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ABSTRACT 
 

Upper Bound Analysis for Drag Anchors in Soft Clay. (December 2005) 

Byoung Min Kim, B.S., Korea University; 

M.S., Korea University 

Co-Chairs of Advisory Committee: Dr. Charles Aubeny 
 Dr. Don Murff 
 

This study presents an upper bound plastic limit analysis for predicting drag 

anchor trajectory and load capacity.  The shank and fluke of the anchor are idealized as 

simple plates.  The failure mechanism involves the motion of the anchor about a center 

of rotation, the coordinates of which are systematically optimized to determine the 

minimum load at the shackle.  For a given anchor orientation, the direction of the 

shackle force is varied to establish a relationship between the magnitude and direction of 

the shackle load.  Coupling this relationship to the Neubecker-Randolph anchor line 

solution produces a unique solution for the magnitude and orientation of the shackle 

force.  The anchor is then advanced a small increment about the optimum center of 

rotation and the process is repeated.  The upper bound method (UBM) provides a 

practical means to determine the trajectory of the anchor and the anchor load capacity at 

any point in the trajectory. To better understand of the anchor behavior, extensive 

parameter studies were carried out varying the properties of the anchor, anchor line, and 

soil. The UBM show good agreement with six full-scale tests covering several different 

anchor types and centrifuge model tests.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Offshore structures 

Offshore production platforms include steel jackets and gravity structures. A 

jacket structure is supported by steel pipe piles, and gravity structures have massive mat 

foundations. In water depths deeper than 500m, conventional structures become 

impractical to install and maintain. Floating systems such as large floating structures 

moored to the seabed by anchors are being used for deeper water. These systems enable 

floating structures to remain on station, so that drilling and production operations can be 

carried out at a stable platform. Two different mooring systems are currently used in 

deep water-the catenary mooring system and the taut mooring system. An example of a 

spread mooring is shown in Fig. 1.1.  

Anchorages for mooring systems can be provided by gravity anchors, anchor 

piles, drag anchors or suction caissons. Gravity anchors tend to be very inefficient for 

such systems. Installing piles in deep water is technically difficult and expensive. 

Although drag anchors are economically attractive, the uncertainties in installation and 

capacity dissuade operators from using them for permanent facilities.  

 

 
This dissertation follows the style and format of the Journal of Geotechnical 

and Geoenvironmental Engineering. 
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 The drag anchors are very attractive for anchoring moorings in deep water, 

because the cost for installation is relatively low. For this reason they have been widely 

used for temporary moorings. Drag anchors have high holding capacity relative to low 

anchor weight even in soft clay conditions. Moreover, they can be easily retrieved after 

completion of a project and reused on other projects. 

For drag anchors, a priori prediction of depth of penetration and anchor holding 

capacity tends to be more uncertain than for other anchorage systems such as piles and 

suction caissons. Soil conditions, geometry and weight of the drag anchor, and size of 

anchor line influence depth of penetration and anchor capacity. Because of this complex 

behavior, operators have basically depended on empirical methods to predict depth of 

anchor penetration and anchor capacity (e.g., Naval Civil Engineering Laboratory, 

1987). 

 
Fig. 1.1 Spread mooring system anchored to drag anchors (API 1995) 
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1.2 General description of drag anchor 

 
Some of the first anchors consisted of large stones, baskets full of stones and 

sacks filled with sand. Steel was later used for anchors, with enhancements made by 

adding flukes to fix them to the bottom. However these anchors were often structurally 

weak and sometimes failed under load. Another improvement was made in the 19th 

century by removal of the stock, the crosspiece at the top of an anchor. This enables a 

fluke to fully penetrate into the soil. A stockless anchor was invented in 1821 and soon 

was in widespread use, because it is easy for handling and stacking. Stockless anchors 

are still used today.  

The first commercial drag anchor was apparently developed by Hawkins in 1821 

(Stewart, 1992). Since then large number of anchor types has been developed and 

commercialized. Some of them were improved while others disappeared. A drag anchor 

penetrates into the seabed, as it is dragged horizontally with wire or chain to generate a 

required capacity. A drag anchor can develop typical holding capacity of 5 to 55 times 

its self-weight. The holding capacity of a drag anchor is mobilized primarily by bearing 

resistance and side resistance on the anchor fluke and friction along the embedded 

portion of the mooring line.  

Drag anchor designs have been primarily developed by trial and error based on 

many tests and field applications. A number of anchor types have been proposed as 

shown in Fig. 1.2.  
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Fig. 1.2 Drag embedment anchors (NCEL, 1987) 

 

Generally drag anchors consist of a fluke, a shank and an attachment point or a 

shackle as shown in Fig. 1.3.  

Fluke

Shank Attachment point
(shackle or pad-eye)

 

Fig. 1.3 Components of drag anchor system 
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1.3 Type of drag anchors 

 
1.3.1 Drag embedment anchor (DEA) 

 
Drag embedment anchors have been designed to penetrate into soil as deeply as 

possible to develop the maximum capacities of the fluke and shank as well as the anchor 

line. During an anchor embedment on seabed, penetration into the soil is typically 

achieved by dragging with an anchor-handling vessel (AHV). As the anchor penetrates, 

the anchor capacity increases with depth due to the increase in soil strength and the 

increased soil-anchor line contact. 

Today drag embedded anchors are usually employed for temporary mooring 

systems with catenary mooring in deep water. Fig. 1.4 shows two of the most widely 

used drag embedded anchors for deep water. These anchors have twin shank to reduce 

resistance of soil and have high holding capacities. 

        

(a) Stevpris of Vryhof anchor       (b) FFTS MK4 of Bruce anchor 

Fig. 1.4 Drag embedment anchors  
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1.3.2 Vertically loaded anchor (VLA) 

 
Vertically loaded anchors have been developed for taut mooring systems (TMS). 

The design allows the anchor to develop high vertical capacity and is appropriate for 

high angle loading. The anchor lines in a TMS have significant angles to the horizontal 

at the seabed to reduce the required anchor system footprint and to stiffen the mooring. It 

is a relatively complex operation to deploy the anchor line and it requires a high 

capability anchor handling vessels. Theses anchors are designed to resist both the 

vertical and horizontal loads. In this case, the fluke is connected to the anchor line by 

various methods such as through a connecting rigid bar (shank) or through a bridle 

arrangement as shown in Fig. 1.5. The anchor capacity is developed mainly by the fluke, 

which can be considered as a large bearing plate.   

Triggered Position

Deployment/Recovery 
           Position

 

(a) Dennla MK3 (rigid bar)           (b) Vryhof Stevmanta (bridle) 

Fig. 1.5 Examples of vertically loaded anchor 
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The installation process of a VLA is similar to a DEA, but it is intended to 

penetrate deeper than a DEA. The anchor initially penetrates parallel to the fluke and 

rotates later in the process until the ultimate penetration is achieved. There are several 

methods used to “set the anchor” so that the fluke becomes approximately normal to the 

anchor line. This is achieved by a mechanical mechanism which modifies the anchor 

structure configuration. For example, the anchor can be set by a shear pin mechanism in 

both Bruce Dennla and Vryhof Stevmanta anchors. After the anchor reaches at a certain 

depth then shear pin is broken, and the anchor mode changes from installation to vertical 

loading. Fig. 1.6 shows the process of changing mode for the Vryhof Stevmanta anchor. 

In normal loading mode the anchor acts as an embedded plate with a high pull-out 

resistance (Murff and Anderson, 2001). 

 

shear pin

    

(a) installation mode      (b) normal mode  

Fig. 1.6 Type mode of the Stevmanta anchor (Vryhof 1999 ) 
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1.4 Installation of drag embedded anchors in clay 

 
According to Vryhof Anchors (1999), the installation procedure of DEA generally 

consists of the following main steps. 

1) Preparing the drag anchor and anchor line on the anchor handling vessel (AHV).  

2) Adjusting the fluke-shank angle for the soil type.  

3) Connecting the anchor line to the shackle.  

5) Positioning the AHV for lowering the anchor. AHV moves to a distant location, 

generally less than the water depth from the rig. 

6) The anchor is embedded on the seabed and it penetrates into the soil as the 

anchor is dragged by AHV. 

7) Finishing installation when the anchor line load reaches to the design installation 

capacity. 

 
As the drag anchor penetrates into the soil, the anchor line assumes a reverse 

curvature below the seabed as shown in Fig. 1.7 and its capacity increases with depth. 

Simultaneously, the anchor is dragged a certain horizontal distance until the requisite 

capacity is reached or until no further capacity gain is possible. After completing 

embedment, the anchor is able to develop anchor capacity larger than or equal to the 

installation load without further dragging of anchor. 
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Seabed

Shank

Fluke

Anchor line

Drag distance

Penetration depth

 

Fig. 1.7 Profile of penetration into seabed 

 
 
1.5 Typical soil condition 

 

Soil conditions of seabed are a most important factor for design of offshore 

structures. For clay soils the undrained soil strength profile is a key parameter for 

estimating of anchor behavior. In many offshore areas, the undrained shear strength 

increases with depth.  However, in some areas, shear strength can be nearly uniform 

with depth or even layered in areas where the site history is more complex.  

Soil conditions in deepwater such as in the Gulf of Mexico tend to be normally 

consolidated with small undrained shear strengths at the seabed, increasing linearly with 

depth. Undrained soil strength can be estimated by the equation; 

uS A B= + × z        (1.1) 

where A = undrained shear strength at the seabed 

 B = shear strength gradient 

 z= depth below the mudline 
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The typical soil type in Gulf of Mexico (GOM) is highly plastic clay with liquid 

limits in range LL=65 to 100 and plastic limits on order of 25. In the case of deep water, 

the soil tends to be normally consolidated with high water contents of more than 100% at 

the seabed, decreasing as depth increases (Aubeny et al. 2001). Typical Gulf of Mexico 

strength profiles show that undrained soil strengths are typically 2-5 kPa at the seabed. 

Soil strength linearly increases with depth with a typical strength gradient ranging from 

1.0 to 2.0 kPa/m. As shown in Fig. 1.8, the typical undrained soil strength profile in the 

GOM is within the shadow area. 

 

Fig. 1.8 Undrained shear strength profile in Gulf of Mexico 
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1.6 Objective of research  

 
The objective of the research proposed herein is to develop a simplified model 

for predicting the capacity of plate anchors embedded in cohesive soils under general 

conditions of loading. The analytical studies are based on upper bound plastic limit 

analysis methods. The upper bound method will be applied to determine the anchor 

trajectory and the anchor capacity at any point in the trajectory consistent with the 

compatible anchor line behavior. The embedded drag anchor components are idealized 

as simple symmetric plates and bars connected to each other at fixed angles. The failure 

mechanism involves a rotation of the rigid anchor about a center of rotation to be 

determined in the analysis. 

The anchor line force for a given embedment depth and anchor orientation is 

determined using an upper bound limit analysis approach. The analysis considers the 

anchor to experience a virtual rotation about some center of rotation. The anchor line 

force is determined by equating the rate of work performed by the anchor line and 

known anchor weight to the internal rate of energy dissipation associated with the anchor 

moving through the soil. The total energy dissipation rate is determined by integrating 

the unit dissipation over the various anchor surfaces. The upper bound analysis 

procedure produces a curve relating anchor line force to anchor line inclination angle at 

the pad-eye. The intersection of this curve with the anchor line equation yields a unique 

solution for anchor line force. The location of center of rotation is optimized by 

systematically varying it to find the minimum anchor line load. The anchor is then 

advanced a small increment by rotating about the optimum center of rotation. If the 

 



 12

center of rotation is an infinite distance from the anchor, then the anchor undergoes pure 

translation. If the center of rotation is near the anchor, then the anchor motion is 

primarily rotation.  

This optimization process effectively identifies the specific failure mechanism 

that is as close to equilibrium as possible for the general mechanism in question. 

Because the failure mechanism selected includes all possible failure mechanisms, the 

optimized solution is the exact solution for the particular yield surface functions 

assumed. The proposed new method provides a practical means of estimating drag 

anchor load capacity and trajectory. In this study, results from the new proposed method 

will be compared with empirical methods, other equilibrium methods and field load 

tests.  
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CHAPTER II  

BACKGROUND 

 

2.1 Mooring system 

 
Mooring systems are a basic component of floating offshore structures including 

floating drilling units, floating production systems and storage units used temporarily or 

permanently. Several different mooring system concepts have been developed for these 

applications. 

The mooring line can be mainly classified as two types-catenary mooring system 

and taut leg mooring system. Both types of mooring system lines are generally consist of 

three parts - forerunner, middle line and top line. Depending on the mooring system 

requirements, the type of line for each part may be different. Table 2.1 shows the general 

mooring system used in current practice. 

Table 2.1 Main components of mooring systems 

Mooring system 
 

Catenary mooring system Taut leg mooring system 

Anchor type Drag embedment anchor Vertically loaded anchor 

Forerunner Chain Wire 

Middle part Steel cable Polyester cable 

Top part Chain Chain 
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A forerunner is the part of an anchor line which is connected to the shackle point 

of the anchor and it is partially embedded into soil. The different types of forerunner can 

significantly affect penetration depth of the anchor during installation. For example, an 

anchor with a wire forerunner usually penetrates deeper than the same anchor with the 

chain forerunner as shown in Fig. 2.1, since shear and bearing resistance along the chain 

is larger that that of wire.  

 

(a) Chain forerunner

(b) Wire forerunner  

Fig. 2.1 The penetration of drag anchor in different forerunner (Vryhof 1999) 

 

 

 

 



 15

2.1.1 Catenary mooring system 

 
Catenary mooring systems (CMS) are widely used in the offshore industry. A 

CMS is a conventional mooring system and requires a large footprint. It can be used to 

stabilize flexible structures in water depth of up to 1000m. The catenary mooring arrives 

at seabed horizontally as shown Fig. 2.2. Therefore, a CMS uses the horizontal force of 

the mooring lines to supply the restoring forces which maintain the moored unit on 

station. As water depth increases, the self-weight of mooring line and footprint become 

larger. Such a large footprint may interfere with neighboring mooring line or pipeline 

facilities. 

 

 

Fig. 2.2 Catenary mooring system (Ruinen 2000) 
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2.1.2 Taut leg spread mooring system 

 
For exploration and production in deep water beyond 1000m, the weight of the 

mooring line discourages operators from using the catenary mooring system in the 

design of floating structures. For this reason taut leg mooring systems (TMS) have been 

developed. Taut Leg mooring systems are generally used for permanent or semi-

permanent mooring systems such as floating production storage and offloading vessels 

(FPSO) and they require an anchor that can exert high vertical capacity. As suggested in 

Fig. 2.3, the taut leg mooring reaches the seabed at angles of 30 to 45. Thus, it can resist 

both horizontal and vertical forces, while catenary mooring system resists only 

horizontal forces at the seabed. Currently, synthetic fiber ropes are used with suction 

caissons, vertical loaded anchors, and a suction embedded plate anchors for taut leg 

mooring systems. For these reasons, a TMS has lighter, shorter, and much smaller 

footprint than that of a CMS. 

 

Fig. 2.3 Taut leg mooring system (Ruinen 2000) 
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2.2 Anchor line equation 

 

As an anchor penetrates the forerunner cuts through the soil with the anchor and 

forms an inverse curvature as shown in Fig. 2.4. 

 

θa

θ0

 Anchor line
 (wire or chain)

Τ0

 

Fig. 2.4 General arrangement of drag embedded anchor and forerunner 

  

Gault and Cox (1974) developed a solution for predicting the anchor line 

behavior. The governing differential equations including the self-weight of the anchor 

line as well as the soil bearing and frictional resistance was derived by Vivatrat et al. 

(1982). 

sindT F w
ds

θ= +                                         (2.1) 

- cosdT Q w
ds
θ θ= +             (2.2) 

Where T = line tension load 

θ = line angle of the tension force to the horizontal 

 ds =element length  
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 = buoyant weight of the line per unit length. w

 = shearing resistance per unit length on line segment F

Q = bearing resistance per unit length on line segment  

  

They suggested a solution to these non-linear equations using an iterative finite 

difference method.  

T+∆T
θ+∆θ

θ

x

z

wds
Q

F

ds

T
 

Fig. 2.5 Schematic of anchor line forces (Vivatrat et al., 1982) 

 

Fig. 2.5 shows the shearing and bearing forces acting on a line element. The 

shearing component, F, is caused by the soil adhesion to the line and the bearing 

component, Q, is developed by soil normal resistance. Both Q and F represent the forces 

a unit length of anchor line and can be calculated by the following formulas using 

average stresses multiplied by effective diameter.  

( )nQ E d= q        (2.3) 

( )tF E d f=        (2.4) 
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The average stresses,  and , can be expressed in terms of a resistance factor 

N

q f

c and α , multiplied by the local soil shear strength, as  

c uq N s=        (2.5) 

uf sα=         (2.6) 

where  

d = effective anchor line diameter of the chain or wire 

 ,n tE E = multipliers to account for the effective chain widths in the normal and 

tangential directions respectively.  For wire, 1== tn EE  

 = bearing resistance factor for anchor line cN

 α = adhesion factor = 1 for full adhesion; =0 for no adhesion 

 = undrained shear strength  us

 
Table 2.2 Adhesion factor for wire and chain (DNV RP-E302, 1999b) 

Wire Lower bound Default value Upper bound 

αsoil 0.2 0.3 0.4 

Chain Lower bound Default value Upper bound 

αsoil 0.4 0.5 0.6 
 
 
In many cases, α  can be taken as  where  is the sensitivity of clay. As 

indicated in Table 2.2, 

1/ ts ts

α  typically varies from 0.2 to 0.6 and can be dependent on set-

up time. Degenkamp and Dutta (1989), DNV RP-E302 and Vivatrat et al., (1982) 

discussed the values of nE  and tE  in relation to the geometry of standard anchor chains 
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based on model test results.  They recommended the values as shown in Table 2.3. For 

chain the value of d is the diameter of the stock from which the chain is made. 

 

Table 2.3 Recommended parameters for analysis of anchor line 

Parameters Recommended Value 

Degenkamp and Dutta, 1989 2.5d 

DNV RP-E302, 1999b 2.6d Multiplier for effective widths 
in the bearing direction (En) 

Vivatrat et al., 1982 2.6d 

Degenkamp and Dutta, 1989 8.0d 

DNV RP-E302, 1999b 10d Multiplier for effective widths 
in the shearing direction (Et) 

Vivatrat et al., 1982 10d 

Degenkamp and Dutta, 1989 5.1 ~ 7.6 

DNV RP-E302, 1999b 9 ~14 Bearing capacity factor (Nc) 

Vivatrat et al., 1982 9 ~ 11 
The relative magnitude of F and Q 

F
Q

µ =
 

Degenkamp and Dutta, 1989 0.4 to 0.6 

 

Degenkamp and Dutta (1989) carried out laboratory modeling of anchor chains 

in clay. According to their results, Nc is 5.14 at the seabed and 7.6 at a depth of 2.4End. 

Neubecker and Randolph (1995) used this value in modeling performance of embedded 

anchor chains.  But this value is lower than that of other researchers suggested such as 

DNV(1999b) or Vivatrat et al., (1982).  Using this information, Eqs. 2.1 and 2.2 can be 

solved for the relationship between line tension at the anchor line attachment point,  

and line tension at a certain depth, .   

aT

oT
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Neubecker and Randolph (1995) suggested a closed form solution to these 

equations by linearizing the equations i.e. they neglect anchor line weight and used small 

angle assumptions for θ . Their solution is given in the following equations. 

( - )exp a o
o aT T µ θ θ=        (2.7) 

2 2( - ) ( - )
2

aza
a o az

T Qdz z z Qθ θ ≈ =∫      (2.8) 

where aθ = anchor line angle with horizontal at the anchor shackle 

oθ = anchor line angle with the horizontal at depth  z

aT = line tension at shackle 

oT = line tension at depth  z

Q = average bearing resistance over the depth range  to  z az

az = depth to shackle from seabed 

 = a generic depth between seabed and  at which line tension is desired  z az

 µ = relative magnitude of bearing and shearing forces 

For a linearly increasing soil strength profile Q  is expressed by the following 

( )
2
a

n c
B z zQ E dN A +⎡ ⎤= +⎢⎣ ⎦⎥

     (2.9) 

where A = undrained shear strength at the seabed 

 = shear strength gradient with depth B
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For the general case where the line angle is nearly to zero at the seabed, Equation 

(2.8) can be simplified to   

2

2
a a

a
T z Qθ

=        (2.10) 

This equation indicates the relationship between anchor line angle, aθ  and anchor line 

load at the shackle, , directly in terms of the anchor depth and the average anchor line 

bearing resistance over depth.   

aT

It should be noted that self-weight of anchor line is not considered in Eqs. 2.8 

and 2.10. The anchor line weight does not play a key role in the case of hard soils, but 

can be important in soft soils near the mudline. Here the anchor line can penetrate due to 

its self-weight. It should be noted that Neubecker and Randolph (1995) suggested that 

this self weight can be considered in their solution by assuming the anchor line is 

weightless and thereafter reducing the profile of bearing resistance per unit length by an 

amount corresponding to the anchor line weight per unit length. 
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2.3 Anchor capacity 

Anchor capacity is primarily influenced by fluke area and penetration depth. 

Thus it is increased with increasing fluke area and penetration depth. When the anchor 

reaches ultimate holding capacity, it can not resist any additional load, i.e. it will fail.  

 
 
2.3.1 Failure mechanism of anchor failure 

Anchor failure mechanisms can be divided into two types as shown in Fig. 2.6. 

In the case of a shallow anchor, the failure mechanism will be a slip surface extending 

from the anchor to the soil surface as shown in Fig. 2.6a and 2.6b. In the case of a deep 

anchor, the failure is contained within the soil as shown in Fig. 2.6c. Fig. 2.7 shows 

displacement vectors in a deep failure mechanism. In this figure, displacement vectors 

flow from the upper surface of the anchor plate to the lower surface. These failure 

mechanisms are supported by numerical analysis by Merifield (1999) and O’Neill et 

al.(2003). 

B

Deep

(a)

H1

Qu1

B
(b)

H2
Hcr

Qu1 Qu
*

(c)  

Fig. 2.6 Shallow and deep anchor behavior (Merifield 2003) 

 



 24

 

Fig. 2.7 FE calculated soil displacements in deep anchor (O’Neill et al. 2003) 

 

2.3.2 The bearing capacity factor, Nc

 

The bearing capacity factors, , can be determined using various techniques 

such as the limit analysis or finite element methods to solve the governing equations. 

Typical values of bearing factors from 9 to 15 for deeply embedded plate anchors 

(Foxton, 1997). 

cN

Qu = quBL

 qu = Average ultimate pressure

H1 z
cu, γ

Aspect Ratio = 
B

L

B
L

 

Fig. 2.8 Rectangular anchor in clay (Merifield 2003) 
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u
u

Qq c
A

= = u cN        (2.11)  

where  A= anchor area 

 cu = undrained soil strength 

 Nc =bearing capacity factor 

 
Nc is a function of the embedment ratio (H/B) and shape of fluke, and is 

expression in terms of the normalized quantity, / uH cγ . Ultimate anchor capacity 

increases with depth to a limiting value as shown in Fig. 2.9. This limiting value 

indicates that the anchor develops a deep failure mechanism. 

 

  

(a) square anchor                  (b) circular anchor 

Fig. 2.9 Effect of overburden pressure in clay (Merifield 2003) 

 
 

Assuming the anchor develops a fully plastic failure mechanism, Graaf et al. 

(1997) suggested an  of 12.6 for deeply embedded anchor plates. Neubecker and 

Randolph (1996b) employed an  of 9 for analytical solutions of drag embedment 

anchor performance. Merifield et al. suggested a limiting  of 11.16 for infinite strip 

cN

cN

cN
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anchor (2001), and 11.9 for square plate anchor (2003). O’Neill et al.(2003) suggested 

an  of 11.87 for a rectangular anchor in deep depth. cN

 

2.4 Factors influencing the behavior of anchors 

 
Anchor capacity can vary depending on whether an anchor is being installed or is 

in use currently. During installation, the anchor penetrates until the required resistance is 

achieved. After completing penetration, the anchor has a “holding capacity” which is 

greater than or equal to the installation load without any additional penetration. If the 

applied load exceeds the capacity at a given depth of penetration, the anchor can 

penetrate until the soil is able to resist the applied load or until it reaches its ultimate 

capacity (Ruinen and Degenkamp 1999). However, in some cases the anchor exerts a 

resistance larger than the installation load without further penetration.  This implies that 

some factors have influenced the capacity of the anchor since installation. A number of 

researchers have conducted tests to determine what factors affect the anchor capacity. 

Based on the results of these tests, several important factors have been identified and are 

described below. 
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2.4.1 Effect of consolidation 

 

During penetration the anchor disturbs the soil and the soil strength is weakened 

temporarily. After the anchor installation is complete, the soil reconsolidates and its 

strength regains as time elapses. The time required to reconsolidate depends on the soil 

type. In an analytical model this can be described by the adhesion factor, which depends 

on the soil sensitivity, St. The ratio between the undisturbed, undrained shear strength, 

Su, and remolded strength, Sr is as follows; 

/t uS S S= r        (2.12) 

Because not all of the soil adjacent to the anchor is disturbed, the set-up effect factor is 

less than the sensitivity index indicates. The minimum α  is usually defined by a 

reciprocal of the sensitivity, i.e. 

min 1/ tSα =        (2.13) 

The degree of consolidation that can be applied to the side resistance of fluke and shank 

can be evaluated by investigating the drainage characteristics adjacent to the drag 

anchor. The amount of disturbance is affected by the anchor geometry and soil 

characteristics such as sensitivity (DNV 1999a, RP- E301). 
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Fig. 2.10 Effects of anchor consolidation for 15 kips prototypes                 
(Dunnavant and Kwan, 1993) 

 

Dunnavant and Kwan (1993) tested centrifuge models of Vryhof Stevpris 

anchors with prototype weights of 1.1kips and 15kips. Fig. 2.10 shows the measured 

relationship between the anchor resistance and the drag distance for the model anchor in 

one test. As shown in Fig. 2.10, the anchor penetrated and stopped at a 500mm (38.5m 

prototype) of drag distance, after one hour (247 days prototype) of centrifuge time the 

anchor resistance increased 22 percent. However the increased capacity was lost by a 

little displacement of anchor. This implies that consolidation makes the anchor capacity 

higher but this increased strength has a brittle behavior as shown in Fig. 2.10. This effect 

should be considered in cases when the anchor installation process is disrupted and the 

anchor has to be penetrated further.  
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2.4.2 Effect of cyclic loading 

 

Cyclic loading due to hurricanes, storms or waves can also influence undrained 

shear strength of the soil in the adjacent to the anchor. Dunnavant and Kwan (1993) 

tested anchors after cyclically loading them. This study indicates how cyclic loading 

affects the resistance of drag anchors in soft clay.  
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Fig. 2.11 Effects of cyclic loading (Dunnavant and Kwan, 1993) 

 
Fig. 2.11 shows that anchor capacity is increased by 20 to 50% of initial static 

capacity after experiencing cycling load, partly because of the further penetration of the 

anchor.  
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2.4.3 Effect of loading rate 

 

Increasing the loading rate also increases the soil resistance, so that the anchor 

holding capacity increases with respect to total dynamic loads (Vryhof 1999). The tests 

of Stevamanta and Denla anchors carried out in Onsφy, Norway in 1998 showed that a 

reduction in the loading speed resulted in an immediate drop in line tension amounting 

to about 15 to 20 % per 1-2m/min of magnitude change in speed (Dahlberg and Strøm, 

1999).   

The loading rate affects pore-pressure dissipation and viscous inter-granular 

forces. The higher loading rate reduces the rate of pore water dissipation which tends to 

decrease capacity but increases viscous inter-granular forces which leads to an increase 

in the anchor capacity. This behavior is consistent matched with research on the effect of 

loading rate of axial pile capacity under undrained conditions (Bea and Audibert, 1979).  

From this study they suggested the following relationship.  

1 2/ rQ Q U=        (2.14) 

1 2( / )n
rU v v=        (2.15) 

where  and  represent the pile capacity at loading rates v1Q 2Q 1 and v2

rU  = Loading rate factor  

n  = Dimensionless exponent 

 

If this relationship is directly applied to the anchor problem, it suggests that the 

capacity of the anchor under design loading can be increased beyond that for installation 
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conditions. As shown in Fig. 2.12, Vryhof Anchors (1999) suggested 1.1 to 1.3 as 

loading rate factors for anchors embedded in clay soils. In this figure, the two curves 

represent undrained shear strength of 10kPa and 50kPa, respectively. The loading rate 

factor can be used to estimate the maximum anchor capacity under design loading 

conditions after installation of anchor.  
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Fig. 2.12 Effects of loading rate (Vryhof 1999) 
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CHAPTER III  

OVERVIEW OF EXISTING METHOD 

 
 
There are three general appearances that have been used to estimate drag anchor 

capacity, empirical methods, limit equilibrium methods, and plastic limit analysis 

methods. These are discussed in detail in the following sections. 

 

3.1. Empirical method (design chart) 

 
3.1.1 NCEL method 

 
The Naval Civil Engineering Laboratory (NCEL, 1987) developed a convenient 

empirical prediction method to predict anchor capacity. While developing this method, 

NCEL carried out many prototype scale anchor tests under various soil conditions. The 

tests were conducted to evaluate the anchor performance and application of diverse 

Navy and commercial drag anchors. According to test results, the anchor capacity 

increases with anchor weight. This correlation has been formulated the simple equation. 

 
ba

C
W

aF )(×=        (3.1) 

where =anchor capacity in kip F

 = parameter for capacity in kips a

 =anchor weight in kips aW

 b= exponent constant  

 C= 10 kips  
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The parameters a and b have been suggested by NCEL for diverse anchors. As an 

example, the suggested values of a and b are a = 250 kips, b = 0.92 and a = 189 kips, b = 

0.92 for Bruce FFTS and Vryhof Stevpris anchors, respectively. Fig. 3.1 shows the 

relation between anchor capacity and anchor weight on a log-log plot. Fig. 3.2 shows 

anchor capacity versus drag distance. This plot was developed based on the field tests 

mentioned previously. From these charts, the capacity at a certain drag distance can be 

estimated. As discussed in Section 2.2, anchor performance is affected by anchor 

geometry and weight as well as by the characteristics of the anchor line. It should be 

noted that the NCEL charts have been developed using chain anchor lines. Therefore, 

there is uncertainty in predicting performance of anchor with wire anchor lines. Some 

anchor manufacturing companies, for instance Bruce and Vryhof Anchors, have 

developed their own charts for anchor capacity and penetration depth in various soil 

conditions for each of their commercial anchor types. These charts will be discussed in 

Section 3.1.2 and 3.1.3 for Vryhof and Bruce anchors, respectively. 
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Fig. 3.1 Design chart for anchor capacity in Clay (NCEL, 1987) 
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Fig. 3.2 Development of anchor capacity with penetration depth (NCEL, 1987) 
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3.1.2 Vryhof anchors 

Vryhof anchors (1999) proposed specific values of parameters, a and b, which 

are used in Eq. 3.1 for predicting ultimate holding capacity (UHC). These values depend 

on the soil type, anchor and anchor line condition such as wire or chain. Table 3.1 shows 

these values. 

 
Table 3.1 Parameters a and b for Vryhof Stevpris 

Soil condition Anchor line a b 

Very soft clay Chain 48 0.92 

Very soft clay Wire 66.3 0.92 

Medium clay Both 67 0.92 

Hard clay and sand Both 86 0.92 
 
 

The design charts shown in Fig. 3.3 and 3.4 indicate the design curves for anchor 

weight versus anchor capacity and anchor weight versus penetration depth (and drag 

distance), respectively. In Fig. 3.3, the Stevpris MK5 design line for very soft clay 

represents soils with undrained shear strength of 4kPa at the mudline and undrained 

strength gradient of 1.5kPa/m. A 50o fluke-shank angle is typical use in very soft clay 

while the optimal fluke-shank angle for sand and hard clay is 32°. The medium clay 

design line can be applicable in silt and firm to stiff clays and the fluke-shank angle 

should also be set at 32° for optimal performance (Vryhof 1999). 
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Fig. 3.3 Design curves for capacity of Vryhof Stevpris MK5 (Vryhof 1999) 
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Fig. 3.4 Chart of penetration depth and drag distance versus anchor weight for Vryhof 

Stevpris MK5 in various soil type (Vryhof 1999) 
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3.1.3 Bruce anchors 

 
Bruce anchors has also provided similar design curves and corresponding 

equations for the Bruce FFTS anchor based on NCEL tests as shown in Fig. 3.5. Table 

3.2 shows the specific values of parameters,  and for predicting ultimate holding 

capacity. Bruce FFTS MK4 design line for mud and soft clay is based on undrained soil 

strength of zero at the seabed and an undrained soil strength gradient of 1.57kpa/m i.e. a 

strength described by the equation S

a b

u =1.57z with Su in kPa and z in meters below the 

mudline. 

Table 3. 2 Parameters a and b for Bruce MK4 

Soil condition Anchor line a b 

In Sand Chain 46.86 0.94 

In soft clay or mud Wire 49.66 0.92 

In soft clay or mud Chain 39.95 0.92 
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        Fig. 3.5 Design curve of Bruce FFTS MK4 (Bruce Anchors) 
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3.2. Limit equilibrium method 

 

Stewart (1995), Neubecker and Randolph (1996b), Dahlberg (1998) and Thorne 

(1998) proposed prediction methods based on limit equilibrium for predicting anchor 

capacity and trajectory. In these methods, the soil resistance act on all elements of an 

anchor such as shank and fluke. Each method has a unique approach for estimating the 

direction and magnitude of the soil resistance. As shown in Fig. 3.6, it is assumed that 

the forces acting on the components of the drag anchor are in equilibrium at any 

snapshot in time. In Fig. 3.6, Ftf and Fts indicate shearing resistance on fluke and shank, 

respectively and Fpf and Fps indicate bearing resistance on fluke and shank, respectively 

Anchor Line Force, F

Fts

Anchor Weight, W

C.G. Fps

Ftf

Fpf

 

Fig. 3.6 Body forces on anchor 

The entire trajectory of a drag anchor can be predicted by step by step 

calculation. As the anchor penetrates, its orientation should be changed in small 

increments to satisfy force and moment equilibrium for a given depth. The anchor 

translates until the fluke is parallel to the seabed by repeating the incremental translation 

and rotation. Eventually an anchor reaches the ultimate penetration depth where it exerts 
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ultimate anchor capacity. For the purposes of illustration we include below additional 

details of two of the methods mentioned above, especially methods of Newbecker and 

Randolph (1996b) and Thorn (1998) 

 

3.2.1 Neubecker and Randolph  

Neubecker and Randolph (1996b) developed a simplified method for predicting 

the trajectory of a drag anchor in soft clay. In this method, the anchor translates parallel 

to the fluke of the anchor with the fluke orientation adjusted to satisfy equilibrium 

condition at each step. The anchor penetrates until fluke is parallel to the sea bed.  

As shown in Fig. 3.7, the geotechnical resisting force Tp, acting at the padeye of 

the anchor parallel to the fluke is expressed as: 

ucpp sNfAT =        (3.2) 

where =soil resistance parallel to the fluke  pT

f = form factor for the anchor 

pA = projected anchor area ( in the direction of travel ) 

cN =bearing capacity factor taken as 9 

us =local undrained shear strength 

It is evident from moment equilibrium that for a weightless anchor there will also 

be geotechnical forces acting normal to the fluke Tn. The resultant force Tw at the shackle  

will make an angle wθ  as shown in Fig. 3.7.  Tw can be expressed as follows; 

cos
p

w
w

T
T

θ
=        (3.3) 
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m factor f, and the angle wθ , which can be determined by They proposed the for

field tests or centrifuge model tests or by analysis. These properties are assumed to be 

unique for any anchor and they can describe the behavior of the anchor in soft clays. It 

should be noted that the resultant force, Tw, is independent of the anchor weight, but 

anchor weight must be considered when the actual padeye force, Ta, is calculated. The 

relationships between the angles can be expressed as: 

βψθθ −+= wa        (3.4) 

In case of the field condition, the anchor weight is not a significant factor in the 

behavior of the anchor, thus, ψ can be ignored. 

Fluke
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Fig. 3.7 Force equilibrium of anchor for Neubecker and Randolph (1996b) 
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3.2.2 Thorne (1998) 

Thorne suggested a method for the estimating the trajectory of drag anchors in 

normally consolidated soils based on geotechnical principles. The forces acting on the 

anchor represent the equilibrium forces for a given depth and anchor orientation. Fig. 3.8 

shows the concept of drag force which is expressed as follows. 

i idrag force DA DF S= ⋅ ⋅ u      (3.5) 

where DAi and DFi indicates the area and drag factor for the ith component, respectively.  

Origion is centre
 of area of fluke
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Fig. 3.8 Elements for conventional anchor (Thorne 1998) 
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Fig. 3.9 shows the drag forces acting on the anchor and the anchor line tension. 

Drag forces can be classified as follows: total drag force normal to fluke (TDFN), total 

drag force parallel to fluke (TDFP), total moment of drag forces about center of area of 

fluke (TDFM). 

1
isin

i n

i i
i

uTDFN DA DF S α
=

=

= − ⋅ ⋅ ⋅∑      (3.6a) 

1

cos
i n

f f i i
i

uTDFP DA DF S DA DF Su iα
=

=

= ⋅ ⋅ + ⋅ ⋅ ⋅∑    (3.6b) 

1

( sin cos
i n

i i i i i
i

uTDFM DA DF S Distx Disty )iα α
=

=

= ⋅ ⋅ ⋅ ⋅ + ⋅∑   (3.6c) 

where  � iα  = angle of drag force i to plane of fluke; 

 Distxi = x coordinates of center of area of drag element i; 

 Distyi = y coordinates of center of area of drag element i; 

The equilibrium equation can be written by summing forces normal and parallel 

to the fluke and moment about the center of area of the fluke. Then, equations of the 

equilibrium in the parallel and normal direction and moment about the fluke center can 

be described as follows. 

cos( ) sina aT TDFP Wθ θ+ = − θ      (3.7a) 

sin( ) cosn a aF T W TDFNθ θ θ= + − −     (3.7b) 

{ sin( ) cos( )

( sin cos )
a x a y a

w w

M T S S

TDFM W Y X

}θ θ θ θ

θ θ

= + − +

+ − +
    (3.7c)  
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In the above equations, Fn indicates the normal force exerted on the fluke by the soil and 

it acts at the center of area of the fluke. M indicates moment about the center of the area 

of the fluke applied to the fluke by the soil. 
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Fig. 3.9 Equilibrium of anchor during penetration (Thorne 1998) 
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3.3 Plastic limit analysis method 

O’Neill et al. (2003) proposed the yield loci method in which they have used 

plasticity concepts to estimate the capacity of drag anchor under combined loading 

conditions of vertical load (V), horizontal load (H) and moment (M) as shown in Fig. 

3.10. As a drag anchor is installed in soft undrained clay, local plastic flow of the soil 

occurs around the drag anchor. 

 

Ta

H
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Fluke reference
point M

Fluke reference point
displacements

δv
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Fig. 3.10 Loads and displacements at failure for a simplified drag anchor         
(O’Neill, et al. 2003) 

 

The yield locus of the anchor under general loading can be expressed as a 

mathematical equation, f (V,H,M) = 0 as shown in Fig. 3.11. The equation can be used to 

obtain the anchor capacity under various loading combinations and can also serve as a 

yield surface to predict the anchor displacement i.e. act as a plastic potential function 

which describes the plastic vertical and horizontal displacements and rotation of the 

fluke when it fails the soil around it.  
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Fig. 3.11 The yield locus and plastic potential function (O’Neill, et al. 2003) 

 
Finite element analysis and limit analysis have been used to develop the yield 

surface by examining the interactions between the fluke and the undrained soft clays 

around the fluke. Once the yield surface has been developed it can be used to estimate 

the incipient anchor displacement and rotation under a prescribed load. As in the limit 

equilibrium methods, a small increment of displacement and rotation is imposed and the 

new displacement directions are thus determined. This process is repeated until the 

anchor depth remains constant. 
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CHAPTER IV  

PLASTIC LIMIT ANALYSIS 

 

 

4.1 Introduction 

 
Limit analysis provides powerful tools for estimating the load-carrying capacity 

of a structure. Limit analysis is more efficient and consistent in solving the collapse 

problem of plastic structures compared to the equilibrium method. The limit equilibrium 

method considers equilibrium of a soil mass but requires an assumption regarding the 

distribution of soil resistance. Plastic limit analysis provides a well defined methodology 

for estimating lower bound capacities using statically admissible stress distribution or 

upper bound capacities using kinematically admissible mechanism. 

In this chapter, the assumptions and the basic concepts of lower and upper bound 

theorems are described. This includes the concept of rigid–perfect plasticity, yield 

criterion, associated flow rule, and normality of yield surface.  

 
4.2 Basic concepts of limit analysis 

 

4.2.1 Rigid perfect plasticity 

 
Fig. 4.1 shows a stress-strain relationship of both a real soil and an elastic plastic 

idealization. As can be seen in this figure, this curve is consisted of an initial almost 

linear portion with a peak stress followed by softening to a residual stress. This curve 

can be obtained by laboratory tests such as simple triaxial compression tests or simple 
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shear tests. For the application of stability problems in limit analysis, small amounts of 

strain softening can be neglected.  Thus we can simplify this curve as two straight lines 

which are shown dashed in this Figure. 

 

Strain

Perfectly Plastic
Peak

Stress

Residual

Work Softening

A B

0
 

Fig. 4.1 Stress-strain relationship for ideal and real soils (Chen, 1990) 

 

Fig. 4.2, shows a rigid-plastic idealization in which elastic deformations from 0 

to A are not considered. This model is used in limit analysis method such as lower and 

upper bound applications since we are only concerned with capacities, not deformations. 

This figure shows the stress-strain curve and an analogy model for a rigid-perfectly 

plastic material. From Fig. 4.2, we can see that there is no deformation up to a value of 

0σ , called the yield stress. When 0σ  is reached the strain increases without limit. 
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σ

σ0

ε0  

Fig. 4.2 Stress-strain curve for rigid perfectly plastic soil 

 
For small strains, the stress-strain curve often shows perfectly plastic behavior to 

a reasonable approximation. This is applicable to ductile materials such as soft clay. In 

addition, the elastic deformation of clay is small enough to be ignored when compared to 

its plastic deformation. Therefore, the rigid-perfect plasticity model is considered to be a 

reasonable assumption for clays undergoing small deformations. 

 

4.2.2 Yield criterion 

 
An essential element of plastic limit analysis is the yield surface which is the 

locus of the points representing yielding defined in stress space. The yield surface is a 

function that explains the interactions among stresses in a continuum that cause the 

material to yield. For a perfectly plastic material, a yield surface is the boundary between 

possible and impossible states of stress. The possible states of stress are within strength 
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limit of the material and are therefore bounded by the yield surface. As can be seen in 

Fig. 4.3, a state of stress outside the yield surface is not possible.  

A yield function can be defined mathematically as following:  

( ) 0ijF σ =        (4.1) 

where F=yield function 

ijσ =stress tensor defining the stress state (i,j =1,2,3 in a three dimensional 

continuum). 

 

Possible state of stress

Impossible state of stress

Yield surface

F(σij) > 0

F(σij) < 0

F(σij)  0

σij

 

Fig. 4.3 Yield surface and stress state in the stress space 

 
Any point inside of the yield surface, corresponds to the condition, ; any point 

on the yield surface, corresponds to the condition, 

( ) 0ijF σ <

( ) 0ijF σ = ; and any point outside the 

yield surface, corresponds to the condition, .  ( ) 0ijF σ >
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In geotechnical engineering problems, Tresca yield criterion or the von Mises 

criterion are typically used for undrained analysis. In the Tresca the soil yields when the 

maximum shear stress reaches its shear strength. The maximum shear stress is related to 

the difference in the major and minor principal stresses, i.e. 

 1 3

2 uSσ σ−
=  or 1 3( ) 2 0i j uf Sσ σ σ= − − =    (4.2) 

where, 1σ and 3σ  are major and minor principal stresses  

  Su = undrained soil strength  

Fig. 4.4 shows the Tresca criterion for plane stress conditions. In this case the out of 

plane stress affects the surface. 

σ1

σ3σyield

σyield

−σyield

−σyield

 

Fig. 4.4 Tresca criterion for plane failure 

 

The von Mises criterion is also known as the maximum distortional energy 

criterion, and is met when the following criterion is satisfied. 
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  2 2 2
1 2 2 3 3 1

1 ( ) ( ) ( )
2 y

2σ σ σ σ σ σ σ⎡ − + − + − =⎣ ⎤⎦    (4.3) 

where yσ =  = the yield stress measured under uniaxial stress conditions yieldσ

In the case of plane stress, i.e., 2σ = 0, the von Mises criterion reduces to,  

2 2
1 1 3 3 y

2σ σ σ σ σ− + =       (4.4) 

This equation represents an ellipse as shown in Fig. 4.5. Fig. 4.5 shows that Tresca 

criterion is inside of von Mises criterion. This indicates that Tresca criterion is more 

conservative than the von Mises criterion when the yield stress is measured in uniaxial 

stress conditions. 

σ1

σ3σyield

Tresca

von Mises

σyield

−σyield

−σyield

 

Fig. 4. 5 Comparison of Tresca and von Mises failure criteria 
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4.2.3 Associated flow rule and normality condition 

 
For perfectly plastic material a plastic potential function ( )ijG σ is defined which 

determines the relative strain magnitudes that is, p
ij

ij

Gε λ
σ

∂
=

∂
. If the material is a stable 

(no softening), perfectly plastic material then the plastic potential function G is identical  

 
to the yield function, F, that is,  

p
ij

ij

Fε λ
σ

∂
=

∂
       (4.5) 

where  = positive scalar multiplier factor λ

If the yield surface and the plastic potential surface for a material are identical 

(F=G), then the material is said to obey the normality rule. In other words, the plastic 

strain increment vector is in the direction of the outward normal to the yield surface. 

This is called an associated flow rule, and is shown schematically in Fig. 4.6 where  

and q are stress measures defining yield.  

'p

p'

q

δεp
q

δεp
p  

Fig. 4.6 Normality or associated flow 
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4.3 Principal of virtual work 

 
Both lower and upper bound theorems are based on the principle of virtual work. 

In limit analysis, it is assumed that deformations in geometry of the body at incipient 

plastic collapse are small, so that changes of geometry can be ignored. For this reason, 

the original geometry of the body is used for virtual work derivations. In the virtual work 

equation, two independent conditions are considered, namely, the equilibrium stress set 

and the compatibility strain set. In Eq.4.6, the superscripts A and B indicate the 

equilibrium and compatibility sets, respectively, such that the virtual work equation is 

A B A B A B
i i i i ij ij

S V V

T v ds X v dV dVσ ε+ =∫ ∫ ∫      (4.6) 

where A
ijσ =the stresses, real or virtual, in equilibrium with the external forces  on 

the boundary and the body forces 

A
iT

A
iX  in the body; B

ijε =the strain or deformations 

compatible with real or virtual velocity field ;  S,V  refer to the boundary surface 

and the volume of the body, respectively. 

B
iv

 

  (a) Equilibrium                    (b) Compatible 

Fig. 4.7 Two independent sets in the virtual work equation 
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4.4 Lower bound theorem 

 

If a stress field does not violate the yield criterion at any point is in equilibrium 

with the surface tractions and body forces, then such a stress field is said to be statically 

admissible. It can be shown that collapse does not occur in a today with a statically 

admissible stress field, i.e., the true collapse load is clearly larger than or equal to the 

external load implied by such a condition. This can be expressed in virtual work 

equations as 

L L LT v ds X v dV dV dVi i i i ij ij ij ij
s v v v

σ ε σ ε+ = ≤∫ ∫ ∫ ∫    (4.7) 

where L
ijσ = statically admissible stress field in equilibrium with the tractions  and 

the body forces 

L
iT

L
iX   

ijσ = actual stress field  

ijε = actual strain rate field  

iv = actual velocity field 

 
It should be noted that only the equilibrium and the stress boundary conditions 

are satisfied in lower bound theorem. The implied kinematics (i.e, compatibility, flow 

rule) are not considered in this theorem. Lower bound solution to the true collapse load 

can be estimated by trial and error assuming various statically admissible stress fields. 

Solutions that give higher collapse loads are close to the exact solution. 
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4.5 Upper bound theorem  

 

In a kinematically admissible velocity field, if the plastic collapse load is 

calculated by equating internal energy dissipation rate to the external work rate by the 

boundary forces then the calculated load is either greater than or equal to the true 

collapse load. This can be expressed in the virtual work equation as: 

U U U U U U U
i i i i ij ij ij ij

S v v v

T v dS X v dV dV dVσ ε σ ε+ = ≥∫ ∫ ∫ ∫    (4.8) 

where, =kinematically admissible velocity field compatible  U
iv

with the strain rate field U
ijε  

U
ijσ =stress field in equilibrium with the upper bound loading  and U

iT U
iX  

ijσ =actual stress field 

It should be noted that U
ijσ  is not in general the actual stress field invoked in the 

body due to the applied traction vectors  and body forces XiT i, unless vi(x) happens to 

be the true mechanism of collapse in the body. However, ijσ is the stress field that 

would cause the virtual plastic strain increment p
ijε . 
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4.5.1 Energy dissipation in continuous deformation regions 

 

To estimate the energy dissipation in continuous deformation regions, the yield 

criteria such as Tresca or von Mises is required. In the case of plane strain, the Tresca 

and von Mises yield criteria have the identical form of the yield function (Murff  2002). 

0
2
1

2
1

4
)(

2/1

22
2

=−
⎥
⎥
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⎤

⎢
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⎣

⎡
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= uyxxy

yx Sf ττ
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   (4.9) 

From the flow rule, the strain rates are expressed as  

1/ 22
2 2( ) 2(1 1 1

2 4 2 2 4
x y x y

x xy yx
x

f )σ σ σ
ε λ λ τ τ

σ

−
⎡ ⎤− −∂

= = + +⎢ ⎥
∂ ⎢ ⎥⎣ ⎦
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∂ ⎢ ⎥⎣ ⎦
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1/ 22
2 2( )1 1 1

2 4 2 2
x y

xy xy yx xy
xy

f σ σ
ε λ λ τ τ

τ

−
⎡ ⎤−∂

= = + +⎢ ⎥
∂ ⎢ ⎥⎣ ⎦

τ  

Above equations are simplified as follows; 

( )
4
x y

x
uS

σ σ
ε λ

−
=        (4.10a) 

(
4
x y

y
uS

)σ σ
ε λ

−
= −       (4.10b) 

2
xy

xy
uS

τ
ε λ=        (4.10c) 
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The volumetric strain rate is  

0v x yε ε ε= + =        (4.11) 

This is true for all purely cohesive materials when solids are not compressible (i.e, 

undrained conditions). The internal energy dissipation rate based on a kinematically 

admissible velocity field is as  

p
ij ijD σ ε=        (4.12) 

The strain rates are  

p
ij

ij

fε λ
σ
∂

=
∂

       (4.13) 

Substituting Eq. 4.13  into Eq. 4.12,  

ij
ij

fD λσ
σ
∂

=
∂

       (4.14) 

Carrying out this operation it can be shown that 

uD Sλ=         (4.15) 

Substituting Eqs. 4.10a, 4.10b and 4.10c into the yield function Eq. 4.9, then λ  can be 

expressed as follows: 

2 2 2 2 1(2 2 2 2 )x y xy yxλ ε ε ε ε= + + + / 2

/ 2

y

     (4.16) 

Then, by substituting Eq. 4.16 into Eq. 4.15, the dissipation is 

2 2 2 2 1(2 2 2 2 )u x y xy yxD S ε ε ε ε= + + +      (4.17) 

Now since 

xε ε= −  and xy yxε ε=  
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We can simplify Eq. 4.17 to  

2 2 1/2 ( )u x xyD S ε ε= + 2  

This is a function of energy dissipation for a continuously deforming region in plane 

strain. In case of the three-dimensional condition, the following functions are derived  

von Mises:      (4.18) 1/ 2(2 )u ij ijD S ε ε=

Tresca:        
max max

2 u shear
D S Sε γ= = u    (4.19) 

 

4.5.2 Energy dissipation in slip surfaces 

Slip surfaces are idealized as discontinuous surfaces with a thin transition layer. 

Consider two rigid blocks with a simple shear deforming transition region between two 

blocks. As shown in Fig. 4.8, the bottom rigid block is stationary but the upper rigid 

block translates with a velocity, vo. 

In the deforming region, the velocity field is 

0 0x y
vv y and v v
t

= = z =      (4.20) 

Therefore, the only non-zero strains are then  and . Thus, xyε yxε

01
2 2

yx
xy yx

vv
y x t

ε ε
∂⎛ ⎞∂

= = + =⎜ ⎟∂ ∂⎝ ⎠

1 v      (4.21) 

Substituting this value into Eq. 4.19, the dissipation per unit volume is  

1/ 22
02

2
u

u
v SD S
t t

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

0v
=      (4.22) 
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The total dissipation in the deforming region can be estimated by integration over the 

total volume, then 

0
01u

Tot u
V

S vD DdV D Volume t S v
t

= = × = × × =∫    (4.23a) 

Thus, we can see that dissipation does not depend on the thickness of the deforming 

region. As the thickness of deforming region approaches to the zero, then the dissipation 

for a slip surface is  

0uD S v=        (4.23b) 

where  = the relative velocity of slip along the slip surface. ov

 
It should be noted that both Tresca and von Mises yield criteria induce the same 

results even if the meaning of Su is somewhat different in each criterion. 

 

Deforming Region

Rigid Moving

V 0

Rigid Stationary

1.0 Units Wide

t
x

y

 

Fig. 4.8 Deformation in the slip surface (Murff 2002) 
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4.5.3 Example of application of the upper bound method 

 
In order to illustrate how the upper bound method for undrained analysis apply to 

geotechnical engineering problem, consider the passive pressure problem shown in Fig. 

4.9. The object of this problem is to find the load F, which will cause passive failure of a 

wall of height, H. 

θ

H
F, v0

Slip Surface

 
Fig. 4.9 Example of upper bound methods (Murff 2002). 

 
It is assumed that the wall pushes a rigid wedge of soil along the slip surface. The 

wall moves with virtual velocity , and the wedge must slip tangentially along the 

surface. The resultant velocity, v

ov

R, of the wedge is indicated in Fig. 4.10. 

vR =v0/cosθ

v0

vv v0 tanθ

 
Fig. 4.10 Velocity field of example slope 
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The dissipation rate is  

sin sin cos
o u

Tot R u
v s HHD v s

θ θ θ

•

= ⋅ ⋅ =      (4.24) 

The work rate of the external loads must include the work rate done by the soil weight. 

Thus the total work rate is   

21 cot tan
2oW Fv H voγ θ

•

= − × θ      (4.25) 

Equating external work rate to internal dissipation rate and canceling virtual velocities, 

we get  

θθ
γ

cossin2
1 2 HS

HF u+=        (4.26) 

To find the best upper bound for F, the θ  value that minimizes F can be found by 

differentiating, and solving for θ  as follows 

θθθ 22 cossin
0 HSHSF uu −==

∂
∂      (4.27) 

45=θ  

Then, substituting  into the Eq. 4.26 for F , it leads to following Eq. 4.28.  45=θ

HSHF u2
2
1 2 += γ       (4.28) 
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4.5.4 Systematic approach to upper bound plastic limit analysis 

 
In order to apply assumptions and conditions illustrated in this chapter to the 

upper bound plastic limit analysis of a drag embedded anchor, the following procedures 

are required (Murff 2002). 

(1) Establish a yield function, ( ) 0ijf σ =  

(2) Assume associated flow, ij
ij

fε λ
σ
∂

=
∂

 

(3) Determine the dissipation rate as a function of strain rate, ( )ijD D ε=  

(4) Determine a kinematically admissible mechanism, ( , )iv f x y=  

(5) For the mechanism equate virtual work rate to internal dissipation rate, 

 *
i i v

W u Ddv=∑ ∫

(6) Solve for the unknown force 

(7) Optimize the solution with respect to geometric parameter defining the 

mechanism. 
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4.5.5 Generalization of the upper bound method 

 
 The foregoing sections have detailed the development of the upper bound 

method applied to a continuum. This approach can be further generalized to apply to a 

system of forces and moments characterizing the yield of a perfectly plastic “structure” 

(or in our case soil-anchor system). 

 Prager(1959) showed that a system of forces that characterize a stress state of a 

perfectly plastic structure can be treated as generalized stresses and the corresponding 

displacements as generalized strains. “For a given set of generalized stresses 1 nQ Q⋅ ⋅ ⋅ , 

the generalized strain rates 1 nd d⋅ ⋅ ⋅  are work rate conjugates of the stresses, that is  

1 1 n nW Q q Q q= + ⋅⋅⋅+       (4.29) 

where  is the work rate of the generalized stresses on the plastic strain rates.” (Murff 

1999).  

W

 Interaction failure diagrams for forces, Qi can then be treated as generalized 

yield surfaces and the plastic limit analysis methods can then be applied using these 

generalized definition of stress and strain. 
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CHAPTER V  

UPPER BOUND ANALYSIS OF DRAG ANCHOR 

 

 
A methodology for predicting drag anchor installation performance is described 

in detail in this chapter. This approach employs the upper bound method of plasticity 

which relies on assumed mechanism of deformation. An external anchor line force F 

acts on the anchor inclined at an angle fθ  from horizontal causing it to rotate about a 

center of rotation (x0, y0) at an angular velocity β . The upper bound analysis equates 

the rate of external work  performed by F and the anchor weight W to the rate of 

internal energy dissipation in the soil 

extW

D , to compute the magnitude of F. The 

coordinates of the center of rotation are optimized to seek a minimum anchor line force 

Fmin for a given fθ . This process is repeated for various inclination angle, fθ  to 

establish the locus of points relating Fmin to fθ . As will be discussed subsequently, the 

intersection between this locus and the inverse catenary line equation relating anchor 

line tension to inclination angle at the shackle point establishes unique values of anchor 

force and inclination angle for a given step in the drag embedment process. The 

definitions related to the mechanism geometry are as shown in Fig. 5.1. 
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(xfn,yfn)

(x0,y0) β

(x2,y2)

(x1,y1)

(x4,y4)

(xsn,ysn)

θ f

θfs

d
2

(xw,yw)

Y

X

d1(x3,y3)

β

sθ

F
0

Seabed

W

 

Fig. 5.1 Definition sketch for analysis of drag anchor 

 

Definitions of the terms in Fig. 5.1 are as follows 

F=anchor line force 

W=anchor weight  

β =virtual angular velocity of anchor 

fsθ =angle between shank and fluke 

fθ =angle between force line and seabed 

sθ =angle between shank and seabed 

The coordinates of specific points in the Fig. 5.1 are  

(x0,y0)=center of rotation 

(x1,y1)=line attachment point (shackle point) 
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(x2,y2)=fluke-shank intersection point 

(x3,y3)=head of fluke 

(x4,y4)=tip of fluke 

(xw,yw)=center of gravity of anchor 

(xsn,ysn)=intersection point between shank and line normal to shank passing 

through (x0,y0) 

(xfn,yfn)=intersection point between fluke and line normal to fluke passing 

through (x0,y0) 

 
For convenience, coordinates on the fluke are sometimes described in terms of a 

t-p local coordinate system, with t and p corresponding to directions tangential and 

normal to the long axis of the fluke, respectively. For example, as Fig. 5.2 shows the 

local coordinated system for the fluke. A similar system is used for the shank. 

 

0

t

p

 

Fig. 5.2 Local coordinate for fluke 
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5.1 Kinematics of the drag anchor 

 
As it can be seen Fig. 5.3, the kinematics of the fluke motions can conveniently 

be expressed in terms of a velocity parallel to the long axis of the fluke vtf and an angular 

velocity about a center of rotation located on the long axis of the fluke (xfn,yfn). A local 

coordinate system may thus be established, with the p and t coordinates corresponding to 

directions normal and tangential to the fluke, respectively. The special cases of pure 

translation in directions normal or parallel to the fluke are described by a center of 

rotation located an infinite distance from the fluke. A description of motions of the 

anchor shank is treated in a similar manner. In terms of global coordinates, the 

components of velocity tangential and normal to the long axis of the fluke and shank are 

given by Eqs. 5.1. 

 2
0 0( ) ( )tf nf nfV x x y y 2 β= − − −      (5.1a) 

 2( ) ( )pf nf nfv x x y y 2 β= − + −      (5.1b) 

2
0 0( ) ( )ts ns nsV x x y y 2 β= − − −      (5.1c) 

2( ) ( )ps ns nsv x x y y 2 β= − + −      (5.1d) 
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(xfn,yfn)

(x0,y0)
β

β

v
pf=tv

tf

t

 
a. velocities of fluke 

 
 

t(xsn,ysn)

β
Vts

βVps=t

 
b. velocities of shank 

Fig. 5.3 Velocities of drag anchor 
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5.2 Virtual energy dissipation on fluke and shank 

 
5.2.1 Virtual energy dissipation due to tangential motion on fluke 

 
The component of velocity parallel to the long axis of the fluke Vtf is constant for 

all points on the fluke. As shown by Eq. 5.1a, Vtf  depends on the distance between point 

(xfn,yfn) on  the fluke and its center of rotation (x0,y0). 

 
The energy dissipation rate at a point (x, y) along the fluke on a differential element is 

( ) ( )tf tf u tf tfdD V S y N A s dsα= × × × ×     (5.2) 

where  Vtf is velocity given by equation 5.1a  

α  = adhesion factor  

Su(y) = undrained soil strength at a depth y 

Ntf = tangential resistance factor of fluke (assumed to be one) 

s = chord length 

Atf(s) = the width of the fluke  

2
2 2 1 dyds dx dy dx dx m

dx
⎛ ⎞= + = + = +⎜ ⎟
⎝ ⎠

21    (5.3) 

where dym
dx

=  

 

Thus we get the differential dissipation rate per increment of horizontal distance dx. 

  2( ) ( ) 1tf tf u tf tfdD V S y N A s m dxα= × × × × +    (5.4) 
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The adhesion factor,  is often taken as the reciprocal of soil sensitivity,α 1/ tsα ≈ . The 

tangential components of resistance are assumed to be unaffected by the conditions of 

anchor rotation. 

 

5.2.2 Virtual energy dissipation due to normal motion on fluke 

 
As can bee seen in Fig. 5.3a, the normal velocity Vpf varies linearly along the 

fluke. It is determined by the product of the rotation rate times the distance between 

normal intersection point (xfn,yfn) and the point (x,y) on fluke.  

σpf=npfSu

 

Fig. 5.4 Normal resistance on fluke 
 
 
 

As it can be seen in Fig. 5.4, it is assumed that the resistance opposing the 

normal velocity is uniform along the fluke such that the differential dissipation rate is  

2( ) ( ) 1pf pf u pf pfdD V S y n A s m dx= × × × × +    (5.5) 

where  Vpf  is defined by equation 5.1b 

 npf = bearing resistance factor of fluke (will be discussed in Chapter VI) 
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pfA = bearing area of fluke and the other parameters are as defined in Eq. 5.2 
 
 
 
5.2.3 Virtual energy dissipation on ends of fluke 

 
If the fluke has a significant thickness then the dissipation due tip resistance 

should be considered. Fig. 5.5 shows schematic of tip resistance of the fluke. 

 

β

(xfn,yfn)

(x3,y3)

(x4,y4)

(x0,y0)

Tip resistance  

Fig. 5.5 End resistance on tip of the fluke 

 

The dissipation rate at the end of the fluke can be expressed as follow: 

4( )ef ef ef u efD V N S y A= × × ×      (5.6) 

where  Vef = Vtf (parallel velocity of fluke) 

Nef = resistance factor, assumed to be approximately 12 

            Su(y4) = undrained soil strength at depth y4 (tip of fluke)  

 Aef = area of tip of fluke 
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5.2.4 Virtual energy dissipation due to tangential motion on shank 

 
The component of velocity parallel to the long axis of the shank Vts is constant 

for all points on the shank as shown in Fig. 5.3b. The parallel velocity of the shank Vts 

depends on the distance between point (xsn,ysn) on the shank and its center of rotation 

(x0,y0). Therefore, the energy dissipation rate at a point (x, y) along the fluke on a 

differential element is 

( ) ( )ts ts u ts tsdD V S y N A s dsα= × × × ×     (5.7) 

where  Vts is velocity given by Eq. 5.1c  

α  = adhesion factor  

Su(y) = undrained soil strength at a depth y 

Nts = tangential resistance factor of shank (assumed to be one) 

s = chord length 

Ats(s) = side resistance area of shank along a chord 

2
2 2 1 dyds dx dy dx dx m

dx
⎛ ⎞= + = + = +⎜ ⎟
⎝ ⎠

21    (5.8) 

where dym
dx

=  

Thus we get the differential dissipation rate per increment of horizontal distance dx 

  2( ) ( ) 1ts ts u ts tsdD V S y N A s m dxα= × × × × +    (5.9) 

The adhesion factor,  is often taken as the reciprocal of soil sensitivity, α 1/ tsα ≈ . 

The tangential components of resistance are assumed to be unaffected by the conditions 

of anchor rotation. 
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5.2.5 Virtual energy dissipation due to normal motion on shank 

 
As can bee seen in Fig. 5.3, the normal velocity varies linearly along the shank. It 

is determined by the product of the rotation rate times the distance between normal 

intersection point (xsn ,ysn) and the point (x,y) on shank. Fig. 5.6 shows the assumed 

resistance on shank. 

σps=npssu

σps=npssu

 

Fig. 5.6 Normal resistance on shank 

 

It is assumed that the resistance opposing the normal velocity is uniform along the fluke 

such that the differential dissipation rate is  

2( ) ( ) 1ps ps u ps psdD V S y n A s m dx= × × × × +    (5.10) 

where  Vps  is defined by Eq. 5.1d 

 nps = bearing resistance factor of shank  

psA = bearing area of shank and the other parameters are as defined in Eq. 5.2  
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5.2.6 Integration for total rate of energy dissipation 

 
Eqs. 5.4 and 5.5 provide expressions for the rate of virtual energy dissipation per 

unit horizontal length of fluke associated with the tangential and normal components of 

velocity, respectively. Eqs. 5.9 and 5.10 provide expressions for shank. Total virtual 

energy dissipation rates must be computed by integrating the energy dissipation rates all 

over the anchor. Eq. 5.11 shows total energy dissipation rates. 

T tf pf ef tsD D D D D D= + + + + ps       (5.11) 

where  = Virtual energy dissipation due to tangential motion on fluke tfD

pfD = Virtual energy dissipation due to normal motion on fluke 

efD = Virtual energy dissipation on ends of fluke  

tsD = Virtual energy dissipation due to tangential motion on shank 

psD = Virtual energy dissipation due to normal motion on shank  

 
The algorithm developed in this research performs the integration using a 

numerical integration method, especially Simpson’s rule. To achieve adequate numerical 

accuracy, the fluke and shank are sub-divided into 20 horizontal length increments. 
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5.2.7 External work 

 
A. The weight of drag anchor 

The center of gravity of the anchor is located by the coordinates xw and yw as 

shown in Fig. 5.7 and given by Eqs. 5.12. 

 

(x4,y4)

(x2,y2)

(x3,y3)

β
(x0,y0)

d
2

d1

θ

x

y

(x1,y1)

(xw,yw)W

 

Fig. 5.7 Weight of drag anchor  

 
 
 

2 1 2cos sinw sx x d d sθ θ= + +      (5.12a) 

2 1 2sin cosw sy y d d sθ θ= + −      (5.12b) 

The weight of the anchor acts in direction of gravity, giving the external virtual work 

performed by the anchor weight as: 

0(ww W x x )w β= × −       (5.13) 
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B. Resultant force, F 

The anchor line force, F, is the principal unknown. The relevant geometry is 

shown in Fig. 5.8. 

 

θs

x

y

(x1,y1)
θf

d

(x4,y4)

(x2,y2)

(x3,y3)

β
(x0,y0)

F

 

Fig. 5.8 Resultant force F 

 

From Fig. 5.8, the equation of the line of action of the anchor line force F is: 

       (5.14a) 1tan ( )fy x xθ= − 1y+

f

or alternatively: 

      (5.14b) 1 1tan tan 0f x y y xθ θ⋅ − + − ⋅ =

The distance between center of rotation (x0, y0) and line of action of the force, d, is  

 0 0 1

2 2

tan 1 tan

tan ( 1)
f f

f

x y y
d

θ θ

θ

⋅ − ⋅ + −
=

+ −
    (5.15) 
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The virtual velocity of the anchor line load is

 0 0 1

2 2

tan 1 tan

tan ( 1)
f

f

x y y
v abs

θ θ f β
θ

⎛ ⎞⋅ − ⋅ + −⎜=
⎜ ⎟+ −⎝ ⎠

⎟    (5.16) 

and the external work rate is then 

 0 0 1

2 2

tan 1 tan

tan ( 1)
f f

F

f

x y y
w F abs

θ θ
β

θ

⎛ ⎞⋅ − ⋅ + −⎜= ×
⎜ ⎟+ −⎝ ⎠

⎟    (5.17) 

 
Total external work rate done is in the mechanism is then 

0 0 1
0 2 2

tan 1 tan
( )

tan ( 1)

t w F

f f
w

f

w w w

x y y
W x x F abs

θ θ
β β

θ

= +

⎛ ⎞⋅ − ⋅ + −⎜ ⎟= × − + ×
⎜ ⎟+ −⎝ ⎠

 (5.18) 

 
The total internal energy dissipation is then set equal to the external work rate giving  

 

0 0 1
0 2 2

tan 1 tan
( )

tan ( 1)
f

T w

f

x y y
D W x x F abs

θ θ fβ β
θ

⎛ ⎞⋅ − ⋅ + −⎜ ⎟= × − + ×
⎜ ⎟+ −⎝ ⎠

  (5.19) 

 
The upper bound estimate of the resultant force F can then be calculated as 

0

0 0 1

2 2

( )

tan 1 tan

tan ( 1)

T w

f f

f

D W x xF
x y y

abs

β

θ θ
β

θ

− × −
=

⎛ ⎞⋅ − ⋅ + −⎜ ⎟
⎜ ⎟+ −⎝ ⎠

   (5.20) 
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5.3 Optimization of resultant force F 

 
An upper bound estimate of the resultant force F is calculated using Eq. 5.20. If 

the angle of force is fixed in this equation then the center of rotation is the only variable. 

Therefore, it is necessary to minimize F with respect to coordinates (x0, y0) in Eq. 5.20 to 

get the best solution. A contour plot of resultant forces at each center of rotation can be 

drawn to graphically find the optimum center of rotation corresponding to a minimum F. 

This process is similar to finding the best estimate of the safety factor in slope stability 

analysis. To understand procedure of computing a minimum resultant force, an example 

problem is shown in Fig. 5.9. Table 5.1 indicates the relevant geometric parameters for 

the example anchor. In this example, the anchor fluke is considered to be rectangular 

with 3m width. 

 

Seabed

F

Fluke

line

Shank

z(m)

Su(kPa)20

θf

2m

 

Fig. 5.9 Anchor initial position and soil strength condition                           
for optimization of resultant force, F 
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Table 5.1 Geometry of drag anchor used example study 

Embedded Anchor Initial Position 

Anchor Line Attachment Point x1=0, y1=-2m 

Fluke-shank intersection point X2=-4, y2=-2m 

Anchor properties 

Fluke length, m 1.5 

Fluke-shank angle, degrees 50 

Fluke bearing area per unit length, m2/m 3 

Fluke shear area per unit length, m2/m 6 

Plate type of shank 

Shank bearing area per unit length, m2/m 0.2 

Shank shear area per unit length, m2/m 0.4 

Bridle type of shank 

Shank bearing area per unit length, m2/m 0 

Shank shear area per unit length, m2/m 0 

 

This example considers cases in which the anchor line angle is fixed at 5o and 

10o, respectively. The resultant force can be calculated at a grid of trial centers of 

rotation. Associating the calculated force with its trial center of rotation, we can draw 

contour lines as shown in Fig. 5.10 and Fig. 5.11. 

As it can be seen in Figures 5.10, in the case of a 5o force angle, the center of 

rotation occurs at infinite distance from the anchor. On the other hand, as shown in Fig. 
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5.11, in case of 10o force angle, center of rotation occurs near the anchor. Its optimum 

center of rotation is located at (-0.4, 0.6) as indicated in Fig. 5.11. 

 

 

F
5

x

y

-5  -4  -3  -2  -1 0  1 2 3 4 5

 -1

 -3

-5

 -4

 -2

2

 1

0

4

3

5

 

Fig. 5.10 contour of resultant force (beam shank, fθ =5o) 
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Fig. 5.11 Contour of resultant force (plate shank, fθ =10o) 
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5.4 Characteristic curve 

 
In this study, two types of shank are considered as a rigid beam type and a bridle 

type as shown in Figure 1.5. As previously mentioned the beam type shank is resisted by 

soil forces normal to and parallel to its surface. The soil forces in the bridle case are 

neglected for its small resistance. For example, the Stevpris and the Bruce MK5 have 

beam type shanks, while the Stevmanta of Vryhof is a bridle type. If anchor is embedded 

at a given depth then the optimum resultant force F must be calculated for a range of 

force angles.  In this study, the locus of points relating anchor line force angle fθ  to 

resultant force F will be referred to as the characteristic curve. As an example, consider 

the anchor embedded as shown in Fig. 5.9, with the anchor geometry and undrained soil 

strength as described in Table 5.1. 

Table 5.2 and Fig. 5.12 show the results of the analysis and optimization 

procedure presented in Section 5.1 to 5.3 for a range of anchor line force angle fθ . Also 

shown is the anchor line tension T computed for Eq. 2.10. Fig. 5.13 shows traces of the 

optimum centers of rotation corresponding to each force angle. Table 5.3 and Fig. 5.14 

show similar calculations for the case of an anchor having a bridle shank. Fig. 5.15 

shows traces of the optimum centers of rotation corresponding to each force angle for 

bridle shank.  

The highlighted row in Tables 5.2 and 5.3 show the break point which anchor 

collapse. As it can be seen in Fig. 5.12 and 5.14, intersection point is defined as a point 

which anchor resultant force curve and anchor line curve intersect each other. This 
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intersection point defines the unique solution for anchor resultant force (magnitude and 

direction) for a given anchor depth and orientation. 

As shown in Fig. 5.12 and Fig. 5.14, the characteristic curves with the two types 

of shank are considerably different. In the case of a beam shank, the resultant force F 

steeply increases with anchor line angle until 9o. The characteristic curve then abruptly 

breaks, follows a plateau between 9o and 15o, and then decreases. For the bridle shank, 

the curve peaks at 20o and the resultant force drops off immediately. For both the beam 

and bridle shank cases, the anchor tends to translate in a direction parallel to the fluke up 

until fθ  reaches the break point, at which point the anchor tends to rotate. This is 

further illustrated in Fig. 5.13 showing the location of the center of rotation as a function 

of force angle for the beam shank. In the case of a bridle shank as shown in Fig. 5.15, the 

center of rotation abruptly jumps from infinity to a point on the fluke as soon as the force 

angle fθ reaches the break point value, in this case . ( ) 20o
f breakθ =

The behavior of an anchor with a beam shank therefore differs from that of one 

with a bridle shank in several important respects. The characteristics curve of a beam 

shank anchor exhibits a flat plateau when the break point is reached, in contrast to the 

sharp peak of the bridle anchor characteristic curve, also significantly differs from that 

of the beam shank anchor, in  the case of this example, 20o versus 9o. Finally, the bridle 

anchor follows two modes. At angles below the break point the anchor trends to 

translate, while at angles above the break point it rotates about a point located on the 

fluke. In contrast, for a beam shank anchor the optimum center of rotation gradually 

migrates towards the fluke as the force angle fθ is increased beyond the break point. 
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Using this curve in combination with the anchor line resistance curve we can 

project the anchor performance. The anchor line load equation was discussed in Section 

2.2 in detail. For a given depth of attachment we can construct a curve of anchor line 

load as line inclination (corresponding to the force on the shank) as shown in Fig. 5.12 

and 5.13. Applying these curves to predicting anchor performance is discussed in the 

following section. 

 
Table 5.2 Characteristics at initial condition (beam shank) 

Force 
angle 

Optimum coordinates 
of center of rotation 

Minimum  
resultant force Line load 

(degree) x0 y0 F (kN) T (kN) 

5 1.00E+08 83909963 632.946 4727.241 

6 1.00E+08 83909963 649.227 3282.806 

7 1.00E+08 83909963 666.575 2411.858 

8 1.00E+08 83909963 685.091 1846.579 

9 0 0.872 691.368 1459.025 

10 -0.074 0.811 693.32 1181.81 

11 -0.389 0.546 693.37 976.703 

12 -0.391 0.545 693.97 820.702 

13 -0.778 0.22 693.75 699.296 
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Fig. 5.12 Characteristic curve at initial condition (beam shank) 

 

 
Fig. 5.13 Trace of optimum center of rotation (beam shank) 
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Table 5.3 Characteristics at initial condition (bridle shank) 
Force 
angle 

Optimum coordinates 
of center of rotation 

Minimum  
resultant force Line load 

(degree) x0 y0 F (kN) T (kN) 

17 1.00E+08 83909963 460.675 408.931 

18 1.00E+08 83909963 480.504 364.756 

19 1.00E+08 83909963 502.277 327.371 

20 -3.627 -2.313 516.829 295.453 

21 -3.601 -2.345 485.046 267.984 

22 -3.602 -2.344 456.493 244.176 

23 -3.601 -2.345 431.165 223.405 
 
 

 
Fig. 5.14 Characteristic curve (bridle shank) 
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Fig. 5.15 Trace of center of rotation (bridle shank) 

 

 
5.5 Prediction of anchor trajectory 

 
Based on the approach described in the preceding sections for computing the anchor 

line force for a given anchor depth and orientation trajectory in the following steps: 

1. The characteristic curve for the anchor, F- fθ  is developed using the UBM program 

for a specific anchor position and orientation. 

2. The characteristic curve for the anchor line, T- fθ  is developed using the anchor line 

solution (Eq. 2.10). Typical curves are shown in Fig. 5.16. 
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Fig. 5.16 Characteristic curves (beam shank) 

 

 
3. When the intersection point is left of the break point, the anchor is advanced parallel 

to the fluke some incremental depth, for example 1z m∆ = . When the intersection point 

is right side of the break point the anchor is rotated about its optimal center of rotation 

some incremental angle, for example 1sθ∆ = . The depth and angle increments 

( ∆z and ∆ sθ ) can be adjusted to control numerical accuracy. 

4. Step 1, 2 and 3 are repeated until the fluke is parallel to the seabed. 

 
Fig. 5.17 shows the procedure of the UBM for drag anchor as a flow chart. 
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Input initial geometry of drag anchor 
Input the parameters for anchor line 

( diameter, Nc, En, Et, µ ) 
Input the soil strength condition (Suo,Sug) 

Initial force angle, fθ

 
Fig. 5.17 Flow chart for UBM 

Calculate the energy dissipation of fluke and shank 
Calculate the external work done 
Calculate the anchor capacity, F 

Draw the Characteristic curve. 

Calculate the anchor line load, T

Break point is achieved? 

f f fθ θ θ= + ∆  

Rotate the anchor about 
optimum center of rotation 

Yes 

Yes

No 

Yes 

Translate the 
anchor 

parallel to the 
fluke 

Is the fluke parallel to 
seabed? 

Is intersection point on right 
side of the break point? 

No 

No 

End 
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5.6 Example simulation of UBM 

 
An anchor is embedded as shown in Fig. 5.18. The shank is parallel to the seabed 

and the anchor line is attached to the shackle at depth of 1m. The anchor geometry is the 

same as in Table 5.1 for the beam shank. Undrained soil strength increases linearly with 

depth as shown in Fig. 5.18. 

 

seabed

F
Force angle

fluke

line

shank

depth (m)

Su(kN)

1

1.5

 

Fig. 5.18 Initial position of drag anchor 

 

The characteristic curve for this initial position is shown in Fig. 5.19. As 

indicated the break point occurs at a force angle of 14o. 
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Fig. 5.19 Characteristic curve at initial condition 

 

Table 5.4 shows the characteristic values of drag anchor at a given depth z=1m 

with shank angle of zero degree. Fig. 5.20 shows that the critical center of rotation (x0,y0) 

for the mechanism occurs at a large distance from the anchor until the force angle 

reaches 14o. The center of rotation jumps abruptly to near the anchor when the force 

angle approaches 14o. At this force angle the mechanism involves rotation of the anchor.  

Initially, the anchor characteristic curve (F- fθ ) and the anchor line load curve 

(T- fθ ) intersect left side of break point. In this case, the anchor collapse mechanism is 

translation parallel to the fluke as indicated by the center of rotation being essentially 

infinitely far away from the anchor. 
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Table 5.4 Trace of center of rotation, resultant force and line load (z=1m) 

Force 
angle 

Optimum coordinates 
of center of rotation 

Minimum  
resultant force Line load 

(degree) x0 y0 F (kN) T (kN) 

11 1.00E+08 83909964 72.161 18.313 

12 1.00E+08 83909964 74.519 15.388 

13 1.00E+08 83909964 77.06 13.112 

14 0 1.775 77.667 11.306 

15 -0.389 1.448 77.825 9.848 

16 -0.763 1.037 77.959 8.656 

17 -0.78 1.022 77.852 7.667 
 
 
 

 
Fig. 5.20 Trace of center of rotation at initial condition (z=1m) 
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- Step 1 

From this initial condition, the drag anchor is translated parallel to the fluke a 

small vertical increment with the force angle assumed constant. For example, if depth 

=2m is used, then the anchor is moved to a new location as shown in Fig. 5.21. ∆z

 

F

seabed

old position

anchor line

new position

F

∆z=2m

θf

shackle

θf

 

Fig. 5.21 Translation of drag anchor (z=3m) 

 
Table 5.5 shows the characteristic values of drag anchor at a given depth z=3m 

with shank angle of zero degree. A new characteristic curve is developed at the new 

position as shown in Fig. 5.22. Fig. 5.23 shows traces of the optimum centers of rotation 

with varying force angle. Using the new curve, a decision is made whether to translate or 

to rotate the anchor. The intersection point where the anchor line load intersects the 

characteristic curve is still left side of the break point. Hence the anchor is translated to 

the next location with =2m. The new position is shown in Fig. 5.24 and the line 

attachment point (x

∆z

1,y1) is depth of 5m.  
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Table 5.5 Trace of center of rotation, resultant force and line load (z=3m) 

Force 
angle 

Optimum coordinates 
of center of rotation 

Minimum  
resultant force Line load 

(degree) x0 y0 F (kN) T (kN) 

7 1.00E+08 83909962 164.22 407.001 

8 1.00E+08 83909962 168.782 311.61 

9 1.00E+08 83909962 173.659 246.21 

10 1.00E+08 83909962 178.882 199.43 

11 0 -0.22543 181.311 164.819 

12 -0.389 -0.55184 181.792 138.493 

13 -0.389 -0.55184 181.984 118.006 
14 -0.392 -0.554 182.233 101.75 
15 -0.778 -0.878 181.942 88.636 

 

 
Fig. 5.22 Characteristic curve (z = 3m, 0sθ = ) 
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Fig. 5.23 Trace of center of rotation (z = 3m, 0sθ = ) 

- Step 2 

F

seabed

origional

line

θF

F

∆z=2m

θF

F
∆z=2m

Second step

First step

 

Fig. 5.24 Anchor position of second step (z=5m, ) 0sθ =
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Table 5.6 shows the characteristic values of drag anchor at a given depth z=5m 

with shank angle of zero degree. At this new position a new characteristic curve is 

determined again as shown in Fig. 5.25. The optimum centers of rotation are shown in 

Fig. 5.26 at new position. The previous procedure is repeated. 

Table 5.6 Characteristic data (z=5m, 0sθ = ) 
Force 
angle 

Optimum coordinates 
of center of rotation 

Minimum  
resultant force Line load 

(degree) x0 y0 F (kN) T (kN) 

8 1.00E+08 83909960 271.546 865.584 

9 1.00E+08 83909960 279.392 683.918 

10 0 -2.128 284.902 553.974 

11 -0.34743 -2.419 285.831 457.829 

12 -0.389 -2.549 286.077 384.704 
 
 

 
Fig. 5.25 Characteristic curve (z = 5m, 0sθ = ) 
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Fig. 5.26 Trace of center of rotation (z = 5m, 0sθ = ) 

 
In this case the intersection point is now on the right side of the break point. This 

collapse mechanism then involves a translation and rotation of the anchor, that is, the 

anchor is rotated about the critical center of rotation (x0,y0) as shown in Fig. 5.27. For 

examples, an increment angle 2θ∆ = is used then the next anchor position is displayed 

with solid line in Fig. 5.27. The old anchor position is indicated by a dashed line in Fig. 

5.27.  
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 Fig. 5.27 Rotation of anchor (z = 4.972m, 2sθ = )  

- Step 3 

The characteristic curve is then recalculated at this new location as shown in Fig. 

5.27 with 2o of shank angle. The procedure is repeated.  Note that because the anchor 

rotates this effectively displaces the characteristic curve to the left (i.e. the angle in the 

plot is the angle with the horizontal). The anchor next breaks when the force angle is 12o 

and the intersection point is again right of the break point. The anchor is rotated again 

about the center of rotation (0.016,-2.063). A new characteristic value is calculated as 

indicated in Table 5.7 and it is shown in Fig. 5.28. And the optimum centers of rotation 

are shown in Fig. 5.29 at new position with varying force angles. This procedure is 

repeated until the fluke angle is parallel to the seabed. 
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Table 5.7 Characteristic data ( 4sθ = ) 
Force 
angle 

Optimum coordinates 
of center of rotation 

Minimum  
resultant force Line load 

(degree) x0 y0 F (kN) T (kN) 

9 1.00E+08 90040402 268.857 683.918 

10 1.00E+08 90040402 276.325 553.974 

11 1.00E+08 90040402 284.309 457.829 

12 -0.10025 -2.12928 290.465 384.704 

13 -0.26638 -2.27886 291.423 327.795 

14 -0.478 -2.469 291.698 282.64 

15 -0.474 -2.567 292.02 246.21 
 

 
Fig. 5.28 Characteristic curve ( 4sθ = ) 
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Fig. 5.29 Trace of center of rotation ( 4sθ = ) 

 

- Trajectory curve 

The drag anchor trajectory is hence determined by this procedure by repeating 

the steps resulting in a gradual penetration and rotation of the anchor. This procedure is 

repeated until the fluke angle is reached to zero, i.e., the fluke is parallel to seabed. Fig. 

5.30 shows the trajectory of shackle of drag anchor and Fig. 5.31 shows the resultant 

forces at shackle for a given drag distance. 
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Fig. 5.30 Trajectory curve of model anchor 

 

 
Fig. 5.31 Resultant force of model anchor 
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CHAPTER VI  

BEARING FACTORS FOR UBM 

 

6.1 Normal, tangential and rotational motion 

 
The UBM analysis presented in the previous chapter was formulated in terms of 

bearing factors relating soil undrained shear strength, Su, to unit resistances (force per 

unit area) normal and parallel to the surfaces of the fluke and shank. Specific definitions 

used in this dissertation are: 

npf = bearing factor relating normal stress on fluke to Su  

ntf = bearing factor relating shear stress on fluke to Su  

nps = bearing factor relating normal stress on shank to Su  

nts = bearing factor relating shear stress on shank to Su

 
An alternative approach can be employed using “global” bearing factors relating 

total force to shear strength Su  

Npf = bearing factor relating normal stress on fluke to Su  

Ntf = bearing factor relating tangential stress on fluke to Su  

Nmf = bearing factor relating moment stress on fluke to Su

Nps = bearing factor relating normal stress on shank to Su

Nts = bearing factor relating tangential stress on shank to su

Local bearing factors can be related to global factors as will be discussed subsequently.  
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Two issues arise in connection to bearing factors: 

1. What are appropriate bearing factors for conditions of pure translation (normal 

or tangential) and rotation? 

2. What are the interaction effects for combined motions? 

 
The virtual motion of the anchor considered shown in Fig. 6.1. The anchor is 

assumed to rotate about a point (x0,y0) with virtual angular velocity, β .  
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Fig. 6.1 Kinematics of anchor motion 
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Most of the papers related to drag anchors suggest that the fluke is the dominant 

influence on both installation and capacity and thus attraction is focused on fluke 

behavior. For dissipation calculations, the rotation of the fluke can be decomposed in 

three components of motion with respect to the reference point shown in Fig. 6.1: 

rotation about the reference point, translation parallel to the fluke, and translation normal 

to the fluke as shown in Fig. 6.2. 

 
Three limiting cases of motion exist: 

a. Pure rotation: If ρ  =0 and tR=0, a condition of pure rotation about the mid-

point of the fluke exist. 

b. Pure tangential translation: If 
fL

ρ  and 
Rt
ρ  are sufficiently large, a condition of 

pure translation in a direction parallel to the fluke is approached. 

c. If R

f

t
L

 and Rt
ρ

are sufficiently large, a condition of pure translation normal to 

the fluke is approached. This condition can occur when P is located a large 

distance off of the fluke and the distance tR because large. 
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vt=ρβ

Large ρ

 

b. Movement parallel to the fluke 
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c. Movement normal to the fluke 

Fig. 6.2 Three components of fluke rigid body motion 
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6.2 Bearing factors for pure translation and rotation. 

 
A first step in characterizing soil resistance to fluke penetration involves 

determining the bearing factors for conditions of pure rotation, pure tangential 

translation, and pure normal translation. This section develops these bearing factors. 

Section 6.2.3 will develop interaction functions for general conditions of combined 

motions. 

 
 
6.2.1 Pure rotation 
 
 

Lf

qavg M

qavg

β

 

       a. Upper bound mechanism         b. Assumed average resistance 

Fig. 6.3 Upper bound analysis for pure rotation 

Fig. 6.3 shows a plane strain mechanism for the failure undergoing pure rotation 

From Fig. 6.3a 
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π
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From Fig. 6.3b 

 
2

2
2 4 4

f f avg f
avg

L L q L
M q= ⋅ ⋅ =      (6.2) 

The normal stresses resisting the motion are assumed to be uniform along the fluke 

surface as shown in Fig. 6.3.  

 
From Eq. 6.1b and Eq. 6.2 we can have qavg

 
2 2

4 2
f

avg

L L
q

π
= f uS

S

      (6.3) 

or 

 2 6.28avg u uq Sπ= =       (6.4) 

 
Thus, the moment bearing resistance factor for conditions of pure rotation, Nmf, can be 

taken as approximately equal to 6. 

 

6Su

6Su
 

Fig. 6.4 Resistant distribution on fluke for pure rotation 
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6.2.2 Pure translation normal to fluke 

 
O’Neill et al. (2003) suggested failure mechanism of plate as shown in Fig. 6.5. 

We can apply this failure mechanism in case that center of rotation is at infinite distance 

from the edge of fluke. 

Lf

α α
F,v0

β

1 3

2

d vnvp

 

Fig. 6.5 Upper bound analysis (center of rotation is at an infinite from fluke )       
(O’Neill et al. 2003) 

 

As it is shown in Fig. 6.5, calculation dissipation can be use by symmetry. And 

the thickness of plate is ignored in this study. 
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Slip on interface at ○2  

 0
2 0

/ 2 ( )
( ) s

cos 2
f f

u

L L
D v co s us vπ α

π α α
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Summarizing  

0 1 2
1
4

F v D D D= + + 3  

0
1 tan
4 2f u oF v L S v α π α⎛ ⎞= +⎜ ⎟

⎝ ⎠
−  

tan4
2f u

F
L s

απ α⎛= − +⎜
⎝ ⎠

⎞
⎟       (6.9) 

when  then 45α = 11.42
f u

F
L s

=  which is minimum. 

As discussed in Section 6.1, a condition of pure translation normal to the fluke 

approaches when the ratio d/Lf becomes sufficiently large. The question then arises as to 

how large d/Lf must be for this limiting condition to be approached. The case shown in 

Fig. 6.6, where the center of rotation is at the end of the fluke (tR=Lf/2) can provide some 

insight into this issue. 
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Fig. 6.6 Upper bound analysis (center of rotation is at end of the fluke) 

 

The following paragraphs present an upper bound analysis of the case shown in 

Fig. 6.6. The thickness of plate is ignored in this study. 
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Dissipation at ○3  
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Summarizing  

0 1 2
1
2
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{ }0
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π α
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when  then 50.12α = 11.25
f u

F
L s

=  which is minimum. 

 

Recall that the bearing factor for pure translation ( Rt = ∞ ) was npf =11.42, when 

the center of rotation is shifted to the end of the fluke ( / 2R ft L= ), the bearing factor 

declined a relatively small amount to npf = 11.25. Therefore, for practical purposes any 

motions in which as a condition of  can be considered pure translation normal 

to the fluke when selecting the bearing factor n

/ 2fd L≥

pf. 
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6.3 Interaction effects 

 
Section 6.2 discusses bearing resistance factors for conditions of pure rotation 

and translation. This section presents proposed interaction functions for general 

combined motions. 

 

6.3.1 Interactions between tangential and other motions 

 
In this study, no interaction effects are assumed between tangential and other 

components of resistance. Specifically, the resistance factor for translation parallel to the 

long axis of the fluke in nps=1.0 for all conditions of motion (all d and ρ  in Fig. 6.1). 

Similarly, the bearing factor for translation normal to the fluke (npf) is unaffected by 

tangential motions; i.e., independent of ρ  in Fig. 6.1. 

 

6.3.2 Interactions between normal translation and rotation 

 

According to the results of upper bound analysis in previous section, the 

resistance factor for the fluke is estimated to be 6.28 in case that the center of rotation is 

at the midpoint of fluke. On the other hand, in case that center of rotation is at the edge 

of fluke the resistance factor is estimated to be 11.25 and 11.42 when the center of 

rotation occurs far from the anchor. We estimated resistance factor at three points, i.e., 

midpoint of fluke, edge of fluke and infinite distance from fluke, respectively. From this 

study, we can assume that the resistance factor, npf , is constant as approximately 12 

outside of the fluke. 
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Yet to be defined is how the resistance factor, npf, varies between 6 and 12 within 

the fluke. The approached followed herein is to consider some simple variations of npf 

with tR and assess their implications with regard to global fluke bearing factors, Npf and 

Nmf. For example, as shown in Fig. 6.7, npf functions can be assumed to be linear. 

tR

12
6

npf

 

Fig. 6.7 Assumed variation of npf with tR 

The net forces V, H and M act on the reference point as shown in Fig. 6.8.  

V

M

H
 

Fig. 6.8 Interaction forces acted on midpoint of fluke 

For the purposes here the horizontal resistance is assumed to be uncoupled from 

the moment and normal load. First consider the linear case. If fluke is a rectangular plate 

and the undrained soil strength is homogenous, then the failure mechanism of the fluke 

is shown in Fig. 6.9. 
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Fig. 6.9 Upper bound mechanism of fluke for linear npf
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Bearing factor npf varies linearly with distance from center of rotation from 6 at 

midpoint of fluke to 12 at edge of fluke. Thus, npf is calculated as Eq. 6.15. 

6 6 6 1
/ 2 / 2

R
pf

f f

tn
L L

⎛ ⎞ ⎛
= + = +⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

Rt ⎞
⎟⎟
⎠

    (6.15) 

Where, tR is the distance from center of the fluke to the center of rotation. 

The net vertical force, V, is then 

 2  12 1
/ 2

R
R pf u R u

f

tV t n s t
L

⎛ ⎞
= = +⎜⎜

⎝ ⎠
s⎟⎟     (6.16) 

and the moment, M, is 

2 2
2 2

f
R

f
R R pf u

L
tL

M t t n s

⎡ ⎤
−⎢ ⎥⎡ ⎤

= − +⎢ ⎥⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

    (6.17) 

Nv and Nm are then normalized bearing factors. 

  pf
u f

VN
S L

=        (6.18a) 

2

4
mf

u f

MN
S L

=        (6.18b) 

 
The interaction diagram showing the implied relationship between Npf and Nmf is 

shown in Fig. 6.10. 
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Fig. 6.10 Interaction diagram of Npf and Nmf  for linear npf function 

Note that the shape of this curve follows directly from our assumptions regarding 

the normal stress distribution. It is significant that this interaction curve is not convex. 

Technically this violates the requirement for plastic yield conditions and hence the 

assumed linear npf function is not considered as appropriate for this model. This leads us 

to investigate a different assumed shape as shown in Fig. 6.11. 
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Fig. 6.11 npf function of quadratic type 
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This npf function is defined 

2

6 1
/ 2

R
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f
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⎡ ⎤⎛ ⎞
⎢= + ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎥       (6.19) 

This leads to the following expressions for normal force and moment 
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   (6.21) 

 

Fig. 6.12 Interaction diagram for quadratic type npf function 
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Fig. 6.12 shows the interaction diagram with quadric type npf function. This 

interaction curve is convex and in fact is in reasonable agreement with O’Neill et al.’s 

(2003) result derived independently. This Nmf -Npf diagram is compared with that of 

O’Neill et al.’s in Fig. 6.13. For this reason, a quadratic npf function is considered a 

reasonable assumption. That is, the function is reasonably consistent with more rigorous 

methods but maintains the simplicity of closed form expression for the traction on the 

anchor components. This in turn allows us to calculate dissipation rates without complex 

operations. 
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Fig. 6.13 Comparison the UBM and O’Neill et al’s interaction curves 
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6.4 Reference point 

 
The next step in this process is to extend these results to anchors with different 

shaped flukes. For this purposes we assume that the normal stresses are distributed in a 

similar way as for the plane strain approximation described above. To do this, we must 

define a reference point for any particular shape. For consistency of definition we take 

the reference point to be the center of rotation that results in the minimum energy 

dissipation rate. The net normal force, V, moment, M and tangential force, H are 

assumed to act at the reference point. In the upper bound method, the kinematics of the 

drag anchor involve rotation about an assumed point with virtual angular velocity, β . 

Thus, the energy dissipation rate per unit area can be calculated directly as the local 

stress times the local respective velocity. In the case of a rectangular fluke in 

homogenous undrained soil, the energy dissipation has minimum value at the midpoint 

of the fluke. In the case of non-rectangular fluke or non-homogenous soil, the minimum 

energy dissipation point must be computed as discussed in detail below. 
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6.4.1 Rectangular fluke 

 
As shown in Fig. 6.14, the fluke is a rectangular plate and the soil undrained 

strength is uniform with depth. 
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Fig. 6.14 Upper bound mechanism of fluke for rectangular fluke 
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where  w = width of fluke 

Lf = Length of fluke 

m = center of rotation from 0 

( )A t wdt= , Area of fluke at t 

npf(tR) = constant decided by Eq. 6.19 

su(t) = constant, uniform soil strength 

 
The rate of virtual energy dissipation, , is calculated by integrating the unit 

dissipation rates over the surface of the anchor 

D

 

0
( - ) (- )fm L

pf u pf um
D n s m t wdt n s m x wβ β β β= +∫ ∫ dt+  

2 1-
2pf u f fwn s m mL Lβ ⎛= ⎜

⎝ ⎠
2 ⎞+ ⎟      (6.22) 

The minimum energy dissipation can be obtained by differentiating Eq. 6.22 with 

respect to m. 

2 - f
dD m L
dm

=        (6.23a) 

0, 2 - 0f
dD m L
dm

= =       (6. 23b) 

2
fL

m =          (6.23c) 

Thus the minimum energy dissipation is generated when the reference point is at the 

midpoint of fluke. 

 



 125

6.4.2 Triangular fluke  

 
As shown in Fig. 6.15, a triangular fluke is an example of a case where the 

reference point does not occur at the geometric center. The fluke is a triangular plate and 

the undrained soil strength is homogenous.  
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Fig. 6.15 Upper bound mechanism of fluke for triangular fluke 
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where  w = width of fluke 

Lf = Length of fluke 

m = center of rotation from 0 

( ) - wA t w t dt
L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

, differential area of fluke at t 

npf(tR) = constant 

su(t) = constant 

 

Total energy dissipation 

0
( - )( - ) (- )( - )fm L

pf u pf um
f f

w wD n s m t w t dt n s m x w t
L L

β β β β= + +∫ ∫ dt  (6.24a) 

2 2
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f f f f
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L L L L

β
⎧ ⎫⎪ ⎪= + + + +⎨ ⎬
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3 2
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3 2 6
ff

pf u
f

mLm Lw n s m
L

β
⎧ ⎫⎪= ⎨
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The center of rotation that gives the minimum energy dissipation can be obtained by 

differentiating Eq. 6.24 with respect to m. 

2

2 - -
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β
⎛ ⎞
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⎝ ⎠
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0dD
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22 - 4 0fm Lm L+ =2   
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2
2fm L L= ± f        (6.25c) 

Thus 0<m<Lf

2(1- )
2 fm = L        (6.25d) 

For example, for Lf=3, m is 0.8787 which is not the center of gravity of the fluke.  

 

6.5 Interaction diagram for variable undrained soil strength profile 

 
In marine soil, undrained soil strength is frequently normally consolidated clay 

with an undrained strength profile as shown in Fig. 6.16. 
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Fig. 6.16 Fluke embedded in variable undrained soil strength with depth 
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As shown in Fig. 6.16, soil strength on the fluke varies linearly with depth. 

Accordingly, soil resistance on the plate varies linearly as shown in Fig. 6.17. In this 

case, the reference point is not the midpoint even for a rectangular plate.  If the 

midpoint of fluke is taken as the reference point, then the interaction diagram will not be 

convex. For this reason a better definition of the reference point is required. This will be 

discussed in detail in section 6.6. 
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Fig. 6.17 Assumed resistance of fluke in linearly increasing soil strength with depth 

 
As an example, a plate is embedded into a soil with strength gradient Sg, 1.0 

kPa/m at 45 degree at a depth of 0 m as shown in Fig. 6.18. The length of plate is 1.5m 

and width is 3m. A quadratic npf function is considered. Soil resistance R can be 

considered as shown in Fig. 6.18. We can calculate the normal load V and moment M for 
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various centers of rotation using the center of gravity as a reference point. As shown in 

Fig. 6.19, when the center of gravity is used for reference point, the interaction diagram 

is not convex at head depth of 0m. However, in the case of head depth of 10m, 

interaction diagram has convex shape. According to these results, when undrained soil 

strength is varied with depth, interaction diagram is affected by location of the fluke. 

Thus we know that a reference point should be relocated to another point. A second 

choice is to locate the reference point locate at the plastic equilibrium point where the 

energy dissipation has minimum value. Fig. 6.20 shows the interaction diagram using 

the plastic equilibrium point a reference point. In this case the curve satisfies the 

convexity rule.  
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Fig. 6.18 Position of fluke and undrained soil strength condition (Head=0m) 
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a. Head depth = 0m                     b. Head depth = 10m 

Fig. 6.19 Interaction diagram in the case of non-homogenous soil strength    
(Reference point = Center of gravity of fluke) 
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a. Head depth = 0m                     b. Head depth = 10m 

Fig. 6.20 Interaction diagram in the case of non-homogenous soil strength    
(Reference point = Plastic equilibrium point) 
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6.6 Interaction diagram for general case 

 
In a real drag anchor, the fluke is usually not a simple shape, it is a typically 

combination of several elements of different shapes. For example, Fig. 6.21 shows the 

fluke of the Stevpris anchor (Vryhfof 1999) comprised of composite plates with complex 

geometries. 

 

Fig. 6.21 Stevpris anchor (Vryhof 1999) 

Also, undrained soil strength varies with depth in most marine soils. Thus, we 

must consider these factors in simulating drag anchor behavior. As discussed in Section 

6.5, a reference point must be located corresponding to the center of rotation having 

minimum energy dissipation. As discussed in Section 6.4, the energy dissipations are 

expressed as Eq. 6.22 for rectangular fluke and Eq. 6.24c for triangular, respectively. Eq. 

6.26 indicates energy dissipation of composite shapes of fluke. The rotation point that 

gives the minimum energy dissipation can be obtained by varying the location of the 

center of rotation, m, as indicated in Fig. 6.22. 
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Fig. 6.22 Upper bound mechanism of actual fluke 
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The total energy dissipation is then 

0
 ( ) ( ) 2 ( )fL

pf uD n s y v t A t= ∫ dt       (6.26) 

where  Lf = Length of fluke 

Su(y) = Undrained soil strength 

v(t) = Virtual normal velocity at t 

( )A t = Area function of fluke at t 

Area = 2A(t)dt 

 

In this equation, area function A(t) is decided as shown in Fig. 6.23, i.e., it 

indicates half of the fluke width. 

w
=3

.0

0,5 1 10,5

A(t) = 1.5

A(t) = -2.25+t

2A
(t)

a. Origional fluke b. Modified fluke

t dt

Lf

t

Lf

w
=3

.0

 

Fig. 6.23 Area function for composite fluke 

Total energy dissipation can be calculated for each value of m using numerical 

integration. In calculating Eq. 6.26, the n

D

pf value is considered as a constant value. Once 
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the reference point is obtained, npf is taken as a function of tR (distance between reference 

point and center of rotation) as described in Section 6.3. 

 

6.7 Application of interaction diagram to upper bound model 

 
It is known that the fluke characteristic play an important role in the behavior of 

a drag anchor. Thus, interaction effect between the soil and fluke should be considered 

in simulating drag anchor. The kinematics of the upper bound model involves a virtual 

rotation about a center of rotation. As has already been discussed, the resistance factor 

npf is varied from 6 at the reference point to 12 at edge of fluke in the case of a 

rectangular plate and homogenous soil conditions. Fig. 6.24 shows how to make an 

interaction diagram in case of a non-rectangular fluke. 

Interaction diagrams can be drawn by the above procedure and this diagram can 

be checked to insure that the interaction diagram is convex. For cases where this is not 

the case another npf function can be tried. Alternatively a non-convex function can be 

used with this procedure but the solution should be classified as an estimate, not 

necessary an upper bound. 
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Fig. 6.24 Flow chart of making an interaction diagram for general case 
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6.8 Example study of composite fluke for interaction diagram  

 
As an example of interaction diagram for general case, the composite section 

with combined with rectangular and triangular shape is suggested as shown in Fig. 

6.25a. This section can be obtained by simplification of Stevpris anchor. As it can be 

seen in Fig. 6.25b, the undrained soil strength is linearly increased with depth. 

1.00.5

B
 =

 3
.0

z

Sg

1

Su

Sg=1.0  

a. Fluke geometry          b. Undrained soil strength  

Fig. 6.25 Geometry of fluke and soil strength condition for composite fluke 

Anchor is embedded as shown in Fig. 6.26, the fluke angle is 45 degree for given 

depth. We can decide the reference point which generates the minimum dissipation of 

energy. The resistance factor npf is assumed to be 6 when the center of rotation occurs at 

the reference point and 12 when the center of rotation occurs out of the fluke. However, 

we can not know how npf values vary within this composite fluke. Thus, npf function is 

assumed as quadratic curve for this composite fluke. Fig. 6.27 shows the npf function 

curve and interaction diagram for given depth. 
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Fig. 6.26 Embedment of fluke for composite fluke 

0

0.5

1

1.5

2

-20 -15 -10 -5 0 5 10 15 20
V (kN)

M
 (k

N
-m

)

0
2
4
6
8

10
12

0 0.25 0.5 0.75 1 1.25 1.5
t

n p
f

    

0

2

4

6

8

10

-60 -40 -20 0 20 40 60
V (kN)

M
 (k

N
-m

)

0
2
4
6
8

10
12

0 0.25 0.5 0.75 1 1.25 1.5
t

n p
f

 

a. Head of fluke = 0m depth           b. Head of fluke =1m depth 

Fig. 6.27 Interaction diagram of composite fluke  
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c. Head of fluke = 5m depth        d. Head of fluke =10m depth 

Fig. 6.27 Continued 
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CHAPTER VII  

PARAMETER STUDIES 

 

In this chapter on extensive parameter study is carried out varying the properties 

of the anchor, anchor line, and soil. The base case parameters are listed in Table 7.1 and 

initial condition of the anchor is shown in Fig. 7.1. The results achieved herein are 

determined by varying one parameter at a time. 

Table 7.1 Geometry of drag anchor used parameter study

Embedded Anchor Position 

Anchor Line Attachment Point x1=0, y1=-1m 

Fluke-shank intersection point X2=-4, y2=-1m 

Fluke properties 

Fluke length, m 1.5 

Fluke-shank angle, degrees 50 

Fluke bearing area per unit length, m2/m 3.0 

Fluke shear area per unit length, m2/m 6.0 

Shank properties 

Shank bearing and shear area per unit length, m2/m 0.0 

Soil strength 

Uniform undrained soil strength, kPa 20.0 
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Fig. 7.1 Initial position of model anchor for parameter study (unit: m) 

 
The concept of an anchor’s characteristic curve is discussed in detail in Chapter 

V. The curve is a plot of the anchor capacity vs. the force angle for a given anchor 

position and orientation. Superposing the anchor line curve Eq. 2.10, we can determine 

the displacement pattern of the anchor. The characteristic curve is therefore a central 

concept in this approach to anchor analysis. Varying the fluke or shank parameters or 

soil profile varies the characteristic curve. Of course the anchor line curves will vary 

with soil strength or anchor line variations. 

 

7.1 Fluke characteristics 

The fluke is the most important element in determining the anchor behavior. 

First we will consider variations in the fluke shape while maintaining the area constant. 

 
7.1.1 Effect of fluke moment of inertia 

The anchor geometrics used in this study are following shown in Fig. 7.2. The 

fluke areas and centers of gravity are identical while the moments of inertia vary. As 

mentioned in Chapter V, flukes with the same area but different moment of inertia have 
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identical characteristic curves up to their respective break points. However, the location 

of the break point, and the shape of the curves to the right of the break point varies for 

different moment of inertia. The differences result from differences in the energy 

dissipation in the rotation mode. Dissipation in the translation mode parallel to the fluke 

plane is a function only of the fluke area. These differences can therefore be significant 

considerations in anchor design. 
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Fig. 7.2 Fluke geometry of drag anchor for effect of fluke moment of inertia 

 
In the case of a rectangular fluke, dissipation normal to the fluke due to rotation 

is given by the following equation.  

/ 2

/ 2
( ) ( )f

f

L

v u pfL
D t s y n w tβ

−
= × × ×∫ dt     (7.1) 

where   velocity normal to the fluke ,vt Vβ =
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( )uS y =  soil strength at depth, y 

pfn =  bearing capacity 

( )w t =  width of the fluke as a function of location, x 

 

For a homogenous soil strength profile, Eq.(7.1) gives  

/ 2 2
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v u pf u pfD s n w tdt s n wLβ β= =∫ f     (7.2) 

In the case of a diamond shaped fluke, the dissipation is   
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In the case of a butterfly fluke is  
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Table 7.2 Summary of energy dissipation normal to the fluke 

Type of fluke Rectangular fluke Diamond fluke Butterfly fluke 

Dissipation of normal to the 
fluke 

2
u pf f

1 s n wL
4

β  
2

u pf f
1 s n wL
6

β  
2

u pf f
1 s n wL
3

β  

Moment of inertia to the center 
of fluke 

3
f

1 wL
12

 
3

f
1 wL
24

 
3

f
1 wL
8

 

 
 
 
According to Table 7.2, the order of energy dissipation is following: 

Butterfly > Rectangular > Diamond 

And it is consistent with a decreasing moment of inertia as shown in Table 7.2. Fig. 7.3 

shows the relationship between dissipation of normal to the fluke and moment of inertia 

to the center of fluke. Form this curve we can see that dissipation of normal to the fluke 

and moment of inertia to the center of fluke have a linear relationship.  

 

Moment of inertia to the center of fluke (wLf )

D
is

si
pa

tio
n 

of
 n

or
m

al
 to

 th
e 

flu
ke Butterfly

Rectangle
Diamond

3

su
np

fβ
w

Lf
2

0 0.1 0.2 0.3 0.4 0.5 

0.05

0.1

0.15

0.2 

0

 
Fig. 7.3 Relationship between rates of energy dissipation vs. moment of inertia 
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A. Example case study 

Table 7.3 through 7.5 shows the characteristic value of flukes used in this 

example study. The critical angles of rectangular, diamond and butterfly are 15.4o, 13.7o 

and 16.8o, respectively. And resultant forces at break point of rectangular, diamond and 

butterfly are 431.6 kN, 403.3 kN and 455.8 kN, respectively.  

The characteristic curves for the three shapes at an embedment depth of one 

meter are shown in Fig. 7.4 for the characteristics given in Table 7.1. The left sides of 

the curves prior to the break point are identical. However, the flukes with the smaller 

moments of inertia begin to reach the break point at which rotation begins to occur 

sooner than flukes with bigger moments of inertia.  

 

Table 7.3 Characteristic of rectangular fluke at depth of 1m 

Force angle Center of rotation Resultant force Line load 
(degree) x0 y0 F (kN) T (kN) 

15.2 100000000 83909964 429.131 255.759 
15.3 100000000 83909964 430.759 252.426 
15.4 -3.553 -1.402 431.654 249.159 
15.5 -3.553 -1.402 426.924 245.954 
15.6 -3.553 -1.402 422.288 242.811 

 

Table 7.4 Characteristic of diamond fluke at depth of 1m 

Force angle Center of rotation Resultant force Line load 
(degree) x0 y0 F (kN) T (kN) 

13.5 100000000 83909964 403.409 324.228 
13.6 100000000 83909964 404.826 319.477 
13.7 -3.542 -1.415 403.321 314.83 
13.8 -3.539 -1.418 397.659 310.284 
13.9 -3.534 -1.424 392.102 305.836 
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Table 7.5 Characteristic of butterfly fluke at depth of 1m 
Force angle Center of rotation Resultant force Line load 

(degree) x0 y0 F (kN) T (kN) 
16.6 100000000 83909964 453.232 214.438 
16.7 100000000 83909964 455.068 211.877 
16.8 -3.602 -1.343 455.81 209.363 
16.9 -3.602 -1.343 451.884 206.892 
17 -3.601 -1.344 445.46 204.465 

 
 

 
Fig. 7.4 Characteristic curves for different shapes of fluke at depth of 1m 

 
As discussed in Chapter V, the optimum center of rotation (x0,y0) occurs at an 

infinite distance from the anchor while it is on the left side of the yield point. Therefore 

the preferred mechanism is translation parallel to the fluke and the dissipation normal to 

the fluke is essentially zero. On right side of the break point, the center of rotation occurs 

near the fluke. It indicates the anchor rotates about this point. In this case energy 

dissipation due to translation parallel to the fluke is typically much smaller than that due 
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to rotation. For uniform soil strength the characteristic curves are constant regardless of 

depth but the anchor line curves move to the right with depth. This is indicated in Fig. 

7.5. 

 

 

Fig. 7.5 Characteristic curves for different shapes of fluke at depth of 1.5m 

 
 

In Fig. 7.5 the intersection of the characteristic curve and the anchor line curve 

for the diamond shaped fluke is to the right of the break point, indicating that the anchor 

will rotate. However, the rectangular and butterfly shaped flukes will translate parallel to 

the fluke since their intersection points are to the left of the break point. For the anchors 

penetrated to 2m depth the characteristic curve is shown in Fig. 7.6.  
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Fig. 7.6 Characteristic curves for different shape of flukes at depth of 2m 

 
Here intersections of diamond and rectangle shaped fluke are on the right side of 

the break point indicating that these anchors will rotate at this depth. But butterfly 

anchor does not rotate at this depth. 

 
Fig. 7.7 Characteristic curves for different shapes of fluke at depth of 2.5m 
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Here intersections of all anchors are on the right side of the break point 

indicating that all anchors will rotate at this depth. As indicated in Fig. 7.4 through 7.7, 

the diamond shaped fluke rotates more quickly than the other anchors. 

The trajectories of these anchors are plotted in Fig. 7.8. According to UBM 

model predictions, the depth of penetration decreases in the following order: butterfly 

fluke, rectangular and diamond. In other words, as the moment of inertia increases, the 

anchor penetrates deeper. 
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Fig. 7.8 Penetration depth vs. drag distance for different fluke moment of inertia 

 
The capacities of drag anchors with drag distance are shown in Fig. 7.9. Note 

that the capacities are forces at the anchor line attachment point for uniform soil strength 

conditions. Thus they are relatively constant even though the anchor depth is increasing. 

The anchor capacity at the mudline would increase due to the increasing resistance on 

the anchor line with depth as shown in Fig. 7.10. 
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Fig. 7.9 Resultant force vs. drag distance for different fluke moment of inertia 
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Fig. 7.10 Mudline force vs. drag distance for different fluke moment of inertia 
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7.1.2 Effect of fluke center of gravity 
 

The anchor geometries considered here are shown in Fig. 7.11. Flukes have the 

same areas and basic rectangular shape but their aspect ratios vary.  
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Fig. 7.11 Geometry of fluke for effect of center of gravity (unit=m) 

 
Table 7.6 gives a comparison of energy dissipation rates due to normal 

velocities when the center of rotation is midpoint of fluke. And it indicates also moment 

of inertia to the center of fluke. A longer fluke has a larger moment of inertia and it is 

associated with a greater rate of energy dissipation. 

 
Table 7.6 Dissipation rate and moment of inertia for effect of fluke center of gravity 

Type of fluke W x L 
(3 x 1.5) 

W x L 
(2.12 x 2.12 

W x L 
(1.5 x 3) 

Dissipation normal to the fluke u pf1.688 s n β  u pf2.382 s n β  u pf3.375 s n β  

Moment of inertia to the center of 
fluke (m4) 0.844 1.683 3.375 
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Fig. 7.12 shows the energy dissipation rate due to rotation of the fluke about its 

center of gravity versus moment of inertia about the fluke center of gravity. From this 

figure we can see that energy dissipation rate due to pure rotation of the fluke does not 

vary linearly with moment of inertia for rectangular flukes of different aspect ratios. This 

is in contrast to the results presented in Section 7.1.1. 
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Fig. 7.12 Relationship between dissipation and moment of inertia for effect of fluke 

center of gravity 

 
The characteristic curves of these flukes are shown in Fig. 7.13. As expected, 

the top most curve is for the longest fluke and the bottom most curve is for the shortest 

fluke.  
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Fig. 7.13 Characteristic curve at depth of 1m (initial condition) for effect of fluke center 

of gravity 

 
The penetration vs. drag distance curves are shown in Fig. 7.14. As you can see, 

the shortest fluke has the shallowest penetration depth. This can be explained by 

characteristic curve. During penetration, the shortest fluke rotates soonest. The resultant 

forces at the shackle curves are shown in Fig. 7.15. It indicates that the longest fluke has 

the largest resultant force at the shackle. 
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Fig. 7.14 Penetration depth vs. drag distance for effect of fluke center of gravity 
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Fig. 7.15 Resultant force vs. drag distance for effect of fluke center of gravity 
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7.1.3 Fluke end bearing resistance 

In this section we consider the effect of fluke end resistance by analyzing flukes 

varying plate thickness as shown in Fig. 7.16. 
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Fig. 7.16 Different depths of fluke for fluke end bearing resistance (unit: m) 

 
The widths and length of all flukes are 3.0m and 1.5m, and their thicknesses are 

0.0m, 0.1m, 0.2m and 0.3m, respectively. The ratios of Lf over Df are correspond to 0, 

1/15, 1/7 and 1/5, respectively. As discussed in Ch.5, the dissipation rate due to the 

resistance at the fluke tip is expressed as follows. 

4( )ef ef ef u efD V N S y A= × × ×      (5.6 bis) 

where  Vef = Vtf (parallel velocity of fluke) 

Nef = resistance factor, assumed to be approximately 12 

su(y4) = undrained soil strength at depth y4 (tip of fluke)  

Aef = area of tip of fluke 
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Fig. 7.17 Characteristic curves for different depths of fluke 

 
The characteristic curves and the anchor line curves are shown in Fig. 7.17. As 

indicated the thicker flukes have the higher break points. As shown in Fig. 7.18 and Fig. 

7.19, the penetration depth and anchor capacity increase with increasing thickness of the 

fluke. 
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Fig. 7.18 Penetration depth vs. drag distance for different depths of fluke 

 
 

0

200

400

600

800

1000

0 50 100 150 200 250 300 350

Drag distance(m)

R
es

ul
ta

nt
 fo

rc
e 

(k
N

)

Df =0.0
Df =0.1
Df =0.2
Df =0.3

 
Fig. 7.19 Resultant force vs. drag distance for different depths of fluke 
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7.1.4 Soil sensitivity variation 
 
 

As mentioned in Chapter II, the soil sensitivity affects the behavior of the 

anchor. For these purposes, it is assumed that only side shear resistance is influenced by 

soil weakening due to soil disturbance. It should be noted that the effect of soil 

sensitivity on the anchor line curve is not considered. Both consideration will be 

discussed in detail in Section 7.5.1. As shown in Fig. 7.20, the left sides of the curves for 

each sensitivity value are distinct while on the right side of the break point the curves 

merge together. Since right sides of yield point is governed by resistance of rotation. 

Thus, sensitivity does not influence the resultant force. 
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Fig. 7.20 Characteristic curves for different soil sensitivity 

 
Fig. 7.21 shows the drag distance versus penetration depths computed to a drag 

distances at which the anchor no longer penetrates into the soil. These predictions 
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indicate that a higher sensitivity leads to a shallower penetration depth. However, an 

anchor seldom penetrates to its ultimate penetration depth in actual design and field 

condition. So we need to consider how the anchor behaves during the early stages of 

drag embedment, for example, ten fluke lengths of drag distance. 

From Fig. 7.21, the penetration depth is almost same within this range. Thus we 

can conclude that effect of soil sensitivity is minor during the first ten fluke lengths of 

drag distance, which is generally of most interest in practical situations.  
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Fig. 7.21 Penetration depth vs. drag distance for different soil sensitivity 

 

Fig. 7.22 shows the drag distance versus resultant force at anchor line 

attachment point. The resultant forces increases as the sensitivity decreases. Since the 

sensitivity effect reduces the side resistance of the fluke and shank as much as times of 

its reciprocal. According to this parameter study, we can conclude that sensitivity effect 

is not important factor to penetration depth, but it is very important to anchor capacity. 
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Fig. 7.22 Resultant force vs. drag distance for different soil sensitivity 

 

7.1.5 Weight of the fluke 

As shown in Fig. 3.1, 3.3 and 3.5, the fluke weight influence the anchor capacity. 

In general, there is a correlation between weight and area of the anchor. As an example, 

in case of chart for Bruce FFTS Mk 4 series, anchor capacities are plotted as a power 

law function of the anchor weight. However it should be noted that geometry of fluke is 

not varied in this study. The anchor geometry and undrained soil strength condition are 

basic condition given by Table 7.1. The weight of anchor studied here are 0kN, 15kN 

and 30kN, respectively. Fig. 7.23 shows the characteristic curve at 3m depth. 
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Fig. 7.23 Characteristic curve at depth of 3m for different weights of fluke 

 

As it can be seen in Fig. 7.24 and 7.25, the weight of anchor does not play a key 

in anchor capacity and trajectory, except as it correlates to the size of anchor. Fig. 7.24 

shows that identical anchor geometries with different anchor weight have almost 

identical trajectory curves. Further, Fig. 7.25 shows anchor weight to have small to no 

difference on anchor capacity. 
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Fig. 7.24 Penetration depth vs. drag distance for different weights of fluke 
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Fig. 7.25 Resultant force vs. drag distance for different weights of fluke 
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7.2 Shank geometry  

In general, the shank geometry has less influences on anchor behavior than the 

characteristics of the fluke. Nonetheless, they can be significant. As indicated in Figure 

1.4, modern high holding capacity anchors have twin shanks to reduce normal 

resistance; examples being the Vryhof Stevpris and Bruce FFTS Mk series. In cases of 

vertically loaded anchors with a bridle such as Vryhof Stevmanta, the shaft resistance 

can be negligible. The following sections consider the effects of shank shape, shank 

length, and the location of the fluke-shank attachment point. 

 
7.2.1 Shape of cross section 

In this section, the shape of cross section is studied. As shown in Fig. 7.26, all 

shanks have same area, but they have different section. In this study, the normal 

resistances of the shank are same in all cases because their thicknesses are identical. 
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Fig. 7.26 Different shapes of shank 
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As shown in Fig. 7.27, the characteristic curves are exactly matched regardless 

of shape of shank. It indicates that different shape of shank does not influence the 

behavior of the anchor in uniform soil strength. Thus all of the anchors have the same 

depth of penetration and resultant force as shown in Fig. 7.28 and 7.29. This result of 

simulation can be applied when the real anchor is simulated. The shape of real anchor is 

very complicate but it can be simplified as rectangular if it has same area of original 

shank. 
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Fig. 7.27 Characteristic curves for different shapes of shank 
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Fig. 7.28 Penetration depth vs. drag distance for different shapes of shank 
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Fig. 7.29 Resultant force vs. drag distance for different shapes of shank 
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7.2.2 Length of shank 

In this section the lengths of the shank are varied as shown in Fig. 7.30. As 

shown in Fig. 7.30, lengths of shank are 4m, 6m and 8m, respectively. Length of shank 

affects the point of application of the load. A longer shank will impose a larger moment 

on the fluke. It is therefore expected that the shorter shank will have the deeper 

penetration. Characteristic anchor curves for these three cases are shown in Fig. 7.31. 

The predicted trajectories shown in Fig. 7.32 clearly demonstrate that the shorter shank 

achieves greater penetration. Fig. 7.33 shows the resultant forces at anchor line 

attachment point versus drag distance. From these curves, it is evident that shortening 

the length of shank increases the resultant force. 
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Fig. 7.30 Different lengths of shank 
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Fig. 7.31 Characteristic curves for different lengths of shank 
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Fig. 7.32 Penetration depth vs. drag distance for different lengths of shank 
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Fig. 7.33 Resultant force vs. drag distance for different lengths of shank 
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7.2.3 Location of fluke-shank attachment point 
 

The fluke-shank attachment point influences the moment applied to the fluke 

which in turn affects the anchor performance. In this section, this effect is studied by 

varying the attached point location on the fluke. Fig. 7.34 shows the location of the 

attached point used study. The fluke-shank angle for all cases is 50 degree. 
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Fig. 7.34 Different fluke-shank attachments 

 
Fig. 7.35 shows the characteristic anchor curve. These curves show that an 

attachment point closer to the center of fluke will cause the anchor to rotate more 

quickly. Accordingly, moving the fluke-shank attachment point away from center of the 

fluke will tend to increase the depth of anchor penetration. 
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Fig. 7.35 Characteristic curve for different fluke-shank attachments 

 
This effect is shown in Fig. 7.36, where moving the attachment point away from 

the center of fluke increases the predicted penetration depth. Fig. 7.37 shows the 

resultant forces at the anchor line attachment point. According to this figure, the 

resultant force is larger when the attached point is far from the center of fluke. 
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Fig. 7.36 Penetration depth vs. drag distance for different fluke-shank attachments 
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Fig. 7.37 Resultant force vs. drag distance for different fluke-shank attachments 
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7.3 Fluke-shank angle 

 
It is well known that fluke-shank angle is a very important factor in the behavior 

of a drag anchor. Typical drag embedment anchors for use in soft clays have a 50 degree 

fluke-shank angle. In the case of hard clay and sand the fluke-shank angle is 

approximately 30 degrees. In this study, three types of fluke-shank angle are studied 

such as 30, 40 and 50 degree. 
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Fig. 7.38 Different fluke-shank angles 

 
As shown in Fig. 7.39, the characteristic curves are somewhat different from 

previous examples. The curves for different fluke-shank angle do not coincide on the left 

side of break point, because the relationship between the force required to translate the 

anchor parallel to the fluke and the force angle vary. At low force angles the slope of 

curves are steeper for larger fluke-shank angles. 
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Fig. 7.39 Characteristic curves for different fluke-shank angles 

 
The penetration depths are shown in Fig. 7.40. The larger the fluke-shank angle, 

the greater the penetration depth. It is evident that this is a very important parameter in 

anchor design. The Fig. 7.41 shows the resultant force at anchor line attached point. This 

figure indicates that the larger the fluke-shank angle, the greater the resultant force. 
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Fig. 7.40 Penetration depth vs. drag distance for different fluke-shank angles 
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Fig. 7.41 Resultant force vs. drag distance for different fluke-shank angles 
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7.4 Line parameter 

 
In Section 2.2 as shown in Eq. 2.9 and 2.10, the anchor line equation suggested 

by Neubecker and Randolph (1995) was discussed in detail. In this equation, the 

diameter of anchor line, the bearing capacity, Nc and the soil shear resistance are 

interrelated. Thus the relative effects of line diameter, Nc and soil sensitivity are studied 

here. 
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7.4.1 Line diameter 
 

Fig. 7.42 shows the anchor line diameters studied here. The mid-size of anchor 

line diameter corresponds to the base case given Table 7.1. The small size is half of the 

mid-size and the large size is 50% larger than the mid size. The sizes of anchor line 

diameter studied here are 0.25m, 0.05m and 0.075m, respectively. 
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Fig. 7.42 Different anchor line diameters (unit: m) 
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The characteristic curves are shown in Fig. 7.43. The anchor line curves for 

varying diameters are superimposed on the base case characteristic curve. The analyses 

show that a thicker anchor line will interest the characteristic curve at a larger force 

angle. This implies that a thicker anchor line will cause the anchor to rotate earlier in the 

drag embedment process, resulting in a shallow penetration depth as shown in Fig. 7.44. 

Since the soil strength is uniform in this particular case, the resultant force at the anchor 

line attachment point is unaffected by anchor line thickness as shown in Fig. 7.45. 
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      Fig. 7.43 Characteristic curve for different anchor line diameters 
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Fig. 7.44 Penetration depth vs. drag distance for different anchor line diameters 
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Fig. 7.45 Resultant force vs. drag distance for different anchor line diameters 
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Fig. 7.46 shows the mudline forces for the base case anchor with varying anchor 

line diameters. This figure shows that a thicker diameter results in a slightly greater 

mudline force. Since the mudline force depends on the resultant force and anchor line 

angle. 
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Fig. 7.46 Mudline force vs. drag distance for different anchor line diameters 
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7.4.2 Bearing resistance, Nc 
 
 

As discussed in Chapter II there is not a clear consensus regarding the bearing 

capacity factor, Nc, to be used for the anchor line. Thus, it is useful to examine a range of 

values. The bearing pressure along the line is directly proportional to Nc, as indicated 

Equation 2.9.  
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Fig. 7.47 Characteristic curves for different bearing resistances, Nc

 
 

As shown in Fig. 7.48, a larger Nc value leads to a penetration depth shallower. 

But, as previously discussed, for a uniform soil strength profile the resultant force is not 

affected by penetration depth, as shown in Fig. 7.49. Anchor line forces at the mudline 

are shown in Fig. 7.50. As far as anchor line tension at the mudline concerned, a larger 

Nc leads to a greater anchor line tension at the same drag distance. 
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Fig. 7.48 Resultant force vs. drag distance for different bearing resistance, Nc
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Fig. 7.49 Resultant force vs. drag distance for different bearing resistance, Nc
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Fig. 7.50 Mudline force vs. drag distance for different bearing resistance, Nc

 

7.4.3 Sensitivity of soil 

As discussed in Chapter II, the anchor line behavior is influenced by the soil 

adhesion factor. Typical α  values are shown in Table 2.2. This study uses adhesion 

factors recommend by DVN EP-R302 (1999). The adhesion factor α  can be usually 

estimated as , where  is the sensitivity of the soil. Sensitivity is considered in 

estimating the shear resistance along the anchor line. Fig. 7.51 shows characteristic of 

anchor lines corresponding to each case. As shown in this figure, the lower sensitivity 

shifts the anchor line curve upwards. 

1/ tS tS
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Fig. 7.51 Characteristic curves for different sensitivity 

 
Fig. 7.52 shows penetration depth versus drag distance for different levels of St 

in the anchor line equation. As shown in Fig. 7.52, higher sensitivity leads to a greater 

penetration depth. Fig. 7.53 shows the resultant force versus drag distance. In the case of 

uniform soil strength the resultant force at the attachment point is constant. However, as 

shown in Fig. 7.54, the mudline load is larger in case of higher sensitivity due to deeper 

penetration.  
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Fig. 7.52 Penetration depth vs. drag distance for different sensitivity 
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Fig. 7.53 Resultant force vs. drag distance for different sensitivity 
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Fig. 7.54 Mudline load vs. drag distance for different sensitivity 

 

7.5 Soil strength 

In this section we will consider the effects of variations in soil strength 

parameters compared to the base case. In particular we will consider the effect of soil 

strength sensitivity, variations in uniform strength and variations in strength gradient. 

 

7.5.1 Soil sensitivity for both anchor and anchor line 

This section considers the effect of soil sensitivity on anchor performance. 

Remolding of the soil primarily affects the shear resistance along the surfaces of the 

shank and fluke. It is expected to have little effect on the stresses acting normal to these 

surfaces and, hence, is neglected in the latter case. Fig. 7.55 through 7.57 shows the 

effects of soil sensitivity on anchor performance for sensitivity of 1.0, 2.0 and 3.0. Fig. 
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7.55 shows the anchor characteristic curves and anchor line curves. The critical angles of 

sensitivity 1.0, 2.0 and 3.0 are 15.4o, 21o and 25o, respectively. As shown in Fig. 7.56 the 

penetration depths decrease with increasing sensitivity. As shown in Fig. 7.57 the 

magnitudes of resultant forces are 431.6kN, 265kN and 205kN respectively. From this 

result we can see that resultant force is strongly influenced by sensitivity.  
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Fig. 7.55 Characteristic curves for different sensitivity on anchor and anchor line 
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Fig. 7.56 Penetration depth vs. drag distance for different sensitivity                       
on anchor and anchor line 
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Fig. 7.57 Resultant force vs. drag distance for different sensitivity                    
on anchor and anchor line 
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7.5.2 Magnitude of uniform soil strength 

Here we consider the effect of varying for the case of uniform soil strength. The 

uniform soil strength profiles considered are in Fig. 7.58. The undrained soil strengths 

are 10kPa, 20kPa and 30kPa, respectively. All other conditions except soil strength are 

the same as the base case in this study. 

z z z

10 20 30 Su (kPa)

CASE 1 CASE 2 CASE 3  

Fig. 7.58 Different magnitude of uniform soil strength 

 
 

As shown in Fig. 7.59, intersection points between resultant force and line load 

curves occur at same force angle. The ordinates of the curves are linear functions of the 

soil strength hence normalizing the curves will result in single for both the anchor and 

anchor line functions.  

Thus, characteristic curve breaks at the same force angle. This means that 

anchor rotates at the same force angle for given depth and orientation. For this reason 

anchors have same trajectory curves as shown in 7.60. But the resultant forces are 

different from each other at the line attachment point. As shown in Fig. 7.61, their 
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magnitudes are 202kN, 431.6kN and 607kN respectively and they have direct 

relationship with undrained soil strength. 
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Fig. 7.59 Characteristic curves for different magnitude of uniform soil strength 
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Fig. 7.60 Penetration depth vs. drag distance for different magnitude                      

of uniform soil strength 
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Fig. 7.61 Resultant force vs. drag distance for different magnitude                       

of uniform soil strength 

 

7.5.3 Effect of strength gradient  

In this section we consider the effect of linearly increasing soil strength with 

depth. The strength gradients studied are 1.0kPa/m, 1.5kPa/m and 2.0kPa/m, 

respectively, as shown in Fig. 7.62.  
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Fig. 7.62 Different strength gradients, Sg 
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As in the case for uniform soil strength, if the ordinates of the curves of the Fig. 

7.63 are normalized by a characteristic strength then the characteristic curves collapse to 

a single curve, and the intersection points occur at the same force angle. Therefore 

anchor trajectory is independent of strength gradient as shown in Fig. 7.64. Fig. 7.65 

shows drag distance versus resultant force at shackle. As expected, shackle force at any 

drag distance scales directly to strength gradient. 
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Fig. 7.63 Characteristic curves for different strength gradients 
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Fig. 7.64 Penetration depth vs. drag distance for different strength gradients 
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Fig. 7.65 Resultant force vs. drag distance for different strength gradients 
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CHAPTER VIII  

VERIFICATION AND COMPARISON OF UBM 

 

For the purpose of verification of the UBM, firstly comparisons with selected 

field tests and design charts have been conducted and are described in this chapter. 

Secondly, the UBM prediction is compared with centrifuge test results which were 

obtained by Randolph and his coworkers (2000). Finally, UBM compare with other 

methods for given same anchor, anchor line and soil properties. 

 
8.1 Simulation of field tests 

In this chapter, the UBM is used to simulate field tests where soils data and 

anchor performance were measured. The result of this simulation provides a means to 

test the UBM with real anchor performance. 

 

8.1.1 Simplification of anchor geometry 

As mentioned in Chapter VI, real anchors have very complex geometries. For 

example, Fig. 8.1 shows details of two anchors that are widely used offshore. As can be 

seen in this figure, the flukes and shanks are not simple rectangular or triangular plates. 

For modeling purposes, however, we need to simplify this complex shape. In 

simplifying the anchor geometries, results of parameter studies which were conducted in 

Chapter VII are helpful.  
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a. Vryhof Stevpris           b.BRUCE FFTS MK 4 ANCHOR 

Fig. 8.1 Examples of real anchor 

A. Fluke 

The fluke plays a central role in the behavior of an anchor. The resistance of the 

soil varies with the area of the fluke. Thus, one rule adopted for simulation is to set the 

model area equal to the area of the real anchor. Since a numerical method is used for 

calculation in the UBM simulation the anchor component such as the fluke or shank is 

divided into small elements as shown in Fig. 8.2. All real flukes are symmetric about 

their centerline thus this property is exploited for numerical calculation. For each sub 

element of the anchor component, the internal energy dissipation is calculated for the 

assumed displacement increment. Subsequently, the total energy dissipation is obtained 

by summing these contributions. As mentioned in Chapter VI, the npf function is taken to 

be the quadratic type with value of 6 at the reference point of minimum energy 

dissipation and 12 at the edge of the fluke as shown in Fig. 8.3. 
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Fig. 8.2 Example simulation of real fluke 
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Fig. 8.3 npf function of real fluke 
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B. Shank 

As was indicated in the parameter studies presented in Chapter VII, the shape of 

the shank is a minor factor in the behavior of the drag anchor. However, its size and 

length are very important. For simplification purposes in simulation the shank is 

considered to have a rectangular shape with its actual length. As shown in Fig. 8.1, the 

modern drag anchor has a shank composed of twin parallel plates to reduce the normal 

resistance of the soil. To simulate a twin shank, the bearing of the soil plug between the 

plates is not considered, i.e., the only side resistance of the shank plates is included in 

the model. Fig. 8.4 shows the procedure for simplification of the shank. In this figure, (a) 

shows the original shape of the shank, (b) shows an intermediate step and (c) shows the 

final simplification of the shank. 

length = 4.56m
4.56

0.85

Area= 3.88 m2

(a) (b) (c)

Area= 3.88 m2

 

Fig. 8.4 Example simplification of shank 
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C. Fluke-shank attachment point 

 
The fluke-shank attachment point is also a very important factor in the behavior 

of drag anchor. Usually the fluke has symmetry about its axis in two directions but the 

shank only has symmetry about one plane. Referring to Fig. 8.5, the x-y plane is a plane 

of symmetry but the x-z plane (z normal to the paper) is not. For this reason, we need to 

establish a rule to decide the axis of the shank. Based on the studies discussed in Chapter 

VI the axis of the shank is determined as shown in Fig. 8.5. The axis of the shank (x 

axis) is determined when the first moment of the shank about the x axis is zero as shown 

in Fig. 8.5. 

 

xI y dA= ∫ =0       (8.1) 

y

x

o

y

x

o
(x1,y1)

(x4,y4)(x3,y3)
(x2,y2)

(a) (b) (c)  

Fig. 8.5 Procedure of making a decision of fluke-shank attachment 
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8.1.2 Undrained soil strength condition 

 
Undrained strength of normally consolidated marine clays typically increases 

linearly with depth. This is discussed in detail in Chapter I. The undrained soil strength 

is determined by in-situ tests such as the cone penetration test, vane shear test etc. as 

well as various laboratory tests. However, most of the in-situ tests available with the 

anchor field data do not give sensitivity values which are very important for simulating 

the side resistance of the anchor. For this reason, the sensitivity values are considered 

parametrically i.e., as two, three, etc., in the UBM simulation. 

 

8.1.3 Bearing capacity factor, Nc 

 
The global bearing capacity factor, Nc, was discussed in Chapter II in detail. In 

the UBM simulation, Nc is taken as a function of depth as shown in Fig. 8.6 to account 

for the effects of soil surface proximity. 

Nc

z (m)

6 12

3  Fluke Lengths

 

Fig. 8.6 Global bearing capacity factor, Nc
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8.2. Comparison of anchor predictions as measured results 

There have been a number of field tests of drag embedment anchors. Table 8.1 

shows a selected list of field tests which are used here for comparison with UBM 

predictions. These data provide some indication of the robustness.  

 

Table 8.1 Field tests of drag embedment anchors 

No. Project Name Project Area Year Type of anchor 

1 Joint Industry Project Gulf of Mexico 1990 Vryhof Stevpris 
68.6 kN 

2 Liuhia 11-1 field South China Sea 1996 Bruce FFTS MK4 
392 kN 

3 P-13 Site Offshore Brazil 1997 Bruce Denla MK3 
63.7 kN 

4 South Timbalier 
Block 295 Gulf of Mexico 1996 Bruce Denla Mk2 

12.74 kN 

5 South Timbalier 
Block 295 Gulf of Mexico 1996 Vryhof Stevmanta 

32 kN 

6 Voador (P-27), 
Campos basin Offshore Brazil 1998 Vryhof Stevmanta 

102 kN 
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8.2.1 Joint Industry Project, Gulf of Mexico, 1990 – Stevpris 68.6 kN 

These tests were conducted in the Gulf of Mexico by Omega Marine in 1990 as 

part of a Joint Industry Project. Three Stevpris anchors were tested in soft clay using a 

catenary mooring system. One of the tests was selected for simulation. The anchor 

geometry and soil conditions are indicated in Table 8.2. It should be noted that anchor 

geometry are simplified according to the procedure described previously. Fig. 8.7 and 

Table 8.2 show the geometry of the original Stevpris 68.6 kN. 

 

Table 8.2 Anchor geometry and soil condition for Stevpris 68.6 kN 

Property Value 

Anchor weight, Wa(kN) 68.6 

Shank length, Ls(m) 4.485 

Shank width, Ws(m) 3.93 

Fluke length, Lf(m) 3.04 

Fluke width, Wb(m) Varied 

Fluke depth, Df(m) 0.2 

Fluke-shank angle, (degree) 50 

Anchor line diameter, b(m) 0.89 

Surface undrained shear strength, Suo (kPa) 0 

Undrained shear strength gradient, Sug (kPa/m) 1.57 
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(a) Plane                        (b) Side 

Fig. 8.7 Geometry of Vryhof Stevpris (68.6kN) 

 

Table 8.3 Dimension of Vryhof Stevpris (68.6kN) 

Weight (kN) 68.6 

A (mm) 4936. 

B (mm) 5320. 

C (mm) 3028. 

E (mm) 2514. 

F (mm) 453.7 

H (mm) 2055. 

T (mm) 825.2 

S (mm) 131.8 

D1 (mm) 2704. 

D2 (mm) 554.5 

Area (m2) 9.246 
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Four tests were conducted on the Stevpris 68.6kN and are shown in Fig. 8.8 and 

8.9. These results provide the anchor penetration and mudline load versus horizontal 

drag distance. Fig. 8.8 shows the trajectory of anchors. We can see from this figure that 

in some cases the anchor had to be dragged several meters before it set i.e., began to dive. 

Fig. 8.9 shows relationship of the mudline load versus drag distance for the same set of 

tests. Test 7-4 was selected for simulation since this data shows the most consistent 

behavior. It is assumed that anchor is embedded at a point when the anchor is diving at 

the initial starting point with a 50 degree fluke angles as shown in Fig. 8.10. The 

sensitivity value for this simulation is assumed to be two. It is assumed that the anchor 

translates parallel to the bottom of the fluke. 
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Fig. 8.8 Trajectory curves for Joint Industry Project: Gulf of Mexico 1990            
(Vryhof Stevpris 68.6kN) 
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Fig. 8.9 Mudline load vs drag distance curves for Joint Industry Project: Gulf of Mexico 
1990 (Vryhof Stevpris 68.6kN) 
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Fig. 8.10 Initial anchor position and direction of the translation 

 
The results of the simulation are shown in Fig. 8.11 and 8.12 with measured 

data from the field test. As mentioned the measured data is shifted leftward to account 

for the fact that some drag was needed before the anchor set. Fig. 8.11 suggests that the 
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actual drag anchor did not penetrate to the ultimate penetration depth possible where the 

bottom of fluke angle is zero. Mudline load versus drag distance is shown in Fig. 8.12. 

From this comparison, we can see that the UBM simulation matches the field test data 

very well. 
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Fig. 8.11 Penetration depth vs. drag distance of Joint Industry Project 
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Fig. 8.12 Mudline load vs. drag distance of Joint Industry Project 
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8.2.2 Liuhua 11-1 field at South China Sea in 1996  

 
The tests reported here were conducted in the Liuhua 11-1 field that is located 

70km southeast of Hong Kong, in the South China Sea. These tests were carried out in 

1996 by a contractor to Amoco. The Bruce FFTS MK4 anchors were tested in soft clay 

using a catenary mooring system. The anchor geometry and soil conditions are 

summarized in Table 8.4. It should be noted that these values are simplified for 

simulation. 

 

Table 8.4 Anchor geometry and soil condition for Liuhua 11-1 field 

Property Value 

Anchor weight, Wa(kN) 392 

Shank length, Ls(m) 8.6 

Shank width, Ws(m) 7.2 

Shank depth, Wb(m) 0.2 

Fluke length, Lf(m) 5.37 

Fluke width, Wb(m) varied 

Fluke depth, Df(m) 0.3 

Fluke-shank angle, θfs (degree) 50 

Anchor line diameter, b(m) 0.086 

Surface undrained shear strength, Suo(kPa) 0 

Undrained shear strength gradient, Sug(kPa/m) 1.6 
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Fig. 8.13 shows the anchor deployment for the floating production systems. The 

water depth is approximately 300m. Fig. 8.14 shows the dimension of the prototype 

anchor. Fig. 8.15 shows the penetration depths versus drag distance for the eleven 

anchors in the FPS system. Fig. 8.16 shows mudline load versus drag distance of Liuhua 

11-1 field. 
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Fig. 8.13 Location and deployment of anchors for Liuhua 11-1 field 
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Fig. 8.14 Dimensions of Bruce FFTS MK4(unit: mm) 

 
The penetration depth and drag distance values for the tests are summarized in 

Table 8.5. As indicated the range of penetration depths are from 9.8 to 14.3m and drag 

distance are from 19.8 to 30.5m. 
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Table 8.5 Results of test for Liuhua 11-1 field 

FPS Mooring System Anchors Anchor line 
 No. Line Load (kN) Depth (m) Drag distance(m) 

1 5400 12.5 25.9 

2 5449 12.5 25.9 

3 5615 13.1 27.4 

4 5811 13.7 29 

5 5674 13.1 27.4 

6 6037 14.3 30.5 

7 4586 9.8 19.8 

8 4567 9.8 19.8 

9 5263 11.9 24.4 

10 5527 12.8 27.4 

11 4557 9.8 19.8 

 

In the simulation, the initial fluke angle of the drag anchor is assumed to be 24 

degrees by observation of measured data. Fig. 8.15 shows the penetration depth versus 

drag distance. The simulation indicates that the drag anchor penetrates at its initial 

orientation through the extent of the measured data as shown in Fig. 8.15. Fig. 8.16 

shows the predicted mudline load versus drag distance. The measured data are located in 

closely below the curves with sensitivity of 1.0. 
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Fig. 8.15 Penetration depth vs. drag distance of Liuhua 11-1 field 
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Fig. 8.16 Mudline load vs. drag distance of Liuhua 11-1 field 
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8.2.3 P-13 in offshore Brazil in 1997 - Denla MK3 (63.7 kN) 

The tests reported here were conducted at the P-13 Site, Offshore Brazil (643m), 

in 1997 by a contractor to Petrobras. The Bruce Denla MK3 anchors were tested in soft 

clay using a taught leg mooring system. Initial starting point and anchor orientation are 

assumed as shown in Fig. 8.17. The details of the drag anchor, anchor line and undrained 

soil strength conditions are summarized in Table 8.6. The range of water depths at the 

site is from 588m to 643m. Fig. 8.18 shows the detailed dimensions of the Bruce Denla 

MK3 anchor. It should be noted that the reported anchor geometry has been simplified 

for simulation. 
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Fig. 8.17 Initial anchor position and orientation for P-13 tests 
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Table 8.6 Simplified anchor geometries and soil condition for P-13 tests 

Property Value 

Anchor weight, Wa(kN) 63.7 

Shank length, Ls(m) 4.75 

Shank width, Ws(m) 0.1 

Shank depth, Ds(m) 0.34 

Fluke area (m2) 10 

Fluke length, Lf(m) 4 

Fluke width, Wb(m) Varied 

Fluke depth, Df(m) 0.4 

Fluke-shank angle, θfs (degree) 50 

Anchor line diameter, b(m) 0.086 

Surface undrained shear strength, Suo(kPa) 0 

Undrained shear strength gradient, Sug (kPa/m) 1.6 
 

The example measured penetration data are shown in Fig. 8.19 along with the 

results of the simulation. From this figure we can see that the measured data are well 

matched by the simulation regardless of sensitivity value. The simulation shows that in 

the beginning of trajectory, the penetration versus drag distance curves virtually overlap 

each other. Since there is no measured data on anchor capacity in this test series we can 

not compare results of simulation with measured data for that aspect of behavior. The 

mudline load simulation results are shown in Fig. 8.20. As the sensitivity value increases, 

the mudline load decreases even though the depth is basically the same. 
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Fig. 8.18 Dimensions of Bruce Denla MK3 for P-13 Tests 
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Fig. 8.19 Penetration depths vs. drag distance (Offshore Brazil "P-13" 1997) 
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Fig. 8.20 Mudline load vs. drag distance (Offshore Brazil "P-13" 1997) 
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8.2.4 South Timbalier Block 295 in the Gulf of Mexico - Denla MK2 

Large scale anchor tests were carried out in South Timbalier Block 295 in the 

Gulf of Mexico by Aker Maritime Contractors in 1996 as part of a Joint Industry Project. 

The water depth was measured 91m. A Bruce Denla MK2 anchor was tested in soft clay 

using a taut leg mooring system. The angle between the fluke and shank axes is 

estimated 65 degrees during installation. Test results provide the anchor penetration and 

deck tension load versus horizontal drag distance for the test. The anchor line forces at 

the seabed are estimated to be approximately 15kN less than deck loads.  

 
Table 8.7 Simplified anchor geometry and soil condition for Timbalier Block 295 

Property Value 

Anchor weight, Wa(kN) 12.74 

Shank length, Ls(m) 3.0 

Shank width, Ws(m) 0.24 

Shank depth, Ds(m) 0.1 

Fluke area (m2) 4.58 

Fluke length, Lf(m) 2.5 

Fluke width, Wb(m) varied 

Anchor line diameter, b(m) 0.073 

Surface undrained shear strength, Suo (kPa) 0 

Undrained shear strength gradient, Sug(kPa/m) 1.6 
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Table 8.7 gives the simplified anchor geometry and undrained soil strength 

conditions used in the simulation. Fig. 8.21 shows the detailed dimensions of the Bruce 

Denla MK2 anchor. 
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Fig. 8.21 Dimensions of Bruce Denla MK2 for Timbalier Block 295 
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Fig. 8.22 shows the example trajectory curve of test. As can be seen in this 

diagram the curve is not a typical anchor trajectory curve. At the beginning of the 

installation the anchor appears to be in a transition mode prior to setting for penetration. 

After 5m penetration anchor likely penetrates with its initial orientation. The initial fluke 

angle of the anchor is estimated to be approximately 25 degrees consistent with a 

trajectory along the fluke as shown in Fig. 8.22. The depth data after a drag distance of 

60m does not seem to make sense and appears questionable. According to the Fig. 8.22, 

the initial anchor depth is taken as 5m and the initial fluke angle is taken 25 degree in the 

simulation. To compare the simulation with measured data, the measured data are shifted 

to leftward to fit an initial depth of 5m to compensate for the drag distance required to 

set the anchor. Results of the simulations are shown in Fig. 8.23 and 8.24 compared with 

measured data. Fig. 8.23 shows the line load at the seabed versus drag distance. As the 

anchor drag distance increases, the anchor line tension load at the mudline increases 

linearly as shown in this figure. As can be seen in Fig. 8.23, the results of simulation of 

the trajectory agree well with the measured data regardless of sensitivity value in 40m of 

drag distance. For the same reason the mudline load curves are shifted leftward to fit the 

initial depth of 5m. As can be seen in Fig. 8.24 the simulation matches the mudline load 

sensitivity value of 3.0, a reasonable value for typical GOM soft clays. 
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Fig. 8.22 Measured trajectory of Bruce Denla MK2 at South Timbalier Block 295 
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Fig. 8.23 Penetration depths vs. drag distance for South Timbalier Block 295 
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Fig. 8.24 Mudline laod vs. drag distance for South Timbalier Block 295 

 

 

8.2.5 South Timbalier Block 295 in the Gulf of Mexico - Stevmanta 32kN 

A large scale anchor test was conducted in the Gulf of Mexico at South 

Timbalier Block 295 by Aker Maritime Contractors in 1996 as part of a Joint Industry 

Project. The water depth at this site is 91m. A Vryhof Stevmanta anchor was tested in 

soft clay using a taut leg mooring system. The simplified anchor geometry details and 

soil conditions are given in Table 8.8. Fig. 8.25 shows the detailed dimensions of the 

prototype anchor. 
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Table 8.8 Anchor geometry and soil condition for South Timbalier Block 295 

Property Value 

Anchor weight, Wa(kN) 31.16 

Shank length, Ls(m) 3.98 

Fluke length, Lf(m) 2.5 

Fluke width, Wb(m) Varied 

Fluke depth, Df(m) 0.1 

Fluke-shank angle, θfs (degree) 45 

Anchor line diameter, b(m) 0.073 

Surface undrained shear strength, Suo(kPa) 0 

Undrained shear strength gradient, Sug(kPa/m) 1.6 
 

2.910

3.389

2.910

0.299

0.882

 

Fig. 8.25 Dimensions of Vryhof Stevmanta (32kN) for South Timbalier Block 295 

 

 



 219

Test results include the deck tension load versus horizontal drag distance. On 

average anchor line tension loads at seabed are estimated to be approximately 15kN less 

than deck loads. In this test continuous penetration data are not available for installation 

but a single point was measured giving the penetration depth 24m at a drag distance of 

55m. To compare the measured data with results of the simulation, the measured data is 

shifted leftward 10m of drag distance to account for anchor settling. It should be noted 

that the amount of shifted drag distance is determined by trial and error. For the same 

reason the mudline load of measured data is shifted leftward. 

Fig. 8.26 shows the penetration depth versus drag distance. As shown in this 

figure, the trajectory point of measured data is close to but slightly below the curve for 

sensitivity of 1.0. Fig. 8.27 shows the shifted mudline load versus the drag distance. The 

measured data is below the curve for sensitivity of three at the beginning of the 

penetration. However, during the penetration the measured curve approaches the curve 

with sensitivity of two. 
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Fig. 8.26 Penetration depth vs. drag distance for South Timbalier Block 295 
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Fig. 8.27 Mudline load vs. drag distance for South Timbalier Block 295 
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8.2.6 Voador P-27, Campos basin offshore Brazil - Vryhof Stevmanta 102kN 

 
A large scale anchor test was conducted at the Voador site, Campos basin P-27 

by Petrobras in April 1998. The water depth at this site is from 510 to 570m. Vryhof 

Stevmanta anchors were tested in soft clay using a taut leg mooring system with 12 

lines. Test results include the installation load and penetration depth at the special 

shackle versus horizontal drag distance. The special shackle is broken when the anchor 

line load reaches the expected load. Thus, anchor mode is converted from the translation 

mode to the vertical loading mode. In this test continuous measurements were not 

recorded but 12 data points of installation depth and installation load were measured for 

each mooring line. Fig. 8.28 shows the geometry of the Vryhof Stevmanta that used in 

these tests and Table 8.9 shows the dimensions of it. The anchor geometry and soil 

conditions for simulation are detailed in Table 8.10. Table 8.11 shows the data measured 

during installation. It should be noted that the anchor capacities shown in Table 8.11 

were determined by the actual break load of the special shackle. 

 

 

Fig. 8.28 Dimensions of Vryhof Stevmanta (102kN) for Campos basin P-27 
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Table 8.9 Dimension of Stevmanta (102 kN) for Campos basin P-27 

Weight (kN) 102 

B(mm) 4657 

C (mm) 4410 

D (mm) 2882 

E0 (mm) 4557 

E1 (mm) 4995 

F (mm) 255 

H (mm) 2162 

T (mm) 948 

 

Table 8.10 Anchor geometry and soil condition for Campos basin P-27 

Property Value 

Anchor weight, Wa(kN) 102 

Shank length, Ls(m) 5.0 

Fluke area, m2 11 

Fluke length, Lf(m) 3.73 

Fluke width, Wb(m) varied 

Fluke depth, Df(m) 0.25 

Fluke-shank angle, fsθ (degree) 50 

Anchor line diameter, b(m) 0.102 

Surface undrained shear strength, Suo(kPa) 5 

Undrained shear strength gradient, Sug(kPa/m) 2.0 
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Table 8.11 Installation of drag anchors 
Mooring 
Line No. 

Anchor capacity,
F (kN) 

Penetration 
Depth (m) 

Drag Length  
(m) 

1 3234 23.3 54.1 
2 3097 26.1 52 
3 2470 21.5 36.7 
4 2470 22.9 37.2 
5 2930 23.4 49.5 
6 3156 24.9 49.2 
7 2793 24.9 58.9 
8 2724 21.5 35.4 
9 2685 22.3 46.6 
10 2822 25.1 39.3 
11 2617 22.8 46.1 
12 2646 23.2 37.6 

 
Anchors are arranged as shown in Fig. 8.29. Fig. 8.30 shows a schematic of the 

mooring line system for P-27.  
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Fig. 8.29 Mooring arrangement for Campos basin P-27 
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Fig. 8.30 Mooring line system for Campos basin P-27 

 
To simulate this anchor, the initial fluke angles of the anchors were assumed to 

be 25 degrees with soil sensitivity values assumed to be between 2 and 4. Fig. 8.31 

shows penetration depths versus drag distance for the simulation and the measured data. 

As shown in this figure the results of the simulation match field data very well. As in the 

previous study, soil sensitivity variation does not affect penetration depth in this range of 

penetration. The simulation shows that the anchor maintains its initial orientation within 

the range of the measured data. The initial fluke angles are varied from 20 degree to 30 

degree in Fig. 8.31 showing the significant affect of the initial anchor orientation. Fig. 

8.32 shows the anchor capacity at the shackle versus drag distance. According to this 

figure, the prediction assuming a sensitivity value of two is an upper bound of the 

measured data and the curve assuming a sensitivity value of four is the best prediction.  
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Fig. 8.31 Penetration vs. drag distance for Campos basin P-27 

 
Fig. 8.32 Resultant force at shackle vs. drag distance for Campos basin P-27 
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8.3 Comparison of UBM simulation as design chart estimates 

 
8.3.1 Stevpris of Vryhof 

 
The design charts provided by Vryhof anchor as discussed in Chapter III are 

used for this comparison. For these purposes the Stevpris MK5 is selected for 

comparisons. Fig. 8.33 and Table 8.12 show a schematic and provide detailed 

dimensions of the Stevpris drag anchor, respectively. Again the anchor is simplified for 

simulation by procedure that is mentioned in Section 8.1.1. 

 

 

 

Fig. 8.33 Stevpris of Vrhyhof anchor 
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Table 8.12 Main dimensions Stevpris MK5 (unit: mm) 
Weight Nominal Dimensions (in mm) 

(kg) A B C E F H T S 

5000 4412 4756 2707 2248 406 1837 738 110 

10000 5559 5992 3410 2832 511 2315 929 140 

15000 6364 6860 3904 3242 585 2650 1064 170 

20000 7004 7550 4297 3569 644 2917 1171 190 

30000 8018 8643 4919 4085 737 3339 1341 220 

65000 10375 11184 6365 5286 954 4321 1736 300 
 
 
According to Vryhof (1999), the Stevpris MK5 design curve shown in Fig. 8.34 

represents anchor performance in very soft clays. Its design curve is based on the 

following nominal conditions. The undrained shear strength is 4kPa at the seabed with a 

strength gradient of 1.5kPa per meter depth. The relationship is described by the 

equation  with S4 1.5us = + × z u in kPa and z the depth in meters below seabed. The 

sensitivity of the soil is taken as 2.0 since results of UBM and field test data are well 

matched in that case. The anchor lines are considered as wire and their diameter are 

0.076m, 0.121m and 0.151m, respectively. The initial anchor position is at a depth of 2m 

and the shank is parallel to seabed. Fig. 8.34 shows simulation results for the three 

different anchor lines and the design curve indicated with dashed line by Vryhof anchor 

(1999).  
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According to the results of the simulation, as the diameter of the anchor line 

decreases, the ultimate resultant forces at the shackle increases. The reason for this is 

that for the small lines the anchor dives to a greater depth. The design chart is therefore 

more conservative as anchor line size decreases. There are a number of considerations in 

applying the design curves, for example, a small anchor penetrates to the ultimate 

penetration depth at a shorter drag distance than a larger anchor.  

Fig. 8.35 shows the ultimate penetration depth versus size of the anchor on a 

log-log scale. As can be seen in this figure, the ultimate penetration depth has a linear 

relationship with anchor size on a log-log scale (power law relationship). We also see 

that the smaller diameter anchor line results in deeper penetration. 
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Fig. 8.34 UHC chart for Stevpris MK5 
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Fig. 8.35 Ultimate penetration depth vs. weight of Stevpris MK5 

 

 

8.3.2 Bruce FFTS Mk 4 anchor  
 
The design charts provided by Bruce anchor were discussed in Chapter III in 

detail. For this study the Bruce FFTS MK4 anchor is selected for comparison with 

simulation. Fig. 8.36 and Table 8.13 show the schematic and detailed dimensions of the 

Bruce FFTS MK4 drag anchor, respectively.  

The Bruce FFTS MK4 design curves for very soft clay are shown in Fig. 8.37. 

The undrained soil strength is assumed to be zero at the seabed and it increases by 

1.57kPa/m, i.e., it can be described by equation 1.57  uS z= ×  with Su in kPa and z 

being the depth in meters below seabed. 
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Fig. 8.36 Schematic of Bruce FFTS MK 4 anchor 

 

Table 8.13 Dimension of Bruce FFTS MK4 

Weight Nominal Dimensions (in mm) 
(kg) A B C E F 
500 1827 1280 500 1303 606 
1500 2648 1854 723 1888 878 
3000 3409 2388 931 2431 1131 
5000 4029 2822 1100 2873 1336 
9000 4846 3394 1324 3456 1607 
10000 5087 3563 1390 3628 1687 
12000 5437 3808 1486 3878 1803 
15000 5728 4012 1566 4085 1900 
18000 6129 4292 1674 4371 2032 
20000 6319 4426 1726 4507 2096 
30000 7225 5060 1974 5153 2396 
40000 8034 5627 2195 5730 2664 
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To simulate the Burce FFTS MK4 anchor, the anchor geometry is simplified 

and soil properties given by Bruce Anchor are used. In this simulation the sensitivity of 

soil is assumed to be 2.0. The anchor lines are assumed to be wire with varying 

diameters of 0.076m, 0.121m and 0.151m, respectively. 

Fig. 8.37 shows the simulation results along with the design curve (dashed line) 

provided by Bruce Anchor. In the case of very soft clay and with wire anchor line, the 

design curve equation is HC=46.66(W0.92) which has power law relationship with anchor 

size. In this equation, HC means high holding capacity. The other three curves are based 

on UBM simulation. As the diameter of the anchor line increases, the ultimate resultant 

forces at the shackle decrease linearly on log-log scale. These results are qualitatively 

similar for the Stevpris anchor design curves. The design curves are conservative relative 

to all the simulations. 

 

100

1000

10000

100000

1 10 100
Bruce Mk4 size (ton)

R
es

ul
ta

nt
 fo

cr
e 

(k
Pa

)

0.076m
0.121m
0.151m

 
Fig. 8.37 UHC chart for Bruce FFTS MK4 
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Fig. 8.38 shows the ultimate penetration depth versus anchor size on a log-log 

scale. As can be seen in this figure, the ultimate penetration depth has power law 

relationship with anchor size. In addition the smaller diameter anchor line causes the 

deeper penetration and hence high capacity. 
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Fig. 8.38 Penetration depth vs. weight of Bruce FFTS MK4 
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8.4 Comparison of UBM simulation and centrifuge tests  

 
In this section, centrifuge test results are compared with the UBM simulation. 

Randolph and his coworkers carried out these tests at the University of Western 

Australia. Fig. 8.39 shows a 1/160 model of a Vryhof Stevpris anchor tested in soft clay. 

Fig. 8.40 shows the dimensions of model anchor. 

 
 

         

a. Side of model anchor            b. Bottom of fluke 

Fig. 8.39 Model anchor used centrifuge test (Phillips, R. 2001) 

 
 

        
b. Fluke-shank angle -32o   b. Fluke-shank angle -50o

Fig. 8.40 Dimension of model anchor (unit: mm) 
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8.4.1 Fluke-shank angle of 32 degree  

 
Table 8.14 gives the details of the simplified anchor used in the simulation and 

the undrained soil strength for the test. Model anchor is simplified as shown in Fig. 8.41 

for UBM simulation. The undrained strength is zero at seabed and the strength gradient 

Sg is 1.0 kPa/m. According to the in-flight vane tests, the average sensitivity is 

approximately 2.4 after 500 degrees of vane rotation. However the ratio for T-bar 

extraction resistance to insertion resistance is about 0.7, in other words a sensitivity of 

about 1.4. Fig. 8.42 shows a plot of anchor capacity versus drag distance at the 

attachment point, and Fig. 8.43 shows penetration depth versus drag distance.  
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(a)Fluke                      (b) shank 

Fig. 8.41 Geometries of simplified Stevpris anchor for fluke-shank angle of  32
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Table 8.14 Prototype anchor geometry and soil condition for F-S angle of 32 degree 

Property Value 

Anchor weight, Wa(kN) 373.3 kN 

Shank length, Ls(m) 7.341 

Shank width, Ws(m) 1.658 

Fluke length, Lf(m) 4.786 

Fluke width, Wb(m) Varied 

Fluke depth, Df(m) 0 

Fluke-shank angle, θfs (degree) 32 

Anchor line diameter, b(m) 0.24 

Surface undrained shear strength, Suo (kPa) 0 

Undrained shear strength gradient, Sug(kPa/m) 1 

 

 

Fig. 8.42 Penetration depth vs. drag distance for fluke-shank angle of  32
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Fig. 8.43 Resultant forces vs. drag distance for Fluke-shank angle of  32

 
Based on observations during the test, Randolph concluded that the anchor 

translated parallel to the bottom surface of fluke not the top surface as shown in Fig. 

8.44. Thus, in this simulation using UBM, anchor translates with bottom of fluke.  
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Fig. 8.44 Direction of travel of drag anchor (Phillips, R. 2001)  
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For the purpose of this study I removed the fixed embedment stage, and simply 

stated at the variable embedment stage. Fig. 8.45 and 8.46 show the comparisons of the 

test and the simulations for varying condition as shown in Table 8.14. According to the 

parameter study in Section 7.5.3, the trajectory curve does not depend on the magnitude 

of undrained strength gradient. In this comparison the trajectory curve matches the 

results of the centrifuge test. However, the resultant force at anchor line attachment point 

does not match the centrifuge test result. Thus, we postulate that the undrained strength 

may be stronger than suggested by the strength data. So I tried to simulate with several 

undrained strength gradient and sensitivity. As a result, as shown in Fig. 8.46, the 

simulation with undrained shear strength gradient of 1.5 and sensitivity of 1.0 was well 

matched with measured data. 
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Fig. 8.45. Penetration depth vs. drag distance for F-S angle 32o (St=1) 
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Fig. 8.46 Resultant force vs. drag distance for 32o of F-S angle (St=1) 

 

8.4.2 Fluke-shank angle of 50 degree  

 
In this section, a Stevpris anchor with a 50 degree of fluke-shank angle is 

simulated and compared with test results of a centrifuge model anchor. Table 8.15 shows 

the geometry and soil conditions for the model anchor. The Stevpris anchor is simplified 

as shown in Fig. 8.47. 
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Table 8.15 Anchor geometry and soil condition for F-S angle of 50 degrees 

Property Value 

Anchor weight, Wa(kN) 373.3 

Shank length, Ls(m) 7.294 

Shank width, Ws(m) 1.694 

Fluke length, Lf(m) 4.786 

Fluke width, Wb(m) Varied 

Fluke depth, Df(m) 0 

Fluke-shank angle, θfs (degree) 50 

Anchor line diameter, b(m) 0.24 

Surface undrained shear strength, Suo(kPa) 0 

Undrained shear strength gradient, Sug(kPa/m) 1.0 
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(a)Fluke                      (b) shank 

Fig. 8.47 Geometries of simplified Stevpris anchor for F-S angle of  50
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Fig. 8.48 shows a plot of anchor capacity versus drag distance at the attachment 

point, and Fig. 8.49 shows penetration depth versus drag distance for fluke-shank angle 

of 50 degrees. A comparison between penetration depth versus drag distance for the 

model and simulation is shown in Fig. 8.50 and anchor capacity versus drag distance is 

shown in Fig. 8.51. Note that anchor installation stops at a certain depth due to a 

limitation in the depth of the centrifuge tester. The anchor needs some drag distance to 

set itself and this initial drag distance is removed. We have shown that the trajectory 

curve does not depend on strength gradient Sg in previous parameter studies. We have 

confirmed this behavior with the results shown in Fig. 8.50 where varying the strength 

gradient has virtually no effect on the penetration curves. 

For the strength profile, 1.0uS z= , the simulation curve matches measurement 

data well, but again the anchor capacity curve comparison does not match. To explore 

the possible reasons for this, the strength gradient is varied from 1.0kPa/m to 3.0kPa/m 

and it is found that anchor capacity versus drag distance curve is matches the case where 

the strength gradient is 1.5. It is concluded that the soil may be strength than the soil 

strength measurements suggest. For this case we assumed that the soil disturbance is not 

significant during anchor installation because the sensitivity is assumed to be one. 
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Fig. 8.48 Penetration depth vs. drag distance for F-S angle of  50

 

 

Fixed embed stages Variable embed stages 

Fig. 8.49 Resultant forces vs. drag distance for F-S angle of  50
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Fig. 8.50 Penetration depth vs. drag distance for 50o of F-S angle ( ) tS 1=
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Fig. 8.51 Resultant forces vs. drag distance for 50o of F-S angle ( ) tS 1=
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8.5 Comparison with other methods 

 
In this section, four different methods are compared with the UBM. These data 

are given by anchor installation analysis of deepwater anchor project in API (Murff 

2001). The UBM simulation used same anchor and anchor line geometries and soil 

properties as shown in Fig. 8.52 and Table 8.16. At the initial position, an anchor is 

embedded at a depth of 1m and shank is placed parallel to the seabed. It is assumed that 

an anchor line is catenary so that it reaches horizontally at the mudline. 
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Fig. 8.52 Geometries model anchor for comparison of the UBM and other methods 
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Table 8.16 Anchor and anchor line dimensions and soil properties for comparison        
with other methods 

A m 2.98 

B m 3 

C m 1.5 

D m 3.89 

D1 m 0.7 

D2 m 0.49 

E m 0.2 

F m 0.2 

G m 0.2 

H m 0 

θf [°] 50 

Anchor 

Wa kN 15 

Su0 kPa 0 

Sg kN/m 1.5 

γ kN/m3 18 
Soil 

St - 3.33 

type wire  
Anchor line 

Dia. mm 50 
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Table 8.17 shows descriptions and developers of prediction methods used in this study. 

 

Table 8.17 Summary of prediction methods (Murff et al. 2001) 

Name Description Developer 
/Reference Comments 

NR, 
Syddig6 

Advances and rotates 
anchor based on 
incremental limit 
equilibrium analysis w/ 
compatible anchor line 
calculations 

Neubecker and 
Randolph (1995, 
1996a),  
Thorne (1998) 

Angle of resultant 
soil resistance 
assumed to be a 
function of the 
anchor geometry.  
Simplified closed 
form expression for 
simple cases. 

DIGIN 

Advances and rotates 
anchor based on 
incremental limit 
equilibrium analysis w/ 
compatible anchor line 
calculations 

DNV (1998), 
Dahlberg (1998) 

Assumes distribution 
of soil resistance 
forces on the anchor 
components 

 

Fig. 8.53 shows the penetration depth versus the drag distance. The UBM curve 

is the shallowest of trajectory curves. Other three methods are overlapped until drag 

distance of 100m, after this point the curves are diverted. The curves of resultant forces 

at a shackle versus drag distance are nearly matched except the DNV method as shown 

in Fig. 8.54. The DNV predicts the lowest resultant force at a shackle. 

 

 



 246

-60

-50

-40

-30

-20

-10

0

0 50 100 150 200 250 300 350 400

Drag distance (m)

Sh
ac

kl
e 

de
pt

h 
(m

)
UBM
NR
Syddig6
DNV

 
Fig. 8.53 Penetration depth vs. drag distance (St=3.3) 
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Fig. 8.54 Resultant force vs. drag distance (St=3.3) 
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CHAPTER IX 

SUMMARY AND CONCLUSIONS 

 

This study presents a upper bound plastic limit analysis to predict the trajectory 

of drag embedment anchors and estimate the anchor capacities. A virtual work analysis 

is formulated in terms of unit soil bearing resistance factors. For each increment of 

penetration analyzed in the drag embedment process, the coordinates of the center of 

rotation are optimized to determine the minimum collapse load corresponding to a given 

anchor orientation. Consideration of the anchor line configuration permits the 

determination of a unique anchor collapse load and orientation. An attractive aspect of 

the upper bound method is that the collapse mechanism is selected through an 

optimization procedure rather than relying on intuitive assumptions or empirical factors. 

The unit bearing resistance factors presented in this dissertation were applied to 

general anchor geometries such as a composite fluke comprising rectangular and 

triangular plates. To do this, the study of interaction relationship was carried out in the 

case of a non-rectangular plate and normally consolidated clay. Thus, it is considered 

that the bearing resistance factor, npf, is six at the reference point and twelve at the edge 

of the fluke with quadric function.  

To better understand the anchor behavior, extensive parameter studies were 

carried out varying the properties of the anchor, anchor line, and soil. Parametric studies 

using this model suggested the following:  
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1. In the case of uniform soil strength, energy dissipation rate varies linearly with 

moment of inertia. 

2. Weight of the anchor is not an important factor in anchor behavior. 

3. Increasing the length of the shank leads to a shallower penetration depth. 

4. The shape of the shank does not strongly affect anchor behavior. Thus, it is 

reasonable to model it as a rectangular plate for the purposes of analysis. 

5. Increasing the diameter of an anchor line leads to a shallower the penetration 

depth. 

6. Penetration depth is not affected by either the magnitude of the undrained soil 

strength, Su, or the soil strength gradient, Sg. This study considered only 

conditions of uniform strength, or linearly increasing strength with depth. 

 
For the purpose of verification of the UBM, comparisons were made to selected 

field tests and design charts for Stevpris MK5 and Bruce FFTS MK4. The UBM 

predictions were also compared to centrifuge test results. These comparisons showed 

predicted anchor trajectories to be in good agreement with measured data. However, 

anchor capacities are affected by the parameters such as sensitivity and soil strength 

gradient. The comparisons between the UBM and the design charts for manufacturer’s 

anchors show that design charts are more conservative than the UBM for larger anchor 

sizes. 
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