
ON IMPROVING PERFORMANCE AND CONSERVING POWER

IN CLUSTER-BASED WEB SERVERS

A Thesis

by

GOPINATH VAGEESAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2005

Major Subject: Computer Engineering

ON IMPROVING PERFORMANCE AND CONSERVING POWER

IN CLUSTER-BASED WEB SERVERS

A Thesis

by

GOPINATH VAGEESAN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Co-Chairs of Committee, Eun Jung Kim
Gwan Choi

Committee Member, Scott Pike
Head of Department, Chanan Singh

December 2005

Major Subject: Computer Engineering

iii

ABSTRACT

On Improving Performance and Conserving Power

in Cluster-based Web Servers. (December 2005)

Gopinath Vageesan, B.E., Bharathiar University, Coimbatore

Co-Chairs of Advisory Committee: Dr. Eun Jung Kim
 Dr. Gwan Choi

Efficiency and power conservation are critical issues in the design of cluster systems

because these two parameters have direct implications on the user experience and the

global need to conserve power. Widely adopted, distributor-based systems forward client

requests to a balanced set of waiting servers in complete transparency to the clients. The

policy employed in forwarding requests from the front-end distributor to the backend

servers plays an important role in the overall system performance. Existing research

separately addresses server performance and power conservation. The locality-aware

request distribution (LARD) scheme improves the system response time by having the

requests served by web servers which have the data in their cache. The power-aware

request distribution aims at reducing the power consumption by turning the web servers

OFF and ON according to the load.

This research tries to achieve power conservation while preserving the performance of the

system. First, we prove that using both power-aware and locality-aware request

distribution together provides optimum power conservation, while still maintaining the

required QoS of the system. We apply the usage of pinned memory in the backend servers

iv

to boost performance along with a request distributor design based on power and locality

considerations. Secondly, we employ an intelligent-proactive-distribution policy at the

front-end to improve the distribution scheme and complementary pre-fetching at the back-

end server nodes. The proactive distribution depends on both online and offline analysis of

the website log files, which capture user navigation patterns on the website. The pre-

fetching scheme pre-fetches the web pages into the memory based on a confidence value of

the web page predicted by backend using the log file analysis. Designed to work with the

prevailing web technologies, such as HTTP 1.1, our scheme provides reduced response

time to the clients and improved power conservation at the backend server cluster.

Simulations carried out with traces derived from the log files of real web servers witness

performance boost of 15-45% and 10-40% power conservation in comparison to the

existing distribution policies.

v

To my parents …

vi

ACKNOWLEDGMENTS

I sincerely thank Heung Ki Lee of the Department of Computer Science for working with

me all throughout my thesis. Without his help and invaluable contributions, this thesis

would have never been a possibility.

I am ever grateful to my advisor, Dr. Eun Jung Kim, for providing strong guidance and

building my faith all throughout the thesis. It has been a venture of great pleasure and

honor working under her supervision.

I thank Dr. Scott Pike for providing invaluable suggestions and helping me to shape this

thesis.

I sincerely thank Dr. Gwan Choi for being an immense pillar of support all through this

endeavour.

I also thank the Department of Computer Science at Texas A&M University for providing

their website’s log files, which were critical for the simulation results.

Lastly, I am grateful to all my dear and near who have been a great support through these

two years and also for enduring me with patience.

vii

TABLE OF CONTENTS

Page

ABSTRACT………………………………………………………………………………..iii

DEDICATION..……………………………………………………………………....…….v

ACKNOWLEDGMENTS………………………………………………………………….vi

TABLE OF CONTENTS………………………………………………………………….vii

LIST OF FIGURES………………………………………………………………………...ix

LIST OF TABLES………………………………………………………………………….x

I. INTRODUCTION……………………………………………….……………………….1

II.BACKGROUND…………………………………………………………………………5

1. Weighted round robin…………………………………………………………….5
2. Locality-aware request distribution………………………………………………6

2.1 Multiple TCP handoffs …………………………………………………….. 8
2.2 Backend forwarding………………………………………………………….9

3. Multi-speed disks………………………………………………………………. 10
4. Dynamic cluster re-configuration……………………………………………… 10
5. Power-aware request distribution……………………………………………….11
6. Web log mining…………………………………………………………………12

 6.1 User navigation pattern…………………………………………………….. 13
 6.2 Bundling requests…………………………………………………………...14

III.POWER AND LOCALITY-AWARE REQUEST DISTRIBUTOR..…………………16

1. Combining power policy and LARD…………………………………………...17

viii

 Page

IV. ENHANCEMENTS IN LOCALITY-AWARE REQUEST DISTRIBUTION.............20

1. Handling persistent HTTP connections………….. 20
2. Memory management scheme…………….. 22

2.1 Data placement..………….. 24
2.2 Data replacement……………... 24
2.3 Migration in pin-down memory………… .. 25

3. Harnessing web log files………… .. 26
3.1 Users' navigation pattern………… ... 26
3.2 Popularity of web pages…………….. .. 27
3.3 Spotting bundles………….. 27
3.4 Examples illustrating user categorization…………….. 27

4. Application of web log information to improve LARD……………................... 28
4.1 At the backend..…………... 28
4.2 At the front-end…………….. ... 34

V. ENHANCEMENTS IN POWER POLICY…………………………………….............35

1. Power policy……..………….. 35

VI. SIMULATION MODEL AND RESULTS……………………………………………39

1. Simulation model……..………… .. 39
2. Simulation results……..………….. 40

VII. SUMMARY AND CONCLUSIONS...……………………………………………....47

REFERENCES……………………….. 48

VITA…………………………………. .. 51

ix

LIST OF FIGURES

FIGURE Page

1 Distributor based web server system …………………………………...………. 3

 2 Weighted round robin ….……………………………………………..………... 6

 3 Locality-aware request distribution ………………..…………………………... 7

 4 Multiple TCP handoffs ………………..……………………………………… 8

 5 Backend forwarding ……………..…………………………………………….. 9

 6 Throughput comparison (PLARD) ……………...…………………………… 18

 7 Illustration of the distribution policy ……...………...………………………... 21

 8 Pinned memory organization ……………..………………………………….. 23

 9 Building the confidence of the guesses …...…………………………………… 30

 10 Algorithm for pre-fetching ……………...…………………………………….. 31

 11 Replication algorithm ………………………...………………………………... 33

 12 Power transition states: H-Hibernation mode ………………...…………………37

 13 Simulation model ………………...……………………………………………. 39

 14 Throughput comparison: (a) CS Trace, (b) World cup, (c) Synthetic …...……...42

 15 Comparison with LARD ………………………………………………..……….44

 16 Throughput comparison for individual enhancement ….....……………………. 45

 17 Power conservation …...………………………………………………………... 46

x

LIST OF TABLES

TABLE Page

 1 Categorization of websites ……………………………………………………….. 28

 2 Simulation system parameters ………………………………………………...….. 40

1

I. INTRODUCTION

Cluster systems are being increasingly used in the web-server management, file

distribution and database transactions. The main reason for the large-scale deployment

of the cluster systems is their load sharing and high-performance capabilities. The

overall delay incurred by the end user is the sum of network-link delay, routing delay,

delay accrued during address resolution and finally the web-server service delay. The

delay incurred at a web-server consists of the processing time and data retrieval time.

Cluster-based web-servers incur an additional delay in analyzing the incoming request

and forwarding the request to one of the backend servers. Thus, the delay at the web-

server is a critical component which has to be reduced to achieve a better web-server

performance. We present a modified locality-aware request distribution (LARD) [1]

scheme, which reduces the delay at the web-server.

The power equipment, cooling and electricity form a significant fraction of the total

cost of ownership (TCO) [2]. The effect of power consumption of the servers on the

total ownership cost is bi-fold. First, the increased power consumption directly

contributes to the increasing electricity bills. Second, the increased power consumption

aids to the increase in temperature of the housing and hence the cooling cost of the

system.

This thesis follows the style of IEEE Transactions on Power Systems.

2

From [2], these amount to more than 20% of the TCO, which span for the lifetime of

the server system. Thus, in addition to the performance and scalability issues, design of

energy-efficient cluster-based servers is also becoming increasingly more important

from the economic standpoint.

Among the different architectures in the cluster-based servers, the distributor-based

systems have been widely deployed as shown in Fig. 1. These systems have a front-end

switch which forwards the requests to any of the backend/distributor. In locality-based

request distribution schemes, the distributor contacts the dispatcher to obtain the

locality information. If the data is located in the same backend server, the request is

served directly. Else, the distributor forwards the request to the backend server that has

a better locality for the file. The role of the dispatcher is to specify the locality of the

requested files to the distributor. The forwarding of the requests from the distributor to

the backend servers is carried out in complete transparency to the clients. A handoff

protocol is employed in most cases to make the transition smooth and transparent [1].

The requests are forwarded to the set of backend servers based on a certain policy.

LARD (Locality Aware Request Distribution) [1], PARD (Power Aware Request

Distribution) [3] and WRR (Weighted Round Robin) are few of the most prolifically

adopted policies. The policies focus on improving efficiency, power conservation and

load balancing respectively.

3

Fig. 1. Distributor based web server system

In this thesis, we try to achieve a balance between high efficiency and good power

conservation. Thus, by combining an efficient locality-based distribution scheme and a

power-aware request distribution scheme, we develop a system, which strikes a balance

between efficiency and power conservation. But, the power conservation is obtained at

a cost of performance degradation and an improvement in performance has to sacrifice

power conservation. In order to overcome this design trade-off problem, we improve

the performance of the system by increasing the locality of the data and including an

efficient distribution policy. We introduce a new memory management technique using

“pinned” memory to improve the locality, whose physical area is never paged out. We

use a proactive request distribution policy based on website organization and website

log mining which is supported by an aggressive webpage-based pre-fetching scheme at

4

the backend. The web server logs record the request flow to the servers and are a rich

source of information about the users’ navigation pattern, page popularity, etc. The

logs are mined for this information and it is used for the pre-fetching of probable page

requests into the backend server’s memory and for initiating proactive distribution at

the front-end. This aims to improve the locality of the files in contrast to the LARD

scheme which just distributes the requests based on the locality information. Thus, we

improve the locality of the files to counter the trade-off that we suffer due to having the

power policy.

The new policy is capable of working in conjunction with the prevailing HTTP 1.1

persistent connection technology. We present simulation results with trace files derived

from the log files of real web servers to show the performance capabilities of our

system.

5

II. BACKGROUND

The volume of published research in the area of cluster-based web servers and cluster-

based application servers testifies to the interest of the numerous researchers. But, in

this thesis, we restrict our comparison to WRR, LARD, PARD and Ext-LARD-PHTTP

policies.

1. Weighted round robin

The weighted round robin (WRR) policy is one of the simple and widely adopted

distribution policies, due to its excellent load balancing capabilities. The distributor

maintains a record of the current load at the backend servers. The request is always

forwarded to the least loaded backend server among the set of servers. The request

forwarding is thus weighted, based on the current load on the servers. The main

drawback of WRR is that it does not concern about the locality of the requests

(increasing the response time through large disk latencies) and the power conservation

among the servers. In case of large deployment of cluster systems, the power consumed

becomes a very significant factor. So, power and locality-based request distribution

policies have gained significance. Figure 2 illustrates the WRR policy.

6

C

B
A

B
A

C

C

B

A

A

B

C

Distributor

Backend

Disk

Backend

Disk

Incoming
Requests

Forwarded
Requests

Number of misses: 6

Fig. 2. Weighted round robin

2. Locality-aware request distribution

The LARD [1] overcomes the drawbacks faced by the WRR policy in terms of

performance. It uses locality-based distribution policy at the distributor and increases

the memory hits at the backend server. It considers both data locality and load

balancing issues in a distributed cluster-based server. The distributor in LARD

forwards all requests for the same Web object to a server node that has the requested

file in its cache (memory). If the load on that node is high, then the request is

forwarded to another lightly loaded node that has the contents on its disk. This policy is

illustrated in Figure 3. In an improvement to this idea, Mohit Aron et al. [4] proposed a

scalable content-aware distribution policy that minimizes the bottleneck of the front-

7

end web-switch by using a de-centralized request distribution strategy. In this policy, a

layer-4 web-switch is used to distribute the requests to backend nodes.

C

B
A

B
A

C

C

B

A
A

B

C

Distributor

Backend
Disk

Backend
Disk

Incoming
Requests

Forwarded
Requests

Number of misses: 3

Fig. 3. Locality-aware request distribution [1]

This architecture is scalable over a large number of servers, but suffers from the

following drawbacks: The high speed switch can prove to be a single point of failure.

Also, the overhead to dispatch all the requests can be very high. In addition to these

drawbacks, both the above contributions limit their study to HTTP 0.9/1.0 based web

transactions. In HTTP 1.0 based web transactions, the user browser spawns multiple

TCP connections for continuing requests to the same server. In this case, the above

ideas incur considerable overhead in performing multiple distributions and handoffs.

The papers did not consider the effect of their idea on HTTP 1.1 based web

8

transactions, which adopt a persistent connection between the client and the server. In

[5], the authors have considered two techniques to tackle this problem: multiple TCP

handoff and backend forwarding. We shall examine them in detail in the following

sections.

2.1 Multiple TCP handoffs

With HTTP 1.1, the client can request multiple data from the server on the same

persistent connection. With multiple TCP handoffs [5], every incoming request is

analyzed and dispatched at the front-end. The LARD policy is applied to each

incoming request, requiring TCP handoffs for each request, even though the requests

are from the same client. This is illustrated in Figure 4.

Fig. 4. Multiple TCP handoffs [5]

9

2.2 Backend forwarding

In backend forwarding scheme, the front end initiates a single handoff for every

persistent HTTP connection. The backend servers are connected over a high speed

network and the request can be internally forwarded and served among the backend

server nodes. This is illustrated in Fig. 5.

Fig. 5. Backend forwarding [5]

Both the above techniques suffer from high overhead. The primary goal of this thesis is

to provide a low overhead content-based request distribution at the distributor, while

maintaining the QoS and power conservation.

10

On power conservation standpoint, many researchers have previously proposed

schemes to reduce power consumption.

3. Multi-speed disks

E.V. Carrera et al., [6] have proposed a technique to conserve power in network servers

using a multi-speed disk technology. The idea is to use two disks with lower speeds to

emulate a high-speed disk. They also propose the use of multi-speed disks to conserve

power in network servers. Power consumed is directly proportional to the speed of the

disk. This approach can save power up to 23%, in comparison to conventional servers.

They also argue that the performance degradation is very negligible. A major setback

to this approach is that it requires multi-speed disks, which are not very popular

nowadays.

4. Dynamic cluster re-configuration

Pinheiro et al., [7] have proposed a dynamic cluster reconfiguration technique to bring

down the power consumption in servers. In this technique, a cluster node is

dynamically added or removed to the cluster system based on efficiency, performance

and other power implications of the system. The cluster is dynamically re-configurable

and intelligent to reconfigure itself, based on the load and other efficiency-related

11

parameters. This work differs from ours, as we use locality-based scheme to improve

the performance, whereas dynamic reconfiguration tries to preserve the performance of

an existing system, on top of conserving power.

5. Power-aware request distribution

Our focus is limited to the Power-aware request distribution scheme. In Power-aware

Request Distribution [3] (PARD), a simple power scheme is adopted to conserve

power. It uses a simple ON-OFF Model, where any backend server, which is idle, is

turned off. And backend servers are turned ON whenever the demand for service

increases. However, this policy suffers from a performance viewpoint. The policy does

not have performance enhancement measures and also reduces the locality of the files

by wiping off the contents of the memory which is being turned OFF. Requests have to

incur a startup delay when waiting on a server to turn ON from OFF state.

It has been proven that locality-based request distribution schemes bring exceedingly

good performance boost to distributor based cluster systems. But, such systems do not

have any scheme for power conservation. To overcome this shortcoming in the design,

we propose the idea of combining locality based distribution and power aware

distribution in cluster systems (PLARD). But, as there is a tradeoff between power and

performance factors, our goal is to improve the performance with a state of

12

considerable power conservation. Thus, we focus on improving the locality of the files

that are being requested. By increasing the locality, we can achieve better hit rates in

the backend servers’ memory and hence a performance boost. To achieve this, we use

two techniques: the application-level memory management technique using pinned

memory and proactive distribution with the aid of analysis and mining of the website

logs. Although the usage of pinned memory has been previously suggested in operating

systems, distributed systems and web servers, its application in cluster-based servers is

new. We use pinned memory to preserve the locality of the files when the servers are

turned OFF by the power management policy.

6. Web log mining

Web log mining has been prolifically used in web services [8-14]; however, none of

them include the idea of using the information from web log mining for improving the

distribution policy in a cluster-based web server. The server logs can be analyzed for

user browsing pattern, general website organization and other website statistics and can

be used to improve the QoS of the website. The following sections describe the

research that has been done in this context.

13

6.1 User navigation pattern

The user’s navigation pattern is a rich source to understand the general user behavior

on a website. This information can be easily gleaned from the web server log files. It

can be used to categorize the users based on their interests and also to predict their

intended navigation pattern. In most of the large websites, the users’ target document

does not exist in the users’ expected location. In [8], this information is used to

improve the website organization by providing hyperlinks to users’ target document on

the users’ expected location of the webpage.

Takehiro et al. [12] have used the web log files to discover the gap between website

users’ behavior and the website designers’ expectations. They evaluate these metrics

using inter-page access co-occurrence and inter-page conceptual relevance

respectively. The gap between these metrics is directly proportional to the inefficiency

of the website. Once the metrics are evaluated, they can be used to improve the website

organization and page layout to enhance the users’ navigation experience.

Mike and Oren [10-11] have developed a clustering algorithm to identify web pages

that occur together in single user visits and build an index page, which helps the users

to effectively navigate the website. The index page can be generated automatically in

accordance to the users’ navigation pattern. The algorithm makes the website

“adaptive” by equipping it the ability to re-configure the index page according to the

user navigation pattern.

14

Myra et al [13-14] propose a web mining tool (WUM-Web Utilization Miner) for

analyzing the log files. The tool analyzes the structure of the traversed paths of the

website users to extract sub-paths which lead to a target item of interest. The WUM

consists of a mining language that can be utilized by the website designer through

various specifications corresponding to the required level of analysis. Thus, the

navigation pattern of the users can help to re-organize the website such that, the

required target data is readily available to the users.

6.2 Bundling requests

In [9] they show that pre-fetching of the embedded objects associated with a particular

page can provide considerable performance boost. The webpage and its associated

embedded objects such as images, applets, etc are grouped into a “bundle” and

delivered to the user browser in a compressed form on the request of the web page. The

bundle is transmitted to the user along with the requested page in an assumption that

the embedded objects are bound to be requested at a later stage. The pre-fetching of the

embedded objects reduces the wait at the end user and accelerates the browsing

experience. The bundles can be easily identified by a cursory analysis of the web server

log files. The user browser places subsequent requests to the embedded objects after

the acknowledgement of the initial page is received.

15

Though the above researches testify the volume of the work that has been carried out in

web log mining, its usage in improving the distribution policy in cluster-based web

servers is new. Also, the information extracted from log files by our algorithms and

their usage to our system is unique. The following sections describe our idea in detail.

We plan to use the following policies as benchmark to compare the final results:

Weighted Round Robin (WRR), Locality Aware Request Distribution (LARD), Power-

Aware Request Distribution (PARD) and techniques proposed earlier for HTTP 1.1

(Ext-LARD-PHTTP) [5].

16

III. POWER AND LOCALITY-AWARE REQUEST DISTRIBUTOR

This section describes the conception of our scheme; combining power and locality-

aware request distribution schemes. The basic PLARD system consists of a simple

power aware distribution policy built over the LARD policy. The distributor forwards

the requests to one of the backend server that is ON, based on the locality of the

requested data. While the distributor transmits the requests to the backend servers, the

power policy checks if there are any idle backend servers. If it happens that some of the

backend servers are idle, the idle backend servers will be turned OFF for power

conservation. Similarly, when the incoming request rate is high and the total load on

the system increases, new servers are turned ON to compensate the increase in the

incoming requests. During this turn ON phase, the requests that are scheduled to be

serviced by the turning ON server, incur the startup delay of the server. This simple

ON-OFF policy achieves very good power conservation, but only at the cost of

performance of the system. In the consequent sections, we describe our enhanced

power policy, which counters this performance degradation, and we present our

algorithm for both locality-based request distribution and power conservation. In this

section we will discuss about the simple power and locality aware request distribution

presenting its advantages and shortcomings.

17

1. Combining power policy and LARD

In this sub-section, we describe the effects of coupling the simple ON-OFF power

policy and the locality-aware request distribution scheme. Both these schemes have

been individually proposed and implemented in [3] and [1] respectively. The

background on these schemes has been presented earlier in section II. The motivation

to couple these policies together is derived because of the unavailability of a

distribution scheme that provides both power conservation and better performance.

This scheme which consists of simple combination of the two policies [1] [3] will be

referred to as “PLARD” – power and locality-aware request distribution - in the rest of

the thesis.

The PLARD consists of an implementation of the LARD policy [1] which is in turn

controlled by the simple ON-OFF power policy. The distribution of the requests

follows the LARD policy and thus maximizing the memory hits on the backend

servers’ memory and improving the system performance. The power policy sits at the

front-end distributor and monitors the load on the backend servers. Servers operating

during non-peak hours typically are very lightly loaded and hence are good candidates

for being turned OFF and conserving power. On identifying a server with load below a

certain threshold, the front-end stops distributing and allotting requests to ‘that’ server

and initiates its shutdown.

18

Similarly, on the event of increasing system load, the servers in OFF state and turned

ON to share the load and decrease the system delay. The servers introduce a startup

delay of typically 45 seconds to up to 2 minutes. This delay is incurred by all the

requests that are scheduled for the server in this transition phase and contributes

directly to the delay experienced by the end user. This scheme is effective in power

conservation, but this is obtained at the expense of performance degradation.

Fig. 6 illustrates the comparison of the results obtained by comparing PLARD with

WRR, LARD and PARD. The algorithms are implemented in a C++ based simulator

which is driven by trace files derived from real web servers. The same simulator and

trace files are used throughout the thesis to present results and comparisons. The details

of the simulation model and the trace files are provided in section VI.

Throughput Comparison

0

2000

4000

6000

8000

10000

12000

14000

16000

6 10 16

Number of Servers

T
h

ro
u

g
h

p
u

t WRR

PARD

PLARD

Simple-LARD

Fig. 6. Throughput comparison (PLARD)

19

From the above figure, it can be seen that PLARD suffers from performance

degradation due to the trade-off incurred in improving the power conservation. The

performance loss is largely due to the startup delay of the servers when they are turned

ON to service the increasing request flow. Also, it is to be noted that both the simple-

LARD and the LARD policy implemented in our scheme support only HTTP 1.0 based

connections. By adopting a policy suitable for the prevailing HTTP 1.1 based

connections, we can generalize the idea and also exploit the new prospects through the

persistent connections.

Also, by applying intuitive analysis and making the distribution and power policy more

proactive, we can avoid such problems and improve the performance of the system.

Such schemes are described in the following sections.

20

IV. ENHANCEMENTS IN LOCALITY-AWARE REQUEST DISTRIBUTION

Considering the shortcomings of the PLARD scheme, we focus to improve the

performance of the system in spite of providing considerable power conservation. The

performance can be improved by enhancing the locality-aware request distribution

scheme. We provide a LARD scheme which is compatible with persistent HTTP

connections and describe methods to improve its performance.

1. Handling persistent HTTP connections

In a connection between a client and the server, the header of the “first” incoming

request is read by the distributor, the lookup on the distributor table is made to

determine the availability of the file in the backend server’s memory and then, the

connection is handed-off to the backend server. Since, the connections are over HTTP

1.1, most of the following requests from the same client, arrive on the same

connection. Usually, the user request for the file and the embedded objects are

requested sequentially over the connection. The distribution policy is set to forward the

requests from one client to one particular server, based on the analysis of the website

log files. This minimizes the overhead of dispatching each of the requests individually

to the backend servers. The locality of the requests that are being forwarded to the

backend server is increased through pre-fetching and data placement at the backend

server. On analyzing the real-time web log files of most websites, we observe that the

21

client requests follow a predictable pattern and this information can be used to pre-

fetch the next plausible request page into the memory. Thus, when a request for a page

A is made over the persistent-HTTP connection, the related web pages (A1, A2, and

A3) are pre-fetched to the pinned memory on the server handling client requesting page

A. The backend server then replies back to the requesting client with the requested

files. This is illustrated in Fig. 7.

A
A1

A2

B

A3

B1 Distributor

Backend

Disk

Backend

Disk

Incoming
Requests

Forwarded
Requests

Dispatcher

A

A1
A2

A3

B

B1

Fig. 7. Illustration of the distribution policy

It is to be noted that during the initial phase, after the start of the server, the requests

need to be retrieved from the disk. As the pinned memory of the backend servers gets

populated, the locality of the files is updated on the distributor. The initial choice of the

backend server depends on the lookup at the distributor table and the current load

conditions at the server.

22

2. Memory management scheme

Considering a system with simple locality-based distribution, integrated with the power

policy, the system suffers from considerable performance loss (15% - from simulation

results). LARD policies perform well due to the locality information preserved within

the cluster system. When servers are turned OFF for power conservation, we lose all

the information in the volatile memory and also the locality of the files. In order to

overcome this drawback, a better memory management scheme should be in place, that

improves the locality of the files and hence the performance of the system.

Pinned memory can be construed as a memory area, which is a part of the user

memory. The pinned memory does not overlap with the rest of the memory area and is

solely accessed by the application on the server (web server or file server application).

It can be categorized to be in between cache and memory in memory hierarchy. With

this arrangement, the application running on the server (file or web server) can be

allotted maximum available memory and the locality of the files can be increased

(when the locality of the files is improved, more memory hits can be initiated and the

response time can be decreased). Note that, with the allocation of the pinned memory,

no additional memory space is being consumed. The available memory is being

effectively partitioned for the application. Files, which are accessed frequently, are

located in the pinned memory. When the locality algorithm makes use of the pinned

memory, it reduces the disk accesses required by the application process due to the

23

improved locality of the files. One other feature of the pinned memory is that, the

contents of the pinned memory can be migrated to another server, when the server is

being turned OFF. Thus, their position in the memory and hence their locality being

preserved. The organization of the pinned memory is illustrated in Fig. 8.

Application

Disk System

Kernel
Memory

User Memory

Pinned
Memory

Lookup
Table

Fig. 8. Pinned memory organization

24

2.1 Data placement

The pin-down memory is fully associative in data placement. It is fully controlled by

the user/application process, and it maps the cached file into the address of memory.

The user/application process decides the size of the pin-down memory. The file is

placed in blocks on the pin-down memory. If a file cannot be fully accommodated in

the memory, it cannot be placed and it has to be had in the cache of the server. Fig. 4

illustrates the organization of pin-down memory and the mode of access of pin-down

memory by the user/application process. User/application process obtains the

information about the position of the data in the pin-down memory by looking up the

table. Block no, file name and link are the important fields in the lookup table. 'Block

no' stands for the number of blocks for that particular file, 'file name' is the name of the

block to be located in the 'block no' column and 'link' holds the pointer to the next

consecutive block.

2.2 Data replacement

The popularity of the file is used to place/replace files in the pin-down memory. The

pin-down memory occupies fraction of the main memory and so, utilizing this small

memory area effectively, becomes very important. Two facts decide the importance of

the cached file: frequency of access ffile and size of file Sfile. Frequency of access

relates to the number of times the file is accessed on the cluster system. Thus, it

25

becomes necessary to place/replace the important files in the pin-down memory.

Additionally, the size of the files Sfile can be critical in deciding the utilization of the

pin-down memory. Loading several smaller and most sought for files is considered

more critical than one large file. The importance of a file Ifile, which can be denoted as

ffile / Sfile, decides its position in the pin-down memory. Based on the value of Ifile, the

file is placed in the pin-down memory or is kicked out from the pin-down memory. For

every request, the Ifile is calculated at the backend to reorganize the pin-down memory.

Once, the file is placed/replaced in the pin-down memory area, this information is sent

to the front-end distributor. Front-end server uses this information about the position of

the file and forwards the incoming requests.

2.3 Migration in pin-down memory

Once a server is turned OFF, the user and kernel memories are wiped off. In

conventional systems, this decreases the locality of the files and increases the disk

accesses. In our policy, once a server is about to be turned OFF, the contents of the pin-

down memory are migrated to other servers, which are capable of accommodating the

data. This information is updated at the front-end and the distribution is still capable of

generating hits at the backend servers, which would otherwise have ended up as disk

accesses.

26

3. Harnessing web log files

We employ the web log files to collect a host of information; the users’ navigation

pattern, the popularity of the web pages and spotting “bundles” of data. This

information can be directly used for discerning the incoming requests and dispatching

them to the appropriate backend server nodes. Each of these information segments and

their uses are elaborated in the following sub-sections. We use a simple Perl-based

script to analyze the log files.

3.1 Users’ navigation pattern

We use the script to analyze the log files and garner the access pattern of the users on a

website. Every website can be categorically sub-divided based on the different category

of web users visiting the website. For example, a university website will most likely

cater to the needs of current students, prospective students, faculty members, support

staff people and other users. Thus, the users on such a website can be categorized into

such well-known groups. Each of these groups’ users has a highly directional and

mostly unique access pattern. Thus, this information can be used to categorize the users

visiting the website into pre-defined groups. The information about the user’s group

can be insightful in predicting the possible data that would be requested by the user in

the near future. Towards the end of Section 3, we illustrate and generalize the ability of

categorize the website users on most of the common website types.

27

3.2 Popularity of web pages

We also identify and rank the web pages based on their popularity and demand. The

number of requests to a particular page can be easily read off the log files and this can

be used to rank the web pages. We employ a two-fold system to rank the web pages;

we have offline analysis of the log files and also dynamic online tracking of the page

hits to obtain a realistic estimate of the popularity of the web pages.

3.3 Spotting bundles

As in [7], the web page and its associated embedded objects can be identified from the

log files. Image files, applets, audio/video streams, etc, constitute a “bundle” for the

respective web page. These objects are bound to be requested by the user’s browser in

the subsequent requests. Though spotting the bundles is similar to the method outlined

in [7], the application of bundles differs in our system and is explained in detail in the

next section.

3.4 Examples illustrating user categorization

Table 1 illustrates the possible categorization of popular website types. The argument

is that the users visiting most of the websites can be categorized into well know user

groups and use this information for enhancing the locality of the files.

28

Table 1. Categorization of websites

Website Type Category 1 Category 2 Category 3 Category 4

Univesity Prospective
Students

Current Students Faculty/Staff Recruiter/Industry
Personnel

News Politics Technology Sports Business

Technology Software Hardware Security Networking

Sports Country1 Country2 Country2 Country4

4. Application of web log information to improve LARD

The primary purpose of the web log mining is to enhance the distribution policy at the

front-end. The front-end forwards the requests to the backend server nodes based on

the locality of the data in the backend servers’ memory. We use the web log mining

information to make the distribution proactive and provide effective pre-fetching at the

backend server nodes. The following sub-sections detail the exact application of the

web log information in the context of backend server nodes and the front-end.

4.1 At the backend

As explained earlier, the users visiting the website are categorized into the specific

groups using our web log mining script. The requests from a particular user can be

monitored and identified to be belonging to a particular group by correlating the user’s

29

current access path and the information from the log mining. This is achieved by

correlating (a simple string matching) the current user access path with the pre-defined

paths in correspondence with each of the group/category of the website. Longer the

comparison paths, better is the confidence of the predicted category.

Once the category of the user is established with the above matching, the related data

files can be pre-fetched into the backend servers’ memory. The data files can be pre-

fetched into the backend servers’ memory depending on the current length of the

access path. The files immediately below the current access location on the user

navigation tree will be pre-fetched into the cache. This mechanism is clearly illustrated

on the next page in Figure 9.

The algorithm to perform this compare and pre-fetch approach is illustrated in Fig. 10.

For every incoming request, a comparison is made with the corresponding branch of

the website. As an example, let us assume that the user is visiting a portal and is

interested in technology (refer to Fig. 9). More particularly in information related to

“windows.html.”

30

index.html

politics_headline .html

county.html

state.html

technology.html

windows.html

software.html

sports.html

texas-a&m.html

football.html

Confidence = 0

Confidence = 50

User’s Current Navigation Path

Confidence = 50

Confidence = 80

Fig. 9. Building the confidence of the guesses

31

When the user requests to view “technology.html,” the request arriving at the backend

server would be “root/technology.html” and the corresponding comparison branch

would be “root/technology.html,” which are the same. This increments the confidence

for the current session (Confidence_curr) to 25. This means that, our prediction on the

user’s browsing behavior is getting better and vice versa.

Algorithm for pre-fetching
1. Request_ arrives at the backend.
2. For each available root_branch

If (Request_ == root_branch[i])
Confidence_curr += 25;

Else
Confidence_curr -= 25;

3. If (Confidence_curr >= 50)
Prefetch (rest of the branch);

 Else
Continue;

Fig. 10. Algorithm for pre-fetching

Once the confidence value for the current session increases 50, we ascertain that the

user is more interested in the data belonging to the branch below his current navigation

32

position. This is a vital information used for pre-fetching the data in the underlying

branches (referred as “rest of the branch” in Fig. 10). Such a pre-fetching will reduce

the number of disk accesses which increases the response time of the system. The

algorithm is simplified here for the clarity of the concept. The parameters are fine

tuned in the actual implementation to achieve maximum performance.

Also, when a request for a data page arrives at the backend, the embedded objects

associated with that page are pre-fetched into the cache. The subsequent requests from

the client for the embedded objects is forwarded by the distributor to this backend

server and this avoids a disk access and hence the latency.

Additionally, the popularity of the files, as registered by the recorded hits for each of

the web pages, is used to rank the web pages. The files are distributed and replicated

across the backend servers’ memory based on these rankings. The higher the ranking of

the pages and requests to these pages, larger the replication of these pages on the

backend servers’ memory. Fig. 11 (next page) illustrates the replication algorithm.

33

Replication algorithm
1. For every ‘t’ seconds do:

(i) Sort(rank_table);
(ii) For every element in rank _table do:

If (rank_table[i].rank > T1)
Replicate(rank_table[i].file, all);

Else if (rank_table[i].rank is btw T1½ & T1¾)
Replicate(rank_table[i].file, all¾);

Else if (rank_table[i].rank is btw T1¼ & T1½)
Replicate(rank_table[i].file, all½);

Else if(rank_table[i].rank is btw T1/8 & T1¼)
Replicate(rank_table[i].file, NO_CHANGE);

Else
Replicate(rank_table[i].file, NONE);

(iii) Return to step 1.

Fig. 11. Replication algorithm

The replication algorithm is set to run centrally on all the whole cluster system. The

interval of operation (‘t’ seconds) is decided based the current operating conditions of

the system (load, service time, etc) or a fixed interval of 15 minutes, whichever is

earlier. A rank table is built (rank_table) based on the number of hits registered for

each of the data pages (through dynamic log mining of the recent history). Each one of

the files have a “rank” associated with it which is calculated based on the popularity of

the file. Based on the value of “rank,” the files are replicated across the backend

servers. The replication is carried out by the Replicate() function. The attributes ‘all’,

‘NO_CHANGE,’ and ‘NONE’ are self explanatory.

34

4.2 At the front-end

The mechanism described at the backend will ensure that the backend servers’ cache is

populated with the files that are being requested by the clients and also with files that

might be requested by the clients in the near future. By default, the front-end would

forward the requests for the embedded objects to the same server where it had

dispatched the request for the associated web page. In addition, it forwards the regular

requests following the LARD policy. It is to be noted that the data in the backend

servers’ memory is not the same as it would have been with a simple LARD policy.

The dataset has been refined using the web log mining information.

35

V. ENHANCEMENTS IN POWER POLICY

The power policy resides over the locality aware request distribution policy. The

request distribution is carried out as explained in the previous section. It uses the web

log mining information to improve the locality of the files in the backend servers’

memory. The front-end and the backend keep track of the location of the files in the

memory and have this information available for the request distribution algorithm. The

request distribution is done for servers that are either ON or in hibernation. The servers

that are turned OFF are not considered for request distribution.

1. Power policy

The power policy is a variation of the PARD policy proposed by Rajamani et al [3]. In

PARD, the authors propose the use of two power states – ON and OFF. When the

servers are turned OFF during non-peak hours, the memory is wiped out and the

locality of the files is lost. Also, the requests that are forwarded to a server that is

turned OFF and is in the transition state of being turned ON incur a startup delay which

is reflected to end user. This can be detrimental to a website which has undulating load

characteristics. We have enhanced the power policy to address these issues.

First, we introduce an intermediate power state of “Hibernation,” in between the ON

and OFF states. The intermediate state of “hibernation” is preferred over the “OFF”

36

state for the following reasons: (i) the start-up delay for a turned OFF server varies

from 60 to 90 seconds, whereas the system to turn ON from the hibernation requires

only 10 to 15 seconds. (ii) Volatile content is completely lost when it is turned OFF,

whereas the content is preserved when the server enters the hibernation state. (iii)

Power consumption in the hibernation state is roughly 5%, compared to the active

state, and is nearly as good as the turned OFF state. Fig. 12 gives the state transition

diagram for the power policy.

Second, the “OFF” servers are turned “ON” proactively through anticipation and

careful monitoring of the current system load. The web log mining information can

give an idea of the general load characteristics of the cluster web server system and this

characterization can be used to anticipate the website load. The distribution of the

requests in the load characterization of most of the web servers is never Gaussian and

this element of predictable behavior of the user requests can be used to anticipate

changes in the incoming request flow. Thus proactive switching improves the response

of the server by nullifying the start-up delay which will otherwise worsen the QoS.

37

OFF

ON

H

HighLoad(+)

* (n – m) / 2

 LoadServer. <

LowLoad

 LoadServer.

(n – m)
< LowLoad

 LoadServer.

(n – m) >

HighLoad
LowLoad

 LoadServer. >

Fig. 12. Power transition states: H- Hibernation mode

The power policy is applied based on the load thresholds of each server. If the load of a

server drops below Loadlow (the minimum load required on a server below which the

server could become underutilized), the distributor is notified to stop scheduling

requests to that server; once the load on the system becomes zero, the server is put into

hibernation. If the total load of the system increases above the threshold [(n-m)* 2

(Loadlow +Loadhigh)] (Loadhigh is the maximum load that can be applied on a server

without any performance degradation) the server is woken up from the hibernation

state. A server is turned OFF if ΣServer.load (total load of the system) goes below

Loadlow *(n-m) and it is woken up from OFF state if the total load of the system

38

exceeds Loadhigh *(n-m). Based on this simple policy, the servers are manipulated for

power conservation. Wake-on LAN system, where the servers can be issued commands

(for turning OFF/ON/Hibernation) from a remote machine via the LAN, is used for

forcing a server to enter the desired state.

39

VI. SIMULATION MODEL AND RESULTS

1. Simulation model

The simulation model consists of a distributor/dispatcher and “n” backend servers. Our

model is scalable to any number of backend servers and we show that results are

consistent with 6 to 16 backend servers. The model emulates a real-time cluster system

with request queues at the distributor and the backend servers. The simulation model is

illustrated in Figure 13.

Front-end

Backend

Disk

Backend

Disk

Backend

Disk

Trace
File

Input

Gigabit
Ethernet

Request
Queue

Disk
Queue

Disk
Queue

1

2

N

Request
Queue

Request
Queue

Fig. 13. Simulation model

40

The simulation system parameters are enumerated in Table 2.

Table 2. Simulation system parameters

Parameter Value

Memory (Kernel memory + Application

memory)

256, 133 MHz

Kernel Memory 128 MB

Application Memory 128 MB

Pinned Memory 72 MB (Variable)

Connection latency 150 µs

Disk latency 18.215 ms (fixed) + 15.5 µs per KB

Power Consumption 100% when ON, 0% when OFF and 5% in

Hibernation

Interconnection Network 100 Mbps Fast Ethernet

TCP handoff latency 200 µs per request

Data transmission rate (across network – for

migration)

80 µs per 1 KB block

2. Simulation results

Simulations have been carried out by implementing the proposed algorithms in C++.

The program is a scalable, user configurable cluster with realistic system and disk

queues. Fig. 13 illustrates the simulation model. Additionally, we have implemented

41

the WRR, LARD, and existing algorithms for P-HTTP (Ext-LARD-PHTTP) for

benchmarking/comparison purposes. The simulation code emulates a cluster system,

which takes any log file in common log format as the input. The log files used for the

simulations are the request logs to the Texas A&M University CS department website

(27,000 requests and 4,700 files of average size 12Kb) and the request logs of the

Soccer World cup 1998 website (897,498 requests for 3809 files), for one full day. We

have also used a set of synthetic web trace for the simulations (30,000 requests, 3000

files of average size 10Kb). In the first section of the results, the efficiency of the

distributors of LARD and our system are compared. In the second section, the

following metrics are closely monitored for evaluating the performance of the system:

Throughput and Power conservation. We compare our policy (PLARD-web-log)

against WRR, LARD, PLARD, and Ext-LARD-PHTTP.

The throughput of all the algorithms for each of the trace is compared in Fig. 14. The

throughput is the summation of the number of requests processed by each of the

backend servers . Our scheme performs slightly better than the LARD system with a

marginal improvement of 5-10 %. The improvement in both LARD and PLARD-

enhanced over WRR is due to the reduced disk accesses or the improved hit rates in the

memory of the backend servers. Generally, about 30% of the website’s data can be

accommodated in the backend servers’ memory at any given point of time. This

assumption yields 85% hit rates with LARD and 5-10% boost with our scheme.

42

Throughput - CS Trace

0

2000

4000
6000

8000

10000

12000

14000
16000

18000

20000

6 10 16

No. of Servers

T
h

ro
u

g
h

p
u

t
R

eq
u

es
ts

/S
ec

o
n

d

(a)

(b)

Fig. 14. Throughput comparison: (a) – CS Trace, (b) – World Cup, (c) - Synthetic

43

Throughput - Synthetic

0

2000

4000

6000

8000

10000

12000

14000

16000

6 10 16

No. of Servers

T
h

ro
u

g
h

p
u

t
-

R
eq

u
es

ts
/S

ec
o

n
d

WRR

simple-PLARD

simple-LARD

LARD-ext-PHTTP

PLARD-enhanced

(c)

Fig. 14. Continued

To prove that our system has a better locality than LARD, we run simulations varying

the amount of data that can be accommodated in backend servers’ memory. We varied

the amount of website’s data that can be accommodated in the backend servers’

memory and recorded the throughput. This is illustrated in Fig. 15 (next page).

44

Throughput Comparison - Memory

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

5 10 15 20 25 30

Max % of data in cache

T
h

ro
u

g
h

p
u

t
--

R

eq
u

es
ts

/S
ec

o
n

d

WRR

simple-LARD

PLARD-enhanced

Fig. 15. Comparison with LARD

This illustration shows PLARD-enhanced is more consistent in preserving the locality

of the files than LARD. This comparison has been necessary to portray the efficiency

of PLARD-enhanced. The scenarios depicted here can be a possibility with large

websites with large data contents, where 30% of the website data cannot be

accommodated in the cache.

As we explained earlier, PLARD-enhanced consists of the enhancements outlined in

section IV which improve the locality of the web pages and files in the memory of the

backend servers. To identify the individual improvements provided by each of the

enhancement, we ran the simulations by turning ON/OFF these enhancments. Figure

16 illustrates the throughput comparison of each of the enhancment schemes. PLARD-

45

bundles denotes the bundle-based distribution scheme. PLARD-distribution stands for

the improvement achieved through the dynamic distribution of the files on the backend

servers’ memory based on their popularity. Finally, PLARD-prefetch-nav denotes the

enhancement achieved through proactive prefetching in the backend servers’ memory

through web log mining. It can be seen that prefetching complemented by web log

mining provides the best improvement clearly outperforming the other schemes by

100%. Also, PLARD-enhanced-overall is the combination of these schemes and

performs better as the schemes are complementary among themselves.

Throughput - CS Trace

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

6 10 16

No. of Servers

T
h

ro
u

g
h

p
u

t
-

R
eq

u
es

ts
/S

ec
o

n
d

Simple-LARD

PLARD-bundles

PLARD-distribution

PLARD-prefetch-nav

PLARD-enhanced-overall

Fig. 16. Throughput comparison for individual enhancement

46

Fig. 17 shows the comparison of power conservation among PLARD-enhanced and

simple-PARD [3]. All the other policies lack power conservation and are not

considered in the evaluation. PARD and simple-PLARD achieve good power

conservation in comparison to PLARD-enhanced as they have more aggressive power

conservation strategy. They simply trade performance for the gain of power

conservation. In contrast, PLARD-enhanced focuses to provide good performance and

the power conservation is a plus.

Power Conservation

0

10

20

30

40

50

60

70

6 12 16 24 32

No. of Servers

P
o

w
er

 c
o

n
se

rv
ed

PARD

simple-PLARD

PLARD-enhanced

Fig. 17. Power conservation

47

VII. SUMMARY AND CONCLUSIONS

As the use of cluster systems increases, conserving power and improving performance

have been a critical issue. In this thesis, we compare four different policies: WRR,

LARD, Ext-LARD-PHTTP and PLARD-enhanced to determine the policy that

provides best results in terms of power and efficiency. WRR has a good load balancing

capability, but its locality is so poor that it increases miss rates. In order to reduce the

miss rates and improve secondary storage scalability, LARD is used. However, WRR

and LARD save zero power in the cluster system. Thus, we propose PLARD that

employs not only content-based request distribution, but also On-Off policy to have

good efficiency and power conservation. But, the power conservation comes at the cost

of performance of the system. To overcome this, we propose a modification in the

memory organization and its usage in the context of the application server. Also, our

policy provides support to HTTP 1.1 based connections through proactive distribution

and pre-fetching. The simulation results indicate that our system provides considerable

power conservation (5 – 30%) in spite of improved performance (15 -40%). As a future

extension, we can explore the possibility of providing support for dynamic content.

48

REFERENCES

[1] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel, W. Zwaenepoel, E.

Nahum, “Locality-aware request distribution in cluster-based network servers,” in

Proceedings of the Eighth International Conference on Architectural Support for

Programming Languages and Operating Systems, San Jose, CA, October 2-7, 1998,

pp. 205-216.

[2] APC – American Power Conversion. “Determining total cost of ownership for data

center and network room infrastructure.” ftp://www.apcmedia.com/salestools/CMRP-

5T9PQG_R2_EN.pdf, December 2003.

[3] K. Rajamani and C. Lefurgy, “On evaluating request-distribution schemes for

saving energy in server clusters,” in Proceedings of International Sym. Performance

Analysis of Systems and Software, March 2003.

[4] M. Aron, D. Sanders, P. Druschel and W. Zwaenepoel, “Scalable Content-aware

Request Distribution in Cluster-based Network Servers,” In Proceedings of the

USENIX 2000 Annual Technical Conference, San Diego, CA, June 2000, pp. 323-336.

[5] M. Aron, P. Druschel and W. Zwaenepoel, “Efficient Support for P-HTTP in

Cluster-Based Web Servers,” in Proceedings of the Annual USENIX Technical

Conference, Monterey, CA, 1999, pp. 185-198.

49

[6] E. V. Carrera, E. Pinheiro, and R. Bianchini, “Conserving Disk Energy in Network

Servers,” in Proceedings of the 17th Annual International Conference on

Supercomputing, San Francisco, CA, June 2003, pp. 86-97.

[7] E. Pinheiro, R. Bianchini, E. V. Carrera and T. Heath, “Dynamic Cluster

Reconfiguration for Power and Performance,” Norwell, MA: Kluwer Academic

Publishers, 2002.

[8] S. Ramakrishnan and Y. Yinghui, “Mining Web Logs to Improve Website

Organization,” in Proceedings of WWW-10, Hong Kong, May 2001, pp. 430-437.

[9] C. E. Wills, G. Trott and M. Mikhailov, “Using Bundles for Web Content

Delivery,” in Proceedings of ACM Computer Networks, New York, NY, August 2003,

pp. 797-817.

[10] P. Mike and E. Oren, “Adaptive Web Sites: Automatically Synthesizing Web

Pages,” in Proceedings of the 15th National Conference on Artificial Intelligence

(AAAI), Madison, Wisconsin, 1998, pp. 727-732.

[11] P. Mike and E. Oren, “Towards Adaptive Web Sites: Conceptual Framework and

Case Study,” in Proceedings of WWW-8, Toronto, Canada, May 1999, pp. 152-158.

[12] N. Takehiro, K. Hiroki, Y. Yohei, “Discovering the Gap Between Website

Designers’ Expectations and Users’ Behavior,” in Proceedings of WWW-9,

Amsterdam, May 2000, pp. 811-822.

50

[13] S. Myra and F. C. Lukas, “WUM: A Web Utilization Miner,” in Proceedings of

EDBT Workshop WebDB98, Valencia, Spain, March 1998, LNCS 1590.

[14] S. Myra, F. C. Lukas and W. Karsten, “A DataMiner Analyzing the Navigational

Behaviour of Web Users,” in Workshop on Machine Learning in User Modeling,

Chania, Greece, June 1999, ACAI’99.

51

VITA

Gopinath Vageesan

72 Krishnaswamy nagar, 2nd layout,

Ramanathapuram, Coimbatore,

Tamilnadu, India – 641045.

Educational Background

Gopinath Vageesan received his B.E. in electronics and communication engineering

from Tamilnadu College of Engineering, Bharathiar University, Coimbatore, India in

May 2002. He earned his M.S. in computer engineering from the Department of

Electrical and Computer Engineering, Texas A&M University.

