while the solid lines represent the 

conditions of the maximal error rate in the "off" state. Each region represents different tunneling 

combination. The checked regions represent the zero current regions, depending on the maximal 

error rate, and their area is temperature dependent (see Eq. (2.3)). These regions exist if the 

following conditions are satisfied simultaneously: 

 ( ) ( )TRnqVV j
r
jGjr ,,, αη −≤    and    ( ) ( )TRnqVV j

l
jGjl ,,, αη ≥  , (2.4)  

where we call the α ’s stability parameters. Equations (2.2), (2.3) and Relations (2.4) are used to 

generate Fig. 2.2.  

 Using Eqs. (2.1) and Eq. (2.4), the values of the α ’s can be obtained from the following 

equations: 
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where YΓ  is the maximal error rate. Since Eqs. (2.5a) and (2.5b) are the same functional form 

and generally ( )[ ] 1,exp >>TRα , the α ’s are approximated as 
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where )(W x  is the Lambert W-function [21]. After substituting the parameter α , Eq. (2.6), into 

Eq. (2.4), the error-free performance condition is obtained from Eqs. (2.2) through (2.4) and 

(2.6): 
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Eq. (2.7) expresses the condition that a SET or a chip has the tunneling rate below the maximal 

error rate in the "off" state.  

 

2.1.2. Application of error-free performance condition 

 At practical operation the two voltages, V  and GV , have to satisfy two different kinds of 

requirements. First, the drain voltage cannot be greater than maxV  which corresponds to the 

maximal error rate in the "off" state. Second, in the "on" state, the gate should be driven by opt
GV  

which provides the maximal possible current at given maxV . In Ref. [22], simple considerations 

based on Eqs.(2.2) lead to:  
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where ( )TR jj ,αα =  and ( )ba  ,min  represents the minimum of a  and b . If the two junctions are 

symmetric, i.e., 21 CC = , RRR == 21 , then Eqs. (2.8) will be simplified so that the operation 

voltages in the "on" state become  ∑= CqV 2max   and  G
opt

G CqV 2=  . In this case, we have the 

maximal rate of electron flow through the device:  

 ( )[ ] RCCqRC
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Eq. (2.9) is based on unidirectional tunneling because tunneling in the reverse direction would be 

negligible at the maximal tunneling rate conditions. When the transistor runs at the maximal 

clock frequency, the dissipation power of a single SET with symmetric junctions is  
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v
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It is important to note that this is the ultimate lower limit of dissipation because Eq. (2.10) takes 

into account only the energy needed to control the device. The actual power dissipation of the 

device is not included in this picture because it can be dependent on several other conditions. 
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 In general, a semiconductor SET is built in lateral structure which has 2-dimensional 

electron gas. In the lateral structure, the QD of the SET is supposed to be a flat circular disk. 

Therefore, using the size dependence of the geometric capacitance, QDRC ε8=∑  [23], we obtain 

the following relations for the size dependence of the error-free performance condition:  
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where ε  is the permittivity of insulator and QDR  is the radius of a flat circular disk. Eq. (2.11) 

holds for any semiconductor SET with symmetric junctions. 

 Here, we regard the transistor packing density as 01.0=θ  , where θ  is the ratio of the actual 

number transistors to the number of devices of the characteristic size at fully dense packing. 

From Eq. (2.11), the power dissipation of a chip with N  SETs can be given as  
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It should be noted that this is the lower limit of power dissipation of the chip because the 

dissipation of other elements are neglected. 

 Figure 2.3 shows the lower limit of power dissipation of a single SET and N SETs (when 

running at the maximal clock frequency) and the maximal clock frequency of the single SET. 

Here, 09.3 εε =  for SiO2 , Ω= M1R  and 1.0=∑CCG  are assumed. It is apparent from Eqs. (2.11) 

and (2.12) and from the slope of curves in Fig. 2.3 that 1−∝ QDMAX Rf , 2
1

−∝ QDRP , and 4−∝ QDN RP . It is 

important to point out that the power dissipation limits of chips, which is about 100 W, sets 

another upper limit for the clock frequency. When the maximal power dissipation of a chip is 

limited at 100 W, the radius of the QD and the maximal clock frequency are about 6 nm and 30 

GHz, respectively. It implies that the processors built with SETs of nm6≤QDR  cannot operate at 

the maximal clock frequency MAXf .  

 Finally, we study the maximal quantum dot size as a function of an operation temperature. 

The results are compared by a simple prediction based on the level-crossing analysis of thermal 

noise at given capacitance and bandwidth [20]. The rms thermal noise voltage GBn CTkV =  on 

the capacitor and the practical noise margin n
opt

G VV 12≥  used in [9] yields the following relation:  
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Figure 2.3. Lower limit of power dissipation and the maximal clock frequency. These are evaluated 

in a single electron logic processor with a single electron transistor or N single electron 
transistors. The transistor packing density is assumed to be 0.01 as current 
microprocessors.  
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Figure 2.4. Maximum radius of quantum dot in the single electron transistor. It is evaluated when the 

single electron logic processor works within the maximal error rate at a given 
temperature.  
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Surprisingly, it is shown in Fig. 2.4 that the simple thermal noise estimation works very well at 

large QD limit. However, as the size of the QD decreases, the size quantization effect becomes 

dominant. The ratio of energy level spacing in quantum dot to electrostatic charging energy is 

given by 

 QDeCQD AqmCEE 224 ∑= hπ  (2.14) 

where em  is the effective mass of the electron and QDA  is the area of the quantum dot. The radius 

of the QD is 2.77 nm for Si/SiO2 in the case which the ratio is unity. The energy level spacing 

from the size-quantization effect is proportional to 2/1 LR  where LR  is the characteristic length of  

the QD. Since thermal energy is much less than the spacing among energy levels, the maximum 

characteristic length of the QD satisfies ( ) TR MAXL log)2/1(log −∝ . Therefore, the case that the 

size-quantization effect is dominant has a different slope due to 2/1−∝ QDRT . That is, the size 

quantization effect is a beneficial effect which helps to work at higher temperatures or larger 

sizes. The analysis of Fig. 2.4 suggests that a SEL processor including 109 SETs with smaller 

than 1 nm QD size can work at room temperature.  

 The aspects of power dissipation and error-free performance have been studied as a function 

of the radius of QD. The analysis shows that nanoprocessors with silicon QDs of less than 1nm 

radius can be used at room temperature in SEL processors. The most important conclusion is that 

a single electron nanoprocessor working at room temperature has to be in the size quantization 

working mode. 

 

2.1.3. Summary 

In this section, we considered the single electron logic (SEL) processors consisting of single 

electron transistors (SET). It was shown that the thermally-assisted single electron tunneling can 

lead to bit-flip errors. We obtained the error-free performance condition. Applying the error-free 

performance condition, we showed that power dissipation in the SEL processors limits the 

maximal clock frequency at a given power and that the silicon based SEL processors have to 

include SETs of about 1nm radius quantum dot for room temperature operation.  

 

2.2. CURRENT-CONTROLLED DIGITAL PROCESSORS 

In the previous section, we discussed SEL processors. The MOSFET digital and SEL processors 

are voltage-controlled. Here, we discuss current-controlled digital processors. Inductors in 
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current-controlled processors play the role of gate capacitor in the MOSFET processors, and the 

property of the Johnson Nyquist noise in an inductor is the same as in a capacitor from the 

functional point of view. Therefore, it is reasonably expected that the error-free performance 

condition in current-controlled processors is the same as in the MOSFET processors if the 

Johnson Nyquist noise is dominant. The current-controlled processors has another noise source, 

i.e., shot noise; when the electric current flows in electronic devices, the shot noise is observed 

with the Johnson-Nyquist noise. Current shows random fluctuations since it consists of discrete 

electronic charges. The shot noise is different from the Johnson-Nyquist noise since the Johnson-

Nyquist noise can take place without applied voltage but the shot noise cannot. In this section, 

we consider current-controlled digital processor where the shot noise is dominant. 

 

2.2.1. Maximal clock frequency and information channel capacity 

We consider a current-controlled digital processor. As mentioned before, we assume that the 

shot noise is dominant in the processor. As in MOSFET processors with voltage-controlled logic 

[9], we assume that the noise margin is 60 % of the ‘on’ state current as in the best possible case. 

It means that the threshold current is 60 % of the ‘on’ state current.  

 The mean frequency for the amplitude of a Gaussian noise to cross the zero level is given by 

the Rice formula. Kish generalized the Rice formula to evaluate the mean frequency for the 

amplitude of a Gaussian noise to cross an arbitrary level [24]. The generalized Rice formula is 

given by 

 ( ) ( )∫
∞
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⎞
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⎛
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0

2
2

2

2
exp2 dffSfuu th

th σσ
ν  (2.15) 

where ν  is the mean crossing frequency, σ  is the standard deviation of the Gaussian noise, thu  

is the threshold level, and ( )fS  is the power spectrum density of the noise.  

 If the shot noise is a full shot noise, the one-sided power density spectrum (PDS) of the shot 

noise is qI2 , where I  is the current and q  the elementary charge. Since the PDS is independent 

of frequency, the shot noise is white noise. The operation clock of the digital processor is the 

cutoff frequency cf . For a single gate of the current-controlled processor, generalized Rice 

formula yields the error rate  
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Figure 2.5. Dependence of the error rate of a single gate on the cutoff frequency. 

Each number in a figure represents the operation current. 
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The cutoff frequency is roughly equal to the highest possible clock frequency of the processor. It 

is shown in Fig. 2.5 that the error rate increases very rapidly with the cutoff frequency. 

 For a processor including N elements, the error-free performance condition is that the error 

rate for the single gate is no less than Nf year  where yearf  is the maximal error rate of a chip. 

Therefore, using Eq. (2.16), the maximum error rate is given by 
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where max,cf  is the available maximum cutoff frequency. The acceptable maximum error rate per 

year of a chip for upper limit of noise-induced error rate is one bit error/chip/year, i.e.,  

 

Hz103.17 8−×=yearf . By using Eq. (2.17) and the definition of the Lambert W-function [21], the 

available maximum cutoff frequency, max,cf , is obtained by  
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where )(W x  is the Lambert W-function. Since ( )xxx lnlnln)(W −≅  at 3>>x , the maximum 

cutoff frequency is approximated as  
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The maximum cutoff frequency is a good estimation of the maximal clock frequency of the 

processor with the maximal error rate. Figure 2.6 shows the maximal clock frequency as a 

function of the operation current. The thin solid line represents the maximal clock frequency of 

the single element and the thick solid line represents that of the digital processor including 100 

million elements. It is apparent that the maximal frequency is almost independent of the number 

of the elements in the processor. As shown in Fig. 2.6, Eq. (2.19) can be used in the both cases. 

It is shown that the highest maximal clock frequency would be 10 GHz in the processor with 108 

transistors if a maximal supply current is 100 A. 

 Information channel capacity of a single channel is given by Shannon information formula 

[25] 

 ( )noisesignal PPBC += 1ln1  (2.20)  
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Figure 2.6. Maximal clock frequency as a function of the operation current. The solid lines and the 

dashed lines are obtained from Eqs. (2.18) and (2.19), respectively. The thick lines 
represent the processor including 108 transistors but the thin lines a single transistor. 
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where B  is the bandwidth of signal which can be approximated by the clock frequency in the 

processor, and signalP  and noiseP  are the powers of the signal and of noise, respectively. Since the 

signal is a square wave, noisesignal PP  is approximated as the ratio of the clock frequency to the 

error rate. Supposed that all transistors operate independently, the upper limit of information 

channel capacity is rewritten as 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

year

c
c f

Nf
fNC max,

max, 1ln  (2.21)  

Figure 2.7 shows the information channel capacity at the maximal clock frequency. As shown in 

Figs. 2.6 and 2.7, both of the maximum clock frequency and the information capacity increase 

monotonically with increasing the operation current.  

 

2.2.2. Summary 

We took into consideration the current-controlled digital processor where the shot noise is 

dominant. It is shown that the bit-flip error rate caused by the shot noise increases very rapidly 

with the cutoff frequency and that the power dissipation limits the maximal clock frequency.  
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Figure 2.7. Information channel capacity at the maximal clock frequency. It is evaluated in the 

current-controlled logic processor with 108 transistors. The possible operation condition 
of the processor is a current range of less than 10-6 A if the maximal supply current is 
100 A. 

 

 



 
 
  

 

21

CHAPTER III 

SENSING APPLICATIONS 

Great interest in the biomedical applications of nanotechnology has been grown in the last 

decade.  Especially electrical nanosensors to detect biological macromolecules such as virus, 

bacteria, RNA, and DNA, are one of the promising biomedical applications of nanotechnology 

since they are faster, more selective and more sensitive than any conventional biological analysis 

technologies. 

 Several biological analysis technologies are available for the identification of bacteria in 

human, veterinary and agricultural diagnosis. Classical metabolic profiling, diagnostic 

polymerase chain reaction (PCR), and fatty acid content are all widely used and commercialized 

methods [26-28]. However, these technologies require well-equipped laboratory environments. 

As well, the time spent in obtaining definitive analytical results is of the order of magnitude of 

hours to days since the bacteria must be grown in pure culture and then subjected to analysis. 

PCR is somewhat less subject to the problems, but it cannot distinguish between living and dead 

bacteria. Therefore, it is important to research rapid and inexpensive methods for detecting and 

identifying living bacteria suitable for large-scale field environments.  

 Recently, two electrical nanosensors have been reported; one is a sensing of phage-triggered 

ion cascade (SEPTIC) nanosensor [12] and the other is silicon nanowire (SiNW) nanosensor [13]. 

It is expected that both nanosensors are implemented inexpensively and that both nanosensors 

spend shorter time in analysis than conventional technologies.  

 As mentioned before, the detection part of nanosensors is so sensitive that it detects analytes 

(i.e., biomolecules) on molecular levels. However, the detection part generates stochastic signals 

which have random fluctuations. Since the random fluctuations are hidden in a background 

signal, the information detected by the nanosensors could be ignored without caution. The 

fluctuation-enhanced sensing (FES) method can increase the sensitivity and the selectivity of the 

nanosensors since it extracts fluctuation information on analytes from the stochastic signals. The 

simplest version of the FES method is the power density spectrum of analytes-induced voltage 

fluctuations [29]. It was demonstrated that the FES method can enhance the sensitivity and the 

selectivity of commercial gas sensors for various chemicals [30,31]. Another version of the FES 

method is the use of higher-order statistics such as bispectrum introduced in Appendix.  
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 In the SEPTIC nanosensor, bacteriophage-infected bacteria release potassium ions and move 

randomly at the same time; therefore, the SEPTIC nanosensor generates random fluctuations, i.e., 

stochastic signals.  

 The SiNW nanosensors are able to detect all kinds of biomolecules [4,5]. Since a specific 

receptor corresponding to a specific biomolecule can be immobilized at the surface of the SiNW, 

the selectivity of the nanowire sensor is controlled by the choice of the specific receptor. It was 

reported that single viruses are detected without sample purification and that fluctuations occur 

when a single virus is bound at the surface of the SiNW [12]. The operation of the SiNW 

nanosensors is qualitatively understood. However, it is difficult to quantitatively analyze 

nanosensors due to complex solid-solution interface at the surface of the SiNW and the 

electronic properties in the SiNW.  

 In section 3.1, we demonstrate that an FES with nano-gap metal probes, so called a SEPTIC 

nanosensor, is applicable to detect a single bacterium via bacteriophage infection. As well, we 

analyze the physical source of the fluctuations in the SEPTIC nanosensor. In section 3.2, SiNW 

nanosensors are introduced and we develop a classical quantitative model for a pH SiNW 

nanosensor.  

 

3.1. SENSING OF PHAGE-TRIGGERED ION CASCADE SENSORS 

Bacteriophages (sometimes, called phages) are the most numerous biological entities; that is, the 

number of phages is estimated to be 1031 on the earth [32]. Phages exist with a wide range of 

host specificities from narrow host range phages, infecting only some strains of E. coli, to 

generalists, injecting the phage’s DNA into enterobacteria and myxobacteria [33, 34]. Attempts 

to make use of phages in detection and identification of pathogenic bacteria have required 

culturing the target bacteria, growing the infected culture, and assaying the production of 

progeny virions in a traditional way. It takes at least several hours to complete these processes.  

 The bacteriophage infection is irreversible adsorption. For double-stranded DNA phages, the 

bacteriophage infection begins with interactions between the specific adsorption apparatus 

(usually tail fibers) and specific receptors on the surface of a host cell [35]. The interactions lead 

to the transitory formation of a channel through which the phage’s DNA passes into the host cell 

[36]. After that, potassium ions release from the infected host cell at a rate of about 106 ions/s 

[37]. If we detect the bacteriophage infection phenomenon at a single bacterium level, we can 

identify bacteria due to the host specificities in bacteriophage. Moreover, the identification 
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method takes relatively very short time compared to a traditional technique since the 

bacteriophage infection can occur in seconds and no analyte (target cells) culture is necessary.  

 

3.1.1. Experiments and results 

The nano-gap titanium probes are shown in Fig. 3.1. The titanium thin film was deposited 20 nm 

thick on a LiNbO3 substrate. The part of the titanium film was etched into two pieces, and most 

of the area of the two titanium films was covered with AZ5214 photoresist. We removed a part 

of the photoresist and made the 8 µm × 6 µm window as shown in Fig. 3.1. Thus, two titanium 

probes of about 4 µm × 4 µm were exposed to air. The gap between two titanium probes is 150 

nm wide. The analyte solution wets two titanium probes through the window. We connect the 

probes to a preamplifier (Stanford Research System, SR560) and measure the difference between 

two probes. 

 All bacteria for experiment were derivatives of E. coli K-12 W3110 [38]. The λS and λR 

strains were W3110 ∆fhuA and W3110 ∆fhuA ∆lamB, respectively (both T5R), and the T5S strain 

was W3110 gyrA(NalR) ∆fhuB. The following phages are used: λ∆(stf tfa)::cat cI857 S105 

(λPaPa) lacking side tail fibers, Ur-λ having 4 side tail fibers from R. Hendrix and T5 from I. 

Molineux.  

 Analyte bacteria were grown in Luria broth at 37 °C, washed and resuspended in 5 mM 

MgSO4. The basic experimental procedures were as follows: (1) to mix 10 µL of a CsCl-purified 

phage stock at a titer of about 1010 pfu/mL with the equal volume of the suspension of sample 

bacterial cells, (2) to incubate at 37 °C for various times as indicated, (3) to apply 5 µL of the 

mixture to the nano-gap probes, and (4) to measure voltage difference between two probes over a 

2 min period.  

 After a sample droplet of about 5 µL was applied to the nano-gap probes, the voltage signal 

generated from the probes was amplified with the preamplifier, and then the power density 

spectrum ( )fSu  was measured over a 2 minute interval with a dynamic signal analyzer (Stanford 

Research System, SR785). Our initial experiments used two siphophages of E. coli with well-

known outer membrane receptors-the temperate phage λ requiring LamB and the virulent phage 

T5 requiring FhuA [39,40]. When mixtures of either phage with sensitive bacteria were tested 

with the nano-gap probe device, large and slow stochastic fluctuations were observed in time 

domain. The fluctuations had an approximately 21 f  power spectrum in a frequency range of 1-  
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(a) 

 
(b) 

Figure 3.1. Schematic diagram of the nano-gap metal probes; (a) top view and (b) side view. The 
sample droplet is placed on the metal probes.  
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10 Hz as shown in Fig. 3.2. In contrast, the spectrum of voltage fluctuations in mixtures of the 

same phage with isogenic ∆lamB (λR) bacteria follows an f1  noise. This is consistent with 

background voltage noise spectra caused by two possible origins - the corrosion of the titanium 

probes and the input current noise of the amplifier. If slow redox corrosion takes place in an 

electrode system, the power spectra can be 1/f noise [41,42]. The input current noise of the 

amplifier is proportional to the square of the impedance of the nano-gap, and thus small 

variations in the conductivity of the solution can cause observable changes in the noise level [43]. 

Much higher amplitude fluctuations were observed for the adsorption of phage T5 to sensitive 

cells and they showed an 21 f  power spectra; However, control mixtures with isogenic ∆fhuA 

(T5R) cells show only the f1  background as shown in Fig. 3.2. The λ phage used for these 

experiments was derived from the standard laboratory parental strain λPaPa, constructed decades 

ago [44]. However, λPaPa lacks side tail fibers and adsorbs much more slowly to sensitive cells 

than the original wild-type λ (Ur-λ) does [44]. When Ur-λ was used in these experiments, much 

higher amplitude fluctuations with a frequency dependence of approximately 21 f  were 

observed, beginning about 1 minute after mixing and increasing for about 5 minutes as shown in 

Fig. 3.3. It may happen since all the phages spent time in being adsorbed. It is also shown in Fig. 

3.3 that identical control experiments with resistant bacteria unable to adsorb Ur-λ yielded the 1/f 

background noise.  

 To understand the influence of the probe size on the stochastic signal, two large titanium 

probes of 100 µm gap was also tested. The micro-gap probes were fabricated by deposition and 

lithography of titanium thin film. Since the titanium probes are not covered with the photoresist, 

the contact area of the analyte solution on the micro-gap probes is about 500000 times greater 

than that on the nano-gap probes. As shown in Fig. 3.4, the amplitudes of the power density 

spectra were much smaller and the power density spectra of mixtures of phages with sensitive 

and resistant bacteria were identical. Many infected bacteria can be close to the large contact-

area micro-gap probes at one time while a few infected bacteria can be near the nano-gap probes. 

It indicates that many infected bacteria may average out the voltage fluctuations at the micro-gap 

probes at the large contact-area micro-gap probes. Thus, it is a reasonable thought that the 

voltage fluctuations happen when the infected bacteria are close to the probes.  

 During the processes of DNA injection by a siphophage or a myophage, each irreversibly-

adsorbed virion opens a single channel in the cytoplasmic membrane, through which the DNA  
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Figure 3.2. Power density spectra measured during 2 minutes for mixtures of bacteria and phages at 

the nano-gap probes. Straight lines indicate 1/f or 1/f 2 slope. Phage λ infects λS or λR 
cells, and phage T5 does T5S or T5R cells. 
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Figure 3.3. Pre-incubation time influence on power density spectra. The power density spectra 

measured during 2 minutes for mixtures of bacteria and the original wild-type λ phage, 
Ur-λ, at the nano-gap probes. The indicated times are pre-incubated time.  
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Figure 3.4. Power density spectra measured with two micro-gap probes. They were measured during 

2 minutes for mixtures of bacteria and the original wild-type λ phage, Ur-λ. The 
indicated times are pre-incubated time.  
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molecule of the phage passes. It was reported that the DNA injection leads to transient cellular 

depolarization and Potassium ion release of about 106 ions per infected cell per second [37]. The 

released ions undergo Brownian motion around the infected cell. The randomness of the ion 

diffusion may generate spatiotemporal electrical field fluctuations at micrometer or sub-

micrometer scale. 

 The above results show that the SEPTIC nanosensor can apply for the highly specific 

detection of bacteria on a scale of a few minutes without culturing the bacteria. The additional 

advantage of the SEPTIC nanosensor is that only living cells, which have energized membranes, 

will be detected. From the overall point of view, the fluctuation, i.e., stochastic signal is 

generated since the bacteriophage-infected bacteria release potassium ions and move randomly 

at the same time. Kish et. al discussed the detection limitation of the SEPTIC sensors [45]. They 

thought of the source of the 1/f background noise as the input impedance of the amplifier for 

voltage measurement in Ref. [45]. However, the more specific sources and the quantitative 

consideration of the 21 f  stochastic signals are required to optimize the SEPTIC design. 

 

3.1.2. Effect of the released potassium ions on the fluctuation 

In this section, we discuss the diffusion of the released potassium ions from the infected cells as 

a function of time and position and whether it can generate the stochastic signal. 

 To evaluate the concentration profile of the released potassium ions around the infected cell, 

we assume that E. coli cells in the analyte solution have the same properties of spherical colloid 

particles in our electrolyte solution. Due to the spherical symmetry of the spherical colloid 

particle, the concentration profile is given by time-dependent drift-diffusion equation [46] 
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where ( )rn  is the concentration of the released potassium ions as a function of radius, +KD  is the 

diffusivity of the potassium ions, +Kµ  is the mobility of the potassium ions, and ( )trF ,  is the 

electric field around the cell. Even though there are many kinds of ions outside of the cell and 

the potassium ions released from the cell, magnesium ion and sulfate ion concentrations in the 

analyte solution are dominant and the other ion concentrations can be ignored. Therefore, the 

released potassium ions cannot affect the electric field around the cell. However, as we will 

mention later, the zeta potential of the infected cell is varying with the potassium ions released. 
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The Debye-Hückel approximation, which is available at the small zeta potential, gives the 

electric field around the cell by [47] 

 ( ) ( ) ( )are
r

r
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2

1
,  (3.2) 

where κ  is the inverse Debye length defined by  
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where 0
kn  and kz  are the bulk number concentration and the valency of the ion of type k . At 

25°C in an aqueous solution, the value of κ  is simply given by  
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where F  is Faraday’s constant (= 96485.3383 C/mol)  and ionS  is the ionic strength defined by 

22∑= k kkion zcS . Here kc  is the concentration of the ion of type k  (in unit of 103 mol/m3). As 

mentioned above, magnesium ion and sulfate ion concentrations are dominant in the solution. 

Thus, by using Eq. (3.4), the value of the inverse Debye length in 5 mM MgSO4 solution is 

obtained to be 19 m10464.0 −×=κ . The Debye length is about m1016.2 9−× . The electric field 

varies strongly inside the Debye length, but it is almost zero outside of the Debye length. Since 

the Debye length is about 2 nm, we ignore the drift-term in Eq. (3.1) and rewrite Eq. (3.1) as 
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To solve Eq. (3.5), we need the boundary conditions. Since the potassium ions release from the 

infected cell, the boundary condition at the surface of the cell is  

 ++ =
∂
∂

− KK J
r
nDa24π    at ar =  and effluxtt <<0  (3.6) 

where +KJ  is the release rate of the potassium ions, secions106=+KJ , and effuxt  is the time when 

the potassium ions release from the infected cell. The concentration profile around a cell is 

affected by the released potassium ions from other cells after the potassium ions diffuse across 

half of the mean distance between two infected cells; thus, the boundary condition on the other 

side is dependent on time. Before the time, the boundary condition is given by 

 ( ) 0, =trn    at ∞→r  and crosstt <<0    , (3.7a) 

and after the time, the boundary condition is written as 
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( )

0=
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∂
r
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where middleR  is half of the mean distance between two infected cells in the analyte solution, and 

crosst  is the time when the potassium ions diffuse across half of the mean distance between two 

infected cells. middleR  is obtained approximately as m102.6 6−×  by using the concentration of the 

E. coli cells in the analyte solution. The initial condition for Eq. (3.5) is ( ) 00, ==trn . Let’s 

introduce dimensionless parameters: 0nnu = , 2atDK +=τ , arx = , and ++= KK DnaJj 00 4 π  

where 0n  is the maximum concentration of the released potassium ions in the analyte solution. 

Rewriting Eq. (3.5) with the dimensionless parameters, applying Laplace transform to Eqs. (3.5) 

and (3.6), and solving the ordinary differential equation yield 
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Applying inverse Laplace transform to Eq. (3.8) and rewriting the concentration with dimension 

parameter, we obtain the concentration of the released potassium ions as a function of position 

and time as follows: 
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 (3.9a) 

where ( )trftransient ,  is given by 
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Here, ( )xErfc  is the complementary error function. ( )trftransient ,  shows the transient behavior of 

the released potassium ions. The diffusivity of the potassium ions is sm102 29−×  [47] and the 

radius of the E. coli cell is approximately m105.0 6−× . Figure 3.5 shows the transient behavior of 

the potassium ions. The solid and dashed lines represent, respectively, m0.2 µ=r  and 

m2.6 µ== middleRr . It is shown that the potassium ions arrive at half of the mean distance 

between two cells, m2.6 µ== middleRr , at one millisecond and the concentration increases 

monotonically and becomes the steady state. Thus, second001.0=crosst . It suggests that the 

potassium ions diffuse into the whole solution very fast and the other boundary condition (3.7b) 

has to be applied during most of the measuring time (2 minutes).  
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 Figure 3.5. Transient behavior of the potassium ions based on Eq. (3.9b). The solid and dashed lines 

represent, respectively, m0.2 µ=r  and m2.6 µ== middleRr . 
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 To manifest the effect of the released potassium ions on the voltage fluctuations, we need to 

solve the time dependent drift-diffusion equation with the boundary conditions, Eqs. (3.6) and 

(3.7b). We solve the equation numerically with the ‘pdepe’ function in MATLAB to include the 

drift term in Eq. (3.1). The initial condition is ( ) 00, ==trn  for the numerical calculation. It is 

acceptable since the amount of the released potassium ions is negligible during an interval of (0, 

0.001 ms). The concentrations of the released potassium ions at seconds60=t  and seconds120=t  

are uniform in the solution. It is noted that the electric field in the diffusion layer does not delay 

the diffusion of the released potassium ions seriously. The boundary condition Eq. (3.7b) is 

satisfied under the assumption that all infected cells release potassium ions at the same time. It is 

not true, but the result of this calculation suggests that the diffusion of the released potassium 

ions cannot generate the voltage fluctuations while the infected E. coli cells moves randomly far 

from the probes.  

 

3.1.3. Electrophoretic effect in the SEPTIC sensor 

As mentioned before, we observed large and slow isolated fluctuations in time domain during 

the measurement. The isolated fluctuation peaks can take place when an E. coli cell moves 

nearby the titanium probes. An isolated fluctuation peak can give 21 f  power density spectrum 

[41]. However, since the amplitude of the power density spectrum is very small, we need many 

isolated fluctuation peaks during the measurement interval to observe the fluctuation effect in the 

power density spectrum. In this section, we qualitatively discuss the motion of the E. coli cells 

and the rate of the isolated fluctuation peak occurrence.  

 Biard and Kish took into consideration the motion of an E. coli cell in the SEPTIC sensor to 

investigate the way to enhance the sensitivity of the sensor [48]. However, their calculation is 

applicable only to extremely dilute electrolyte solution since they did not consider 

electrophoretic effect on the cell. Since the analyte solution includes 5 mM MgSO4 electrolyte at 

the SEPTIC experiment, a model for the SEPTIC sensors has to include electrophoretic effect.  

 Electrophoresis is the motion of colloids in an electrolyte solution under the electric field [49, 

50]. Here, we assume that E. coli cells in the analyte solution have the same properties of 

spherical colloid particles in an electrolyte solution since the E. coli K-12 cells are immotile. In 

electrophoresis, the velocity of the colloid particles v  is proportional to the electric field strength 

E . Thus, the velocity of the cell is given by  
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 Ev Eµ=  (3.10) 

where Eµ  is the electrophoretic mobility of the cell. Henry calculated Eµ  for a spherical 

colloidal particle with arbitrary double layer thickness on the assumption that the charge density 

in the double layer is unaffected by the applied electric field [51,52]. This assumption is 

available if the ζ -potential (i.e., the potential at the outer Helmholtz plane) and the electric field 

are sufficiently low. He gives the formula for the electrophoretic mobility by 

 ( )afr
E κζ

η
εε

µ 1
0

3
2=  (3.11)  

where 0ε  and rε  are, respectively, the vacuum permittivity and the relative dielectric constant of 

the electrolyte solution, η  is the viscosity of solution, ζ  is the zeta-potential, κ  is the inverse 

Debye length in the electrolyte defined by Eq. (3.3), a  is the radius of a colloidal particle and 

( )af κ1  is Henry’s function for the retardation effect on the electrophoresis of spherical colloid 

particle. ( )af κ1  is a monotonically varying function;  it increases from 1.0 at 0=a  to 3/2 at 

∞→a  at a given electrolyte concentration (i.e., constant κ ). The original form of ( )af κ1  is not 

simple, but Ohshima proposed a simple approximate expression for  ( )af κ1  with relative errors 

less than 1% as [52,53] 
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As calculated before, the value of the inverse Debye length in 5 mM MgSO4 solution is 
19 m10464.0 −×=κ . If the radius of an E. coli cell is m105.0 6−×=a , 232=aκ . By using Eq. 

(3.12) in Eq. (3.11) and the value of aκ , the electrophoretic mobility for the analyte solution is  

 ζ
η
εεµ r

E
09895.0=     . (3.13)  

and then by using Eq. (3.13) in Eq. (3.10), the velocity of an E. coli cell in the electrolyte 

solution under the electric field is rewritten as  

 Ev r ζ
η
εε09895.0=  (3.14)  

We need to know the zeta potential and the electric field to determine the velocity of the cell. 

First of all, let’s estimate lower limit of the electric field strength with the dc current. Our 

experiment shows the parasite dc current between two probes is A101 12−×=dcI . The real current 
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in the electrolyte solution must be larger than the parasite current due to the existence of the 

electrolyte ions passing by the probes. Since the length of each square probe is about m104 6−× , 

the current density is 0.0625 A/m2. The conductivity of MgSO4 solution at 25 °C is evaluated by 

using empirical Casteel-Amis four-parametric equation [54] 

 ( ) ⎥⎦
⎤

⎢⎣
⎡ −

−−−××=
823.1

823.181787.0823.105307.0exp
823.1

802.5 2
4

mmm
MgSOσ  (3.15)  

where m  is the molality, i.e., moles of electrolyte per kilogram of solvent. We can calculate the 

conductivity in molarity since we can calculate molality with molarity [55]. Using Eq. (3.15) for 

5 mM MgSO4, we obtain the conductivity is 0.03 (1/Ω/m). Applying Ohm’s law, the effective 

electric field strength E  is 2.1 V/m. Unfortunately the electrical structure and properties of an E. 

coli K12 cell is not well known such as dielectric constant inside the cell, surface charge 

densities at inner and outer cell membrane. Since the zeta potential is dependent on the 

potassium ion release, the zeta potential of the E. coli cell is regarded as a variable. Figure 3.6 

shows the velocity of the E. coli cell as a function of the absolute value of the zeta potential. It is 

shown that the velocity rises about 0.1 to 0.3 m/sµ  when the absolute value of the zeta potential 

increases 50 to 200 mV. Since the bacterium current density is proportional to the velocity of the 

cell, it increases with the absolute value of the zeta potential. The increase of the bacterium 

current density results in the increase of the fluctuation peak occurrence rate and the amplitude 

of the power density spectrum.  

 

3.1.4. Summary 

We demonstrated a bacterium diagnostic technology by the use of the nano-gap probes 

combining the fluctuation-enhanced sensing and the specificity of bacteriophages. It is shown 

that the effect of the released potassium ions through the bacteriophage infection is negligible 

and that the bacterium current density and the power density spectrum in the phage infection 

case are larger than the non-infection case due to the electrophoretic effect in the SEPTIC 

sensors. 
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Figure 3.6. Lower limit of drift velocity of E. coli cells in our electrolyte solution under the effective 

electric field. The zeta potential can be thought of the surface potential of E. coli cells.  
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3.2. SILICON NANOWIRE NANOSENSORS FOR VIRUS DETECTION 

Recently, the synthesis and the applications of SiNWs were reported [4,5]. The SiNWs 

applicable to chemical and biological nanosensors were synthesized by vapor-liquid-solid 

technology consisting of chemical vapor deposition with gold nanoclusters of 20 nm diameter, 

silane, and diborane as a p-type dopant [56-58]. The SiNW nanosensors are so ultra-sensitive 

that a single virus can be detected [13]. The schematic diagram of chemical and biological  

nanowire sensors is shown in Figure 3.7. The width of the microfluidic channel is about 2 or 3 

µm. It was reported that the SiNWs have single-crystal silicon cores covered with 1–3 nm of 

amorphous oxide. The SiNW was heavily doped with p-type dopant and its conductance is from 

200 to 1700 nS. 

 The SiNW nanosensors have been used to detect single viruses, protein and DNA sequences 

[13,56-58]. In order that the nanosensors can detect a single virus, the surface of the nanowire 

was modified by antibody receptor such as mAb receptors, anti-hemagglutinin for influenza A 

and anti-adenovirus group III. The antibody receptors are bound covalently at the surface of the 

silicon oxide. As a single virus passes by the surface-modified nanowire, it is combined 

reversibly with the receptors at the surface of the SiNWs. Since randomly a single virus adsorbs 

on and desorbs from the surface, the SiNW nanosensors give a stochastic signal in terms of the 

conductance. We can enhance the sensitivity and selectivity of the SiNW nanosensors by use of 

FES. 
 

3.2.1. Simple model for pH silicon nanowire nanosensors 

Since the SiNW nanosensor has electrolyte-insulator-semiconductor (EIS) structure, its sensing 

mechanism may be similar to that of EIS FET sensors [59]. At the EIS FET sensors, a sample 

solution comes in contact with the gate oxide surface of an n-channel (or p-channel) metal-

oxide-semiconductor (MOS) FET. If surface charges at the gate oxide surface of the EIS FET 

sensors are regarded as the gate voltage of the MOS FETs, then the operation principle and the 

current-voltage characteristics of the EIS FET sensors are the same as the MOS FETs. Similarly, 

the current versus source-drain voltage characteristics of the SiNW nanosensors may be the same 

as the backside-gate SiNW FETs. However, we need to take into account the trans-conductance 

of the SiNW FETs since the origin of the gate effect in case of the SiNW nanosensors is different 

compared to the SiNW FETs.  
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Figure 3.7. Schematic diagram of silicon nanowire sensors. The sample solution flows in micro-

fluidic channel and virus in the sample solution adsorbs on the silicon nanowire. 
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 Electrolyte-oxide interfaces consist of a special structure known as the electrical double 

layer (EDL) [49,50,60]. The EDL can be described by several models such as Gouy-Chapman 

model, Gouy-Chapman-Stern (GCS) model and the triple layer model (TLM). When Fung et al.  

developed the generalized theory of an EIS FET, they used the TLM to describe the electrolyte-

oxide interface [60]. Here, we will also use the TLM.  

 The SiNW of the sensor consists of a single crystal silicon core (SC) covered with a 1–3 nm 

silicon oxide layer. It was reported that the contact between the SiNW and the metal electrode 

(source or drain) was Ohmic and that the current versus source-drain voltage characteristics of 

the backside-gate SiNW FETs were linear at room temperature [61,62]. It was also reported that 

the pH-dependence of the conductance in the SiNW nanosensor was in qualitative agreement 

with surface charge density at silicon oxide surface [13]. However, no quantitative model for the 

SiNW nanosensors has been developed.  

 We consider a pH SiNW nanosensor of which the SiNW is covered with unmodified surface 

oxide layer. The SiNW is submerged in a sample solution dissolving a monovalent electrolyte 

such as sodium chloride. Figure 3.7 shows the schematic diagram of the pH SiNW nanosensor. 

Voltage difference is biased at two metal electrodes (source and drain), and the source-drain 

voltage difference drives current through the SiNW. The sample solution flows in the 

microfluidic channel and wets the SiNW. Protonation or deprotonation at the oxide surface of 

the SiNW changes the current.  

 First of all, we discuss electronic transport inside the SC. Obviously, since the diameter of 

the SiNWs is about 10 nm, size quantization effect can exist. Therefore, since the lowest 

conduction and the highest valence bands of bulk silicon are shifted and split into subbands at 

the same time, the SiNWs are quasi-one-dimensional and its energy gap is larger than that of 

bulk silicon. However, the doping density of silicon quantum wires can reduce subband spacing 

and blue shift [63]. At low temperature, we can observe quantized or at least nonlinear 

conductance in the nanowire. However, it was reported that the current versus source-drain 

voltage characteristics of the backside gate SiNW FETs were observed to be linear at room 

temperature in spite of the 5 nm radius of the SiNW and that the contact between metal electrode 

and the SiNW of the backside gate SiNW FETs was Ohmic. These can be caused by thermal 

energy since thermal energy can spread holes into the subbands at equilibrium, which is named 

thermal smearing effect. Thus, the quantum effect disappears and one cannot observe the 

quantum effect at room temperature. Since holes occupy the subbands, it is reasonably assumed 
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that the hole density is independent of the radial position without gate voltage. Since the 

diffusion-drift model can be used to explain these observations, we use it for the electronic 

transport in the SiNW as follows [46]:  

 ( ) ( ) ( )
z
pqDFrpqrjrj ppp ∂
∂

−== µ  (3.16) 

where ( )rj  is the total current density, pj  is the current density caused by holes, pµ  is the hole 

mobility, ( )rp  is the hole density in the SC, pD  is the diffusivity of holes in the SC, and F  is the 

electric field in the z-direction given by LVF sd= ; here, sdV  is the voltage difference between 

source and drain; L  is the length of the SiNW. Here, electron current density is ignored since the 

SC is p-type. Since the longitudinal length of the SiNW is 300 times longer than the radius, the 

longitudinal derivative of the electric field is negligible compared with the radial. Therefore, the 

electric field in the longitudinal direction can be regarded to be constant. Since the electric field 

and the current density in the longitudinal direction are constant, the longitudinal deviation of the 

hole density as well as the diffusion term of the current density can be ignored. Then, by integral 

of Eq. (3.16), current through the SiNW is presented by the following equation: 

 ( )∫= cR
p drrrpFqI

0
2πµ  (3.17) 

where cR  is the radius of the SC. Meanwhile, the electric displacement for p-type silicon is 

given by 

 ( )[ ]aNrpq −=•∇ D  (3.18)  

where D  is the electric displacement; and aN  the concentration of acceptors. Applying the 

divergence theorem to Eq. (3.18) yields 
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Substituting the integral of Eq. (3.19) in Eq. (3.17) leads to the current through the SiNW as 
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and the conductance in the SiNW nanosensor is given by 

 LRGVIG ccp σµπ20 +==  (3.21) 

where LNRqG acp
2

0 µπ=  is the conductance of the SiNW without surface effects. The first 

term on the right hand side of Eq. (3.21) is independent of a sample solution but the last term is 
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affected by it. we will call the parameter cσ  virtual-charge-density-at-the-silicon-oxide-interface 

(VCDSOI) since it is not charge density. If the VCDSOI is positive, the conductance increases; 

otherwise, the conductance decreases. That is, when the surface charge is negative and induces 

positive charges at the silicon-oxide interface, the VCDSOI is positive and the conductance 

increases. It is possible that quantum capacitance and surface charges affect transconductance in 

the SiNW nanosensors. John et al. reported that quantum capacitance can be neglected at low 

biased source-drain and source-gate voltages in long-channel, i.e., phase-incoherent carbon 

nanotube field effect transistors [64]. Generally quantum capacitance and the influence of the 

surface charges on mobility result in nonlinear transconductance. However, it was reported that 

the dependence of the transconductance of the SiNW on the surface charges is linear [61]. 

Therefore, those effects are negligible in the SiNW nanosensors. 

 We need to calculate the hole density and the electrostatic potential inside the SC. The hole 

density is expressed by 

 ( ) ( )
⎥
⎦

⎤
⎢
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)(exp ϕψ    , (3.22) 

and the electrostatic potential inside the SC is given by 
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where in  is the intrinsic-carrier density, ψ  is the electrostatic potential, ϕ  is the potential 

corresponding to the Fermi energy of intrinsic silicon, Siε  is the dielectric constant of silicon. 

Hereafter, all of the electrostatic potential is in reference to bulk sample solution. Using 

Eq.(3.22) in Eq. (3.23) and introducing a perturbed electrostatic potential defined by ψψψ ~+= b  

yield  
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Here bψ  satisfies ( ) aBbi NTkqn =−− )(exp ϕψ  and corresponds to the Fermi energy of extrinsic 

silicon, and ψ~  represents the potential variation caused by the surface charges. The potential 

inside the SC satisfies the following boundary conditions: 

 ( ) finite ~0~ψ        at the center (3.25a) 

and  

 ( ) ccR ψψ =~        at cRr =   (3.25b) 
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where cψ  is the electrostatic potential at the silicon-oxide interface in reference to bulk sample 

solution. Assuming that the exponential term can be approximated such as ( ) xx −≈ 1exp , i.e., the 

Debye-Hückel approximation and solving Eq. (3.24) with Eq. (3.25), we obtain the potential 

inside the SC as 

 ( ) ( ) ( )cc Rrr ηηψψ 00
~ II=       at cRr ≤≤0  (3.26) 

where ( )z0I  is zero-order modified Bessel function of the first kind; and TkNq Ba Si0
2 εεη = . 

Use of Eq. (3.26) in the definition of the electric displacement at the silicon-oxide interface and 

then of the result in Eq. (3.19) lead to 

 ( ) ( )cccc RR ηηψηεεσ 01Si0 II−=  (3.27) 

where ( )z1I  is first-order modified Bessel function of the first kind. We will discuss the 

availability of the Debye-Hückel approximation later.  

 Now we apply the TLM for the electrolyte-oxide interface of the SiNW. The TLM consists 

of the Stern layer (SL) and the diffuse layer (DL); and the SL includes the inner Helmholtz plane 

(IHP) and the outer Helmholtz plane (OHP) as shown in Fig. 3.8. No extra charge is in region 1 

and region 2. Surface protonation reactions at the silicon oxide surface are [65] 

 ++ >=+> 2SOHHSOH   (3.28a) 

and 

 SOHHSO >=+> +−    , (3.28b) 

and equilibrium reactions for adsorption of monovalent electrolyte ions with charged surface 

species ( +> 2SOH  and −> SO ) are  

 +−+− >=+> MSOMSO _  (3.29a) 

and 

 −+−+ >=+> LSOHLSOH _22   . (3.29b) 

where +M  and −L  are the cation and the anion of an monovalent electrolyte, respectively. Table 

3.1 shows equilibrium constants corresponding to reactions (3.28) and (3.29). The dimensionless 

parameters in Table 3.1 are defined by 
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where iν  are the equilibrium number of i  species per unit area; sΓ  the total site density. The 

dimensionless parameters in Eq. (3.30) satisfy 
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Figure 3.8. Schematic diagram of the cross section of the silicon nanowire and the electrical double 

layers. Stern layer includes regions 1 and 2 and the inner Helmholtz plane. 
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Table 3.1. Equilibrium constants corresponding to the reactions (3.28a) to (3.29b) a. 

Equilibrum 
reaction Equilibrium constant Equilibrium constant with respect to 

dimensionless parametersb 
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a ψ ’s represent the potential; ia ’s are regarded as dimensionless by choosing unit molarity; and 

the subscripts 0  and β  represent the oxide surface and the IHP, respectively. 
b The dimensionless parameters are defined by Eq. (3.30).  
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 1000 =++++ −+−+ θθθθθ  (3.31) 

Multiplying 1K  and 2K  and using the definitions of ( )+−≡ HalogpH  and of ( ) 2logpH 21pzc KK ⋅≡ , 

we obtain pH as  
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and dividing 1K  by 2K  and using Eq. (3.31) in the result yield 
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K
K    . (3.33) 

where ( ) +++ +=−+= −− θθψα β 01exp1 TkqaK BLL  and ( ) −−− +=+= ++ θθψα β 01exp1 TkqaK BMM . 

 Relationships among the electrostatic potentials at four interfaces—the silicon-oxide 

interface, the oxide surface, the IHP, and the OHP—are derived by use of Gauss’ law. For 

simplicity, we assume that the oxide layer does not include any space charges. Thus, three 

layers—oxide layer, region 1 and region 2—are regarded as an insulator layer. In a coaxial 

cylindrical system, the electrostatic potential at the outer interface of an insulator layer is given 

by 

 ( ) εεψψ 0ln innerouterinsideinsideoutside RRQ−=  (3.34) 

where insideψ  is the potential at the inner interface of the layer; ε  the dielectric constant of the 

layer; outerR  and innerR  are, respectively, the outer and the inner radii of the layer; and 

LQQ totalinside π2= ; totalQ  is the total charges inside a cylinder of the outer radius; L  is the 

length of the cylinder. If only area charges exist inside a cylinder of the outer radius, 

∑= j jjinside RQ σ  where jσ  is the charge density at an interface of radius jR . Therefore, the 

relationships among the electrostatic potentials at four interfaces are as follows: 
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where ψ ’s represent the electrostatic potentials; R ’s are the radii; σ ’s are the charge densities 

except cσ ; and the subscripts c , 0 , β , and d  represent the silicon-oxide interface, the oxide 

surface, the IHP, and the OHP, respectively; 1ε  and 2ε  are the dielectric constants in regions 1 

and 2, respectively. The surface charge density and the charge density at the IHP are, 

respectively, 

 ( )−−++ −Γ= θαθασ sq0    , (3.38) 

and  

 ( ) ( )−+−+ −Γ+−=−Γ−= θθσθθσ β ss qq 000    . (3.39) 

 The electrostatic potential in the DL is given by [49,50] 

 ⎟⎟
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r
r

rr Bb

b ψ
εε

ψ sinh
21

0

 (3.40) 

with boundary conditions as follows: 

 ( ) dr ψψ =   at dRr =   and  ( ) 0=rψ   at ∞→r   . (3.41) 

Here bn  is the number concentration of cations or anions in bulk sample solution, bε  is the 

dielectric constant of bulk solution; dR  is the radius of the OHP. Using Debye-Hückel 

approximation and solving Eq. (3.40) with Eq. (3.41), we write the potential in the DL as 

 ( ) ( ) ( )dd Rrr κκψψ 00 KK=    . (3.42) 

where ( )z0K  is zero-order modified Bessel function of the second kind, κ  is the inverse Debye 

length, ( )Tknq Bbb εεκ 0
22= . By use of Eq. (3.42) in the definition of virtual charge density at 

the OHP 
dRrbd drd

=
≡ ψεεσ 0  [49], the virtual charge density at the OHP is obtained as 

 ( ) ( )dddd RR κκψκεεσ 01b0 KK−=  (3.43) 

where ( )z1K  is first-order modified Bessel function of the second kind. Since the total charges in 

the SiNW and the EDL are zero, charge neutrality condition is given by 

 000 =+++ ddcc RRRR σσσσ ββ  (3.44) 

 Finally, we are ready to obtain a starting equation. Substituting cψ  of Eq. (3.27) in Eq. 

(3.35) and then the result in Eq. (3.36) yield 

  100 CRAAR cccc σψσ β −−=  (3.45) 
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where ( )
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. Replacing cσ  of Eq. 

(3.44) with Eq. (3.45) and then using Eqs. (3.38) and (3.39) in the result yield 

  γθβθ += −+  (3.46) 

where 
( )
( ) ββ

ββ

α
α

β
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+−−

+−−
=

+

−

100

100  and ( ) ββ
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RqCRARRq
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ddc
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−
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+ 100

. When Eq. 

(3.46) is used in Eq. (3.33), a quadratic equation of the dimensionless parameter −θ  is given. 

Thus, the dimensionless parameter −θ  is written as 

 acabb 242 ⎟
⎠
⎞⎜

⎝
⎛ −−−=−θ  (3.47) 

where ( ) βαβα −+= −+
2

Kra , ( )( ) γαβααβα −++= −+−+Krb 2 , and ( )2−+ += αβαKrc .  Here, 

−θ  is a function of βψ  and dσ . Use of Eq. (3.44) in (3.37) yields 

 ⎟
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β εε

σ
ψψ

R
RR ddd

d ln
20

 (3.48) 

Therefore, −θ  is a function of only dσ .  Eqs. (3.47) and (3.48) are starting equations to calculate 

every  potential and charge density with the value of dψ  or dσ  in Eq. (3.43). 

 Starting with the value of dψ  or dσ  in an appropriate range, we can calculate all of the 

electrostatic potentials, the charge densities, and the dimensionless parameters; for example, the 

VCDSOI is calculated by using Eqs. (3.43), (3.48), (3.47), (3.46) and (3.46) in order. The values 

of the physical parameters used for the calculation are given in Table 3.2. The TLM-related 

parameters are determined by fitting the previous experimental result [66]. Figure 3.9 shows the 

pH-dependence of surface charge density at the oxide surface. The solid line is obtained by use 

of the TLM. The TLM is in a good agreement with the experimental result.  

 Figure 3.10 shows the conductance in the pH SiNW nanosensor. We used nS8000 =G , 

µm3=L  and nm50 =R  for the calculation as reported in Ref. 56. To fit the conductance 

experimental result, the value of the dopant concentration of the SC is chosen to be 25107.1 ×  m-3.  

By use of 0G  in Eq. (3.21), the value of the hole mobility in the SiNW is 175.5 sVcm2 ⋅ , which  

is in the experimental range [67]. As shown in Fig. 3.10, our model gives excellent agreement 

with the previous experimental conductance in the SiNW nanosensor. Since the conductance 

increases with increasing pH, the holes are accumulated at the silicon-oxide interface. 
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Table 3.2. Parameters used for the calculation. 

Parameters Values Parameters Values 

( )12log KK  7.0 Siε  11.9 

pzcpH  2.8 oxε  3.9 

+MKlog  1.0 1ε , 2ε  and bε  78 

−LKlog  1.0 Thickness of region 1 6 Å 

aN  25107.1 ×  m-3 Thickness of region 2 6 Å 

pµ  30 ~ 560 cm2/V s cR  4 nm 

L  3 µm 0R  5 nm 

sΓ  18106.4 ×  sites/m2 ]Cl[]Na[ ++ =  0.1 M 

0G  800 nS   
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Figure 3.9. pH-dependence of the surface charge density at the oxide surface. The solid line 

represents the triple layer model. The circles represent the experimental result in Ref. 65. 
 



 
 
  

 

50

 

 

 

 

 

 

 
Figure 3.10. pH-dependence of the conductance in the pH silicon nanowire nanosensor. The squares 

represent the experimental result in Ref. 56. The values of physical parameters for the 
calculation are given in Table 2. 

 



 
 
  

 

51

 Before we discuss the sensitivity of the SiNW nanosensors, we will check whether the 

Debye-Hückel approximation is available in the SC and the DL. In general, the Debye-Hückel 

approximation gives a satisfactory result if potential is less than about 26 mV [49]. As shown in 

Fig. 3.11, dψ  is always less than 20 mV but cψ  begins bigger than 26 mV at pH of bigger than 

8.3. Therefore, we can use the Debye-Hückel approximation at most of pH range.  

 The sensitivity of the SiNW nanosensors is defined by  

 ( ) ( )pH2pHSpH ddLRddG ccp σµπ ⋅==    . (3.49) 

The last equality is obtained by use of Eq. (3.21). As shown in Eq. (3.49), the sensitivity of the 

SiNW nanosensors is proportional to the hole mobility and the radius of the SC, but it is 

inversely proportional to the SiNW length. However, when the sensitivity is enhanced by their 

change, 0G  also increases, which may not be desirable. The modification of the oxide surface of 

the SiNW is to enhance the sensitivity; for example, the amino group at the oxide surface 

changes the pH-dependence of the conductance and enhances the sensitivity around the point of 

zero charge [4,5]. The thickness of the oxide layer affects the sensitivity; a thicker oxide layer 

reduces the sensitivity since the oxide layer screens the surface charges. 

 A new parameter, the ratio of the conductance variation to the conductance without surface 

effect, is introduced as follows:  

 
ac

c

NRqG
G σδ 2

0

=  (3.50) 

The parameter shows to what extent the surface effects can be measured with respect to 0G . If 

the parameter is large enough, the surface effects can be detected easily; otherwise, the surface 

effects cannot be distinguished from other noise. Figure 3.12 shows that the ratio increases with 

decreasing the radius of the SiNW. That is to say, the sensitivity of the SiNW nanosensor is 

enhanced more significantly at smaller radius of the SiNW.  

 

3.2.2. Summary 

We developed the model of the pH SiNW nanosensors. We used the triple layer model for the 

electrolyte-oxide interface and the diffusion-drift model for the electronic transport in the SiNW. 

It was shown that the conductance calculated by our model was in good agreement with the 

previous experimental result. Finally, we discussed the sensitivity of the SiNW nanosensors. 
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Figure 3.11. Electrostatic potentials at the silicon/silicon oxide interface and the outer 

Helmholtz plane.  
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Figure 3.12. Ratio of the conductance variation to the conductance without surface effect defined by 

Eq. (3.50). 
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CHAPTER IV 

SUMMARY 

We discussed electronic noise in nanostructures in Chapters II and III. Chapter II deals with the 

manner in which the electronic noise in nanoscale digital processors can limit the operation of 

the processors, and Chapter III deals with how the electronic noise in nanoscale sensors can 

enhance the sensitivity and the selectivity of the nanosensors by using fluctuation-enhanced 

sensing method.  

 In Chapter II, we discussed the Johnson-Nyquist noise in single electron logic processors 

and the shot noise in current-controlled digital processors. The Johnson-Nyquist noise in single 

electron logic processors is regarded as thermally-assisted tunneling. We obtained the error-free 

performance condition. By considering the optimal operation condition, it is shown that the 

Johnson-Nyquist noise limits the maximal clock frequency at a given power due to dissipation. 

By applying the error-free performance condition, we found the maximal size of the quantum dot 

in the single electron transistors in order for single electron logic processors to work at room 

temperature. We showed that the bit-flip error rate increases very rapidly with the cutoff 

frequency due to the shot noise in current-controlled digital processors. By using the maximal 

acceptable error rate (i.e., one-bit-error per year per chip), we obtained the maximal clock 

frequency and the information channel capacity in current-controlled digital processors.  

 In Chapter III, we considered the SEnsing of Phage-Triggered Ion Cascade (SEPTIC) 

nanosensor and the silicon nanowire nanosensors. The SEPTIC nanosensor consists of two 

titanium microscale probes which are separated by nanoscale gap. We used the fluctuation-

enhanced sensing method when we analyzed the signals of the SEPTIC nanosensor. We 

demonstrated that the SEPTIC nanosensor can detect and identify E. coli cells through 

bacteriophage infection. We discussed the origin of the fluctuations in the signals. We 

considered the potassium ions released from an infected cell and the electrophoretic motion of an 

E. coli cell. It was shown that the distribution of the released potassium ions becomes uniform 

very quickly and the ions cannot lead to the fluctuation. It was also shown that the infected cells 

can move faster than the normal cells since the zeta potential of the infected cell is changed. 

Since the cell is close to the titanium probe, we can observe more fluctuations when the cells are 

infected.  
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 It is reported in the literature that the silicon nanowire nanosensors can detect a single virus 

and the signal from the silicon nanowire nanosensors is stochastic signal. We developed the 

classical model for the pH silicon nanowire nanosensors. Our model includes the triple layer 

model for the electrical double layer at the oxide surface/solution interface and the drift model 

for the electronic transport in the silicon core. The calculation results are in excellent agreement 

with the experimental results in the literature. It was shown that the sensitivity of the silicon 

nanowire nanosensor increases with decreasing the radius of the silicon nanowire.  
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APPENDIX 

BISPECTRUM CORRELATION COEFFICIENTS 

 Identification and pattern recognition techniques are of crucial importance in sensing, 

biometric, security and image processing applications. In this appendix, we introduce a new 

method, which is a process recognition tool, recognizing different types of stochastic processes. 

The method is based on the bispectra (a higher order statistical tool) which have recently been 

applied to identity gases by fluctuation-enhanced gas sensing [29–31].We name this new process 

recognition tool bispectrum correlation coefficient (BCC) method because it utilizes normalized 

cross-correlation coefficients based on the bispectra of the process realizations. 

 Conventional cross-correlation techniques recognize only the same realization of a stochastic 

process, and they give zero value for the independent realizations of the same process or for two 

different processes. Consequently, cross-correlation techniques cannot distinguish between the 

case of two independent realizations of the same process and that of two different processes. In 

this letter, we will show that the BCC method is useful for the identification of stochastic 

processes even though their power density spectra (PDS) or amplitude distribution functions are 

indistinguishable. 

 The bispectrum for a stationary signal ( )kx  is defined as [68]: 

 ( ) ( ) ( ) ( )[ ] ( )[ ]∑ ∑
∞

−∞=

∞

−∞=

+−⋅++=
1 2

221121213 exp,
τ τ

τωτωττωω jkxkxkxES    , (A1)  

where τ  and ω  are discrete time and the angular frequency, respectively, and [ ]...E  means 

ensemble average. The signal is supposed to be stationary with zero mean. Due to the symmetry 

of the bispectrum [58], the whole information lies in the non-redundant region: 

 ( )( ) πωωττωωω ≤+−≤≤ + 211221      and   ,0     , ii    . (A2)  

To calculate the bispectrum from a stationary signal of finite length, we can use the so-called 

direct conventional method [58]: 
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where N  is the number of samples, the asterisk represents complex conjugate and ( )ωiX  is the 

Fourier transform of the ith sample:  
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where M  is the length of a sample. As implied in Eq. (A.3), the bispectrum for a real-valued 

signal is a two-dimensional matrix with complex number elements.  

 To study the correlations between two bispectra, we introduce the BCC which has three 

different types. The "real" bispectrum correlation coefficient (RBCC) is: 
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the "imaginary" bispectrum correlation coefficient (IBCC) is: 
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and the "magnitude" bispectrum correlation coefficient (MBCC) is: 
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where i
3S  and j

3S  are bispectra of the i -th realization and the j -th realization. Here, Σ  in Eqs. 

(A.5a) through (A.5c) represents the summation over the frequencies 1ω  and 2ω  in the non-

redundant region. Trivially, each type of the above defined BCCs yields unity if we cross-

correlate the same realization of the stochastic process with itself. 
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