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ABSTRACT 

Beta Dose Distribution for Randomly Packed Microspheres. (December 2006) 

Alexander Urashkin, B.S.; M.S., Obninsk State Technical University, Russia 

Chair of Advisory Committee: Dr. Warren D. Reece 

Brachytherapy refers to the therapeutic use of encapsulated radionuclides within 

or close to a tumor. Today brachytherapy is used as an alternative to surgery or beam 

therapy to treat different kinds of cancers such as breast, lung, prostate, ovarian and 

pancreatic, primary and metastatic hepatic tumors and rheumatoid arthritis. 

Microspheres are one therapy utilized in brachytherapy procedures. Despite the 

development of advanced equipment and methods, there is still a limited knowledge of 

radiation dose distribution when utilizing this technique.  

This study focuses on random packing of microspheres and seeks to determine 

dose distributions for specific cases. The Monte Carlo Neutral Particle code (MCNP) 

developed by Los Alamos National Laboratory is used to simulate beta particle 

transport. Pr-142 is the beta source utilized for all calculations. The cylinder radii are 

0.1, 0.15 and 0.3 cm and sphere radii are 0.03, 0.05 and 0.07 cm. The results are verified 

by examining limiting cases: uniformly distributed source and line of microspheres. 

Based on the data collected, the correlations between the average dose, its related 

variance, and distance from the cylinder were determined. An approach for estimating 

the surface average dose was developed and suggestions regarding an approach to assess 

surface variance estimation were presented. 
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CHAPTER I 

 

INTRODUCTION 

 

Cancer treatment using radiation began shortly before the turn of the last century, 

soon after the discovery of x-rays by Roentgen, radioactivity by Becquerel, and radium 

by Marie and Pierre Curie. The first radiation cure of cancer, a basal cell epithelioma, 

was reported in the literature in 1899. Since then radiation therapy has evolved far 

beyond the early uses of radium sources. 

In the early days of external therapy, surgeons or dermatologists who 

administered1 radiation treatment had little understanding or knowledge of radiation 

transport or biological effects of radiation. No method of calculating radiation dose 

existed. The equipment used to deliver the radiation was primitive, unreliable, and low 

energy so that few cancer cases could be treated. 

The radiation treatment of this era generally was a massive exposure to a large 

area of the body with the hope that the tumor would be destroyed with a single 

treatment. Many post-radiation complications occurred due to destruction of normal 

tissues. The literature of this decade has many examples of radiation-induced tissue 

necrosis, infection, and death. 

In the late 1920's x-ray therapy was introduced and fractionated daily doses of 

radiation rather than a single massive dose became the preferred treatment. During this 

era, treatment schedules were defined and implemented, and the relationship between 
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radiation dose and biological effects was studied. In this era of kilo-voltage x-rays, 

radiotherapy was seen mostly as a palliative treatment with little or no curative effect. 

With the introduction of vacuum x-ray tubes, capable of energies as high as 200 kV, 

cures of superficial cancers were soon reported. It also became clear that machines 

capable of producing higher energies had to be developed to treat cancers located deeper 

in the body effectively. 

Soon after WWII, radioactive cobalt, and a man-made substitute for radium was 

developed. This time period, designated as the mega-voltage era, witnessed the 

widespread use of radioactive cobalt along with the development of high-energy devices 

such as linear accelerators and betatrons. These machines produced deeply penetrating 

x-rays making it possible to treat tumors located deep in the body. Severe skin reactions, 

an expected side effect of radiation therapy before this time, lessened in frequency and 

severity since the maximum radiation effect now occurred below the skin surface rather 

than on the skin surface. 

Starting in the 1960’s advances in radiobiology, computer controls, and 

controlled clinical trials, all contributed to the growth of radiation therapy. Machines 

could deliver adequate doses of radiation to tumors located anywhere in the body. 

In contrast to teletherapy there is internal radiation therapy or brachytherapy. The 

word “brachytherapy” is derived from the Greek word "brachios" meaning near and 

refers to the therapeutic use of encapsulated radionuclides within or close to a tumor. In 

1901, Pierre Curie suggested to Danlos at St. Louis Hospital in Paris that a small radium 

tube be inserted into a tumor, thus heralding the birth of brachytherapy. In 1903, 
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Alexander Graham Bell made a similar independent suggestion in a letter to the Editor 

of Archives Roentgen Ray. These early experiences demonstrated that inserting 

radioactive materials into tumors caused cancers to shrink.  

In the early twentieth century, major brachytherapy work was done at the Curie 

Institute in Paris and at Memorial Hospital in New York. Dr. Robert Abbe, the chief 

surgeon at St. Lukes Hospital of New York, placed tubes into tumor beds after resection. 

In 1905 the afterloading technique which utilized removable radium sources was 

introduced. Dr. William Myers at Ohio State University developed several radioisotopes, 

including gold-198, cobalt-60, iodine-125, and phosphorus-32 for clinical 

brachytherapy. These were implanted surgically by Drs. Arthur James (surgeon) and 

Ulrich Henschke (radiation oncologist).  

Towards the middle of last century the advent of ortho-voltage teletherapy for 

deeper tumors and the problems associated with radiation exposure from high-energy 

radionuclides led to a decline in the use of brachytherapy. However, over the past three 

decades, several advances have renewed interest in brachytherapy. New man-made 

radioisotopes and remote afterloading techniques have reduced radiation exposure 

hazards. Newer imaging techniques (CT scan, magnetic resonance imaging, transrectal 

ultrasound) and sophisticated computerized treatment planning have helped achieve 

increased positional accuracy and superior, optimized dose distribution. Finally, 

although initially used only for treatment of cancer, brachytherapy has also been found 

to be useful in non-malignant diseases. Brachytherapy can be the optimum way of 
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delivering conformal radiotherapy tailored to the shape of the tumor and thereby better 

sparing surrounding normal tissues (American Brachytherapy Society web site 2006). 

The problem of dose specification in brachytherapy is made difficult by the 

inability to limit dose to the target volume, the steep dose gradients within the treatment 

volume, and intense hot spots in the implanted region. Although transport codes can give 

complete dose distributions in any plane, this does not simplify the problem of 

specifying the dose by a single value, the target dose. On the other hand, when 

brachytherapy is used for boost therapy, the overall uncertainty in dose prescriptions 

matters less (American Brachytherapy Society web site 2006). 

Today dose specification is based on clinical experience with careful analysis of 

the irradiation technique and dosimetry. Existing systems provide guidelines for dose 

specification but none of the systems guarantees precise determination of target dose.  

Microspheres are one type of microparticle utilized in brachytherapy procedures. 

In general radioactive microspheres have a wide range of diagnostic, therapeutic, and 

research applications such as diagnostic imaging, radiation synovectomy, intracavitary 

and intratumor therapy, blood flow measurements, and drug delivery and targeting.  

Radioactive microspheres are a new treatment originally implemented for 

patients with rheumatoid arthritis, ovarian and pancreatic cancer, and primary and 

metastatic hepatic tumors. They are effective in treating arthritis, delivering the desired 

dose to the membrane for treatment or ablation of synovium to reduce joint effusion. In 

ovarian cancer, the microspheres are introduced into the abdominal cavity to deliver 

radiation to cancer cells. Microspheres are also effective in controlling growth in benign 
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cystic brain lesions, craniopharyngioma, and possibly pancreatic and hepatic tumors 

(American Brachytherapy Society web site 2006).  

One example of microsphere treatment is the Therasphere™ treatment technique 

for liver cancer. Theraspheres™ incorporate yttrium-90 into the embolic spheres to 

deliver radiation directly to the tumor. The yttrium-90 coated microspheres are injected 

through a catheter extending from the femoral artery in the groin to the liver artery 

supplying the tumor, and are carried to the smallest blood vessels where, because of their 

size, they become entrapped. This technique provides high local doses while mostly 

sparing peripheral normal tissue.  

Although surgical removal of liver tumors offers the best chance for cure, it is 

not feasible for more than three-fourths of patients with primary liver cancer or for 90 

percent of patients with secondary liver cancer. For now radioembolization is a 

palliative, not curative, treatment but patients benefit by life-extension and quality-of-

life improvement (American Brachytherapy Society web site 2006).  

Another application of radioactive microspheres being investigated is the 

treatment of arteriovenous malformations (AVM’s). An AVM is a localized tangle of 

arteries and veins within the brain. Arteries carry oxygen-rich blood away from the heart 

to the body’s cells and veins return oxygen-depleted blood to the lungs and heart. The 

presence of an AVM disrupts this process. The microsphere approach is a substitute for 

surgical procedures that are too difficult or dangerous. The injected radioactive 

microspheres permanently embolize the blood vessels and provide relatively low doses 

of beta radiation that induce hyperplasia of the vascular endothelium, leading to the 
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blockage of the blood stream. The nidus will be isolated and the AVM symptoms cured 

(Mayfield clinic web site 2006).   

Microsphere injection has shown promise as an alternative to surgery and to 

beam therapy. Unfortunately the lack of knowledge about dose specification limits 

application of this technique. The research in this area of radiation therapy is vital for 

future applications. 

Two well-studied limiting cases in microsphere therapy are a perfect line of 

microspheres and a uniformly distributed source in a specific volume. Dose calculation 

methods for these limiting cases are considered in the next chapter of this thesis. This 

study focuses on the case of randomly distributed microspheres and is bounded by the 

cases mentioned above. A uniformly distributed source is approached when the radius of 

spheres is decreased and number of spheres in the artery is increased. A perfect line of 

microspheres is approached when the radius of microspheres becomes equal to the 

radius of the artery.  

The most complicated and rarely studied case is the one lying between these two 

limiting ones. The difficulty of multiple microsphere calculation lies in the random 

nature of sphere distribution in the volumes. Lucile Dauffy considered in her thesis 

(Dauffy 1998) an idealized case of line of sphere distribution within a human artery. She 

evaluated dose rate distribution around a line of spheres utilizing geometrical and 

calculational approaches based on the Berger beta dose point kernel (DPK). This case is 

used in this study as a limiting case for verification of results. Sung-Woo Lee in his 

dissertation (Lee 2004) improved the understanding of dose specification in microsphere 



 7 

applications. His study focused on microsphere technique for AVM treatment using Pr-

142 beta sources and considered random close packing of microspheres in human 

arteries. Lee examined several typical cases of microsphere and artery sizes, and 

determined dose rates at different distances around the arteries using MCNP and DPK 

methods. Although the model he used in calculations was simplified, it provided initial 

data for dose specification technique and for future studies.  

This study focuses on random packing of microspheres (but not close packing as 

was done in Lee’s work). The dose distributions for specific sphere cases are calculated 

and techniques are given for estimation of average dose and its related variance. For 

consistency with Lee’s data the Pr-142 beta source and the same set of artery and 

microsphere sizes are considered. The Monte Carlo Neutral Particle code (MCNP) 

developed by Los Alamos National Laboratory is used to simulate beta particle transport 

(X-5 Monte Carlo Team 2003). The distribution is determined at three different 

distances and based on 56 tallies at each distance. The results obtained are verified by 

comparing to data from limiting cases: a uniformly distributed source and a line of 

microspheres. The correlation curves between an average dose, related variance and 

distance from the cylinder are determined. The technique for estimating the surface 

average dose and related variance is developed.  
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CHAPTER II 

THEORY 

 

Beta particle dosimetry 

 

Beta particles are electrons ejected from a nucleus. An unstable nucleus may 

attain a stable state by changing a neutron into a proton and ejecting a negative beta 

particle (electron), or by changing a proton into a neutron and ejecting a positive beta 

particle (positron). In either case, some or all of the excess nuclear energy is carried 

away by the ejected beta particle and neutrino. If the beta particle and neutrino do not 

carry away all the excess nuclear energy, the emission of the beta particle will be 

followed by one or more gamma rays. The decay energy is shared between the electron 

and neutrino. Thus, beta particles do not have one energy like a gamma photon. Its 

energy is in range from zero to maximum decay energy, and average energy is about one 

third of its maximum decay energy (Attix 1986). 

Beta particles lose energy by a variety of processes when they pass through 

matter. These processes include resonance absorption, collisions with nuclei and 

electrons, excitation of atoms, radiation production, and electrodisintegration of nuclei. 

For the beta electrons in this study, collisions which produce ionization and excitation of 

atoms, and radiation production (bremsstrahlung) are the predominant methods of 

energy loss. 
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The energy of the electron is attenuated by a multitude of inelastic collisions until 

it reaches thermal levels. The energy loss per unit path length by an electron of mass m 

and velocity ν  can be described by eqn (2.1) (Bethe and Ashkin 1953). The Born 

approximation that the velocity of the primary electron exceeds that of the atomic orbital 

electron is used in this equation.  
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where dT  is kinetic energy loss per increment of path length, dx  in centimeters, N is 

number of atoms per cubic centimeter, Z is the nuclear charge, T is the relativistic 

kinetic energy of the electron, and I is the average excitation potential of the atom.  

The production of x-rays (bremsstrahlung) by the deceleration of electrons is an 

unlikely process at low energies (below 1 MeV); at higher energies it becomes an 

increasingly important process of energy loss. When an electron is deflected in a nuclear 

field, energy must be radiated. Momentum is generally conserved by a nearby nucleus. 

The radiation energy lost by an electron per unit path length is approximately 

proportional to its energy and to the square of the nuclear charge. The energy loss by 

electrons due to negative acceleration in the field of nuclei and atomic electrons can be 

described by eqn (2.2) (Bethe and Ashkin 1953; Heitler 1954).  
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where dT is kinetic energy loss per increment of path length, dx in centimeters, N is 

number of atoms per cubic centimeter, E is electron energy, Z is the nuclear charge, 

where e is electronic charge and 0m  is the electron mass. 

The electrons moving in a medium are deflected by their interaction with the 

electric field of the nuclei and orbital electrons. Because of their light mass, electrons are 

easily deflected and experience frequent elastic scattering. The fundamental equation for 

collisional loss was developed by Rutherford. The cross-section may be written as: 
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where E is electron energy, T is target recoil energy e is electronic charge, z is the 

electron charge, Z is the nuclear charge, oε is electric constant, M is target atomic mass 

and ν  is electron velocity (Rutherford 1911). 

Calculation of absorbed radiation dose from beta emitting radionuclides is very 

complex, depending on a number of variables, and there is a much higher degree of 

uncertainty in beta dosimetry than in that of gamma dosimetry. The most important 

factor is the energy of beta radiation.  



 11 

Another factor in beta dosimetry calculations is the density of the medium that 

the electrons traverse. The rate of electron kinetic energy loss, and hence the amount of 

absorbed radiation energy, is proportional to the density of the media.  

Distribution of radioactive sources in tissue is also critical, because the 

penetration range of beta particles in soft tissue is only a few millimeters. But precise 

particle distribution in the patient is difficult to determine. For intraarticular and 

intracavitary therapy it is usually assumed that radioactive source distribution is uniform 

inside a thin film on the affected tissue. This is why the ability of imaging radioactive 

source distribution in the body is important. In addition, imaging also aids dosimetry 

calculations in nontarget tissues in case the particles leak from the target site. 

This complexity of absorbed dose estimation is the main reason why only a few 

absorbed dose estimates for different radionuclides are available. Most procedures apply 

what has been effective in the past or use early estimates of medical internal radiation 

dose (MIRD) formulation, which is used primarily for gamma emitters. This method is 

based on average beta energy, and dose average over an entire site, rather than actual 

dose distribution in the target volume.  

 

Electron transport in MCNP 

 

The transport of electrons and other charged particles is fundamentally different 

from that of neutrons and photons.  The interaction of neutral particles is characterized 

by relatively infrequent isolated collisions, with simple free flight between collisions. By 
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contrast, the transport of electrons is dominated by the long-range Coulomb force, 

resulting in large numbers of small interactions. As an example, a neutron in aluminum 

slowing down from 0.5 MeV to 0.0625 MeV will have about 30 collisions, while a 

photon in the same circumstances will experience fewer than ten. An electron 

accomplishing the same energy loss will undergo about 10
5
 individual interactions. This 

great increase in computational complexity makes a single-collision Monte Carlo 

approach to electron transport unfeasible for most situations of practical interest. 

Considerable theoretical work has been done to develop a variety of analytic and 

semi-analytic multiple-scattering theories for the transport of charged particles. These 

theories attempt to use the fundamental cross section and the statistical nature of the 

transport process to predict probability distributions for significant quantities, such as 

energy loss and angular deflection. The most important of these theories for the 

algorithms in MCNP are the theory for angular deflections (Goudsmit and Saunderson 

1940), the theory of energy-loss fluctuations (Landau 1944), and the enhancements of 

the Landau theory (Blunck and Leisegang 1950). These theories rely on a variety of 

approximations that restrict their applicability, so that they cannot solve the entire 

transport problem. In particular, it is assumed that the energy loss is small compared to 

the kinetic energy of the electron. 

In order to follow an electron through a significant energy loss, it is necessary to 

break the electron's path into many steps. These steps are chosen to be long enough to 

encompass many collisions (so that multiple-scattering theories are valid) but short 

enough that the mean energy loss in any one step is small (so that the approximations 
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necessary for the multiple-scattering theories are satisfied). The energy loss and angular 

deflection of the electron during each of the steps can then be sampled from probability 

distributions based on the appropriate multiple-scattering theories. This accumulation of 

the effects of many individual collisions into single steps that are sampled 

probabilistically constitutes the “condensed history” Monte Carlo method. 

The most influential reference for the condensed history method is the paper 

presented in 1963 (Berger 1963). Based on the techniques described in that work the 

ETRAN series of electron/photon transport codes were developed (Berger 1963; Seltzer 

1988). These codes have been maintained and enhanced for many years at the National 

Bureau of Standards (now the National Institute of Standards and Technology).  

The following paragraphs on the electron transport present the data obtained 

from the MCNP manual developed at the Los Alamos National Laboratory (X-5 Monte 

Carlo Team 2003). 

 

Electron steps and substeps 

 

The condensed random walk for electrons can be considered in terms of a 

sequence of sets of values: 

 

(0,E0,t0,u0,r0), (s1,E1,t1,u1,r1), (s2,E2,t2,u2,r2), … 
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where sn, En, tn, un, and rn are the total path length, energy, time, direction, and position 

of the electron at the end of n steps. On the average, the energy and path length are 

related by: 

 

                                         ∫
−

−=− −

n
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EE ,                                            (2.4) 

 

where dE/ds is the total stopping power in energy per unit length. This quantity depends 

on energy and on the material in which the electron is moving. ETRAN-based codes 

customarily choose the sequence of path lengths {sn} such that: 

 

                                                     k
E

E

1n

n =
−

                                                      (2.5) 

 

The most commonly used value is 8/12k −= , which results in an average energy 

loss per step of 8.3%. 

Electron steps with (energy-dependent) path lengths s = sn − sn-1 determined by 

eqns (2.4-2.5) are called major steps or energy steps. The condensed random walk for 

electrons is structured in terms of these energy steps. For example, all precalculated and 

tabulated data for electrons are stored on an energy grid whose consecutive energy 

values obey the ratio in eqn (2.5).  In addition, the Landau and Blunck-Leisegang 

theories for energy straggling are applied once per energy step. For a single step, the 
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angular scattering could also be calculated with satisfactory accuracy, since the 

Goudsmit-Saunderson theory is valid for arbitrary angular deflections. However, the 

representation of the electron's trajectory as the result of many small steps will be more 

accurate if the angular deflections are also required to be small. Therefore, the ETRAN 

codes and MCNP further break the electron steps into smaller substeps. A major step of 

path length s is divided into m substeps, each of path length s/m. Angular deflections and 

the production of secondary particles are sampled at the level of these substeps. The 

integer m depends only on material (average atomic number Z). Appropriate values for 

m have been determined empirically, and range from m=2 for Z<6 to m=15 for Z>91. 

 

Condensed random walk 

 

In the initiation phase of a transport calculation involving electrons, all relevant 

data are either precalculated or read from the electron data file and processed. These data 

include the electron energy grid, stopping powers, electron ranges, energy step ranges, 

substep lengths, and probability distributions for angular deflections and the production 

of secondary particles. Although the energy grid and electron steps are selected 

according to eqns (2.4-2.5), energy straggling, the analog production of bremsstrahlung, 

and the intervention of geometric boundaries and the problem time cutoff will cause the 

electron’s energy to depart from a simple sequence sn satisfying eqn (2.5). Therefore, the 

necessary parameters for sampling the random walk will be interpolated from the points 

on the energy grid. 
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At the beginning of each major step, the collisional energy loss rate is sampled.  

In the absence of energy straggling, this will be a simple average value based on the 

nonradiative stopping power described in the next section. In general, however, 

fluctuations in the energy loss rate will occur. The number of substeps m per energy step 

will have been preset, either from the empirically determined default values, or by the 

user, based on geometric considerations.   

Except for the energy loss and straggling calculation, the detailed simulation of 

the electron history takes place in the sampling of the substeps. The Goudsmit-

Saunderson theory is used to sample the distribution of angular deflections, so that the 

direction of the electron can change at the end of each substep. Based on the current 

energy loss rate and the substep length, the projected energy for the electron at the end of 

the substep is calculated. Finally, appropriate probability distributions are sampled for 

the production of secondary particles. These include electron-induced fluorescent X-

rays, “knock-on” electrons (from electron-impact ionization), and bremsstrahlung 

photons. 

Note that the length of the substep ultimately derives from the total stopping 

power used in eqn (2.4), but the projected energy loss for the substep is based on the 

nonradiative stopping power. The reason for this difference is that the sampling of 

bremsstrahlung photons is treated as an essentially analog process. When a 

bremsstrahlung photon is generated during a substep, the photon energy is subtracted 

from the projected electron energy at the end of the substep.  Thus the radiative energy 

loss is explicitly taken into account, in contrast to the collisional (nonradiative) energy 
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loss, which is treated probabilistically and is not correlated with the energetics of the 

substep. Two biasing techniques are available to modify the sampling of bremsstrahlung 

photons for subsequent transport. However, these biasing methods do not alter the 

linkage between the analog bremsstrahlung energy and the energetics of the substep.  

MCNP uses identical physics for the transport of electrons and positrons, but 

distinguishes between them for tallying purposes, and for terminal processing. Electron 

and positron tracks are subject to the usual collection of terminal conditions, including 

escape (entering a region of zero importance), loss to time cutoff, loss to a variety of 

variance-reduction processes, and loss to energy cutoff.  

 

Stopping power 

 

a. Collisional Stopping Power 

 

Berger gives the restricted electron collisional stopping power, i.e., the energy 

loss per unit path length to collisions resulting in fractional energy transfers ε  less than 

an arbitrary maximum value mε , in the form: 

 

                                  ( )








−+
+

=






− − δετ,f
I2

2)(τE
ln NZC

ds

dE
m2

2

εm

,                        (2.6) 

 

 



 18 

where 
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Here ε  and mε  represent energy transfers as fractions of the electron kinetic 

energy E; I is the mean ionization potential in the same units as E; β  is ν/c ; τ  is the 

electron kinetic energy in units of the electron rest mass; δ  is the density effect 

correction (related to the polarization of the medium); Z is the average atomic number of 

the medium; N is the atom density of the medium in cm
-3
; and the coefficient C is given 

by: 

 

                                                               
2

4

mν

πe2
C = ,                                                     (2.8) 

 

where m, e, and ν  are the rest mass, charge, and speed of the electron, respectively.  

The ETRAN codes and MCNP do not make use of restricted stopping powers, 

but rather treat all collisional events in an uncorrelated, probabilistic way. Thus, only the 

total energy loss to collisions is needed, and eqns (2.6-2.7) can be evaluated for the 

special value mε = 1/2. The reason for the 1/2 is the indistinguishability of the two 

outgoing electrons.  The electron with the larger energy is, by definition, the primary. 

Therefore, only the range ε  < 1/2 is of interest. With mε = 1/2, eqn (2.7) becomes: 
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On the right side of eqn (2.6), we can express both E and I in units of the electron 

rest mass. Then E can be replaced by τ  on the right side of the equation. We also 

introduce supplementary constants: 
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so that eqn (2.6) becomes: 
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     (2.11) 

 

This is the collisional energy loss rate in MeV/cm in a particular medium. In 

MCNP, we are actually interested in the energy loss rate in units of MeV barns (so that 

different cells containing the same material need not have the same density). Therefore, 
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we divide eqn (2.11) by N and multiply by the conversion factor 2410  barns/ 2cm . We 

also use the definition of the fine structure constant: 
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where h is Planck's constant, to eliminate the electronic charge e from eqn (2.11). The 

result is as follows: 
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This is the form actually used in MCNP to preset the collisional stopping powers 

at the energy boundaries of the major energy steps. 

The mean ionization potential and density effect correction depend upon the state 

of the material, either gas or solid. In the fit utilized, the physical state of the material 

also modifies the density effect calculation (Sternheimer and Peierls 1982). The 

calculation of the density effect uses the conduction state of the material to determine the 

contribution of the outermost conduction electron to the ionization potential 

(Sternheimer, Berger and Seltzer 1982). The occupation numbers and atomic binding 

energies used in the calculation are from the paper presented in 1975 (Carlson 1975).
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b. Radiative Stopping Power 

 

The radiative stopping power is: 
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where (n)

radΦ  is the scaled electron-nucleus radiative energy-loss cross-section based upon 

evaluations by Berger and Seltzer; η  is a parameter to account for the effect of electron-

electron bremsstrahlung; α  is the fine structure constant; 2mc  is the mass energy of an 

electron; and er  is the classical electron radius. The dimensions of the radiative stopping 

power are the same as the collisional stopping power. 

 

Energy straggling 

 

Because an energy step represents the cumulative effect of many individual 

random collisions, fluctuations in the energy loss-rate will occur. Thus the energy loss 

will not be a simple average ∆; rather there will be a probability distribution f(s,∆)d∆ 

from which the energy loss ∆ for the step of length s can be sampled. Landau studied 

this situation under the simplifying assumptions that the mean energy loss for a step is 

small compared with the electron’s energy, that the energy parameter ξ  defined below is 

large compared with the mean excitation energy of the medium, that the energy loss can 
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be adequately computed from the Rutherford cross section, and that the formal upper 

limit of energy loss can be extended to infinity. With these simplifications, Landau 

found that the energy loss distribution can be expressed as: 

 

                                                       dλφ(λ)d∆∆)f(s, =                                               (2.15) 

 

in terms of φ(λ) , a universal function of a single scaled variable: 
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Here m and ν  are the mass and speed of the electron, δ  is the density effect 

correction, β  is ν/c , I is the mean excitation energy of the medium, and γ  is Euler’s 

constant ( γ  = 0.5772157…). The parameter ξ  is defined by: 
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where e is the charge of the electron, N and Z is the number density of atomic electrons, 

and the universal function is: 
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where x is a positive real number specifying the line of integration. 

For purposes of sampling, φ(λ)  is negligible for 4λ −< , so that this range is 

ignored. Originally φ(λ)  tabulated in the range 100λ4 ≤≤− , and derived for the range 

100λ >  the asymptotic form: 
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in terms of the auxiliary variable w, where 

 

                                                          
2
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Angular deflections 

 

The ETRAN codes and MCNP rely on the Goudsmit-Saunderson theory for the 

probability distribution of angular deflections. The angular deflection of the electron is 

sampled once per substep according to the distribution: 
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where s is the length of the substep, cosθµ =  is the angular deflection from the 

direction at the beginning of the substep, ( )µ
l
P  is the th

l  Legendre polynomial, and 
l

G  

is: 
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where dΩ/dσ  is the microscopic cross section, and the atom density N of the medium.  

For electrons with energies below 0.256 MeV, the microscopic cross section is 

taken from numerical tabulations (Riley et al. 1975). For higher-energy electrons, the 

microscopic cross section is approximated as a combination of the Mott and Rutherford 

cross sections, with a screening correction.  Seltzer presents this “factored cross-section” 

in the form: 

 

                                          
( )

( )
( ) 









+
=

Rutherford

Mott

222

22

dΩ/dσ

dΩ/dσ

2ηµ-1νp

eZ

dΩ

dσ
,                     (2.23) 

 

where e, p, and ν  are the charge, momentum, and speed of the electron, respectively. 

The screening correction η  was originally given as: 
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where α  is the fine structure constant, m is the rest mass of the electron, and ν/cβ = . 

MCNP now follows the recommendation of Seltzer, and the implementation in the 

Integrated TIGER Series, by using the slightly modified form: 
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where τ  is the electron energy in units of electron rest mass. The multiplicative factor in 

the final term is an empirical correction which improves the agreement at low energies 

between the factored cross section and the more accurate partial-wave cross sections of 

Riley (Riley, MacCallum and Biggs 1975). 

 

Bremsstrahlung 

 

MCNP addresses the sampling of bremsstrahlung photons at each electron 

substep. The tables of production probabilities are used to determine whether a 

bremsstrahlung photon will be created. For data from the el03 library (X-5 Monte Carlo 

Team 2003), the bremsstrahlung production is sampled according to a Poisson 
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distribution along the step so that none, one or more photons could be produced; the el03 

library allows for either none or one bremsstrahlung photon in a substep. If a photon is 

produced, the new photon energy is sampled from the energy distribution tables. By 

default, the angular deflection of the photon from the direction of the electron is also 

sampled from the tabular data. The direction of the electron is unaffected by the 

generation of the photon because the angular deflection of the electron is controlled by 

the multiple scattering theory.  However, the energy of the electron at the end of the 

substep is reduced by the energy of the sampled photon because the treatment of electron 

energy loss, with or without straggling, is based only on nonradiative processes. 

 

K-shell electron impact ionization and auger transitions 

 

Data tables on the el03 library use the same K-shell impact ionization calculation 

as data tables on the el library, except for how the emission of relaxation photons is 

treated; the el03 evaluation model has been modified to be consistent with the photo-

ionization relaxation model. In the el03 evaluation, a K-shell impact ionization event 

generated a photon with the average K-shell energy. 

Auger transition are handled the same for data tables from the el03 and el 

libraries. If an atom has undergone an ionizing transition and can undergo a relaxation, if 

it does not emit a photon it will emit an Auger electron. The difference between el03 and 

el is the energy with which an Auger electron is emitted, given by 
KA EE =  or 

LKA 2EEE −=  for el or el03, respectively. The el value is that of the highest energy 
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Auger electron while the el03 value is the energy of the most probable Auger electron. It 

should be noted that both models are somewhat crude. 

 

Knock-on electrons 

 

The cross section for scattering of an electron by an electron is: 
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where ε , τ , E, and C have the same meanings as in eqns (2.6-2.8)  

When calculating stopping powers, one is interested in all possible energy 

transfers. However, for the sampling of transportable secondary particles, one wants the 

probability of energy transfers greater than some cε  representing an energy cutoff, below 

which secondary particles will not be followed. This probability can be written: 
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The reason for the upper limit of 1/2 is the same as in the discussion of 

eqn (2.9).  Explicit integration of eqn (2.26) leads to: 
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Then the normalized probability distribution for the generation of secondary 

electrons with cεε >  is given by: 
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At each electron substep, MCNP uses ( )cεσ  to determine randomly whether 

knock-on electrons will be generated. If so, the distribution of eqn (2.29) is used to sample 

the energy of each secondary electron. Once energy has been sampled, the angle between 

the primary direction and the direction of the newly generated secondary particle is 

determined by momentum conservation. This angular deflection is used for the subsequent 

transport of the secondary electron. However, neither the energy nor the direction of the 

primary electron is altered by the sampling of the secondary particle. On the average, 

both the energy loss and the angular deflection of the primary electron have been taken 

into account by the multiple scattering theories. 
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Pulse height tally 

 

The pulse height tally provides the energy distribution of pulses created in a cell 

that models a physical detector. It also can provide the energy deposition in a cell. 

Although the entries on the F8 card are cells, this is not a track length cell tally. F8 tallies 

are made at source points and at surface crossings. 

The pulse height tally is analogous to a physical detector. The F8 energy bins 

correspond to the total energy deposited in a detector in the specified channels by each 

physical particle (history). All the other MCNP tallies record the energy of a scoring 

track in the energy bin. 

In the analogous MCNP pulse height tally, the source cell is credited with the 

energy times the weight of the source particle. When a particle crosses a surface, the 

energy times the weight of the particle is subtracted from the account of the cell that it is 

leaving and is added to the account of the cell that it is entering. The energy is the kinetic 

energy of the particle plus 2m
0
c2 = 1.022016 MeV if the particle is a positron. At the end 

of the history, the account in each tally cell is divided by the source weight. The resulting 

energy determines which energy bin the score is put in. The value of the score is the source 

weight for an F8 tally and the source weight times the energy in the account for a F8 tally. 

The value of the score is zero if no track entered the cell during the history (X-5 Monte 

Carlo Team 2003). 
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Radioactive microsphere applications 

 

Radioactive microspheres are a new treatment technique becoming widely used 

in cases where surgery or beam therapy can not be implemented.  Today it is employed 

for patients with different kinds of cancers such as breast, lung, prostate, ovarian and 

pancreatic; primary and metastatic hepatic tumors and also for treatment of rheumatoid 

arthritis.  

Intracavitary therapy of malignant effusions with microspheres has three aims: 

cover the cavity surface and irradiate adherent malignant cells; destroy tumor cells in the 

fluid; and alter the cavity surface in such a way that is less favorable for implantation 

and growth of further malignant cells. There are two major approaches utilized in 

intratumor therapy: direct and indirect tumor therapy. 

Direct tumor therapy deals with introduction of radioactive microspheres directly 

into tumors and offers the possibility of localized high radiation exposure. However, 

there are two major difficulties: 

1. Microspheres reaching small vessels in a tumor may be carried away, 

because most particles used are smaller than mean capillary diameter. Particles released 

from a tumor are likely to deposit in liver, and increase the radiation dose to this organ. 

2. As a tumor undergoes radiation-induced changes, these changes may cause 

additional particle leakage from the site. 

Indirect tumor therapy employs two major routes: intravenous and intraarterial. 
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The intravenous route is clinically the easiest, but there are still considerable 

developmental problems to be overcome in delivering microparticles specifically to the 

tumor (i.e. without delivery to other sites).  

The intraarterial route which utilizes delivery of theraspheres to a tumor via an 

artery that supplies the tumor appears very attractive, because hepatic tumors (both 

primary and metastatic) usually have high arteriolar density. Particle deposition is 

proportional to blood flow and hence the arterial route could result in at least 3-fold 

higher tumor irradiation compared with normal liver. However, initial studies with Y-90 

resin based microspheres have met with the difficulties of accurately measuring the 

absorbed dose, monitoring regional perfusion that lead to GI toxicity, excessive leakage 

of radionuclide from particles and myelosuppression due to Y-90 deposition in bone. 

More recent preparations of Y-90 microspheres have significantly reduced 

leakage for both glass and resin based microspheres. Also modern angiographic 

technique can be used to identify tumor vascular architecture. Thus, combination of 

different imaging techniques should enable more accurate monitoring of absorbed dose, 

and safely delivery to determine tumor and hepatic volumes.  

An ideal radionuclide possesses the following characteristics: 

1. Pure beta emitter 

2. Accompanying gamma emission is acceptable if photon energy is less than 

300keV and abundance is less than 10% 

3. Readily available from a generator 

4. Inexpensive, and produced in reactor rather than a cyclotron 
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5. Short physical and biological half lives 

6. Well established chemistry and readily available compounds suitable for 

attachment to microparticles 

7. Suitable compounds for forming stable composite with, or link to, 

microparticles to avoid leakage 

8. Simple labeling procedure, low production cost, and not involving high 

radiation exposure to personnel 

 Table 2.1 illustrates radionuclides available today for microspheres applications 

(Archady 2001). 

 

Table 2.1 Radioactive microspheres for therapeutic applications 

Application Type of radioactive microsphere used 

Radioembolization of liver and spleen tumors 90Y-glass microspheres 
186Re/188Re-glass microspheres 
188Re-Aminex microspheres 

Radiosynoviorthesis of arthritic joints 35S-colloid 
90Y-resin microspheres  
186Re-sulfur-colloid 
188Re-macro-aggregated albumin 

Local radiotherapy 90Y-labeled poly microspheres 
165Dy-acetylacetone poly microspheres 
166Ho-acetylacetone poly microspheres 
186Re/188Re-labeled poly microspheres 

Peritoneal ovarian tumor metastases treatment, cystic 

brain tumor  

32P-chromate 

Local restenosis prevention in coronary arteries 141Ce microspheres 
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Microspheres specification 

 

The microspheres are tiny spheres made of glass, ceramic, polymers and minerals 

and are manufactured in both solid and hollow forms. Hollow microspheres do not have 

the crush resistance exhibited by solid spheres and cannot be used in systems requiring 

high-shear mixture or high-pressure molding. 

A type of microsphere used in the pharmaceutical industry is called therasphere.  

Therasphere is a therapeutic device that has been approved for use in patients as a 

Humanitarian Use Device (HUD) by the FDA office of orphan products and granted a 

humanitarian device exemption (HDE 980006) for treatment of rare cancers. It was 

originally developed in 1986 and patented in 1988, consisting of glass microspheres, 

mean diameter ranging from 20 to 30 microns that are chemically bonded to a 

radioactive pure beta emitter (e.g. yttrium-90 in case of liver cancer). Spherical particles 

are described as microspheres if they are larger than about 1µm , and nanospheres (or 

colloidal particles) if smaller than about 1µm .  

There are two widely used approaches for producing microspheres: precipitation 

and polycondensation, and solvent removal and cross-linking. Fig. 2.1 presents basic 

steps of these methods (Archady 2001).  
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Fig. 2.1 Basic methods of producing small monodisperse colloidal particles 

(nanospheres) and large polydisperse (but relatively uniform) microspheres 

 

Incorporation of radioactive material into microspheres can be accomplished by 

two basic routes: during particle formation (route 1), and radiolabeling of preformed 

microparticles (route 2). Both methods are in principle applicable to most microsphere 

types. In practice, however, inorganic particles are usually produced by the first route 

and organic by the second. In route 1, the radionuclide is usually coprecipitated with the 

same (or chemically similar) nonradioactive compound to form the particles, and hence 

the radionuclide is randomly distributed throughout the particle matrix. In route 2, the 

radionuclide may be incorporated into particles by covalent attachment, chelation or ion 

exchange. Here, the particles are often radiolabeled mainly on their surfaces, unless they 

swell fully in the reaction medium and become permeable to the radionuclide.  
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Table 2.2 illustrates beta emitting radionuclides widely used for radiotherapy 

(Archady 2001).  

 

Table 2.2 Characteristics of beta emitting microparticulate radiopharmaceuticals for 

radionuclide therapy 

Tissue 

range 

(mm) 

Microparticles Particle size 

(um) 

Radionuclide 

production 

Nuclide 

T1/2 (d) 

Emax  (MeV), 

γ energy (%) 

Max Min 
198Au-gold colloid 0.001-0.07 197Au γ)(n, 198Au 2.7 0.962, γ 0.412(96) 3.6 1.2 

169Er-citrate colloid 0.01-0.03 168Er γ)(n, 169Er 9.5 0.34 1.0 0.3 

186Re-sulfur colloid 0.005-0.01 185Re γ)(n, 186Re 3.7 1.07, γ 0.137(9) 3.6 1.2 

90Y-silicate colloid 0.1 89Y γ)(n, 90Y 2.7 2.28 11.0 3.6 

32P-phosphate, 

chromic 

0.5-1 32S p)(n, 32P 14.3 1.71 7.9 2.6 

90Y-resin 

microsphere 

29-35  14.3    

153Sm-

hydroxyapatite 

(microspheres) 

5-40 152Sm γ)(n, 153Sm 1.9 0.8, γ 0.103(28) 2.5  

165Dy-ferric 

hydroxide 

(macroaggregates) 

93%, 0.5-5 

2%, <0.4 

164Dy γ)(n, 165Dy 0.1 1.29 

γ 0.095(4) 
5.7 1.8 

165Dy-Dy 

hydroxide 

(macroaggregates) 

2-5  0.1    

166Ho-

hydroxyapatite 

(microspheres) 

27 and 50 165Ho γ)(n, 166Ho 
166Dy/166Ho(166Dy 3.4d) 

1.1 1.85 

γ 0.081(6) 
8.5  

188Re-sulfur colloid 65%, 1-5 

17%, <1 

188W-188Re 

(188W 69d) 

0.7 2.12 

γ 0.155(15) 
11.0  

90Y-citrate colloid 30%, 0.01-1 

10%, >1 

60%, <0.01 

 0.7    

90Y-ferric hydroxide 

colloid 

0.08-0.1 90Sr-90Y 

(90Sr 28.8d) 

0.7    

 

In radionuclide therapy, interstitial, intracavitary, intratumoral, and intraarterial 

injection through feeding artery to tumor, rely on microspheres distribution to ensure 

local confinement of the injected radiation dose. In all these and other diagnostic, 
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therapeutic, and related research applications, the size (or size range) of the particles 

must be chosen on the basis of the desired biodistribution and localization. 

In medical research, radiolabeled microspheres of various sizes are used for 

studying physiological function (e.g. phagocytosis), circulatory physiology such as 

blood flow to various organs and tissues, presence of arteriovenous shunts and 

anastomotic flow.  Radiolabeled microspheres are also indispensable research tools in 

development of biomedical methods based on nonradioactive microparticles. For 

example, radiolabeled nano- and microspheres are used widely for tracing 

biodistribution and in vivo fate of microparticulate drug delivery systems.  

Radiolabeled microspheres are also currently the focus of extensive research for 

a number of other potential applications. A particularly interesting idea aims at a triple 

anticancer treatment - arterial occlusion, targeted chemotherapy and internal radiation. 

The idea is based on biodegradable microcapsules carrying both radiotherapeutic and 

chemotherapeutic agents for combination therapy of hepatic tumors.  

 

Pr-142 beta emitting source 

 

This study focuses on consideration of microspheres with uniformly distributed 

beta emitting Pr-142 beta source. 

Praseodymium-142 emits about 96.3% beta rays with the endpoint energy 2.16 

MeV, 3.7% of gamma rays with the energy 1.575 MeV, and very small portion X-rays 
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and electron capture energies per disintegration.  The half-life of the isotope is about 

19.12 hours and it significantly effects time management for clinical applications.  

The calculation of average beta energy can be performed by eqn (2.30): 

 

                                                     

( )

( )∫

∫
=

max

max

E

0

E

0

β

dE ES

dE EES

E ,                                                 (2.30)                                     

                                                

where S(E) is the relative number of beta particles in the spectrum with the energy 

between E and E+dE.  

SADDE MOD 2 code developed by Reece in 1989 was used to generate beta 

spectrum for MCNP input.  The SADDE MOD2 uses the subroutine BETA, originally 

developed at the Kansas State University by Richard Faw and Gale Simons. The beta 

spectrum calculation is made through several major steps described below.  

First, using atomic number and atomic mass of the radionuclide, end point 

energy of beta particles, the yield and the degree of forbiddance for particular decay the 

BETA subroutine determines a normalized beta spectrum n(E) such that: 

 

                                                  ( ) 1dE En
maxE

0

=∫                                                (2.31) 
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The calculated spectrum is divided into 150 energy bins and then interpolated 

into 1500 values using a spline interpolation approach which is a form of interpolation 

where the interpolant is a special type of piecewise polynomial called a spline. Spline 

interpolation is preferred over polynomial interpolation because the interpolation error 

can be made small even when using low degree polynomials for the spline. Thus, spline 

interpolation avoids the problem of Runge's phenomenon which occurs when using high 

degree polynomials.The average energy of composite spectrum is calculated using the 

following equation: 

 

                                          ( )∫=
maxE

0

avg dE ECOMPE ,                                        (2.32) 

 

where COMP is an array storage with 1500 interpolated values and maxE  is the 

maximum endpoint energy for the composite spectrum. 

Next, the subroutine SADD calculates the scaled absorbed dose function ( )xφβ . 

The generated spectrum data (Fig. 2.2) is then used in MCNP input file for source 

description (Lee 2004).  

http://en.wikipedia.org/wiki/Interpolation
http://en.wikipedia.org/wiki/Piecewise
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Spline_%28mathematics%29
http://en.wikipedia.org/wiki/Polynomial_interpolation
http://en.wikipedia.org/wiki/Interpolation_error
http://en.wikipedia.org/wiki/Runge%27s_phenomenon
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Fig. 2.2 Normalized beta spectrum for Pr-142 
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CHAPTER III 

MICROSPHERES IN HUMAN ARTERIES 

 

Spherical volume source 

 

The dose rates presented here are based on Berger kernels published in 1971. 

Beta sources emit electrons in a spectrum of energies, however the average beta energy 

is used in the Berger kernel and the effect of the energy spectrum is folded into the dose 

distribution function: 

  

                                              ( ) 







=

90

β

90

2

β

X

path
F

Xπδρ4

YkE
ρς ,                                           (3.1) 

 

where ρ  is distance between source point and dose point (cm), k is unit conversion 

constant, Y is the beta yield per disintegration, βE  is the average beta energy, 

( )90β path/XF  is the dimensionless scaled absorbed dose distribution as a function of the 

modified path length and the 90X  distance, path is the modified path length between the 

source point and dose point (g/cm
2
), δ  is the density of the irradiated medium (g/cm

3
) 

and 90X  is the radius of the sphere with which 90% of the beta energy is deposited 

(Berger 1971). One may notice that ( )ρς  is in units of MeV/g.s when the unit conversion 

constant k is not used, and is converted into rad/hr when multiplied by k. 
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With respect to defined terms, dose can be determined as multiplication of point 

kernel described in eqn (3.1) and the source strength (SS). So for a given radiation and 

medium, the dose is given by multiplication of two factors. One factor depends only on 

the source terms of eqn (3.2) where all components are known and tabulated: 

 

                                                      
90

β

πδX4

YSSkE
K =                                                           (3.2) 

 

The other factor depends only on geometry terms and is a function of the source-

to-point distance ρ and the modified “path”. 

 

 

Fig. 3.1 Three-dimensional presentation of sphere 
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The three-dimensional geometry of a sphere is shown in Fig. 3.1 (Dauffy 1998). 

O is the center of the spherical source, S is the source point, P is the dose point situated 

on the y axis, A is the projection of S onto the xy plane, B is the projection of A onto the 

y axis, and r is the distance between the center of the sphere O and the point source S. 

The two angles necessary to situate a point in spherical coordinates are φ  and θ . For 

purpose of calculation, another angle α between r and ρ  has been added. 

To simplify determining the value of variable “path”, and therefore the dose, we 

divide the distance traveled by the beta particle into two parts: the distance traveled 

inside the spherical source sρ  and the distance traveled outside, through tissue, tρ . The 

equation for sρ  is:  

 

                                            ( ) 2

max

22

s R1cosαr rcosαρ +−+=                                  (3.3) 

 

The modified path length between the source point and the dose point is given by 

eqn (3.4) where density of the source material is labeled “density” and the density of 

tissue is unity: 

 

                                                  ts ρdensityρpath +×=                                                 (3.4) 

 

For a single sphere dose calculation, symmetry allows the distances ρ , sρ  and 

tρ  to be calculated using two-dimensional geometry.  



 43 

 

 

Fig. 3.2 Two-dimensional integration of a sphere 

 

The integration of the volume of the sphere overθ  is trivial, as shown in Fig. 3.2 

above (Dauffy 1998) and eqn (3.5).  

 

           ∫ ∫ ∫ ∫ ∫∫ ∫ ∫ ===
π2

0

r

0

φ

0

r

0

φ

0

22

r

0

π2

0

π

0

2 φdrdsinφrπ2φdrdsinφrdθφdθdrdsinφrV  (3.5) 

 

In this case, the expression for ρ  is given by: 
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                                         rcosφ OP 2OPrρ 222 ××−+= ,                                          (3.6) 

 

where OP is the distance between the center of the sphere and the dose point. 

The distance within the source sρ and the modified path have the same expression 

and are described by eqns (3.3) and (3.4) respectively.  

 

Line of spherical volume sources 

 

For a line of spheres we use a central sphere and an equal number of spheres 

below and above it. Dose rate for the central sphere is calculated using the two-

dimensional model, and for other spheres the three-dimensional model. Fig. 3.3 (Dauffy 

1998) illustrates this approach showing central sphere (#0) and one sphere (#1) below it. 

By symmetry, the dose resulting from the spheres lying below central one is the same as 

that from spheres above it.  
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Fig. 3.3 Three-dimensional presentation of a line of spheres 

 

Let S1ρ  be the distance traveled through the source sphere and S2ρ  be the sum of 

the distances traveled through all the other spheres. From the figure above the S1ρ  can be 

determined as: 
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                                   ( ) 222

S1 Rmax1cosαrrcosαρ +−+= ,                                     (3.7) 

 

The value of S2ρ  is calculated using a different approach. The shortest distance d 

between the center of a sphere and the source-to-dose point line SP is derived as (Selby 

1967): 

 

                                        
( ) ( )

222

2

0

2

p

22

0p

cba

zyabzcy
d

++

+++
= ,                                         (3.8) 

 

where  yp is a y coordinate of point P 

 z0 is a z coordinate of point O 

 max2nRrcosφc −=  

 n is number of sphere considered in line above 

 OPrsinφsinφb −=  

 rsinφsinφa =  

The final relation between S2ρ  and d is determined from the Fig. 3.4 (Dauffy 

1998). 
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Fig. 3.4 Triangle inside a sphere 

 

                                                       22

maxS2 dR2ρ −=                                                 (3.9) 

 

 Once the total distance traveled through the source media is found, the total 

distance traveled through the tissue is calculated using equation below: 

 

                                                       )ρ(ρρρ S2S1t +−=                                               (3.10) 
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Random packing of spheres in a cylinder 

 

The dose to the arterial wall by microspheres is strongly affected by the packing 

ratio of the microspheres. Kepler’s well known theory shows that hexagonal close 

packing is the densest method of filling. This study focuses on random packing which 

yields considerably smaller packing ratios of spheres in a cylinder. Several cases of 

sphere and cylinder sizes are considered and dose distribution is obtained at different 

distances around the cylinder.  

The codes developed in FORTRAN and Visual Basic are used to simulate 

random packing and generate data for MCNP input files. Visual Basic provides 

visualization tools but consumes much more time to execute the code. On the other 

hand, FORTRAN saves calculation time for the actual simulations. Due to large number 

of calculations, the code developed in FORTRAN is used to generate the required set of 

sphere coordinates used in this study. The code developed in Visual Basic is used to 

provide visualization and to obtain data in the format suitable for incorporation into 

MCNP input file such as cell, surface and tally cards specification. The algorithm placed 

spheres randomly in the cylinder by specifying parameters of the model such as radius of 

the cylinder and spheres; and the number of attempts to be made to place spheres in the 

cylinder.  

For this study the height of the cylinder is permanently set at 3.018 cm. One 

exception is made when the cylinder radius is 0.3 cm and the sphere’s radius is 0.03 cm. 

This exception is made because of the restriction of the number of surfaces allowed in 
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MCNP input files. The number of spheres for this case exceeds the maximum allowable 

number of surfaces. For this case the cylinder height is reduced to 1.059 cm and equals 

the maximum electron path in tissue. The cylinder height of 1.059 cm works as well as 

3.018 cm for this study; the difference is that the height of 3.018 cm gives an 

opportunity to collect 56 measurements for each distance after one MCNP run versus 

eight measurements in case with the height of 1.059 cm. The more data gathered in each 

run, the less total runs and time required to collect sufficient statistics. That is crucial for 

considering a wide variety of cases and collecting meaningful statistics for each of them.  

The height of the cylinders is chosen based on the maximum range of emitted 

electrons by Pr-142 in water and the location of points of interest where the 

measurements of dose are taken. The maximum range of electrons in water is 

determined as 1.059 cm. The seven points of dose measurements were chosen along the 

cylinder axis with the steps of 0.15 cm starting from the middle. Thus required height is 

determined as:  

 

                  Cylinder height = (3 ×  0.15 cm+1.059 cm) ×  2 = 3.018 cm        (3.11) 

 

Random numbers were generated by the imbedded FORTRAN random generator 

function. First, cylinder and sphere sizes are specified. The format of data is chosen to 

match that used in MCNP input files, so parameter units are centimeters or they are 

unitless. Next, x, y and z coordinates of spheres are generated based on uniform 

distribution within specified intervals. Let R and H be the cylinder radius and height 
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respectively; and r be the sphere radius. The x, y and z coordinate intervals can be 

determined through equations illustrated below: 

 

r -Rxr) -R( ≤≤− , 

                                                       r-Ryr)-R( ≤≤− ,                                              (3.12)                  

r-Hzr ≤≤  

 

After choosing an x and y coordinates, the sphere coordinates are checked for 

fitting into the cylinder using sample rejection. The x and y coordinates are substituted 

into the circle equation below and the coordinates are accepted if they satisfy the 

condition: 

 

                                                          222 r)R(yx −≤+                                              (3.13) 

 

Next, the sphere is checked for intersection with previously positioned spheres if 

any. If there is no intersection then the new sphere is positioned in the cylinder and the 

coordinates of this sphere are stored. This method of filling the cylinder with spheres 

doesn’t consider sphere movement such as fall or rolling over the adjacent sphere after it 

is positioned at the specific location. Attempts to further fill the cylinder with spheres 

stop after a specified number of attempts to place randomly generated spheres in the 

cylinder. 



 51 

Due to the nature of algorithm there is a spread of possible number of spheres 

placed in the cylinder. Results obtained in this study are based on the mode of the 

number of spheres placed in the cylinder. The mode for each case is determined through 

embedding necessary number of loops in the code. Table 3.1 presents the mode of the 

number of spheres observed for each case as well as corresponding packing ratio.  

 

Table 3.1 Most probable number of spheres and packing ratios 

Case (cylinder radius, cm / sphere radius, cm) Number of spheres Packing ratio 

0.1/0.03 257 0.31 

0.1/0.05 52 0.29 

0.1/0.07 16 0.24 

0.15/0.03 610 0.32 

0.15/0.05 120 0.3 

0.15/0.07 35 0.24 

0.3/0.03 

(H=1.059 cm) 

910 0.34 

0.3/0.05 538 0.33 

0.3/0.07 184 0.31 

 

This study covers several cases of cylinder and sphere radii. The selected 

cylinder radii are 0.1, 0.15 and 0.3 cm and sphere radii studied for each cylinder size are 

0.03, 0.05 and 0.07 cm. This choice of cases is made based on dimensions of human 

arteries, sphere manufacturing specification and consistence with Lee’s dissertation data 

(Lee 2004).  

The MCNP limit of the maximum number of surfaces is set to 1000 and it 

restricts variety of cases that can be considered. For an example, for the case with 

cylinder radius of 0.15 cm and sphere radius of 0.01 cm even with modification of the 

cylinder height from 3.018 cm to 1.059 cm the number of spheres generated is about 
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5500. Obviously further decrement of cylinder height results in dose underestimation 

due to exclusion from consideration sources distant from the dose point beyond cylinder 

height but less than 1.059 cm. 

 

Geometry used for multiple microspheres 

 

The model used in this study matches the one used by Sung-Woo Lee (2004). 

The human artery is modeled as a cylinder of specific radius and sufficient height to 

establish the highest dose from beta-rays. Microspheres are modeled as spheres filled 

with Pr-142 beta emitting source. Specifically, the weight fraction of each sphere is 

praseodymium, 10.5%, oxygen, 63.2%, aluminum, 10.5%, and silicon, 15.8%. The Pr-

142 is assumed to be uniformly distributed throughout the sphere and the sphere density 

is assumed to be 3 g/cm
3
. Water is considered as tissue media in and around the cylinder. 

Dose is calculated utilizing MCNP *F8 tallies for energy deposition in the cell 

and point detectors are approximated as spheres with the radius equal to 0.01 cm. Three 

different distances for placing detectors around the cylinder are considered. They are 

chosen as 0, 0.075 and 0.15 cm from the surface of the cylinder and correspond to a dose 

in drop of approximately 0, 50 and 75% respectively. Points beyond 0.3 cm from the 

surface were not studied because the dose at these distances is usually a factor of 10 

lower than the surface doses. A graph of dose versus distance is presented in Fig. 3.5. 

The data graphed is for a cylinder radius of 0.15 cm and a sphere radius of 0.05 cm. 
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Fig. 3.5 Dose versus distance from the cylinder for a cylinder radius of 0.15 cm  

packed with 0.05 cm radius spheres 

 

To obtain better data at each distance, 56 different detector locations are 

specified for each particular distance. The detectors are positioned around the cylinder 

and along its axis. Eight radial positions and seven axial locations are specified for each 

distance. The distance between detectors along the axis is 0.15 cm. As discussed earlier, 

the maximum range of electrons in water for Pr-142 betas is 1.059 cm and the height of 

the cylinder in the model is set to 3.018 cm. The schematic view of the model used in 

this study is presented on Fig. 3.6.  

 



 54 

 

Fig. 3.6 Schematic view of model used in calculations (  - position of point 

detectors,  - microsphere) 

 

This scheme determines dose distribution around the cylinder with acceptable 

error. The results are considered more detail in the next section. The same data points are 

used for limiting cases of uniformly distributed source and a line of spheres. 
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CHAPTER IV 

RESULTS 

 

Number of histories (simulations) 

 

Important in MCNP simulations is a number of histories (simulations) generated 

- more histories yield more precise results and less random. However, a reasonable 

balance between the number of simulations and the cost of calculations should be struck 

for a particular application. The relative random error in the results as a function of 

simulation histories for a uniformly distributed cylindrical source with radius of 0.15 cm 

is shown on Fig. 4.1. 
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Fig. 4.1 Random error versus number of histories 
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The random error is correlated with the number of hits in the detector. When the 

total number of hits is small, one additional event in the detector causes sufficient 

change to the average dose. As number of histories increases the average dose to the 

detector becomes closer to the true value. The detectors distant from the cylinder have 

the lowest number of hits and therefore establish the upper boundary of calculation error. 

As expected from the properties of random error statistics, Fig. 4.1 indicates that the 

error decreases approximately as: 

 

                                          
histories of #

1
 error ≅                                            (4.1) 

 

Two percent relative random error was deemed adequate for this study which 

sets the acceptable number of histories to 200 million. 

  

Dose distribution 

 

 The dose distribution for each study case (a particular combination of cylinder 

and sphere radii) is determined based on unit source activity is presented as histograms 

in Figs. 4.2 - 4.10.  The sphere case results for each cylinder size are plotted on the same 

figure. Eight intervals are chosen for plotting histograms and an average dose and its 

standard deviation are determined for each case. The intervals are chosen based on the 
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data spread throughout the sphere cases within a given cylinder size. The relative 

standard deviation is determined using eqn (4.2). 

 

                            %100
 valuedose Average

deviation Standard
 deviation  standard Relative ∗=              (4.2) 

 

 Figs. 4.2–4.4 illustrate the calculated distributions for a cylinder radius of 0.1 cm 

at three distances of interest.  
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Fig. 4.2 Dose distribution for the cylinder radius of 0.1 cm at the distance of 0 cm 

(Note: As shown in the caption box 0.03 represents sphere radius of 0.03 cm) 
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Fig. 4.3 Dose distribution for the cylinder radius of 0.1 cm at the distance of 0.075 cm 
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Fig. 4.4 Dose distribution for the cylinder radius of 0.1 cm at the distance of 0.15 cm 

 

  

 Figs. 4.5–4.7 present the calculated distributions for a cylinder radius of 0.15 cm 

at three distances of interest.  
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Fig. 4.5 Dose distribution for the cylinder radius of 0.15 cm at the distance of 0 cm 
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Fig. 4.6 Dose distribution for the cylinder radius of 0.15 cm at the distance of 0.075 cm 
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Fig. 4.7 Dose distribution for the cylinder radius of 0.15 cm at the distance of 0.15 cm 

 

 Figs. 4.8–4.10 illustrate the calculated distributions for a cylinder radius of 0.3 

cm at three distances of interest.  
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Fig. 4.8 Dose distribution for the cylinder radius of 0.3 cm at the distance of 0 cm 
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Fig. 4.9 Dose distribution for the cylinder radius of 0.3 cm at the distance of 0.075 cm 
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Fig. 4.10 Dose distribution for the cylinder radius of 0.3 cm at the distance of 0.15 cm 
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 The figures above give a general idea about distribution shape and provide 

information regarding the average dose for each case and the relative standard 

deviations. The distributions plotted separately for each case are presented in 

Appendixes E-G. From Figs. 4.2–4.10 note that the smaller the sphere radius, the smaller 

the dose variance observed in each cylinder case. Also note that for the same sphere 

radius in different cylinder cases, the larger the cylinder size, the smaller the dose 

variances for a given sphere size.    

 

Dose distribution shapes 

 

 Based on the shape of the dose distribution histograms as illustrated in the 

Appendixes E-G, a normal distribution can be fit within calculated error bars. This 

simplifies the dose calculations and gives an opportunity to specify target doses with 

known confidence intervals. As the average dose and relative standard deviation are 

determined for the chosen case, the target dose at the desired distance can be estimated 

within specific confidence intervals. Well-known confidence levels of 68, 90, 95 and 99 

percent correspond to the 1, 1.64, 1.96 and 2.58 standard deviations respectively. 

Clinical use of microspheres requires consideration of affects on the target and 

surrounding tissues from dose variance at the distance of interest. The choice of the 

sphere radii should be made with an understanding of the spread in the dose values based 

on the data in this study.   
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Data collected 

 

 Tables 4.1–4.3 present calculated values of average doses and relative standard 

deviations (RSTD) at the distances of interest with respect to sphere and cylinder sizes 

as well as the sphere radius to the cylinder radius ratios (r/R). 

 

Table 4.1 The average dose values and related variance at the distance of 0 cm 

 Cylinder radius (R), cm 

 0.1 0.15 0.3 

Sphere 

radius 

(r), cm 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

0.03 0.30 1.696e-7 6.247 0.20 9.635e-8 4.759 0.10 3.123e-8 2.650 

0.05 0.50 1.577e-7 17.698 0.33 9.418e-8 9.791 0.17 2.931e-8 5.776 

0.07 0.70 1.517e-7 22.634 0.47 8.625e-8 20.368 0.23 2.761e-8 9.910 
 

 

Table 4.2 The average dose values and related variance at the distance of 0.075 cm 

 Cylinder radius (R), cm 

 0.1 0.15 0.3 

Sphere 

radius 

(r), cm 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

0.03 0.30 7.436e-8 3.413 0.20 4.609e-8 3.394 0.10 1.760e-8 2.787 

0.05 0.50 7.072e-8 11.812 0.33 4.572e-8 6.346 0.17 1.563e-8 4.748 

0.07 0.70 6.653e-8 16.269 0.47 4.371e-8 13.267 0.23 1.492e-8 7.411 
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Table 4.3 The average doses and related variance at the distance of 0.15 cm 

 Cylinder radius (R), cm 

 0.1 0.15 0.3 

Sphere 

radius 

(r), cm 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

r/R Average 

dose, 

mGy/Bq 

RSTD, 

% 

0.03 0.30 3.946e-8 2.876 0.20 2.512e-8 3.236 0.10 8.669e-9 3.010 

0.05 0.50 3.756e-8 10.654 0.33 2.489e-8 5.950 0.17 8.729e-9 4.644 

0.07 0.70 3.666e-8 14.559 0.47 2.362e-8 11.767 0.23 8.280e-9 6.663 
 

 

 The data above suggest that there is a correlation between r/R ratios and the 

average dose and the relative standard deviations. Picking two cases with the same r/R 

ratio from the Table 4.1, for example, the cylinder radius of 0.1 cm with the sphere radii 

of 0.03 cm and the cylinder radius of 0.15 cm and the sphere radii of 0.05 cm, note a 

correlation between an average dose and its relative variance. In the case with the 

cylinder radius of 0.15 cm and the sphere radii of 0.05 cm, there is about 50% decrease 

in the average dose value and about 50% increase in the relative standard deviation value 

with respect to the values for a cylinder radius of 0.1 cm. The difference of about 50% in 

values follows the difference in the cylinder sizes, which is also 50%. A linear 

correlation between the average dose values, the relative standard deviation values and 

the cylinder size within specified r/R ratio can be postulated. This correlation is true for 

the surface values but is not true for dose points off the surface.  
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Results verification 

 

 Doses from a uniformly distributed source and a line of spheres are calculated to 

verify results obtained in this study. The cylinder radii considered for the limiting cases 

are 0.1, 0.15 and 0.3 cm. The density of the media for uniformly distributed source case 

was set as the average density throughout the cylinder for the sphere cases in a given 

cylinder case. The cylinder size is the same as that for sphere cases and the radii of 

spheres in a line match the radius of the cylinder. The number of spheres is determined 

as 15, 10 and 5 for the cylinder radius of 0.1, 0.15 and 0.3 cm respectively.  
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Fig. 4.11 Dose versus distance: cylinder radius of 0.1 cm 

(Note: As shown in the caption box Spheres (0.03) represents 

sphere radii of 0.03 cm) 
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 Fig. 4.11 illustrates the average dose for a cylinder with a radius of 0.1 cm. The 

locations of detectors for limiting cases are the same as those for the sphere cases. All 

simulations set the source activity to one becquerel over the volume of the source 

material. The dose decreases monotonically from the uniformly distributed source case 

to the sphere cases and then to the line of spheres case.  These results can be explained if 

the attenuation property of media is taken into account. For the sphere cases with the 

same cylinder size, the difference in doses lies in source volume and the attenuation 

within the cylinder. All electrons originate in random locations within the spheres and 

the energy of each electron that exits the source sphere depends on the initial energy and 

the length of its path through the sphere. An electron loses more energy on average 

going through the sphere with the radius of 0.07 than through the ones with the radii of 

0.05 and 0.03 cm. Beyond the source sphere the attenuation of the electron is effected by 

the volume of the material throughout the cylinder and its density.  

The same explanation applies to the line of spheres and the uniformly distributed 

source for a given cylinder size. The uniformly distributed source case has the highest 

source volume but the density of intervening material is about two times lower than that 

of sphere material, so more electrons escape the cylinder. The density of the sphere 

material in the line of spheres case is the same as that in the sphere cases, but the volume 

of the dense material is larger in the line of spheres case and as a result the dose values 

are lower. Fig. 4.12 illustrates doses corresponding to the sphere, line and uniformly 

distributed source cases with the cylinder radius of 0.15 cm.  
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Fig. 4.12 Dose versus distance: cylinder radius of 0.15 cm 

 

In Fig. 4.12 note that the microsphere results are bounded by a uniform cylinder 

source and a line of spheres. The absolute doses are smaller for the 0.15 cm cylinder 

compared to the 0.1 cm cylinder. The decline in the dose is caused by the increase in the 

volume of the dense source material.  In the sphere cases, with increase of cylinder size, 

there is the increase in the number of spheres distributed in the cylinder. Thus we have 

more high density material throughout the cylinder. Fig. 4.13 presents results for the 

cases with the cylinder radius of 0.3 cm.  
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Fig. 4.13 Dose versus distance: cylinder radius of 0.3 cm 

 

 Fig. 4.13 follows the same pattern determined for the two previous cases. Based 

on these results some general conclusions can be made.  Increasing the cylinder radius 

decreases the dose in all cases. Also in a given cylinder case, the dose is correlated to the 

sphere to cylinder radius (r/R) ratio. As the ratio increases the dose decreases.  

 An additional consistency check can be based on the difference of doses in each 

case versus the distance from the cylinder. The figures above show that the further the 

detectors are from the cylinder, the stronger the convergence among the results for the 

spheres, the uniformly distributed source, and the line of spheres cases.   
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Average dose estimation 

 

 For clinical applications the dose must be assessed accurately at any distance of 

interest. From Figs. 4.11-4.13 the correlation between average dose values and distance 

can be seen. Fig. 4.14 is a plot of average dose versus distance as a fraction of the 

surface doses.  
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Fig. 4.14 Average dose fractions versus distance 
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 The equation shown in Fig. 4.14 is based on the average dose fractions and 

provides an estimate of the average dose at distances out to 0.15 cm as a fraction of the 

surface dose. The error bars correspond to the 95% confidence level. For clinical 

application a simple and fast method is needed to calculate target dose values and the 

variance in dose. Uniformly distributed sources are very well studied and there are 

methods to determine the dose quickly and accurately. Ideally a correlation exists 

between sphere and uniformly distributed source cases. Tables 4.4–4.6 present 

correction factors between the uniformly distributed source and the sphere cases. The 

density of the media for uniformly distributed source case was set to the average density 

in the cylinder volume for the particular case. For the cylinder radii of 0.1, 0.15 and 0.3 

cm this density corresponded to the most probable number of spheres is 1.5, 1.57 and 

1.66 g/cm
3
 respectively. 

 

Table 4.4 Correction factors for the cylinder radius of 0.1 cm 

 Distance from the cylinder surface, cm 

 0 0.075 0.15 

 Uniformly distributed source (averaged density) 

 Average dose, mGy/Bq 

 1.81789e-7 8.47771e-8 4.22929e-8 

Sphere radius, 

cm 

Average dose correction factors from uniform to sphere case 

0.03 0.933 0.877 0.933 

0.05 0.867 0.834 0.888 

0.07 0.835 0.785 0.867 
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Table 4.5 Correction factors for the cylinder radius of 0.15 cm 

 Distance from the cylinder surface, cm 

 0 0.075 0.15 

 Uniformly distributed source (averaged density) 

 Average dose, mGy/Bq 

 1.03477e-7 6.12674e-8 2.74309e-8 

Sphere radius, 

cm 

Average dose correction factors from uniform to sphere case 

0.03 0.931 0.752 0.916 

0.05 0.910 0.746 0.907 

0.07 0.834 0.713 0.861 
 

 

Table 4.6 Correction factors for the cylinder radius of 0.3 cm 

 Distance from the cylinder surface, cm 

 0 0.075 0.15 

 Uniformly distributed source (averaged density) 

 Average dose, mGy/Bq 

 3.25155e-8 1.90368e-8 1.00897e-8 

Sphere radius, 

cm 

Average dose correction factors from uniform to sphere case 

0.03 0.960 0.924 0.859 

0.05 0.901 0.821 0.865 

0.07 0.849 0.784 0.821 

 

 Once surface doses are known we can predict doses throughout the volume 

studied. Fig. 4.15 presents the surface dose correction factors as a fraction of the surface 

dose for uniformly distributed source with respect to r/R ratio.  
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Fig. 4.15 Surface dose correction factors versus r/R ratio 

 

Dose variance estimation 

  

 The dose variance can have an effect on the application of microsphere therapy. 

The next step is to determine how to assess dose variance. Fig. 4.16 illustrates the 

relative standard deviation values for each case at the distances of interest.  
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Fig. 4.16 Dose variance for each case at the distances of interest 

(Note: As shown in the caption box 0.1/0.03 represents cylinder radius  

of 0.1 cm and sphere radius of 0.03 cm) 

 

 From Fig. 4.16 note that the relative standard deviations for each case are 

maximum on the surface of the cylinder, demonstrating that the sphere’s distribution in a 

cylinder has a large effect on the dose variance. The further away the dose point, the 

lower the relative standard deviation. If we go far enough away, the variation is 

dominated by random error inherent in the Monte Carlo method. The MCNP statistical 

error increases with increasing distance from the source and plays the major role in dose 

variance at 0.3 cm. The variance for the cylinder radius of 0.3 cm and spheres radii of 
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0.03 cm actually increases instead of decreasing as expected, confirming the effect of the 

MCNP random calculation error.  

 Also note that the error decreases with the decreasing sphere radius to cylinder 

radius ratio. As the sphere size decreases within specified cylinder case, the uniformly 

distributed source case is approached. This correlation can be identified clearly for 

sphere cases in a given cylinder case as well as among the cylinder cases.  

 The correlation between the dose variances and distance from the cylinder is 

studied by determining the fractions of the dose variances with respect to the surface 

variance.  Fig. 4.17 presents the dose variance fractions versus distance. 
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Fig. 4.17 Relative standard deviation versus distance 

(Note: As shown in the caption box 0.1/0.03 represents cylinder  

radius of 0.1 cm and sphere radius of 0.03 cm) 
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 The approximation equation is determined based on the average value of 

fractions. The related error corresponds to the 95% confidence level. The correlation 

allows estimation of the dose variance at any distance of interest as a fraction of the 

surface dose variances. The final step in the dose variance estimation technique is to find 

out a way to predict the surface dose variance.  

 Based on the data collected it is reasonable to find a correlation between the dose 

variances on the surface and the r/R ratios. Theoretically, we can expect the correlation 

curve to be a sigmoid.  Fig. 4.18 presents the expected correlation curve between the 

surface dose variance and the r/R ratio.  
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Fig. 4.18 Expected relative standard deviation versus r/R ratio 
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 The minimum value on the curve, as r/R approaches zero, corresponds to the 

uniformly distributed source case. For this case we expect the variance to approach zero. 

The maximum value corresponds to the line of spheres case. For this case we expect to 

see the maximum variance of dose values due to geometrical distribution of spheres. Fig. 

4.19 presents the relative standard deviation versus r/R ratio for each cylinder size. 

 

 

Fig. 4.19 Observed relative standard deviation versus r/R ratio 

(Note: As shown in the caption box 0.1 represents the cylinder  

radius of 0.1 cm) 
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The shape of the curve for the cylinder radius of 0.1 cm confirms the expected 

shape of the curve when the maximum of r/R ratio is approached. On the other hand the 

other two cases confirm the shape when the minimum of r/R ratio is approached. The 

dotted line represents the expected curves. Nevertheless for a clear validation additional 

data points are required. If the shape of the curves is confirmed then each of the curves 

representing different cylinder sizes can be approximated with the sigmoid equation. 

One of the possible sigmoid approximations is the cumulative Gaussian distribution 

(cdf). If this equation is utilized then the equation for each curve will have two 

parameters. When the equations are determined the correlation between the equation 

parameters and the sizes of spheres and cylinders can be found.  
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CHAPTER V 

CONCLUSIONS 

 

 The purpose of this study was to determine the dose distribution for randomly 

packed microspheres and to develop a technique for estimating dose and its variance. A 

model consisting of a cylinder filled with microspheres was utilized. The cylinder height 

was set as 3.018 cm for all cases. Sphere radii of 0.03, 0.05 and 0.07 cm; and cylinder 

radii of 0.1, 0.15 and 0.3 cm were considered. The packing ratio of the spheres in the 

cylinder was about 0.3. Exception was made for two cases with the sphere radius to the 

cylinder radius ratio of about 0.2. For those cases the packing ratio of microspheres was 

about 0.2. Dose calculations were performed on the cylinder surface, and at distances 

where the dose is approximately 50% and 75% of the surface dose. Doses were 

calculated at 56 locations around the cylinder for each distance. The average dose and its 

relative standard deviation were determined based on five different random distributions 

of spheres for each case.  

 The random filling of the cylinder with microspheres was simulated by an 

algorithm developed in FORTRAN 95. The simulations of dose were performed using 

Monte Carlo Neutron Particle Code developed at the Los Alamos National Laboratory 

(X-5 Monte Carlo Team 2003). The dose values were determined through the MCNP 

*F8 tally for energy deposition in a cell. All calculations were performed for the source 

activity of one becquerel in the cylinder volume using Pr-142 as the beta source. The 

point detectors at the locations of interest were cast as spherical cells with a radius of 
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0.01 cm. The material uniformly distributed throughout the microspheres consisted of 

Pr-142, Al-27, O-16 and Si-28 and its density was assumed to be 3 g/cm
3
. The tissue 

media density was equal to water. 

 The results obtained in the study included the average doses and the relative 

standard deviations for each case at the distances of interest. The dose distribution shape 

for each case was determined and shown as histograms.  

 The results were verified by comparing with two limiting cases: the line of 

spheres and the uniformly distributed source. The results obtained for the spheres cases 

lay between these two limiting cases. The dose values converged with the results 

obtained for the limiting cases with increasing distance.  

 Based on the data obtained, the following conclusions regarding correlations 

between the dose values, the relative standard deviations, and the radii of spheres and 

cylinders were made. Comparing average doses and dose variances for the same sphere 

radius in different cylinder cases led to the conclusion that the larger the cylinder size, 

the smaller the average dose and dose variance for a given sphere size. 

 A correlation between the sphere to cylinder radius ratios (r/R) and the average 

dose and its variance was found. Within a specified r/R ratio, a linear correlation exists 

between the average dose values, the related variances, and the cylinder size. The data 

suggest that with an increase in cylinder size there is a linear decrease of the average 

dose and an increase of the dose variance. For example, for the r/R ratio equal to 0.2, 

when the cylinder radius was increased from 0.15 cm to 0.3 cm there is about 100% 
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decrease of the average dose and about 100% increase of the dose variance. However 

this conclusion was true only for the dose values on the surface of the cylinder.  

 The distribution of the spheres within a cylinder had a major effect on the dose 

variance on the surface of the cylinder. The further away from the surface the dose 

points were, the lower the dose variance. MCNP calculation error increased with the 

distance from the source and was comparable to the geometric dose variance at 0.3 cm. 

If the dose variance approached the MCNP calculation error for a particular case, the 

error followed the MCNP error pattern and increased with distance from the cylinder.  

 Based on the data collected, the correlations between the average dose, its related 

variance, and distance from the cylinder were determined. An approach for estimating 

the surface average dose was developed and suggestions regarding an approach to assess 

surface variance estimation were presented. The dose distribution shapes could be 

approximated with the Gaussian distribution. This known distribution combined with the 

approaches developed for average dose and its variance prediction give an opportunity to 

determine the target dose and related variance within determined confidence intervals. 

 Although the microsphere applications in brachytherapy seem to be very 

promising, there is still a sufficient lack of knowledge in the application techniques and 

methods. The theoretical research of microsphere applications is the first essential step. 

The data available today covers a limited number of the microsphere sizes and filling 

techniques.  

 Future studies should extend the number of cases to provide theoretical basis for 

practical applications and confirm the conclusions made herein. A study of other 
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possible filling techniques should be performed. The advanced transport codes utilized 

today provide a high degree of accuracy for any geometry complexity, although some 

calculations consume large amounts of computer time. On the other hand, the point 

kernel methods require much less computational time and provide relatively high 

accuracy for simple geometries. For practical application the time to calculate target 

dose estimation can be very crucial. Future studies should examine applicability and 

advantages of different transport codes.    
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APPENDIX A 

FLOW CHART OF RANDOM FILLING ALGORITHM 
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Fig. A.1 Flowchart of filling algorithm developed in FORTRAN 
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c Case: cylinder radius = 0.15 cm (middle case in the sizes set) 
c       cylinder height = 3.018 cm (2*1.059+2*0.45) 
c       sphere radius   = 0.05 cm 
c       # of spheres    = 120 (most probable) 
c Coordinates of spheres generated using code written in FORTRAN 
c Packing ration = 0.31 (volume of spheres / cylinder volume) 
c Detector locations: along the axe: Z = 1.059 cm 
c                                        1.209 cm 
c                                        1.359 cm 
c                                        1.509 cm 
c                                        1.659 cm 
c                                        1.809 cm 
c                                        1.959 cm 
c Distance from the cylinder: 0 cm, 0.15cm, 0.3cm, 0.45cm 
c 
c*****************************************  
c****************CELL CARD**************** 
c***************************************** 
c  
c 1-st # - cell #  
c 2-nd # - material # 
c 3-d #  - density 
c 4-th # - surfaces #'s defining cell 
c 
c Spheres cells 
c 
1 1 -3 -1 
2 1 -3 -2 
3 1 -3 -3 
4 1 -3 -4 
5 1 -3 -5 
6 1 -3 -6 
7 1 -3 -7 
8 1 -3 -8 
9 1 -3 -9 
10 1 -3 -10 
11 1 -3 -11 
12 1 -3 -12 
13 1 -3 -13 
14 1 -3 -14 
15 1 -3 -15 
16 1 -3 -16 
17 1 -3 -17 
18 1 -3 -18 
19 1 -3 -19 
20 1 -3 -20 
21 1 -3 -21 
22 1 -3 -22 
23 1 -3 -23 
24 1 -3 -24 
25 1 -3 -25 
26 1 -3 -26 
27 1 -3 -27 
28 1 -3 -28 
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29 1 -3 -29 
30 1 -3 -30 
31 1 -3 -31 
32 1 -3 -32 
33 1 -3 -33 
34 1 -3 -34 
35 1 -3 -35 
36 1 -3 -36 
37 1 -3 -37 
38 1 -3 -38 
39 1 -3 -39 
40 1 -3 -40 
41 1 -3 -41 
42 1 -3 -42 
43 1 -3 -43 
44 1 -3 -44 
45 1 -3 -45 
46 1 -3 -46 
47 1 -3 -47 
48 1 -3 -48 
49 1 -3 -49 
50 1 -3 -50 
51 1 -3 -51 
52 1 -3 -52 
53 1 -3 -53 
54 1 -3 -54 
55 1 -3 -55 
56 1 -3 -56 
57 1 -3 -57 
58 1 -3 -58 
59 1 -3 -59 
60 1 -3 -60 
61 1 -3 -61 
62 1 -3 -62 
63 1 -3 -63 
64 1 -3 -64 
65 1 -3 -65 
66 1 -3 -66 
67 1 -3 -67 
68 1 -3 -68 
69 1 -3 -69 
70 1 -3 -70 
71 1 -3 -71 
72 1 -3 -72 
73 1 -3 -73 
74 1 -3 -74 
75 1 -3 -75 
76 1 -3 -76 
77 1 -3 -77 
78 1 -3 -78 
79 1 -3 -79 
80 1 -3 -80 
81 1 -3 -81 
82 1 -3 -82 
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83 1 -3 -83 
84 1 -3 -84 
85 1 -3 -85 
86 1 -3 -86 
87 1 -3 -87 
88 1 -3 -88 
89 1 -3 -89 
90 1 -3 -90 
91 1 -3 -91 
92 1 -3 -92 
93 1 -3 -93 
94 1 -3 -94 
95 1 -3 -95 
96 1 -3 -96 
97 1 -3 -97 
98 1 -3 -98 
99 1 -3 -99 
100 1 -3 -100 
101 1 -3 -101 
102 1 -3 -102 
103 1 -3 -103 
104 1 -3 -104 
105 1 -3 -105 
106 1 -3 -106 
107 1 -3 -107 
108 1 -3 -108 
109 1 -3 -109 
110 1 -3 -110 
111 1 -3 -111 
112 1 -3 -112 
113 1 -3 -113 
114 1 -3 -114 
115 1 -3 -115 
116 1 -3 -116 
117 1 -3 -117 
118 1 -3 -118 
119 1 -3 -119 
120 1 -3 -120 
c 
c Tally cells 
c 
9011 2 -1 -9011 
9012 2 -1 -9012 
9013 2 -1 -9013 
9014 2 -1 -9014 
9015 2 -1 -9015 
9016 2 -1 -9016 
9017 2 -1 -9017 
c 
9021 2 -1 -9021 
9022 2 -1 -9022 
9023 2 -1 -9023 
9024 2 -1 -9024 
9025 2 -1 -9025 
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9026 2 -1 -9026 
9027 2 -1 -9027 
c 
9031 2 -1 -9031 
9032 2 -1 -9032 
9033 2 -1 -9033 
9034 2 -1 -9034 
9035 2 -1 -9035 
9036 2 -1 -9036 
9037 2 -1 -9037 
c 
9041 2 -1 -9041 
9042 2 -1 -9042 
9043 2 -1 -9043 
9044 2 -1 -9044 
9045 2 -1 -9045 
9046 2 -1 -9046 
9047 2 -1 -9047 
c 
c 
*********************************************************************** 
c 
9111 2 -1 -9111 
9112 2 -1 -9112 
9113 2 -1 -9113 
9114 2 -1 -9114 
9115 2 -1 -9115 
9116 2 -1 -9116 
9117 2 -1 -9117 
c 
9121 2 -1 -9121 
9122 2 -1 -9122 
9123 2 -1 -9123 
9124 2 -1 -9124 
9125 2 -1 -9125 
9126 2 -1 -9126 
9127 2 -1 -9127 
c 
9131 2 -1 -9131 
9132 2 -1 -9132 
9133 2 -1 -9133 
9134 2 -1 -9134 
9135 2 -1 -9135 
9136 2 -1 -9136 
9137 2 -1 -9137 
c 
9141 2 -1 -9141 
9142 2 -1 -9142 
9143 2 -1 -9143 
9144 2 -1 -9144 
9145 2 -1 -9145 
9146 2 -1 -9146 
9147 2 -1 -9147 
c 
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c 
*********************************************************************** 
c 
9211 2 -1 -9211 
9212 2 -1 -9212 
9213 2 -1 -9213 
9214 2 -1 -9214 
9215 2 -1 -9215 
9216 2 -1 -9216 
9217 2 -1 -9217 
c 
9221 2 -1 -9221 
9222 2 -1 -9222 
9223 2 -1 -9223 
9224 2 -1 -9224 
9225 2 -1 -9225 
9226 2 -1 -9226 
9227 2 -1 -9227 
c 
9231 2 -1 -9231 
9232 2 -1 -9232 
9233 2 -1 -9233 
9234 2 -1 -9234 
9235 2 -1 -9235 
9236 2 -1 -9236 
9237 2 -1 -9237 
c 
9241 2 -1 -9241 
9242 2 -1 -9242 
9243 2 -1 -9243 
9244 2 -1 -9244 
9245 2 -1 -9245 
9246 2 -1 -9246 
9247 2 -1 -9247 
c 
c 
*********************************************************************** 
c 
9311 2 -1 -9311 
9312 2 -1 -9312 
9313 2 -1 -9313 
9314 2 -1 -9314 
9315 2 -1 -9315 
9316 2 -1 -9316 
9317 2 -1 -9317 
c 
9321 2 -1 -9321 
9322 2 -1 -9322 
9323 2 -1 -9323 
9324 2 -1 -9324 
9325 2 -1 -9325 
9326 2 -1 -9326 
9327 2 -1 -9327 
c 
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9331 2 -1 -9331 
9332 2 -1 -9332 
9333 2 -1 -9333 
9334 2 -1 -9334 
9335 2 -1 -9335 
9336 2 -1 -9336 
9337 2 -1 -9337 
c 
9341 2 -1 -9341 
9342 2 -1 -9342 
9343 2 -1 -9343 
9344 2 -1 -9344 
9345 2 -1 -9345 
9346 2 -1 -9346 
9347 2 -1 -9347 
c 
c 
*********************************************************************** 
c 
9411 2 -1 -9411 
9412 2 -1 -9412 
9413 2 -1 -9413 
9414 2 -1 -9414 
9415 2 -1 -9415 
9416 2 -1 -9416 
9417 2 -1 -9417 
c 
9421 2 -1 -9421 
9422 2 -1 -9422 
9423 2 -1 -9423 
9424 2 -1 -9424 
9425 2 -1 -9425 
9426 2 -1 -9426 
9427 2 -1 -9427 
c 
9431 2 -1 -9431 
9432 2 -1 -9432 
9433 2 -1 -9433 
9434 2 -1 -9434 
9435 2 -1 -9435 
9436 2 -1 -9436 
9437 2 -1 -9437 
c 
9441 2 -1 -9441 
9442 2 -1 -9442 
9443 2 -1 -9443 
9444 2 -1 -9444 
9445 2 -1 -9445 
9446 2 -1 -9446 
9447 2 -1 -9447 
c 
c 
*********************************************************************** 
c 
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9511 2 -1 -9511 
9512 2 -1 -9512 
9513 2 -1 -9513 
9514 2 -1 -9514 
9515 2 -1 -9515 
9516 2 -1 -9516 
9517 2 -1 -9517 
c 
9521 2 -1 -9521 
9522 2 -1 -9522 
9523 2 -1 -9523 
9524 2 -1 -9524 
9525 2 -1 -9525 
9526 2 -1 -9526 
9527 2 -1 -9527 
c 
9531 2 -1 -9531 
9532 2 -1 -9532 
9533 2 -1 -9533 
9534 2 -1 -9534 
9535 2 -1 -9535 
9536 2 -1 -9536 
9537 2 -1 -9537 
c 
9541 2 -1 -9541 
9542 2 -1 -9542 
9543 2 -1 -9543 
9544 2 -1 -9544 
9545 2 -1 -9545 
9546 2 -1 -9546 
9547 2 -1 -9547 
c 
c 
*********************************************************************** 
c 
9611 2 -1 -9611 
9612 2 -1 -9612 
9613 2 -1 -9613 
9614 2 -1 -9614 
9615 2 -1 -9615 
9616 2 -1 -9616 
9617 2 -1 -9617 
c 
9621 2 -1 -9621 
9622 2 -1 -9622 
9623 2 -1 -9623 
9624 2 -1 -9624 
9625 2 -1 -9625 
9626 2 -1 -9626 
9627 2 -1 -9627 
c 
9631 2 -1 -9631 
9632 2 -1 -9632 
9633 2 -1 -9633 
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9634 2 -1 -9634 
9635 2 -1 -9635 
9636 2 -1 -9636 
9637 2 -1 -9637 
c 
9641 2 -1 -9641 
9642 2 -1 -9642 
9643 2 -1 -9643 
9644 2 -1 -9644 
9645 2 -1 -9645 
9646 2 -1 -9646 
9647 2 -1 -9647 
c 
c 
***********************************************************************
c 
9711 2 -1 -9711 
9712 2 -1 -9712 
9713 2 -1 -9713 
9714 2 -1 -9714 
9715 2 -1 -9715 
9716 2 -1 -9716 
9717 2 -1 -9717 
c 
9721 2 -1 -9721 
9722 2 -1 -9722 
9723 2 -1 -9723 
9724 2 -1 -9724 
9725 2 -1 -9725 
9726 2 -1 -9726 
9727 2 -1 -9727 
c 
9731 2 -1 -9731 
9732 2 -1 -9732 
9733 2 -1 -9733 
9734 2 -1 -9734 
9735 2 -1 -9735 
9736 2 -1 -9736 
9737 2 -1 -9737 
c 
9741 2 -1 -9741 
9742 2 -1 -9742 
9743 2 -1 -9743 
9744 2 -1 -9744 
9745 2 -1 -9745 
9746 2 -1 -9746 
9747 2 -1 -9747 
c 
c 
*********************************************************************** 
c  
c Cell defining media inside the cylinder excluding spheres 
c           
5025 2 -1 1 2 3 4 
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          5 6 7 8 
          9 10 11 12 
          13 14 15 16 
          17 18 19 20 
          21 22 23 24 
          25 26 27 28 
          29 30 31 32 
          33 34 35 36 
          37 38 39 40 
          41 42 43 44 
          45 46 47 48 
          49 50 51 52 
          53 54 55 56 
          57 58 59 60 
          61 62 63 64 
          65 66 67 68 
          69 70 71 72 
          73 74 75 76 
          77 78 79 80 
          81 82 83 84 
          85 86 87 88 
          89 90 91 92 
          93 94 95 96 
          97 98 99 100 
          101 102 103 104 
          105 106 107 108 
          109 110 111 112 
          113 114 115 116 
          117 118 119 120 
          -5000 6001 -6002 
c 
c  
c Cell defining media outside the cylinder excluding point detectors 
c  
5027 2 -1 (5000:-6001:6002) 
          9011 9012 9013 9014 9015 9016 
          9017 9021 9022 9023 9024 9025 
          9026 9027 9031 9032 9033 9034 
          9035 9036 9037 9041 9042 9043 
          9044 9045 9046 9047  
          9111 9112 9113 9114 9115 9116 
          9117 9121 9122 9123 9124 9125 
          9126 9127 9131 9132 9133 9134 
          9135 9136 9137 9141 9142 9143 
          9144 9145 9146 9147  
          9211 9212 9213 9214 9215 9216 
          9217 9221 9222 9223 9224 9225 
          9226 9227 9231 9232 9233 9234 
          9235 9236 9237 9241 9242 9243 
          9244 9245 9246 9247  
          9311 9312 9313 9314 9315 9316 
          9317 9321 9322 9323 9324 9325 
          9326 9327 9331 9332 9333 9334 
          9335 9336 9337 9341 9342 9343 
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          9344 9345 9346 9347  
          9411 9412 9413 9414 9415 9416 
          9417 9421 9422 9423 9424 9425 
          9426 9427 9431 9432 9433 9434 
          9435 9436 9437 9441 9442 9443 
          9444 9445 9446 9447 
          9511 9512 9513 9514 9515 9516 
          9517 9521 9522 9523 9524 9525 
          9526 9527 9531 9532 9533 9534 
          9535 9536 9537 9541 9542 9543 
          9544 9545 9546 9547 
          9611 9612 9613 9614 9615 9616 
          9617 9621 9622 9623 9624 9625 
          9626 9627 9631 9632 9633 9634 
          9635 9636 9637 9641 9642 9643 
          9644 9645 9646 9647 
          9711 9712 9713 9714 9715 9716 
          9717 9721 9722 9723 9724 9725 
          9726 9727 9731 9732 9733 9734 
          9735 9736 9737 9741 9742 9743 
          9744 9745 9746 9747 
          -6033 
c  
c Cell defining media outside the sphere bounding region of interest 
c  
5028 0 6033  
 
c************************************************* 
c*******************SURFACE CARDS***************** 
c************************************************* 
c 
c Spheres surfaces 
c 
c 1st - surface # 
c 2nd - surface shape - sphere 
c 3d  - X coordinate of sphere center 
c 4th - Y coordinate of sphere center 
c 5th - Z coordinate of sphere center 
c 6th - sphere radius 
c 
1 s -0.06943209 0.04952054 2.45016 0.05 
2 s 0.006137062 0.09251309 1.3437 0.05 
3 s 0.07265486 -0.06019988 2.15453 0.05 
4 s 0.004529143 -0.04561754 2.80863 0.05 
5 s 0.0582785 -0.06650276 2.90364 0.05 
6 s 0.06715922 0.07092969 1.9851 0.05 
7 s 0.006797791 -0.01603772 2.49853 0.05 
8 s -0.04890448 -0.05988089 0.657491 0.05 
9 s 0.06566408 -0.04242642 0.48779 0.05 
10 s -0.08984856 -0.003787208 0.759925 0.05 
11 s 0.01901815 0.0123173 1.23347 0.05 
12 s 0.04094297 0.03912198 1.66542 0.05 
13 s -0.0008341194 0.06729923 2.73071 0.05 
14 s 0.0419714 0.05086623 0.635782 0.05 
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15 s -0.00757686 -0.09498082 0.217774 0.05 
16 s -0.03487194 -0.0486874 0.841346 0.05 
17 s 0.04381086 0.000006973744 1.83228 0.05 
18 s -0.07306654 0.02209053 1.14484 0.05 
19 s 0.02860135 0.05702123 0.147623 0.05 
20 s -0.03331468 -0.02107269 2.61906 0.05 
21 s 0.02906324 -0.07949834 0.972246 0.05 
22 s -0.03054918 0.06615762 2.25255 0.05 
23 s 0.02705407 0.06456738 2.92492 0.05 
24 s -0.01417142 -0.03845304 0.308302 0.05 
25 s -0.02183313 -0.06872264 2.19461 0.05 
26 s 0.03837024 0.01842359 0.738257 0.05 
27 s 0.03757897 0.08687847 0.95864 0.05 
28 s 0.06769033 -0.02941422 2.3945 0.05 
29 s 0.07711057 -0.04560962 1.74909 0.05 
30 s -0.07519045 -0.02652518 2.38019 0.05 
31 s -0.05873689 0.009412969 1.77309 0.05 
32 s -0.02590153 -0.06853619 1.58266 0.05 
33 s 0.005174363 0.07837018 0.502414 0.05 
34 s -0.04027569 -0.007633681 2.04066 0.05 
35 s 0.04500078 0.07102653 2.40809 0.05 
36 s -0.04307901 -0.08587005 1.10679 0.05 
37 s -0.08303663 -0.03717687 2.86579 0.05 
38 s -0.08109479 0.0003535867 0.949366 0.05 
39 s -0.04267385 0.002144945 1.34532 0.05 
40 s -0.03590823 0.09144885 1.6017 0.05 
41 s -0.04668728 -0.08812577 2.95733 0.05 
42 s -0.0571081 0.05259209 0.30852 0.05 
43 s 0.06766216 -0.01903888 9.454181E-02 0.05 
44 s 0.0704975 0.05303289 2.26244 0.05 
45 s 0.04047348 0.03752872 1.44268 0.05 
46 s 0.07857619 -0.02388079 2.68267 0.05 
47 s -0.04644197 0.05007543 1.04546 0.05 
48 s 0.08744837 -0.02098995 1.94291 0.05 
49 s 0.08322556 -0.03845421 1.51745 0.05 
50 s -0.09549339 -0.01887971 0.157715 0.05 
51 s 0.008600665 0.09151096 2.57341 0.05 
52 s 0.08943903 -0.04449756 1.12271 0.05 
53 s -0.07323179 -0.03650168 2.73117 0.05 
54 s 0.02136612 0.08803764 1.75931 0.05 
55 s -0.05666911 -0.04812456 0.429109 0.05 
56 s -0.07760111 0.0422696 1.25683 0.05 
57 s 0.09905258 0.01291337 0.274759 0.05 
58 s -0.06368552 -0.02570772 1.44262 0.05 
59 s -0.02042916 -0.06329797 1.68467 0.05 
60 s 0.002000582 0.05593222 0.824568 0.05 
61 s 0.09888351 0.006552196 2.83482 0.05 
62 s -0.09714055 -0.001177365 2.17062 0.05 
63 s 0.08932291 0.01014861 0.896651 0.05 
64 s 0.05607704 0.08163683 1.53942 0.05 
65 s 0.06565942 -0.03955466 0.373725 0.05 
66 s -0.05514205 0.07500592 0.600818 0.05 
67 s 0.04449522 0.04398603 1.09027 0.05 
68 s -0.005665541 -0.05711836 1.92975 0.05 
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69 s -0.006247819 -0.07748359 1.28643 0.05 
70 s 0.06974207 0.01512785 1.3251 0.05 
71 s 0.07777245 -0.06043384 2.29541 0.05 
72 s -0.04373397 -0.0413812 0.529277 0.05 
73 s -0.02630199 0.09006533 2.08632 0.05 
74 s 0.06972654 -0.06843822 1.39189 0.05 
75 s 0.07208763 0.04927351 0.430967 0.05 
76 s 0.06122299 -0.05791228 0.669108 0.05 
77 s -0.09736665 0.01248386 1.5484 0.05 
78 s -0.06093648 0.04951079 1.94102 0.05 
79 s 0.06572878 -0.05766905 1.62625 0.05 
80 s -0.06650361 -0.06720753 5.849405E-02 0.05 
81 s 0.03388283 -0.08951484 2.57841 0.05 
82 s 0.007880784 0.09897115 1.18096 0.05 
83 s 0.08418778 0.05374629 2.10878 0.05 
84 s -0.08535353 0.02053665 1.65449 0.05 
85 s 0.005083979 0.09232782 1.85978 0.05 
86 s -0.08027054 0.03994407 2.95633 0.05 
87 s 0.059063 -0.0632815 0.808795 0.05 
88 s -0.06629801 0.05176665 0.434609 0.05 
89 s 0.06060521 -0.05874259 2.042 0.05 
90 s -0.03349173 -0.08039261 1.82063 0.05 
91 s -0.07702442 0.06305566 2.65437 0.05 
92 s 0.002765239 0.02592089 2.16097 0.05 
93 s -0.03147404 0.03631896 6.221468E-02 0.05 
94 s 0.03815915 0.08574624 0.310807 0.05 
95 s -0.04706943 0.07007542 1.47908 0.05 
96 s -0.06863881 -0.06090488 2.28322 0.05 
97 s -0.01395468 0.06745355 2.83197 0.05 
98 s -0.001946485 -0.09247373 2.35925 0.05 
99 s -0.04298285 0.07951164 0.710236 0.05 
100 s -0.0610994 0.07438905 0.203216 0.05 
101 s 0.08685357 0.01599062 2.59084 0.05 
102 s -0.006841577 -0.09950866 2.67825 0.05 
103 s -0.09334248 -0.03161656 2.53499 0.05 
104 s 0.06804304 0.07111225 5.059448E-02 0.05 
105 s 0.09789094 0.003281951 1.01402 0.05 
106 s -0.07086199 -0.05627158 1.20902 0.05 
107 s 0.007002426 -0.0883961 1.47546 0.05 
108 s -0.09620803 -0.01258868 1.8669 0.05 
109 s 0.03959784 -0.08898778 0.573052 0.05 
110 s -0.05212522 0.07352208 2.35401 0.05 
111 s 0.02366206 -0.09090683 1.1856 0.05 
112 s 0.08823099 0.0386522 0.547756 0.05 
113 s -0.01475566 -0.09669336 2.09681 0.05 
114 s -0.02085165 -0.09306177 0.749237 0.05 
115 s 0.09918984 0.006199909 2.96256 0.05 
116 s 0.08716521 -0.04852748 0.191567 0.05 
117 s -0.04874689 0.08684234 0.906404 0.05 
118 s 0.09435114 0.03183831 2.48729 0.05 
119 s 0.009720231 -0.09797353 0.116559 0.05 
120 s -0.04234893 -0.09003263 2.45182 0.05 
c 
c Cylinder surface 
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c  
5000 cz 0.15 
c  
c Planes defining cylinder height 
c 
6001 pz 0 
6002 pz 3.018 
c 
c Tally surfaces 
c 
c cases - X = 0.16 cm - 0.61 cm 
c         Y = 0 cm 
c         Z = 1.059 cm - 1.959 cm 
c  
9011 s 0.16 0 1.059 0.01 
9012 s 0.16 0 1.209 0.01 
9013 s 0.16 0 1.359 0.01 
9014 s 0.16 0 1.509 0.01 
9015 s 0.16 0 1.659 0.01 
9016 s 0.16 0 1.809 0.01 
9017 s 0.16 0 1.959 0.01 
c 
9021 s 0.31 0 1.059 0.01 
9022 s 0.31 0 1.209 0.01 
9023 s 0.31 0 1.359 0.01 
9024 s 0.31 0 1.509 0.01 
9025 s 0.31 0 1.659 0.01 
9026 s 0.31 0 1.809 0.01 
9027 s 0.31 0 1.959 0.01 
c 
9031 s 0.46 0 1.059 0.01 
9032 s 0.46 0 1.209 0.01 
9033 s 0.46 0 1.359 0.01 
9034 s 0.46 0 1.509 0.01 
9035 s 0.46 0 1.659 0.01 
9036 s 0.46 0 1.809 0.01 
9037 s 0.46 0 1.959 0.01 
c 
9041 s 0.61 0 1.059 0.01 
9042 s 0.61 0 1.209 0.01 
9043 s 0.61 0 1.359 0.01 
9044 s 0.61 0 1.509 0.01 
9045 s 0.61 0 1.659 0.01 
9046 s 0.61 0 1.809 0.01 
9047 s 0.61 0 1.959 0.01 
c 
c cases - X = 0 cm 
c         Y = 0.16 cm - 0.61 cm  
c         Z = 1.059 cm - 1.959 cm 
c  
9111 s 0 0.16 1.059 0.01 
9112 s 0 0.16 1.209 0.01 
9113 s 0 0.16 1.359 0.01 
9114 s 0 0.16 1.509 0.01 
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9115 s 0 0.16 1.659 0.01 
9116 s 0 0.16 1.809 0.01 
9117 s 0 0.16 1.959 0.01 
c 
9121 s 0 0.31 1.059 0.01 
9122 s 0 0.31 1.209 0.01 
9123 s 0 0.31 1.359 0.01 
9124 s 0 0.31 1.509 0.01 
9125 s 0 0.31 1.659 0.01 
9126 s 0 0.31 1.809 0.01 
9127 s 0 0.31 1.959 0.01 
c 
9131 s 0 0.46 1.059 0.01 
9132 s 0 0.46 1.209 0.01 
9133 s 0 0.46 1.359 0.01 
9134 s 0 0.46 1.509 0.01 
9135 s 0 0.46 1.659 0.01 
9136 s 0 0.46 1.809 0.01 
9137 s 0 0.46 1.959 0.01 
c 
9141 s 0 0.61 1.059 0.01 
9142 s 0 0.61 1.209 0.01 
9143 s 0 0.61 1.359 0.01 
9144 s 0 0.61 1.509 0.01 
9145 s 0 0.61 1.659 0.01 
9146 s 0 0.61 1.809 0.01 
9147 s 0 0.61 1.959 0.01 
c 
c cases - X = -0.16 cm - -0.61 cm 
c         Y = 0 cm 
c         Z = 1.059 cm - 1.959 cm 
c  
9211 s -0.16 0 1.059 0.01 
9212 s -0.16 0 1.209 0.01 
9213 s -0.16 0 1.359 0.01 
9214 s -0.16 0 1.509 0.01 
9215 s -0.16 0 1.659 0.01 
9216 s -0.16 0 1.809 0.01 
9217 s -0.16 0 1.959 0.01 
c 
9221 s -0.31 0 1.059 0.01 
9222 s -0.31 0 1.209 0.01 
9223 s -0.31 0 1.359 0.01 
9224 s -0.31 0 1.509 0.01 
9225 s -0.31 0 1.659 0.01 
9226 s -0.31 0 1.809 0.01 
9227 s -0.31 0 1.959 0.01 
c 
9231 s -0.46 0 1.059 0.01 
9232 s -0.46 0 1.209 0.01 
9233 s -0.46 0 1.359 0.01 
9234 s -0.46 0 1.509 0.01 
9235 s -0.46 0 1.659 0.01 
9236 s -0.46 0 1.809 0.01 
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9237 s -0.46 0 1.959 0.01 
c 
9241 s -0.61 0 1.059 0.01 
9242 s -0.61 0 1.209 0.01 
9243 s -0.61 0 1.359 0.01 
9244 s -0.61 0 1.509 0.01 
9245 s -0.61 0 1.659 0.01 
9246 s -0.61 0 1.809 0.01 
9247 s -0.61 0 1.959 0.01 
c 
c cases - X = 0 cm 
c         Y = -0.16 cm - -0.61 cm  
c         Z = 1.059 cm - 1.959 cm 
c  
9311 s 0 -0.16 1.059 0.01 
9312 s 0 -0.16 1.209 0.01 
9313 s 0 -0.16 1.359 0.01 
9314 s 0 -0.16 1.509 0.01 
9315 s 0 -0.16 1.659 0.01 
9316 s 0 -0.16 1.809 0.01 
9317 s 0 -0.16 1.959 0.01 
c 
9321 s 0 -0.31 1.059 0.01 
9322 s 0 -0.31 1.209 0.01 
9323 s 0 -0.31 1.359 0.01 
9324 s 0 -0.31 1.509 0.01 
9325 s 0 -0.31 1.659 0.01 
9326 s 0 -0.31 1.809 0.01 
9327 s 0 -0.31 1.959 0.01 
c 
9331 s 0 -0.46 1.059 0.01 
9332 s 0 -0.46 1.209 0.01 
9333 s 0 -0.46 1.359 0.01 
9334 s 0 -0.46 1.509 0.01 
9335 s 0 -0.46 1.659 0.01 
9336 s 0 -0.46 1.809 0.01 
9337 s 0 -0.46 1.959 0.01 
c 
9341 s 0 -0.61 1.059 0.01 
9342 s 0 -0.61 1.209 0.01 
9343 s 0 -0.61 1.359 0.01 
9344 s 0 -0.61 1.509 0.01 
9345 s 0 -0.61 1.659 0.01 
9346 s 0 -0.61 1.809 0.01 
9347 s 0 -0.61 1.959 0.01 
c 
c cases - X = 0.113139705598762 cm - 0.431345127595279 cm 
c         Y = 0.113139705598762 cm - 0.431345127595279 cm 
c         Z = 1.059 cm - 1.959 cm 
c  
9411 s 0.113139705598762 0.113134464320231 1.059 0.01 
9412 s 0.113139705598762 0.113134464320231 1.209 0.01 
9413 s 0.113139705598762 0.113134464320231 1.359 0.01 
9414 s 0.113139705598762 0.113134464320231 1.509 0.01 
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9415 s 0.113139705598762 0.113134464320231 1.659 0.01 
9416 s 0.113139705598762 0.113134464320231 1.809 0.01 
9417 s 0.113139705598762 0.113134464320231 1.959 0.01 
c 
9421 s 0.219208179597601 0.219198024620447 1.059 0.01 
9422 s 0.219208179597601 0.219198024620447 1.209 0.01 
9423 s 0.219208179597601 0.219198024620447 1.359 0.01 
9424 s 0.219208179597601 0.219198024620447 1.509 0.01 
9425 s 0.219208179597601 0.219198024620447 1.659 0.01 
9426 s 0.219208179597601 0.219198024620447 1.809 0.01 
9427 s 0.219208179597601 0.219198024620447 1.959 0.01 
c 
9431 s 0.32527665359644 0.325261584920663 1.059 0.01 
9432 s 0.32527665359644 0.325261584920663 1.209 0.01 
9433 s 0.32527665359644 0.325261584920663 1.359 0.01 
9434 s 0.32527665359644 0.325261584920663 1.509 0.01 
9435 s 0.32527665359644 0.325261584920663 1.659 0.01 
9436 s 0.32527665359644 0.325261584920663 1.809 0.01 
9437 s 0.32527665359644 0.325261584920663 1.959 0.01 
c 
9441 s 0.431345127595279 0.431325145220879 1.059 0.01 
9442 s 0.431345127595279 0.431325145220879 1.209 0.01 
9443 s 0.431345127595279 0.431325145220879 1.359 0.01 
9444 s 0.431345127595279 0.431325145220879 1.509 0.01 
9445 s 0.431345127595279 0.431325145220879 1.659 0.01 
9446 s 0.431345127595279 0.431325145220879 1.809 0.01 
9447 s 0.431345127595279 0.431325145220879 1.959 0.01 
c 
c cases - X = -0.113139705598762 cm - -0.431345127595279 cm 
c         Y = 0.113139705598762 cm - 0.431345127595279 cm 
c         Z = 1.059 cm - 1.959 cm 
c  
9511 s -0.113129222798894 0.113144946634475 1.059 0.01 
9512 s -0.113129222798894 0.113144946634475 1.209 0.01 
9513 s -0.113129222798894 0.113144946634475 1.359 0.01 
9514 s -0.113129222798894 0.113144946634475 1.509 0.01 
9515 s -0.113129222798894 0.113144946634475 1.659 0.01 
9516 s -0.113129222798894 0.113144946634475 1.809 0.01 
9517 s -0.113129222798894 0.113144946634475 1.959 0.01 
c 
9521 s -0.219187869172856 0.219218334104296 1.059 0.01 
9522 s -0.219187869172856 0.219218334104296 1.209 0.01 
9523 s -0.219187869172856 0.219218334104296 1.359 0.01 
9524 s -0.219187869172856 0.219218334104296 1.509 0.01 
9525 s -0.219187869172856 0.219218334104296 1.659 0.01 
9526 s -0.219187869172856 0.219218334104296 1.809 0.01 
9527 s -0.219187869172856 0.219218334104296 1.959 0.01 
c 
9531 s -0.325246515546819 0.325291721574117 1.059 0.01 
9532 s -0.325246515546819 0.325291721574117 1.209 0.01 
9533 s -0.325246515546819 0.325291721574117 1.359 0.01 
9534 s -0.325246515546819 0.325291721574117 1.509 0.01 
9535 s -0.325246515546819 0.325291721574117 1.659 0.01 
9536 s -0.325246515546819 0.325291721574117 1.809 0.01 
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9537 s -0.325246515546819 0.325291721574117 1.959 0.01 
c 
9541 s -0.431305161920782 0.431365109043938 1.059 0.01 
9542 s -0.431305161920782 0.431365109043938 1.209 0.01 
9543 s -0.431305161920782 0.431365109043938 1.359 0.01 
9544 s -0.431305161920782 0.431365109043938 1.509 0.01 
9545 s -0.431305161920782 0.431365109043938 1.659 0.01 
9546 s -0.431305161920782 0.431365109043938 1.809 0.01 
9547 s -0.431305161920782 0.431365109043938 1.959 0.01 
c 
c cases - X = -0.113139705598762 cm - -0.431345127595279 cm 
c         Y = -0.113139705598762 cm - -0.431345127595279 cm 
c         Z = 1.059 cm - 1.959 cm 
c  
9611 s -0.113150187427361 -0.113123981034762 1.059 0.01 
9612 s -0.113150187427361 -0.113123981034762 1.209 0.01 
9613 s -0.113150187427361 -0.113123981034762 1.359 0.01 
9614 s -0.113150187427361 -0.113123981034762 1.509 0.01 
9615 s -0.113150187427361 -0.113123981034762 1.659 0.01 
9616 s -0.113150187427361 -0.113123981034762 1.809 0.01 
9617 s -0.113150187427361 -0.113123981034762 1.959 0.01 
c 
9621 s -0.219228488140511 -0.219177713254851 1.059 0.01 
9622 s -0.219228488140511 -0.219177713254851 1.209 0.01 
9623 s -0.219228488140511 -0.219177713254851 1.359 0.01 
9624 s -0.219228488140511 -0.219177713254851 1.509 0.01 
9625 s -0.219228488140511 -0.219177713254851 1.659 0.01 
9626 s -0.219228488140511 -0.219177713254851 1.809 0.01 
9627 s -0.219228488140511 -0.219177713254851 1.959 0.01 
c 
9631 s -0.325306788853662 -0.32523144547494 1.059 0.01 
9632 s -0.325306788853662 -0.32523144547494 1.209 0.01 
9633 s -0.325306788853662 -0.32523144547494 1.359 0.01 
9634 s -0.325306788853662 -0.32523144547494 1.509 0.01 
9635 s -0.325306788853662 -0.32523144547494 1.659 0.01 
9636 s -0.325306788853662 -0.32523144547494 1.809 0.01 
9637 s -0.325306788853662 -0.32523144547494 1.959 0.01 
c 
9641 s -0.431385089566813 -0.431285177695029 1.059 0.01 
9642 s -0.431385089566813 -0.431285177695029 1.209 0.01 
9643 s -0.431385089566813 -0.431285177695029 1.359 0.01 
9644 s -0.431385089566813 -0.431285177695029 1.509 0.01 
9645 s -0.431385089566813 -0.431285177695029 1.659 0.01 
9646 s -0.431385089566813 -0.431285177695029 1.809 0.01 
9647 s -0.431385089566813 -0.431285177695029 1.959 0.01 
c 
c cases - X = 0.113139705598762 cm - 0.431345127595279 cm 
c         Y = -0.113139705598762 cm - -0.431345127595279 cm 
c         Z = 1.059 cm - 1.959 cm 
c  
9711 s 0.113139705598762 -0.113134464320231 1.059 0.01 
9712 s 0.113139705598762 -0.113134464320231 1.209 0.01 
9713 s 0.113139705598762 -0.113134464320231 1.359 0.01 
9714 s 0.113139705598762 -0.113134464320231 1.509 0.01 
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9715 s 0.113139705598762 -0.113134464320231 1.659 0.01 
9716 s 0.113139705598762 -0.113134464320231 1.809 0.01 
9717 s 0.113139705598762 -0.113134464320231 1.959 0.01 
c 
9721 s 0.219208179597601 -0.219198024620447 1.059 0.01 
9722 s 0.219208179597601 -0.219198024620447 1.209 0.01 
9723 s 0.219208179597601 -0.219198024620447 1.359 0.01 
9724 s 0.219208179597601 -0.219198024620447 1.509 0.01 
9725 s 0.219208179597601 -0.219198024620447 1.659 0.01 
9726 s 0.219208179597601 -0.219198024620447 1.809 0.01 
9727 s 0.219208179597601 -0.219198024620447 1.959 0.01 
c 
9731 s 0.32527665359644 -0.325261584920663 1.059 0.01 
9732 s 0.32527665359644 -0.325261584920663 1.209 0.01 
9733 s 0.32527665359644 -0.325261584920663 1.359 0.01 
9734 s 0.32527665359644 -0.325261584920663 1.509 0.01 
9735 s 0.32527665359644 -0.325261584920663 1.659 0.01 
9736 s 0.32527665359644 -0.325261584920663 1.809 0.01 
9737 s 0.32527665359644 -0.325261584920663 1.959 0.01 
c 
9741 s 0.431345127595279 -0.431325145220879 1.059 0.01 
9742 s 0.431345127595279 -0.431325145220879 1.209 0.01 
9743 s 0.431345127595279 -0.431325145220879 1.359 0.01 
9744 s 0.431345127595279 -0.431325145220879 1.509 0.01 
9745 s 0.431345127595279 -0.431325145220879 1.659 0.01 
9746 s 0.431345127595279 -0.431325145220879 1.809 0.01 
9747 s 0.431345127595279 -0.431325145220879 1.959 0.01 
c 
c Surface - sphere defining region of interest 
c 
6033 so 30 
 
c**************************************************** 
c********************DATA SECTIONS******************* 
c**************************************************** 
c 
c Defining particles to be considered in simulations 
c p - photons 
c e - electrons 
c 
mode p e 
c 
c Defining cell importance 
c 
c 225 (point detectors+1) + # of spheres 
c  
imp:p,e 1 345R 0 
c 
c Source description 
c par=3 - ELECTRON MODE 
c erg   - ENERGY DESTRIBUTION 
c pos   - POSITION DESTRIBUTION 
c rad   - RADIAL POSITION 
c 
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sdef par=3 erg=D1 pos=D2 rad=D3 
c 
c Energy values distribution 
c 
c L - discrete distribution 
c 
si1 L 0.0108015 0.0324045 0.0540075 0.0756105 0.097216  
      0.11882   0.14042   0.16202   0.183625  0.20523  
      0.22683   0.248435  0.27004   0.29164   0.313245  
      0.33485   0.35645   0.37805   0.399655  0.42126  
      0.44286   0.464465  0.48607   0.50767   0.529275  
      0.55088   0.57248   0.59408   0.615685  0.63729 
      0.65889   0.680495  0.7021    0.72370   0.745305  
      0.76691   0.78851   0.81011   0.831715  0.85332  
      0.87492   0.896525  0.91813   0.93973   0.96133  
      0.982935  1.00452   1.0261    1.0477    1.06935  
      1.091     1.1126    1.1342    1.1558    1.1774  
      1.199     1.2206    1.2422    1.2638    1.2854 
      1.307     1.3286    1.3502    1.3718    1.3934  
      1.415     1.4366    1.4582    1.4798    1.5014  
      1.523     1.5446    1.5662    1.5878    1.6094  
      1.631     1.6526    1.6742    1.695     1.7174  
      1.739     1.7606    1.7822    1.80385   1.8255  
      1.8471    1.8687    1.8903    1.9119    1.9335 
      1.9551    1.9767    1.9983    2.0199    2.0415  
      2.0631    2.0847    2.1063    2.1279    2.1495 
c  
c Probability of energy values - each energy has its determined  
c probability  
c 
c D - bin probability 
c 
sp1 D 0.012613344 0.012833694 0.013060094 0.013297727 0.01354346 
      0.013767192 0.01396742  0.014138712 0.014291125 0.014406552 
      0.01450418  0.014583941 0.01462708  0.014655384 0.014670813  
      0.014654952 0.014629896 0.014591448 0.014548284 0.014483232 
      0.01441908  0.014358332 0.014283648 0.014217336 0.01416319 
      0.014107176 0.014072616 0.01404756  0.014031373 0.013999392 
      0.0139676   0.01393391  0.01387929  0.013824864 0.013770972  
      0.013698504 0.013626576 0.013549248 0.013473187 0.013379472  
      0.013287456 0.013196795n0.013089384 0.012983544 0.012873168  
      0.012764379 0.012615618 0.012515256 0.012386736 0.012310193  
      0.0121154   0.011972448 0.011824488 0.011670912 0.011511936  
      0.011347344 0.011176704 0.011000232 0.01081728  0.010627632 
      0.010431504 0.010228248 0.01001808  0.009800352 0.009575496  
      0.009342864 0.009102672 0.008854704 0.00859896  0.008335656  
      0.008064576 0.00778572  0.00749952  0.007206192 0.006905952  
      0.006599016 0.006286032 0.005967432 0.005643864 0.005315976  
      0.004984416 0.00465048  0.004314816 0.00399714  0.003643272  
      0.0033102   0.002980584 0.002656584 0.002339712 0.002031977 
      0.001735517 0.001452492 0.001185883 0.000938736 0.000713297  
      0.000510991 0.00033467  0.000193095 9.58046E-05 3.78994E-05 
c 
c LOCATION OF THE SOURCE AND ELECTRON EMITTING PROBABILTY 
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c  
c Position distribution  - defines position of emitting electron 
c Basically defines in which sphere emition occurs 
c  
c L - discrete distribution 
c 
si2 L -0.06943209 0.04952054 2.45016 
      0.006137062 0.09251309 1.3437 
      0.07265486 -0.06019988 2.15453 
      0.004529143 -0.04561754 2.80863 
      0.0582785 -0.06650276 2.90364 
      0.06715922 0.07092969 1.9851 
      0.006797791 -0.01603772 2.49853 
      -0.04890448 -0.05988089 0.657491 
      0.06566408 -0.04242642 0.48779 
      -0.08984856 -0.003787208 0.759925 
      0.01901815 0.0123173 1.23347 
      0.04094297 0.03912198 1.66542 
      -0.0008341194 0.06729923 2.73071 
      0.0419714 0.05086623 0.635782 
      -0.00757686 -0.09498082 0.217774 
      -0.03487194 -0.0486874 0.841346 
      0.04381086 0.000006973744 1.83228 
      -0.07306654 0.02209053 1.14484 
      0.02860135 0.05702123 0.147623 
      -0.03331468 -0.02107269 2.61906 
      0.02906324 -0.07949834 0.972246 
      -0.03054918 0.06615762 2.25255 
      0.02705407 0.06456738 2.92492 
      -0.01417142 -0.03845304 0.308302 
      -0.02183313 -0.06872264 2.19461 
      0.03837024 0.01842359 0.738257 
      0.03757897 0.08687847 0.95864 
      0.06769033 -0.02941422 2.3945 
      0.07711057 -0.04560962 1.74909 
      -0.07519045 -0.02652518 2.38019 
      -0.05873689 0.009412969 1.77309 
      -0.02590153 -0.06853619 1.58266 
      0.005174363 0.07837018 0.502414 
      -0.04027569 -0.007633681 2.04066 
      0.04500078 0.07102653 2.40809 
      -0.04307901 -0.08587005 1.10679 
      -0.08303663 -0.03717687 2.86579 
      -0.08109479 0.0003535867 0.949366 
      -0.04267385 0.002144945 1.34532 
      -0.03590823 0.09144885 1.6017 
      -0.04668728 -0.08812577 2.95733 
      -0.0571081 0.05259209 0.30852 
      0.06766216 -0.01903888 9.454181E-02 
      0.0704975 0.05303289 2.26244 
      0.04047348 0.03752872 1.44268 
      0.07857619 -0.02388079 2.68267 
      -0.04644197 0.05007543 1.04546 
      0.08744837 -0.02098995 1.94291 
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      0.08322556 -0.03845421 1.51745 
      -0.09549339 -0.01887971 0.157715 
      0.008600665 0.09151096 2.57341 
      0.08943903 -0.04449756 1.12271 
      -0.07323179 -0.03650168 2.73117 
      0.02136612 0.08803764 1.75931 
      -0.05666911 -0.04812456 0.429109 
      -0.07760111 0.0422696 1.25683 
      0.09905258 0.01291337 0.274759 
      -0.06368552 -0.02570772 1.44262 
      -0.02042916 -0.06329797 1.68467 
      0.002000582 0.05593222 0.824568 
      0.09888351 0.006552196 2.83482 
      -0.09714055 -0.001177365 2.17062 
      0.08932291 0.01014861 0.896651 
      0.05607704 0.08163683 1.53942 
      0.06565942 -0.03955466 0.373725 
      -0.05514205 0.07500592 0.600818 
      0.04449522 0.04398603 1.09027 
      -0.005665541 -0.05711836 1.92975 
      -0.006247819 -0.07748359 1.28643 
      0.06974207 0.01512785 1.3251 
      0.07777245 -0.06043384 2.29541 
      -0.04373397 -0.0413812 0.529277 
      -0.02630199 0.09006533 2.08632 
      0.06972654 -0.06843822 1.39189 
      0.07208763 0.04927351 0.430967 
      0.06122299 -0.05791228 0.669108 
      -0.09736665 0.01248386 1.5484 
      -0.06093648 0.04951079 1.94102 
      0.06572878 -0.05766905 1.62625 
      -0.06650361 -0.06720753 5.849405E-02 
      0.03388283 -0.08951484 2.57841 
      0.007880784 0.09897115 1.18096 
      0.08418778 0.05374629 2.10878 
      -0.08535353 0.02053665 1.65449 
      0.005083979 0.09232782 1.85978 
      -0.08027054 0.03994407 2.95633 
      0.059063 -0.0632815 0.808795 
      -0.06629801 0.05176665 0.434609 
      0.06060521 -0.05874259 2.042 
      -0.03349173 -0.08039261 1.82063 
      -0.07702442 0.06305566 2.65437 
      0.002765239 0.02592089 2.16097 
      -0.03147404 0.03631896 6.221468E-02 
      0.03815915 0.08574624 0.310807 
      -0.04706943 0.07007542 1.47908 
      -0.06863881 -0.06090488 2.28322 
      -0.01395468 0.06745355 2.83197 
      -0.001946485 -0.09247373 2.35925 
      -0.04298285 0.07951164 0.710236 
      -0.0610994 0.07438905 0.203216 
      0.08685357 0.01599062 2.59084 
      -0.006841577 -0.09950866 2.67825 
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      -0.09334248 -0.03161656 2.53499 
      0.06804304 0.07111225 5.059448E-02 
      0.09789094 0.003281951 1.01402 
      -0.07086199 -0.05627158 1.20902 
      0.007002426 -0.0883961 1.47546 
      -0.09620803 -0.01258868 1.8669 
      0.03959784 -0.08898778 0.573052 
      -0.05212522 0.07352208 2.35401 
      0.02366206 -0.09090683 1.1856 
      0.08823099 0.0386522 0.547756 
      -0.01475566 -0.09669336 2.09681 
      -0.02085165 -0.09306177 0.749237 
      0.09918984 0.006199909 2.96256 
      0.08716521 -0.04852748 0.191567 
      -0.04874689 0.08684234 0.906404 
      0.09435114 0.03183831 2.48729 
      0.009720231 -0.09797353 0.116559 
      -0.04234893 -0.09003263 2.45182 
c 
c Position probability 
c 
c D - defines uniform distribution 
c 
c 
sp2 D 1 119R 
c  
c Bin boundaries for histogram distribution 
c 
si3 h 0 0.05 
c 
c Probability defined through probability function - P(X) = C*ABS(X)^a 
c -21 - defines function type 
c 2   - a parameter value 
c 
sp3 -21 2 
c 
c Problem cut off card  
c 
c Electron energy cut off - energy determined by CSDA range of the  
c electron 
c 1J    - time cut off  
c 0.028 - low energy cut off in MeV 
c  
cut:e 1j 0.028 
c  
c Upper energy cut off in MeV 
c 
phys:e 3 
phys:p 3 
c 
c MATERIAL DESCRIPTION 
c  
c 1st - material card # 
c 2nd - 59000 - Pr(Praseodymium) 
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c 3d  - fraction - 0.105 (or 10.5%) 
c 4th - 8000 - O(Oxygen) 
c 5th - fraction - 0.632 (or 63.2%) 
c 6th - 13000 - Al(Aluminum) 
c 7th - fraction - 0.105 (or 10.5%) 
c 8th - 14000 - Si(Silicon) 
c 9th - fraction - 0.158(or 15.8%) 
c 
m1 59000 0.105 8000 0.632 13000 0.105 14000 0.158 $ inside microspheres 
c 
c 1st - material card # 
c 2nd - 1000 - H(Hydrogen) 
c 3d  - fraction - 0.666667 (or 66.6667%) 
c 4th - 8000 - O(Oxygen) 
c 5th - fraction - 0.333333 (or 33.3333%) 
c 
m2 1000 0.666667 8000 0.333333 $ elsewhere 
c 
c Tallies descriptions 
c 
c *f8 - energy distribution in the cell, MeV 
c MCNP has restriction regarding number of tallies defined per input  
c file allowed 
c The maximum allowed number is 100 tallies 
c We have 256 tallies thus it is necessary to split them into three  
c input files 
c Description of 84 tallies is presented below 
c 
*f18:e 9011 
*f28:e 9012 
*f38:e 9013 
*f48:e 9014 
*f58:e 9015 
*f68:e 9016 
*f78:e 9017 
c 
*f88:e 9021 
*f98:e 9022 
*f108:e 9023 
*f118:e 9024 
*f128:e 9025 
*f138:e 9026 
*f148:e 9027 
c 
*f158:e 9031 
*f168:e 9032 
*f178:e 9033 
*f188:e 9034 
*f198:e 9035 
*f208:e 9036 
*f218:e 9037 
c 
*f228:e 9041 
*f238:e 9042 
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*f248:e 9043 
*f258:e 9044 
*f268:e 9045 
*f278:e 9046 
*f288:e 9047 
c 
c 
*********************************************************************** 
*f298:e 9111 
*f308:e 9112 
*f318:e 9113 
*f328:e 9114 
*f338:e 9115 
*f348:e 9116 
*f358:e 9117 
c 
*f368:e 9121 
*f378:e 9122 
*f388:e 9123 
*f398:e 9124 
*f408:e 9125 
*f418:e 9126 
*f428:e 9127 
c 
*f438:e 9131 
*f448:e 9132 
*f458:e 9133 
*f468:e 9134 
*f478:e 9135 
*f488:e 9136 
*f498:e 9137 
c 
*f508:e 9141 
*f518:e 9142 
*f528:e 9143 
*f538:e 9144 
*f548:e 9145 
*f558:e 9146 
*f568:e 9147 
c 
c 
*********************************************************************** 
*f578:e 9211 
*f588:e 9212 
*f598:e 9213 
*f608:e 9214 
*f618:e 9215 
*f628:e 9216 
*f638:e 9217 
c 
*f648:e 9221 
*f658:e 9222 
*f668:e 9223 
*f678:e 9224 
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*f688:e 9225 
*f698:e 9226 
*f708:e 9227 
c 
*f718:e 9231 
*f728:e 9232 
*f738:e 9233 
*f748:e 9234 
*f758:e 9235 
*f768:e 9236 
*f778:e 9237 
c 
*f788:e 9241 
*f798:e 9242 
*f808:e 9243 
*f818:e 9244 
*f828:e 9245 
*f838:e 9246 
*f848:e 9247 
c 
c # of histories 
c 
nps 200000000 
 
c end of input file 
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FORTRAN CODE 
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! 
! loading spheres into a cylinder 
! 
program sphere packing 
     
implicit none 
integer i, j, k, n_spheres, iter, loops 
real cyl_radius, sphere_radius, cyl_height  
real x, y, z, store(10000,3), freq(10000) 
real diff, p1, p2, p3, start, finish 
real sphere_volume, cylinder_volume, density 
! 
! i,j,k – variables used in loops 
! n_spheres – number of spheres positioned in the cylinder 
! iter – number of spheres generated and attempted to position 
! loops – number of loops 
! cyl_radius, sphere_radius, cyl_height – self explanatory 
! store - contains the x,y,z coordinates for spheres 1 thru 10000 
! freq – contains frequency of appearance for different number of 
! spheres 
! diff, p1, p2, p3 – used in intermediate calculation 
! start, finish – contain start and end time of calculation 
! sphere_volume, cylinder_volume - self explanatory 
! density – packing ration calculated as ration of spheres volume and 
! cylinder volume 
! 
! Opening files for input data 
!   
open(10,file='c:\X.dat') 
open(11,file='c:\Y.dat') 
open(12,file='c:\Z.dat') 
         
open(6,file='c:\output.dat') 
open(7,file='c:\freq.dat') 
! 
! Entering model parameters 
! 
write(*,*)'Enter cylinder radius' 
read(*,*)cyl_radius 
   
write(*,*)'Enter sphere radius' 
read(*,*)sphere_radius 
 
write(*,*)'Enter cylinder height' 
read(*,*)cyl_height 
 
write(*,*)'Enter number of iterations' 
read(*,*)iter 
 
write(*,*)'Enter number of loops' 
read(*,*)loops 
! 
! Starting clock 
!         
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call clock@(start) 
 
n_spheres = 0 
! 
! data array initialization 
! 
do i=1,10000 
 freq(i)=0. 
end do 
 
diff = cyl_radius - sphere_radius 
 
do j=1,loops 
 ! 
 ! reinitializing of seed for random generator 
 !   
      call date_time_seed@ 
   
      do 99 k=1,iter 
         
  x=2.*random@()*diff-diff  
  y=2.*random@()*diff-diff 

! 
! rejection sampling – determining if sphere inside the 
! cylinder 
! 

  if (x*x+y*y.gt.diff*diff)then  
   goto 99 
  endif 
   
  z = sphere_radius+random@()*(cyl_height-2*sphere_radius) 
 

! 
!check to see if sphere fits with other ones 
! 

  do i=1,n_spheres 
 
   p1=(store(j,1)-x)**2 
          p2=(store(j,2)-y)**2 
          p3=(store(j,3)-z)**2 
 
     if (sqrt(p1+p2+p3).lt.2.0*sphere_radius) then  
    goto 99 
   endif 
 
       end do 
         
  n_spheres = n_spheres + 1 
  store(n_spheres,1) = x 
  store(n_spheres,2) = y 
  store(n_spheres,3) = z 
   
      write(6,*)(store(n_spheres,j), j=1,3) 
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         write(10,*)x 
         write(11,*)y 
         write(12,*)z 
         

99 continue 
  
 freq(n_spheres)=freq(n_spheres)+1 
  
end do 
   
do i=1,10000   
 write(7,*)freq(i) 
end do 
  
sphere_volume=(4./3.)*3.1415*(sphere_radius**3) 
cylinder_volume=3.1415*(cyl_radius**2)*cyl_height 
 
density=(n_spheres*sphere_volume)/cylinder_volume 
 
write(*,*)'density', density 
         
write(*,*)'number of spheres', n_spheres 
 
write(6,*)n_spheres 
! 
! Closing files 
!        
close (6) 
close (7) 
close(10) 
close(11) 
close(12) 
! 
! Stopping clock 
!         
call clock@(finish) 
 
write(*,*)'time elapsed',finish-start 
         
end 



 116 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

USER INTERFACE DEVELOPED IN VISUAL BASIC 



 117 

 

 

 

Fig. D.1 User interface in Visual Basic for random filling the cylinder  

with microspheres and generation data for MCNP input file 
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APPENDIX E 

DOSE DISTRIBUTION HISTOGRAMS (CYLINDER RADIUS: 0.1 CM) 
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Fig. E.1 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.03 cm, distance: 0 cm) 
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Fig. E.2 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.03 cm, distance: 0.075 cm) 
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Fig. E.3 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.03 cm, distance: 0.15 cm) 
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Fig. E.4 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.05 cm, distance: 0 cm) 
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Fig. E.5 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.05 cm, distance: 0.075 cm) 
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Fig. E.6 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.05 cm, distance: 0.15 cm) 
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Fig. E.7 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.07 cm, distance: 0 cm) 
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Fig. E.8 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.07 cm, distance: 0.075 cm) 
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Fig. E.9 Dose distribution (cylinder radius: 0.1 cm, 

sphere radius: 0.07 cm, distance: 0.15 cm) 
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APPENDIX F 

DOSE DISTRIBUTION HISTOGRAMS (CYLINDER RADIUS: 0.15 CM) 
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Fig. F.1 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.03 cm, distance: 0 cm) 
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Fig. F.2 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.03 cm, distance: 0.075 cm) 
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Fig. F.3 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.03 cm, distance: 0.15 cm) 
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Fig. F.4 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.05 cm, distance: 0 cm) 
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Fig. F.5 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.05 cm, distance: 0.075 cm) 
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Fig. F.6 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.05 cm, distance: 0.15 cm) 
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Fig. F.7 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.07 cm, distance: 0 cm) 
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Fig. F.8 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.07 cm, distance: 0.075 cm) 
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Fig. F.9 Dose distribution (cylinder radius: 0.15 cm, 

sphere radius: 0.07 cm, distance: 0.15 cm) 
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APPENDIX G 

DOSE DISTRIBUTION HISTOGRAMS (CYLINDER RADIUS: 0.3 CM) 
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Fig. G.1 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.03 cm, distance: 0 cm) 
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Fig. G.2 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.03 cm, distance: 0.075 cm) 
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Fig. G.3 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.03 cm, distance: 0.15 cm) 
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Fig. G.4 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.05 cm, distance: 0 cm) 
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Fig. G.5 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.05 cm, distance: 0.075 cm) 
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Fig. G.6 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.05 cm, distance: 0.15 cm) 
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Fig. G.7 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.07 cm, distance: 0 cm) 
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Fig. G.8 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.07 cm, distance: 0.075 cm) 
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Fig. G.9 Dose distribution (cylinder radius: 0.3 cm, 

sphere radius: 0.07 cm, distance: 0.15 cm) 
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