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ABSTRACT 

 
Hingeless Flow Control over an Airfoil via Distributed Actuation. (December 2005) 

Anmol Agrawal, B.E., Motilal Nehru National Institute of Technology, India 

Co-Chairs of Advisory Committee: Dr. Othon K. Rediniotis 
                                Dr. J.N. Reddy 

An experimental investigation was undertaken to test the effectiveness of a novel design 

for controlling the aerodynamics of an airfoil. A synthetic jet actuator (SJA) was placed 

inside a NACA 0015 airfoil with its jet at 12.5% of the chord length, hereby referred to 

as the leading edge actuator. Four centrifugal fans across the span were mounted at 70% 

of the chord and the jet formed by them was located at 99% of the chord, hereby referred 

to as the trailing edge actuator. The effects of these actuators on the aerodynamic 

properties were studied, separately and then in conjunction, with varying angles of 

attack. 

 

The leading edge actuator delays the onset of stall up to 24 degrees, the maximum angle 

of attack that could be attained. The control of the aerodynamics was achieved by 

controlling the amount of separated region. There was no effect of the actuation at lower 

angles of attack. 

 

The trailing edge actuator provides aerodynamic control at both low and high angles of 

attack. The study investigated the effect of jet momentum coefficient on the 
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aerodynamic properties for various angles of attack. The data obtained shows that lift 

control (in both positive and negative direction) was achieved even at low angles. The 

actuator enhances the aerodynamic properties by changing the pressure distribution as 

well as by delaying flow separation. 

 

Study of the combined actuation shows that the synthetic jet actuator was very effective 

in delaying stall when the trailing edge jet was ejected from the upper surface. For the 

case when the jet is ejected from the lower surface, there is less control. This can be 

accounted for by the difference in aerodynamic loading for both cases. 
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INTRODUCTION 

General 

Air force is a major unit in any modern war. The era of modern military aircraft has been 

marked by development of low observable stealth fighters and Unmanned Aerial 

Vehicles (UAV), which can fool enemy detection systems. Surface of these vehicles is 

designed to deflect the radar signals away from the receiver. Since the shape of these 

aircrafts is dictated by stealth considerations with little input from aerodynamics, it 

becomes crucial to control the flow using virtual shaping methods to attain desirable 

aerodynamic characteristics. Another need for stealth aircrafts is the absence of hinged 

components (moving control surface) on the surface of the wings. Actuation of such 

components can cause the shape of aircraft surface to change, foiling any effort that 

would have been made towards designing low detection surfaces.  

 

Separation Control 

Flow separation is one of the most important issues that need to be addressed. As the 

angle of attack increases, there is a strong adverse pressure gradient on the suction side 

of the airfoil. Various mechanisms such as blowing compressed air and suction using 

external hardware were explored in the beginning of the twentieth century. Flow control 

methodologies can be classified as active or passive methods. Passive devices do not 

require any energy to be introduced. Passive devices that have been used for flow 
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control include vortex generators (Klausmeyer et al., 1996)1, distributed roughness, 

acoustic cavities (Chang et al., 1992)2, and self excited rods (Huang and Mao, 2002)3. 

Vortex generators enhance the mixing of the fluid in the shear layer. This mixing 

increases the amount of turbulence in the boundary layer and adds the energy needed to 

overcome the adverse pressure gradient. Other passive methods mentioned above 

function by natural tendencies inherent in the fluidic motion. These methods function by 

creating vortical structures in the flowfield by taking advantage of the harmonic 

receptivity of the flowfield. The vortical structures influence the mixing of fluid from the 

free stream velocity into the slower and lower energy boundary layer. 

 
 

Suction from the surface of an airfoil has been used to remove low energy fluid directly 

from the boundary layer. This work was begun by Prandtl in 1904 and has been 

investigated successfully many times since (Kruger, 1947)4. Along with suction of the 

boundary layer, introducing momentum via blowing has been used to energize the low 

energy region.  High pressure air taken from an engine compressor has been used as the 

source for this momentum. Goodmanson and Gratzer5, 6 have shown in previous studies 

how these devices have been used. A jet has been used to blow normal to the flow and 

enhance the mixing layer (Tillman and Hwang7 and Gad-el-Hak8). The jet can be blown 

tangentially along a curved surface to take advantage of a phenomenon known as the 

“Coanda Effect”. The tangential jet will contain a pressure gradient normal to the airfoil 

surface which helps to overcome the adverse pressure gradient of a stalled flow. The 

pressure gradients that hold the emanating jet to a surface can also be exploited to obtain 
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an increase in circulation. This is highly desirable as the lift is proportional to the amount 

of circulation around a body. Recently, the synthetic jet actuator has been studied quite 

extensively in the areas of enhancement of mixing flows, separation control, wing 

shaping, and fluidic thrust vectoring. Most existing synthetic jet actuators utilized a small 

scale low-energy actuation to create micro disturbances into highly receptive regions of a 

flowfield. The disturbances into these regions create changes in the evolution of the fluid 

flow. Streamwise vortical structures are created from the small disturbances and energize 

the boundary layer. Seifert and Pack9 have demonstrated that in order to gain the desired 

results from a synthetic jet actuator, there must be one to four vortices produced over the 

airfoil surface at any given time. Seifert has also shown that the most efficient excitation 

corresponds to the SJA being oscillated at an optimal non-dimensional frequency. The 

optimal non dimensional frequency is about one and is derived from the Strouhal number. 

The non-dimensional frequency is defined to be:  

 
 

∞

+ =
U
x

fF te           (1) 

 

where,  f  is the actuator frequency, xte is the distance from the actuator to the trailing 

edge of the airfoil and ∞U  is the value of the freestream velocity. Moreover, the 

literature indicates that jet momentum coefficients (C�) of at least 0.002 are necessary 

before any substantial effects on the flow can be observed. This coefficient is defined as 

the ratio between the momentum of the jet emanating from the actuator and the 
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momentum of the freestream. It may be calculated either using the maximum velocity at 

the slot exit or by using the RMS value of the jet exit velocity. For the results presented 

here, the jet momentum coefficient was calculated using the maximum value of the 

velocity of the flow exiting the jet. The expression that defines the coefficient is then 

(Seifert et al., 1993)10: 

 

∞

=
)(

)(
2

2

UC

uh
C jet

ρ
ρ

µ
           (2) 

 

 

where, � is the fluid density, h is the width of the jet exit, u is the amplitude of the 

velocity at the jet exit, C is the reference or characteristic length (for example, in this 

case the chord length of the airfoil) and the subscript “ ∞ ” indicates “freestream”. Many 

of the synthetic jet actuators used in preexisting technical literature have relied on 

systems that are driven piezoelectrically (Rathnasingham and Breuer11 and Seifert et 

al.12) or by external hardware (Seifert and Pack13, McCormick14 and Greenblatt 

Wygnanski15). This external hardware required for acoustic or pneumatic systems rest 

mainly outside of the test section of the wind tunnel. Applications typically require that 

the synthetic jets be small and compact so as to fit inside the control surface of the 

aircraft the performance of which they were attempting to modify. Although 

piezoelectric actuators have been light and compact they display poor performance 

characteristics away from actuator resonance frequencies and the maximum available 

amplitude is limited. The need for large amplitude was driven by the need to perform at 
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higher Reynolds or Mach numbers. In previous research by Gilarranz and Rediniotis16, a 

compact, high-power synthetic jet actuator was developed to meet the demands for size, 

weight, efficiency and power density needed for full-scale flow control applications. The 

creation and more in-depth description of the synthetic jet actuator can be found in 

Gilarranz et al.16, 17. This actuator was advantageous over piezo type actuators due to: its 

ability to achieve oscillation amplitudes of at least an order of magnitude higher, 

decoupling of oscillation amplitude and frequency, greater power density, smaller 

driving voltages, off the shelf construction materials. The use of a synthetic jet actuator 

to reattach a separated flow field is shown in figures 1 and 2. In figure 1 it can clearly be 

seen that without actuation the smoke traveled off the surface of the airfoil. With a 

leading edge actuator (figure 2) in use the smoke conformed to the surface and the 

separated region was eliminated.           

 
 

 

Figure 1:  Smoke flow visualization of NACA 0015 airfoil in a flow field at 20 �=20 
degrees (Gilarranz et al.17). Without actuation.  
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Figure 2:  Smoke flow visualization of NACA 0015 airfoil in a flow field at 20 �=20 
degrees. (Gilarranz et al.17). With actuation. 

 

Jet Flaps 

Jet flaps (Davidson 1956)18 has been a very promising technology in attaining high lift in 

aircrafts. The idea is demonstrated in figure 3 (b) & (c) together with a typical pressure 

distribution. The term jet flap implies that a jet is directed to leave the wing trailing edge 

as a plane jet at an angle to the mainstream, so that an asymmetrical flow pattern and 

circulation is generated about the airfoil in a manner somewhat analogous to a trailing 

edge flap. This causes asymmetrical pressure distribution resulting in increase of lift 

coefficient. The Kutta condition is violated at the trailing edge increasing loading at the 

trailing part of airfoil, which results in lift enhancement. 
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Figure 3: FLUENT simulation of the jet flap effect on an NACA airfoil at �=2o. a) 
Velocity vectors near the jet. b) Pressure distribution on the airfoil with no jet flap. 
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Figure 3: continued. c) Pressure distribution on the airfoil with jet flap. 
 

Various designs that have been proposed (Williams et al.)19 use engine air bled from the 

compressor. To facilitate variation of jet angle to the mainstream direction, air is usually 

ejected from a slot forward of the trailing edge, over a small flap whose angle can be 

varied as shown in figure 4. Such basic jet flap schemes essentially require the gas to be 

ducted through the wing and are commonly referred to as “internally blown flap” as 

shown in figure 4 a. Another such design known as “externally blown flap” (figure 4 b) 

deploys gas ducts and nozzles outside the wing. In this arrangement, each round jet from 

the exhaust of jet engines is directed towards the gap of a slotted flap which guides the 

air over the flap in the form of a flattened jet sheet. 

c
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Figure 4: Some jet flap schemes (Williams et al.19) a) Internally blowing flap b) 
Externally blowing flap. 

 

Both of these methods use the air bled from the engine compressor which couples engine 

performance with jet flaps. The externally blown flap design, even with fixed flap, may 

not be useful for stealth aircraft, where engines are normally housed inside the wing. The 

internally blown flap design uses complicated internal tubing whose design is itself a 

problem. In case of an asymmetric engine failure or misfiring during flight, the results 

can be catastrophic due to unbalanced roll moments that may be generated. 

 

 

 

 

 

a 

b 
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Trailing Edge Actuator 

In the present study, we propose a new design, completely decoupling engines with jet 

flap and using the advantages of boundary layer suction, whose effects have been 

explored by Prandtl in early twentieth century. 

 
 

It is a well known fact that flow separation is a major problem for attaining high lift. The 

phenomenon occurs at the suction side of the airfoil, when low momentum air in the 

vicinity of the airfoil surface re-circulates under the influence of adverse pressure 

gradient. We use centrifugal fans at 70% of the chord length to suck in low energy 

boundary layer, which is prone to separation. The air sucked is energized and forced out 

in the form of jet flap perpendicular to the chord. We do not intend to recover jet 

momentum in the form of propulsive thrust, as the momentum coefficient is too low to 

detect any force, therefore we eject the jet at an angle of 90 degree with respect to the 

chord. A symmetrical duct system as shown in figure 5 can be used to eject the jet from 

the upper, as well as, from the lower surface. The direction of airflow can be regulated 

by an internal flap mechanism. The objectives of the design are as follows: 

1) Increase lift coefficient at low angles of attack. 

2) Delay angle of stall, increasing maximum lift coefficient. 

3) Create negative lift coefficient in a hingeless fashion, to be able to control roll 

moment in an aircraft. 

This design is completely hingeless and self contained inside the wing. Only wires 

communicate to the batteries for power supply. Limitations of the leading edge actuator 
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have been addressed by incorporation of the trailing edge actuator combining the 

attractive features of boundary layer suction and jet flap technologies. This thesis 

presents our latest advancement in the development and testing of these flow control 

technologies.  

 

 

Figure 5: Bidirectional ducting and internal flap mechanism. 

flap keyed shaft 

trailing edge slots 
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DETAILS OF THE WING SURFACE AND LEADING EDGE 

ACTUATOR DESIGN  

General 

This section discusses the details of the wing surface and leading edge actuator design. It 

describes the construction of SJA, plenum and leading edge slots.  

 

Wing Surface 

The test wing profile for the tests of the leading and trailing edge actuator is a NACA 

0015 airfoil. This shape was chosen due to the ease with which the wing could be 

manufactured and the available interior space for accommodating the synthetic jet 

actuator (SJA).  The wing has a chord length of 0.60 meters and a span of 0.32 meters. 

The exterior structure of the wing is comprised of four separate pieces: the front and mid 

section, the trailing edge section and a section between the trailing edge section and the 

mid section with holes to match the fans of the trailing edge actuator. The mid section is 

designed to hold the base plate fitted with an array of fans and motors. Figure 6 shows 

the details. 

 

Description of Leading Edge Actuator 

The leading edge actuator consists of the synthetic jet actuator connected to the skin of 

the wing through a plenum at 12.5 % of the chord length. The principle of our SJA 
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driving mechanism is well-developed, and has been extensively utilized in a variety of 

engines. It consists of a DC motor with its shaft connected eccentrically to a crank, 

which is in turn connected to the pistons of the SJA (figure 7 a). Due to eccentricity, the 

 

   

  

Figure 6: a) Front part of airfoil, made with leading edge slots b) mid section 
showing recess for fixing fans c) Trailing edge section, showing jet flap slots d) The 

section used to cover fans. 
 
 
 
rotary motion of the motor is translated to linear motion of the SJA pistons. This design 

offers benefits over, for example, piezoceramic driving mechanisms, since: it can 

achieve piston oscillation amplitudes at least an order of magnitude higher; it eliminates 

a b

c d
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the dependence of oscillation amplitude on the oscillation frequency, which plagues 

piezoceramic mechanisms; with available state-of-the-art, high power-density electric 

motors it can match and exceed the power densities of piezoceramic mechanisms; it 

requires significantly smaller driving voltages. 

 

For the present SJA, as shown in figure 7, electric motors drive a series of “off the 

shelf” small gasoline engines which are used as reciprocating compressors. The cylinder 

head of each of these engines is perforated and attached to a plenum, which is closed on 

all sides except for a slot machined on one of the walls. The change in the cavity volume 

of the plenum causes the pressure inside the cavity to fluctuate, creating the synthetic jet. 

The use of the available engine technology reduces the effort to manufacture pistons 

with no leakage, thus simplifying the design and construction of the SJA. As shown in 

figures 7 a and 7 b, the present SJA array is composed of 6 reciprocating compressors 

(pistons), which are driven by two DC motors. Each piston has a diameter of 27.7 mm 

and a peak-to-peak piston stroke of 22 mm. Each DC motor measured 69.8 mm in length 

and 41.1 mm in diameter, had a maximum power of 800 W and weighed 0.34 kg. The 

exit slot of the plenum is curved in order to permit the jet to exit tangentially to the 

surface of the wing, taking advantage of the Coanda effect. Figure 7 c shows a picture of 

the SJA array illustrating details on cylinder arrangement, slot geometry and cylinder 

phasing. It should be noted that the cylinders had to be properly phased in order to 

reduce array vibration. This phasing in turn required the compartmentalization of the 

plenum, as it is obvious that if the plenum was not divided into six individual 
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compartments, each one corresponding to each of the six cylinders, the engine phasing 

would result in zero net volume change in the plenum during an operation cycle and thus 

no synthetic jet effect. More details on the design and fabrication of the actuator can be 

found in Gilarranz (2001) and Gilarranz and Rediniotis (2002).  
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Figure 7: The leading-edge synthetic jet actuator: (a) schematic of single piston and 
its interface with the plenum, (b) schematic of synthetic jet array, (c) picture of SJA 
array, showing motor mounting, cylinder phasing, and exit slot geometry with fixed 

exit area. 

a 
b
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Figure 8: Details of plenum design. It fits into SJA at one end at to front of skin at 

other. 
 
 
 
The plenum shown in figure 8, was designed to serve as an interface to connect the 

cylinders of the SJA to the leading edge slots made in the surface. The CAD model was 

used to Rapid Prototype it in our FDM 3000 STRASYS machine using ABS plastic. The 

leading edge slots were designed such that the mean direction at which air is ejected, 

makes a low angle (17o) with the surface of the airfoil. As shown in figure 7 a, there are 

6 slots to match 6 cylinders in the SJA. The dimensions of the inner 4 slots are 1.85 x 41 

mm2. The outer slots at each end measure 1.85 x 63mm2. The outer slots are wider to 

ensure that effect of the SJA over the entire span of the wing. This assembly of plenum 

and SJA is connected to the wing as shown in figure 9. Silicon sealant is used at the 

interface to eliminate any leaks that may occur. 
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Figure 9: Sectional view of SJA, plenum and skin assembly. 
 
 
 

To avoid distortion of the wing due to the weight of SJA, the base is designed to transfer 

the entire weight of the SJA to the L shaped steel bracket, as shown in figure 10, which 

pivots the wing on the pyramidical balance. 

 

 

Figure 10: SJA, plenum and wing supported by the L shaped steel bracket (L part 
not shown here). 
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TRAILING EDGE ACTUATOR 

General 

This section discusses details about the design and fabrication of the trailing edge 

actuator. It talks about the array of fans, the ducting and internal flap mechanism for the 

construction of the actuator. 

 

Design and Fabrication 

The trailing edge actuator consists of two mechanisms - a mechanism to suck the low 

energy boundary layer inside the airfoil, thus bringing higher momentum air close to the 

airfoil wall which is less prone to separation, and a mechanism to enhance the 

aerodynamic loading at the rear of airfoil. For suction of low energy air we use an array 

of four centrifugal fans at around 70% of the chord length. The fans used here are from 

Black and Decker. They have an eye diameter of 39 mm and an outer diameter of 68 

mm. Each fan consists of 10 blades which are shrouded. Each fan is coupled to an 

electric motor. These are brushless DC motors capable of running at speed of 20,000 

rpm. Each of these motor fan systems is mounted on a thin aluminum plate which is 

fastened to a recess in the skin, visible in figure 11. The figure also shows the holes 

made in the skin to match the eye of each fan. The trailing edge actuator is separated 

from the rest of the airfoil by a wall made while fabricating the skin of the airfoil.  



  

   

19 

           

Figure 11:  (a) Array of fans mounted on aluminum plate (b) Sectional view 
showing details of trailing edge actuator. 

 
 
The cavity formed at the trailing edge ultimately separates in two ducts which 

communicate to the trailing edge slots as shown in figure 12. An internal flap 

mechanism controls the direction of the airflow.  The flap can be rotated by an 

aluminum shaft, having a keyhole running through its length, which fits on the key made 

in the flap. 

 
 

 

Figure 12: Side view of the airfoil showing details of trailing edge actuator. 
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The design enables the operation in two modes depending on the position of internal flap 

as can be observed in figure 13. The first configuration forms a lower jet flap, with the 

jets ejecting from the lower surface. We also incorporate the ability to eject the jets from 

the upper surface and investigate their effects on the flowfield in the next section. 

 
 

 
Figure 13:  Schematic of airflow around the trailing edge actuator with (a) Jet 

ejecting from upper surface (b) Jet ejecting from lower surface. 
 

The skin with slots and cavity and internal flap is manufactured by rapid prototyping. 
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INSTRUMENTATION, FACILITIES, EXPERIMENTAL SETUP 

AND PROCEDURES 

General 

Details of instrumentation, setup, facilities and procedures of the test are described in 

this section.   

 

Instrumentation 

The DC motors used in the synthetic jet actuator were controlled by an astro flight 

electronic motor controller with BEC. Due to overheating of the controller, compressed 

air was continuously blown over its surface for its safe operation. The motors used for 

running the fans have an inbuilt chip to control its speed. These motors are powered in 

parallel using 12 V batteries. Maximum current rating for each motor is 7.5 A. We use a 

fuse in the power circuit to prevent any overheating that may damage the motor 

windings. Control wires for all four motors are connected in parallel to the receiver of an 

FM radio receiver-transmitter control unit. Transmitter throttle shown in the figure on 

page 23 is adjusted to control the speed of the motors.  

 

Figure 14: Optoelectronic reflective speed sensor. 
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Optoelectronic speed sensors shown in figure 14 have been used to measure the 

frequency of all motors. Each sensor consists of a combination of light emitting diode 

and photodiode. A reflective aluminum tape is pasted at the bottom of each fan. When a 

fan runs, in each cycle, as the reflective tape comes over the sensor, light emitted by the 

LED gets reflected from the tape and goes back to the photodiode causing current to pass 

through it. This generates a pulsed voltage output, with the frequency of the voltage 

pulsation being equal to the frequency of the motor. Adequate care has been taken to 

adjust the length of tape so that we may not register any higher order harmonics due to 

the response time of each electrical unit in the sensor. The sensors require 5 V input 

supply, which is supplied from LM 7805 chips. These chips have been powered using 

standard 12 V batteries. Pulsed voltage output is registered using a multimeters. Figure 

15 shows electronic breadboards built to power the sensors used. 

 
 

 

Figure 15: Breadboard showing LM 7805 chips, with capacitors and resistors to 
build sensor power supply. 
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Facilities 

The aerodynamic tests were performed in the Texas A&M University's 3' x 4' continuous 

wind tunnel at a freestream velocity ( ∞U ) of 18 m/s, with a resulting Reynolds number 

based on the wing chord of Re = 7.1 x 105. Unless mentioned otherwise, the results 

presented correspond to the above-mentioned values. The wind tunnel has a turbulence 

intensity of 0.5% at a freestream velocity of 18 m/s. The freestream velocity was 

determined using a wall mounted Pitot tube, manufactured by United Sensors, with a tip 

diameter of 3.175 mm. Differential pressure was measured using an Omega PX139 

series pressure transducer with a range of ±2.0 kPa, which can resolve pressures down to 

1Pa. Output of the thermocouple was measured by an Omega I-Series temperature and 

process monitor with a voltage measurement resolution of 1µvolt.  

 

 

Figure 16: a) 16 bit A/D board and load cells b) Transmitter and receiver system to 
control motors. 

 
 
 

a b 
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A three component Aerolab pyramidal balance was used for force and moment 

determination. The balance measures two forces (lift and drag) as well as pitching 

moment. These components are measured directly by three strain gage load-cells. The 

accuracy of the balance was estimated at 0.5% of full scale for lift, drag and pitching 

moment. Through repeated data runs, repeatability of the balance for lift, drag and 

pitching moment was estimated to be �CL = 0.005, �CD = 0.005 and �Cm = 0.003.  

 

 
Model pitch (angle of attack) was adjusted using a stepper motor, which was connected 

to a worm-gear mechanism. A high-resolution optical encoder was connected to the 

mechanism and its output was fed into the data acquisition program via a digital read out 

display with a RS232 output. Model angle of attack could be set to within 0.05 deg. 

Force balance data as well as wind tunnel dynamic pressure and temperature were 

acquired using a P.C. equipped with a 16 bit A/D board shown in figure 16.  

 
 

 Setup 

The sensors are mounted on the base plate as shown in figure 17. Side plates made of 

Plexiglass are mounted on the sides to – make the flow two dimensional, eliminating any 

downwash effects and to seal the cavity at the trailing edge so that air sucked in through 

fans does not escape from the sides. Adhesive caulk is applied at the interface of wing 

and side plates to ensure proper sealing. Thus the side plates ride with the wing. The 

model is painted white to remove surface irregularities that resulted from the 
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manufacturing processes and to help improve flow visualization. The system is then 

pivoted on the balance strut using the L-shape bracket that emanates from the model and 

the arm of the bracket is fixed to the pitching strut as shown in figure 18 a. This strut is 

capable of moving and provides motion for changing the angle of attack of the wing. 

 

 

Figure 17: Aluminum base plate showing array of fans, motors and optoelectronic 
sensors. 

 
 
 
 
 

   

Figure 18: Photographs of the wing mounted in the wind tunnel. a) Balance strut, 
L-shape bracket and pitching strut b) Wing with side plates. 
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Actuator Surveys 

The process of quantification of the actuator flow field is basically a calibration process. 

In this section we discuss the method of quantifying the strength of the leading and 

trailing edge actuators based on actuator frequency.  

 

Characterization of Synthetic Jets 

The behavior of the actuator was evaluated by characterizing the flowfield of the 

actuator. These tests involved the measurement of the instantaneous slot exit velocity of 

the actuator as a function of frequency. These tests were performed with no airflow 

inside the tunnel. For the results reported, a hot-wire anemometer was used to measure 

instantaneous jet velocity at the exit of the SJA slots. The data from the measurement 

probes were acquired using a P.C. equipped with a 16 bit A/D board. The acquired data 

included the voltage output of the hot-wire sensor as well as the voltage signal from an 

optoelectronic sensor, which was used to measure the frequency of operation of the 

actuator and provide accurate phase referencing information. The hot-wire system 

consisted of a TSI 1201 hot-wire probe interfaced with an A.A. Lab Systems 

Anemometer. The system was used in a constant temperature mode.  
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Characterization of Trailing Edge Actuator 

The trailing edge actuator was typified without any airflow past the wing by measuring 

velocity versus fan frequency. Frequency of each fan was measured against the air 

velocity at the exit of the corresponding slot. Air velocity was measured using a Pitot 

tube from United Sensors with a tip diameter of 0.025”. Dynamic pressure was read 

using a Transcat calibrated manometer. Motor frequency was measured using 

optoelectronic reflective sensors fitted to the aluminum base plate as described earlier. 

 

The measurement probe was placed at the centerline of the exit slot (both in the 

chordwise and spanwise position, (see figure 19), and the frequency of the actuator was 

varied within the range of 0 to 300 Hz. Each of these tests was performed at the suction 

side as well as at the pressure side, which totals to eight test cases. 
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Figure 19: Trailing edge survey using a Pitot tube. 
 

Wind Tunnel Tests  

In order to demonstrate the ability to control separation and enhance aerodynamic 

characteristics of the proposed actuators, the model was tested in the 3’x 4’ wind tunnel 

at the Department of Aerospace Engineering of Texas A&M University.  These tests can 

be divided into the following categories: 

 

Force Balance Tests 

 These tests were performed for the basic wing with no actuation, for the leading edge 

actuators with frequency varying from 20 Hz to 60 Hz, with trailing edge actuators for 

Pitot 
probe Traversing 

system 
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frequency varying between 100 Hz to 300 Hz at an interval of 100 Hz and with the 

combination of leading and trailing edge actuators. These tests consisted of pitching the 

model through a set angle of attack range from -1 to 24 degrees. Data was typically 

recorded at 2 degree intervals. In the vicinity of the maximum lift coefficient smaller � 

increments were used where necessary. Pitching moment was taken about 25% of the 

wing's chord. Data was taken both with and without SJA actuation. The data taken with 

the actuator off provided a baseline for comparison. In this study, solid and wake 

blockage were corrected for, using the method presented in Rae and Pope20. 

 

 Flow Visualization Tests 

An on-surface flow visualization technique was used. The on-surface visualization used 

black tufts, placed on the suction side of the wing in order to provide a means of surface 

flow visualization. All of the above mentioned tests were run in the 3' x 4' tunnel at a 

free stream velocity of 18 m/s (Re = 7.1 x 105) at angles of attack (�) of 20 degrees. All 

of the flow visualization tests were performed with and without operation of the leading 

edge actuator only, trailing edge actuator only and a combination of leading and trailing 

edge actuators. For the case in which the actuators were used, the leading edge actuator 

was operated at a frequency of 40 Hz and the trailing edge actuator was operated at a 

frequency of 300 Hz. Video footage and digital still images were recorded during these 

tests and analyzed subsequently to determine the characteristics of the flowfield for the 

above-mentioned conditions.  
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RESULTS AND DISCUSSION 

 

General 

The data is presented in the following way: 

• Leading edge and trailing edge actuator surveys: Data used to characterize the 

flowfield at the exit of the SJA slot and that of the trailing edge slot is shown.  

• Force Balance Results: Data is presented showing the effect of the synthetic jet 

actuator on lift, drag and pitching moment. 

• On-Surface Flow Visualization: Tufts are also used to provide a second means of 

surface flow visualization. CFD simulations have also been used to give some insight 

for understanding the physics involved. 

 

Jet Surveys 

This section describes the experiments performed to quantify jet momentum against 

actuator frequency for the leading as well as the trailing edge actuator 

 

Synthetic Jet Characterization 

Figure 20 presents the maximum velocity magnitude, measured at the exit of one of the 

outer and inner leading edge actuator exit slots in the middle of its width, as a function 

of actuator frequency. A study is performed to determine compressibility effects. We 
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define a parameter � to be the ratio of density of air at the exit to its density adjacent to 

the piston. From continuity arguments it can be shown that  

thkk=β  ; fVSk w π2/max=  and lVk cylth /=   

where maxV is the maximum velocity measured at the slot exit, wS is the slot width, cylV  is 

the volume of cylinder, f  is the frequency of actuation and l  is slot length. Figure 20 

shows the influence of back compressibility effects. Since the outer slots are wider, flow 

there is more compressible than that in inner slots. 
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Figure 20: Back compressibility effect at the exit of SJA slots. Actual velocity has 
been measured using hot wire anemometry. 
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Figure 21: Maximum slot exit velocity as a function of actuator frequency for outer 
and inner slots. 

 
 
 

Table 1 shows the shows the jet momentum coefficient (Cµ) as a function of actuator 

frequency for each one of the pistons. These values were calculated using the maximum 

exit velocity of the slot measured experimentally and shown in figures 21 and 22. 

Consequently the jet momentum coefficient and the actuator frequency may not be 

varied independently. This is a drawback of the developed system, which is associated 

with the use of pistons with a fixed stroke length. Some new designs are under 

development which aims to decouple the frequency with jet momentum. Table 1 shows 

the variation of area averaged jet momentum coefficient and Strouhal number.  As can 

be seen from Lorber et al.21, our jet momentum coefficient stays within the effective 

range. 
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Figure 22: Variation of jet momentum coefficient versus actuator frequency for 
both inner and outer slots. Comparison based on hot wire data shown in figure 21.  

 
 
 
 

Table 1: Jet momentum coefficient and non dimensional frequency for leading edge 
actuator frequencies 

Frequency of actuator (Hz) 
Jet Momentum coefficient, C� Non Dimensional 

Frequency, F+ 

0 0 0 

20 0.00068 0.58 

40 0.0024 1.17 

60 0.0048 1.75 

80 0.0074 2.33 
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Characterization of Trailing Edge Actuator 

Velocities at the exit of the trailing edge slots with the jet ejected from the lower surface 

are measured by using a Pitot tube. The results are shown in figure 23. Measurements 

are made at the center of each slot in the chordwise and spanwise directions and we 

assume uniform velocity profile through each slot for calculating the jet momentum 

coefficient associated with trailing edge actuator. The internal flap rests against the 

upper wall forcing the jet out of the lower surface. Similarly figure 24 shows the air 

velocity measured against fan frequency for the jet ejected from the upper surface. 
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Figure 23: Variation of air velocity with fan frequency at the exit of all slots when 
jet is ejected from the lower surface. Solid line marks average velocity over the slots 

against average fan frequency. 
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Figure 24: Variation of air velocity with fan frequency at the exit of all slots when 
jet is ejected from the upper surface. Solid line marks average velocity over the 

slots against average fan frequency. 
 
 
 

Figure 25 shows the variation of the jet momentum coefficient against fan frequency. As 

it is clearly visible, the momentum coefficient for the lower surface is slightly different 

from that of the upper surface. This difference may be because of asymmetry caused by 

the configuration of fans and that induced by errors in manufacturing through Rapid 

Prototyping. 
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Figure 25: Variation of average jet momentum coefficient µ'C  with average fan 
frequency. 

 
 
 

 Force Balance Results 

Force balance tests were performed for 3 cases which included 

a) Effect of leading edge actuation on lift, drag and pitching moment. 

b) Effect of trailing edge actuation on lift, drag and pitching moment. 

c) Influence of combined actuation (leading and trailing edge) on lift, drag and 

pitching moment. 
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Effect of Leading Edge Actuation on Aerodynamic Properties 

Figure 26 shows the effect of synthetic jet actuation on the lift coefficient. As it is clearly 

visible, leading jet actuation has a predominant effect on the delay of stall, which leads 

to increase of the maximum lift coefficient CLmax. Another observation is regarding the 

type of stall that occurs with synthetic jet actuation. The baseline shows a very docile 

stall, typical of thick airfoils, which is also known as trailing edge stall. With SJA there 

is a sharp decrease in lift coefficient after it attains its peak. This should be the case as at 

stall angles the adverse pressure gradient is too severe to be controlled by SJA, and once 

flow separates, SJA has little role in attaching it even partially, causing there to be a 

massive separation. 
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Figure 26: Effect of synthetic jet actuator on aerodynamic performance of test 
wing. Lift coefficient (CL) vs. angle of attack. 
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Another important observation is that SJA cannot improve lift coefficient at low angle of 

attacks, a feature that is central cause of the present study. Figure 27 shows that variation 

of drag coefficient CD versus lift coefficient CL and figure 28 shows the variation of 

pitching moment coefficient Cm versus lift coefficient CL.  
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Figure 27: Effect of synthetic jet actuator on aerodynamic performance of test 
wing. Drag coefficient (CD) vs. lift coefficient (CL). 
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Figure 28: Effect of synthetic jet actuator on aerodynamic performance of test 
wing. Pitching moment coefficient (Cm) vs. lift coefficient (CL). 
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It is clearly visible that SJA has profound effects in increasing stall angle and hence 

keeping flow attached at higher angles, but in all figures (26 through 28) we can observe 

hardly any influence of actuation in the pre stall regime, which is the central cause of the 

present study. 

 

Effect of Trailing Edge Actuation on Aerodynamic Properties 

In this section we present force balance results on the effects of trailing edge actuation 

alone. The angle of attack is again varied from -1o to 24o, with 2o increments, with more 

resolution where required. Smaller The fan frequencies used were 100, 200 and 300 Hz. 

Data is presented for jet ejecting from the lower surface (internal flap resting against top 

wall) as well as for jet ejecting from the upper surface. 

 

Jet Ejecting from Lower Surface 

Figures 29 through 31 show the effect of the trailing edge actuator with the jet ejecting 

from the lower surface. As it is visible from figure 29, there is lift enhancement even at 

low angles of attack. This is due to the jet flap effect. As angle of attack increases, the 

slope of the lift curve is increased. The fact that there is appreciable change in the jet 

angle with respect to free stream, causing a higher pressure difference at the jet, may 

attribute towards this increase. At higher angles, where separation starts, the fans 

installed at the suction side suck in the low momentum air and delay separation. 
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Figure 29: Effect of trailing edge actuator with jet ejecting from lower surface on 
aerodynamic performance of test wing. Lift coefficient (CL) vs. angle of attack. 
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Figure 30: Effect of trailing edge actuator with jet ejecting from lower surface 
aerodynamic performance of test wing. Drag coefficient (CD) vs. lift coefficient 

(CL). 
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Figure 31: Effect of trailing edge actuator with jet ejecting from lower surface on 
aerodynamic performance of test wing. Pitching  moment coefficient (Cm) vs. lift 

coefficient (CL). 
 
 

Figure 30 shows the effect on drag coefficient. At low angles, it should be guessed that 

the propulsive forces generated would reduce drag and therefore the curve seems 

baffling initially. The explanation comes from the fact that we are using very low values 

of jet momentum coefficient which exerts negligibly small thrusts. We even ran some 

tests without any flow to measure the effect of propulsive thrust on lift force, but the 

forces were so small that the balance used could not detect it. Further, the ejection of jet 

is not exactly at the trailing edge. This causes some separation between the jet and the 

sharp trailing edge. The two effects stated cumulatively explain the fact that there is no 

effect of actuation on drag coefficient (CD) at low angles of attack. At high angles, there 

is attachment due to boundary layer control by the fans. Figure 31 shows the effect of 



  

   

42 

trailing edge actuation in the current mode of the internal flap, on pitching moment 

coefficient (Cm). As can be seen, there is a huge increment (almost 50%) in the nose 

down moment. This is because the rear of the airfoil gets loaded more due to the jet flap 

effect. Again the suction effect is visible at higher lift coefficients. 

 

Effect of Trailing Edge Actuation with Jet Ejecting from Upper Surface 

Figures 32 through 34 show the effect of trailing edge actuation with jet ejecting from 

the upper surface (internal flap resting against bottom wall) on aerodynamic properties. 

As can be seen from figure 32, the lift coefficient becomes negative at low incidence, 

intersects the baseline curve and goes through a peak before stalling. Again, the former 

effect can be attributed to the jet flap effect, although used in an unconventional way. It 

is visible that the slope of the lift curve increases even at low angles of attack, an 

observation that is due to the change in jet flap angle with angle of attack. It is seen that 

the actuated curves intersect the baseline at an angle of attack of 16o, an angle where 

separation starts commencing for the baseline. Clearly, boundary layer control due to 

suction dominates at this point. Figure 33 shows the effect of the actuation on drag 

coefficient (CD), here we observe an increase in drag coefficient at low angles. The 

effect of jet flap and separation at the trailing edge, as explained in the previous section, 

explain the trend. Boundary layer control is also clearly visible at higher angles of 

attack. Figure 34 shows the effect on pitching moment coefficient (Cm). Here there is no 

clear trend visible, except for the boundary layer control at higher lift coefficients.  
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Figure 32: Effect of trailing edge actuator with jet ejecting from upper surface on 
aerodynamic performance of test wing. Lift coefficient (CL) vs. angle of attack. 
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Figure 33: Effect of trailing edge actuator with jet ejecting from upper surface on 
aerodynamic performance of test wing. Drag coefficient (CD) vs. lift coefficient 

(CL). 
 
 



  

   

44 

 

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0
-0.5 0 0.5 1 1.5

CL (Lift Coeffecient)

C
M

 (P
itc

hi
ng

 M
om

en
t C

oe
ff

ec
ie

nt
)

baseline

100 Hz

200 Hz

300 Hz

 

Figure 34: Effect of trailing edge actuator with jet ejecting from upper surface on 
aerodynamic performance of test wing. Pitching moment coefficient (Cm) vs. lift 

coefficient (CL). 
 
 
 

More investigation with higher jet momentum coefficient may shed some light on the 

missing trends at low values of the lift coefficient (CL). 

 

Combined Effects of Leading Edge Actuation and Trailing Edge Actuation 

In this section we present force balance results for the combined effects of the SJA and 

the trailing edge actuation. The angle of attack is typically varied from -1o to 24o, with 2o 

increments. Smaller increments have been used whenever necessary. Fan frequency used 

was 300 Hz. SJA frequency was varied from 0 to 40 Hz for the case when the jet is 
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ejected from the upper surface and from 0 to 60 Hz when the jet is ejected from the 

lower surface.  
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Figure 35: Effect of variation in leading edge actuator frequency and trailing edge 
actuator at 300 Hz with jet ejecting from upper surface on aerodynamic 

performance of test wing. Lift coefficient (CL) vs. angle of attack. 
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Figure 36: Effect of variation in leading edge actuator frequency and trailing edge 
actuator at 300 Hz with jet ejecting from upper surface on aerodynamic 
performance of test wing. Drag coefficient (CD) vs. lift coefficient (CL). 
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Figure 37: Effect of variation in leading edge actuator frequency and trailing edge 
actuator at 300 Hz with jet ejecting from upper surface on aerodynamic 

performance of test wing. Pitching moment coefficient (Cm) vs. lift coefficient (CL). 
 

Jet Ejecting from Upper Surface 

Figures 35 through 37 present the data for this section. It can be observed that for all 

cases, SJA did not have any effect on aerodynamic properties at low incidence, albeit, at 

high incidence SJA is very effective in containing separation. We will discuss more 

about an important feature of this flow control configuration in the next section. 

 

Jet Ejecting from Lower Surface 

Figures 38 through 40 show the effects of SJA on the wing controlled by the trailing 

edge actuation at 300 Hz.  This data again shows the minimal effect of SJA on 
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aerodynamic properties at low incidence. At high incidence SJA does delay separation as 

is visible from the increase in stall angle of attack and maximum lift coefficient (CL), 

but the effect, even at 60 Hz of SJA frequency, is not as much as that for the case when 

the jet ejects from the upper surface in the previous section. The reason for this 

difference in behavior is that when the jet ejects from the upper surface, the wing is less 

loaded and the pressure on the suction side is higher near the trailing edge, causing the 

adverse pressure gradient to be lower; thus, even after flow separation, the SJA controls 

separation effectively due to comparatively lower adverse pressure gradient than for the 

present case. For the present case the pressure gradient is steeper and the SJA is 

therefore less effective in attaching the flow at higher angles of attack due to more 

aerodynamic loading. 
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Figure 38: Effect of variation in leading edge actuator frequency and trailing edge 
actuator at 300 Hz with jet ejecting from lower surface on aerodynamic 

performance of test wing. Lift coefficient (CL) vs. angle of attack. 
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Figure 39: Effect of variation in leading edge actuator frequency and trailing edge 
actuator at 300 Hz with jet ejecting from lower surface on aerodynamic 
performance of test wing. Drag coefficient (CD) vs. lift coefficient (CL). 
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Figure 40: Effect of variation in leading edge actuator frequency and trailing edge 
actuator at 300 Hz with jet ejecting from lower surface on aerodynamic 

performance of test wing. Pitching moment coefficient (Cm) vs. lift coefficient (CL). 
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Flow Visualization Results 

Figures 41 through 45 show the results obtained by the use of tufts as a surface 

visualization device. The use of tufts permitted the observation of the flowfield 

characteristics in “real-time”, and the effects of having or not having SJA control on the 

wing were clearly visible without having to change the operating conditions of the wind 

tunnel as in the case of oil surface flow visualization.  

 

For these tests, the freestream velocity ( ∞U ) had a value of 18 m/s. Data was taken at 

angles of attack of 20 degrees. Figure 42 shows the basic wing with no actuation. It can 

be seen that the tufts move away from surface close to the leading edge at around 20% of 

the chord. This marks the separation point. Figure 42 shows the effect when the trailing 

edge actuator with the jet ejecting from the lower surface is engaged at a frequency of 

300 Hz. The flow attaches up to around 55 % of chord length. Figure 43 shows that the 

flow gets attached over the entire length of airfoil as soon as SJA is engaged at 40 Hz 

along with the trailing edge actuation as in the previous case. Figure 44 and figure 45 

show the same effect for the case when the jet ejects from the upper surface. Similar 

observations can be made. 
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Figure 41: Tufts flow visualization of test wing. No control. 
 
 
 
 
 
 

 

Figure 42: Tufts flow visualization of test wing. Trailing edge actuator control with 
jet ejecting from lower surface at 300 Hz. 
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Figure 43: Tufts flow visualization of test wing. Trailing edge actuator control with 
jet ejecting from lower surface at 300 Hz and SJA control at 40 Hz. 

 

 

 

 

 

Figure 44: Tufts flow visualization of test wing. Trailing edge actuator control with 
jet ejecting from upper surface at 300 Hz. 
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Figure 45: Tufts flow visualization of test wing. Trailing edge actuator control with 
jet ejecting from upper surface at 300 Hz and SJA control at 40 Hz. 
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CONCLUSIONS AND RECOMMENDATIONS 

 
This research presents the development of a trailing edge actuator intended to harness 

the potential of boundary layer control and the jet flap effect in an innovative manner. 

The study evaluates the effect of leading jet actuation in conjunction with the effect of 

trailing edge actuation on the flowfield.  

 
 

An initial survey using hot wires for the leading edge actuator showed a maximum 

velocity of around 38 m/s for a frequency of 80 Hz. A Pitot tube survey of the trailing 

edge actuator showed the maximum velocity at 350 Hz can be up to 62 m/s. More 

sophisticated design of trailing edge ducts and higher fan frequency will result in higher 

velocity. An advantage of this type of actuator was the decoupling of the jet flap from 

the aircraft engine, which in case of asymmetric engine failure, can lead to catastrophic 

imbalance in roll moments. The developed actuators are put inside a NACA 0015 airfoil 

with a chord length of 0.6 m and span of 0.32 m. 

 
 

The actuators were placed in a NACA 0015 wing that was tested in a wind tunnel. An 

experimental investigation into the effects of the synthetic jet actuator, the trailing edge 

actuator and their combined effect on the performance of the wing was described. 

Emphasis was placed on the capabilities of the actuator to control the separation of the 

flow over the wing at high angles of attack. The limitation of the synthetic jet actuator 
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was addressed using advantages of the trailing edge actuator by implementing both the 

actuators in tandem. The investigation included the use of force balance measurements 

and on-surface flow visualization with tufts. All the tests were performed at a freestream 

velocity of 18 m/s, corresponding to a Reynolds number of 7.1 x105. The angle of attack 

(α) was varied from –1 to 24 degrees.  

 

 
For the tests presented here, at α < 16 degrees, the leading edge actuator provides no 

perceptible control. At higher angles of attack, the SJA extends the range of α for which 

the wing may be operated without stalling. The use of SJA increased the stall angle to 24 

degrees, the maximum angle attainable, and a corresponding increase in CLmax of around 

30% occured. The trailing edge actuator was tested in both configurations – with the jet 

ejecting from the upper surface and ejecting from the lower surface. Both configurations 

provided low angle control; lift at low incidence angle decreased for the former case and 

increased for the latter case. Such an arrangement provides a way to control rolling 

motion of an aircraft without any mechanical flap. At higher angles, boundary layer 

suction was predominant as suggested by the force balance experiments. Combined tests 

showed that SJA was effective in controlling separation, but its effect was higher in the 

case where the jet ejects from the upper surface. This is due to less aerodynamic loading.

 

 
On-surface flow visualization was performed at the suction side of airfoil, and still 

photographs show the effect of boundary layer control and synthetic jet actuation.  More 

study is needed to optimize the design of the leading and trailing edge actuators and to 
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model the effect of these phenomena. Future work should concentrate on methodologies 

of using higher momentum coefficients by increasing fan frequency and optimizing slot 

design. Efforts are underway to decouple SJA frequency from its jet momentum 

coefficient, which would provide far more flexibility in hingeless flow control. 
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APPENDIX 

Definition of Non Dimensional Coefficients Used 

 
 

Reynolds number, 
ν

ρ cU ∞=Re  

 
 
 

Lift coefficient, 
csU

L
CL

2

2
1

∞

=
ρ

 

 
 
 
 

Drag coefficient, 
csU

D
CD

2

2
1

∞

=
ρ

 

 
 
 
 

Pitching moment coefficient, 
scU

PM
Cm

22

2
1

∞

=
ρ

 

 
 

Non dimensional frequency, 
∞

+ =
U
fx

F te  

 

Jet momentum coefficient for trailing edge actuator, 
csU

lU
C

2

2

2
1

'

∞

=
ρ

δρµ  
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where l is the total length of slots in spanwise direction and � is slot width, U is the exit 

air velocity at the slot. 

 

 

Jet momentum coefficient for leading edge actuator, 
csU

lSU
C w

2

2

2
1

∞

=
ρ

ρµ  

where l is the total length of slots in spanwise direction and Sw is slot width, U is the 

maximum exit air velocity at the slot. 

 

Other symbols have usual meanings. 
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