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ABSTRACT 

 

Understanding the Genetics of Aging: A Canine Model. (December 2006) 

Sarah Christine Canterberry, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Keith E. Murphy 

 

As life expectancy in the United States increases each year, the percentage of the 

population that is comprised of aged individuals rises also.  Researchers expect the 

largest increase in population to occur in the segment consisting of individuals 85 and 

older.  Thus, investigations of the aging process, with the goals of further extending 

average life expectancy and improving the quality of life for aged individuals, have 

become increasingly important to our society.   

To better understand the genetics of aging, we elected to utilize another model 

organism, the domestic dog.  The benefit to this work is that breeds exhibit extreme, 

natural variation in life expectancies.  Here I report my contributions towards 

establishing the dog as another model organism for investigations of the aging process. 

Multiple linear regression analysis was carried out to determine the association 

between life spans and breed size in the dog, based upon data derived from the American 

pet population.  A negative correlation was observed between both height and longevity 

and between weight and longevity with weight being the significant predictor of life 

span. 
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Fifty-four genes implicated in the aging process were mapped to the canine 

genome.  These genes were selected because of their demonstrated contribution to 

longevity in other organisms or based upon their proximity to a marker, D4S1564, on 

human chromosome 4.   

 Four genes that are associated with dwarf mice and extended life span were 

analyzed in nine dog breeds of varying sizes and life expectancies.  Fifty-three 

polymorphisms were discovered in Ghr, Ghrhr, Pit1, and Prop1.  Thirteen ancestral 

SNPs were discovered in which both alleles were found in every breed.  In Ghrhr, a 

transition mutation was found that changes the amino acid sequence as well as the 

function of the protein and is statistically significant (p=4.8 x 10-6) when large dogs are 

compared to medium-sized breeds, but not when they are compared to small breeds 

(p=0.001).  This SNP warrants further investigation in additional dogs and breeds.   
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CHAPTER I 

INTRODUCTION 

 

Aging and Longevity 

 Life expectancy in the United States is increasing each year; as a result, the 

percentage of the population that is comprised of aged individuals is on the rise as well, 

making investigations of the aging process highly beneficial to our society.  The average 

life expectancy has climbed from less than 50 years at the onset of the 20th century to 

today’s estimate of nearly 80.  Researchers expect the largest increase in population to 

occur in the segment consisting of individuals over the age of 85 years followed by those 

aged 65 and older.  Specifically, persons 85 and above are expected to number 19.4 

million, or 4.8% of the total population, by the year 2050, while the portion of the 

population 65 and older will double by 2030 to 20% of the population, or 70.3 million 

individuals.  Due to this rapid population growth in the elderly population, investigations 

of the aging process are necessary to postpone the onset of, and develop more effective 

treatments for, aging-associated diseases (National Institute on Aging, 2006). 

 Previous research has led to multiple theories of the aging process.  While these 

theories are complex, they are not mutually exclusive.  Each theory tries to address the 

many factors that contribute to aging, a process that, of course inevitably culminates in 

death.  These theories can be classified as evolutionary, molecular, cellular and systemic 

(reviewed in Weinert and Timiras, 2003).  Evolutionary theories include the mutation 
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accumulation theory, the disposable soma theory and the antagonistic pleiotropy theory 

(reviewed in Weinert and Timiras, 2003).  The mutation accumulation theory states that 

mutations which only affect an organism after it has reproduced, will not be selected 

against and therefore remain in the population at a steady frequency (reviewed in 

Gavrilov and Gavrilova, 2003).  The disposable soma theory indicates that once 

reproductive age has passed, the organism is disposable.  This theory is supported by 

scientists studying organisms exhibiting diverse life spans that correlate with 

environmental hazards and exposure to predation (reviewed in Weinert and Timiras, 

2003).  The theory that some genetic differences necessary and beneficial early in life 

are the same factors that are, later in life, quite detrimental to longevity, is the basis for 

the antagonistic pleiotropy theory (reviewed in Gavrilov and Gavrilova, 2003).  Many 

believe that these mutations are preserved in the genome because of their importance 

early in development of organisms.  Gene regulation, codon restriction, error 

catastrophe, somatic mutation, and dysdifferentiation theories fall into the molecular 

theories of aging category (reviewed in Weinert and Timiras, 2003).  Gene regulation 

theories suggest that as an organism ages, gene expression changes are responsible for 

the deterioration that accompanies aging (reviewed in Weinert and Timiras, 2003).  

Inaccuracies in translation and gene expression, which may lead to production of 

abnormal proteins, are the bases of codon restriction and error catastrophe theories, 

respectively (reviewed in Weinert and Timiras, 2003).  The somatic mutation theory 

holds that as an organism ages, molecular damage accumulates, particularly to the 

genetic material.  The dysdifferentiation theory postulates that as this damage is 
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accumulated, regulation of gene expression is altered (reviewed in Weinert and Timiras, 

2003).  Included in the cellular theories of aging are the cell senescence/telomere theory, 

free radical theory, wear-and-tear theory and apoptosis theory (reviewed in Weinert and 

Timiras, 2003).  The cell senescence/telomere theory states that as an organism ages, the 

length of the telomeres shorten and/or the cell senesces due to stress.  The free radical 

theory, or oxidative stress theory, suggests that free radicals, the by-products of 

metabolism in aerobic organisms, cause significant damage to cellular components such 

as lipids, proteins and genetic materials and that the accumulation of such damage leads 

to aging.  The wear-and-tear theory that the accumulation of normal injury, and the 

apoptosis theory that programmed cell death are responsible for aging, are the remaining 

theories that are associated with cellular biology (reviewed in Weinert and Timiras, 

2003).  The system theories of aging are 1) that as an organism ages the neuroendocrine 

control of homeostasis is altered, 2) that an overall decline in immune function results in 

increased rate of autoimmune disorders and 3) that each organism has a fixed metabolic 

potential (reviewed in Weinert and Timiras, 2003).  Many scientists believe that the key 

to solving the aging puzzle is to determine how these theories fit together.  Only by 

understanding all aspects concerning the biology of aging as set forth by the various 

theories will we be able to see the big picture and fully dissect the aging process. 

 

Genetics of Aging 

Many of the above described theories are strongly anchored in genetic 

mechanisms that are involved in aging and longevity.  Numerous studies have indicated 
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that there are significant genetic factors that contribute to longevity, and heritability of 

average life expectancy has been estimated to be as high as 30% (Ljungquist et al., 

1998).  Understanding how genes function in the aging process may enable progress to 

be made not only in the extension of life span but also in improving the quality of life of 

aged individuals.  Studies of genes that govern aging have been conducted using several 

species, including the nematode, fruit fly, mouse, and human.   

Caenorhabditis elegans  

In normal laboratory settings, the average life span of C. elegans is three weeks, 

but there are mutants that live much longer (reviewed in Warner, 2003).  Mutations that 

affect multiple systems have been found to extend the worm’s life expectancy.  Such 

mutations in genes that play roles in the insulin-signaling pathway, caloric restriction, 

oxidative stress, signal transduction and gene expression have been implicated in life 

span extension in the worm.  Genes that have been found to lengthen life span which are 

involved in the insulin signaling pathway are age-1, daf-2 and daf-16.  Worms with 

mutations in daf-2, which is similar to insulin/IGF-1, live twice as long as wild-type 

(Kenyon et al., 1993; Larsen et al., 1995) and upon further manipulation of the 

reproductive system, these worms are as healthy and active at ages that correspond to 

that of 500 year old humans (Arantes-Oliveira et al., 2003).  A gene that encodes a 

phosphatidylinositol-3-OH kinase-like protein, age-1, is another gene that may control 

life span in C. elegans (Morris et al., 1996).  Additionally, mutations in eat that cause 

defects in pharyngeal function have been found to extend life span, possibly by 

mimicking caloric restriction (Lakowski and Hekimi, 1998).  Mutations in clk-1 render 
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worms unable to synthesize coenzyme Q9 and confer a longer life expectancy than that 

of wild-type worms (Lakowski and Hekimi, 1996).  These findings led investigators to 

the discovery that removing coenzyme Q8 from the diet of non-mutant worms had 

similar effects possibly by decreasing the production of reactive oxygen species (Larson 

and Clarke, 2002).  Increases in expression of old genes, homologous to receptor 

tyrosine kinases, extends life span and decreases susceptibility to stress by interruption 

of signal transduction (Murakami and Johnson, 1998).  Alterations of gene expression 

can also be induced by mutations in sir2, a histone deacetylase (Tissenbaum and 

Guarente, 2001).  These discoveries have not only proved that single genes can affect 

longevity, but also provided insight to the basic mechanisms of aging, and prompted 

studies of similar pathways and genes in more complex systems. 

Drospophila melanogaster 

 Long lived mutants of Drospophila melanogaster, another common model 

organism, have been investigated in great detail.  The first flies to exhibit extended life 

spans were those with mutations termed methuselah (Lin et al., 1998), a gene that is a 

member of the secretin family (reviewed in Helfand and Rogina, 2003).  They lived 

approximately 35% longer and were more resistant to several forms of stress including 

oxidative stress, high temperatures and starvation (reviewed in Warner 2003).  Mutations 

in Indy, a dicarboxylate transporter, allow flies to live almost twice as long as wild-type 

counterparts possibly by inducing a state of caloric restriction (Rogina et al., 2000).  

Two genes in the insulin-signaling pathway increase life span in female fruit flies, the 

insulin-like receptor (Inr) and the insulin-like receptor substrate protein (chico) (Clancy 
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et al., 2001; Tatar et al., 2001).  Both males and females with mutations in these genes 

are dwarf (reviewed in Helfand and Rogina, 2003).  There have been several genes 

found in Drosophila that are involved in stress resistance that can alter life expectancy.  

When the homolog to human SOD is overexpressed, the result is a 40% to 50% increase 

in life span (reviewed in Helfand and Rogina, 2003).  Transgenic overexpressors of 

methionine sulfoxide reductase A are resistant to oxidative stress and remain active 

much longer than wild-type flies (Ruan et al., 2002).  Also, transgenic fruit flies that 

overexpress PCMT, a gene responsible for repairing the damage that results from 

oxidative stress, exhibit extended life spans (Chavous et al., 2001).  Increased life spans 

have also resulted from mutations in the rpd3, which encodes a histone deacetylace that 

is important in chromatin structure and regulation of gene expression (reviewed in 

Helfand and Rogina, 2003).  While Drosophila is a much more complex model system 

than C. elegans, it is very far from the human on the evolutionary scale. 

Mus musculus 

The mouse is an exceptional mammalian model organism for genetic studies, and 

has been utilized by many scientists interested in aging.  Currently there are sixteen 

strains of mice that have life spans that deviate from the average due to genetic 

alteration.  Four of these strains are dwarfs.  Ames mice are defective in Prop1 and Snell 

dwarf mice harbor mutations in the Pit1 gene; both strains are defective in pituitary 

development and exhibit 40-50% extension in life expectancy (reviewed in Quarrie and 

Riabowol, 2004).  Mice which have mutations in Ghrhr, known as Little mice, live 

approximately 25% longer than wild-type, while Laron mice are ghr-knockouts that 
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have up to a 55% increase in life span (reviewed in Quarrie and Riabowol, 2004).  These 

genes play roles in the insulin-signaling pathway (reviewed in Quarrie and Riabowol, 

2004; reviewed in Warner, 2003).  There are four additional strains that have mutations 

in genes included in the insulin-signaling pathway, 1) GH Ig mice overexpress GH and 

have decreased life span, 2) IGF1-R mice that exhibit an overall increase in life 

expectancy of 25%, although the extension of life span in not significant in the males, 3) 

p66shc mice have 30% longer lives, and 4) IRadipose mice have an 18% extension in life 

span (reviewed in Quarrie and Riabowol, 2004).  Both p66shc and IRadipose mice are 

resistant to oxidative stress as are the following strains: Thioredoxin mice that live up to 

35% longer and Bcl-2 tg DC mice that have increased longevity of their dendritic cells 

(reviewed in Quarrie and Riabowol, 2004).  Alternatively, Peroxiredoxin mice are more 

susceptible to oxidative stress and have significantly reduced lives (reviewed in Quarrie 

and Riabowol, 2004).  Three mutants that have significantly reduced life spans have 

been described.  These are the Klotho mice, p53 mut mice and XPD TTD mice that have 

life spans shortened to less than 100 days, by as much as 17% and by approximately 

50%, respectively (reviewed in Quarrie and Riabowol, 2004).  Lastly, mutations in the 

genes, UPA and SIRT1 extend the lives of mice by appetite suppression and mediation of 

caloric restriction (reviewed in Quarrie and Riabowol, 2004; reviewed in Warner, 2003).  

Although the mouse is far more similar to man than is the fruit fly or nematode, and can 

provide many useful insights, this model organism is still quite evolutionarily distant 

from the human. 
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Homo sapiens 

The search for longevity genes in the human has been challenging for several 

reasons, two of which are long life expectancy, and highly heterogeneous populations.  

Thus, many genes that correlate with excessive old age in one population may not 

necessarily correlate in another population (De Benedictis et al., 2001).  More genes 

have been discovered that are deleterious than have been found to extend human life 

span (reviewed in Lao et al., 2005).  Numerous genes that are critical to diverse 

physiological processes, such as metabolism, cardiovascular health, oxidative stress, 

cancer susceptibility, coagulation, bone mineralization, and chromatin structure have 

been linked to varied life spans in multiple populations (De Benedictis et al., 2001; 

Heijmans et al., 2000).  However, the results of these studies may indicate a decreased 

susceptibility to disease and not an extension of life span.  A few protective alleles have 

been discovered, however.  There are a few variants of the apolipoproteins E and C-III, 

and IGF-IR genes as well as HLA haplotypes that are found in higher frequency among 

centenarians (reviewed in Lao et al., 2005).  Additionally, the mitochondrial genome is 

suggested to play a role in determining life span in humans because it is quite susceptible 

to oxidative damage (reviewed in Lao et al., 2005).  While studies of single loci or 

haplotypes are most numerous, linkage studies have also been performed.  One such 

study of siblings of centenarians identified marker D4S1564 on human chromosome 4, 

which correlated with a 4-fold increased ability of these siblings to live at least into their 

early nineties when compared to siblings of non-centenarians (Puca et al., 2001; Perls et 

al., 1998).  It is estimated that a locus near D4S1564 is responsible for approximately 
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1.65-fold of the overall increased ability to reach extreme old age.  Additionally, a 

second study conducted on male fraternal twins supported these findings (Reed et al., 

2004).  However, due to low statistical significance (Reed et al., 2004), the affect that 

this locus has on human longevity is still widely debated.  While studies of human 

populations are directly applicable, there are numerous drawbacks to these 

investigations, such as long life span, a shortage of experimental controls and lack of 

extensive family histories.  Due to these drawbacks, another model organism for 

investigations into the aging process could provide further information about the aging 

process.   

Canis familiaris 

Although the dog is not a well established model of aging, some preliminary data 

have been gathered.  Diet restriction in Labrador Retrievers increased median life span 

by nearly two years, from 11.2 years for those dogs fed a greater amount to 13.0 years 

for dogs fed 75% of their pair-mate control (Kealy et al., 2002).  Caloric restriction has 

been successfully used in several model organisms, from rodents to primates, to prolong 

life.  In a study of Swedish dogs, researchers determined that dogs belonging to different 

breeds age at different rates, and that it is inappropriate to consider them as having 

equivalent biological age (Egenvall et al., 2005).  This study utilizes pet insurance 

databases and while this provides an extensive amount of information, it also admittedly 

ignores dogs more that ten years of age, because such dogs are no longer eligible for 

insurance.  Cellular proliferative capacity was shown to be inversely related to breed size 

by Li and colleagues (1996).  Investigations based upon information contained within 
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the veterinary medical database (VMDB) revealed that larger breeds have truncated life 

spans when compared to smaller breeds (Deeb and Wolf, 1994; Patronek, et al., 1997).  

These investigators, similar to those in Sweden, omitted a portion of the canine 

population by using the VMDB.  However, in this instance, the healthy pet population 

was not included because these dogs were not referred to a veterinary teaching hospital.  

Interestingly, cross breed dogs do not live longer than their pure breed counterparts, 

therefore these do not exhibit hybrid vigor as one might expect (Bronson, 1982).  

Additionally, telomere shortening has been observed in canine fibroblasts in vitro, and 

differences in telomere lengths between different breeds have also been reported 

(McKevitt et al., 2002).  The preliminary investigations reveal that the dog does not 

radically deviate from previous model organisms and current theories of aging 

demonstrated by studies that involve use of caloric restriction to extend life span and 

analysis of telomere lengths in dogs of a variety of ages and breeds.  In addition, the dog 

presents a unique opportunity to study aging in an organism that naturally exhibits a 

wide range of life expectancy. 

 

The Dog as a Model Organism 

The domestic dog, Canis lupus familiaris, is a subspecies of wolf that diverged 

from its ancestor, Canis lupus, at least 15,000 years ago, and some evidence suggests a 

domestication event some 135,000 years ago (Leonard et al., 2006; Savolainen, 2006).  

Scientists are still working to further narrow this time frame.  Since domestication of the 

dog, humans have utilized non-random breeding to develop more than 300 recognized 
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pure breeds.  Most of these breeds have been developed within the past 250 years 

(Ostrander and Giniger 1997).  Once breeds were established, inbreeding has been used 

extensively to fix the desirable physical and behavioral traits in dog breeds.  Selective 

pressure has also presented itself through founder effects, popular sire effects, population 

bottlenecks, and surges in breed popularity which, in combination with intentional 

inbreeding, have resulted in over 450 hereditary diseases in the dog (OMIA 2006).   

Approximately half of the aforementioned inherited diseases are also present in 

human populations.  Historically, the dog has served as a useful model for many of the 

hereditary diseases found in both dog and human; often mutations in the homologous 

genes are causative in both species (OMIA 2006; Ostrander and Giniger 1997).  Highly 

inbred populations, represented by breeds, are comprised of highly homogeneous 

individuals while comparisons between individuals from different breeds reveal 

sufficient heterogeneity to be useful in genetic investigations (Parker et al., 2004).  

Importantly, the canine genome was recently sequenced (Lindblad-Toh et al., 2005) and 

this  revealed that the dog has a much higher level of sequence identity to the human 

than does the mouse (Jiang et al., 2005). 

Animal husbandry practices commonly used by dog breeders also provide 

benefits to researchers.  Due to breed registry practices, there is a limited amount of gene 

flow between dog breeds, resulting in highly homogeneous, inbred populations.  Also, 

extensive pedigree information is readily available through owner records.  The dog also 

has the additional benefit of a short generation time in which they most often produce 

litters rather than single offspring.  Another advantage of using the dog as a model is that 
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sometimes it is not necessary to maintain a costly colony at the research institution.  

Instead, samples can often be obtained from the pet population through owner and 

breeder cooperation.  These dogs also share a common environment with human owners, 

providing an automatic control for environmental exposures and alleviating concerns for 

both genetic drift of caged animals and for the overall welfare of the animals.  Finally, it 

is critical to note that the dog enjoys medical surveillance second only to the human, 

with owners spending approximately $11.6 billion annually on veterinary related 

expenses for their dogs (Wise, et al., 2003).   

Because of the close relationship humans have with their best friend, the dog, and 

the availability of extensive medical records, the clinical hallmarks of the aging process 

in the dog are well known.  Additionally, the dog and its human caretakers exhibit many 

of the same ailments associated with aging.  Not surprisingly then, the dog now provides 

a unique opportunity to study natural variation in life span within a single species to 

elucidate the genetic components of aging. 

 

Specific Aims 

Understanding the aging process is important not only from a scientific 

standpoint, but also from a social standpoint as the most rapidly growing segment of our 

population is that of the elderly.  The ultimate goal of aging research is to extend life 

expectancy and improve the quality of life for aged individuals.  To that end, this work is 

focused on establishing the dog as a model organism for aging research and determining 

genetic factors that play a significant role in life span of the dog, and by extension, the 
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human.  To begin this line of investigation, it was necessary to first determine the extent 

of the inverse relationship between size and longevity in the pet dog population.  

Secondly, genes associated with the aging process in other systems were identified and 

mapped to the canine genome.  Lastly, four genes that confer extended life spans in mice 

of smaller size were analyzed to determine if any sequence differences are responsible 

for the similar phenomenon which is observed in the dog. 
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CHAPTER II 

STATISTICAL ANALYSIS REGARDING THE EFFECTS OF HEIGHT AND 

WEIGHT ON THE LIFE SPAN OF THE DOMESTIC DOG
*
 

 

Overview  

This study was undertaken to determine the association between life spans and 

breed size in the dog, based upon data derived from the pet population.  Seventy-seven 

American Kennel Club (AKC) breeds were analyzed with data collected for more than 

700 dogs.  Multiple linear regression analysis was carried out with longevity as the 

dependent variable and height or weight as the independent variable.  A negative 

correlation was observed between height and longevity (r = -0.603, p < 0.05), and 

between weight and longevity (r = -0.679, p < 0.05).  Weight was the significant 

predictor of life span (p < 0.001), revealing that breeds smaller by weight generally live 

longer than heavier breeds.  These data form the ground work for investigations of aging 

utilizing the dog as a model and provide owners with a quantitative method for 

predicting life span of dog breeds, thereby aiding in pet selection. 

 

Introduction  

Searching for susceptibility genes associated with multifactorial traits such as 

aging is problematic, and the criteria required for population dynamics and ideal 

                                                 
* Reprinted with permission from “Statistical analysis regarding the effects of height and weight on life 
span of the domestic dog” by Greer KG, Canterberry SC, Murphy KE, 2006. Research in Veterinary 
Science, in press. Copyright 2006 by Elsevier Ltd. 
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methodology by which to study them are still debatable (Freimer and Sabatti, 2004).  

Naturally, model systems have been employed to aid in the elucidation of factors 

contributing to human aging; however, many obstacles remain.  For example, linkage 

analysis of human centenarians has led to investigation of certain chromosomal regions, 

but significant genetic heterogeneity, limited eligible participants, and lack of solid 

experimental controls reduce the effectiveness of this approach.  Model organisms, 

including Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and non-

human primates have also been studied, initially offering evidence of disparate 

mechanisms of aging, but it is apparent that there are indeed common molecular themes 

influencing longevity, even among invertebrate and vertebrate species.  For example, 

longevity across these species is influenced by insulin signaling, stress resistance, the 

ability to repair cellular and macromolecular damage, chromosomal and nuclear 

structure, and caloric restriction (Warner, 2003).  Although there are many differences in 

the way these organisms age, it is intriguing that key pathways are common to their 

aging processes despite their evolutionary distance.  Collectively, examinations of these 

pathways in various model systems strongly suggest that genetic factors play a 

significant role in aging.   

To determine the genetic factors that affect the process of aging, utilization of an 

alternative model organism, the dog, should contribute significantly to current 

knowledge regarding longevity and aging for several reasons.  Genetic isolates, 

represented by breeds, are well-suited for identifying susceptibility loci because strict 

registration guidelines reduce gene flow among breeds.  The resulting population 
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structure is highly independent and homogeneous, making population comparisons 

genetically informative.  The breed structure is also useful because extensive pedigree 

information facilitates population-based genetic studies.  Importantly, because medical 

surveillance of the dog is second only to that of the human (Wise et al., 2003), detailed 

medical records are also readily available.  Furthermore, with the sequence assembly of 

the canine genome now available, it is known that the nucleotide sequence of the dog is 

more similar to the human than is the rapidly evolving murine nucleotide sequence 

(Kirkness et al., 2003).  Lastly, in general, life expectancy of the dog is inversely related 

to body size (Li et al., 1996; Deeb and Wolf, 1994) and thus there is marked variation in 

life expectancy across breeds (Patronek et al., 1997).  This natural variation is intriguing 

when compared to the study of longevity in other mammals, and access to genetically 

isolated populations with great differences in life spans provides an ideal and unique 

opportunity to study the genetic components critical to aging.  

While data exist for a few breeds, information on longevity is lacking for the 

majority.  Specifically, life tables were constructed for laboratory Beagles in 1981 

(National Academy of Sciences) but not for other breeds.  Another study addressed 

longevity and morbidity in a select number of giant and small breeds, but these authors 

had a primary interest in correlating specific diseases with dogs’ age of death (Deeb and 

Wolf, 1994).  That work and another completed in 1997 (Patronek et al.) utilized the 

Veterinary Medical Database (VMDB) which reflects mortality in veterinary teaching 

hospitals.  Lastly, a Swedish study employed insurance claims as a method of data 

retrieval which admittedly ignores all dogs older than ten years because they are no 



 

 

17  

longer eligible for pet insurance (Bonnett et al., 1997).  Therefore, unbiased data for life 

spans across breeds are lacking.  This being so, the first step in evaluating the dog as a 

model for human aging and longevity was to gather data for pet dogs representing 

numerous breeds.  All dogs were living as pets in owners’ homes thereby reducing, if not 

eliminating, the aforementioned biases.  Statistical analysis was performed on the height, 

weight, and longevity of the collected breeds to establish correlations therein.   

 

Materials and Methods 

Data collection 

Height, weight, and medical information were collected on 718 individual dogs 

within 77 independent AKC breeds.  Study participants were recruited at AKC dog 

shows and were restricted to those dogs eligible for AKC registration.  This restriction 

was placed upon the participants to ensure known heredity for each dog in an attempt to 

eliminate extraneous factors that may influence or skew analyses.  Owners were required 

to fill out detailed questionnaires for each dog, and the majority also contributed DNA 

via buccal swabs from the dogs.  DNA was extracted from the collected cells utilizing a 

procedure previously described (Garcia-Closas et al., 2001), albeit with some minor 

modifications.  Data from the questionnaire were entered into a computer database 

(Microsoft Access) for tracking, sorting, comparison, and analysis.  Tables were 

assembled in Microsoft Excel and data exported to SPSS version 9.1 for statistical 

analysis (described below).  Longevity information was collected from individual breed 

association records, generally the National breed club for the breed of interest.  Because 
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this study is not a longitudinal study, the life spans of those dogs contributing data for 

height and weight were not required for participation; likewise, the heights and weights 

of those dogs contributing life span data were not required.  Therefore, the data for 

height and weight utilized random sampling of the pet population and were collected 

independently of life expectancy data which was gathered from specific breed 

organizations.  For analysis, the breed median life span value was assigned to all dogs 

belonging to that breed. 

Statistical analyses 

Statistical analyses were performed with SigmaPlot®, version 9.1 for Windows.  

Descriptive statistics were determined, followed by correlation analyses utilizing 

Spearman’s rank order analysis (Belsley et al., 1980).  Multiple linear regression 

analysis was utilized with a dependent variable, age, and two independent variables, 

height and weight (Weisberg, 1985) following forward stepwise regression analysis with 

independent variables height, weight, and breed group together with a dependent 

variable of age.  A probability (p) value <0.05 was considered to be statistically 

significant. 
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Results  

The 77 independent breeds have between 3 and 29 individuals per breed 

participating in the study.  Generally, those breeds with higher numbers of participants 

are either more common breeds or have owners who are more interested in research.  

The dogs’ heights at the withers range from 6.0 inches to 37.0 inches, while their 

weights range from 2.0 pounds to 196.0 pounds (Figure 1).  As expected, the 

observations are not normally distributed as determined by the Kolmogorov-Smirnov 

test; their characteristics are shown in Table 1.  The scatterplot matrix of age, median 

height, and median weight is depicted in Figure 2.  Using Spearman’s rank order 

analysis, a nonparametric test, age is most negatively related to weight (r = -0.679), and 

is also inversely related to height (r = -0.603).  Both associations are statistically 

significant (p < 0.05).  Additionally, and as would be expected, height and weight are 

significantly related to one another (r = 0.919, p = 0.000).  Furthermore, the negative 

correlations are maintained when the individual dogs are separated into breed groupings 

(i.e. Herding, Hound, Non-sporting, Sporting, Terrier, Toy, Working), as would be 

expected since each group is composed of a size range of individual breeds (data not 

shown).  
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Figure 1:  Heights and weights of sample population. 

Box plot of the data set utilized for these analyses.  Heights of the dogs at the withers 
range from 6.0 inches to 37.0 inches with N = 649.  Weights of the dogs range from 2.0 
pounds to 198.0 pounds with N = 701. 

 
 
 

Table 1:  Data description. 

 Mean Std Dev Std 
Error 

Range Median 25% 75% 

Height 
(in.) 

19.669 7.677 0.301 31.000 21.000 12.000 26.000 

Weight 
(lbs.) 

51.708 40.701 1.537 196.000 48.000 16.500 72.250 

Note: Collective information regarding the heights and weights of dogs in this study. 
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Figure 2:  Correlation among heights, weights, and ages for 77 AKC breeds.  
Correlation coefficients, obtained by Spearman’s rank order analysis, are shown in the 
upper right of each segment. 
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Multiple linear regression with age as the dependent variable, median height as 

an independent variable (xH) and median weight as an independent variable (xW), utilizes 

the equation:  y = 13.620 + (0.0702 * xH) - (0.0538 * xW) as determined by least squares 

estimates, with a residual standard deviation of 1.286, R2 = 0.585, R2adj = 0.574.  Tests 

about the partial slope parameters yield an F0.05 > 3.00 (p < 0.001).  The variance 

inflation factor for the equation is 4.662 and the coefficient of height has a t-value of 

1.603 (p = 0.113) while the coefficient of weight has a t-value of -6.091 (p < 0.001).  

Plots of residuals (Figures 3 and 4) show an overestimation for the heavier and taller 

dogs.  Therefore, the normal probability plot of residuals is presented (Figure 5) 

demonstrating that the residuals have a normal distribution. 

 

Discussion 

We assembled extensive data regarding the naturally diverse life spans across breeds of 

the domestic dog.  This study extends the work of previous investigations that utilized 

the VMDB (Deeb and Wolf, 1994; Patronek et al., 1997) by examining life spans of pet 

dogs in association with their height and weight.  Data pertaining to the general, healthy 

pet population expands upon previous investigations because dogs in the VMDB, by 

definition, have been referred to veterinary teaching hospitals, thereby biasing the 

median ages at death downward in comparison to the pet population (Patronek et al., 

1997).  Median ages were utilized here not only to offer a means of direct comparison to 

the work extrapolated from the VMDB, but also to allow classification of dogs by breed 

as a whole.  Therefore, male life spans and female life spans are not investigated 
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independently, but as an entire breed group.  Likewise, data for height and weight are 

also reported as median, and while the previous studies analyzed the relationship of body 

size to longevity, this work further dissects weight and height as independent factors of 

body size.  The number of dogs contributing to the data for each breed varies between 

three and twenty-nine dogs, largely depending upon availability of each breed (i.e., how 

common and/ or popular a particular breed is within the general population of dog 

owners) but also depending upon the owners’ willingness to participate in ongoing 

scientific investigations by contributing a questionnaire.  Therefore, as would be 

expected, the total population is not normally distributed, and has a preponderance of 

medium and small breeds, presumably due to their increased level of popularity.  It is 

also quite possible that the financial burden of owning a dog is not such a consideration 

when owning small dogs versus larger ones, as it was casually observed that owners of 

small breeds tend to have multiple dogs while those who own large dogs often have only 

one.  Due to the lack of normal distribution, nonparametric tests were employed 

throughout the analysis. 
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Figure 3:  Plot of residuals for weights.   

Plot of residuals versus weight in pounds of participating dogs.  The graph reflects the 
mean, standard deviation and 2X standard deviation. 
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Figure 4:  Plot of residuals for heights.   
Plot of residuals versus heights in inches of participating dogs.  The graph reflects the 
mean, standard deviation and 2X standard deviation. 
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Figure 5:  Probability plot of residuals. 

Normal probability plot of residuals for y = 14.016 + (0.0180 * xH) - (0.0400 * xW) as 
determined by least squares estimates. 
 
 
 

The data collected from the general pet population corroborate those of previous 

studies derived from other select populations by indicating that longevity is inversely 

related to size (Deeb and Wolf, 1994; Patronek et al., 1997).  This work demonstrates 

that life expectancy is related to both height and weight of breeds by utilization of the 

pet dog population previously noted by Patronek and colleagues (1997) as being 

unexamined.  Although empirical data have offered these suggestions for many years, 
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there has been a lack of information for the generally healthy pet population, and 

specifically regarding regression and correlation data across breeds.  The significant 

inverse relationship between life span and weight is -0.679 while the relationship 

between life span and height is -0.603.  These results were as expected because it was 

evident that the heavier, short dogs, such as the English Bulldog, have unusually reduced 

life spans for their height and seem to fall in line more closely with the life spans of dogs 

with similar weight (i.e., Borzoi).  Therefore, the individual relationship of each factor to 

longevity offered initial evidence that the two may be influencing life span unequally.  

Collectively, the coefficient of determination for this model indicates that 58.5% of 

variability in life span can be accounted for by variation in weight and height of a breed.  

This coefficient is interesting when considering that the difference between the life span 

of the shortest lived breed in this dataset, the Irish Wolfhound (median 7yrs) is 

approximately half that of the longest lived breed in this dataset, the Papillion (median 

16 years).   

A previous investigation determined that decreased life span of pure breed dogs 

compared with mixed breed dogs in all weight categories suggested that selective 

breeding of dogs over time for phenotypic traits such as body size had accelerated aging, 

independent of the effect of size alone (Patronek et al., 1997).  Therefore, we introduced 

the independent variables of breed, height, and weight into a stepwise linear regression 

model, to get a better idea of which variables were affecting life span to the greatest 

degree.  With life span as our dependent variable and breed, height and/or weight as 

independent variables, only weight emerged as a significant predictor of longevity.  The 
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regression equation was:  y = 14.016 + (0.0180 * xH) - (0.0400 * xW) and an F test 

indicated evidence of an age-predictive value.  As agreed, then, by these two studies, 

body size of the dog does have an affect on maximum life span; however, breed did not 

have an isolated effect on life span in this analysis.   

A second question of interest, then, was whether dividing the study population 

into breed groups would explain a method by which the dogs’ breed influenced its life 

span.  Ideally, this type of division would separate the morphologically similar breeds of 

differing size into the same group and offer evidence of healthy and/ or unhealthy 

morphology and genetic health when aligned to longevity.  The study population was 

divided into the American Kennel Club’s defined breed groups:  Herding, Hound, Non-

sporting, Sporting, Terrier, Toy, Working, whose descriptive statistics are included in 

Table 1.  The independent variables were introduced into a stepwise linear regression 

model.  With life span as our dependent variable and breed group (xBG), median height 

and median weight as independent variables, this analysis determined weight to be the 

primary and only significant predictor of longevity.  The regression equation was:  y = 

13.123 + (0.0111* xBG) + (0.0710 * xH) - (0.0528 * xW) and an F test indicated evidence 

of an age-predictive value.   

Although this would appear to be a difference between these conclusions and 

those of Patronek, we suggest that since the median weight of a dog, when examining a 

pure bred population, is not exclusive of its breed, these two parameters cannot be 

entirely separated from one another.  Therefore, although these analyses indicate that 

breed and breed group do not have as great of an impact upon longevity as weight, it is 
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obvious that a given breed was not separated from its weight category in this study.  

While the data set was divided into breed groups, it should be noted that each breed 

group itself is composed of a wide range of sizes.  For example, the Hound group 

contains both the Dachsund with a median weight of 12.0 pounds and a median height of 

7.5 inches, as well as the Irish Wolfhound with a median weight of 122.5 pounds and a 

median height of 32.0 inches.  Perhaps a follow-up investigation to differentiate breed 

and weight entirely could examine dogs falling significantly outside their breed 

standards; our interest, however, was to look at the typical height and weight of given 

dogs and therefore, this examination was limited to dogs generally representative of each 

breed. 

With the consideration of a representative sample set, breed medians were also 

plotted on a scatterplot matrix which clearly indicates a relationship between age and 

weight, as well as between age and height, and of course, between height and weight.  

These negative relationships were expected, as mentioned, but raise the concern of 

collinearity (Belshley et al., 1980), which needs to be examined in greater detail.  A 

scatterplot matrix of individual data points demonstrates more of a nonlinear than a 

linear association between height and weight.  Their linearity was examined, however, 

because if one independent variable was highly collinear with the other independent 

variable, it could be expected to yield very large standard errors of partial slopes and 

inaccurate estimates of those slopes (Belsley et al., 1980).  Further examination reveals 

that the variance inflation factor (VIF) is equal to 4.662.  Although not entirely 

dismissive of a collinearity influence in this model, the number is much lower than may 
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have been generally expected.  This dissociation may be due to those breeds whose 

healthy weight does not necessarily directly correlate with their heights.  For example, 

the English Bulldog or the Borzoi, both breeds of which were included in the 

investigation, would be in this category.  Our interest in including these breeds stems 

largely from the fact that these and several other breeds appear to be “disproportionate” 

in terms of either weight or height.  Overall, however, the analysis does not suggest 

collinearity strong enough to interfere with regression analysis. 

The t-value of 1.603 (p = 0.113) indicates that height does not have any 

additional predictive power in addition to weight with a t-value of -6.091 (p < 0.001).  

Plots of the residuals are presented, and while they seem to indicate an overestimation of 

the regression line (Slinker and Glantz, 1990), the normal probability plot of residuals 

demonstrates linearity.  In general, therefore, given the inherent close association of 

height and weight, this regression model offers a reasonable estimation of expected 

longevity for any given healthy weight and height across breeds. 

This work describes associations between longevity and size within the healthy 

pet population, demonstrating that a dog’s weight is more predictive of life span than 

either height, breed, or breed group.  While corroborating previous speculation and 

evidence of size in general, we utilized multiple linear regression to determine the factor 

contributing most significantly to life spans of 77 American Kennel Club (AKC) 

recognized breeds.  With this parameter defined, and definitive populations within the 

species well established, it will be interesting to utilize this information as a basis for the 

study of mechanisms surrounding the genetics of longevity.  The wide, natural variation 
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in life spans of the dog provides an excellent opportunity to examine wide ranges of life 

spans in a single species, which is critical because the research community has not taken 

full advantage of such natural variation to date (Austad, 1993).  Furthermore, analysis of 

the canine nucleotide sequence should provide information not readily available in the 

past due to reliance upon rodents and other models not particularly close to the human in 

terms of nucleotide sequence.  In this context, the dog seems an ideal candidate as a 

comparative model of aging (Patronek et al., 1997) and the work herein establishes a 

quantitative basis from which to further analyze the genetic components of longevity.  
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CHAPTER III 

AGING-ASSOCIATED LOCI IN Canis Familiaris
*
 

 

Overview 

 Although recent endeavors to discover the mechanisms of the aging process have 

been numerous and successful, there is still much to be learned.  Genes implicated in the 

aging process were mapped to the canine genome and will serve as additional framework 

markers for the assignment of contiguous segments from the canine genome sequence to 

chromosomes.  The 54 genes were selected because of their demonstrated contribution to 

longevity in other organisms or based upon their proximity to a marker, D4S1564, on 

human chromosome 4 (Puca et al., 2001).  This effort lays the necessary groundwork for 

our utilization of the domestic dog as a model organism to define the genes that govern 

aging and longevity.  Within the species, naturally diverse life expectancies and highly 

homogeneous populations create an ideal population structure for studying the genetic 

components of aging (Patronek et al., 1997). 

 

Introduction 

In recent years, many studies have been directed towards understanding the 

genetics and biochemistry of aging.  These studies have involved genetic and 

mechanistic analyses of the complex process of aging by utilizing model systems, 

                                                 
* Reprinted with permission from “Aging associated loci in Canis familiaris” by Canterberry SC, Greer 
KG, Hitte C, Andre C, Murphy KE, 2005. Growth Development and Aging, 69, 101-113. Copyright 2005 
by Growth Publishing Co., Inc. 
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including: Caenorhabditis elegans, Drosophila melanogaster, Mus musculus, and non-

human primates.  Investigations using these models initially offered evidence of 

disparate mechanisms of aging, but it has become apparent that there are indeed 

common molecular themes influencing longevity, even between invertebrate and 

vertebrate species.  From these studies, it is clear that genetic factors are a primary 

component impacting an organism’s longevity.  

Towards the goal of utilizing the dog to determine the genes influencing aging, 

we selected 54 genes for mapping based on their various roles in aging and have placed 

52 new genes on the current canine radiation hybrid map (Breen et al., 2004).  Although 

the sequence of the canine genome is available (http://www.ensembl.org/), its assembly 

is ongoing and gaps remain.  Importantly, because the accurate placement of contiguous 

segments (contigs) and scaffolds on the genome relies on the canine radiation hybrid 

(RH) map, the addition of 52 genes to the RH map provides an increased density of 

markers to which sequence scaffolds may be anchored.  That these are gene based 

markers is of further benefit because the canine map is relatively sparse in such markers 

as compared to other organisms.  Of the genes selected for this study, 26 were chosen 

due to their positive and/or negative contribution to longevity in other organisms, 

including C. elegans, D. melanogaster, M. musculus, and the human.  The remaining 28 

genes were selected based on their proximity to marker D4S1564 (HSA4), which was 

previously correlated with an increased ability for siblings of centenarians to achieve 

extreme old age by as much as 1.65 fold (Puca et al., 2001).  Interestingly, several 

paralogs of the target genes were discovered in the dog.  Additionally, it was found that 
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these paralogs have been evolutionarily conserved between the dog and human.  Thus, 

this work provides a strong platform for additional studies of specific genes that control 

the aging process while concomitantly increasing the density of the RH map. 

Study of the dog as an additional model of aging should contribute unique and 

valuable information to the current knowledge of common molecular themes influencing 

longevity.  Studies across species have demonstrated that mechanisms influenced by 

insulin signaling, stress resistance, the ability to repair cellular and macromolecular 

damage, chromosome and nuclear structure, and caloric restriction (Warner, 2003) play 

contributory roles in aging and longevity.  An intriguing link between these identified 

mechanisms which has attracted substantial attention is the effect of insulin and insulin-

like growth factor I (IGF-I) signaling.  Disruption of this signaling cascade, specifically 

by genetic mutation of genes resembling the human insulin/IGF-1 pathway genes, can 

significantly extend life span across species.  For example, C. elegans displays increased 

life span when harboring mutations of daf-2, age-1, and daf-16 (Dorman et al., 1995; 

Morris et al., 1996; Kimura et al., 1997; Lin et al., 1997; Ogg et al., 1997).  In mutant 

female flies, genetic manipulation of InR and Chico result in extension of life span 

(Clancy et al., 2001; Tatar et al., 2001).  Mice that have been genetically altered in 

Prop1 (Brown-Borg et al., 1996) and Pit1 (Li et al., 1990; Flurkey et al., 2002) exhibit 

extension in life span.  Although there are many differences in the way these organisms 

age, it is intriguing that these key pathways are common to their aging processes despite 

the organisms’ evolutionary distance.  Collectively, examinations of these pathways in 

various model systems strongly suggest that genetic factors play a significant role in 
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aging.  When these analyses are applied to human centenarians, however, difficulties 

inherent to study of the human become apparent.  These difficulties include long 

generation time, highly heterogeneous populations, limited availability of pedigree data, 

and poor experimental controls.  As a result, these studies have relied primarily on 

linkage analysis to reveal regions of the genome associated with exceptional longevity 

(Puca et al., 2001).  Specifically, linkage analysis revealed a marker on human 

chromosome 4 (HSA4) associated with familial longevity, albeit with limited statistical 

significance.  The investigations pertaining to human longevity have, to date, been 

somewhat removed from the work in model organisms, but evidence indicates that 

understanding gene function in the aging process may augment various efforts to 

improve the quality of life for aging populations and also provide insight pertaining to 

extension of life spans.  

Searching for susceptibility genes for multifactorial traits such as aging can prove 

to be quite problematic, and the criteria required for population dynamics, and ideal 

methodology by which to study them are still debatable (Freimer and Sabatti, 2004).  

Therefore, we propose the use of an alternative model to help unravel the genetic 

components of such complex traits as aging and longevity:  the dog.  Genetic isolates, 

represented by breeds, are well-suited for identifying susceptibility loci because strict 

registration guidelines reduce gene flow among breeds.  The result is highly 

independent, homogeneous population structures that make comparisons between 

populations, or breeds, genetically informative.  The breed structure of the dog is also 

useful because extensive pedigree information facilitates population-based genetic 
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studies.  Importantly, because medical surveillance of the dog is second only to that of 

the human (Wise et al., 2003), detailed medical records are also readily available.  

Furthermore, when the first sequence assembly of the canine genome was made 

available, it was revealed that the nucleotide sequence of the dog is more similar to the 

human than is the rapidly evolving murine nucleotide sequence (Kirkness et al., 2003).  

Lastly, in general, life expectancy of the dog is inversely correlated to body size (Li et 

al., 1996; Deeb and Wolf, 1994; Greer, unpublished) thereby facilitating naturally 

occurring marked variation in life expectancy across breeds (Patronek et al., 1997).  For 

example, a small breed such as the Chihuahua can be expected to live for as much as 15 

years while the Saint Bernard is only expected to live a maximum of ten years (Greer, 

unpublished).  This naturally extensive variation is an interesting component to the study 

of canine longevity as compared to the study of longevity in other mammals and access 

to many breeds, or genetically isolated populations, with different aging characteristics 

presents a unique opportunity to study the genetic components critical to aging.  

 

Materials and Methods 

Gene selection  

 The genes selected for this study were of two types: those previously linked to 

aging (Table 2), and those surrounding the marker D4S1564 (Table 3) on HSA4 (Puca et 

al., 2001).  The genes selected from HSA4 cover this region with an average space 

between markers of 0.66 Mb, with the largest gap being 2.41 Mb and the smallest being 

0.08 Mb.  The human genome sequence data were utilized to select genes that would 
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provide optimal coverage of the region in the canine genome that exhibits conservation 

of synteny with the human. 

 
 

Table 2: Genes previously associated with aging. 

Gene Human Location Association to Aging References 
ACE HSA17q23 Cardiovascular health Reviewed in Panza et al., 

2004; Blanche et al., 2000; 
Cambien et al., 1992 

ApoA4 HSA11q23 Cardiovascular health Reviewed in Panza et al., 
2004; Merched et al., 1998; 
Pepe et al., 1998 

ApoB HSA2p23-24 Cardiovascular health De Benedictis et al., 1998; 
De Benedictis et al., 1997 

APP HSA21q21.2 Oxidative stress response, 
neurodegeneration and AD 

Poon et al., 2004; Moechars 
et al., 1999 

ATM HSA11q22-23 DNA damage response, 
oxidative stress and 
Ataxia-telangiectasia 

Wong et al., 2003; 
Reviewed in Barzilai et al., 
2002 

Cyp2D6 HSA22q13.1 Cancer susceptibility Reviewed in Agundez, 
2004; Bathum, et al., 1998 

F5 HSA1q23 Risk factor for thrombosis Faure-Delanef et al., 1997; 
Mari et al., 1996 

FGB HSA4q28 Cardiovascular health and 
AD 

Reviewed in Panza et al., 
2004 

FGF2 HSA4q26-27 Cellular proliferation Cowan et al., 2003 
FoxM1B HSA12p13 Cellular proliferation and 

tissue repair 
Kalinina et al., 2003; 
Kalinichenko et al., 2003; 
Krupczak-Hollis et al., 
2003; Ly et al., 2000 

FoxO1A HSA13q14.1 Expression affected by CR Furuyama et al., 2002 
FoxO3 HSA6q21 Expression affected by CR, 

oxidative stress response 
Furuyama et al., 2002; 
Kops et al., 2002 

FoxO4 HSAXq13.1 Expression affected by CR, 
oxidative stress response 

van der Horst et al., 2004; 
Furuyama et al., 2002; 
Kops et al., 2002 

Note: Genes that have been previously associated to aging are listed here, along with 
their location in the human genome, the nature of the association with the aging process, 
and references.  AD represents as associated risk for Alzheimer’s disease, and CR 
denotes caloric restriction. 
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Table 2: Continued. 

Gene Human Location Association to Aging References 
IGF1R HSA15q25-26 Life span extension in 

mouse model and a human 
population 

Reviewed in Quarrie and 
Riabowol 2004; Bonafe et 
al., 2003; Reviewed in 
Liang et al., 2003 

Klotho HSA13q12 Decreased life span in 
mouse model 

Reviewed in Quarrie and 
Riabowol 2004 

LEP HSA7q31.3 Elevated levels in Snell 
dwarf mouse 

Flurkey et al., 2001 

Mthfr HSA1p36.3 Cardiovascular health and 
AD 

Reviewed in Panza et al., 
2004 

PAI1 HSA7q21.3-
q22 

Risk factor for thrombosis 
and AD, and increased 
expression in Klotho 
mouse 

Reviewed in Panza et al., 
2004; Takeshita et al., 
2002; Kohler and Grant 
2000 

PAI2 HSA18q21.3 Increased expression in 
senescent cells 

West et al., 1996 

PARP HSA1q41-42 DNA damage response Grube and Burkle, 1992 
Pik3C3 HSA18q12.3 Cellular proliferation and 

morphology 
Matuoka et al., 2003 

SHC1 HSA1q21 Oxidative stress response, 
and life span extension in 
mouse model 

Migliaccio et al., 1999; 
Reviewed in Liang et al., 
2003 

SIRT1 HSA1q21.3 Mediates affects of CR in 
mice 

Cohen et al., 2004 

SOD2 HSA6q25.3 Oxidative stress response Kokoszka et al., 2001 
UPA HSA10q24 Life span extension in 

mouse model 
Miskin and Masos, 1997 

Note: Genes that have been previously associated to aging are listed here, along with 
their location in the human genome, the nature of the association with the aging process, 
and references.  AD represents as associated risk for Alzheimer’s disease, and CR 
denotes caloric restriction. 
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Table 3: Genes on HSA4 

Gene  Human 
Location 

Canine 
Location 

Closest Markers LOD 
scores 

Distance (cR) 

SMARCAD1 95587588 – 
95670837 

CFA32 REN111K07 
D03908 

15.09 
14.64 

23.6 
24.2 

BmpR1B 96255375 – 
96534470 

CFA32 BAC_374-A17 
REN111K07 

19.64 
17.58  

8.4 
13.9 

COX7A3 98282346 – 
98282666 

CFA24 REN127K17  
FH3616  

23.67  
23.18  

2.6 
2.7 

RAP1GDS1 99641014 – 
99822211 

CFA10 CFOR16F03 
BAC_376-O17 

22.34  
20.88 

14.8 
17.0  

EIF4E 100259413 – 
100308675 

CFA28 FH2758 
BAC_286-F23  

15.42 
14.54 

23.0 
24.2 

ADH7 100791876 – 
100814884 

CFA8 BAC_381-F17 
BAC_375-I4  

14.97  
14.90 

18.5 
18.6 

MTP 100954375 – 
101003020 

CFA32 BAC_385-E11 
BAC_375-A15 

20.10  
19.54  

8.1 
8.3 

DAPP1 101196384 – 
101249705 

CFA32 BAC_385-E11 
BAC_375-A15 

18.11 
16.64  

13.5 
16.7 

H2AZ 101327636 – 
101329827 

CFA2 AHTH255REN 
EST29B7  

17.78 
16.62  

6.8 
10.2 

PPP3CA 102402981 – 
102726747 

CFA32 BAC_375-A15 
EST26A4-T  

23.77 
22.20 

2.6 
2.8 

BANK1 103170290 – 
103454289 

CFA32 BAC_375-A15 
BAC_286-J13  

10.74 
10.67  

31.4 
31.3 

NfkB1 103880889 – 
103996878 

CFA32 FH4036 
BAC_417-L8  

15.55 
15.47 

17.6 
17.9 

CENPE 104486024 – 
104578386 

CFA32 BAC_417-L8  
BAC_286-A17 

17.78 
17.78 

11.7 
11.7 

TACR3 104969445 – 
105099793 

CFA32 BAC_286-A17 
BAC_286-B11 

18.97 
18.51 

8.7 
11.2  

IDAX 105852150 – 
105871287 

CFA32 BAC_417-L8 
BAC_286-A17 

16.12  
16.12 

13.0 
13.0  

KIAA 106622881 – 
106659778 

CFA32 BAC_417-L8 
BAC_286-A17 

21.68  
21.68  

2.9 
2.9 

SCYE1 107696548 – 
107727738 

CFA32 BAC_286-A17 
BAC_417-L8  

19.68 
17.81  

6.1 
9.3 

DKK2 108301779 – 
108417296 

CFA32 BAC_417-L8 
REN187G01  

21.68  
20.38 

2.9 
5.8 

Note: Genes located on HSA4 surrounding marker D4S1564, their location on the 
Human Chromosome in megabases, the 2 closest markers, their respective Lod score 
values, their distance between the 2 markers and their CFA location are shown here.   
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Table 3: Continued. 

Gene  Human 
Location 

Canine 
Location 

Closest Markers LOD 
scores 

Distance (cR) 

D4S1564 108734149 - 108734386 
PAPSS1 108993642 – 

109100192 
CFA32 BAC_417-L8 

BAC_286-A17 
14.85 
13.36    

22.0 
27.8 

LEF1 109427521 – 
109548398 

CFA29 BAC_381-H1 
BAC_375-M13 

13.20 
13.07 

34.3 
34.3 

RPL34 110000543 – 
110010388 

CFA32 REN286D15 
BAC_417-L8  

22.47 
18.96 

5.1 
8.6  

Col25A1 110203861 – 
110682619 

CFA32 EST12D6 
BAC_417-L8  

16.29 
12.10 

9.9 
21.7 

CASP6 111068858 – 
111083397 

CFA32 REN286D15 
BAC_417-L8  

16.82 
15.48 

16.1 
17.5 

EGF 111292870 – 
111392239 

CFA32 EST12D6 
REN286D15  

21.58 
18.43 

5.4 
13.2 

PitX2 111997399 – 
112017328 

CFA3 REN296H17 
BAC_285-F22  

11.77  
10.40 

23.1 
30.5 

ANK2 114429690 – 
114762088 

CFA32 BAC_382-G18 
BAC_416-D12 

16.68 
15.61 

24.0 
26.6 

UGT8 115978730 – 
116056306 

CFA32 BAC_382-G18 
BAC_416-D12 

28.56  
25.43 

3.8 
7.8   

NDST4 116207739 – 
116493852 

CFA32 BAC_382-G1 
BAC_374-E3  

23.96 
17.75 

8.3 
21.2 

Note: Genes located on HSA4 surrounding marker D4S1564, their location on the 
Human Chromosome in megabases, the 2 closest markers, their respective Lod score 
values, their distance between the 2 markers and their CFA location are shown here.   
 
 
 
Primer design and gene amplification 

 Sequences from numerous organisms, including human, mouse and dog were 

downloaded into Microsoft Word from NCBI, Ensemble!, and DDBJ.  If hamster 

sequence was available, it was downloaded for comparison as well.  Most of the canine 

sequences were retrieved from the canine genome sequence database 

(http://www.ncbi.nlm.nih.gov/genome/seq/CfaBlast.html); however, if canine sequence 

was not available, bovine and/or porcine sequences were substituted.  All sequences 
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were aligned with one another, utilizing ClustalW (http://www.ebi.ac.uk/clustalw/ 

index.html), to determine base similarities and differences.  Primers were designed 

within conserved sequence regions for canine specific annealing.  Parameters for primer 

selection were set between 18 and 22 bp in length, with nearly 50% GC content, and Tm 

close to 58°C, yielding products from 150 bp to 1000 bp in length.  Primers were 

synthesized by IDT (Coralville, IA) and Sigma Genosys (The Woodlands, TX) using 

standard parameters and were purified using standard protocols.  Polymerase chain 

reaction (PCR) mixtures consisted of 10µl volumes containing: 1.5mM MgCl2, 0.2mM 

each dNTP, 1.0µM each primer, 1 Unit Jumpstart Red Taq (Sigma-Aldrich, St. Louis, 

MO), and 50 ng genomic DNA.  Prior to genotyping on the RHDF5000 radiation hybrid 

panel (as provided from Universite de Rennes1), conditions were optimized for mapping 

on dog-hamster radiation hybrid cell lines, and each primer pair was simultaneously 

amplified on canine genomic DNA from the MDCK cell line, on hamster genomic DNA 

(originating from the A2H cell line), and on a mixture consisting of both dog and 

hamster DNA (ratio 1:2).  Reaction mixtures were subjected to an initial denaturation at 

94°C for 1.0 minute, followed by 35 cycles of 94°C for 30 seconds, 58°C for 30 seconds, 

72°C for 30 seconds, and a final extension at 72°C for 10 minutes.  PCR amplicons were 

resolved on a 2% agarose gel (200ng/ml EtBr) and subsequently visualized by exposure 

to UV light.  In the event of non-specific amplification, annealing temperatures were 

increased if there were multiple products from canine DNA, and if hamster DNA was 

amplified.  Decreased annealing temperatures were used if amplification from canine 

DNA resulted in faint or nonexistent amplification products.  Primer pairs yielding 
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spurious bands were rejected.  Upon completion of the aforementioned optimization, all 

genes were specifically amplified at annealing temperatures ranging from 56° C to 68° 

C.  Subsequently, only primer pairs amplifying a canine-specific fragment from genomic 

DNA were used to screen the RH panel in duplicate.  

Gene sequencing 

The identity of amplicons was confirmed by sequencing.  Sequencing was 

carried out on 50ng template with Big Dye Terminator (Applied Biosystems, 

Warrington, UK) and separated on an ABI 377 automated sequencer (Applied 

Biosystems, Warrington, UK).  For each of the 54 genes, sequences were analyzed using 

BLASTn (http://www.ncbi.nlm.nih.gov/blast/).  Those sequences with >98% homology 

to the orthologous genes of the human, mouse, rat, cow, or pig were accepted.  If 

homology of amplicons was <98%, canine-specific primers were re-designed and 

specific products re-sequenced before acceptance of primers for use in RH mapping 

experiments. 

RH mapping 

 Typing on the canine radiation hybrid panel, RHDF5000-2 which consists of 118 

hybrid cell lines, was completed by PCR on each cell line for every marker.  The RH 

panel was screened in at least duplicate under the experimentally determined optimal 

conditions and results were scored manually.  The RH vectors corresponding to the 54 

genes markers studied here were computed using the two-point analysis of the 

rh_tsp_map2.0 package (Agarwala et al., 2000), on the 4249-marker version of the RH 

map (Breen et al., 2004). 
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Results 

 The 54 aforementioned genes were typed on the RHDF5000 panel (Vignaux et 

al., 1999), and resulting vectors were integrated through pairwise analysis to the 4249-

marker RH map (Breen et al., 2004).  This analysis revealed the closest markers and 

their distances from the new marker by calculating LOD scores.  LOD scores greater 

than 6 indicate significant linkage between the 2 markers, and these values reflect the 

distance between the markers in such a way that higher LOD scores imply a decreased 

physical distance between markers, with 1 centiRay (cR) corresponding to 150 Kb.  Of 

the 54 genes mapped in this study, the chromosomal locations of 45 genes correlated 

with known regions in which there is conservation of synteny between the canine and 

human genomes (Guyon et al., 2003), while 9 genes did not correlate in this manner.   

Twenty-six genes previously shown to be associated with aging in other 

organisms (Table 2) were examined, with results listed in Table 4.  The majority of these 

genes mapped to predicted canine chromosomal regions based on previous comparative 

analyses between the dog and human (Guyon et al., 2003); however, two genes, FGF2 

and SOD2, mapped to CFA08 and CFA19 respectively, and a BLAST search revealed 

paralogs at these locations.  Two others, ACE (CFA9) and APP (CFA31), mapped to 

locations consistent with those indicated by previous work (Breen et al., 2004).  
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Table 4: Mapping results. 

Gene  Human Location Canine 
Location 

Closest 
Markers 

LOD scores Distance (cR) 

ACE HAS17q23 CFA9 ACE 
BAC_133-B8 

28.50 
25.02 

2.1 
6.3 

ApoA4 HAS11q23 CFA5 BAC_381-P23 
REN114G01 

12.52 
11.77 

22.1 
23.1 

ApoB HAS2p23-24 CFA17 FH1003 
EST24F7 

21.28 
19.84 

3.0 
6.0 

APP HAS21q21.2 CFA31 BAC_380-F20 
APP 

24.96 
22.32 

4.5 
9.0 

ATM HAS11q22-23 CFA5 BAC_286-H12 
BAC_417-J2 

14.60 
12.73 

8.6 
13.6 

Cyp2D6 HAS22q13.1 CFA10 BAC_376-G15 
BAC_417-N14 

11.84 
11.76 

30.9 
30.8 

F5 HSA1q23 CFA7 BAC_374-C17 
BAC_381-B6 

14.67 
14.00 

16.8 
17.6 

FGB HSA4q28 CFA15 FGA 
BAC_382-E15 

17.44 
17.02 

11.8 
14.3 

FGF2 HSA4q26-27 CFA8 BAC_374-K1 
REN68M10 

7.20 
6.45 

60.0 
66.0 

FoxM1B HSA12p13 CFA27 BAC_372-K5  
REN100M16 

9.56 
9.30 

49.8 
50.7 

FoxO1A HSA13q14.1 CFA25 BAC_283-C1 
REN54E19 

22.27 
19.60 

14.8 
20.7 

FoxO3 HSA6q21 CFA12 C12.406 
BAC_382-G21 

26.38 
24.77 

2.3 
4.6 

FoxO4 HSAXq13.1 CFA39 EST15G11 
D04614 

11.11 
10.32 

24.4 
28.5 

Ghrhr HSA7p14 CFA14 BAC_283-G12 
BAC_382-E7 

16.55 
13.94 

10.2 
17.7 

IGF1R HSA15q25-26 CFA03 FH2984 
FH2320 

18.45 
16.38 

8.8 
12.2 

Klotho HSA13q12 CFA25 REN103F16 
BAC_282-I08 

20.16 
16.14 

16.5 
25.9 

Notes: Genes that have been previously associated to aging and their location in the dog 
as determined by RH mapping are listed here, along with the 2 closest markers, their 
respective Lod score values, their distance between the 2 markers and their CFA.  For 
example, ACE was already mapped on the RH map on CFA9, so the closest marker is of 
course ACE, with a very strong Lod score value (28.5) and a very small distance (2.1 
cR).  
 

 

 



 

 

45  

Table 4: Continued. 

LEP HSA7q31.3 CFA14 EST5C4 
BAC_372-E16 

21.15 
19.59 

9.6 
12.3 

Mthfr HSA1p36.3 CFA2 NPPA 
EST18D6 

20.47 
19.82 

5.7 
8.4 

PAI1 HSA7q21.3-q22 CFA6 BAC_382-E21 
BAC_372-O10 

18.60 
15.99 

16.2 
22.0 

PAI2 HSA18q21.3 CFA1 FH3603 
AHTK338 

24.36 
22.16 

6.5 
9.1 

PARP HSA1q41-42 CFA14 BAC_373-A17 
EST19E2 

13.76 
12.90 

20.2 
25.5 

Pik3C3 HSA18q12.3 CFA7 BAC_281-F22 
BAC_286-G18 

8.93 
8.34 

38.4 
40.5 

SHC1 HSA1q21 CFA7 EST7B12 
PKLR 

16.73 
14.60 

4.1 
8.6 

SIRT1 HSA10q21.3 CFA4 BAC_374-G23 
AHT120 

17.75 
17.25 

15.6 
16.1 

SOD2 HSA6q25.3 CFA19 REN306J16 
BAC_375-F15 

18.60 
18.20 

11.0 
13.3 

UPA HSA10q24 CFA4 BAC_381-B21 
BAC_375-G11 

13.39 
13.39 

15.8 
15.8 

Notes: Genes that have been previously associated to aging and their location in the dog 
as determined by RH mapping are listed here, along with the 2 closest markers, their 
respective Lod score values, their distance between the 2 markers and their CFA.  For 
example, ACE was already mapped on the RH map on CFA9, so the closest marker is of 
course ACE, with a very strong Lod score value (28.5) and a very small distance (2.1 
cR).  
 
 
 

Genes with orthologs on HSA4 are listed together in Table 3.  These genes were 

expected to map to CFA32 based on previous work (Guyon et al., 2003).  Of the 28 

genes selected for analysis, 21 mapped to CFA32 with an apparent conservation of order 

between the dog and human (Breen et al., 2004).  Seven markers expected to be found 

on CFA32 mapped to other chromosomes.  These are COX7A3, RAP1GDS1, EIF4E, 

ADH7, H2AZ, LEF1, and PitX2, and were mapped to CFA24, CFA10, CFA28, CFA08, 

CFA02, CFA29, and CFA03, respectively.  As was the case for FGF2 and SOD2, most 
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of the locations that in fact are incorrect were designated so due to the presence of 

paralogs, or in the case of COX7A3, a pseudogene. 

 

Discussion  

The genes selected for mapping are believed to play roles in aging and longevity.  

Of the 54 genes investigated, 28 were selected for their proximity to a marker on HSA4 

(Table 3) shown to increase the ability of centenarians’ siblings to reach extreme old age 

(Puca et al., 2001).  The remaining 26 genes were chosen based on previous associations 

with aging and/or the aging process (Table 2).  Genes with similar association, but 

excluded from this investigation due to the fact that they have been previously mapped 

in the dog are F7, FGA, FGG, Pit1, and Prop1.  In those studies, these genes were 

localized to the following chromosomes: CFA22, CFA15, CFA15, CFA31, and CFA11 

(Guyon et al., 2003).  The positions of two previously mapped genes, ACE (CFA9) and 

APP (CFA31), were verified by this work. 

 ApoE (HSA19q3.2; CFA01) is a gene of particular interest because it has been 

associated with human aging, and allelic variation has been identified as a risk factor for 

diseases accompanying the aging process (Blanche et al., 2000; Gerdes et al., 2000; Jian-

Gang et al., 1998; Schachter et al., 1994).  Despite multiple attempts, however, we were 

not able to design canine-specific primers to amplify this gene.  Further scrutiny of the 

canine ortholog of ApoE is warranted, however, due to its association to longevity in the 

human.    
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Of the 26 genes that had been associated with aging in other organisms, two 

mapped to unexpected regions of the canine genome.  Specifically, FGF2, which lies 

near the evolutionary breakpoint of HSA4 (a region which maps to CFA32 and CFA19; 

(http://www-recomgen.univ-rennes1.fr/doggy.html) instead mapped to CFA08, which 

corresponds to HSA14 (Guyon et al., 2003).  SOD2, predicted to be on CFA01, mapped 

to CFA19, in a region that has conservation of synteny with HSA2q21.1 (Guyon et al., 

2003).  The recent availability of the canine genome sequence has provided a method by 

which to verify these unexpected results and BLAST against the canine genome 

sequence implicated that paralogs of FGF2 and SOD2 were the cause of these results.  

The presence of these gene paralogs is believed to be a relatively frequent gene 

duplication event in evolution that, in turn, leads to the formation of gene families 

(Lynch and Conery, 2000).  These paralogs can also decrease the accuracy with which 

orthologs are determined (Nembaware et al., 2002).  Numerous gene paralogs that affect 

the aging process (Rikke et al., 2000) have been found in C. elegans.  Therefore, 

although these gene paralogs were mapped inadvertently, the data may be pertinent to 

future studies of aging in the dog.    

 The region of HSA4 that has been associated with the ability to reach extreme 

old age (Puca et al., 2001) is a region of the genome that has been conserved, and 

corresponds to CFA32.  Although gene order appears to have been conserved, there are 

several genes for which specific order could not be resolved in this study.  MTP and 

DAPP1 both map between the markers BAC_385-E11 and BAC_375-A15.  Mapping to 

an identical location are the genes PPP3CA and BANK1, which co-localize with 
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BAC_286-J13 and EST26A4-T.  Several genes, CENPE, IDAX, KIAA, SCYE1, and 

PAPSS1 co-localize and map to a region that also houses the markers BAC_286-A17 

and BAC_417-L8.  Three genes that map to a similar region of CFA32, with exact order 

undetectable, are RPL34, COL25A1, and CASP6.  ANK2 and UGT8 also co-localize 

between BAC_416-D12 and BAC_382-G18.  Although exact order of some of the genes 

selected from HSA4 could not be detected using two-point analysis, it appears that 

overall gene order is conserved between the dog and human.  

The genes COX7A3, RAP1GDS1, EIF4E, ADH7, H2AZ, LEF1 and PitX2, on 

HSA4, were expected to be on CFA32 (Guyon et al. 2003), but instead mapped to 

CFA24, CFA10, CFA28, CFA08, CFA02, CFA29, and CFA03, respectively.  The 

regions of these chromosomes correlate to HSA20p13, HSA12q13.2, HSA10q23, 

HSA14, HSA1p36.13, HSA8, and HSA15q26, respectively (Guyon et al., 2003).  Due to 

these unexpected results, the sequences used in designing primers for these markers were 

subjected to a BLAST search of the canine genome.  It was discovered that most of these 

genes (RAP1GDS1, EIF4E, H2AZ, and LEF1) have been localized to these unexpected 

regions due to the presence of gene paralogs at the aforementioned canine locations.  

The mapping of COX7A3 to CFA24 was most likely the result of identification of 

COX6CP2 which is in the corresponding region of the human genome.  This hypothesis 

is supported by the fact that COX7A3 is now known as COX7AP2, a pseudogene, which 

would have a decreased expected homology with canine sequence.  Upon BLAST 

analysis of ADH7 and PitX2, homology was found only to CFA32 as would be expected; 
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therefore the unexpected locations of the genes ADH7 and PitX2 cannot be explained as 

easily as the other genes. 

 Through this investigation, 52 new gene based markers have been added to the 

existing canine genome map (Breen et al., 2004) and the location of two gene based 

markers was verified.   In total, genes believed to be involved in aging were localized to 

19 of the 38 canine autosomes, as well as to the X chromosome.   This effort has 

advanced the map of the dog as it applies to future studies pertaining to the genetics of 

aging and longevity.   Indeed, all 52 mapped genes are positioned close to polymorphic 

markers in the latest RH map, at a minimum distance of less than 2 Mb, representing an 

important resource for genetic linkage studies or even genetic association studies 

because SNP markers will be soon available.   Current experiments are focused on 

identification of SNPs in a subset of these genes using specific breeds that have marked 

differences in life spans, in order to better understand the inverse relationship between 

size and longevity.   Identification of genes that govern aging in the dog may be of 

interest in studies of other organisms to determine the extent of evolutionary 

conservation of these mechanisms of aging.   Utilization of the dog as a model organism 

for investigations into the aging process will provide additional information concerning 

the pathways that influence aging in mammals, and may therefore be of particular 

interest to those interested in human aging.    
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CHAPTER IV 

ANALYSIS OF Pit1, Prop1, Ghrhr, AND Ghr IN NINE DOG BREEDS WITH 

VARYING LIFE EXPECTANCIES 

 

Overview 

 As average life expectancy of humans increases, the importance of research to 

determine the mechanisms of aging also increases.  It is believed that there are many 

genes involved in aging, a trait with an estimated heritability of up to 30%.  While many 

model organisms exist, the dog provides a unique opportunity to study a mammal with a 

naturally diverse life expectancy that is inversely correlated to its size.  This 

phenomenon is also seen in four strains of inbred mice with mutations in the genes Pit1, 

Prop1, Ghrhr and Ghr.  We have analyzed the sequence of these genes in nine dog 

breeds with varying life expectancies.  A total of 53 polymorphisms were identified. Of 

these, seven were located in coding regions of Ghr and Ghrhr and yielded statistically 

significant p-values upon analysis with Fisher’s exact test. 

 

Introduction 

Average life expectancy for humans has steadily increased each year in the 

United States, from less than 50 at the turn of the twentieth century to an estimate of 

nearly 80 for 2006.  Therefore, a better understanding of the aging process will be highly 

beneficial to our society in the very near future.  The importance of studies pertaining to 

aging is especially critical now because the largest increase in population is expected for 
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those over the age of 85 years, closely followed by those aged 65 and older.  As the 

population of aged individuals grows, and life expectancy is increased, better 

understanding of aging is crucial to postponing the onset of, and developing more 

effective treatments for, aging-associated diseases (National Institute on Aging, 2005). 

It has been strongly suggested that genetic factors contribute to longevity, and 

heritability of average life expectancy has been estimated to be as high as 30% 

(Ljungquist et al., 1998).  Identification of genes that govern aging, and elucidating how 

these genes function may enable progress to be made not only in the extension of life 

span but also in improving the quality of life of aged individuals.  The genetics of 

several organisms such as the nematode, fruit fly, mouse and human have been 

scrutinized by scientists interested in genes that play significant roles in aging and 

longevity. 

 Identification of genes that affect human longevity has been challenging for 

several reasons; two of which are long life expectancy, and highly heterogeneous 

populations.  For these reasons, many genes that are associated with excessive old age in 

one population may not necessarily be so correlated with another population (Benedictis, 

et al., 2000), and more genes that are deleterious, as opposed to genes that extend human 

life span, have been discovered (reviewed in Lao et al., 2005).  Numerous genes that 

play roles in multiple activities, such as lipoprotein metabolism, cardiovascular health, 

oxidative stress, cancer susceptibility, coagulation, and chromatin structure have been 

linked to varied life spans in multiple populations (Benedictis, et al., 2000; Heijmans, et 

al., 2000).  Linkage analysis of siblings of centenarians identified a locus on 
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chromosome 4 near the microsatellite marker D4S1564 that affects the ability to attain 

exceptional old age (Puca, et al., 2001).  While results from studies of human 

populations are directly applicable, there are numerous drawbacks as well, such as long 

life span, poor experimental controls and lack of extensive pedigree information.  Due to 

these drawbacks, another model organism for investigations into the aging process could 

provide valuable insight into genes that play important roles in aging and longevity. 

While the dog is not a well established model of aging, some preliminary data 

have been gathered.  Cellular proliferative capacity was shown to be inversely related to 

breed size by Li and colleagues (1996).  Investigations based upon information 

contained within the veterinary medical database (VMDB) revealed that larger breeds 

have truncated life spans when compared to smaller breeds (Deeb and Wolf, 1994; 

Patronek, et al., 1997).  Recently, this inverse correlation between size and longevity has 

been confirmed in the American pet population (Greer et al., in press).  Interestingly, 

cross breed dogs do not live longer than their pure breed counterparts, therefore these do 

not exhibit hybrid vigor as one might expect (Bronson, 1982).  Diet restriction in 

Labrador Retrievers increased median life span by nearly two years (Kealy et al., 2002).  

Additionally, telomere shortening has been observed in canine fibroblasts in vitro, and 

differences in telomere lengths between different breeds have also been reported 

(McKevitt et al., 2002).  In a study utilizing pet insurance databases, researchers 

determined that dogs belonging to different breeds age at different rates (Egenvall et al., 

2005).  Therefore, the dog presents a unique opportunity to study aging in an organism 

that naturally exhibits a wide range of life expectancy. 
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Historically, the dog has served as an effective model organism for many 

investigations of hereditary diseases.  Approximately half of the more than 450 inherited 

disorders in the dog are also present in human populations (OMIA 2006; Ostrander and 

Giniger 1997).  While individuals within highly inbred populations, or breeds, are highly 

homogeneous, there is sufficient heterogeneity between individuals from different 

breeds to be informative in genetic studies (Parker et al., 2004).  Importantly, the canine 

genome was recently sequenced (Lindblad-Toh et al., 2005) and this  revealed that the 

dog has a much higher level of sequence identity to the human than does the mouse 

(Jiang et al., 2005). 

In addition to the inherent genetic advantages the dog has as a model, the well 

established relationship of man and his best friend provides researchers with invaluable 

information as well.  Extensive pedigree information is readily available through owner 

records.  It is often easy to get samples from the pet population through owner 

cooperation.  These dogs share a common environment with human owners, providing 

an automatic control for environmental exposures and alleviating concerns for the 

welfare of the animals involved in research and for genetic drift commonly observed in 

caged animals.  Finally, it is critical to note that the dog enjoys medical surveillance 

second only to the human (Wise et al., 2003). Therefore, the clinical hallmarks of the 

aging process in the dog are well characterized.   

We have taken advantage of this unique opportunity to study natural variation in 

life span within a single species to help determine the genetic components of aging.  The 

inverse correlation between size and life expectancy that occurs naturally in the dog is 
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similar to what has been observed in four strains of dwarf mice with extended life spans.  

Ames mice are defective in Prop1 and Snell dwarf mice harbor mutations in the Pit1 

gene; both strains are defective in pituitary development, are one-third normal size and 

exhibit 40-50% extension in life expectancy (reviewed in Quarrie and Riabowol, 2004).  

Mice which have mutations in Ghrhr, known as Little mice, are one-half the size and 

live approximately 25% longer than wild-type (reviewed in Quarrie and Riabowol, 

2004).  Also at one-half normal size are Laron mice, which are ghr-knockouts and have 

up to a 55% increase in life span (reviewed in Quarrie and Riabowol, 2004).  The genes 

involved in Little and Laron mice play roles in the insulin-signaling pathway (reviewed 

in Quarrie and Riabowol, 2004; reviewed in Warner, 2003).   

Because there is an inverse correlation between size and life span in these strains 

of mice, we chose to analyze the sequences of Pit1, Prop1, Ghrhr, and Ghr in nine dog 

breeds in search of single nucleotide polymorphisms (SNPs).  Breeds to be included in 

this analysis were selected based on previous regression analysis of the pet population 

(Greer et al., in press).  Utilizing this information, three breeds were chosen from each of 

three size categories, small, medium and large.  Breeds were selected such that one breed 

would have a shorter than predicted life expectancy, one breed would have a life 

expectancy similar to that predicted by the linear regression information, and one breed 

would have a longer than predicted life expectancy.  The breeds selected for SNP 

analysis in were the Pomeranian, Dachshund, Miniature Schnauzer, Basset Hound, 

Staffordshire Bull Terrier, Standard Schnauzer, Bloodhound, Great Pyrenees and Giant 

Schnauzer.  In summary, the four selected genes were investigated in nine carefully 
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selected breeds to determine potential genetic variation that may be contributing to 

variation in life span of the dog.   

 

Materials and Methods 

Breed selection 

Breed selection for this investigation was based on the relationship between size 

and life expectancy in the domestic dog (Greer et al., in press).  Based on this analysis, 

the inverse correlation between size and longevity can be represented by the equation y 

= 14.016 + (0.0180 * xH) - (0.0400 * xW).  The heights and weights for dog breeds from 

the American Kennel Club (AKC) (as reported by breed clubs and AKC standards) were 

entered into this formula.  These breeds were then divided into three categories based on 

their size as reported by breed clubs or AKC standards.  Breeds less than 7 kilograms or 

36 centimeters in height (as measured at the withers) were placed in the small category.  

The medium category consisted of breeds weighing in at 7 to 27 kilograms or being 36 

to 60 centimeters in height.  Breeds were classified as large if they weighed more than 

27 kilograms or measured more than 60 centimeters at the withers. The output from the 

above equation was compared to the reported life expectancies of breeds, and utilizing 

this information, three breeds were chosen from each size category, one breed having a 

shorter than predicted life expectancy, one breed having a life expectancy similar to that 

predicted by the linear regression equation, and one breed having a longer than predicted 

life expectancy.  The breeds selected in the small breed category were the Pomeranian, 

Dachshund and Miniature Schnauzer.  Breeds included in this study from the medium 
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size category were the Basset Hound, Staffordshire Bull Terrier and Standard Schnauzer.  

Large breeds selected for analysis were the Bloodhound, Great Pyrenees and Giant 

Schnauzer.  These breeds in each size class exhibit shorter than expected, expected and 

longer than expected life spans, respectively.  The three Schnauzer breeds were included 

due to the fact that they exhibit similar life expectancies and have been derived from the 

same base population.  

Sample collection   

DNA samples were obtained from dogs in the pet population.  Participation was 

solicited at dog shows, through direct contact with owners and breeders, and through 

publication in newsletters of multiple breed clubs and the Canine Health Foundation.  

Cytology brushes were used to collect buccal cells from dogs included in this 

investigation.  Additionally, owners completed detailed questionnaires which included 

the dog’s name, date of birth, sex, registration number, height and weight.  The data 

from the questionnaires were entered into a database for future reference and DNA was 

extracted using standard protocols.  In order to select the most informative samples to 

use in this study, pedigree information was acquired from the AKC databases based on 

information provided by owners.  Pedigrees were analyzed to select ten unrelated dogs 

each from the chosen nine breeds.  Dogs were considered unrelated if they shared no 

common grandparents (Parker et al., 2004) and were subsequently used for identifying 

SNPs. 
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Sequencing 

Canine sequences for Ghr and Pit1 mRNA were downloaded from Ensemble! 

Genome Browser (http://www.ensembl.org/index.html).  Canine mRNA sequence for 

Prop1 was retrieved from Entrez Gene (http://www.ncbi.nlm.nih.gov/entrez/query 

.fcgi?db=gene).  Canine mRNA sequence was unavailable for Ghrhr; consequently, 

human mRNA sequences were downloaded instead.  These sequences were used to 

conduct a BLAST search of the dog genome (http://www.ncbi.nlm.nih.gov/genome 

/seq/BlastGen/BlastGen.cgi?taxid=9615) which resulted in identification of the genomic 

sequence for each gene.   One genomic contig with significant alignment to the human 

Ghrhr sequence was revealed.  This contig represents a region of canine chromosome 14 

that corresponds to the location of Ghrhr, as determined by radiation hybrid mapping 

(Canterberry et al., 2005).  The following gene segments were selected for sequence 

analysis: 1000 base pairs (bp) upstream and downstream, all exons, and 100bp flanking 

each exon.  Genomic sequence files and genomic DNA from the aforementioned ninety 

dogs were sent to Polymorphic DNA Technologies, Inc. (Alameda, CA) for re-

sequencing. 

Sequence analysis 

Chromatogram files were provided by Polymorphic DNA Technologies, Inc. 

(Alameda, CA).  These files were subjected to analysis utilizing Phred/Phrap/Consed 

software.  Phred was used to call bases and assign quality values to each. Phrap 

assembled and aligned the reads into contigs.  After running Phred and Phrap, Polyphred 

analysis was used to identify potential polymorphisms.  Consed was then used to view 
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the sequence data and all potential polymorphisms were manually verified and the 

genotype of each dog was noted.  Genotypes were entered into a database for each dog, 

and allelic frequencies were calculated for each breed as well as for this entire 

population.   

SNP comparison 

SNPs with overall allelic frequencies of 10% or greater were further analyzed 

using the Fisher’s exact test (http://www.unc.edu/~preacher/fisher/fisher.htm).  SNPs 

with allelic frequencies less than 10% were excluded from further scrutiny because 

alleles with such low frequencies are unlikely to be associated with a given phenotype.  

Comparisons were made between dogs classified as small, medium and large breeds and 

between dogs classified as having a longer life expectancy, an average life expectancy 

and shorter than predicted life expectancy.  Observed differences were considered 

statistically significant when p ≤ 0.0001.  

 

Results 

 SNPs were identified in each of the genes as follows: seventeen SNPs were 

discovered in GHR, twenty-six were found in Ghrhr, five in Prop1, and twenty-five 

SNPs were identified in Pit1.  Of these 53, those with an overall allelic frequency of at 

least 10% were selected for further analysis.  These 31 polymorphisms were analyzed 

using the Fisher’s exact test.   

Fisher’s exact test revealed that five polymorphisms in Ghr are in linkage 

disequilibrium (LD) in these dog breeds (Table 5).  Two of these were in the coding 
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sequence.  The first is located in exon 5, base 132, and results in a glutamic acid to 

lysine change in the amino acid sequence. This polymorphism is in linkage 

disequilibrium when small breeds are compared to both large and medium breeds, but 

not when large and medium breeds are compared.  The second polymorphism within the 

coding region of Ghr that is in LD is in exon 9 at base position 887.  This polymorphism 

is silent, however, and does not result in a change in amino acid sequence.  Canine 

codon usage tables (http://mendel.berkeley.edu/dog/dogcod.html) also indicate that this 

mutation would have no effect on synthesis of appropriate quantities of the protein.  The 

remaining three polymorphisms are in non-coding regions and are not within known 

promoter regions or regions that are highly conserved between species.  Two of these are 

located 607 and 142 bases upstream from exon 1 which are statistically significant only 

when long lived dogs are compared to dogs with similar to predicted life expectancies.  

Finally, a SNP 79 bases upstream from exon 6 is significant when small breed dogs are 

compared to both large and medium breeds, but not when large and medium breeds are 

compared. 
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Table 5: P-values for Ghr polymorphisms. 
Locus Long LE vs. 

Average LE 
Average LE 
vs. Short LE 

Long Le vs. 
Short LE 

Small vs. 
Medium 

Medium 
vs. Large 

Small vs. 
Large 

Exon 1  
Base -607 

 

p = 0.000035 

 
p = 0.0034 

 
p = 0.13 

 
p = 0.056 

 
p = 0.0023 

 
p = 0.15 

Exon 1  
Base -250 

 
p = 0.16 

 
p = 0.001 

 
p = 0.031 

 
p = 0.102 

 
p = 0.50 

 
p = 0.63 

Exon 1 
Base -142 

 

p = 0.000047 

 
p = 0.0041 

 
p = 0.13 

 
p = 0.14 

 
p =0.0055  

 
p = 0.11 

Exon 4 
Base -63 

 
p = 0.058 

 
p = 0.64 

 
p = 0.049 

 
p = 0.52 

 
p = 0.0055 

 
p = 0.003 

Exon 5 
Base 132 

 
p = 0.28 

 
p = 0.13 

 
p = 0.028 

 

p < 1x10
-8
 

 
p = 0.027 

 

p < 1x10
-8
 

Exon 6 
Base -79 

 
p = 0.34 

 
p = 0.60 

 
p = 0.35 

 

p < 1x10
-8 

 
p = 0.068 

 

p = 3.7x10
-6 

Exon 9 
Base 887 

 
p = 0.35 

 
p = 0.28 

 
p = 0.13 

 

p < 1x10
-8 

 
p = 0.35 

 

p < 1x10
-8 

Note: Fisher’s exact test p-values for polymorphisms with allelic frequencies of at least 
10% in Ghr are recorded here.  Bold numbers indicate statistically significant p-values. 
 
 
 

In Ghrhr, seven polymorphisms were discovered that were in LD (Table 6), five 

of which were located within the coding sequence.  Three of these, however, did not 

change the amino acid sequence and canine codon usage tables indicated that these 

polymorphisms would not likely affect protein synthesis by changing the codon to one of 

rare use in the dog.  The SNP in exon 2 of Ghrhr results in the amino acid alanine being 

replaced with valine and allele frequencies are statistically different when large dogs are 

compared to small and medium sized breeds, but not when small and medium breeds are 

compared.  A SNP in exon 4 at base position 70 replaces valine with methionine.  These 

alleles are in LD only when medium breeds are compared to large breeds, however.  The 

two remaining SNPs are in the non-coding region 6 bases upstream of exon 2, in LD 

when small and medium sized breeds are compared to large dogs, and 53 bases 

downstream of exon 10, significant only when medium sized breeds are compared to 
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large dogs.  These are not located within known promoter regions or within regions that 

are highly conserved between species. 

 
 

Table 6: P-values for Ghrhr polymorphisms. 
Polymorphism Long LE vs. 

Average LE 
Average LE 
vs. Short 
LE 

Long Le vs. 
Short LE 

Small vs. 
Medium 

Medium vs. 
Large 

Small vs. 
Large 

Exon 2 
Base -6 

 
p = 0.22 

 
p = 0.077 

 
p = 0.0084 

 
p = 0.0021 

 

p = 0.000027 

 

p = 8.9x10
-6
 

Exon 2 
Base 8 

 
p = 0.00035 

 

p = 4.8x10
-6
 

 
p = 0.24 

 
p = 0.42 

 
p = 0.027 

 
p = 0.074 

Exon 2 
Base 43 

 
p = 0.13 

 
p = 0.17 

 
p = 0.012 

 
p = 0.53 

 

p = 5.6x10
-6 

 

p = 3.5x10
-6 

Exon 2 
Base 44 

 
p = 0.11 

 
p = 0.0083 

 

p = 0.000082 

 
p = 0.13 

 

p = 1.0x10
-6 

 
p = 0.00035 

Exon 3 
Base 17 

 
p = 0.003 

 
p = 0.26 

 
p = 0.00022 

 
p = 0.38 

 

p = 1.7x10
-6 

 

p = 0.00002 

Exon 4 
Base 70 

 
p = 0.02 

 
p = 0.002 

 
p = 0.32 

 
p = 0.12 

 

p = 4.8x10
-6 

 
p = 0.0013 

Exon 6 
Base -15 to -
10 

 
p = 0.046 

 
p = 0.13 

 
p = 0.36 

 
p = 0.19 

 
p = 0.0034 

 
p = 0.059 

Exon 9 
Base 78 

 
p = 0.073 

 
p = 0.13 

 
p = 0.45 

 
p = 0.26 

 
p = 0.0067 

 
p = 0.059 

Exon 9 
Base +16 

 
p = 0.073 

 
p = 0.13 

 
p = 0.45 

 
p = 0.26 

 
p = 0.0067 

 
p = 0.059 

Exon 10 
Base -65 

 
p = 0.199 

 
p = 0.38 

 
p = 0.078 

 
p = 0.13 

 
p = 0.50 

 
p = 0.087 

Exon 10 
Base+53 

 
p = 0.06 

 
p = 0.035 

 
p = 0.50 

 
p = 0.0003 

 

p = 1.0x10
-8 

 
p = 0.013 

Note: Fisher’s exact test p-values for polymorphisms with allelic frequencies of at least 
10% in Ghrhr are recorded here.  Bold numbers indicate statistically significant p-
values. 
 
 

 

Two polymorphisms were found in Pit1 that exhibited statistically significant 

changes in allelic frequency (Table 7).  Both are located in the non-coding region 72 and 

75 bases downstream of exon 3, a region that is not highly conserved across species.  

The SNP 72 bases downstream is in LD when medium-sized dogs are compared to small 
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and large dogs.  When small and medium breeds are compared, the SNP found 75 bases 

downstream is in LD, but no other comparisons yielded statistically significant p-values.   

 
 

Table 7: P-values for Pit1 polymorphisms. 
Polymorphism Long LE 

vs. 
Average 
LE 

Average 
LE vs. 
Short LE 

Long Le 
vs. Short 
LE 

Small vs. 
Medium 

Medium vs. 
Large 

Small vs. 
Large 

Exon 1 
Base -103 

 
p = 0.097 

 
p = 0.0022 

 
p = 0.086 

 
p = 0.065 

 
p = 0.048 

 
p = 
0.196 

Exon 3 
Base +12 

 
p = 0.29 

 
p = 0.23 

 
p = 0.068 

 
p = 0.15 

 
p = 0.496 

 
p = 
0.195 

Exon 3 
Base +72 

 
p = 0.43 

 
p = 0.0065 

 
p = 0.014 

 

p = 2.2x10
-8 

 

p = 0.000037 

 
p = 0.36 

Exon 3 
Base +75 

 
p = 0.068 

 
p = 0.0037 

 
p = 0.14 

 

p = 0.000078 

 
p = 0.00034 

 
p = 0.47 

Exon 6 
Base -16 

 
p = 0.18 

 
p = 0.13 

 
p = 0.50 

 
p = 0.0031 

 
p = 0.00023 

 
p = 0.29 

Exon 6  
Base 362 

 
p = 0.13 

 
p = 0.09 

 
p = 0.50 

 
p = 0.019 

 
p = 0.0037 

 
p = 0.34 

Exon 6 
Base 788 

 
p = 0.03 

 
p = 0.018 

 
p = 0.50 

 
p = 0.038 

 
p = 0.0015 

 
p = 0.16 

Exon 6 
Base 1022 

 
p = 0.18 

 
p = 0.18 

 
p = 0.58 

 
p = 0.0095 

 
p = 0.00094 

 
p = 
0.295 

Exon 6 
Bases 1580 to 1583 

 
p = 0.32 

 
p = 0.37 

 
p = 0.51 

 
p = 0.0015 

 
p = 0.00013 

 
p = 0.34 

Exon 6 
Base 2150 

 
p = 0.083 

 
p = 0.22 

 
p = 0.37 

 
p = 0.011 

 
p = 0.0042 

 
p = 0.46 

Exon 6 
Base +52 

 
p = 
0.00069 

 
p = 0.28 

 
p = 0.011 

 
p = 0.52 

 
p = 0.22 

 
p = 
0.204 

Note: Fisher’s exact test p-values for polymorphisms with allelic frequencies of at least 
10% in Pit1 are recorded here.  Bold numbers indicate statistically significant p-values. 

 

 

 

Analysis of two SNPs within Prop1 with allelic frequencies of 10% or more 

determined that both were in LD when dogs that have life spans similar to predicted are 

compared to dogs with shorter than expected life spans (Table 8).  These polymorphisms 
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are located in the non-coding regions 898-902 and 917 bases upstream of exon 3, a 

region that is not highly conserved across species.   

 
 

Table 8: P-values for Prop1 polymorphisms. 
Polymorphism Long LE vs. 

Average LE 
Average LE 
vs. Short LE 

Long Le 
vs. Short 
LE 

Small vs. 
Medium 

Medium 
vs. Large 

Small vs. 
Large 

Exon3  
Bases 898-902 

 
p = 0.008 

 

p = 0.000023 

 
p = 0.06 

 
p = 0.06 

 
p = 0.03 

 
p = 0.43 

Exon3  
Base 917 

 
p = 0.008 

 

p = 0.000023 

 
p = 0.06 

 
p = 0.06 

 
p = 0.03 

 
p = 0.43 

Note: Fisher’s exact test p-values for polymorphisms with allelic frequencies of at least 
10% in Prop1 are recorded here.  Bold numbers indicate statistically significant p-
values. 

 

 

 

Discussion 

 This examination of Ghr, Ghrhr, Pit1, and Prop1 in nine dog breeds of varying 

sizes and life expectancies led to the discovery of 53 polymorphisms.  Seventeen were 

identified in Ghr, two of which were insertion/deletions (indels), and the remaining 15 

were SNPs.  Of the 26 found in Ghrhr, only one was an indel. Only five polymorphisms 

were discovered in Prop1, one being an indel.  Lastly, 23 SNPs and two indels were 

identified in Pit1.   

Thirteen ancestral SNPs were discovered in which both alleles were found in 

every breed. These polymorphisms were seen in Pit1 (eight) and Ghrhr (five).  Seven of 

the nine breeds included in this investigation belonged to an evolutionary breed cluster 

as described by Parker et al. (2004).  These breeds were incuded in cluster four and are 

the three Schnauzer breeds, the Basset Hound, Bloodhound, Pomeranian and 

Dachshund. The Pomeranian and Dachshund also belong to clusters 2 and 3 (Parker et 
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al., 2004). The Great Pyrenees and Staffordshire Bull Terrier were not included in that 

preliminary investigation, but the Great Pyrenees is thought to be an ancestor of the 

Newfoundland (Crowley and Adelman, 1998),  a breed found in cluster two (Parker et 

al., 2004). The Staffordshire Bull Terrier is descended from the Bulldog (Crowley and 

Adelman, 1998), a breed also included in cluster two (Parker et al., 2004).  The presence 

of these ancestral polymorphisms, in conjunction with historical records, suggests that 

these two breeds may be added to one or both of these clusters, although additional data 

would be necessary. 

Thirty one polymorphisms with allelic frequencies of at least 10% were selected 

for further analysis.  These were compared using Fisher’s exact test as follows: 1) breeds 

with life expectancies longer than predicted vs. breeds with average estimated life spans, 

2) breeds with average estimated life spans vs. breeds with shorter than expected life 

spans, 3) breeds with life expectancies longer than predicted vs. breeds with shorter than 

expected life spans, 4) small breeds vs. medium-sized breeds, 5) medium-sized breeds 

vs. large breeds, and 6) small breeds vs. large breeds.  Of these 31 polymorphisms, 16 

presented with statistically significant p-values for at least one of the six comparisons 

made.   

 Of those that were statistically significant for at least one of the comparisons 

made, nine were in non-coding regions of the genes.  These SNPs were not located in 

known regulatory regions, or in regions conserved between species.  Although it is 

possible that these polymorphisms are in portions of the genome involved in as yet 

unknown regulatory mechanisms, we do not currently believe that these affect the 
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resulting protein and are, therefore, unlikely to be causative for the differences observed 

in size and longevity in these breeds. 

 The seven polymorphisms in coding regions which yielded statistically 

significant p-values were located in Ghr and Ghrhr.  Two significant changes were seen 

in Ghr. At base position 132 of exon five an A to G transition mutation leads to an 

amino acid change from lysine to glutamic acid at residue 191.  This change was 

evaluated with SIFT software, which considers values of 0.05 or less to indicate an 

intolerant change in the protein (Ng and Henikoff, 2001).  The resulting SIFT value for 

this amino acid substitution was 1.0 and it was therefore determined that although this 

change results in an acidic amino acid being replaced by a basic one, this change is well 

tolerated, and does not impact the function of the protein.  The second significant 

polymorphism in the coding region of Ghr is located in exon 9 at position 887, but does 

not affect the amino acid sequence.  Additionally the canine codon usage table does not 

indicate that protein synthesis would be negatively affected by either of these SNPs.  

Although both of these mutations are in LD in small dogs when they are compared to 

medium and large breeds, because they do not seem to affect the function of the protein, 

it is unlikely that they are a determining factor for size in the dog.  Five statistically 

significant SNPs in Ghrhr were within the coding region, three of which did not change 

the amino acid sequence.  Two of these silent mutations were in exon 2 at base positions 

8 and 44, and the third is in exon 3 at position 17.  The mutation at base position 43 of 

exon 2, a C to T transition, results in alanine being replaced with valine.  The SIFT value 

was calculated to be 0.43, a tolerated change for this protein.  This mutation is observed 
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to be in LD in large breeds when compared to small and medium-sized breeds, but we do 

not believe this mutation to affect size in the dog because it does not appear to alter the 

protein function.  Another transition of G to A, in exon 4 at base position 70, changes the 

amino acid sequence by replacing valine with methionine.  The SIFT value was 

calculated at 0.01, indicating that this mutation may very well have an affect on this 

protein.  It is interesting to note that this mutation is statistically significant (p = 4.8 x 10-

6) when large dogs are compared to medium-sized breeds, but not when they are 

compared to small breeds (p = 0.001).  Also, this mutation was found in the large breeds 

as follows:  Great Pyrenees, four heterozygotes and three homozygotes; Giant 

Schnauzer, two heterozygotes and one homozygote; and in Bloodhounds two 

heterozygotes were discovered.  The only other breed in which this allele was identified 

was the Dachshunds with three heterozygotes being found.  Genotyping of additional 

dogs and/or breeds could lead to a significant change being discovered when large and 

small breeds are compared.  Additionally, protein analysis to establish the effect of this 

mutation might show how this mutation may contribute to determining body size in the 

dog.  
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CHAPTER V 

CONCLUDING REMARKS 

 The goal of the Canine Genetics Research Laboratory is to improve the health 

and quality of life for dogs and their human caretakers through a better understanding of 

canine genetics.  The ultimate goal of aging research is to extend life expectancy and 

improve the quality of life for aged individuals.  This investigation, in keeping with the 

goals of this laboratory and aging research in general, set three specific aims towards 

elucidating genetic factors involved in the aging process in the dog.  These were 1) to 

determine the extent of the inverse relationship between size and longevity in the pet dog 

population, 2) to identify and map genes associated with the aging process in the canine 

genome, and 3) to analyze four genes that confer extended life spans in mice of smaller 

size to determine if any sequence differences are responsible for the similar phenomenon 

which is observed in the dog. 

In order to accomplish the first aim, we collected an extensive data set from the 

general, healthy pet population.  This data set included more than 700 dogs from 77 

American Kennel Club-recognized breeds.  This population had been previously noted 

by Patronek and colleagues (1997) as being unexamined with regards to life span and 

size.  Upon analysis, results confirmed previous studies by indicating that life 

expectancy is inversely related to size (Deeb and Wolf, 1994; Patronek et al., 1997).  

Specifically, we determined that longevity is related to both height and weight.  

Although this trend has been suggested for many years, there has been a lack of 

information from the general pet dog population. 
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The significant inverse relationship between life span and weight is -0.679 (p < 

0.05) while the relationship between life span and height is -0.603 (p < 0.05).  This work 

also indicates that 58.5% of variability in life span can be accounted for by variation in 

weight and height of a breed.  However, this analysis indicates that weight is the more 

significant predictor of longevity with a t-value of -6.091 (p < 0.001).  The resulting 

regression equation is:  y = 14.016 + (0.0180 * xH) - (0.0400 * xW), which offers a 

reasonable estimation of expected longevity for any given healthy weight and height 

across breeds.  This establishes a quantitative basis from which it is possible to further 

analyze the genetic components of longevity of the domestic dog. 

Completion of the second aim, to identify and map genes associated with the 

aging process in the canine genome, resulted in 52 gene based markers being added to 

the existing canine genome map (Breen et al., 2004) as well as the verification of the 

position of two gene based markers already on the map.  From the total of 54 genes 

investigated, 28 were selected for their proximity to the marker D4S1564 on human 

chromosome 4 (Puca et al., 2001), and 26 were chosen based on previous associations 

with aging and/or the aging process.   

 Of the 54 genes, 45 mapped as expected to regions of the canine genome that 

exhibit conservation of synteny with regions of the human genome containing these 

genes (Guyon et al., 2003).  Determination of the canine genome sequence provided the 

tool necessary for analysis of these unexpected results, and led to the discovery of six 

gene paralogs and one pseudogene.  Two of the unexpected results, however, are still 

unexplained.  
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 Although these paralogs were mapped inadvertently, these data are important 

because several gene paralogs that affect the aging process have been found in C. 

elegans (Rikke et al., 2000).  Additionally, the presence of gene paralogs is thought to be 

an evolutionary mechanism that results in the development of gene families (Lynch and 

Conery, 2000).   

Genes implicated in the aging process were localized to 19 of the 38 canine 

autosomes, as well as to the X chromosome.  Each gene was positioned close to 

polymorphic markers, at a minimum distance of less than 2 Mb.  This effort to map 

genes associated with a specific biological mechanism resulted in the development of a 

valuable resource for genetic linkage studies or genetic association studies. 

The third aim, examination of Ghr, Ghrhr, Pit1, and Prop1, utilized genomic 

DNA from nine dog breeds of varying sizes and life expectancies.  Ten unrelated dogs 

from each breed were used to determine if any sequence differences in these genes are 

responsible for the inverse relationship between size and longevity in the dog.  As a 

result, 53 polymorphisms were discovered.  Seventeen were identified in Ghr, 26 were 

found in Ghrhr, only five polymorphisms were discovered in Prop1, and 25 were 

identified in Pit1.   

Thirteen ancestral SNPs were discovered in which both alleles were found in 

every breed.  The presence of these ancestral polymorphisms, in conjunction with 

historical records, suggest that the Staffordshire Bull Terrier and Great Pyrenees may be 

added to cluster one and/or two as described by Parker et al (2004) but only after 

collection of additional data. 
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Thirty-one polymorphisms with allelic frequencies of at least 10% were selected 

for further analysis with Fisher’s exact test.  Of these, 16 presented with statistically 

significant p-values.  Nine of these SNPs were in non-coding regions of the genes and 

were not located in known regulatory regions, or in highly conserved regions of the 

genome.  Therefore, we do not currently believe that these mutations are the cause of the 

observed differences in size and longevity.  The remaining statistically significant 

polymorphisms were located in coding regions in Ghr and Ghrhr, and only three 

resulted in changes in the amino acid sequence.  These changes were evaluated with 

SIFT software, a program with the criterion that values of 0.05 or less indicate an 

intolerant change (Ng and Henikoff, 2001).  One mutation in Ghrhr led to valine being 

replaced with methionine.  The SIFT value for this substitution was calculated to be 

0.01, and may well affect the function of this protein.  This mutation is statistically 

significant (p = 4.8 x 10-6) when large dogs are compared to medium-sized breeds, but 

not when they are compared to small breeds (p = 0.001).  Genotyping of additional dogs 

and/or breeds could lead to a significant change being discovered when large and small 

breeds are compared.  Additionally, protein analysis to establish the effect of this 

mutation might show how this mutation may contribute to determining body size in the 

dog. 

In conclusion, these experiments have further established the dog as a model 

organism for investigations into the aging process.  Statistical analysis of height, weight 

and life expectancy data revealed a distinct correlation between size and longevity.  

Mapping experiments enhanced the existing canine genome map, an essential tool for 
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future studies.  Finally, four genes that confer extended life spans to mice of diminished 

size were analyzed in the dog.  Based on this work, Ghr, Ghrhr, Pit1 and Prop1 are not 

thought to be significantly involved in determining life expectancy in the dog.  However, 

many genes believed to be involved in the aging process remain to be investigated in the 

dog. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 

72  

REFERENCES 

 
 
 
1. Agarwala R, Applegate DL, Maglott D, Schuler GD, Schaffer AA (2000) A fast 

and scalable radiation hybrid map construction and integration strategy. Genome 
Res 3, 350-364 

 
2. Agundez JAG (2004) Cytochrome P450 gene polymorphism and cancer. Curr 

Drug Metab 5, 211-224 
 
3. Arantes-Oliveira N, Berman JR, Kenyon C (2003) Healthy animals with extreme 

longevity. Science 302, 611 
 
4. Austad SN (1993) The comparative perspective and choice of animal models in 

aging. Aging 5, 259-267 
 
5. Barzilai A, Rotman G, Shiloh Y (2002) ATM deficiency and oxidative stress, a 

new dimension of defective response to DNA damage. DNA Repair 1, 3-25 
 
6. Bathum L, Anderson-Ranberg K, Boldsen J, Brosen K, Jeune B (1998) Genotypes 

for the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human longevity. 
Eur J Clin Pharmacol 54, 427-430 

 
7. Belsley DA, Kuh E, Welsch RE (1980) Regression Diagnostics: Identifying 

Influential Data and Sources of Collinearity. (New York: John Wiley and Sons) 
 
8. Blanche H, Cabanne L, Sahbatou M, Thomas G (2001) A study of French 

centenarians, are ACE and APOE associated with longevity? C R Acad Sci III 324, 
129-135 

 
9. Bonafe M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, et al. (2003) 

Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and 
phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity, 
cues for an evolutionarily conserved mechanism of life span control. J Clin 
Endocrinol Metab 88, 3299-3304 

 
10. Bonnett BN, Egenvall A, Olson P, Hedhammar A (1997) Mortality in insured 

Swedish dogs: rates and causes of death in various breeds. Vet Rec 141, 40-44 
 
11. Breen M, Hitte C, Lorentzen TD, Thomas R, Cadieu E, et al. (2004) An integrated 

4249 marker FISH/RH map of the canine genome. BMC Genomics 5, 65-75 
 



 

 

73  

12. Bronson R (1982) Variation in age at death of dogs of different sexes and breeds. 
Am J Vet Res 43, 2057-2059 

 
13. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the 

ageing process. Nature 384, 33 
 
14. Cambien F, Poirier O, Lecerf L, Evans A, Cambou JP, et al. (1992) Deletion 

polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor 
for myocardial infarction. Nature 359, 641-644 

 
15. Canterberry SC, Greer KG, Hitte C, Andre C, Murphy KE (2005) Aging associated 

loci in Canis familiaris. Growth Dev Aging 69, 101-113 
 
16. Chavous DA, Jackson FR, O’Connor CM (2001) Extension of the Drosophila 

lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad 
Sci USA 98, 14814-14818 

 
17. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, et al. (2001) Extension 

of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. 
Science 292, 104-106 

 
18. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, et al. (2004) Calorie 

restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. 
Science 305, 390-392 

 
19. Cowan CM, Quarto N, Warren SM, Salim A, Longaker MT (2003) Age-related 

changes in the biomolecular mechanisms of calvarial osteoblast biology affect 
fibroblast growth factor-2 signaling and osteogenesis. J Biol Chem 278, 32005-
32013 

 
20. Crowley J, Adelman B (1998) The Complete Dog Book: Official Publication of the 

American Kennel Club 19th Edition. (New York: Howell Book House) 
 
21. De Benedictis G, Falcone E, Rose G, Ruffolo R, Spadafora P, et al. (1997) DNA 

multiallelic systems reveal gene/longevity associations not detected by diallelic 
systems. The ApoB locus. Hum Genet 99, 312-318 

 
22. De Benedictis G, Carotenuto L, Carrier G, De Luca M, Falcone E, et al. (1998) 

Age-related changes of the 3’APOB-VNTR genotype pool in ageing cohorts. Ann 
Hum Genet 62, 115-122 

 
23. De Benedictis G, Tan Q, Jeune B, Christensen K, Ukraintseva S, et al. (2001) 

Recent advances in human gene-longevity association studies. Mech Ageing Dev 
122, 909-920  



 

 

74  

 
24. Deeb B, Wolf N (1994) Studying longevity and morbidity in large and small 

breeds of dogs. Vet Med 89, 702-713 
 
25. Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes 

function in a common pathway to control the lifespan of Caenorhabditis elegans. 
Genetics 141, 1399-1406 

 
26. Egenvall A, Bonnett BN, Hedhammar A, Olson P (2005) Mortality in over 350,000 

insured Swedish dogs from 1995-2000: II. Breed-specific age and survival patterns 
and relative risk for causes of death. Acta Vet Scand 46, 121-136 

 
27. Faure-Delanef L, Quere I, Zouali H, Cohen D (1997) Human longevity and R506Q 

Factor V gene mutation. Thromb Haemost 78, 1160 
 
28. Flurkey K, Papaconstantinou J, Miller RA, Harrison DE (2001) Lifespan extension 

and delayed immune and collagen aging in mutant mice with defects in growth 
hormone production. Proc Natl Acad Sci USA 98, 6736-6741 

 
29. Flurkey K, Papaconstantinou J, Harrison DE (2002) The Snell dwarf mutation 

Pit1(dw) can increase life span in mice. Mech Ageing Dev 123, 121-130 
 
30. Freimer N, Sabatti C (2004) The use of pedigree sib-pair and association studies of 

common diseases for genetic mapping and epidemiology. Nat Genet 36, 1045-1051 
 
31. Furuyama T, Yamashita H, Kitayama K, Higami Y, Shimokawa I, et al. (2002)  

Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 
(FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Micrsc Res Tech 59, 331-
334 

 
32. Garcia-Closas M, Egan KM, Abruzzo J, Newcomb PA, Titus-Emstoff L, et al. 

(2001) Collection of genomic DNA from adults in epidemiological studies by 
buccal cytobruch and mouthwash. Cancer Epidemiol Biomarkers Prev 10, 687-696 

 
33. Gavrilov LA, Gavrilova NS (2003) The quest for a general theory of aging and 

longevity. Sci Aging Knowledge Environ 28, RE5 1-10 
 
34. Gerdes LU, Jeune B, Ranberg KA, Nybo H, Vaupel JW (2000) Estimation of 

apolipoprotein E genotype-specific relative mortality risks from the distribution of 
genotypes in centenarians and middle-aged men, apolipoprotein E gene is a "frailty 
gene," not a "longevity gene". Genet Epidemiol 19, 202-210 

 



 

 

75  

35. Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, et al. (1993) 
GHRH receptor of little mice contains a missense mutation in the extracellular 
domain that disrupts receptor function. Nat Genet 4, 227-231 

 
36. Greer KA, Canterberry SC, Murphy KE (2006) Statistical analysis regarding the 

effects of height and weight on the life span of the domestic dog. Res Vet Sci, in 
press 

 
37. Grube K, Burkle A (1992) Poly(ADP-ribose) polymerase activity in mononuclear 

leukocytes of 13 mammalian species correlates with species-specific life span. 
Proc Natl Acad Sci USA 89, 11759-11763 

 
38. Guyon R, Lorentzen TD, Hitte C, Kim L, Cadieu E, et al. (2003) A 1-Mb 

resolution radiation hybrid map of the canine genome. Proc Natl Acad Sci USA 
100, 5296-5301 

 
39. Heijmans B, Westendorp R, Slagboom P (2000) Common gene variants, mortality 

and extreme longevity in humans. Exp Gerontol 35, 865-877  
 
40. Helfand S, Rogina B (2003) Genetics of aging in the fruit fly, Drospophila 

melanogaster. Ann Rev Genet 37, 329-348  
 
41. Jian-Gang Z, Yong-Xing M, Chuan-Fu W, Pei-Fang L, Song-Bai Z,et al. (1998) 

Apolipoprotein E and longevity among Han Chinese population. Mech Ageing 
Dev 104, 159-167 

 
42. Jiang Z, Michal JJ, Melville JS, Baltzer HL (2005) Multi-alignment of orthologous 

genome regions in five species provides new insights into the evolutionary make-
up of mammalian genomes. Chromosome Res 13, 707-715 

 
43. Kalinichenko VV, Gusarova GA, Tan Y, Wang IC, Major ML, et al. (2003) 

Ubiquitous expression of the forkhead box M1B transgene accelerates proliferation 
of distinct pulmonary cell types following lung injury. J Biol Chem 278, 37888-
37894 

 
44. Kalinina OA, Kalinin SA, Polack EW, Mikaelian I, Panda S, et al. (2003) 

Sustained hepatic expression of FoxM1B in transgenic mice has minimal effects on 
hepatocellular carcinoma development but increases cell proliferation rates in 
preneoplastic and early neoplastic lesions. Oncogene 22, 6266-6276 

 
45. Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, et al. (2002) Effects of 

diet restriction in life span and age-related changes in dogs. JAVMA 220, 1315-
1320  

 



 

 

76  

46. Kenyon C, Chang C, Genesh E, Fudner A, Tabtiang R (1993) A C. elegans mutant 
that lives twice as long as wild-type. Nature 366, 461-464 

 
47. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor-

like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 
277, 942-946 

 
48. Kirkness EF, Bafna V, Halpern AL, Levy S, Remington K, et al. (2003) The dog 

genome, survey sequencing and comparative analysis. Science 301, 1898-1903 
 
49. Kohler HP, Grant PJ (2000) Plasminogen activator type 1 and coronary artery 

disease. N Eng J Med 342, 1792-1801 
 
50. Kokoszka JE, Coskun P, Esposito LA, Wallace DC (2001) Increased mitochondrial 

oxidative stress in the Sod2 (+/-) mouse results in the age related decline of 
mitochondrial function culminating in increased apoptosis. Proc Natl Acad Sci 
USA 98, 2278-2283 

 
51. Kops GJPL, Dansen TB, Polderman PE, Saarloos I, Wirtz KWA, et al. (2002) 

Forkhead transcription factor FOXO3a protects quiescent cells from oxidative 
stress. Nature 419, 316-321 

 
52. Krupczak-Hollis K, Wang X, Dennewitz MB, Costa RH (2003) Growth hormone 

stimulates proliferation of old-aged regenerating liver through forkhead box m1b. 
Hepatology 38, 1552-1562 

 
53. Lakowski B, Hekimi S (1996) Determination of life-span in Caenorhabditis 

elegans by four clock genes. Science 5264, 1010-1013. 
 
54. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis 

elegans. Proc Natl Acad Sci USA 95, 13091-13096  
 
55. Lao JI, Montoriol C, Morer I, Beyer K (2005) Genetic contribution to aging: 

deleterious and helpful genes define life expectancy. Ann N Y Acad Sci 1057, 50-
63 

 
56. Larsen P, Albert PS, Riddle DL (1995) Genes that regulate both development and 

longevity in Caenorhabditis elegans. Genetics 139, 1567-1583 
 
57. Larsen P, Clarke C (2002) Extension of life-span in Caenorhabditis elegans by a 

diet lacking coenzyme Q. Science 295, 120-123 
 



 

 

77  

58. Leonard JA, Vila C, Wayne RK (2006) From wild wolf to domestic dog. In The 
Dog and Its Genome, E.A. Ostrander, U. Giger, K. Lindblad-Toh, eds. (Woodbury, 
New York: Cold Spring Harbor Laboratory Press), pp. 95-117 

 
59. Li S, Crenshaw BE III, Rawson EJ, Simmons DM, Swanson LW, et al. (1990) 

Dwarf locus mutants lacking three pituitary cell types result from mutations in the 
POU-domain gene pit-1. Nature 347, 528-533 

 
60. Li Y, Deeb B, Pendergrass W, Wolf N (1996) Cellular proliferative capacity and 

life span in small and large dogs. J Gerontol Biol Sci 51A, B403-B408 
 
61. Liang H, Masoro EJ, Nelson JF, Strong R, McMahan CA, et al. (2003) Genetic 

mouse models of extended life span. Exp Gerontol 38, 1353-1364 
 
62. Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: An HNF-3/forkhead family 

member that can function to double the life-span of Caenorhabditis elegans. 
Science 278, 1319-1322 

 
63. Lin Y, Seroude L, Benzer S (1998) Extended life-span and stress resistance in the 

Drosophila mutant Methuselah. Science 282, 943-946 
 
64. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, et al. (2005) 

Genome sequence, comparative analysis and haplotype structure of the domestic 
dog. Nature 438, 803-819 

 
65. Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL (1998) The effect of 

genetic factors for longevity: a comparison of identical and fraternal twins in the 
Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 53, M441-M446 

 
66. Ly D, Lockhart D, Lerner R, Schultz P (2000) Mitotic misregulation and human 

aging. Science 287, 2486-2492 
 
67. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate 

genes. Science 290, 1151-1155 
 
68. Mari D, Mannucci PM, Duca F, Bertolini S, Franceschi C (1996) Mutant Factor V 

(Arg506Gln) in healthy centenarians. Lancet 347, 1044 
 
69. Matise TC, Perlin M, Chakravarti A (1994) Automated construction of genetic 

linkage maps using an expert system (MultiMap), a human genome linkage map. 
Nat Genet 6, 384-390 

 



 

 

78  

70. Matuoka K, Chen KY, Takenawa T (2003) A positive role of phosphatidylinositol 
3-kinase in aging phenotype expression in cultured human diploid fibroblasts. Arch 
Gerontol Geriatr 36, 203-219 

 
71. McKevitt TP, Nasir L, Devlin P, Argyle DJ (2002) Telomere lengths in dogs 

decrease with increasing donor age. J Nutr 132, 1604S-1606S 
 
72. Merched A, Xia Y, Papadopoulou A, Siest G, Visvikis S (1998) Apolipoprotein 

AIV codon 360 mutation increases with human aging and is not associated with 
Alzheimer's disease. Neurosci Lett 242, 117-119 

 
73. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, et al. (1999) The p66SHC 

adaptor protein controls oxidative stress response and life span in mammals. 
Nature 402, 309-313 

 
74. Miskin R, Masos T (1997) Transgenic mice overexpressing Urokinase-Type 

Plasminogen activator in the brain exhibit reduced food consumption, body weight 
and size, and increased longevity. J Gerontol Bio Sci 52A, B118-B124 

 
75. Moechars D, Lorent K, Van Leuven F (1998) Premature death in transgenic mice 

that overexpress a mutant amyloid precursor protein is preceded by severe 
neurodegeneration and apoptosis. Neuroscience 91, 819-830 

 
76. Morris JZ, Tissenbaum HA, Ruvkun G (1996) A phosphatidylinositol-3-OH kinase 

family member regulating longevity and diapause in Caenorhabditis elegans. 
Nature 382, 536-539   

 
77. Murakami S, Johnson T (1999) Life extension and stress resistance in 

Caenorhabditis elegans modulated by the tkr-1 gene. Curr Biol 9, R791 

 

78. National Institute on Aging Well-Being Improves for Most Older People, But Not 
For All, New Federal Report Says http://www.nia.nih.gov/NewsAndEvents/ 
PressReleases/PR20000810WellBeing.htm (Accessed March 1, 2006) 

 
79. Nembaware V, Crum K, Kelso J, Seoighe C (2002) Impact of the presence of 

paralogs on sequence divergence in a set of mouse-human orthologs. Genome Res 
12, 1370-1376 

 
80. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome 

Res 11, 863-874 
 
81. Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, et al. (1997) The Fork head 

transcription factor DAF-16 transduces insulin-like metabolic and longevity signals 
in C. elegans. Nature 389, 994-999  



 

 

79  

 
82. Online Mendelian Inheritance in Animals (OMIA) Summary of OMIA 

http://omia.angis.org.au/  (Accessed June 1, 2006) 
 
83. Ostrander EA, Giniger E (1997) Semper fidelis: what man's best friend can teach 

us about human biology and disease. Am J Hum Genet 61, 475-480 
 
84. Panza F, D'Introno A, Colacicco AM, Capurso C, Capurso S, et al. (2004) Vascular 

genetic factors and human longevity. Mech Ageing Dev 125, 169-178 
 
85. Parker HG, Kim LV, Sutter NB, Carlson S, Lorentzen TD, et al. (2004) Genetic 

structure of the purebred domestic dog. Science 304, 1160-1164 
 
86. Patronek GJ, Waters DJ, Glickman LT (1997) Comparative longevity of pet dogs 

and humans, implications for gerontology research. J Gerontol Biol Sci 52A, 
B171-B178 

 
87. Pepe G, Di Perna V, Resta F, Lovecchio M, Chimienti G, et al. (1998) In search of 

a biological pattern for human longevity, impact of apoA-IV genetic 
polymorphisms on lipoproteins and the hyper-Lp(a) in centenarians. 
Atherosclerosis 137, 407-417 

 
88. Perls TT, Bubrick E, Wager CG, Vijg J, Kruglyak L (1998) Siblings of 

centenarians live longer. Lancet 351, 1560 
 
89. Poon HF, Joshi G, Sultana R, Farr SA, Banks WA, et al. (2004) Antisense directed 

at the Aβ region of APP decreases brain oxidative markers in aged senescence 
accelerated mice. Brain Res 1018, 86-96 

 
90. Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, et al. (2001) A genome-

wide scan for linkage to human exceptional longevity identifies a locus on 
chromosome 4. Proc Natl Acad Sci USA 98, 10505-10508 

 
91. Quarrie J, Riabowol K (2004) Murine models of life span extension. Sci Aging 

Knowledge Environ 31, RE5 1-11 
 
92. Reed T, Dick DM, Uniacke SK, Foroud T, Nichols WC (2004) Genome-wide scan 

for a healthy aging phenotype provides support for a locus near D4S1564 
promoting healthy aging. J Gerontol A Biol Sci Med Sci 59, 227-232 

 
93. Rikke BA, Murakami S, Johnson TE (2000) Paralogy and orthology of tyrosine 

kinases that can extend the life span of Caenorhabditis elegans. Mol Biol Evol 17, 
671-683 

 



 

 

80  

94. Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred 
by cotransporter gene mutations in Drosophila. Science 290, 2137-2140 

 
95. Ruan H, Tang XD, Chen ML, Joiner ML, Sun G, et al. (2002) High-quality life 

extension by the enzyme peptide methionine sulfoxide reductase. Proc Natl Acad 
Sci USA 99, 2748-2753 

 
96. Savolainen P (2006) mtDNA studies of the origin of dogs. In The Dog and Its 

Genome, E.A. Ostrander, U. Giger, K. Lindblad-Toh, eds. (Woodbury, New York: 
Cold Spring Harbor Laboratory Press), pp. 119-140 

 
97. Schachter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, et al. (1994) 

Genetic associations with human longevity at the APOE and ACE loci. Nat Genet 
6, 29-32 

 
98. Slinker BK, Glantz SA (1990) Missing data in two-way analysis of variance. Am J 

Physiol 258, R291-R297 
 
99. Takeshita K, Yamamoto K, Ito M, Kondo T, Matsushita T, et al. (2002) Increase 

expression of Plasminogen Activator Inhibitor-1 with fibrin deposition in a murine 
model of aging, “Klotho” mouse. Sem Thromb Hemost 28, 545-553 

 
100. Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, et al. (2001) A mutant 

Drosophila insulin receptor homolog that extends life-span and impairs 
neuroendocrine function. Science 292, 107-110 

 
101. Tissenbaum H, Guarente L (2001) Slow aging during insect reproductive diapause: 

Why butterflies, grasshoppers and flies are like worms. Exp Gerontol 36, 723-738 
 
102. van der Horst A, Tertoolens LGJ, de Vries-Smits LMM, Frye RA, Medema RH, et 

al. (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the 
longevity protein hSir2SIRT1. J Biol Chem 279, 28873-28879 

 
103. Vignaux F, Hitte C, Priat C, Chuat JC, Andre C, et al. (1999) Construction and 

optimization of a dog whole-genome radiation hybrid panel. Mamm Genome 10, 
888-894 

 
104. Warner HR (2003) Subfield history, use of model organisms in the search for 

human aging genes.  Sci Aging Knowledge Environ 12, 986-1002  
 
105. Weinert BT, Timiras PS (2003) Invited review: theories of aging. J Appl Physiol 

95, 1706-1716 
 



 

 

81  

106. Weisberg S (1985) Applied Linear Regression, 2nd ed. (New York: John Wiley 
and Sons) 

 
107. West MD, Shay JW, Wright WE, Linskens MHK (1996) Altered expression of 

plasminogen activator and plasminogen activator inhibitor during cellular 
senescence. Exp Gerontol 31,175-193 

 
108. Wise J, Heathcott B, Shepherd A (2003) Results of the 2002 AVMA survey of US 

pet-owning households regarding use of veterinary services and expenditures. 
JAVMA 222, 1524-1525 

 
109. Wong KK, Maser RS, Bachoo RM, Menon J, Carrasco DR, et al. (2003) Telomere 

dysfunction and Atm deficiency compromises organ homeostasis and accelerates 
ageing. Nature 421, 643-648 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

82  

VITA 

 

Name:    Sarah Christine Canterberry 

 

Permanent Address:  PO Box 173 

    Snook, TX 77878 

 

Education:   Texas A&M University 

    College Station, TX 

    B.S., 2001, Animal Science 

 

    Texas A&M University 

    College Station, TX 

    Ph.D., 2006, Genetics 

 


