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ABSTRACT

Backward Time Behavior of Dissipative PDE. (December 2005)

Radu Dascaliuc, Dipl., Al. I. Cuza University, Iasi, Romania;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Ciprian Foias

We study behavior for negative times t of the 2D periodic Navier-Stokes equa-

tions and Burgers’ original model for turbulence. Both systems are proved to have

rich sets of solutions that exist for all t ∈ R and increase exponentially as t → −∞.

However, our study shows that the behavior of these solutions as well as the geomet-

rical structure of the sets of their initial data are very different. As a consequence,

Burgers original model for turbulence becomes the first known dissipative system that

despite possessing a rich set of backward-time exponentially growing solutions, does

not display any similarities, as t→ −∞, to the linear case.
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CHAPTER I

INTRODUCTION

A. Motivation

Forward time behavior of the dissipative partial differential equations (PDE) is char-

acterized by the fact that all their solutions exist for all positive times and converge

uniformly to a certain compact set called the global attractor (A). This set can be

described as the biggest bounded set invariant to the flow. As a consequence a lot of

the studies of the dissipative systems are concentrated on the global attractor and the

ways of approximating it. It is remarkable however, that many dissipative systems

possess unbounded invariant sets, in particular the set of initial data for which the

solutions exist for all times t ∈ R and increase exponentially as t → −∞. Existence

of such a set is trivial in the linear case; its full decription is provided later in this

chapter. Surprisingly, some nonlinear systems still retain a lot of similarities in their

backward time dynamics with the linear case. These studies were pioneered in [1]

where the two dimensional Navier-Stokes equations were considered.

Among other results, it was proved that a solution u(t) increases exponentially

as t → −∞ if and only if its Dirichlet quotient |A1/2u(t)|2/|u(t)|2 → λn as t → −∞

(here | · | is the L2-norm, A is the Stokes operator, and λn is one of its eigenvalues - see

Section B.2 for more precise definitions). The invariant set Mn of all the trajectories

of these solutions is proved to project entirely onto the spectral space associated with

the first n eigenvalues of the Stokes operator (see [1]). This fact implied the only

known partial answer to the Bardos-Tartar conjecture (see [1]). This conjecture (see

[2]) affirms that the set of initial data for which solutions of the 2-D space periodic

The journal model is IEEE Transactions on Automatic Control.
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Navier-Stokes equations exist for all times is dense in the phase space equipped with

the energy norm (a.e. the L2-norm in this case). However, in [1] the density was

proved in the norm |A−1/2 · |.

The paper [1] also raised a number of questions regarding the geometric structure

of Mn. For example, it would be interesting to investigate the relationship between

these sets and the other invariant sets of the Navier-Stokes equations, namely the

global attractor and inertial manifolds.

Another open question is whether ∪nMn is dense in the energy norm of the phase

space, which, if answered affirmatively, would solve the Bardos-Tartar conjecture in

the energy norm. The study of higher order quotients on the sets Mn is of particular

interest in this respect. In fact, a good result about boundedness of the quotients of

the form |Aαu|2/|u|β would imply the desired density result for ∪nMn via the method

presented in [1].

Similar results are established for the 2-D space periodic Navier-Stokes α-model

and 2-D space periodic Kelvin-filtered Navier-Stokes equations. The analogs of the

sets Mn defined for these systems have very similar properties compared to the

Navier-Stokes case. In particular for the 2-D space periodic Navier-Stokes α-model,

∪nMn is dense in the L2 norm, which is still weaker than the energy norm for that

system (see [3]). On the other hand, for the 2-D space periodic Kelvin-filtered Navier-

Stokes equations the density is proved in their energy norm (see [4]). The Lorenz

system, after a suitable transformation, again displayed a similar picture (see [5]).

However, not all dissipative systems have the same kind of behavior for negative

times. For example, in the case of the 1-D space periodic Kuramoto-Sivashinsky

equation it was established that all the solutions outside the global attractor will

blow up backward in finite time (see [6], [7]). That implied that all the invariant set

of the Kuramoto-Sivashinky flow are contained inside the global attractor.
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This dissertation is an attempt to answer some of the questions left by the pre-

vious studies as well as to resolve more general problems of backward time dynamics

of dissipative systems. In particular, we were motivated by the following questions:

• What are the other dissipative PDE that have similar invariant sets?

• What are the geometrical properties of the sets Mn?

• How to classify dissipative PDE by their backward-time dynamics?

After providing some preliminary results in Chapter I we discuss in Chapter II

further developments in the 2D Navier-Stokes case. In particular, we show that is a

solution increases exponentially as t → −∞, then in does so in any Sobolev norm

allowed by the force. We also give a geometric characterization of the sets Mn.

Chapter III deals with the Burgers’ original model for turbulence. We show

that this system displays significant differences in backward time behavior from both

Navier-Stokes and Kuramoto-Sivashinsky equations. In particular, we show that while

this model has a variety of the solutions that increase exponentially as t→ −∞, their

structure is completely different from the linear case.

We conclude with systematizing the results in the view of classifying the dissipa-

tive PDE by their backward time behavior, as well as pose some open questions and

possible directions of further research.

These studies are important for several reasons.

First, in fluid mechanics, once the driving force is fixed, the Reynolds numbers

of flows on the global attractor are bounded. The study of flows with huge Reynolds

numbers automatically places their dynamics far away from the global attractor.

To classify these flows, one needs to find invariant sets of the dynamical system

in a neighborhood of the infinity in the phase space. In analogy with the local
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theory near a fixed point, one looks for the sets of solutions which exist for all times

and have exponential growth for t → −∞. In fact, by an involution in the phase

space, the study of the behavior near the infinity becomes equivalent to the study of

the transformed dynamical system near a fixed point, for which the classical theory

(because of singularities) does not apply. Nevertheless, even for some of these systems

one can still prove existence of a rich exponentially stable invariant “manifold”.

A second reason to find out if a dissipative system has global solutions with

exponential growth as t → −∞ arose in the applications of the numerical meth-

ods introduced in [8] and [9]. These methods use the classical Caratheodory and

Nevanlinna-Pick interpolation algorithms to decide if the point in the phase space is

on the global attractor. It turned out that the algorithms have difficulty in distin-

guishing the solutions on the global attractor (i.e. globally bounded) from the global

solutions with low exponential growth for t→ −∞. In particular, the main result of

Chapter III (Theorem F.1) suggests that the approximation of the global attractor

of Burgers’ original model for turbulence by the methods in [8] and [9] may be not

sharp, while for the Kuramoto-Sivashinky equation they give a useful characterization

of the global attractor attractor (see [7]).

B. Preliminaries and background

Many of the dissipative partial differential equations have the following form:











ut + νAu +B(u, u) = f ∈ H

u(0) = u0 ∈ H,
(1.1)

where H is a suitable Hilbert space, u(t) is the unknown function, ν > 0 is a positive

constant, A is an unbounded positive self-adjoint linear operator with a dense domain

and a compact inverse, B is a nonlinearity of a quadratic type, u0, f are given.
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We denote by {λn}n∈ � the eigenvalues of the operator A arranged in the increas-

ing order. For every n ∈ N we denote by Pn the orthogonal projector of the space

H onto the space generated by the eigenvectors corresponding to λ1, . . . , λn. We also

denote Rn = Pn−Pn−1, n > 1 (R1 = P1) the orthogonal projector onto the eigenspace

corresponding to λn. Note that the structure of A implies that for every n ∈ N, PnH

is a finite dimensional subspace of H and ∪n∈ � PnH is dense in H.

Among the typical PDE that have the form (1.1) are the 2D periodic Navier-

Stokes equations ([10, 11, 12, 13, 14, 15]), the 1D periodic Kuramoto-Sivashinsky

equation ([14, 16, 17, 18]), and the original Burgers model for turbulence ([19, 20,

21, 22, 18, 23]). For each u0 these equations have a unique solution u(t) = S(t)u0

which exists for all times t > 0. Moreover, as t → ∞, S(t)u0 converges to the global

attractor A that can be characterized as the set of all the initial data for which the

solutions exist for all times and remain bounded as t → −∞ ([24, 14, 25, 26, 27]).

The supplemental regularity properties of these equations imply that the uniqueness

result for (1.1) is also valid backward in time, which allows to pose a problem of

extension of S(t)u0 for t < 0.

Definition B.1. We say that a solution u(t) of the equation (1.1) is global if it exists

for all times, both positive and negative.

Note that u(t) = S(t)u0 is global if and only if

u0 ∈
⋂

t≥0

S(t)H.

Notation B.1. Denote

G =
⋂

t≥0

S(t)H

the set of initial date for which u(t) = S(t)u0 is global.

In this section we will provide an overview of the previous studies of the global
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solutions of (1.1)

1. Linear case

The simplest case, which is instructive in all the subsequent work is B = 0 in (1.1).

This case was presented as motivation for the similar study of the 2-D Navier-Stokes

equations in [1]. The system (1.1) becomes the linear system











ut + νAu = f ∈ H

u(0) = u0 ∈ H.
(1.2)

The solution of this equation has the form

u(t) = S(t)u0 =
A−1f

ν
+ e−At

(

u0 −
A−1f

ν

)

. (1.3)

Note that

lim
t→∞

u(t) =
A−1f

ν
,

And thus the global attractor is

A =

{

A−1f

ν

}

.

Besides the global attractor, equation (1.2) has a whole variety of global solutions.

For example, if u0 is such that

|Rn(u0 − A−1f/ν)| ≤ e−λnsnbn,

where sn → ∞ as n → ∞ and
∑

n b
2
n < ∞, then u(t) given by (1.3) exists for all

times and

|u(−sn) − A−1f/ν|2 ≤
n
∑

m=1

e2λn(sn−sm)b2m +

∞
∑

m=n+1

b2m.

Some of these solutions grow exponentially as t→ −∞.
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Theorem B.1. A global solution u(t) of (1.2) increases at most exponentially as

t → −∞ if and only if there exists n ∈ N such that u(t) − A−1f/ν ∈ PnH for all

t ∈ R.

Proof. It is clear that if u0 ∈ PnH, then u(t) given by (1.3) exists for all t ∈ R with

u(t) − A−1f/ν ∈ PnH and |u(t)| = O(e−λnt) as t→ −∞.

Conversely, if u(t) increases at most exponentially as t → ∞, then there exists

n ∈ N such that |u(t)| = O(e−λnt) as t→ −∞. In this case, if Rm(u0 − A−1f/ν) 6= 0

for some m > n, then

|u(t) − A−1f/ν|2 ≥ |Rm(u(t) − A−1f/ν)|2 = e−2λmt|Rm(u0 − A−1f/ν)|2 = O(e−λmt),

which contradicts the fact that |u(t)| = O(e−λnt) as t → −∞. Thus, Rm(u0 −

A−1f/ν) = 0 for all m > n, and consequently u(t)−A−1f/ν ∈ PnH for all t ∈ R.

Corollary B.1. If u(t) 6∈ A of increases at most exponentially as t→ −∞ then there

exists n ∈ N such that

u(t) − A−1f/ν ∈ PnH\Pn−1H;

lim
t→−∞

|A1/2u(t)|2
|u(t)|2 = λn;

|u(t)| = O(e−λnt), as t→ −∞

We denote

Mn = {u0 ∈ G : |S(t)u0| = O(e−λnt) as t→ −∞}. (1.4)

Note that for (1.2), the sets Mn have the following properties

Mn =
A−1f

ν
+ PnH = A ∪

{

u0 ∈ G : lim
t→−∞

|A1/2S(t)u0|2
|S(t)u0|2

= λn

}

.
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Also,

PnMn = PnH.

Thus, ∪nMn is dense in H.

2. 2-D Navier-Stokes equations

We consider the 2-D space periodic Navier-Stokes Equations (NSE) in Ω = [0, L]2:



























d
dt
u− ν∆u + (u · ∇)u+ ∇p = f

∇ · u = 0

u, p Ω−periodic,
∫

Ω

u = 0,

where u(t) : R
2 → R

2, p(t) : R
2 → R are unknown functions and ν > 0, f ∈ L2(Ω)

(f is Ω-periodic,
∫

Ω
f = 0) are given.

Let H be the closure in L2(Ω)2 of

{

v ∈ L2(Ω)2 : v Ω−periodic trigonometric polynomial, ∇ · v = 0,

∫

Ω

v = 0

}

.

We denote

(v, w) :=

∫

Ω

v · w

and

|v| := (v, v)1/2

the inner product and the norm in H.

Let A = −PL∆ be the Stokes operator (defined on D(A) = H ∩H2(Ω)2), where

PL is the orthogonal projection from L2(Ω)2 onto H. Observe that A : D(A) → H is

an unbounded positive self-adjoint operator with a compact inverse. Its eigenvalues

are (2π/L)2(k2
1 + k2

2), where (k1, k2) ∈ N
2\{0, 0}. We arrange them in the increasing
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sequence:

(2π/L)2 = λ1 < λ2 < . . .

We will need the following fact about {λn} (see [24]).

lim sup
n→∞

(λn+1 − λn) = ∞.

Also, it is obvious that

λn+1 − λn ≥ λ1, n ≥ 1,

and

lim
n→∞

λn = ∞.

Next we denote B(u, v) = PL((v · ∇)w)) and b(u, v, w) = (B(u, v), w), u, w ∈ H,

v ∈ D(A). Observe that

b(u, v, w) = −b(u, w, v), u ∈ H, v, w ∈ D(A),

b(u, u, Au) = 0, u ∈ D(A).

We will also use the following inequality for b:

|b(u, v, w)| ≤ c0|u|1/2|A1/2u|1/2|A1/2v| |w|1/2|A1/2w|1/2, (1.5)

where u, v, w ∈ D(A1/2)(= H ∩H1(Ω)2).

Finally, denote g = PLf .

Then the NSE can be written as

d

dt
u+ νAu+B(u, u) = g. (1.6)

We denote by S(t)u0 the solution of the NSE which is u0 at t = 0.
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Let

A =

{

u0 ∈ G : sup
t∈ � |S(t)u0| <∞

}

(1.7)

be the global attractor of the equation (1.6). Refer to [10], [12] or [13] for the com-

prehensive treatment of the equation (1.6).

We will study the S(t)-invariant sets Mn, which can be written as

Mn = A
⋃

{

u0 ∈ G : lim sup
t→−∞

|A1/2S(t)u0|2
|S(t)u0|2

≤ λn + λn+1

2
:= λn

}

. (1.8)

We will use the following known facts about Mn (see [1]).

Theorem B.2. The set ∪nMn is dense in H with the topology of the norm |A−1/2 · |.

Also:

• u(t) ∈ Mn if and only if

|u(t)| = O(e−νλnt), as t→ −∞. (1.9)

• u(t) ∈ Mn\Mn−1 if and only if

lim
t→−∞

|A1/2u(t)|2
|u(t)|2 = λn. (1.10)

Moreover in this case,

lim inf
t→−∞

|u(t)|
e−νλnt

> 0; (1.11)

also, there exists tn → −∞, and an eigenvector w ∈ RnH, |w| = 1 such that

lim
n→∞

u(tn)

|u(tn)|
= w; (1.12)

and, finally, if

|u0| ≥ γ0 := max

{

2|g|
νλ1

, ν

}

(1.13)
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then

|A1/2S(t)u0|2
|S(t)u0|2

≤ λn, (1.14)

for all t ≤ 0.

3. Kuramoto-Sivashinsky equation

The 1-D periodic Kuramoto-Sivashinsky equation (KSE) in the domain Ω = [0, L]

has the following form























ut + uxxxx + uxx + uux = 0

u(0) = u0(x)

u0 is L-periodic,
∫ L

0
u0 dx = 0.

We define

H = {u(x) : u − L− periodic, locally in L2,

∫ L

0

u = 0},

which is a Hilbert space with the inner product

(u, v) =

∫ L

0

u(x)v(x) dx.

For every u0 ∈ H, KSE has a unique solution u(t) = S(t)u0 that exist for all

t > 0. This solution, for t > 0, is an analytic function in time and space [14].

There is an important difference of KSE from the NSE-like dissipative systems,

namely its linear part uxxxx+uxx is not positive when L > 2π, in fact, the low modes

of the solution of KSE become unstable, and, as a result, the dissipativity of this

equation does not follow similarly to the NSE case. Nevertheless, the dissipativity of

KSE for odd initial data was established in [16], while in [17] and [28] the oddness

condition was removed.
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In particular, it was proved that there exists RL ≥ 0 such that for every u0 ∈ H,

there exists T (|u0|) > 0 such that |S(T (|u0|))u0| < RL and |S(t)u0| <
√

2RL for all

t ≥ T (u0). Moreover, KSE has a global attractor

A = {u0 ∈ G : sup
t∈ � |S(t)u| <∞}.

However, as was shown in [7], KSE does not have any other global solutions

besides those on the global attractor.

Theorem B.3. Any solution of the KSE which does not belong to the global attractor

cannot be extended for all negative times.

As a consequence ([6]), there are no solutions growing exponentially for t→ −∞.

Corollary B.2. For all n ∈ N,

Mn = A.

Also, Theorem B.3 implies the following fact about invariant sets of the KSE

([7]).

Corollary B.3. The global attractor is the biggest invariant set of the KSE.

The method provided in [7] can be easily adapted to prove the same results for

the generalized Burgers equation

ut − uxx − βu+ uux = f

with the parameter β ∈ R and the same boundary conditions as KSE.
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CHAPTER II

2D NAVIER-STOKES EQUATION*

As we mentioned in the introduction, the NSE is a typical case of dissipative system

(1.1), which for t → −∞ display many similarities to the linear case (see Section

I.B.2, for the preliminary information and the summary of the known facts about

the NSE system). In particular, the it was proved that u(t) grows exponentially as

t → −∞ if and only its Dirichlet quotient |A1/2u(t)|2/|u(t)|2 is bounded as t → −∞

(see [1]).

In this chapter we prove that the quotients |Aαu|2/|u|4α are bounded on any Mn.

(see Theorem A.1 and its Corollary A.1). Our bounds, however, are not sufficient to

prove the density of ∪nMn in the energy norm of the phase space. But as a corollary

we show that if a solution of the 2-D space periodic Navier-Stokes equation exists

for all times and increases exponentially in the energy norm (as t → −∞), than it

increases exponentially in any Sobolev norm, provided the driving force is regular

(see Corollary A.2). In particular, the L∞ norm of any derivative of such a solution

grows at most exponentially as t→ −∞.

It is worth mentioning that by a slight modification of the proofs given in this

paper one can prove similar results for the 2-D space periodic Navier-Stokes α-model

and 2-D space periodic Kelvin-filtered Navier-Stokes equations.

A. Main result

For every θ ≥ 0 and g ∈ D(Aθ) define a generalized Grashoff number as follows

∗Some of the results in this chapter are reprinted with permission from R. Dascal-
iuc, “On backward-time behavior of the solutions to the 2-D space periodic Navier-
Stokes equations”, Ann. Inst. H. Poincaré Anal. Non Lináire vol. 22, Iss. 4, pp.
385-519, c© 2005, available on-line at www.sciencedirect.com.
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Gθ =
|Aθg|
ν2λθ+1

1

, (2.1)

Our main goal is to prove the following

Theorem A.1. Let θ = k/2, k ∈ N\{0}, and g ∈ D(Aθ). Then for every u0 ∈ Mn

such that |u0| ≥ γ0, there exists a positive constant Mθ(Gθ) depending only θ, c0

(where c0 the constant from (1.5)), and Gθ such that

|Aθu0|2
|u0|4θ

≤ Mθ(Gθ)

ν4θ−2
λn

2θ
. (2.2)

Moreover, if θ > 1 than there exists a positive constant Nθ(Gθ−1/2), that depends only

on θ, c0, and Gθ−1/2 such that

t0
∫

−∞

|Aθu|2
|u|4θ−2

dτ <
Nθ(Gθ−1/2)

ν4θ−3
λn

2θ−1
, (2.3)

where u(t) is a solution of the NSE satisfying u(t0) = u0.

Also, if θ ≥ 1/2 then

lim
t→−∞

|Aθu(t)|2
|u(t)|4θ = 0. (2.4)

Observe that (2.2) expands the estimate (1.14) from Theorem B.2 to the quotients

involving higher powers of the operator A. In fact, these estimates hold for any power

of the operator.

Corollary A.1. Let α > 1/2 and g ∈ D(Aθ), where θ = ([2α]+1)/2. Then for every

u0 ∈ Mn with |u0| > γ0, there is a constant Mα (depending only on θ, G([2α]+1)/2,and

c0) such that

|Aαu0|2
|u0|4α

≤ Mα

ν4α−2
λn

2α
. (2.5)
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Proof. Let θ = ([2α] + 1)/2. Observe that θ ≥ α. Then, by interpolation,

|Aαu0|2
|u0|4α

≤
( |Aθu0|2

|u0|4θ
)

2α−1
2θ−1

( |A1/2u0|2
|u0|2

)

2θ−2α
2θ−1

≤
(

Mθ

ν4θ−2
λn

2θ
)

2α−1
2θ−1

λn
2θ−2α
2θ−1 =

M
2α−1
2θ−1

θ

ν4α−2
λn

2α
,

and thus, (2.5) holds with Mα = M
2α−1
2θ−1

θ .

Another consequence of Theorem A.1 is that on Mn any Sobolev norm of a

solution will grow exponentially for negative time.

Corollary A.2. Suppose u(t) ∈ Mn\A and g ∈ D(Am/2) then

|Am/2u(t)|2 ≤ O(e−2mνλnt), t→ −∞.

Moreover, if m ≥ 2, then for any α = (α1, α2) with α1, α2 ≥ 0, α1 + α2 ≤ m− 2, we

have

|Dαu|L∞ = O(e−(α1+α2+2)νλnt), t→ −∞,

where

Dαu(x1, x2) =
∂α1+α2u

∂α1x1∂α2x2

.

In particular, when g ∈ C∞(Ω), any solution u of the NSE which exists for all

times and increases exponentially as t→ −∞ in the phase space H, will also increase

exponentially as t → −∞ in any Sobolev space Hm
per(Ω)2 = W 2,m

per (Ω)2 (m ≥ 0).

Moreover, the L∞ norm of any (space) derivative of u will also increase exponentially

as t→ −∞.

Proof. Recall that the Sobolev norm in Hm
per(Ω) is equivalent to the norm

| · |m :=
(

|Am/2 · |2
)1/2

.
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Note that by Theorem B.2 u(t) ∈ Mn\A implies that |u(t)|m grows at least expo-

nentially as t→ −∞, and |u(t)|2 = O(e−νλnt) as t→ −∞.

On the other hand, according to Theorem A.1,

|Am/2u(t)|2 ≤ Mm/2

ν2m−2
λkn|u|2m = O(e−2mνλnt).

Thus, u(t) increases exponentially in Hm
per(Ω)2 as t→ −∞.

To prove the second part of the corollary we apply the Sobolev Embedding

Theorem to obtain that

|Dαu|∞ ≤ C|Dαu|H2(Ω),

for any multi-index α = (α1, α2) ∈ N
2. Here we are writing

Dαu(x1, x2) =
∂α1+α2u

∂α1x1∂α2x2
.

Observe that by the first part of the corollary, |Dαu(t)|H2(Ω) = O(e−(α1+α2+2)νλnt) as

t→ −∞. Consequently, we also have that |Dαu|∞ = O(e−(α1+α2+2)νλnt) as t→ −∞.

B. The proof of the main result

For convenience we will use the following notation:

Notation B.1.

λ :=
|A1/2u|2
|u|2 ,

µ :=
|Au|2
|u|4 ,

ξ := (A− λ)
u

|u| ,

σ := (A− 3

2
λ)
A1/2u

|u|2 ,
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λn :=
λn+1 + λn

2
,

µθ,m :=
|Aθu|2
|u|m .

First, we will prove the following useful lemma.

Lemma B.1. Let u be a solution of the NSE that exists for all times and satisfies

|u(t0)| > γ0 for some t0. Then for any t ≤ t0 and any m ≥ 1,

2

3m

1

|u(t)|m ≤ ν

t
∫

−∞

λ(τ)

|u(τ)|mdτ ≤ 2

m

1

|u(t)|m . (2.6)

Also, if u(t0) ∈ Mn\A, then

ν

t
∫

−∞

λ(τ)|ξ(τ)|2dτ ≤ 1

2
(λ2

n − λ2(t)) +
|g|2

ν2|u(t)|2 . (2.7)

and

ν

∫ t

−∞

µ(τ) dτ ≤ O

(

1

|u(t)|2
)

, for t→ −∞. (2.8)

Proof. From (1.6) we obtain

1

2

d

dt
|u|2 + νλ|u|2 = (g, u), (2.9)

from which we get

1

|u|m+1

1

2

d

dt
|u| + ν

λ

|u|m =

(

g,
u

|u|m+2

)

.

Thus

ν

t
∫

−∞

λ

|u|mdτ −
t
∫

−∞

(

g,
u

|u|m+2

)

dτ =
1

m

1

|u(t)|m . (2.10)

Notice that for t ≤ t0
∣

∣

∣

∣

∣

∣

t
∫

−∞

(

g,
u

|u|m+2

)

dτ

∣

∣

∣

∣

∣

∣

≤
t
∫

−∞

g

|u|m+1
dτ ≤

t
∫

−∞

(

g

νλ1

1

|u|

)

1

|u|mdτ
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≤ 1

2
ν

t
∫

−∞

λ1

|u|mdτ ≤ 1

2
ν

t
∫

−∞

λ

|u|mdτ,

since |u(t)| ≥ γ0(≥ 2g/(νλ1)) and λ(t) ≥ λ1 for all t ≤ t0. Thus, returning to (2.10)

we get

ν

t
∫

−∞

λ

|u|mdτ −
1

2
ν

t
∫

−∞

λ

|u|mdτ ≤ 1

m

1

|u(t)|m

and

ν

t
∫

−∞

λ

|u|mdτ +
1

2
ν

t
∫

−∞

λ

|u|mdτ ≥ 1

m

1

|u(t)|m

for all t ≤ t0, from which the relation (2.6) readily follows.

In order to prove (2.7), we observe that

1

2

d

dt
|A1/2u|2 + ν|Au|2 = (g, Au), (2.11)

which, together with (2.9), implies that

1

2

d

dt
λ+ ν|ξ|2 = (

g

|u| , ξ),

from which we obtain

1

2

d

dt
λ2 + νλ|ξ|2 ≤ λ|g|2

ν|u|2 .

By integrating the relation above, using (2.6) for m = 2 as well as the fact that

λ(t) → λn as t→ −∞ (see results from [1] summarized in Theorem B.2), we get

1

2
(λ2(t) − λ2

n) + ν

∫ t

−∞

λ|ξ|2dτ ≤ |g|2
ν2|u(t)|2 ,

which implies the inequality (2.7) from the statement of the lemma.

Finally, to prove (2.8) consider
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1

2

d

dt

λ

|u|2 =
−ν|Au|2 + (g, Au)

|u|4 − 2
λ

|u|2
−ν|A1/2u|2 + (g, u)

|u|2 ,

from where

1

2

d

dt

λ

|u|2 ≤ −νµ +
|g|2
|u|2µ

1/2 + 2ν
λ2

|u|2 + 2
λ|g|
|u|3 .

Consequently

d

dt

λ

|u|2 + νµ ≤ |g|2
|u|2 + 4ν

λ2

|u|2 + 4
λ|g|
|u|3 .

Thus, by itegrating the previous inequality and using (2.6) we obtain

ν

∫ t

−∞

µ(τ) dτ ≤ O

(

1

|u(t)|2
)

for t→ −∞.

Let u(t) be a solution of the NSE such that u(t) ∈ Mn. Our first result is

Proposition B.1. If g ∈ D(A) and

|u(0)| ≥ γ0,

then for every t ≤ 0 we have

µ(t) + e−3ν

t
∫

−∞

λ(τ)µ(τ) dτ ≤ e4

2ν2
(λ2

n − λ2(t)) +
K1λ

2
1 + (13/4)e4λ

2

n

|u(t)|2 ,

where K1 = e4(c0G0 +G1) with c0- the constant from the inequality (1.5). Moreover,

ν

4
e−3

t
∫

−∞

|A3/2u|2
|u|4 dτ ≤ e4

2ν2
(λ2

n − λ2(t)) +
K1λ

2
1 + (13/4)e4λ

2

n

|u(t)|2 ,

for any t ≤ 0.
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Proof. Observe that since g ∈ D(A), we have

1

2

d

dt
µ =

−ν|A3/2u|2 − b(Au, u, Au) + (Ag,Au)

|u|4 − 2µ
−ν|A1/2u|2 + (g, u)

|u|2 ,

so,

1

2

d

dt
µ = −ν

(

µ3/2,4 − 2µλ
)

− b(Au, u, Au)

|u|4 +
(Ag,Au)

|u|4 − 2µ
(g, u)

|u|2 .

Thus,

1

2

d

dt
µ+ νλµ = −ν|σ|2 +

9ν

4

λ3

|u|2 − b(Au, u, Au)

|u|4 (2.12)

+

(

Ag

|u|2 ,
Au

|u|2
)

− 2µ

(

g,
u

|u|2
)

.

Note that

|b(Au, u, Au)|
|u|4 =

b(Au− λu, u, Au− λu)

|u|4 ≤ c0|ξ| |A1/2ξ| |A1/2u|
|u|2

= c0λ
1/2|ξ| |A

1/2ξ|
|u| = c0λ

1/2|ξ|
(

|σ|2 + λµ− 5

4

λ3

|u|2
)1/2

,

and thus

|b(Au, u, Au)|
|u|4 ≤ c20

2ν
λ|ξ|2 +

ν

2

(

|σ|2 + λµ− 5

4

λ3

|u|2
)

.

Now, going back to (2.12) we get
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1

2

d

dt
µ+ νλµ ≤ −ν

2
|σ|2 +

ν

2
λµ− 5ν

8

λ3

|u|2 +
9ν

4

λ3

|u|2

+
c0λ

2ν
|ξ|2 +

|Ag|
|u|2 µ

1/2 − 2µ

(

g,
u

|u|2
)

.

Observe that

|Ag|
|u|2 µ

1/2 ≤ 1

2ν3λ1

|Ag|2
|u|2 +

ν3λ1

2

µ

|u|2 .

Consequently

d

dt
µ+ νλµ ≤

[

ν3λ1

|u|2 − 4

(

g,
u

|u|2
)]

µ

− ν|σ|2 +
c0λ

ν
|ξ|2 +

1

|u|2
(

13ν

4
λ3 +

|Ag|2
ν3λ1

)

.

Note that the conditions of the proposition imply that λ(t) ≤ λn, for all t ≤ 0. Let

us denote

Γn :=
13ν

4
λ

2

n +
|Ag|2
ν3λ2

1

,

β :=
ν3λ1

|u|2 − 4

(

g,
u

|u|2
)

.

Then, by the Gronwall inequality,

µ(t) ≤ µ(t0)e
� t

t0
β

+

t
∫

t0

(

−ν|σ|2 − νλµ+
c0
ν
λ|ξ|2 +

Γnλ

|u|2
)

e
� t

τ
βdτ. (2.13)

Observe that see Theorem B.2,
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lim inf
t→−∞

|u(t)|2
e−νλ1t

> 0,

and so β(τ) is bounded and absolutely integrable on the interval (−∞, t]. Moreover,

by Lemma B.1, (c0ν)λ|ξ|2 +Γnλ/|u|2 is also absolutely integrable on (−∞, t]. On the

other hand, from (2.8) we conclude that there exists a sequence t0n → −∞ such that

µ(t0n) → 0. Thus, by taking t0 = t0n and letting n→ ∞, the inequality (2.13) yields:

µ(t) + c1ν

t
∫

−∞

(|σ|2 + λµ)dτ ≤ c2

t
∫

−∞

(

c0
ν
λ|ξ|2 +

Γnλ

|u|2
)

dτ, (2.14)

where

c1(t) = inf
τ≤t

e
� τ

−∞ β,

and

c2(t) = sup
τ≤t

e
� τ

−∞ β.

Observe that the relation (2.6) from Lemma B.1 implies that

t
∫

−∞

Γnλ

|u|2 dτ ≤ Γn
ν|u(t)|2 .

Using this, together with (2.7), in the inequality (2.14), we obtain

µ(t) + c1ν

t
∫

−∞

(|σ|2 + λµ)dτ ≤ c2c0
ν2

(

1

2

(

λ2
n − λ2(t)

)

+
|g|2

ν2|u(t)|2
)

+
c2Γn

ν|u(t)|2 . (2.15)

Observe that from (2.15) we can infer that µ(t) is bounded, while |σ|2 and λµ are
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integrable on (−∞, t], and thus

c1ν

t
∫

−∞

|A3/2u|2
|u|4 dτ ≤ c1ν

t
∫

−∞

3µλ dτ +
c2c0
2ν2

(

λ2
n − λ2(t)

)

+

(

c0|g|2
ν3

+ Γn

)

c2
ν|u(t)|2

Using (2.15) again to estimate c1ν
∫ t

−∞
3µλ dτ , we obtain

c1ν

t
∫

−∞

|A3/2u|2
|u|4 dτ ≤ 2c2c0

ν2

(

λ2
n − λ2(t)

)

+

(

c0|g|2
ν3

+ Γn

)

4c2
ν|u(t)|2 <∞. (2.16)

Observe that from (2.6) we obtain that

ν

t
∫

−∞

λ

|u|dτ ≤ 3

2|u(t)| .

Hence,

c1 > e−
� 0
−∞

4|g|
|u| ≥ e

−6|g|
νλ1|u(0)| ≥ e−3

and, since |u| ≥ γ0 ≥ ν,

c2 ≤ e
� t

−∞
(

ν3λ1
|u|2

+ 4|g|
|u|

) ≤ e
ν2

|u(t)|2
+ 6|g|

νλ1|u(t)| ≤ e1+3 = e4.

Finally, if we define

K1(G0, G1) := e4(c0G0 +G1),

and use (2.15) and (2.16) we will obtain the desired estimates from the proposition.

The following proposition allows us to deduce the boundedness of higher order

quotients based on the boundedness on the lower ones.
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Proposition B.2. Let g ∈ D(Aθ+1/2) with θ = k/2 and k ∈ N. Suppose that for

every u(t) ∈ Mn, |u(t0)| ≥ γ0 we have

t0
∫

−∞

|Aθu(t)|2
|u(t)|m dt <

Cθ,m(Gθ−1/2)

νm−1
λn

k−1
,

where Cθ,m(·) is a positive increasing function. Then there exist positive increasing

functions C ′
θ,m(·), Kθ,m(·), such that

|Aθu(t0)|2
|u(t0)|m+2

+ ν

t0
∫

−∞

|Aθ+1/2u(t)|2
|u(t)|(m+2)

dt <
C ′
θ,m(Gθ)

νm
λn

k

and

|Aθ+1/2u(t)|2
|u(t)|(m+4)

≤ Kθ,m(Gθ+1/2)

νm+2
λn

k+1
.

Moreover,

lim
t→−∞

|Aθ+1/2u(t)|2
|u(t)|(m+4)

= lim
t→−∞

|Aθu(t)|2
|u(t)|(m+2)

= 0.

Proof. Using (1.6) we get the following equation for the Galerkin approximations uN

(see [10] for the facts about the Galerkin approximations for the NSE)

1

2

d

dt
µNθ,m+2 =

−ν|Aθ+1/2uN |2 + (g, A2θuN) − b(uN , uN , A2θuN)

|uN |(m+2)

+
m+ 2

2
µNθ,m+2

ν|A1/2uN |2 − (g, uN)

|uN |2 .

Applying Theorem 1 from the Appendix as well as the Cauchy-Schwarz inequality,

we get

1

2

d

dt
µNθ,m+2 ≤ −νµNθ+1/2,m+2 +

|Aθg|
|uN |(m+2)/2

µNθ,m+2

1/2

+c0c2θ
|Aθ+1/2uN | |AθuN | |A1/2uN |

|uN |(m+2)
+ ν

m + 2

2
λµNθ,m+2 +

m + 2

2

|g|
|uN |µ

N
θ,m+2

(here c2θ = 6([θ] + (2θ − [θ])22θ−2) is the constant from Theorem 1). Now, using the
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Jensen inequality, we obtain

1

2

d

dt
µNθ,m+2 ≤ −ν

2
µNθ+1/2,m+2 +

1

2νλ1

|Aθg|2
|uN |(m+2)

+
νλ1

2
µNθ,m+2

+
c20c

2
2θ

2ν
λNµNθ,m + ν

m + 2

2
λNµNθ,m+2 +

m+ 2

2

|g|
|uN |µ

N
θ,m+2.

Hence,

d

dt
µNθ,m+2 + νµNθ+1/2,m+2 ≤ |Aθg|2

νλ1|uN |(m+2)

+

(

νλ1

|uN |2 +
c20c

2
2θ

ν
λN +

ν(m + 2)λN

|uN |2 +
(m+ 2)|g|

|uN |3
)

µNθ,m.

Since g ∈ D(Aθ+1/2), we can integrate from t to t0 (t < t0) and pass to the limit

N → ∞. Taking into the account that λ(t) ≤ λn we get

µθ,m+2(t0) + ν

t0
∫

t

µθ+1/2,m+2dτ ≤ µθ,m+2(t) +
|Aθg|2
νλ1

∫ t0

t

dτ

|u|m+2

+

[

c20c
2
2θ

ν
λn +

1

|u(t0)|2
(

νλ1 + ν(m + 2)λn +
(m + 2)|g|
|u(t0)|

)]

t0
∫

t

µθ,mdτ.

Since
t0
∫

−∞

µθ,mdτ <
Cθ,m(Gθ−1/2)

νm−1
λn

k−1
,

there exists a sequence tl → −∞ such that

lim
l→∞

µθ,m(tl) = 0(= lim
l→∞

µθ,m+2(tl)).

Thus, by letting t = tl → −∞, we get

µθ,m+2(t0) + ν

t0
∫

−∞

µθ+1/2,m+2dτ ≤ |Aθg|2
νλ1

∫ t0

−∞

dτ

|u|m+2
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+

[

c20c
2
2θ

ν
λn +

1

|u(t0)|2
(

νλ1 + ν(m + 2)λn +
(m+ 2)|g|
|u(t0)|

)]

t0
∫

−∞

µθ,mdτ.

Hence,

lim
t→−∞

µθ,m+2(t) = 0.

Moreover, since according to Lemma B.1,

ν

∫ t0

−∞

λ

|u|m+2
dτ ≤ 2

m+ 2

1

|u(t0)|m+2
,

we obtain

µθ,m+2(t0) +

t0
∫

−∞

µθ+1/2,m+2dτ ≤ |Aθg|2
ν2λ2

1

2

m+ 2

1

γm+2
0

+

[

c20c
2
2θ

ν
λn +

1

γ2
0

(

νλ1 + ν(m + 2)λn +
(m+ 2)|g|

γ0

)]

Cθ,m(Gθ−1/2)

νm−1
λn

k−1
.

Observe that by the Poincaré inequality, Gθ > Gθ−1/2. Thus Cθ,m(Gθ−1/2) ≤ Cθ,m(Gθ).

Using this fact, together with the definition of γ0, we can define the positive increasing

functions C ′
θ,m(Gθ) from the statement of the proposition as follows:

2|Aθg|2νm
(m + 2)ν2λ2+k

1 γm+2
0

+

[

c20c
2
2θ +

ν2

γ2
0

(

1 + (m+ 2)(1 +
|g|

νλ1γ0
)

)]

Cθ,m(Gθ−1/2)

=
2

m + 2
G2
θ +

(

c20c
2
2θ +

3

2
m+ 4

)

Cθ,m(Gθ−1/2)

≤ 2

m+ 2
G2
θ +

(

c20c
2
2θ +

3

2
m + 4

)

Cθ,m(Gθ) := C ′
θ,m(Gθ).

On the other hand, again for the Galerkin approximaximations, we have

1

2

d

dt
µNθ+1/2,m+4 =

−ν|Aθ+1uN |2 + (g, A2θ+1uN) − b(uN , uN , A2θ+1uN)

|uN |(m+4)

+
m+ 4

2
µNθ+1/2,m+4

ν|A1/2uN |2 − (g, uN)

|uN |2 ,
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and similarly to what was done above we get

µθ+1/2,m+4(t0) + ν

t0
∫

t

µθ+1,m+4dτ ≤ µθ+1/2,m+4(t) +
|Aθ+1/2g|2

νλ1

t0
∫

t

dτ

|u|(m+4)

+

[

c20c
2
2θ+1

ν
λn +

1

|u(t0)|2
(

νλ1 + (m+ 4)(νλn +
|g|

|u(t0)|
)

)]

t0
∫

t

µθ+1/2,m+2dτ

(here again c2θ+1 is the constant from Theorem 1) By the same argument as in the

previous case, when t→ −∞ we obtain

µθ+1/2,m+4(t0) + ν

t0
∫

−∞

µθ+1,m+4dτ ≤ |Aθ+1/2g|2
νλ1

t0
∫

−∞

dτ

|u|(m+4)

+

[

c20c
2
2θ+1

ν
λn +

1

|u(t0)|2
(

νλ1 + (m+ 4)(νλn +
|g|

|u(t0)|
)

)]

t0
∫

−∞

µθ+1/2,m+2dτ.

Thus

lim
t→−∞

µθ+1/2,m+4(t) = 0,

and

µθ+1/2,m+4(t) ≤
Kθ,m

νm+2
λ
k+1

n ,

where

Kθ,m(Gθ+1/2) :=
2

m+ 4
G2
θ+1/2 +

(

c20c
2
2θ+1 +

3

2
m+ 7

)

C ′
θ,m(Gθ+1/2).

Observe that Kθ,m satisfies conditions from the proposition, since

2|Aθ+1/2g|2νm+4

(m+ 4)ν4λk+3
1 γm+4

0

+

[

c20c
2
2θ+1 +

ν2

γ2
0

(

1 + (m + 4)(1 +
|g|

λ1νγ0

)

)]

C ′
θ,m(Gθ)

=
2

m+ 4
G2
θ+1/2 +

(

c20c
2
2θ+1 +

3

2
m+ 7

)

C ′
θ,m(Gθ) ≤ Kθ,m(Gθ+1/2).
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Proof of the main theorem.

We will prove Theorem A.1 by induction on k = 2θ.

When k = 1 the Theorem holds (see (1.14)).

When k = 2 the Theorem is valid via Proposition B.1. Observe that this propo-

sition allows us to choose, for example,

M2(G1) =

(

(c0 + 1)G1 +
15

4

)

e4.

Moreover, Proposition B.1 gives us that

N3/2 = 4e3M2.

Thus, applying Proposition B.2, we conclude that the theorem holds when k = 3.

Suppose now that the theorem is true for some integer k ≥ 3. Then there exists

a positive increasing function Nθ(·), such that

t0
∫

−∞

|Aθu|2
|u|4θ−2

dτ <
Nθ(Gθ−1/2)

ν4θ−3
λ

2θ−1

n ,

where θ = k/2. But according to Proposition B.2, if g ∈ D(Aθ+1/2), then there exist

positive increasing functions Mθ+1/2(·) and Nθ+1/2(·) such that

t0
∫

−∞

|Aθ+1/2u(t)|2
|u(t)|4θ dt <

Nθ+1/2(Gθ)

ν4θ−1
λ

2θ

n ,

|Aθ+1/2u0|2
|u0|4θ+2

≤ Mθ+1/2(Gθ+1/2)

ν4θ
λ

2θ+1

n ,

and

lim
t→−∞

|Aθ+1/2u(t)|2
|u(t)|4θ+2

= 0,

which shows that the theorem is true for the integer k + 1, and by induction, the

proof is complete.
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CHAPTER III

BURGERS’ ORIGINAL MODEL FOR TURBULENCE*

A. Background

In the 1940’s Burgers wrote a sequence of papers (see [19, 20, 21]) in which a model

for turbulence in hydrodynamical systems was presented. In particular, in [21] he

introduced a simplified model for turbulent flow in a channel. This model consists of

a coupled system of differential equations:











b d
dt
U(t) = P − ν

b
U(t) − 1

b

b
∫

0

v2(t, y) dy

∂
∂t
v(t, y) = 1

b
U(t)v(t, y) + ν ∂2

∂y2
v(t, y) − 2v(t, y) ∂

∂y
v(t, y) .

(3.1)

The functions U(t) and v(y, t) represent velocities (U is the mean motion of the fluid

and v is the secondary motion, modeling random fluctuations of the velocity around

the mean motion), t is the time variable, and y is the space variable perpendicular

to the channel, which has constant width b. The function v is assumed to be zero

on the walls y = 0 and y = b. The constant ν is the viscosity coefficient. Finally,

the constant P represents the energy per unit of mass provided by the driving force.

The term Uv/b in the second equation results from the energy transmitted from the

primary motion U to the secondary motion v.

Such a system is a typical case of an abstract dissipative evolution PDE (see

e.g. [25], [24], [26], [14]), for which many of the standard results, like existence

and uniqueness of solutions, as well as existence of the global attractor are valid.

It is important to stress that unlike the classical Burgers equation (which is the

∗Some of the results in this chapter are reprinted with permission from R. Das-
caliuc, “On backward-time behavior of Burgers’ original model for turbulence,”
Nonlinearity, vol. 16, no. 6, pp. 1945–1965, c© 2003, available on-line at
stacks.iop.org/Non/16/1945.
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second equation of (3.1) with U = 0), Burgers’ original model for turbulence has

nontrivial dynamics. In particular, (3.1) has a global attractor of fractal dimension

of order
√

Pb2/ν2 (see [22]), an exponential attractor of fractal dimension of order

(Pb2/ν2)
15/8

(see [18]), as well as an inertial manifold (see [23]). Moreover, there is

some numerical evidence that the global attractor may have complicated geometrical

structure (see [29]).

Our interest in Burgers’ original model for turbulence was motivated by the

supposition that as an analog to the Navier-Stokes equations (both being dissipative

with a quadratic nonlocal nonlinearity), it may have similar backward-time behavior,

including, eventually, validity of some form of the Bardos-Tartar conjecture. (Observe

that we can place (3.1) in the same settings as problems in [1, 5, 6, 7, 3, 4], if we give

it the suitable functional framework (see Section A)).

However, our results show significant differences in backward-time dynamics be-

tween Burgers’ original model for turbulence and the space-periodic 2-D Navier-Stokes

equations (see Section H for the detailed discussion of these differences).

Note that the classical 1-D periodic Burgers equation displays the same backward-

time behavior as the Kuramoto-Sivashinsky equation, namely: all of its solutions

outside the global attractor blow up backward in finite time as was mentioned in

Chapter I (see also [6], [7]). But from our results presented later in this chapter, it

follows that the system (3.1) has a rich (invariant) set of global solutions that grow

exponentially for t→ −∞.

B. Preliminaries

Let us establish precisely the mathematical problem to be treated. Equations (3.1)

become, after a simple scaling transformation:
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d
dt
U(t) = R− U(t) −

1
∫

0

v2(t, ξ) dξ

vt(t, x) = U(t)v(t, x) + vxx(t, x) − 2v(t, x)vx(t, x) ,

(3.2)

where vt, vx, and vxx stand for ∂v/∂t, ∂v/∂x, and ∂2v/∂x2 respectively; x ∈ [0, 1],

v(t, 0) = v(t, 1) = 0, and R = Pb2/ν2 - the equivalent of the Reynolds number for

this model. If we extend v on [−1, 0] by the formula v(t, x) = −v(t,−x), we obtain

the solution for the system











d
dt
U(t) = R− U(t) − 1

2

1
∫

−1

v2(t, ξ) dξ

vt(t, x) = U(t)v(t, x) + vxx(t, x) − (v2(t, x))x

(3.3)

satisfying

v(t,−1) = v(t, 1) (3.4)

and
∫ 1

−1

v(t, ξ) dξ = 0. (3.5)

In the present paper we will consider the more general problem in which (U, v) is a

solution of (3.3) satisfying periodic boundary condition (3.4), together with condition

(3.5). To represent this problem in functional settings, we will need the Hilbert space

L2
0(−1, 1) =

{

w ∈ L2(−1, 1) :

∫ 1

−1

w(x) dx = 0

}

(we will denote by | · | the L2-norm on L2
0(−1, 1)). and the direct sum

H = R ⊕ L2
0(−1, 1)

equipped with the inner product

〈(r1, w1), (r2, w2)〉H = r1r2 +
1

2
〈w1, w2〉L2(−1,1). (3.6)
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We will also need the the space

H1
p(−1, 1) =

{

w ∈ H1(−1, 1) : w(−1) = w(1),

∫ 1

−1

w(x) dx = 0

}

(equipped with the norm ||w||2 = |∂w
∂x
|2), and the direct sum

V = R ⊕H1
p(−1, 1)

equipped with the inner product

〈〈(r1, w1), (r2, w2)〉〉V = r1r2 +
1

2
〈∂w1

∂x
,
∂w2

∂x
〉L2(−1,1). (3.7)

We will denote by | · |H and || · ||V the corresponding norms in H and V . It is easy to

check that Poincaré inequalities

|u|H ≤ ||u||V , u ∈ V (3.8)

and

π|w| ≤ ||w||, w ∈ H1
p(−1, 1) (3.9)

are valid, and hence V ⊂ H and H1
p(−1, 1) ⊂ L1

0(−1, 1).

Let A : D(A) ⊂ H → H, with D(A) = V ∩ (R ⊕H2(−1, 1)), be the unbounded

operator given by the matrix

A =







I 0

0 A0






,

where A0 = − ∂2

∂x2 .

Also, let B : V ⊕ V → H be the bounded bilinear operator given by:

B ((r1, w1), (r2, w2)) =







1
2
〈w1, w2〉L2(−1,1)

−r2w1 + 4
3
w1(w2)x + 2

3
w2(w1)x






.
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Moreover, denote

f =







R

0






.

Then (3.3) can be written in a general form as an evolution equation:











d
dt
u+ Au+B(u, u) = f

u(0) = u0 ∈ H
. (3.10)

As we mentioned before, this type of evolution equation enjoys existence, unique-

ness, as well as some important regularity properties of its solutions (see [26, section

7.4]). Moreover, by using the method given in [15], one can easily see that the solu-

tions of (3.10) are analytic functions in space and time for t > 0.

C. Some general results about backward-time dynamics

Let u = (U, v) be a solution of (3.10). Observe that if we take the scalar product in

H of both sides of (3.10) with u = (U, v), we obtain:

1

2

d

dt
|u|2H + ||u||2V = RU ≤ R2

2
+
U2

2
≤ R2

2
+

||u||2V
2

. (3.11)

Whence,

d

dt
|u|2H + ||u||2V ≤ R2.

Thus by (3.8),

d

dt
|u|2H + |u|2H ≤ R2.

So,

|u|2H ≤ |u0|2He−t +R2(1 − e−t).

Hence given u0 ∈ H, there is a time t0(|u0|) such that for all t ≥ t0

|u(t)|2H ≤ 2R2. (3.12)
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For convenience we will call a solution u(·) a global solution, if it satisfies (3.10) for

all times t ∈ (−∞,∞).

Let us recall that the global attractor A for the system (3.10) consists of all

u0 ∈ H such that the solution u(·) with u(0) = u0 is global and bounded in H on the

whole (−∞,∞). In fact, in the definition of A, H can be replaced with V or D(A)

(see e.g. [14, section III.1] for details). Therefore we can conclude that on the global

attractor, estimate (3.12) holds for all t ∈ (−∞,∞).

First, we will treat the trivial case of v = 0 in (3.3):

Proposition C.1. If v(0) = 0 in L2
0(−1, 1), then the solution of (3.10) has the form

u(x, t) = (R+(U0−R)e−t, 0). It converges as t→ ∞ to the stationary solution (R, 0)

exponentially and limt→−∞ ln |u(t)|H/t = 1.

Proof. Note that if u0 = (U0, 0), then u(x, t) = (R+ (U0 −R)e−t, 0) will solve (3.10).

Obviously, limt→∞ u(t) = (R, 0) and limt→−∞ ln |u(t)|H/t = 1.

Because of the proposition above, in what follows we can and will assume that

v(t) is not zero in L2
0(−1, 1) for all t (Note that a sufficient condition for this is

v(t0) 6= 0 in L2
0(−1, 1) for some t0).

Next we will present several results that will be useful in the describing backward-

time behavior of the solutions of (3.10).

Lemma C.1. Suppose that U(t1) < 0. Then there exists a τ1 < t1 (depending

on U(t1) and |v(t1)|) such that, if u is defined on [τ1, t1], then U(τ) > 0 for some

τ ∈ [τ1, t1].

Proof. Suppose U ≤ 0 on [t0, t1]. Then, the second equation of (3.3) will imply that

1

2

d

dt
|v|2 ≤ −||v||2 ≤ −π2|v|2.
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So, for any s ∈ [t0, t1]:

|v(s)|2 ≥ |v(t1)|2e2π
2(t1−s).

After integrating the first equation of (3.3) from t0 to t1, we will have

0 ≥ U(t0) = R + (U(t1) −R)et1−t0 +
1

2

t1
∫

t0

|v(s)|2e−(t0−s) ds

≥ R + (U(t1) − R)et1−t0 +
1

2
|v(t1)|2e2π

2t1−t0

t1
∫

t0

e−(2π2−1)s ds

= R + (U(t1) − R)et1−t0 +
|v(t1)|2e2π2t1−t0

2(2π2 − 1)
(e−(2π2−1)t0 − e−(2π2−1)t1)

= R−
(

R− U(t1) +
|v(t1)|2

2(2π2 − 1)

)

et1−t0 +
1

2(2π2 − 1)
|v(t1)|2e2π

2(t1−t0).

Then

0 ≥ −
(

R− U(t1) +
1

2(2π2 − 1)
|v(t1)|2

)

+
1

2(2π2 − 1)
|v(t1)|2e(2π

2−1)(t1−t0).

So,

t0 ≥ T1 := t1 −
1

2π2 − 1
ln

(

2(2π2 − 1)(R− U(t1)) + |v(t1)|2
|v(t1)|2

)

,

and the lemma holds for any τ1 < T1.

As an immediate corollary we have the following:

Proposition C.2. If u = (U, v) is an arbitrary global solution of (3.10), then lim sup
t→−∞

U(t) ≥

0 and for any T1 there exists a t1 < T1 such that U(t1) > 0.

The key result of this section is the next theorem:

Theorem C.1. Suppose u = (U, v) is a global solution for (3.3) with u(0) 6∈ A and

v(0) 6= 0. Then lim inf
t→−∞

U(t)et > 0.
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Proof. Observe that the first equation of (3.3) implies that

U(t) > R + (U(t0) − R)e(t0−t)

for any t < t0, and so, if there exists t0 such that U(t0) ≥ R, then U(t) > R for t < t0

and lim inft→−∞ U(t)et > 0 . Thus if the theorem is false, then U(t) < R for all t. In

this case, equation (3.11) implies that

1

2

d

dt
|u(t)|2H = −||u(t)||2V +RU(t) ≤ −|u(t)|2H +RU(t)

< −2R2 +R2 = −R2, (3.13)

as long as |u(t)|2H > 2R2. Since the solution u is not in the global attractor, there

exists a t0 with |u(t0)|2H > 2R2. Because estimate (3.13) holds for t0, it follows that

|u(t)|2H ≥ |u(t0)|2H > 2R2 for all t ≤ t0, and hence, (3.13) holds for all t ≤ t0, which

implies that

lim
t→−∞

|u(t)|2H = ∞. (3.14)

In order to continue, we will establish the following claim.

Claim C.1. Under the hypothesis of Theorem C.1, suppose U(t) < R for all t. Then

there exists t1 such that U(t) > −R for all t < t1.

Proof. By Proposition C.2, lim supt→−∞ U(t) ≥ 0 > −R. Assume that we also have

lim inf
t→−∞

U(t) < −3

4
R. (3.15)

Then there exists a decreasing sequence {tn} with lim
n→∞

tn = −∞, such that U(tn) =

−1
2
R and dU

dt
(tn) ≥ 0 for any n. Observe that

|u(tn)|2H = U2(tn) +
1

2
|v(tn)|2 =

1

4
R2 +

1

2
|v(tn)|2.

So, by (3.14), limn→∞ |v(tn)|2 = ∞. Thus there exists n0 for which |v(tn0)|2 > 5R.
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But

dU

dt
(tn0) = R− U(tn0) −

1

2
|v(tn0)|2 ≤

3

2
R − 1

2
|v(tn0)|2 ≤

3

2
R− 5

2
R = −R < 0.

This contradiction proves that lim inf t→−∞ U(t) ≥ −(3/4)R, which obviously implies

the claim.

Let us return to the proof of Theorem C.1. Under the assumption of the previous

claim, for t < t1, |u(t)|2H = U2(t) + 1
2
|v(t)|2 < R2 + 1

2
|v(t)|2. Then (3.14) forces

|v(t)|2 → ∞ as t→ −∞. So, we can choose t2 < t1 such that |v(t)|2 > 6R for t < t2.

Then, for t < t2,

dU

dt
(t) = R − U(t) − 1

2
|v(t)|2 ≤ 2R− 1

2
|v(t)|2 < 2R− 3R = −R.

Consequently limt→−∞ U(t) = ∞, which contradicts our initial assumption that

lim supt→−∞ U(t) ≤ R and concludes the proof.

Corollary C.1. A global solution u = (U, v) (with v 6= 0) is outside the global

attractor if and only if there exists a time t0 such that U(t0) ≥ R.

Proof. The “if” part follows directly from the first equation in (3.3). The “only if”

part is a direct consequence of the previous theorem.

D. Dirichlet quotients and backward-time blow up

Backward-time behavior of u depends in part on the nature of Dirichlet quotients

λ = ||v||2/|v|2 and Λ = ||u||2V /|u|2H. In fact, for the space periodic 2-D Navier-Stokes

equations and their α-model, the set of initial data for which lim supt→−∞ λ < ∞ is

a rich set in the space of all initial data (see [1], [3], and [4]). Namely it is dense in
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an appropriate topology in H. On the other hand, in the case of the space periodic

1-D Kuramoto-Sivashinsky equation, all the solutions that backward in time have no

more than exponential rate of growth are globally bounded (see [6]). We should note

that in both [1] and [6] Λ ≡ λ and so, there is only one Dirichlet quotient for these

equations.

In this and in the following three sections we will concern ourselves with the case

when Dirichlet quotients for (3.3) are bounded.

Proposition D.1. Suppose u is a global solution of (3.10) and there exists Λ and t0

such that Λ(t) ≤ Λ for all t < t0. Then lim supt→−∞ |u(t)|HeΛt <∞.

Moreover, if u(t) 6∈ A and there exists λ such that λ(t) ≤ λ, for all t < t0, then

0 < lim inf
t→−∞

|u(t)|Het ≤ lim sup
t→−∞

|u(t)|Het <∞. (3.16)

More precisely, there exist positive constants K1, K2, C1, C2 and a time τ0 < t0 such

that

K1e
−t ≤ U(t) ≤ K2e

−t (3.17)

and

0 < |v(t)|2 ≤ C1e
2λt−C2e−t

(3.18)

for all t < τ0.

Proof. Note that if u(t) ∈ A then u is bounded, and hence in this case we will

obviously have lim supt→−∞ |u(t)|HeΛt = 0 < ∞. If u(t) 6∈ A, then by Theorem C.1,

without loss of generality we can assume that U(t0) > R.

Under this assumption, using (3.11) we obtain

1

2

d

dt
|u|2H = −||u||2V +RU ≥ −Λ|u|2H.

Thus lim supt→−∞ |u(t)|HeΛt <∞.
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If moreover λ(t) ≤ λ, then by taking the scalar product in L2(−1, 1) of the second

equation of (3.3) with v, we obtain

1

2

d

dt
|v|2 = U |v|2 − ||v||2 ≥ (U − λ)|v|2. (3.19)

Thus for t < t0,

|v(t)|2 ≤ |v(t0)|2e
2

�
λ
2
(t0−t)−

t0�
t

U(t) dt �
. (3.20)

Also, from the first equation of (3.3), for t < t0, we get

U(t) ≥ R + (U(t0) −R)et0−t. (3.21)

Hence there exists K1 > 0 and t1 < t0 such that for any t < t1 we have U(t) ≥ K1e
−t.

Then (3.20) implies the existence of positive constants C1 and C2 such that |v(t)|2 ≤

C1e
2λt−C2e−t

for all t < t1. Going back to the first equation of (3.3), it is easy to see

that there must exist K2 > 0 and τ0 ≤ t1 such that U(t) ≤ K2e
−t for all t < τ0. These

estimates for U and v imply that 0 < lim inf t→−∞ |u(t)|Het ≤ lim supt→−∞ |u(t)|Het <

∞, which concludes the proof.

By the previous proposition, the fact that a Dirichlet quotient is bounded, implies

backward-time exponential growth of the solution. When the quotient λ is bounded,

the estimate (3.18) allows us to establish more facts about this case which we will

discuss in the next two sections.

E. Properties of global solutions with bounded quotient λ

Observe that from (3.3),

1

2

d||v(t)||2
dt

= U(t)||v(t)||2 − ||vx(t)||2 −
1
∫

−1

(vx(t, ξ))
3 dξ. (3.22)
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Then using (3.19), we obtain

1

2

d

dt

||v||2
|v|2 =

U ||v||2 − ||vx||2 −
∫ 1

−1
(vx)

3 dξ

|v|2 − ||v||2(U |v|2 − ||v||2)
|v|4

= −||vx||2
|v|2 +

||v||4
|v|4 −

∫ 1

−1
(vx)

3 dξ

|v|2 . (3.23)

Now we estimate the last term of (3.23) as follows:

∣

∣

∣

∣

∣

∫ 1

−1
(vx)

3 dξ

|v|2

∣

∣

∣

∣

∣

≤ |vx|∞
||v||2
|v|2 ≤ c0||v||1/2||vx||1/2

||v||2
|v|2 = c0

( ||v||2
|v|2

)5/4 ( ||vx||2
|v|2

)1/4

|v|

=

(

c0
(4ε)1/4

|v|
( ||v||2

|v|2
)5/4

)(

(4ε)1/4

( ||vx||2
|v|2

)1/4
)

≤ 3

4

(

c0
(4ε)1/4

|v|
( ||v||2

|v|2
)5/4

)4/3

+
1

4

(

(4ε)1/4

( ||vx||2
|v|2

)1/4
)4

=
3c

4/3
0

4(4ε)1/3
|v|4/3

( ||v||2
|v|2

)5/3

+ ε
||vx||2
|v|2 ,

with any ε ∈ (0, 1) (above we used Agmon’s inequality |v|∞ ≤ c0|v|1/2||v||1/2). Observe

that

3c
4/3
0

4(4ε)1/3
|v|4/3 ≤ ε

if

|v| ≤ γ0ε, (3.24)

where γ0 = 4/(c03
3/4).

Returning to (3.23), if (3.24) holds, then, because ||v||2

|v|2
> 1,

1

2

d

dt

||v||2
|v|2 ≤ −(1 − ε)

( ||vx||2
|v|2 − ||v||4

|v|4
)

+ 2ε
||v||4
|v|4 , (3.25)

or equivalently,

1

2
λ′ ≤ −(1 − ε)

∣

∣

∣

∣

(A0 − λ)
v

|v|

∣

∣

∣

∣

2

+ 2ελ2,
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where A0 = − ∂2

∂x2 .

Thus we have proved

Lemma E.1. There exists a universal constant γ0 > 0 for equations (3.3), such that

for any ε > 0, if

|v(t)| ≤ γ0ε, (3.26)

for all t in some interval J ⊂ R, then

1

2
λ′(t) ≤ −(1 − ε)

∣

∣

∣

∣

(A0 − λ(t))
v(t)

|v(t)|

∣

∣

∣

∣

2

+ 2ελ2(t) (3.27)

for all t ∈ J .

In what follows we will denote λi = (iπ)2 - the eigenvalues of A0.

Proposition E.1. Suppose u = (U, v) is a global solution of equations (3.3) such that

λi ≤ lim supt→−∞ λ(t) < λi+1. Then limt→−∞ λ(t) = λi.

Proof. Let l := lim supt→−∞ λ(t).

Suppose l > λi. Choose γ > 0 small enough such that [l − γ, l + γ] ⊂ (λi, λi+1).

Observe that there exists tγ for which λ(t) < l+γ for all t < tγ . Also, by Proposition

D.1, for any ε > 0 there exists a tε < tγ such that inequality (3.26) from Lemma E.1

holds for all t < tε. Note that whenever λ(t) ∈ [l − γ, l + γ] and t < tε, we have

∣

∣

∣

∣

(A0 − λ(t))
v(t)

|v(t)|

∣

∣

∣

∣

2

≥ δ,

where δ := min{(l − γ − λi)
2, (λi+1 − l − γ)2}. Thus

1

2
λ′(t) ≤ −(1 − ε)δ + 2ελ2

i+1. (3.28)
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Now choose ε = δ/(2λi+1
2 + δ + 1). Then

1

2
λ′(t) ≤ −ε, (3.29)

whenever λ(t) ∈ [l − γ, l + γ] and t < tε. Since l = lim supt→−∞ λ(t), there exists a

t < tε0 so that λ(t) ∈ [l − γ, l + γ]. Hence inequality (3.29) holds for all t ≤ t and

l + γ ≥ λ(t) ≥ l − γ + 2ε(t− t)

for all t ≤ t, which is impossible. This contradiction forces l = λi.

Suppose now that l := lim inf t→−∞ λ(t) < l = λi. Then we can choose a γ ∈

(0, 1/2) such that l < λi − 2γ. Under these conditions, for any λ ∈ (λi − 2γ, λi − γ)

there exists a tλ < tε with λ(tλ) = λ. Repeating the argument that led to inequality

(3.28), we obtain

1

2
λ′(t) ≤ −(1 − ε)γ2 + 2ελ2 < 0, (3.30)

whenever λ(t) ∈ [λi−2γ, λi−γ]. We choose now ε < γ2/(2λi
2 + γ2). Then inequality

(3.30) implies that λ(t) ≥ λ for t ≤ tλ, and thus lim inft→−∞ λ(t) ≥ λi − δ > l, which

is a contradiction. Hence we must have lim inf t→−∞ λ(t) = lim supt→ −∞ λ(t) = λi.

We are now ready to present the main theorem of this section.

Theorem E.1. Suppose u = (U, v) is a global solution of (3.10) with the bounded

Dirichlet quotient λ. Then there exists an eigenvalue λi of the operator A0 such that

lim
t→−∞

λ(t) = λi (3.31)

and, moreover, there exists a unit eigenvector wi that corresponds to λi, and a se-

quence tn → −∞ such that

lim
n→∞

v(tn)

|v(tn)|
= wi. (3.32)
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Proof. Identity (3.31) follows immediately from Proposition E.1. What is left to

prove is that (3.32) holds for some sequence tn → −∞ and a unit vector wi with

A0wi = λiwi.

Observe that by Proposition D.1, for any ε > 0 there exists tε such that (3.27)

holds for all t < tε. Thus,

1

2
(λ(t0 + 1) − λ(t0)) ≤ −(1 − ε)

t0+1
∫

t0

∣

∣

∣

∣

(A0 − λ(t))
v(t)

|v(t)|

∣

∣

∣

∣

dt+ 2ελ2
i+1,

provided t0 + 1 < tε. Actually, because of (3.31), we can choose tε so that

∫ t0+1

t0

∣

∣

∣

∣

(A0 − λ(t))
v(t)

|v(t)|

∣

∣

∣

∣

dt ≤
(

2λi+1

1 − ε
+ 1

)

ε.

Thus
t0+1
∫

t0

∣

∣

∣

∣

(A0 − λ(t))
v(t)

|v(t)|

∣

∣

∣

∣

dt→ 0 as t0 → −∞.

Then there exists a sequence tn ↘ −∞ such that

∣

∣

∣

∣

(A0 − λ(tn))
v(tn)

|v(tn)|

∣

∣

∣

∣

→ 0 as n→ ∞.

Let Qi be an orthogonal projection on the eigenspace associated with the eigenvalue

λi. Then for n large enough,

(

λi+1 − λi
2

) ∣

∣

∣

∣

(I −Qi)
v(tn)

|v(tn)|

∣

∣

∣

∣

≤
∣

∣

∣

∣

(A0 − λ(tn))(I −Qi)
v(tn)

|v(tn)|

∣

∣

∣

∣

→ 0,

as n→ ∞. That is

(I −Qi)
v(tn)

|v(tn)|
→ 0.

Then by passing to a subsequence if necessary, we can assume that v(tn)/|v(tn)|

converges to some unit vector wi satisfying A0wi = λiwi.
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Observe that a similar result is valid for the 2-D space periodic Navier-Stokes

equations (see [1]). However in that case, the convergence holds for the entire scaled

solution u/|u|, and not for a part of it. In our case, as we will see later, if Λ(t) is

bounded for t < 0, then u(t)/|u(t)|H will always converge in H to (1, 0) (as t→ −∞)

and never to any of the other eigenvectors of A.

F. Existence of global solutions with bounded quotient λ

Let S(t)(U0, v0) = (S1(v0, t)U0, S2(U0, t)v0) be the continuous semigroup of solutions

of (3.10). Denote by Pi the orthogonal projection onto the spectral space of A0

corresponding to the eigenvalues {λ1, λ2, . . . , λi} .

The key step to proving existence is the following preliminary result:

Proposition F.1. For any eigenvalue λi there exist εi ∈ (0, 1) and Mi > 0 such

that for any n ∈ N there are Un
0 ∈ R, vn0 ∈ PiL

2
0(−1, 1), for which (Un(t), vn(t)) =

S(t)(Un
0 , v

n
0 ) has the following properties:

1. |vn(t)| ≤ εi, λ
n(t) := ||vn(t)||2

|vn(t)|2
≤ λi + 1/2, t ∈ [0, n];

2. R ≤ Un(n) ≤Mi, (2/3)εi ≤ |vn(n)| ≤ εi, λ
n(n) ≥ λi.

We will start with the following useful lemma:

Lemma F.1. For any eigenvalue λi of the operator A0 there exists a positive εi <

min{1, R/2} (εi depends only on λi), such that if a solution (U(t), v(t)) satisfies

1. λ(t0) < λi + 1/2;

2. |v(t)| ≤ εi, t ∈ [t0, t1],

then λ(t) < λi + 1/2 for all t ∈ [t0, t1].

If on the other hand,

3. λ(t1) > λi − 1/2;
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4. |v(t)| ≤ εi, t ∈ [t0, t1],

then λ(t) > λi − 1/2 for all t ∈ [t0, t1].

Proof. Observe that under the conditions of the lemma, inequality (3.27) holds with

ε = εi/γ0.

Suppose that the first part of the lemma is not true. This means that although

Conditions 1 and 2 from the lemma are satisfied, there exists a t̃ ∈ [t0, t1] such that

λ(t̃) ≥ λi + 1/2. Then we can find a t ∈ [t0, t̃] for which λ(t) = λi + 1/2. Observe

that for any t ∈ [t0, t1] such that λ(t) = λi + 1/2, the inequality (3.27) yields:

1

2
λ′(t) ≤ −(1 − ε)

(

1

2

)2

+ 2ε

(

λi +
1

2

)2

< 0, (3.33)

if 0 < εi < min
{

(1/2)2γ0
2(λi+1/2)2+(1/2)2

, R
2

}

and ε = εi/γ0. With this choice of εi, Inequality

(3.33) forces λ(t) ≥ λi + 1/2 for all t ∈ [t0, t ]. This contradicts Condition 1: λ(t0) <

λi + 1/2. Thus λ(t) < λi + 1/2 for all t ∈ [t0, t1].

The proof of the second part of the lemma is similar and is omitted.

Now we are ready to start the proof of Proposition F.1.

Proof of Proposition F.1. Let εi ∈ (0, 1) be from Lemma F.1, and let Un
0 =

(3/2 + λi)e
n +R0, where R0 = R− εi

2/2.

Observe that if |vn| ≤ εi on [0, tn], tn ≤ n, then by the first equation of (3.3), it

follows that

(Un
0 − R0)e

−t +R0 ≤ Un(t) t ∈ [0, tn], (3.34)

which with our choice of the Un
0 implies that

Un(t) ≥ max{λi + 3/2, R}, t ∈ [0, tn], tn ≤ n.

Moreover, if |vn(t)| ≤ εi on [0, tn] (tn ≤ n) with λn(0) ≤ λi + 1/2, then by Lemma
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F.1,

λn(t) < λi + 1/2,

and consequently, from (3.19),

d

dt
|vn(t)| = Un(t)|vn(t)| − λn(t)|vn(t)| > |vn(t)| (3.35)

for all t ∈ [0, tn].

Define a function θn : Bi → [0, 1] (Bi is the closed ball in PiL
2
0(−1, 1), centered

in zero of radius εi), θn(v0) = sup{t0 ∈ [0, n] : |v(t)| < εi ∀t ∈ [0, t0)}, where

v(t) = S2(U
n
0 , t)v0.

Claim F.1. θn is a continuous function.

Proof. Let wm
0 → v0 in PiL

2
0(−1, 1) (v0 and wm0 are from Bi ) and let t0 = θn(v0),

tm = θn(w
m
0 ). Then by the continuity of the semigroup S, we obtain that wm(t) :=

S2(U
n
0 , t)w

m
0 → v(t), as m → ∞, for all t ≥ 0. Observe that by (3.35), |v(t)| is

increasing for t ∈ [t0, t0 + δ] and a δ > 0 small enough. Then using the convergence

of the sequence {wm(t)} to v(t) for all t, we infer that there exists mδ such that

|wn(t0 + δ/2)| > |v(t0)| for any m > mδ. This inequality implies that θn(w
m
0 ) <

t0 + δ/2. By making δ → 0, we obtain that lim supm→∞ θn(w
m
0 ) ≤ t0.

If t0 = 0 the proof is complete, otherwise suppose that lim infm→∞ θn(w
m
0 ) :=

τ0 < t0. By passing to a subsequence we can assume that limm→∞ θn(w
m
0 ) = τ0.

Moreover, from the definition of θn combined with the assumption that τ0 < t0, we

see that the subsequence can be chosen so that |wm(tm)| = εi with tm < t0 ≤ n for

any m.

From the fact that the function |v(t)| increases on [0, t0] (see (3.35)), it follows

that |v(t)| < |v(t0)| ≤ εi for any t < t0. Choose a γ ∈ (0, t0 − τ0). Let µ =

εi−|v(τ0 +γ)|. Then by continuity of the solutions of (3.3) with respect to the initial
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data, there exists an mµ such that |wm(t) − v(t)| < µ for any m > mµ and for any

t ∈ [0, t0]. Observe that

|wm(t)| ≤ |wm(t) − v(t)| + |v(t)| < µ+ |v(t)| ≤ εi − |v(τ0 + γ)| + |v(τ0 + γ)| = εi

for any t ∈ [0, τ0 + γ]. Then because of (3.35), it follows that |wm(t)| is increasing

on [0, τ0 + γ]. Also, limm→∞ tm = τ0 implies that there exists mγ > mµ such that

tm < τ0 + γ for all m > mδ. Then εi = |wm(tm)| < |wm(τ0 + γ)| < εi for all m > mδ,

a contradiction. Thus, lim infm→∞ θn(w
m
0 ) ≥ t0.

In this way, for any v0 ∈ Bi and any sequence {wm
0 } ⊂ Bi with limm→∞wm0 = v0,

limm→∞ θn(w
m
0 ) = θn(v0). This concludes the proof of the claim.

Resuming the proof of Proposition F.1, we define the function Ψn : Bi → Bi,

Ψn(v0) = Pi(S2(U
n
0 , θn(v0))v0). Observe that Ψn is continuous and Ψn(v0) = v0 if

|v0| = εi. Then by Brouwer’s Theorem, Ψn is an onto map. It follows then, that

for any p0 ∈ (Pi − Pi−1)L
2
0(−1, 1), |p0| = (2/3)εi, there exists a vn0 ∈ PiL

2
0(−1, 1),

|vn0 | ≤ εi such that Ψn(v
n
0 ) = p0.

Since |p0| < εi, it follows that tn := θn(v
n
0 ) > 0 and |Pivn(tn)| = |p0| = (2/3)εi.

Clearly λn(0)(= ||vn(0)||2

|vn(0)|2
) < λi + 1/2, and by the definition of θn, |v(t)| ≤ εi for all

t ∈ [0, tn]. Lemma F.1 implies that λn(t) < λi + 1/2 for all t ∈ [0, tn].

Observe that

||Pivn(tn)||2 + ||(I − Pi)vn(tn)||2 = ||vn(tn)||2 < (λi + 1/2)|vn(tn)|2

= (λi + 1/2)(|Pivn(tn)|2 + |(I − Pi)vn(tn)|2),

and since Pivn(tn) ∈ (Pi − Pi−1)L
2
0(−1, 1), it follows that

λi|Pivn(tn)|2 + λi+1|(I − Pi)vn(tn)|2

< (λi + 1/2)(|Pivn(tn)|2 + |(I − Pi)vn(tn)|2),
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and thus

|(I − Pi)vn(tn)|2 < (1/2)|Pivn(tn)|2 = (1/2)(4/9)(εi)
2.

Then

|vn(tn)|2 = |Pivn(tn)|2 + |(I − Pi)vn(tn)|2 < (1 + 1/2)(4/9)(εi)
2 < (εi)

2.

This means that θn(v
n
0 ) = n and (2/3)εi ≤ |vn(n)| ≤ εi. Observe that we also have

λn(n) ≥ λi (from the fact that Piv
n
0 = p0 ∈ (Pi − Pi−1)L

2
0(−1, 1)). Moreover, from

the first equation of (3.3),

Un(n) ≤ (Un
0 − R)e−n +R = ((3/2 + λi)e

n +R0 −R)e−n + R

< (λi + (3/2)) +R := Mi.

In this way, (Un
0 , v

n
0 ) will satisfy the conclusions of the proposition.

Now we are ready to prove existence of global solutions of system (3.3) with

bounded quotient λ.

Theorem F.1. For every λi - eigenvalue of A0, there exists a nontrivial unbounded

global solution u(t) = (U(t), v(t)) of the (3.3) such that limt→−∞ λ(t) = λi.

Proof. Obviously, Proposition F.1 with the appropriate time translations implies that

there exist constants Mi, εi > 0 and a sequence of solutions un(t) = (Un(t), vn(t)) such

that un(t) is defined at least for t ∈ [−n,∞), (2/3)εi ≤ |vn(0)| ≤ εi, R ≤ Un(0) ≤Mi,

|v(t)| ≤ εi and λn(t) = ||vn(t)||2

|vn(t)|2
< λi + 1/2 for t ∈ [−n, 0] with λn(0) ≥ λi. Then there

is a subsequence unk
(0) convergent to some u0 6= 0 in H. It is clear that u(t) = S(t)u0

is a solution for (3.3) such that unk
(t) → u(t) for any t > 0.

Let τ < 0. By eliminating a finite number of members of {nk} we can suppose

that τ > −nk for all k. From the conditions above, the sequence {unk
(τ)} is rel-
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atively compact in H, and if a subsequence unkm
(τ) converges to a uτ in H, then

S(t)unkm
(0) → S(t)u0 = S(t − τ)uτ for any t > τ . This means that the only limit

point of {unk
(τ)} is uτ , and consequently, lim

k→∞
unk

(τ) = uτ . Thus u(t) can be ex-

tended to [τ,∞] for any τ < 0 with limk→∞ unk
= u(t) for all t ∈ [τ,∞]. By making

τ → −∞, we obtain a global solution u(t) such that unk
(t) → u(t) for any t ∈ R.

From this convergence it follows that |v(t)| ≤ εi and λ(t) = ||v(t)||2

|v(t)|2
≤ λi + 1/2 for any

t ≤ 0; and, moreover, (2/3)εi ≤ |v(0)| ≤ εi, U(0) ≥ R, and λ(0) ≥ λi. The second

part of Lemma F.1 yields that λ(t) ≥ λi − 1/2 for any t ≤ 0. Then by Theorem

E.1, λ(t) → λi as t → −∞. Finally, (2/3)εi ≤ |v(0)| ≤ εi means that v 6= 0, while

U(0) ≥ R assures the unboundedness of u (see Corollary C.1).

This theorem shows that in fact there is a variety of backward-time exponentially

growing solutions, which is a big contrast with the 1-D space periodic Kuramoto-

Sivashinsky case (see [6]).

G. Properties of the global solutions with bounded quotient Λ

Now we will turn to the study of the quotient Λ, as well as to the link that exists

between Λ and λ.

First, observe that if λ is bounded then Λ is bounded as well. In fact, in this

case Λ(t) → 1 as t→ −∞ very fast:

Proposition G.1. Suppose λ(t) ≤ λ for t ≤ 0. Then there exist some positive

constants M and C, as well as a time τ0 ≤ 0 such that

Λ(t) − 1 ≤Me2(λ−1)t−Ce−t

for all t ≤ τ0.
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Proof. By the definition of Λ,

Λ =
U2 + λ

2
|v|2

U2 + 1
2
|v|2 = 1 +

λ− 1

2

|v|2
U2 + 1

2
|v|2 ≤ 1 +

λ− 1

2

|v|2
U2 + 1

2
|v|2 .

If we choose τ0 from Proposition D.1, then for t ≤ τ0,

Λ − 1 ≤ λ− 1

2

C1e
2λt−C2e−t

K1e−t
= Me2(λ−1)t−C2e−t

,

where M = λ−1
2

C1

K1
and C = C2.

Proposition D.1 shows that if λ is bounded, the possible backward behaviors of

the solutions of (3.3) are quite different from the case treated in [1]. However in our

problem, the true correspondent of the Dirichlet quotient studied in [1] is the quotient

Λ. The next proposition treats the case of lim supt→−∞ Λ <∞.

Proposition G.2. Suppose that u = (U, v) is a global solution of (3.3) for which

Λ(t) ≤ Λ and Λ(t) ≥ Λ(≥ 1) for t ≤ 0 . Then

lim sup
t→−∞

|v(t)|2
2U(t)

≤ Λ − 1

and

lim inf
t→−∞

|v(t)|2
2U(t)

≥ Λ − 1.

Proof. Let us denote

µ =
|v|2
2U

.

Then

µt =
(|v|2)t
2U

− |v|2
2U2

Ut =
1

U
(U |v|2 − ||v||2) − |v|2

2U2
(R− U − 1

2
|v|2)

=
1

U
(U |v|2 − 2||u||2V + 2U2) − R

U
µ+ µ+ µ2

=
1

U
(U |v|2 − 2Λ|u|2H + 2U2) − R

U
µ+ µ+ µ2
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=
1

U
(U |v|2 − 2(Λ − 1)U 2 − Λ|v|2) − R

U
µ+ µ+ µ2

= 2Uµ− 2(Λ − 1)U − 2Λµ− R

U
µ+ µ+ µ2.

Observe that if Λ ≤ Λ, then

µt ≥ 2Uµ− 2(Λ − 1)U − 2Λµ− R

U
µ+ µ+ µ2.

Hence,

(

µ− Λ
)

t
≥

(

µ+ 2U − Λ − R

U

)

(

µ− Λ
)

+

(

µ+ 2U − Λ − R

U

)

+

(

R

U
−
(

Λ − 1 +
R

U

)

Λ

)

.

By Theorem C.1, for any α < 1 there exists t1 such that

(1 − α)

(

µ+ 2U − Λ − R

U

)

≥ −
(

R

U
−
(

Λ − 1 +
R

U

)

Λ

)

for all t < t1. Thus for t < t1,

(µ− Λ)t ≥
(

µ+ 2U − Λ − R

U

)

(µ− Λ) + α

(

µ+ 2U − Λ − R

U

)

.

This shows that for t < t1,

(µ− Λ + α)t ≥
(

µ+ 2U − Λ − R

U

)

(µ− Λ + α).

Thus

µ(t) − Λ + α ≤ (µ(t1) − Λ + α)e
−

t1�
t

(µ+2U−Λ−R
U

) dτ
.

Consequently, by Theorem C.1,

lim sup
t→−∞

µ(t) − Λ ≤ −α

for any α < 1, which readily implies the first part of the proposition.
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If Λ ≥ Λ, then

µt ≤ 2Uµ− 2(Λ − 1)U − 2Λµ− R

U
µ+ µ+ µ2.

And analogously to the previous case, we get

lim inf
t→−∞

µ(t) − Λ ≥ −α

for every α > 1, which concludes the proof.

Remark G.1. The conclusions of the proposition above hold if Λ = lim inf t→−∞ Λ(t)

and Λ = lim supt→−∞ Λ(t).

As an immediate consequence, we obtain

Corollary G.1. If Λ = lim supt→−∞ Λ(t) then for any M > Λ− 1 there exists a time

t1 < 0 such that |v(t)|2 < 2MU(t) for all t < t1. Likewise, If Λ = lim inf t→−∞ Λ(t)

then for any m < Λ − 1 there exists a time t0 < 0 such that |v(t)|2 ≥ 2mU(t) for all

t < t0.

Proposition G.1 shows that when λ(t) is bounded for t < 0, then so is Λ(t).

However if Λ(t) is bounded, then λ(t) might be unbounded.

Proposition G.3. Suppose Λ = lim inf t→−∞ Λ(t) and Λ = lim supt→−∞ Λ(t). If

Λ > 1 then lim supt→−∞ λ(t)/U(t) ≥ 1. If moreover, Λ > 1 then

1 ≤ lim sup
t→−∞

λ(t)

U(t)
≤ Λ − 1

Λ − 1
.

Also, in this case

Λ − 1

Λ − 1
≤ lim inf

t→−∞

λ(t)

U(t)
≤ 1.
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Proof. From the definition of Λ,

Λ =
1 + λ

U
|v|2

2U

1 + 1
U

|v|2

2U

.

Thus

Λ

(

1 +
1

U

|v|2
2U

)

− 1 =
λ

U

|v|2
2U

.

Taking upper limit of the previous equation as t → −∞, using Proposition G.2 we

obtain

Λ − 1 = lim sup
t→−∞

Λ

(

1 +
1

U

|v|2
2U

)

− 1 = lim sup
t→−∞

λ

U

|v|2
2U

≤ lim sup
t→−∞

λ

U
lim sup
t→−∞

|v|2
2U

≤ lim sup
t→−∞

λ

U
(Λ − 1).

If Λ > 1, then the preceding inequality yields

1 ≤ lim sup
t→−∞

λ

U
.

Now, if we consider a sequence {tn}, such that tn → −∞ and limn→∞ λ(tn)/U(tn) =

lim supt→−∞ λ(t)/U(t), then

Λ − 1 = lim sup
t→−∞

Λ(1 − 1

U

|v|2
2U

) − 1 = lim sup
t→−∞

λ

U

|v|2
2U

≥ lim
n→∞

λ(tn)

U(tn)
lim inf
t→−∞

|v|2
2U

≥ lim sup
t→−∞

λ

U
(Λ − 1).

Thus, if Λ > 1, then

lim sup
t→−∞

λ

U
≤ Λ − 1

Λ − 1
.

The identities for the lower limits can be established in a similar way.

Remark G.2. Observe that when lim supt→ −∞ Λ(t) = Λ < ∞, most of the back-

ward growth of |u|H is carried by the U component of u (see Corollary G.1). This
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means that limt→−∞ u(t)/|u(t)|H = (1, 0), which is an eigenvector of the operator A

corresponding to the eigenvalue 1 (which may not coincide with Λ). In contrast, for

the 2-D space periodic Navier-Stokes equations, if lim supt→ −∞ Λ(t) = Λ then Λ is

an eigenvalue for the Stokes operator and, for some tn → −∞, u(tn)/|u(tn)|H will

converge, at least in L2
loc(R, H), to an eigenvector corresponding to the eigenvalue Λ.

H. L∞ estimates and backward-time exponential growth

Consider again u = (U, v) - a global solution of the system (3.3), with v(0) 6= 0 and

u(0) 6∈ A. By Theorem C.1, U increases backward in time at least exponentially

(i.e. bounded below by an exponential). Thus without loss of generality, we can

assume that U(0) > R. Also, the fact that U(t) increases at least exponentially for

t → −∞ implies that |u(t)|H increases at least exponentially for t → −∞ as well.

Moreover, if |v| grows backward in time at most exponentially (i.e bounded above by

an exponential), the first equation of (3.3) implies that so does U , which means that

|u|H must also increase at most exponentially backward in time.

The results in Section G suggest that backward in time, the growth of |v| (and

consequently, of |u|H) might be controlled by the backward-time growth of U for any

unbounded global solution u. This would imply that if U grows backward in time (at

most) exponentially, than |v| will grow backward in time at most exponentially. The

following two theorems address precisely these questions.

Theorem H.1. For any u(t) = (U(t), v(t)) - unbounded global solution of (3.3) and

any α > 1,

lim
t→−∞

|v(t)|2
U(t)α

= 0. (3.36)

Proof. Since we can assume U(t) > R for all t ≤ 0, the first equation of (3.3) implies

U(t) ≥ (U(0) − R)e−t +R > (U(0) − R)e−t. (3.37)
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Divide both sides of the first equation of (3.3) by Uα:

U ′(t)

U(t)α
=

R

U(t)α
− 1

U(t)α−1
− |v(t)|2

2U(t)α
.

Thus

d

dt

1

(α− 1)U(t)α−1
+

1

U(t)α−1
− R

U(t)α
=

|v(t)|2
2U(t)α

.

Using (3.37) we obtain

d

dt

1

(α− 1)U(t)α−1
+

1

(U(0) −R)e−(α−1)t
≥ |v(t)|2

2U(t)α
.

Integrate from t < 0 to 0 to obtain

1

(α− 1)U(0)(α−1)
− 1

(α− 1)U(t)(α−1)
+

1 − e(α−1)t

(α− 1)(U(0) −R)
≥
∫ 0

t

|v(τ)|2
2U(τ)α

dτ.

It follows that
∫ 0

−∞

|v(τ)|2
2U(τ)α

dτ <∞,

and thus, (3.36) holds.

Using the last result we can prove the following theorem.

Theorem H.2. let u = (U, v) be a global solution of (3.3) which does not lie inside

the global attractor A. Then |u(t)|H will grow backward in time at least exponentially,

and the following are equivalent as t→ −∞:

(i) |u(t)|H grows at most exponentially;

(ii) U(t) grows at most exponentially;

(iii) |v(t)|L2 grows at most exponentially.

Proof. Observe that by time translation, we can assume U(0) > R. As we saw

in Theorem C.1, U(t) grows, backward in time, at least exponentially, which will
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force |u(t)|H to grow at least exponentially too. At the beginning of this section, we

discussed the case (iii)⇒(ii)⇒(i). It is clear that (i)⇒(ii) and (i)⇒(iii). To complete

the proof of the equivalence, it is sufficient to prove (ii)⇒(iii). But, if (ii) holds, there

exist positive constants γ, C such that U(t) ≤ Ce−γt for t < 0. By Theorem H.1, for

α > 1 there exists t0 < 0, such that

|v(t)|L2 < U(t)α ≤
(

Ce−γt
)α

= Cαe−αγt

for any t < t0. Thus (iii) is true.

It turns out that even the L∞ norm of the local term v of (3.3) is bounded by

the nonlocal term U for negative times. To show this we will need some additional

estimates for v.

If we take a derivative with respect to x of the second equation of (3.3), we get

(vx)t = Uvx + (vx)xx − 2v(vx)x − 2(vx)
2. (3.38)

Denote m(t) = maxx vx(t, x). Observe that m(t) ≥ 0 for any t. For every t let

xt be such that vx(t, xt) = m(t). Then

(D−m)(t) := lim sup
τ↗t

m(t) −m(τ)

t− τ
≤ lim

τ↗t

vx(t, xt) − vx(τ, xt)

t− τ
=
∂vx
∂t

(t, xt).

Thus (3.38) implies that

(D−m)(t) ≤ ∂vx
∂t

(s, xt) = U(t)m(t) + (vx)xx(t, xt) − 2m2(t).

Since in the point (t, xt) the value of (vx)xx is nonpositive, we obtain:

(D−m)(t) ≤ U(t)m(t) − 2m2(t).
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Assume that m(t) > U(t) for t0 ≤ t ≤ t1. Then

(D−m)(t) ≤ −m2(t) (3.39)

for t0 ≤ t ≤ t1.

To obtain an estimate for m we will need the following lemma.

Lemma H.1. Let M ∈ C1 ([t0, t1]) be the function satisfying











M ′(t) = −M2(t)

M(m1) = m(t1)
. (3.40)

Then m(t) ≥M(t) for every t ∈ [t0, t1].

Proof. Observe that if a function φ ∈ C ([t0, t1]) with D−φ ≤ 0, then φ is non-

increasing (the above conditions on φ imply that for any ε > 0, φ(t) ≤ φ(τ)+ ε(t− τ)

with t0 ≤ τ ≤ t ≤ t1 which forces φ to be nondecreasing).

Now consider the following IVP:











ψ′(t) = −m2(t)

ψ(t1) = m(t1)
.

Then D−(m − ψ) ≤ 0. Hence by the above, m(t) − ψ(t) ≥ m(t1) − ψ(t1) = 0 for

t0 ≤ t ≤ t1. Consequently, m(t) ≥ ψ(t) ≥ m(t1) ≥ 0 for t0 ≤ t ≤ t1. Then











ψ′(t) ≤ −ψ2(t)

ψ(t1) = m(t1)
.

We combine this system with (3.40) to obtain











(ψ −M)′(t) ≤ −(ψ(t) −M(t))(ψ(t) +M(t))

ψ(t1) −M(t1) = 0
.
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The Gronwall inequality implies that

(ψ −M)(t) ≥ (ψ −M)(t1)e

t1�
t

(ψ(τ)+M(τ)) dτ
.

Thus ψ(t) ≥ M(t) on [t0, t1]. Because we also have m(t) ≥ ψ(t), the conclusion of

the lemma follows.

Solving (3.40), we will obtain

1

M(t1)
− 1

M(t)
= t1 − t.

So, by the lemma above,

1

m(t1)
− 1

m(t)
≥ t1 − t (3.41)

for t ∈ [t0, t1]. Obviously we must have

t0 > t1 −
1

m(t1)
≥ t1 −

1

U(t1)
=: θ(t1).

In this way we have established the following result.

Proposition H.1. If (U, v) is a global solution of (3.3) with U(0) > R, then for all

t there is τt ∈ [θ(t), t] such that vx(τt, x) ≤ U(τt), for all x ∈ [−1, 1].

This proposition has two interesting consequences.

Corollary H.1. If (U, v) is a global solution of (3.3) with U(0) > R, then for every

t ≤ 0, m(t) = maxx vx(t, x) < U(θ(t)).

Proof. Assume that for some t < 0, m(t) ≥ U(θ(t)). Since m(·) and U(·) are decreas-

ing, we see that m(τ) ≥ U(θ(t)) ≥ U(τ) for all τ in [θ(t), t], which contradicts the

previous proposition. Therefore m(t) < U(θ(t)) holds for all t < 0.
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Corollary H.2. If (U, v) is a global solution of (3.3) with U(0) > R, then for every

t < 0,

|v(t)|∞ := sup
x

|v(t, x)| < 2U(θ(t)).

Proof. Fix t < 0. Because the x-average of v is assumed to be zero, there is a point xt

such that v(t, xt) = 0. By a translation of the solution in x we can assume xt = −1.

Then using the previous corollary, we obtain

v(t, x) =

x
∫

−1

vx(t, ξ) dξ < U (θ(t)) (x + 1) < 2U (θ(t)) .

Observe, that if (U(t), v(t, x)) solves (3.3), then (U(t),−v(t,−x)) will also solve (3.3).

By the above, −v(t,−x) < 2U(θ(t)). Consequently

|v(t, x)| < 2U (θ(t)) .

Thus (i) is true.

Corollary H.1 gives us a bound on vx in terms of U . Actually, vx(t, x) is bounded

above by U(t) ”most” of the time as t→ −∞:

Proposition H.2. For a global solution (U, v), with U(0) > R, the Lebesgue measure

of the set S(t1) = {t ≥ t1 : m(t) > U(t)} does not exceed 1/U(t1).

Proof. Since m and U are continuous, it follows that S(t1) =
⋃∞
n=1 In, where In =

(t0n, t1n) is a sequence of disjoint intervals with t1 ≥ t1n > t0n ≥ t1(n+1) for any n. The

measure of S(t1) is
∑∞

n=1 l(In), where l(In) = (t1n−t0n) - the length of the interval In.

Observe that m(tin) = U(tin) for any i = 0, 1 and n ∈ N. Inequality (3.41) written

on In gives us

1

U(t1n)
− 1

U(t0n)
≥ t1n − t0n = l(In).
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Thus, for any natural number N ,

N
∑

n=1

l(In) ≤
N
∑

n=1

(

1

U(t1n)
− 1

U(t0n)

)

=
1

U(t11)
−

N−1
∑

n=1

(

1

U(t0n)
− 1

U(t1(n+1))

)

− 1

U(t0N )
≤ 1

U(t11)
,

because 1
U(t0n)

− 1
U(t1(n+1))

≥ 0. This means that

∞
∑

n=1

l(In) ≤
1

U(t11)
≤ 1

U(t1)
,

and the proof is complete.

Proposition H.2 has the following immediate consequence.

Corollary H.3. Let u = (U, v) be an unbounded global solution of (3.3). Then the

Lebesgue measure of the set S(t) goes to 0 as t→ −∞ at least exponentially.

Proof. Proposition H.2 implies that µ(S(t)) - the Lebesgue measure of the set S(t),

satisfies µ(S(t)) ≤ 1/U(t) for any t ≤ 0. But by Theorem C.1, U(t) ≥ Ce−t for some

C > 0 and every t < 0. Thus µ(S(t)) ≤ (1/C)et for all t ≤ 0, which concludes the

proof.

I. Comparison with the other dissipative PDE

To compare Burgers’ original model for turbulence to similar systems of differential

equations, we discern three possible behaviors of a solution as t → −∞: it can

be globally bounded, blow up exponentially, or, perhaps, blow up faster than any

exponential. It is interesting that there are no global solutions that blow up with a

rate less than e−t as t → −∞ (as was proved is Theorem C.1). The existence of a
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variety of globally bounded solutions follows from the fact that the global attractor

of (3.3) is quite a rich set (see [22]).

In this chapter we were able to prove existence of a family of global solutions that

blow up exponentially backward in time, namely those for which the Dirichlet quotient

λ(t) is bounded for t < 0 (see Theorem F.1). This fact shows a clear difference

in backward-time behavior form the 1-D space periodic Kuramoto-Sivashinsky case

studied in [6, 7]. Moreover, similar to the 2-D space periodic Navier-Stokes equations

(see [1]), for any eigenvalue λi of A0 = − ∂2

∂x2 there exist solutions u = (U, v) with

limt→−∞ λ(t) = λi, and limn→∞
v(tn)
|v(tn)|

= wi for some sequence {tn} decreasing to

−∞ and some unit vector wi satisfying A0wi = λiwi (see Theorems E.1 and F.1).

However unlike in the 2-D Navier-Stokes case, for a suitable c > 0, |v(t)| = o(e−ce
−t

)

as t→ −∞ (see Proposition D.1).

The behavior of global solutions of system (3.3) with bounded Dirichlet quotient

Λ is also interesting. While we were unable to prove existence of any global solutions

with lim supt→−∞ Λ(t) > 1, the fact that if Λ is bounded, then limt→−∞
u(t)

|u(t)|H
= (1, 0)

(see Remark G.2), establishes another important difference with the 2-D Navier-

Stokes equations studied in [1]. In that case, for any eigenvalue of the Stokes operator

there exists a solution u such that for a sequence {tn} decreasing to −∞ , u(tn)
|u(tn)|H

converges in a specific space H to an eigenvector corresponding to that eigenvalue.

The results presented above make Burgers’ original model for turbulence a very

peculiar example of a dynamical system with a rich set of backward-time exponentially

blowing up solutions which, unlike the 2-D space-periodic Navier-Stokes equations and

their α-model, does not display any similarity to the linear case.
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CHAPTER IV

CONCLUSIONS

Since the introduction in 1995 in [1] of the attractor-like sets Mn, there is still very

little known about their geometrical structure and the relationship between these

sets and other invariants of the dissipative PDE, in particular, global and exponen-

tial attractors, and inertial manifolds. For the 2-D periodic Navier-Stokes equations

(NSE) we were able to obtain new geometric properties of these sets and show that

the solutions on this sets will grow exponentially in any Sobolev norm (see Chapter

II). A further study is needed in order to resolve whether in this case the sets Mn

have a manifold structure and whether their union is dense in H. As we mentioned

in Chapter I, a remarkable similarity in the properties of Mn between the NSE and

the linear case, are in the sharp contrast with the Kuramoto-Sivashinsky equation

(KSE), for which there are no unbounded invariant sets at all. On the other hand,

various NSE-like systems still displayed NSE-like behavior for negative-times. The

Burgers’ original model for turbulence (BOMT) is the first known dissipative PDE

that has a completely different backward-time dynamics from both NSE and KSE

cases (as is described at the end of Chapter III).

We can in fact characterize dissipative PDE by their backward-time behavior as

follows:

1. Linear-like systems, with Mn rich for all n, and all the rates of exponential

growth present (NSE, Kelvin-filtered NSE);

2. Equations with the fast backward-time growth, i.e. satisfying Mn = A for all

n (KSE);

3. Equations which admit some backward-time exponentially growing solutions,
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but with a very non-linear negative-time dynamics (BOMT).

Additionally, I am working on several remaining problems related to the better

understanding the backward time behavior of the PDEs described above. In particu-

lar, for the Burgers’ original model for turbulence more studies are needed to answer

the following questions:

1. Are there any Mn 6= M1?

2. Are there any solutions on M1 that have unbounded λ(t)?

3. Is ∪nMn dense, at least in some sense, in H?

4. What are the geometrical properties of Mn?

The questions about the NSE are:

1. What is the geometrical structure of Mn?

2. Can the density property of ∪nMn be improved?

The answers to the questions above will help better understanding of the struc-

ture of the sets Mn and make the classification more precise.
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York: Academic Press Inc., 1948.

[22] A. Eden, “On Burgers’ original mathematical model of turbulence,” Nonlinear-

ity, vol. 3, no. 3, pp. 557–566, 1990.

[23] N. Ishimura and I. Ohnishi, “Inertial manifolds for Burgers’ original model of

turbulence,” Appl. Math. Lett., vol. 7, no. 3, pp. 33–37, 1994.

[24] J. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge, UK: Cam-

bridge University Press, 2001.

[25] J. Hale, Assimptotic Behavior of Dissippative Systems, Providence, RI: AMS

Chelsea Publishing, 1988.

[26] G. Sell and Y. You, Dynamics of Evolutionary Equations, New York: Springer-

Verlag, 2002.

[27] V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,

Providence, RI: AMS Chelsea Publishing, 2002.

[28] J. Goodman, “Stability of the Kuramoto-Sivashinsky and related systems,”

Comm. Pure Appl. Math., vol. 47, no. 3, pp. 293–306, 1994.

[29] M. S. Jolly, “Bifurcation diagrams for the original Burgers’ model for turbu-

lence,” private communication, 2002.



67

[30] C. Foias and B. Nicolaenko, “On the algebra of the curl operator in the euler

equations,” preprint, 2003.



68

APPENDIX A

ESTIMATE FOR THE NONLINEAR TERM (SEE [30])

Lemma 1. For each n ∈ N (n ≥ 2) and every u ∈ D(An):

b(u, u, Anu) = −
n−1
∑

h=1

b(Ahu, u, An−hu). (A.1)

Proof. Observe first that

A(B(u, v) +B(v, u)) = B(u,Av) +B(v, Au) − B(Au, v) − B(Av, u).

Thus, if n is odd, then

A
n
∑

h=0

B(Ahu,An−hu) =

(n+1)/2
∑

h=0

A
(

B(Ahu,An−hu) +B(An−hu,Ahu)
)

=

(n+1)/2
∑

h=0

B(Ahu,An−h+1u) +

(n+1)/2
∑

h=0

B(An−hu,Ah+1u))

−
(n+1)/2
∑

h=0

B(Ah+1u,An−hu) −
(n+1)/2
∑

h=0

B(An−h+1u,Ahu))

= B(u,An+1u) − B(An+1u, u).

Consequently, in this case,

n
∑

h=0

b(Ahu, u, An−hu) = −
n
∑

h=0

b(Ahu,An−hu, u) =

−
(

A

n
∑

h=0

B(Ahu,An−hu), A−1u

)

=

−b(u,An+1, A−1u) + b(An+1u, u, A−1u)

= b(u,A−1u,An+1u) − b(An+1u,A−1u, u) = 0,
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since

b(Av, v, w) = b(w, v, Av)

for every v ∈ D(A) and w ∈ H.

If n is even, we have

A

n
∑

h=0

B(Ahu,An−hu) = AB(Anu, u) +

n/2
∑

h=0

A
(

B(Ahu,An−hu) +B(An−hu,Ahu)
)

= AB(Anu, u) +B(u,Anu) − B(Anu, u).

Thus,

n
∑

h=0

b(Ahu, u, An−hu) = −
n
∑

h=0

b(Ahu,An−hu, u) =

−
(

A
n
∑

h=0

B(Ahu,An−hu), A−1u

)

=

−
(

AB(Anu, u), A−1u
)

− b(u,An+1u,A−1u) + b(An+1u, u, A−1u)

= b(Anu, u, u) + 0 = 0.

Consequently the identity from the lemma holds for all n.

Theorem 1. For each n ∈ N (n ≥ 2) and every u ∈ D(An):

|b(u, u, Anu)| ≤ c0cn|An/2u| |A(n+1)/2u| |A1/2u|, (A.2)

where cn := 6([n/2] + (n− [n/2])2n−2).

Proof. Observe that going to the Fourier coefficients:
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|b(u, v, w)| =

∣

∣

∣

∣

∣

∣

∑

j+k+l=0∈ � 2

(ak · j)(bj · cl)

∣

∣

∣

∣

∣

∣

≤
∑

j+k+l=0∈ � 2

|ak| |j| |bj| |cl| := b̃(u, v, w).

where

u(x) =
∑

k∈ � 2

ake
(2πi/L)(k·x), v(x) =

∑

j∈ � 2

bje
(2πi/L)(j·x), w(x) =

∑

l∈ � 2

cle
(2πi/L)(l·x),

with u, w ∈ H, v ∈ V .

Using the previous lemma we get

|b(u, u, Anu)| ≤
n−1
∑

h=1

|b(Ahu, u, An−hu)| ≤
n−1
∑

h=1

b̃(Ahu, u, An−hu).

Observe that

n−1
∑

h=1

b̃(Ahu, u, An−hu) =
n−1
∑

h=1

∑

j+k+l=0∈ � 2

|k|2h|ak| |j| |aj| |al| |l|2(n−h)

≤ A+B + C,

where

A :=

n−1
∑

h=1

∑

j+k+l=0∈ � 2,|k|≤min{|j|,|l|}

|k|2h|ak| |j| |aj| |al| |l|2(n−h),

B :=

n−1
∑

h=1

∑

j+k+l=0∈ � 2,|j|≤min{|k|,|l|}

|k|2h|ak| |j| |aj| |al| |l|2(n−h),

and

C :=

n−1
∑

h=1

∑

j+k+l=0∈ � 2,|l|≤min{|j|,|k|}

|k|2h|ak| |j| |aj| |al| |l|2(n−h).

Because of the symmetry we have that A = C.

Also,
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B ≥
n−1
∑

h=1

∑

j+k+l=0∈ � 2,|k|≤min{|j|,|l|}

|k|2h|ak| |j|2(n−h) |aj| |al| |l| = C(= A),

and thus we get

|b(u, u, Anu)| ≤ 3B ≤ 3

n−1
∑

h=1

2
∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|2h|ak| |j| |aj| |al| |l|2(n−h)

= 6

[n/2]
∑

h=1

∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|2h|ak| |j| |aj| |al| |l|2(n−h)

+6

n−1
∑

h=[n/2]+1

∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|2h|ak| |j| |aj| |al| |l|2(n−h)

≤ 6

[n/2]
∑

h=1

∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|n|ak| |j| |aj| |al| |l|n

+6
n−1
∑

h=[n/2]+1

∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|2h|ak| |j| |aj| |al| |l|2(n−h).

Observe that in the previous sums, |k| = |j + l| ≤ |j| + |l| ≤ 2|l|. Thus,

6
n−1
∑

h=[n/2]+1

∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|2h|ak| |j| |aj| |al| |l|2(n−h)

≤ 6

n−1
∑

h=[n/2]+1

∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|n(2|l|)2h−n|ak| |j| |aj| |al| |l|2(n−h)

≤ 6(n− [n/2])2n−2
∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|n|ak| |j| |aj| |al| |l|n.

Also,

6

[n/2]
∑

h=1

∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|n|ak| |j| |aj| |al| |l|n
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≤ 6([n/2])
∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|n|ak| |j| |aj| |al| |l|n.

Consequently,

|b(u, u, Anu)| ≤ 6([n/2] + (n− [n/2])2n−2)
∑

j+k+l=0∈ � 2,|j|≤|l|≤|k|

|k|n|ak| |j| |aj| |al| |l|n.

Let cn = 6([n/2] + (n− [n/2])2n−2). From the above we conclude that

|b(u, u, Anu)| ≤ cnb̃(A
n/2u, u, An/2u) = cn

∫

Ω

φ(x)ψ(x)ζ(x) dx,

where we denote φ(x) =
∑

k

e(2πi/L)k·x|ak| |k|n, ψ(x) =
∑

j

e(2πi/L)j·x|aj| |j|, and ζ(x) =
∑

l

e(2πi/L)l·x|al| |l|n. Applying Schwartz inequality we get

|b(u, u, Anu)| ≤ cn|φ|L4|ψ|L2|ζ|L4.

Now apply Ladyzhenskaya inequality

|w|2L4 ≤ c0|w|H1|w|L2

to estimate |φ|L4 and |ζ|L4 and obtain

|b(u, u, Anu)| ≤ c0cn|An/2u| |A(n+1)/2u| |A1/2u|.
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